WO2022062541A1 - 射频架构及终端设备 - Google Patents

射频架构及终端设备 Download PDF

Info

Publication number
WO2022062541A1
WO2022062541A1 PCT/CN2021/103499 CN2021103499W WO2022062541A1 WO 2022062541 A1 WO2022062541 A1 WO 2022062541A1 CN 2021103499 W CN2021103499 W CN 2021103499W WO 2022062541 A1 WO2022062541 A1 WO 2022062541A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
radio frequency
power supply
signal
power
Prior art date
Application number
PCT/CN2021/103499
Other languages
English (en)
French (fr)
Inventor
冯斌
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022062541A1 publication Critical patent/WO2022062541A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present invention relates to the field of communications, and in particular, to a radio frequency architecture and terminal equipment.
  • MHB PAMID Middle and high Band PA Module integrated duplexer, Middle and high Band Power Amplifier Module integrated duplexer, medium and high frequency power amplifier module
  • N41 modules are both It supports new wireless (New Radio, NR) performance, so it needs a higher voltage power supply, you can choose to connect an external DC to DC power supply (Direct Current Source, DCDC) power supply;
  • LB PAMID Low Band PA Module integrated duplexer, low frequency PA mode Group
  • power management integrated circuit Power Management IC, PMIC
  • PMIC Power Management integrated circuit
  • Embodiments of the present invention provide a radio frequency architecture and a terminal device, which are used to reduce the cost of PA components by reasonably optimizing the architecture of the 4G and 5G dual-connection technical solutions, so as to achieve the purpose of reducing the cost.
  • the first aspect of the present invention provides a radio frequency architecture, which may include:
  • the first power amplifier PA module is used to support a specific frequency band, mid-to-high frequency band MHB in New Wireless NR/Long Term Evolution LTE;
  • the second power amplifier PA module is used to support the low-band LB in LTE;
  • the third power amplifier PA module is used to support mid-band MB in LTE;
  • a first power supply is connected to the first PA module for providing power for the first PA module
  • the second power supply is connected to the second PA module, and is used to provide power for the second PA module;
  • a third power source is connected to the third PA module, and is used for providing power to the third PA module.
  • a second aspect of the present invention provides a terminal device, which may include the radio frequency architecture described in the first aspect of the present invention.
  • the embodiments of the present invention have the following advantages:
  • the radio frequency architecture provided in the embodiment of the present invention may include: a first power amplifier PA module, which is used to support a specific frequency band, the mid-to-high frequency band MHB in new wireless NR/Long Term Evolution LTE; a second power amplifier PA module , which is used to support the low-band LB in LTE; the third power amplifier PA module is used to support the mid-band MB in LTE; the first power supply is connected to the first PA module, which is used for the first PA module The module provides power; the second power supply is connected to the second PA module for providing power for the second PA module; the third power supply is connected to the third PA module for supplying the second PA module Three PA modules provide power.
  • a specific frequency band can be supported by the first PA module, there is no need to plug in a specific PA module, but in order to support the M+H ENDC requirements, a third PA module that supports the intermediate frequency MB frequency band in LTE can be plugged in, while the third PA module can be plugged in to support the M+H ENDC requirements
  • the cost of PA modules is less than that of specific PA modules. Therefore, by rationally optimizing the architecture of the 4G and 5G dual-connection technical solutions, the cost of PA components is reduced and the purpose of cost reduction is achieved.
  • 1 is a schematic diagram of an existing radio frequency architecture
  • FIG. 2A is a schematic diagram of an embodiment of a radio frequency architecture provided in an embodiment of the present invention.
  • 2B is a schematic diagram of another embodiment of a radio frequency architecture provided in an embodiment of the present invention.
  • 2C is a schematic diagram of another embodiment of a radio frequency architecture provided in an embodiment of the present invention.
  • FIG. 2D is a schematic diagram of another embodiment of a radio frequency architecture provided in an embodiment of the present invention.
  • 2E is a schematic diagram of another embodiment of a radio frequency architecture provided in an embodiment of the present invention.
  • FIG. 2F is a schematic diagram of another embodiment of a radio frequency architecture provided in an embodiment of the present invention.
  • 2G is a schematic diagram of another embodiment of a radio frequency architecture provided in an embodiment of the present invention.
  • 2H is a schematic diagram of another embodiment of a radio frequency architecture provided in an embodiment of the present invention.
  • 2I is a schematic diagram of another embodiment of a radio frequency architecture provided in an embodiment of the present invention.
  • 3A is a schematic diagram of an embodiment of a terminal device provided in an embodiment of the present invention.
  • 3B is a schematic diagram of another embodiment of a terminal device provided in an embodiment of the present invention.
  • 3C is a schematic diagram of another embodiment of a terminal device provided in an embodiment of the present invention.
  • FIG. 3D is a schematic diagram of another embodiment of a terminal device provided in an embodiment of the present invention.
  • 3E is a schematic diagram of another embodiment of a terminal device provided in an embodiment of the present invention.
  • 3F is a schematic diagram of another embodiment of a terminal device provided in an embodiment of the present invention.
  • 3G is a schematic diagram of another embodiment of a terminal device provided in an embodiment of the present invention.
  • 3H is a schematic diagram of another embodiment of a terminal device provided in an embodiment of the present invention.
  • 3I is a schematic diagram of another embodiment of a terminal device provided in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another embodiment of a terminal device provided in an embodiment of the present invention.
  • the embodiments of the present invention provide a radio frequency architecture and terminal equipment, which are used to reduce the cost of PA components and achieve the purpose of reducing the cost of the whole machine by rationally optimizing the architecture of the 4G and 5G dual-connection technical solutions.
  • 5G NSA non-standalone, non-independent networking
  • SA The two major deployment schemes of standalone, independent networking
  • 1T4R under NSA (1 transmission and 4 reception) and 2T4R under SA (2 transmission and 4 reception) and 1T4R have key schemes to improve the communication rate, especially the downlink communication rate; because personal big data applications such as short videos, video movies and other applications have higher requirements for the downlink rate.
  • ENDC E-UTRA NR Dual Connectivity, 4G and 5G dual connectivity technology
  • LB Low Band, low frequency
  • MB Mobile Broadband, medium frequency
  • HB High Band, high frequency
  • HB/SUB6G multiple frequency bands
  • ENDC schemes in any combination between the two, such as common LB+LB, LB+MB, LB+HB, MB+HB, LB+SUB6G, MB+SUB6G, HB+ SUB6G.
  • the main domestic requirements are MB+HB (B1/3/39+N41), LB+SUB6G, MB+SUB6G, HB+SUB6G.
  • NR/LTE MHB PAMID Middle and high Band PA Module integrated duplexer, Middle and high Band Power Amplifier Module integrated duplexer, medium and high frequency power amplifier module
  • LB PAMID LB PA Module integrated duplexer, low-frequency PA module
  • LTE features since NR/LTE MHB PAMID cannot support simultaneous transmission of MB and HB, in order to To support M+H ENDC requirements, a single N41PA module needs to be plugged in.
  • DCDC power supply Direct Current Source, DC converter
  • DC/DC refers to a device that converts a DC power supply of a certain voltage level into a DC power supply of other voltage levels.
  • DC/DC is divided into two categories according to the voltage level conversion relationship: boost power supply and step-down power supply, and according to the input and output relationship, it is divided into two categories: isolated power supply and non-isolated power supply.
  • the DC/DC converter connected to the vehicle DC power supply is to convert high-voltage direct current into low-voltage direct current.
  • PMIC power supply Power Management IC, power management integrated circuit, it is used to manage the power supply equipment in the host system, commonly used in mobile phones and various mobile terminal equipment.
  • High Band (HB), Mid Band (MB), Low Band (LB), N41 is the 5G band.
  • the N41 frequency band ranges from 2496MHz to 2690MHz
  • the HB frequency band ranges from 2300MHz to 2690MHz
  • the MB frequency band ranges from 1710MHz to 1980MHz
  • the LB frequency band ranges from 663MHz to 915MHz.
  • SUB6G refers to the 5G frequency band
  • the operating frequency is the frequency band below 6G of 450MHz-6000MHz.
  • Power amplifier refers to an amplifier that can generate maximum power output to drive a load under a given distortion rate.
  • the power of the power supply is converted into a current that changes according to the input signal by using the current control function of the triode or the voltage control function of the field effect transistor.
  • speakers and power amplifiers play a pivotal role in “organization and coordination" in the entire sound system, and to some extent dominate whether the entire system can provide good sound quality output.
  • PA is also very helpful in today's era of widespread application of the Internet of Things.
  • the power amplifier usually includes three parts: preamplifier, driver amplifier, final power amplifier.
  • the preamplifier plays a matching role, and its input impedance is high (not less than 10k ⁇ ), which can absorb most of the previous signal, and the output impedance is low (less than tens of ⁇ ), which can transmit most of the signal.
  • it itself is a current amplifier, which converts the input voltage signal into a current signal and gives proper amplification.
  • the drive amplifier acts as a bridge, it further amplifies the current signal sent by the preamplifier, and amplifies it into a medium power signal to drive the final stage power amplifier to work normally. If there is no driving amplifier, it is impossible for the final power amplifier to send out a high-power sound signal.
  • the final power amplifier plays a key role. It forms a high-power signal from the current signal sent by the drive amplifier.
  • FIG. 2A it is a schematic diagram of an embodiment of the radio frequency architecture provided in the embodiment of the present invention, which may include:
  • the first power amplifier PA module 102 is used to support a specific frequency band, the medium and high frequency band MHB in the new wireless NR/Long Term Evolution LTE;
  • the second power amplifier PA module 202 is used to support the low frequency LB in LTE;
  • the third power amplifier PA module 302 is used to support the mid-band MB in LTE;
  • the first power supply 101 is connected to the first PA module 102 for providing power for the first PA module 102; the second power supply 201 is connected to the second PA module 202 for providing power for the second PA module 202; The third power source 301 is connected to the third PA module 302 for providing power to the third PA module 302 .
  • the radio frequency architecture may include: a first power supply 101, a first power amplifier PA module 102, the first power supply 101 is connected to the first PA module 102; a second power supply 201, a second power amplifier PA module 202, a second power supply 101
  • the power supply 201 is connected to the second PA module 202; the third power supply 301, the third power amplifier PA module 302, the third power supply 301 is connected to the third PA module 302;
  • the first PA module 102 is used to support a specific frequency band, the medium and high frequency band MHB in New Wireless NR/Long Term Evolution LTE; the second PA module 202 is used to support the low frequency band LB in LTE; the third PA module 302 , used to support mid-band MB in LTE;
  • the first power supply 101 is used to provide power to the first PA module 102 ; the second power supply 201 is used to provide power to the second PA module 202 ; the third power supply 301 is used to provide power to the third PA module 302 .
  • the specific frequency band can be supported by the first PA module, there is no need to plug in the specific PA module.
  • the third PA module that supports the intermediate frequency MB frequency band in LTE can be plugged in.
  • the cost of the PA module, and the third PA module is less than that of a specific PA module. Therefore, by rationally optimizing the architecture of the 4G and 5G dual-connection technical solutions, the cost of PA components can be reduced to achieve the purpose of cost reduction.
  • the specific frequency band includes an N41 frequency band.
  • the N41 frequency band can be supported by the first PA module, there is no need to plug in the N41PA module separately, but in order to support the M+H ENDC requirements, a third PA that supports the intermediate frequency MB frequency band in LTE can be plugged in.
  • the cost of the third PA module is less than that of the N41PA module. Therefore, by rationally optimizing the architecture of the 4G and 5G dual-connection technical solutions, the cost of PA components is reduced and the purpose of cost reduction is achieved.
  • the radio frequency architecture may further include:
  • the first antenna 103, the second antenna 203 and the third antenna 303 wherein the first PA module 102 is connected to the first antenna 103, the second PA module 202 is connected to the second antenna 203, and the third PA module 302 is connected to The third antenna 303 is connected;
  • the first antenna 103 is used to transmit the signal amplified and processed by the first PA module 102;
  • the second antenna 203 is used for transmitting the signal amplified and processed by the second PA module 202;
  • the third antenna 303 is used for transmitting the signal amplified and processed by the third PA module 302 .
  • the radio frequency architecture may further include antennas corresponding to each PA module, which may be used to transmit signals amplified and processed by each PA module.
  • the radio frequency architecture may further include:
  • Radio frequency transceiver Transceiver 401, wherein the radio frequency transceiver 401 is respectively connected with the first PA module 102, the second PA module 202, and the third PA module 302;
  • the radio frequency transceiver 401 is used for receiving a first input signal, and processing the first input signal to obtain a first radio frequency signal; according to the first radio frequency signal, a corresponding target PA module is selected for transmission, and the target PA module includes the first PA module 102.
  • the first PA module 102 is configured to receive the first radio frequency signal sent by the radio frequency transceiver 401, amplify the first radio frequency signal to obtain the first amplified signal, and transmit the first amplified signal through the first antenna 103; or,
  • the second PA module 202 is configured to receive the first radio frequency signal sent by the radio frequency transceiver 401, amplify the first radio frequency signal to obtain a second amplified signal, and transmit the second amplified signal through the second antenna 203; or,
  • the third PA module 302 is configured to receive the first radio frequency signal sent by the radio frequency transceiver 401 , amplify the first radio frequency signal to obtain a third amplified signal, and transmit the third amplified signal through the third antenna 303 .
  • the radio frequency transceiver 401 is specifically configured to receive the first input signal, and process the first input signal to obtain the first radio frequency signal; if the first radio frequency signal belongs to the N41 frequency band, or the new wireless NR/Long Term Evolution LTE In the case of the middle and high frequency band MHB in the LTE, the first radio frequency signal is sent to the first PA module 102; or, in the case that the first radio frequency signal belongs to the low frequency band LB in LTE, the first radio frequency signal is sent to the second PA module 102.
  • the PA module 202 sends; or, when the first radio frequency signal belongs to the low-band MB in LTE, the first radio frequency signal is sent to the third PA module 302 .
