WO2020020124A1 - 多电池充放电装置及移动终端 - Google Patents
多电池充放电装置及移动终端 Download PDFInfo
- Publication number
- WO2020020124A1 WO2020020124A1 PCT/CN2019/097218 CN2019097218W WO2020020124A1 WO 2020020124 A1 WO2020020124 A1 WO 2020020124A1 CN 2019097218 W CN2019097218 W CN 2019097218W WO 2020020124 A1 WO2020020124 A1 WO 2020020124A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- charging
- voltage
- rechargeable battery
- field effect
- module
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0014—Circuits for equalisation of charge between batteries
- H02J7/0019—Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/0031—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0068—Battery or charger load switching, e.g. concurrent charging and load supply
Definitions
- the present disclosure relates to the field of charging power sources, and in particular, to a multi-battery charging and discharging device and a mobile terminal.
- the power consumption of mobile terminals has increased dramatically.
- the battery life requirements are getting higher and higher, and the power supply time is getting higher and higher.
- the battery capacity of the mobile terminal will also be larger and larger.
- the increase in the capacity of a single battery will increase the battery charging time, which will reduce the user's charging experience. Therefore, in order to ensure that the battery charging time is not increased and the battery usage time can be extended, a multi- Charging power supply of batteries in parallel, that is, multiple parallel rechargeable batteries are used to power the mobile terminal's electrical load.
- connection relationship between multiple batteries is a parallel relationship, when the resistance difference between the rechargeable batteries is large As a result, there will be a certain voltage difference between the rechargeable batteries, so that a phenomenon in which a rechargeable battery with a high voltage charges a rechargeable battery with a low voltage will appear, and the problem of reverse current flow between multiple batteries will soon occur.
- the purpose of the embodiments of the present disclosure is to provide a multi-battery charging and discharging device and a mobile terminal, so as to solve the problem of current backflow between multi-batteries when the resistance difference between rechargeable batteries is relatively large, which not only shortens the power supply.
- the power supply time will also cause some damage to the rechargeable battery, thereby shortening the technical problem of the service life of the rechargeable battery.
- an embodiment of the present disclosure provides a multi-battery charging and discharging device, including: a power management integrated circuit PMIC module, at least two rechargeable batteries, and a first field effect tube;
- each of the rechargeable batteries is connected to a pulse width modulation PWM power module in the PMIC module through a field effect switch tube, and the connection ends of the field effect switch tube and the PWM power module are independent of each other.
- the first field effect tube is provided on a connection path between the rechargeable battery and a load;
- the first field effect transistor is used to control the on or off of a connection path between the rechargeable battery and the load.
- an embodiment of the present disclosure provides a mobile terminal, the mobile terminal including: at least one load and the multi-battery charging and discharging device according to the first aspect;
- the multi-battery charging and discharging device is configured to supply power to the at least one load.
- each rechargeable battery in the multi-battery charging and discharging device is connected to a PWM power module in a PMIC module through a field effect switch tube, and is controlled by using a first field effect tube.
- the connection path between the rechargeable battery and the load is turned on or off. That is, a field-effect switch is provided for each rechargeable battery, and the connection ends of the field-effect switch and the PWM power module are independent of each other, so as to prevent the phenomenon of reverse current flowing between the batteries during the charging process.
- a unidirectional field effect transistor is installed on the connection path between the rechargeable battery and any load to prevent the phenomenon of current backflow between the batteries during the discharge process, so as to avoid affecting the battery due to the current backflow between the batteries.
- Service life to provide technical support for realizing multi-battery charging and discharging needs, and to improve the standby time of mobile terminals using the device as a power supply.
- FIG. 1 is a first schematic structural diagram of a multi-battery charging and discharging device according to an embodiment of the present disclosure
- 2a is a schematic diagram of a parallel charging and discharging circuit of two rechargeable batteries according to an embodiment of the present disclosure
- 2b is a schematic diagram of an equivalent circuit of a parallel charging and discharging circuit of two rechargeable batteries according to an embodiment of the present disclosure
- 3a is a first schematic diagram of a unidirectional conduction field-effect transistor in a multi-battery charging and discharging device according to an embodiment of the present disclosure
- 3b is a second schematic diagram of a unidirectional conduction field effect tube in a multi-battery charging and discharging device according to an embodiment of the present disclosure
- FIG. 4 is a schematic diagram of a second structure of a multi-battery charging and discharging device according to an embodiment of the present disclosure
- FIG. 5 is a third structural schematic diagram of a multi-battery charging and discharging device according to an embodiment of the present disclosure
- FIG. 6 is a fourth schematic structural diagram of a multi-battery charging and discharging device according to an embodiment of the present disclosure.