  • the radio frequency architecture may further include a radio frequency transceiver, and the radio frequency transceiver may receive the first input signal in response to the user's operation; process the first input signal to obtain the first radio frequency signal; and then, may Determine which frequency band the first radio frequency signal belongs to, perform amplification processing on the PA module that supports the corresponding frequency band, and then transmit it through the antenna.
  • the first radio frequency signal can be sent to the first PA module 102; if the first radio frequency signal belongs to the LTE If the first radio frequency signal belongs to the low frequency band MB in LTE, then the first radio frequency signal can be sent to the third PA module 202 302 sent.
  • first power supply 101 , the second power supply 201 and the third power supply 301 in the embodiment of the present invention respectively supply power to the first PA module 102 , the second PA module 202 and the third PA module 302 Yes, as for the radio frequency transceiver 401, it can be powered by other power sources, which is not specifically limited here.
  • the radio frequency transceiver 401 includes a frequency dividing switch 4011 .
  • the frequency dividing switch 4011 is used to determine which frequency band the first radio frequency signal belongs to.
  • FIG. 2D it is a schematic diagram of another embodiment of the radio frequency architecture provided in the embodiment of the present invention.
  • the second power source 201 and the third power source 301 are the same power source.
  • FIG. 2E it is a schematic diagram of another embodiment of the radio frequency architecture provided in the embodiment of the present invention.
  • the second PA module and the third PA module are connected to the second power supply 201 as an example for description.
  • the second PA module supports the low-band LB in LTE
  • the third PA module supports the low-band LB in LTE.
  • the mid-band MB of the 2nd PA module will not work at the same time, so the second PA module and the third PA module can share the same power supply. That is, the second power source 201 and the third power source 301 are the same power source. This saves power components and reduces the cost of the RF architecture.
  • the second power supply 201 and the third power supply 301 are the same integrated power management circuit (Power Management IC, PMIC) power supply.
  • FIG. 2F it is a schematic diagram of another embodiment of the radio frequency architecture provided in the embodiment of the present invention.
  • the second power supply 201 and the third power supply 301 are the same integrated power management circuit PMIC power supply, because the second PA module supports the low-band LB in LTE, and the third PA module supports the mid-band in LTE MB, therefore, the second PA module and the third PA module do not have very high voltage requirements, and the PMIC power supply can be used to power the second PA module and the third PA module, which saves one DCDC compared to the existing technology.
  • the cost of the PMIC power supply is lower than that of the DCDC power supply, thereby reducing the cost of the RF architecture.
  • the first power supply is a DCDC power supply
  • the second power supply and the third power supply are the same PMIC power supply.
  • the first power source is a DC-to-DC power source (Direct Current Source, DCDC) power source.
  • DCDC Direct Current Source
  • FIG. 2G it is a schematic diagram of another embodiment of the radio frequency architecture provided in the embodiment of the present invention.
  • the first PA module supports the N41 frequency band and the mid-to-high frequency band MHB in the new wireless NR/Long Term Evolution LTE, the voltage requirements are relatively high.
  • a PA module is powered.
  • the DCDC power supply can be flexibly adjusted for boosting and bucking, and can provide a larger voltage range, which can better meet the needs of users.
  • the second power supply and the third power supply are different PMIC power supplies, which can be understood as the second power supply and the third power supply are two independent PMIC power supplies.
  • the first power supply is a DCDC power supply
  • the second power supply and the third power supply are different PMIC power supplies.
  • the DCDC power supply in the embodiment of the present invention can also be replaced with other power supplies with high performance requirements
  • the PMIC power supply can also be replaced with other power supplies with low performance requirements, which are not specifically limited in the embodiments of the present invention.
  • the first PA module 102 is further configured to support the low-band LB in NR/LTE.
  • the first PA module supports the N41 frequency band and the low, medium and high frequency band LMHB in the new wireless NR/Long Term Evolution LTE, thereby flexibly meeting the user's needs.
  • the first PA module may also be referred to as NR/LTE LMHB PAMID.
  • the first PA module 102 , the second PA module 202 and the third PA module 302 are respectively modules integrated with multiple power amplifiers (Module integrated duplexer, MID).
  • the first PA module may also be referred to as NR/LTE MHB PAMID
  • the second PA module may also be referred to as LTE LB PAMID
  • the third PA module may also be referred to as LTE MB PAMID.
  • the first PA module 102 , the second PA module 202 and the third PA module 302 respectively include a plurality of independent power amplifiers.
  • the first PA module 102 is a module integrated with multiple power amplifiers, or the first PA module 102 includes multiple independent power amplifiers;
  • the second PA module 202 is a module integrated with multiple power amplifiers , or the second PA module 202 includes multiple independent power amplifiers;
  • the third PA module 302 is a module integrated with multiple power amplifiers, or the third PA module 302 includes multiple independent power amplifiers.
  • the PAs included in the first PA module 102 , the second PA module 202 and the third PA module 302 are PAs that support multi-mode and multi-frequency.
  • the radio frequency architecture may further include: a switch 402, the first PA module 102 is connected to the first antenna 103 through the switch 402, the second PA module 202 is connected to the second antenna 203 through the switch 402, and the third PA module The group 302 is connected to the third antenna 303 through the switch 402;
  • the switch 402 is used to control whether to transmit or not to transmit the signals amplified and processed by the first PA module 102 , the second PA module 202 and the third PA module 302 .
  • FIG. 2H it is a schematic diagram of another embodiment of the radio frequency architecture provided in the embodiment of the present invention.
  • the switch 402 here can be a single pole double throw (Single Pole Double Throw, SPDT) switch.
  • the radio frequency architecture may further include: a first filter 104, a second filter 204, a third filter 304, the first PA module 102 is connected to the first filter 104, and the first filter 104 is connected to the first antenna 103 , the second PA module 202 is connected to the second filter 204, the second filter 204 is connected to the second antenna 203, the third PA module 302 is connected to the third filter 304, and the third filter 304 is connected to the third antenna 303 connect;
  • a first filter 104 configured to filter the first amplified signal to obtain a first filtered signal; transmit the first filtered signal through the first antenna 103;
  • the second filter 204 is configured to filter the second amplified signal to obtain a second filtered signal; and transmit the second filtered signal through the second antenna 203;
  • the third filter 304 is configured to filter the third amplified signal to obtain a third filtered signal; and transmit the third filtered signal through the third antenna 303 .
  • the radio frequency architecture can also filter the amplified signal after the amplification processing of the PA module, so as to further ensure the reliability of the transmitted signal.
  • the first PA module 102 and the first filter 104 are integrated, or, the first PA module 102 and the first filter 104 are independent; or, the second PA module 202 and the first filter 104 are independent;
  • the second filter 204 is integrated, or, the second PA module 202 and the second filter 204 are independent; or, the third PA module 302 and the third filter 304 are integrated, or, The third PA module 302 and the third filter 304 are independent.
  • the first antenna 103 , the second antenna 203 and the third antenna 303 may also receive other signals sent by the outside world.
  • the radio frequency architecture may also include other components, which will not be repeated here.
  • the solutions in different optional implementation manners can be combined with each other, and the solutions formed are all within the protection scope of the present invention, and will not be repeated here.
  • an embodiment of the present invention further provides a terminal device, which may include the foregoing radio frequency architecture.
  • a terminal device which may include the foregoing radio frequency architecture.
  • FIG. 3A it is a schematic diagram of an embodiment of a terminal device provided in an embodiment of the present invention.
  • the terminal device includes a radio frequency architecture, and the radio frequency architecture may include:
  • the first power amplifier PA module 102 is used to support a specific frequency band, the medium and high frequency band MHB in New Wireless NR/Long Term Evolution LTE; the second power amplifier PA module 202 is used to support the low frequency band LB in LTE; the third The power amplifier PA module 302 is used to support the mid-band MB in LTE;
  • the first power supply 101 is connected to the first PA module 102 for providing power for the first PA module 102; the second power supply 201 is connected to the second PA module 202 for providing power for the second PA module 202; The third power source 301 is connected to the third PA module 302 for providing power to the third PA module 302 .
  • the specific frequency band can be supported by the first PA module, there is no need to plug in the specific PA module.
  • the third PA module that supports the intermediate frequency MB frequency band in LTE can be plugged in.
  • PA module, and the cost of the third PA module is less than that of a specific PA module. Therefore, by rationally optimizing the architecture of the 4G and 5G dual-connection technical solutions, the cost of PA components can be reduced. If the terminal equipment includes a radio frequency architecture, then , can achieve the purpose of reducing the cost of the whole machine.
  • the specific frequency band includes an N41 frequency band.
  • the N41 frequency band can be supported by the first PA module, there is no need to plug in the N41PA module separately, but in order to support the M+H ENDC requirements, a third PA that supports the intermediate frequency MB frequency band in LTE can be plugged in.
  • the cost of the third PA module is less than that of the N41PA module. Therefore, by rationally optimizing the architecture of the 4G and 5G dual-connection technical solutions, the cost of PA components is reduced and the purpose of cost reduction is achieved.
  • the terminal device includes a radio frequency architecture
  • the radio frequency architecture may include:
  • the first antenna 103, the second antenna 203 and the third antenna 303 wherein the first PA module 102 is connected to the first antenna 103, the second PA module 202 is connected to the second antenna 203, and the third PA module 302 is connected to The third antenna 303 is connected;
  • the first antenna 103 is used to transmit the signal amplified and processed by the first PA module 102;
  • the second antenna 203 is used for transmitting the signal amplified and processed by the second PA module 202;
  • the third antenna 303 is used for transmitting the signal amplified and processed by the third PA module 302 .
  • the radio frequency architecture may further include antennas corresponding to each PA module, which may be used to transmit signals amplified and processed by each PA module.
  • the terminal device includes a radio frequency architecture
  • the radio frequency architecture may include:
  • the radio frequency transceiver 401 wherein the radio frequency transceiver 401 is respectively connected with the first PA module 102, the second PA module 202, and the third PA module 302;
  • the radio frequency transceiver 401 is used for receiving a first input signal, and processing the first input signal to obtain a first radio frequency signal; according to the first radio frequency signal, a corresponding target PA module is selected for transmission, and the target PA module includes the first PA module 102.
  • the first PA module 102 is configured to receive the first radio frequency signal sent by the radio frequency transceiver 401, amplify the first radio frequency signal to obtain the first amplified signal, and transmit the first amplified signal through the first antenna 103; or,
  • the second PA module 202 is configured to receive the first radio frequency signal sent by the radio frequency transceiver 401, amplify the first radio frequency signal to obtain a second amplified signal, and transmit the second amplified signal through the second antenna 203; or,
  • the third PA module 302 is configured to receive the first radio frequency signal sent by the radio frequency transceiver 401 , amplify the first radio frequency signal to obtain a third amplified signal, and transmit the third amplified signal through the third antenna 303 .
  • the radio frequency transceiver 401 is specifically configured to receive the first input signal, and process the first input signal to obtain the first radio frequency signal; if the first radio frequency signal belongs to the N41 frequency band, or the new wireless NR/Long Term Evolution LTE In the case of the middle and high frequency band MHB in the LTE, the first radio frequency signal is sent to the first PA module 102; or, in the case that the first radio frequency signal belongs to the low frequency band LB in LTE, the first radio frequency signal is sent to the second PA module 102.
  • the PA module 202 sends; or, when the first radio frequency signal belongs to the low-band MB in LTE, the first radio frequency signal is sent to the third PA module 302 .
  • the radio frequency architecture may further include a radio frequency transceiver, and the radio frequency transceiver may receive the first input signal in response to the user's operation; process the first input signal to obtain the first radio frequency signal; and then, may Determine which frequency band the first radio frequency signal belongs to, perform amplification processing on the PA module that supports the corresponding frequency band, and then transmit it through the antenna.
  • the first radio frequency signal can be sent to the first PA module 102; if the first radio frequency signal belongs to the LTE If the first radio frequency signal belongs to the low frequency band MB in LTE, then the first radio frequency signal can be sent to the third PA module 202 302 sent.
  • first power supply 101 , the second power supply 201 and the third power supply 301 in the embodiment of the present invention respectively supply power to the first PA module 102 , the second PA module 202 and the third PA module 302 Yes, as for the radio frequency transceiver 401, it can be powered by other power sources, which is not specifically limited here.
  • the radio frequency transceiver 401 includes a frequency dividing switch 4011 .
  • the frequency dividing switch 4011 is used to determine which frequency band the first radio frequency signal belongs to.
  • FIG. 3D it is a schematic diagram of another embodiment of the radio frequency architecture provided in the embodiment of the present invention.
  • the second power source 201 and the third power source 301 are the same power source.
  • FIG. 3E it is a schematic diagram of another embodiment of the terminal device provided in the embodiment of the present invention.
  • the second PA module and the third PA module are connected to the second power supply 201 as an example for description.
  • the second PA module supports the low-band LB in LTE
  • the third PA module supports the low-band LB in LTE.
  • the mid-band MB of the 2nd PA module will not work at the same time, so the second PA module and the third PA module can share the same power supply. That is, the second power source 201 and the third power source 301 are the same power source. This saves power components, reduces the cost of the radio frequency architecture, and further reduces the cost of terminal equipment.
  • the second power supply 201 and the third power supply 301 are the same integrated power management circuit PMIC power supply.
  • FIG. 3F it is a schematic diagram of another embodiment of the terminal device provided in the embodiment of the present invention.
  • the second power supply 201 and the third power supply 301 are the same integrated power management circuit PMIC power supply, because the second PA module supports the low-band LB in LTE, and the third PA module supports the mid-band in LTE MB, therefore, the second PA module and the third PA module do not have very high voltage requirements, and the PMIC power supply can be used to power the second PA module and the third PA module, which saves one DCDC compared to the existing technology.
  • the cost of the PMIC power supply is lower than that of the DCDC power supply, thereby reducing the cost of the radio frequency architecture and, in turn, the cost of the terminal equipment.
  • the first power supply is a DCDC power supply
  • the second power supply and the third power supply are the same PMIC power supply.
  • the first power supply is a DC-to-DC power supply DCDC power supply.
  • FIG. 3G it is a schematic diagram of another embodiment of the terminal device provided in the embodiment of the present invention.
  • the first PA module supports the N41 frequency band and the mid-to-high frequency band MHB in the new wireless NR/Long Term Evolution LTE, the voltage requirements are relatively high.
  • a PA module is powered.
  • the DCDC power supply can be flexibly adjusted for boosting and bucking, and can provide a larger voltage range, which can better meet the needs of users.
  • the second power supply and the third power supply are different PMIC power supplies, which can be understood as the second power supply and the third power supply are two independent PMIC power supplies.
  • the first power supply is a DCDC power supply
  • the second power supply and the third power supply are different PMIC power supplies.
  • the DCDC power supply in the embodiment of the present invention can also be replaced with other power supplies with high performance requirements
  • the PMIC power supply can also be replaced with other power supplies with low performance requirements, which are not specifically limited in the embodiments of the present invention.
  • the first PA module 102 is further configured to support the low-band LB in NR/LTE.
  • the first PA module supports the N41 frequency band and the low, medium and high frequency band LMHB in the new wireless NR/Long Term Evolution LTE, thereby flexibly meeting the user's needs.
  • the first PA module may also be referred to as NR/LTE LMHB PAMID.
  • the first PA module 102 , the second PA module 202 and the third PA module 302 are respectively modules integrated with multiple power amplifiers.
  • the first PA module may also be referred to as NR/LTE MHB PAMID
  • the second PA module may also be referred to as LTE LB PAMID
  • the third PA module may also be referred to as LTE MB PAMID. That is, the plug-in only supports the small PA module of LTE MB.
  • HB NR uses the NR/LTE MHB PAMID path
  • LTE MB uses the LTE MB PAMID path
  • LTE LB PAMID and LTE MB PAMID do not work at the same time, and both Works in LTE mode, so one PMIC can be used to power the first two at the same time. Therefore, a DCDC power supply can be saved, and the cost of the LTE MB PAMID solution is far lower than the cost of using N41PAM; by rationally optimizing the structure of the ENDC solution, the number of DCDCs used is minimized, and the cost of PA components is reduced to achieve a complete The purpose of machine cost reduction.
  • the first PA module 102 , the second PA module 202 and the third PA module 302 respectively include a plurality of independent power amplifiers.
  • the first PA module 102 is a module integrated with multiple power amplifiers, or the first PA module 102 includes multiple independent power amplifiers;
  • the second PA module 202 is a module integrated with multiple power amplifiers , or the second PA module 202 includes multiple independent power amplifiers;
  • the third PA module 302 is a module integrated with multiple power amplifiers, or the third PA module 302 includes multiple independent power amplifiers.
  • the PAs included in the first PA module 102 , the second PA module 202 and the third PA module 302 are PAs that support multi-mode and multi-frequency.
  • the radio frequency architecture may further include: a switch 402, the first PA module 102 is connected to the first antenna 103 through the switch 402, the second PA module 202 is connected to the second antenna 203 through the switch 402, and the third PA module The group 302 is connected to the third antenna 303 through the switch 402;
  • the switch 402 is used to control whether to transmit or not to transmit the signals amplified and processed by the first PA module 102 , the second PA module 202 and the third PA module 302 .
  • FIG. 3H it is a schematic diagram of another embodiment of the radio frequency architecture provided in the embodiment of the present invention.
  • the switch 402 here can be a single pole double throw (Single Pole Double Throw, SPDT) switch.
  • the radio frequency architecture may further include: a first filter 104, a second filter 204, a third filter 304, the first PA module 102 is connected to the first filter 104, and the first filter 104 is connected to the first antenna 103 , the second PA module 202 is connected to the second filter 204, the second filter 204 is connected to the second antenna 203, the third PA module 302 is connected to the third filter 304, and the third filter 304 is connected to the third antenna 303 connect;
  • a first filter 104 configured to filter the first amplified signal to obtain a first filtered signal; transmit the first filtered signal through the first antenna 103;
  • the second filter 204 is configured to filter the second amplified signal to obtain a second filtered signal; and transmit the second filtered signal through the second antenna 203;
  • the third filter 304 is configured to filter the third amplified signal to obtain a third filtered signal; and transmit the third filtered signal through the third antenna 303 .
  • the radio frequency architecture can also filter the amplified signal after the amplification processing of the PA module, so as to further ensure the reliability of the transmitted signal.
  • the first PA module 102 and the first filter 104 are integrated, or, the first PA module 102 and the first filter 104 are independent; or, the second PA module 202 and the first filter 104 are independent;
  • the second filter 204 is integrated, or, the second PA module 202 and the second filter 204 are independent; or, the third PA module 302 and the third filter 304 are integrated, or, The third PA module 302 and the third filter 304 are independent.
  • the first antenna 103 , the second antenna 203 and the third antenna 303 may also receive other signals sent by the outside world.
  • the radio frequency architecture may also include other components, and the terminal device may also include other components, which will not be repeated here.
  • the solutions in different optional implementation manners can be combined with each other, and the solutions formed are all within the protection scope of the present invention, and will not be repeated here.
  • Embodiments of the present invention provide a radio frequency architecture and a terminal device, which are used to reasonably optimize the architecture of the 4G and 5G dual-connection technical solutions, reduce the number of DCDC power supplies used, and at the same time reduce the cost of PA components, so as to achieve a complete machine the purpose of reducing costs.
  • the terminal device involved in the embodiment of the present invention may include a general handheld electronic terminal, such as a mobile phone, a smart phone, a portable terminal, a terminal, a personal digital assistant (Personal Digital Assistant, PDA), a portable multimedia player ( Personal Media Player (PMP) devices, notebook computers, notebook (Note Pad), wireless broadband (Wireless Broadband, Wibro) terminals, tablet computers (personal computer, PC), smart PC, point of sale (Point of Sales, POS) and vehicle computer, etc.
  • a general handheld electronic terminal such as a mobile phone, a smart phone, a portable terminal, a terminal, a personal digital assistant (Personal Digital Assistant, PDA), a portable multimedia player ( Personal Media Player (PMP) devices, notebook computers, notebook (Note Pad), wireless broadband (Wireless Broadband, Wibro) terminals, tablet computers (personal computer, PC), smart PC, point of sale (Point of Sales, POS) and vehicle computer, etc.
  • PDA Personal Digital Assistant
  • PMP Personal Media Player
  • Terminal devices may also include wearable devices.
  • a wearable device is a portable electronic device that can be directly worn on the user or integrated into the user's clothes or accessories. Wearable device is not only a hardware device, but also can realize powerful intelligent functions through software support, data interaction, and cloud interaction, such as: computing function, positioning function, alarm function, and can also be connected to mobile phones and various terminals.
  • Wearable devices may include, but are not limited to, wrist-supported watches (such as watches, wrists, etc.), foot-supported shoes (such as shoes, socks, or other products worn on the legs), and head-supported products. Glass categories (such as glasses, helmets, headbands, etc.), as well as smart clothing, school bags, crutches, accessories and other non-mainstream product forms.
  • the terminal equipment may be referred to as user equipment (UE), mobile station (mobile station, MS), mobile terminal (mobile terminal), intelligent terminal, etc. RAN) communicates with one or more core networks.
  • the terminal device may be a mobile phone (or "cellular" phone), a computer with a mobile terminal, etc., and the terminal device may also be a portable, pocket-sized, hand-held, computer-built-in or vehicle-mounted mobile device and future NR networks Terminal devices in the radio access network that exchange voice or data.
  • FIG. 4 it is a schematic diagram of another embodiment of the terminal device in the embodiment of the present invention.
  • Can include:
  • FIG. 4 is a block diagram showing a partial structure of a mobile phone related to a terminal device provided by an embodiment of the present invention.
  • the mobile phone includes: a radio frequency (RF) architecture 410 , a memory 420 , an input unit 430 , a display unit 440 , a sensor 450 , an audio circuit 460 , a wireless fidelity (WiFi) module 470 , and a processor 480 , and power supply 490 and other components.
  • RF radio frequency
  • the RF architecture 410 can be used to receive and transmit signals during information transmission and reception or during a call.
  • the downlink information of the base station is received and processed by the processor 480; in addition, the uplink data of the design is sent to the base station.
  • the RF architecture 410 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a Low Noise Amplifier (LNA), a duplexer, and the like.
  • the RF architecture 410 can also communicate with networks and other devices via wireless communication.
  • the above-mentioned wireless communication can use any communication standard or protocol, including but not limited to Global System of Mobile communication (GSM), General Packet Radio Service (General Packet Radio Service, GPRS), Code Division Multiple Access (Code Division) Multiple Access, CDMA), Wideband Code Division Multiple Access (Wideband Code Division Multiple Access, WCDMA), Long Term Evolution (Long Term Evolution, LTE), email, Short Messaging Service (Short Messaging Service, SMS), etc.
  • GSM Global System of Mobile communication
  • General Packet Radio Service General Packet Radio Service
  • GPRS General Packet Radio Service
  • Code Division Multiple Access Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • SMS Short Messaging Service
  • the memory 420 can be used to store software programs and modules, and the processor 480 executes various functional applications and data processing of the mobile phone by running the software programs and modules stored in the memory 420 .
  • the memory 420 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program (such as a sound playback function, an image playback function, etc.) required for at least one function, and the like; Data created by the use of the mobile phone (such as audio data, phone book, etc.), etc.
  • memory 420 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the input unit 430 may be used for receiving inputted numerical or character information, and generating key signal input related to user setting and function control of the mobile phone.
  • the input unit 430 may include a touch panel 431 and other input devices 432 .
  • the touch panel 431 also referred to as a touch screen, can collect the user's touch operations on or near it (such as the user's finger, stylus, etc., any suitable object or accessory on or near the touch panel 431). operation), and drive the corresponding connection device according to the preset program.
  • the touch panel 431 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it to the touch controller.
  • the touch panel 431 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 430 may also include other input devices 432 .
  • other input devices 432 may include, but are not limited to, one or more of physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, joysticks, and the like.
  • the display unit 440 may be used to display information input by the user or information provided to the user and various menus of the mobile phone.
  • the display unit 440 may include a display panel 441, and optionally, the display panel 441 may be configured in the form of a liquid crystal display (Liquid Crystal Display, LCD), an organic light-emitting diode (Organic Light-Emitting Diode, OLED), and the like.
  • the touch panel 431 may cover the display panel 441. When the touch panel 431 detects a touch operation on or near it, it transmits it to the processor 480 to determine the type of the touch event, and then the processor 480 determines the type of the touch event according to the touch event. Type provides corresponding visual output on display panel 441 .
  • the touch panel 431 and the display panel 441 are used as two independent components to realize the input and input functions of the mobile phone, in some embodiments, the touch panel 431 and the display panel 441 can be integrated to form Realize the input and output functions of the mobile phone.
  • the cell phone may also include at least one sensor 450, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display panel 441 according to the brightness of the ambient light, and the proximity sensor may turn off the display panel 441 and/or when the mobile phone is moved to the ear. or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes), and can detect the magnitude and direction of gravity when it is stationary. games, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.; as for other sensors such as gyroscope, barometer, hygrometer, thermometer, infrared sensor, etc. Repeat.
  • the audio circuit 460, the speaker 461, and the microphone 462 can provide an audio interface between the user and the mobile phone.
  • the audio circuit 460 can convert the received audio data into an electrical signal, and transmit it to the speaker 461, and the speaker 461 converts it into a sound signal for output; on the other hand, the microphone 462 converts the collected sound signal into an electrical signal, which is converted by the audio circuit 460 After receiving, it is converted into audio data, and then the audio data is output to the processor 480 for processing, and then sent to, for example, another mobile phone through the RF architecture 410, or the audio data is output to the memory 420 for further processing.
  • WiFi is a short-distance wireless transmission technology.
  • the mobile phone can help users to send and receive emails, browse web pages, and access streaming media through the WiFi module 470. It provides users with wireless broadband Internet access.
  • FIG. 4 shows the WiFi module 470, it can be understood that it is not a necessary component of the mobile phone, and can be completely omitted as required within the scope of not changing the essence of the invention.
  • the processor 480 is the control center of the mobile phone, using various interfaces and lines to connect various parts of the entire mobile phone, by running or executing the software programs and/or modules stored in the memory 420, and calling the data stored in the memory 420.
  • the processor 480 may include one or more processing units; preferably, the processor 480 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs, etc. , the modem processor mainly deals with wireless communication. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 480.
  • the mobile phone also includes a power supply 490 (such as a battery) for supplying power to various components.
  • a power supply 490 (such as a battery) for supplying power to various components.
  • the power supply can be logically connected to the processor 480 through a power management system, so as to manage charging, discharging, and power consumption management functions through the power management system.
  • the mobile phone may also include a camera, a Bluetooth module, and the like, which will not be repeated here.
  • the RF architecture 410 is the radio frequency architecture in any of the embodiments shown in FIG. 2A to FIG. 2I in the foregoing embodiment.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solution of the present invention is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Transceivers (AREA)