- FIG. 7 is a fifth schematic structural diagram of a multi-battery charging and discharging device according to an embodiment of the present disclosure.
- FIG. 8 is a schematic structural diagram of a mobile terminal according to an embodiment of the present disclosure.
- Embodiments of the present disclosure provide a multi-battery charging and discharging device and a mobile terminal.
- Each rechargeable battery is provided with a field effect switch tube, and each field effect switch tube and a pulse width modulation (PWM) power module.
- PWM pulse width modulation
- the connection terminals are independent of each other to prevent the phenomenon of current backflow between the batteries during charging.
- a unidirectional field effect transistor is set on the connection path between the rechargeable battery and any load to prevent the battery from discharging.
- the mobile terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a car terminal, a wearable device, and the like.
- a mobile phone a tablet computer
- a notebook computer a palmtop computer
- car terminal a wearable device
- the embodiment of the present disclosure is described using a common smart phone as an example.
- FIG. 1 is a schematic diagram of a multi-battery charge-discharge device according to an embodiment of the present disclosure.
- the charge-discharge device includes a power management integrated circuit (PMIC) module 101 and at least two A rechargeable battery 102 and a first field effect tube 103;
- PMIC power management integrated circuit
- each rechargeable battery 102 is connected to the PWM power module 1011 in the PMIC module 101 through a field effect switch 104, and the connection ends of the field effect switch 104 and the PWM power module 1011 are independent of each other, that is, each field effect switch
- the access ends connected to 104 and the PWM power module 1011 are independent of each other. Therefore, when the field effect switch tubes 104 are all closed, the connected access ends of each rechargeable battery 102 and the PWM power module 1011 are independent of each other, so that the PWM power module is used.
- the rechargeable batteries 102 are not directly connected in parallel, so as to avoid the phenomenon of reverse current flowing between the rechargeable batteries 102 during the charging process;
- the connection path between each rechargeable battery 102 and the load is provided with the above-mentioned first field-effect tube 103; the first field-effect tube 103 is used to control the conduction or disconnection of the connection path between the rechargeable battery 102 and the load, Specifically, when the voltage difference between the rechargeable batteries 102 is greater than a preset threshold, the first field-effect tube 103 connected to the rechargeable battery 102 with a large voltage value meets the forward conduction condition. At this time, the rechargeable battery 102 with a large voltage value The first field-effect tube 103 connected to the rechargeable battery 102 with a small voltage value is supplied with power to the load.
- the input voltage of the first field-effect transistor 103 is a reverse voltage and is in the cut-off state. In this way, the rechargeable batteries 102 in the discharge circuit using multiple rechargeable batteries to power the load are not directly connected in parallel, thereby avoiding the phenomenon of reverse current sinking between the rechargeable batteries 102 during the discharging process.
- the PMIC module 101 refers to a power management integrated circuit (Power Management IC), which is mainly used to manage power devices in the host system, and is often used in mobile phones and various mobile terminal devices.
- the PWM power module 1011 refers to pulse width modulation (Pulse Width Modulation) power module, the field effect switch tube 104 is closed or opened under the control of the PMIC module 101; the first field effect tube 103 has a unidirectional conduction characteristic, when the input voltage of the first field effect tube 103 meets the forward conduction condition When the input voltage of the first field effect transistor 103 does not satisfy the forward conduction condition, it is in the off state.
- a multi-battery charge / discharge device is used to supply two loads as an example, that is, load RL1 and load RL2.
- a multi-charged battery in a multi-battery charge / discharge device supplies power to load RL1 and load RL2.
- Make load RL1 and load RL2 operate normally.
- the load RL1 includes the basic functional modules of the terminal, such as CMOS camera module (CCM), fingerprint, liquid crystal display module (LCM), audio amplifier, touch screen, Infrared sensors, etc.
- the load RL2 includes: the first generation (2G) power amplifier (PA), the third generation (3G) PA, the fourth generation (4G) PA, PAPM (PA radio frequency power amplifier power management module) and the like.
- a field-effect switch 104 is provided for each rechargeable battery 102, and the connection ends of the field-effect switch 104 and the PWM power module 1011 are independent of each other to prevent current from flowing between the batteries during the charging process.
- Backflow phenomenon At the same time, a unidirectional field effect tube is set on the connection path between the rechargeable battery 102 and any load to prevent current backflow between the batteries during discharge, thereby avoiding the current between the batteries.
- Back-filling affects battery life, provides technical support for multi-battery charging and discharging requirements, thereby reducing the time required for charging, and increasing the standby time of mobile terminals using the device as a power supply, improving the user experience.