Abstract

本发明实施例公开了一种射频架构及终端设备,用于通过对4G和5G双连接技术方案的架构进行合理优化,减小PA元器件成本,达到降成本的目的。本发明实施例方法包括:第一功率放大器PA模组,用于支持特定频段,新无线NR/长期演进LTE中的中高频段MHB;第二功率放大器PA模组,用于支持LTE中的低频段LB;第三功率放大器PA模组,用于支持LTE中的中频段MB;第一电源与所述第一PA模组连接,用于为所述第一PA模组提供电源;第二电源与所述第二PA模组连接,用于为所述第二PA模组提供电源;第三电源与所述第三PA模组连接,用于为所述第三PA模组提供电源。

Description

射频架构及终端设备 技术领域
本发明涉及通信领域,尤其涉及一种射频架构及终端设备。
背景技术
在非独立组网(non-standalone,NSA)方案中,由于MHB PAMID(Middle and high Band PA Module integrated duplexer,Middle and high Band Power Amplifier Module integrated duplexer,中高频功率放大器模组)和N41模组均支持新无线(New Radio,NR)性能,所以需要更高的电压供电,可以选择分别外挂直流变直流电源(Direct Current Source,DCDC)供电;而LB PAMID(Low Band PA Module integrated duplexer,低频PA模组)只支持LTE性能,因此,可以使用电源管理集成电路(Power Management IC,PMIC)供电。但是,因为MHB PAMID和N41模组需要更高的电压供电,即性能要求比较高,从而增加射频架构的复杂性。
发明内容
本发明实施例提供了一种射频架构及终端设备,用于通过对4G和5G双连接技术方案的架构进行合理优化,减小PA元器件成本,达到降成本的目的。
有鉴于此,本发明第一方面提供了一种射频架构,可以包括:
第一功率放大器PA模组,用于支持特定频段,新无线NR/长期演进LTE中的中高频段MHB;
第二功率放大器PA模组,用于支持LTE中的低频段LB;
第三功率放大器PA模组,用于支持LTE中的中频段MB;
第一电源与所述第一PA模组连接,用于为所述第一PA模组提供电源;
第二电源与所述第二PA模组连接,用于为所述第二PA模组提供电源;
第三电源与所述第三PA模组连接,用于为所述第三PA模组提供电源。
本发明第二方面提供了一种终端设备,可以包括如本发明第一方面所述的射频架构。
从以上技术方案可以看出,本发明实施例具有以下优点:
在本发明实施例中所提供的射频架构,可以包括:第一功率放大器PA模组,用于支持特定频段,新无线NR/长期演进LTE中的中高频段MHB;第二功率放大器PA模组,用于支持LTE中的低频段LB;第三功率放大器PA模组,用于支持LTE中的中频段MB;第一电源与所述第一PA模组连接,用于为所述第一PA模组提供电源;第二电源与所述第二PA模组连接,用于为所述第二PA模组提供电源;第三电源与所述第三PA模组连接,用于为所述第三PA模组提供电源。因为特定频段可以由第一PA模组来支持,不需要单独外挂特定PA模组,但为了支持M+H ENDC要求,可以外挂支持LTE中的中频MB频段的第三PA模组,而第三PA模组的成本小于特定PA模组,所以,通过对4G和5G双连接技术方案的架构进行合理优化,减小PA元器件成本,达到降成本的目的。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例和现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,还可以根据这些附图获得其它的附图。
图1为现有的射频架构的示意图;
图2A为本发明实施例中提供的射频架构的一个实施例示意图;
图2B为本发明实施例中提供的射频架构的另一个实施例示意图;
图2C为本发明实施例中提供的射频架构的另一个实施例示意图;
图2D为本发明实施例中提供的射频架构的另一个实施例示意图;
图2E为本发明实施例中提供的射频架构的另一个实施例示意图;
图2F为本发明实施例中提供的射频架构的另一个实施例示意图;
图2G为本发明实施例中提供的射频架构的另一个实施例示意图;
图2H为本发明实施例中提供的射频架构的另一个实施例示意图;
图2I为本发明实施例中提供的射频架构的另一个实施例示意图;
图3A为本发明实施例中提供的终端设备的一个实施例示意图;
图3B为本发明实施例中提供的终端设备的另一个实施例示意图;
图3C为本发明实施例中提供的终端设备的另一个实施例示意图;
图3D为本发明实施例中提供的终端设备的另一个实施例示意图;
图3E为本发明实施例中提供的终端设备的另一个实施例示意图;
图3F为本发明实施例中提供的终端设备的另一个实施例示意图;
图3G为本发明实施例中提供的终端设备的另一个实施例示意图;
图3H为本发明实施例中提供的终端设备的另一个实施例示意图;
图3I为本发明实施例中提供的终端设备的另一个实施例示意图;
图4为本发明实施例中提供的终端设备的另一个实施例示意图。
具体实施方式
本发明实施例提供了一种射频架构及终端设备,用于通过对4G和5G双连接技术方案的架构进行合理优化,减小PA元器件成本,达到整机降成本的目的。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,都应当属于本发明保护的范围。
下面可以先对本发明实施例中所涉及的NSA方案做个简要的说明,如下所示:
5G移动带宽增强(Enhanced Mobile Broadband,eMBB)应用场景下,几何式增加的海量数据需求对个人终端设备数据通信能力提出了前所未有的要求,5G NSA(non-standalone,非独立组网)和SA(standalone,独立组网)两大部署方案在提升通信速率方面都有关键方案加持,比如NSA下的1T4R(1路发射4路接收)和SA下的2T4R(2路发射4路接收)和1T4R都是为了提升通讯速率,尤其是下行通信速率;因为个人大数据应用比如短视频、视频电影等应用,对于下行速率要求更高。
由于目前5G基站覆盖范围小,所以覆盖长期演进(Long Term Evolution,LTE)相同面积,需要的5G基站数量在前者的3倍以上,建网成本骤然增加。由于全球范围内经济发展不均,以及各国不同的4G到5G演进策略,所以全球范围内ENDC(E-UTRA NR Dual Connectivity、4G和5G双连接技术)方案将会在相当长的一段时间内成为重要的5G覆盖方案,即采用4G和5G双连接的方案保证在5G信号不稳定或者未覆盖区域的信号连续性。ENDC是4G和5G双连接,目前全球范围内LTE存在LB(Low Band,低频)/MB(Middle Band,中频)/HB(High Band,高频)等多个频段,5G也存在LB/MB/HB/SUB6G等多个频段,所以二者之间任意组合会出现很多种ENDC方案,比如常见LB+LB,LB+MB,LB+HB,MB+HB,LB+SUB6G,MB+SUB6G,HB+SUB6G。目前国内主要要求MB+HB(B1/3/39+N41),LB+SUB6G,MB+SUB6G,HB+SUB6G。
当前典型的射频(Radio Frequency,RF)架构如图1所示:其中NR/LTE MHB PAMID(Middle and high Band PA Module integrated duplexer,Middle and high Band Power Amplifier Module integrated duplexer,中高频功率放大器模组)支持MB和HB的LTE和新无线(New Radio,NR),LB PAMID(LB PA Module integrated duplexer,低频PA模组)支持LTE特性;由于其中NR/LTE MHB PAMID不能支持MB和HB同时发射,为了支持M+H ENDC要求,需要外挂一颗单N41PA模组。
但是,两个DCDC带来成本增加明显,而且,N41PAM(Power Amplifier Module,PA模组,功率放大器模组)本身成本也较高。
下面介绍下本发明实施例中使用的术语,如下所示:
DCDC电源,Direct Current Source,直流变换器,表示的是将某一电压等级的直流电源变换其他电压等级直流电源的装置。DC/DC按电压等级变换关系分升压电源和降压电源两类,按输入输出关系分隔离电源和无隔离电源两类。例如:车载直流电源上接的DC/DC变换器是把高压的直流电变换为低压的直流电。
PMIC电源,Power Management IC,电源管理集成电路,它是用来管理主机系统中的电源设备,常用于手机以及各种移动终端设备。
高频段(High Band,HB),中频段(Mid Band,MB),低频段(Low Band,LB),N41为5G频段。其中,N41频段范围为2496MHz-2690MHz,HB频段范围为2300MHz-2690MHz,MB频段范围为1710MHz-1980MHz, LB频段范围为663MHz-915MHz。SUB6G是指5G频段,工作频率在450MHz-6000MHz的6G以下频段。
功率放大器(power amplifier,PA),简称“功放”,指在给定失真率条件下,能产生最大功率输出以驱动某一负载的放大器。利用三极管的电流控制作用或场效应管的电压控制作用将电源的功率转换为按照输入信号变化的电流。例如扬声器,功率放大器在整个音响系统中起到了“组织、协调”的枢纽作用,在某种程度上主宰着整个系统能否提供良好的音质输出。而PA在当今物联网领域广泛应用的时代也是起到很大的辅助性。
其中,功率放大器通常包括3部分:前置放大器、驱动放大器、末级功率放大器。前置放大器起匹配作用,其输入阻抗高(不小于10kΩ),可以将前面的信号大部分吸收过去,输出阻抗低(几十Ω以下),可以将信号大部分传送出去。同时,它本身又是一种电流放大器,将输入的电压信号转化成电流信号,并给予适当的放大。驱动放大器起桥梁作用,它将前置放大器送来的电流信号作进一步放大,将其放大成中等功率的信号驱动末级功率放大器正常工作。如果没有驱动放大器,末级功率放大器不可能送出大功率的声音信号。末级功率放大器起关键作用。它将驱动放大器送来的电流信号形成大功率信号。
在本发明实施例中,如图2A所示,为本发明实施例中提供的射频架构的一个实施例示意图,可以包括:
第一功率放大器PA模组102,用于支持特定频段,新无线NR/长期演进LTE中的中高频段MHB;
第二功率放大器PA模组202,用于支持LTE中的低频段LB;
第三功率放大器PA模组302,用于支持LTE中的中频段MB;
第一电源101与第一PA模组102连接,用于为第一PA模组102提供电源;第二电源201与第二PA模组202连接,用于为第二PA模组202提供电源;第三电源301与第三PA模组302连接,用于为第三PA模组302提供电源。
即该射频架构可以包括:第一电源101、第一功率放大器PA模组102,第一电源101与第一PA模组102连接;第二电源201、第二功率放大器PA模组202,第二电源201与第二PA模组202连接;第三电源301、第三功率放大器PA模组302,第三电源301与第三PA模组302连接;
第一PA模组102,用于支持特定频段,新无线NR/长期演进LTE中的中高频段MHB;第二PA模组202,用于支持LTE中的低频段LB;第三PA模组302,用于支持LTE中的中频段MB;
第一电源101,用于为第一PA模组102提供电源;第二电源201,用于为第二PA模组202提供电源;第三电源301,用于为第三PA模组302提供电源。
在本发明实施例中,因为特定频段可以由第一PA模组来支持,不需要单独外挂特定PA模组,但为了支持M+H ENDC要求,可以外挂支持LTE中的中频MB频段的第三PA模组,而第三PA模组的成本小于特定PA模组,所以,通过对4G和5G双连接技术方案的架构进行合理优化,减小PA元器件成本,达到降成本的目的。
可选的,所述特定频段包括N41频段。在本发明实施例中,因为N41频段可以由第一PA模组来支持,不需要单独外挂N41PA模组,但为了支持M+H ENDC要求,可以外挂支持LTE中的中频MB频段的第三PA模组,而第三PA模组的成本小于N41PA模组,所以,通过对4G和5G双连接技术方案的架构进行合理优化,减小PA元器件成本,达到降成本的目的。
可选的,该射频架构还可以包括:
第一天线103、第二天线203和第三天线303,其中,第一PA模组102与第一天线103连接,第二PA模组202与第二天线203连接,第三PA模组302与第三天线303连接;
第一天线103,用于发射经过第一PA模组102放大处理的信号;
第二天线203,用于发射经过第二PA模组202放大处理的信号;
第三天线303,用于发射经过第三PA模组302放大处理的信号。
如图2B所示,为本发明实施例中提供的射频架构的另一个实施例示意图。在本发明实施例中,该射频架构还可以包括各个PA模组对应的天线,可以用于发射经过各个PA模组放大处理的信号。
可选的,该射频架构还可以包括:
射频收发器(Transceiver)401,其中,射频收发器401分别与第一PA模组102、第二PA模组202、第三PA模组302连接;
射频收发器401,用于接收第一输入信号,对第一输入信号进行处理得到第一射频信号;根据第一射频信号选择对应目标PA模组进行发送,目标PA模组包括第一PA模组102、第二PA模组202,或,第三PA模组302;
第一PA模组102,用于接收射频收发器401发送的第一射频信号,对第一射频信号进行放大处理, 得到第一放大信号,将第一放大信号通过第一天线103发射;或,
第二PA模组202,用于接收射频收发器401发送的第一射频信号,对第一射频信号进行放大处理,得到第二放大信号,将第二放大信号通过第二天线203发射;或,
第三PA模组302,用于接收射频收发器401发送的第一射频信号,对第一射频信号进行放大处理,得到第三放大信号,将第三放大信号通过第三天线303发射。
可以理解的是,射频收发器401,具体用于接收第一输入信号,对第一输入信号进行处理得到第一射频信号;在第一射频信号属于N41频段,或,新无线NR/长期演进LTE中的中高频段MHB的情况下,将第一射频信号向第一PA模组102发送;或,在第一射频信号属于LTE中的低频段LB的情况下,将第一射频信号向第二PA模组202发送;或,在第一射频信号属于LTE中的低频段MB的情况下,将第一射频信号向第三PA模组302发送。
如图2C所示,为本发明实施例中提供的射频架构的另一个实施例示意图。在本发明实施例中,该射频架构还可以包括射频收发器,该射频收发器可以响应用户的操作,接收第一输入信号;对第一输入信号进行处理,得到第一射频信号;然后,可以判断第一射频信号属于哪个频段,在支持相应频段的PA模组上进行放大处理,然后通过天线发射。即如果第一射频信号属于N41频段,或,新无线NR/长期演进LTE中的中高频段MHB,那么,可以将第一射频信号向第一PA模组102发送;如果第一射频信号属于LTE中的低频段LB,那么,可以将第一射频信号向第二PA模组202发送;如果第一射频信号属于LTE中的低频段MB,那么,可以将第一射频信号向第三PA模组302发送。
需要说明的是,本发明实施例中的第一电源101、第二电源201与第三电源301,是分别为第一PA模组102、第二PA模组202与第三PA模组302供电的,至于射频收发器401,可以是其他的电源为其供电,此处不做具体限定。
可选的,射频收发器401包括分频开关4011。分频开关4011用于确定第一射频信号属于哪个频段。如图2D所示,为本发明实施例中提供的射频架构的另一个实施例示意图。
可选的,第二电源201与第三电源301为同一电源。如图2E所示,为本发明实施例中提供的射频架构的另一个实施例示意图。在图2E所示中,是以第二PA模组和第三PA模组连接第二电源201为例进行说明的。在本发明实施例中,因为第二PA模组和第三PA模组都是支持LTE中的频段,其中,第二PA模组支持LTE中的低频段LB,第三PA模组支持LTE中的中频段MB,不会同时工作,所以,第二PA模组和第三PA模组可以共用同一电源。即第二电源201与第三电源301为同一电源。从而节省电源器件,降低射频架构的成本。
可选的,第二电源201和第三电源301为同一集成电源管理电路(Power Management IC,PMIC)电源。如图2F所示,为本发明实施例中提供的射频架构的另一个实施例示意图。在本发明实施例中,第二电源201和第三电源301为同一集成电源管理电路PMIC电源,因为第二PA模组支持LTE中的低频段LB,第三PA模组支持LTE中的中频段MB,所以,第二PA模组和第三PA模组对电压的要求没有很高,可以使用PMIC电源为第二PA模组和第三PA模组供电,相对于现有技术,节省一个DCDC电源,而PMIC电源的成本低于DCDC电源,从而,降低射频架构的成本。
可选的,第一电源为DCDC电源,第二电源和第三电源为同一个PMIC电源。
可选的,第一电源为直流变直流电源(Direct Current Source,DCDC)电源。如图2G所示,为本发明实施例中提供的射频架构的另一个实施例示意图。在本发明实施例中,因为第一PA模组支持N41频段和新无线NR/长期演进LTE中的中高频段MHB,所以,对电压的要求比较高,为了满足工作需求,使用DCDC电源给第一PA模组供电。DCDC电源可以进行升压和降压的灵活调整,能提供的电压范围比较大一些,更能满足用户的需求。
可选的,第二电源和第三电源为不同的PMIC电源,可以理解为第二电源和第三电源为两个独立的PMIC电源。
可选的,第一电源为DCDC电源,第二电源和第三电源为不同的PMIC电源。
需要说明的是,本发明实施例中的DCDC电源也可以替换为其他对性能要求高的电源,PMIC电源也可以替换为其他对性能要求低的电源,本发明实施例不做具体限定。
可选的,第一PA模组102,还用于支持NR/LTE中的低频段LB。在本发明实施例中,可以根据用户的实际需求,第一PA模组支持N41频段和新无线NR/长期演进LTE中的低中高频段LMHB,从而,灵活的满足用户需求。可以理解的是,第一PA模组也可以称为NR/LTE LMHB PAMID。
可选的,第一PA模组102、第二PA模组202和第三PA模组302分别为多个功率放大器集成的模组(Module integrated duplexer,MID)。在本发明实施例中,第一PA模组也可以称为NR/LTE MHB PAMID, 第二PA模组也可以称为LTE LB PAMID,第三PA模组也可以称为LTE MB PAMID。
可选的,第一PA模组102、第二PA模组202和第三PA模组302分别包括多个独立的功率放大器。
可选的,第一PA模组102为多个功率放大器集成的模组,或第一PA模组102包括多个独立的功率放大器;第二PA模组202为多个功率放大器集成的模组,或第二PA模组202包括多个独立的功率放大器;第三PA模组302为多个功率放大器集成的模组,或第三PA模组302包括多个独立的功率放大器。
可选的,第一PA模组102、第二PA模组202和第三PA模组302中包括的PA,是支持多模多频的PA。
可选的,该射频架构还可以包括:开关402,第一PA模组102通过开关402与第一天线103连接,第二PA模组202通过开关402与第二天线203连接,第三PA模组302通过开关402与第三天线303连接;
开关402,用于控制发射或不发射经过第一PA模组102、第二PA模组202和第三PA模组302放大处理的信号。如图2H所示,为本发明实施例中提供的射频架构的另一个实施例示意图。示例性的,这里的开关402可以是单刀双掷(Single Pole Double Throw,SPDT)开关。
可选的,如图2I所示,为本发明实施例中提供的射频架构的另一个实施例示意图。该射频架构还可以包括:第一滤波器104、第二滤波器204、第三滤波器304,第一PA模组102与第一滤波器104连接,第一滤波器104与第一天线103连接,第二PA模组202与第二滤波器204连接,第二滤波器204与第二天线203连接,第三PA模组302与第三滤波器304连接,第三滤波器304与第三天线303连接;
第一滤波器104,用于对第一放大信号进行滤波,得到第一滤波信号;将所述第一滤波信号通过第一天线103发射;
第二滤波器204,用于对第二放大信号进行滤波,得到第二滤波信号;将所述第二滤波信号通过第二天线203发射;
第三滤波器304,用于对第三放大信号进行滤波,得到第三滤波信号;将所述第三滤波信号通过第三天线303发射。
在本发明实施例中,射频架构还可以对PA模组经过放大处理后的放大信号进行滤波,进一步保证发射信号的可靠性。
可选的,第一PA模组102与第一滤波器104是集成为一体的,或者,第一PA模组102与第一滤波器104是独立的;或,第二PA模组202与第二滤波器204是集成为一体的,或者,第二PA模组202与第二滤波器204是独立的;或,第三PA模组302与第三滤波器304是集成为一体的,或者,第三PA模组302与第三滤波器304是独立的。
需要说明的是,在本发明实施例中,第一天线103、第二天线203和第三天线303还可以接收外界发送的其他信号。射频架构还可以包括其他的元器件,此处不再一一赘述。不同可选实现方式中的方案都可以互相结合,所形成的方案都在本发明的保护范围内,此处也不再一一赘述。
可选的,本发明实施例中还提供一种终端设备,可以包括上述的射频架构。如图3A所示,为本发明实施例中提供的终端设备的一个实施例示意图。在图3A所示中,终端设备包括射频架构,该射频架构可以包括:
第一功率放大器PA模组102,用于支持特定频段,新无线NR/长期演进LTE中的中高频段MHB;第二功率放大器PA模组202,用于支持LTE中的低频段LB;第三功率放大器PA模组302,用于支持LTE中的中频段MB;
第一电源101与第一PA模组102连接,用于为第一PA模组102提供电源;第二电源201与第二PA模组202连接,用于为第二PA模组202提供电源;第三电源301与第三PA模组302连接,用于为第三PA模组302提供电源。
在本发明实施例中,因为特定频段可以由第一PA模组来支持,不需要单独外挂特定PA模组,但为了支持M+H ENDC要求,可以外挂支持LTE中的中频MB频段的第三PA模组,而第三PA模组的成本小于特定PA模组,所以,通过对4G和5G双连接技术方案的架构进行合理优化,减小PA元器件成本,终端设备如果包括射频架构,那么,可以达到整机降成本的目的。
可选的,所述特定频段包括N41频段。在本发明实施例中,因为N41频段可以由第一PA模组来支持,不需要单独外挂N41PA模组,但为了支持M+H ENDC要求,可以外挂支持LTE中的中频MB频段的第三PA模组,而第三PA模组的成本小于N41PA模组,所以,通过对4G和5G双连接技术方案的架构进行合理优化,减小PA元器件成本,达到降成本的目的。
可选的,终端设备包括射频架构,该射频架构可以包括:
第一天线103、第二天线203和第三天线303,其中,第一PA模组102与第一天线103连接,第二PA模组202与第二天线203连接,第三PA模组302与第三天线303连接;
第一天线103,用于发射经过第一PA模组102放大处理的信号;
第二天线203,用于发射经过第二PA模组202放大处理的信号;
第三天线303,用于发射经过第三PA模组302放大处理的信号。
如图3B所示,为本发明实施例中提供的终端设备的另一个实施例示意图。在本发明实施例中,该射频架构还可以包括各个PA模组对应的天线,可以用于发射经过各个PA模组放大处理的信号。
可选的,终端设备包括射频架构,该射频架构可以包括:
射频收发器401,其中,射频收发器401分别与第一PA模组102、第二PA模组202、第三PA模组302连接;
射频收发器401,用于接收第一输入信号,对第一输入信号进行处理得到第一射频信号;根据第一射频信号选择对应目标PA模组进行发送,目标PA模组包括第一PA模组102、第二PA模组202,或,第三PA模组302;
第一PA模组102,用于接收射频收发器401发送的第一射频信号,对第一射频信号进行放大处理,得到第一放大信号,将第一放大信号通过第一天线103发射;或,
第二PA模组202,用于接收射频收发器401发送的第一射频信号,对第一射频信号进行放大处理,得到第二放大信号,将第二放大信号通过第二天线203发射;或,
第三PA模组302,用于接收射频收发器401发送的第一射频信号,对第一射频信号进行放大处理,得到第三放大信号,将第三放大信号通过第三天线303发射。
可以理解的是,射频收发器401,具体用于接收第一输入信号,对第一输入信号进行处理得到第一射频信号;在第一射频信号属于N41频段,或,新无线NR/长期演进LTE中的中高频段MHB的情况下,将第一射频信号向第一PA模组102发送;或,在第一射频信号属于LTE中的低频段LB的情况下,将第一射频信号向第二PA模组202发送;或,在第一射频信号属于LTE中的低频段MB的情况下,将第一射频信号向第三PA模组302发送。
如图3C所示,为本发明实施例中提供的终端设备的另一个实施例示意图。在本发明实施例中,该射频架构还可以包括射频收发器,该射频收发器可以响应用户的操作,接收第一输入信号;对第一输入信号进行处理,得到第一射频信号;然后,可以判断第一射频信号属于哪个频段,在支持相应频段的PA模组上进行放大处理,然后通过天线发射。即如果第一射频信号属于N41频段,或,新无线NR/长期演进LTE中的中高频段MHB,那么,可以将第一射频信号向第一PA模组102发送;如果第一射频信号属于LTE中的低频段LB,那么,可以将第一射频信号向第二PA模组202发送;如果第一射频信号属于LTE中的低频段MB,那么,可以将第一射频信号向第三PA模组302发送。
需要说明的是,本发明实施例中的第一电源101、第二电源201与第三电源301,是分别为第一PA模组102、第二PA模组202与第三PA模组302供电的,至于射频收发器401,可以是其他的电源为其供电,此处不做具体限定。
可选的,射频收发器401包括分频开关4011。分频开关4011用于确定第一射频信号属于哪个频段。如图3D所示,为本发明实施例中提供的射频架构的另一个实施例示意图。
可选的,第二电源201与第三电源301为同一电源。如图3E所示,为本发明实施例中提供的终端设备的另一个实施例示意图。在图3E所示中,是以第二PA模组和第三PA模组连接第二电源201为例进行说明的。在本发明实施例中,因为第二PA模组和第三PA模组都是支持LTE中的频段,其中,第二PA模组支持LTE中的低频段LB,第三PA模组支持LTE中的中频段MB,不会同时工作,所以,第二PA模组和第三PA模组可以共用同一电源。即第二电源201与第三电源301为同一电源。从而节省电源器件,降低射频架构的成本,进而,降低终端设备的成本。
可选的,第二电源201和第三电源301为同一集成电源管理电路PMIC电源。如图3F所示,为本发明实施例中提供的终端设备的另一个实施例示意图。在本发明实施例中,第二电源201和第三电源301为同一集成电源管理电路PMIC电源,因为第二PA模组支持LTE中的低频段LB,第三PA模组支持LTE中的中频段MB,所以,第二PA模组和第三PA模组对电压的要求没有很高,可以使用PMIC电源为第二PA模组和第三PA模组供电,相对于现有技术,节省一个DCDC电源,而PMIC电源的成本低于DCDC电源,从而,降低射频架构的成本,进而,降低终端设备的成本。
可选的,第一电源为DCDC电源,第二电源和第三电源为同一个PMIC电源。
可选的,第一电源为直流变直流电源DCDC电源。如图3G所示,为本发明实施例中提供的终端设备 的另一个实施例示意图。在本发明实施例中,因为第一PA模组支持N41频段和新无线NR/长期演进LTE中的中高频段MHB,所以,对电压的要求比较高,为了满足工作需求,使用DCDC电源给第一PA模组供电。DCDC电源可以进行升压和降压的灵活调整,能提供的电压范围比较大一些,更能满足用户的需求。
可选的,第二电源和第三电源为不同的PMIC电源,可以理解为第二电源和第三电源为两个独立的PMIC电源。
可选的,第一电源为DCDC电源,第二电源和第三电源为不同的PMIC电源。
需要说明的是,本发明实施例中的DCDC电源也可以替换为其他对性能要求高的电源,PMIC电源也可以替换为其他对性能要求低的电源,本发明实施例不做具体限定。
可选的,第一PA模组102,还用于支持NR/LTE中的低频段LB。在本发明实施例中,可以根据用户的实际需求,第一PA模组支持N41频段和新无线NR/长期演进LTE中的低中高频段LMHB,从而,灵活的满足用户需求。可以理解的是,第一PA模组也可以称为NR/LTE LMHB PAMID。
可选的,第一PA模组102、第二PA模组202和第三PA模组302分别为多个功率放大器集成的模组。在本发明实施例中,第一PA模组也可以称为NR/LTE MHB PAMID,第二PA模组也可以称为LTE LB PAMID,第三PA模组也可以称为LTE MB PAMID。即外挂仅支持LTE MB的小PA模组,M+H ENDC下HB NR走NR/LTE MHB PAMID通路,LTE MB走LTE MB PAMID通路;由于LTE LB PAMID和LTE MB PAMID不会同时工作,且都工作在LTE模式,所以可以使用一个PMIC同时给前两者供电。所以,节省一个DCDC电源,同时LTE MB PAMID方案成本也远远低于使用N41PAM的成本;通过对ENDC方案架构进行合理优化,最大限度减小DCDC使用数量,同时减小PA元器件成本,达到整机降成本的目的。
可选的,第一PA模组102、第二PA模组202和第三PA模组302分别包括多个独立的功率放大器。
可选的,第一PA模组102为多个功率放大器集成的模组,或第一PA模组102包括多个独立的功率放大器;第二PA模组202为多个功率放大器集成的模组,或第二PA模组202包括多个独立的功率放大器;第三PA模组302为多个功率放大器集成的模组,或第三PA模组302包括多个独立的功率放大器。
可选的,第一PA模组102、第二PA模组202和第三PA模组302中包括的PA,是支持多模多频的PA。
可选的,该射频架构还可以包括:开关402,第一PA模组102通过开关402与第一天线103连接,第二PA模组202通过开关402与第二天线203连接,第三PA模组302通过开关402与第三天线303连接;
开关402,用于控制发射或不发射经过第一PA模组102、第二PA模组202和第三PA模组302放大处理的信号。如图3H所示,为本发明实施例中提供的射频架构的另一个实施例示意图。示例性的,这里的开关402可以是单刀双掷(Single Pole Double Throw,SPDT)开关。
可选的,如图3I所示,为本发明实施例中提供的射频架构的另一个实施例示意图。该射频架构还可以包括:第一滤波器104、第二滤波器204、第三滤波器304,第一PA模组102与第一滤波器104连接,第一滤波器104与第一天线103连接,第二PA模组202与第二滤波器204连接,第二滤波器204与第二天线203连接,第三PA模组302与第三滤波器304连接,第三滤波器304与第三天线303连接;
第一滤波器104,用于对第一放大信号进行滤波,得到第一滤波信号;将所述第一滤波信号通过第一天线103发射;
第二滤波器204,用于对第二放大信号进行滤波,得到第二滤波信号;将所述第二滤波信号通过第二天线203发射;
第三滤波器304,用于对第三放大信号进行滤波,得到第三滤波信号;将所述第三滤波信号通过第三天线303发射。
在本发明实施例中,射频架构还可以对PA模组经过放大处理后的放大信号进行滤波,进一步保证发射信号的可靠性。
可选的,第一PA模组102与第一滤波器104是集成为一体的,或者,第一PA模组102与第一滤波器104是独立的;或,第二PA模组202与第二滤波器204是集成为一体的,或者,第二PA模组202与第二滤波器204是独立的;或,第三PA模组302与第三滤波器304是集成为一体的,或者,第三PA模组302与第三滤波器304是独立的。
需要说明的是,在本发明实施例中,第一天线103、第二天线203和第三天线303还可以接收外界发送的其他信号。射频架构还可以包括其他的元器件,终端设备也可以包括其他的元器件,此处不再一一赘述。不同可选实现方式中的方案都可以互相结合,所形成的方案都在本发明的保护范围内,此处不再一一赘述。
本发明实施例提供了一种射频架构及终端设备,用于通过对4G和5G双连接技术方案的架构进行合理优化,减小DCDC电源的使用数量,同时减小PA元器件成本,达到整机降成本的目的。
可以理解的是,本发明实施例中所涉及的终端设备可以包括一般的手持电子终端,诸如手机、智能电话、便携式终端、终端、个人数字助理(Personal Digital Assistant,PDA)、便携式多媒体播放器(Personal Media Player,PMP)装置、笔记本电脑、笔记本(Note Pad)、无线宽带(Wireless Broadband,Wibro)终端、平板电脑(personal computer,PC)、智能PC、销售终端(Point of Sales,POS)和车载电脑等。
终端设备也可以包括可穿戴设备。可穿戴设备即可以直接穿戴在用户身上,或是整合到用户的衣服或配件的一种便携式电子设备。可穿戴设备不仅仅是一种硬件设备,更可以通过软件支持以及数据交互、云端交互来实现强大的智能功能,比如:计算功能、定位功能、报警功能,同时还可以连接手机及各类终端。可穿戴设备可以包括但不限于以手腕为支撑的watch类(比如手表、手腕等产品),以脚为支撑的shoes类(比如鞋、袜子或者其他腿上佩戴产品),以头部为支撑的Glass类(比如眼镜、头盔、头带等)以及智能服装,书包、拐杖、配饰等各类非主流产品形态。
终端设备可称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal)、智能终端等,所述终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信。例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置以及未来NR网络中的终端设备,它们与无线接入网交换语音或数据。
如图4所示,为本发明实施例中终端设备的另一个实施例示意图。可以包括:
图4示出的是与本发明实施例提供的终端设备相关的手机的部分结构的框图。参考图4,手机包括:射频(Radio Frequency,RF)架构410、存储器420、输入单元430、显示单元440、传感器450、音频电路460、无线保真(wireless fidelity,WiFi)模块470、处理器480、以及电源490等部件。本领域技术人员可以理解,图4中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图4对手机的各个构成部件进行具体的介绍:
RF架构410可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器480处理;另外,将设计上行的数据发送给基站。通常,RF架构410包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,RF架构410还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(Global System of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE)、电子邮件、短消息服务(Short Messaging Service,SMS)等。
存储器420可用于存储软件程序以及模块,处理器480通过运行存储在存储器420的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。存储器420可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器420可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元430可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。具体地,输入单元430可包括触控面板431以及其他输入设备432。触控面板431,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板431上或在触控面板431附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板431可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器480,并能接收处理器480发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板431。除了触控面板431,输入单元430还可以包括其他输入设备432。具体地,其他输入设备432可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元440可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单。显示单元 440可包括显示面板441,可选的,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板441。进一步的,触控面板431可覆盖显示面板441,当触控面板431检测到在其上或附近的触摸操作后,传送给处理器480以确定触摸事件的类型,随后处理器480根据触摸事件的类型在显示面板441上提供相应的视觉输出。虽然在图4中,触控面板431与显示面板441是作为两个独立的部件来实现手机的输入和输入功能,但是在某些实施例中,可以将触控面板431与显示面板441集成而实现手机的输入和输出功能。
手机还可包括至少一种传感器450,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板441的亮度,接近传感器可在手机移动到耳边时,关闭显示面板441和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路460、扬声器461,传声器462可提供用户与手机之间的音频接口。音频电路460可将接收到的音频数据转换后的电信号,传输到扬声器461,由扬声器461转换为声音信号输出;另一方面,传声器462将收集的声音信号转换为电信号,由音频电路460接收后转换为音频数据,再将音频数据输出处理器480处理后,经RF架构410以发送给比如另一手机,或者将音频数据输出至存储器420以便进一步处理。
WiFi属于短距离无线传输技术,手机通过WiFi模块470可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图4示出了WiFi模块470,但是可以理解的是,其并不属于手机的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
处理器480是手机的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器420内的软件程序和/或模块,以及调用存储在存储器420内的数据,执行手机的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器480可包括一个或多个处理单元;优选的,处理器480可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器480中。
手机还包括给各个部件供电的电源490(比如电池),优选的,电源可以通过电源管理系统与处理器480逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管未示出,手机还可以包括摄像头、蓝牙模块等,在此不再赘述。需要说明的是,在本发明实施例中,RF架构410为上述实施例中图2A-图2I任一所示实施例中的射频架构。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储 程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (12)

  1. 一种射频架构,其特征在于,包括:
    第一功率放大器PA模组,用于支持特定频段,新无线NR/长期演进LTE中的中高频段MHB;
    第二功率放大器PA模组,用于支持LTE中的低频段LB;
    第三功率放大器PA模组,用于支持LTE中的中频段MB;
    第一电源与所述第一PA模组连接,用于为所述第一PA模组提供电源;
    第二电源与所述第二PA模组连接,用于为所述第二PA模组提供电源;
    第三电源与所述第三PA模组连接,用于为所述第三PA模组提供电源。
  2. 根据权利要求1所述的射频架构,其特征在于,所述第二电源与所述第三电源为同一电源。
  3. 根据权利要求2所述的射频架构,其特征在于,所述第二电源和所述第三电源为同一集成电源管理电路PMIC电源。
  4. 根据权利要求1所述的射频架构,其特征在于,所述第二电源和所述第三电源为不同的PMIC电源。
  5. 根据权利要求1-4中任一项所述的射频架构,其特征在于,所述第一电源为直流变直流电源DCDC电源。
  6. 根据权利要求1-4中任一项所述的射频架构,其特征在于,所述特定频段包括N41频段。
  7. 根据权利要求1-4中任一项所述的射频架构,其特征在于,所述射频架构还包括:
    第一天线、第二天线和第三天线,其中,所述第一PA模组与所述第一天线连接,所述第二PA模组与所述第二天线连接,所述第三PA模组与所述第三天线连接;
    所述第一天线,用于发射经过所述第一PA模组放大处理的信号;
    所述第二天线,用于发射经过所述第二PA模组放大处理的信号;
    所述第三天线,用于发射经过所述第三PA模组放大处理的信号。
  8. 根据权利要求7所述的射频架构,其特征在于,所述射频架构还包括:
    射频收发器,其中,所述射频收发器分别与所述第一PA模组、所述第二PA模组、所述第三PA模组连接;
    所述射频收发器,用于接收第一输入信号,对所述第一输入信号进行处理得到第一射频信号;根据所述第一射频信号选择对应目标PA模组进行发送,所述目标PA模组包括所述第一PA模组、所述第二PA模组,或,所述第三PA模组;
    所述第一PA模组,用于接收所述射频收发器发送的所述第一射频信号,对所述第一射频信号进行放大处理,得到第一放大信号,将所述第一放大信号通过所述第一天线发射;或,
    所述第二PA模组,用于接收所述射频收发器发送的所述第一射频信号,对所述第一射频信号进行放大处理,得到第二放大信号,将所述第二放大信号通过所述第二天线发射;或,
    所述第三PA模组,用于接收所述射频收发器发送的所述第一射频信号,对所述第一射频信号进行放大处理,得到第三放大信号,将所述第三放大信号通过所述第三天线发射。
  9. 根据权利要求1-4中任一项所述的射频架构,其特征在于,所述第一PA模组,还用于支持NR/LTE中的低频段LB。
  10. 根据权利要求1-4中任一项所述的射频架构,其特征在于,所述第一PA模组、所述第二PA模组和所述第三PA模组分别为多个功率放大器集成的模组。
  11. 根据权利要求1-4中任一项所述的射频架构,其特征在于,所述第一PA模组、所述第二PA模组和所述第三PA模组分别包括多个独立的功率放大器。
  12. 一种终端设备,其特征在于,包括如权利要求1-11中任一项所述的射频架构。
PCT/CN2021/103499 2020-09-22 2021-06-30 射频架构及终端设备 WO2022062541A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011003911.1A CN114257261A (zh) 2020-09-22 2020-09-22 射频架构及终端设备
CN202011003911.1 2020-09-22

Publications (1)

Publication Number Publication Date
WO2022062541A1 true WO2022062541A1 (zh) 2022-03-31

Family

ID=80789647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103499 WO2022062541A1 (zh) 2020-09-22 2021-06-30 射频架构及终端设备

Country Status (2)

Country Link
CN (1) CN114257261A (zh)
WO (1) WO2022062541A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115208418A (zh) * 2022-06-30 2022-10-18 Oppo广东移动通信有限公司 一种射频系统以及射频系统的控制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117375649A (zh) * 2022-06-30 2024-01-09 中兴通讯股份有限公司 信号传输方法、射频系统、单元及存储介质
CN115514387A (zh) * 2022-09-23 2022-12-23 华勤技术股份有限公司 射频前端模组、无线通信模块以及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10103926B1 (en) * 2017-08-08 2018-10-16 Qorvo Us, Inc. Multi-mode power management circuit
CN111049482A (zh) * 2019-12-17 2020-04-21 锐石创芯(重庆)科技有限公司 一种支持非独立组网的5g功率放大器架构
CN111130592A (zh) * 2019-12-17 2020-05-08 锐石创芯(重庆)科技有限公司 用于5g非独立组网的支持lte/nr双连接的射频前端模块
CN111342862A (zh) * 2019-12-17 2020-06-26 锐石创芯(重庆)科技有限公司 支持lte/nr双连接的射频前端模组及移动终端

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10177838B2 (en) * 2014-09-30 2019-01-08 Skyworks Solutions, Inc. Shared integrated DC-DC supply regulator
KR102375132B1 (ko) * 2017-08-10 2022-03-17 삼성전자주식회사 다른 주파수 대역의 무선 신호를 처리하는 전자 장치 및 방법
CN110380741B (zh) * 2019-07-19 2021-09-10 Oppo广东移动通信有限公司 射频前端装置和电子设备
CN110809310B (zh) * 2019-11-07 2022-12-20 上海创功通讯技术有限公司 一种基于功率放大器供电优化的射频降功耗电路及方法
CN111092621B (zh) * 2019-11-13 2021-09-03 维沃移动通信有限公司 射频电路、控制方法及电子设备
CN111294214B (zh) * 2020-01-21 2021-09-14 Oppo广东移动通信有限公司 供电方法及相关产品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10103926B1 (en) * 2017-08-08 2018-10-16 Qorvo Us, Inc. Multi-mode power management circuit
CN111049482A (zh) * 2019-12-17 2020-04-21 锐石创芯(重庆)科技有限公司 一种支持非独立组网的5g功率放大器架构
CN111130592A (zh) * 2019-12-17 2020-05-08 锐石创芯(重庆)科技有限公司 用于5g非独立组网的支持lte/nr双连接的射频前端模块
CN111342862A (zh) * 2019-12-17 2020-06-26 锐石创芯(重庆)科技有限公司 支持lte/nr双连接的射频前端模组及移动终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115208418A (zh) * 2022-06-30 2022-10-18 Oppo广东移动通信有限公司 一种射频系统以及射频系统的控制方法

Also Published As

Publication number Publication date
CN114257261A (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2022062541A1 (zh) 射频架构及终端设备
WO2020151744A1 (zh) 信号收发装置及终端设备
US11101826B2 (en) RF control circuit and mobile terminal
CN107135019B (zh) 天线切换装置和移动终端
CN107896119B (zh) 天线共用电路以及移动终端
CN111092621B (zh) 射频电路、控制方法及电子设备
CN107634785B (zh) WiFi系统、路由器和移动终端
CN110289885B (zh) 一种天线调谐方法及终端
CN107196041B (zh) 天线装置及三段式移动终端
CN112653965B (zh) 音频播放控制电路及其方法、装置、电子设备和存储介质
US20200186173A1 (en) Lte frequency band switching device and method, and mobile terminal
CN111614329B (zh) 一种功率放大器、电子设备、电压控制方法和装置
CN111510901A (zh) 一种功率调节方法、装置、存储介质及终端
CN109698711B (zh) 一种射频模组及终端设备
CN114531163A (zh) 射频架构及终端设备
CN112040537B (zh) Sar回退的方法、终端设备及计算机可读存储介质
CN110011035B (zh) 天线结构和电子设备
CN109687150B (zh) 一种天线结构和电子设备
CN111327343A (zh) 一种共接收通道射频装置、方法及移动终端
CN106815077B (zh) 一种基于智能设备架构的数据处理方法,及智能设备
CN113364480A (zh) 一种射频前端、芯片及设备
CN107749751B (zh) 移动终端供电系统及移动终端
CN112905278A (zh) 一种应用程序切换方法及装置
WO2019084752A1 (zh) 一种语音调节耳机音量的方法及相关产品
CN218275051U (zh) 天线模组和智能终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21870920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21870920

Country of ref document: EP

Kind code of ref document: A1