- first rechargeable battery and the second rechargeable battery are grounded, and the first rechargeable battery is connected to the other end of the second rechargeable battery, and is connected to an external charging power source.
- the first rechargeable battery and the second rechargeable battery provide power to the load RL in parallel.
- FIG. 2b it is the equivalent circuit of the charge and discharge circuit shown in FIG. 2a.
- Each rechargeable battery is equivalent to an internal resistance and a constant voltage source, that is, the first rechargeable battery is equivalent to the internal resistance R1 and the constant voltage.
- Source 1 the second rechargeable battery is equivalent to internal resistance R2 and constant voltage source 2;
- the initial values of internal resistance R1 and internal resistance R2 are both 100 milliohms.
- the internal resistance R2 corresponding to the second rechargeable battery increases, it becomes 250 milliohms, while the first rechargeable battery
- the corresponding internal resistance R1 remains unchanged and is still 100 milliohms.
- the external charging power source is charging the first rechargeable battery and the second rechargeable battery
- the internal resistance R2 is greater than the internal resistance R1, and flows through the second rechargeable battery.
- the charging current is smaller than the charging current flowing through the first rechargeable battery. Therefore, the voltage of the second rechargeable battery rises slowly and the voltage of the first rechargeable battery rises fast.
- a preset value for example 0.25V
- the one-way conduction characteristic of the one-way conduction field effect tube is fully utilized, so that when the voltage difference between the rechargeable batteries is greater than a preset threshold, one of them The unidirectional FET connected to the rechargeable battery is on, and the unidirectional FET connected to the other rechargeable battery is off. That is, when the internal resistance of one or more batteries in the charge-discharge device changes, The unidirectional conduction characteristic of the pass field effect tube realizes the automatic switching between the on state and the off state. This avoids the situation where the positive and negative poles of multiple rechargeable batteries are directly connected in parallel, and even if the voltage difference between the rechargeable batteries is greater than a preset Threshold value, there will be no current reverse irrigation phenomenon.
- the unidirectional conduction field effect transistor when the input voltage of the unidirectional conduction field effect transistor is a forward voltage and the voltage value is greater than the positive conduction voltage, that is, positive, negative, and negative, the diode inside the unidirectional conduction field effect transistor is turned on first, so that V GS is a negative voltage.
- the VGS of the unidirectional conduction field effect tube is a negative voltage and a certain threshold (-1.0 to -2.5V).
- the MOSFET DS is turned on. At this time, the unidirectional MOSFET meets the unidirectional conduction condition. Therefore, the unidirectional MOSFET is in the conducting state.
- the unidirectional MOSFETs do not meet the unidirectional conduction conditions. Therefore, the unidirectional MOSFETs are in the cutoff state, that is, based on the change in the input voltage of the unidirectional MOSFETs, the unidirectional MOSFETs automatically Freely switch between on-state and off-state.
- the first field-effect transistor 103 may be a unidirectional field-effect transistor shown in FIG. 3a or 3b, that is, by connecting a diode in parallel between the internal D / S poles of the P-MOSFET tube. Based on this, the above The first field effect transistor 103 includes: a switching diode and a P-channel type field effect transistor;
- the P-pole of the switching diode is connected to the drain (ie, D-pole) of the P-channel FET, and the N-pole of the switching diode is connected to the source (ie, S-pole) of the P-channel FET;
- the first field-effect transistor 103 When the voltage difference between the P-pole and N-pole of the switching diode is greater than the forward conduction voltage, the first field-effect transistor 103 is in a conducting state, that is, the input voltage of the first field-effect transistor 103 is a forward voltage and the voltage value is greater than the forward conduction voltage. On voltage, the input voltage is determined by the voltage of each rechargeable battery 102;
- the first FET 103 When the voltage difference between the P-pole and N-pole of the switching diode is not greater than the forward conduction voltage, the first FET 103 is in the off state, that is, the input voltage of the first FET 103 is a reverse voltage.
- the unidirectional conduction characteristic of the unidirectional conduction field effect transistor is that when the voltage difference between the P and N poles of the internal diode is greater than the positive conduction voltage, the diode is first turned on, so that V GS is a negative voltage and maintained at a certain threshold. (For example, -1.0 to -2.5V), the P-MOSFET tube DS is turned on, and when the voltage difference between the P and N poles of the internal diode is not greater than the forward voltage, the diode is turned off in the reverse direction, and V GS is a positive voltage.
- the P-MOSFET tube DS is turned off, so that the on-state and off-state of the unidirectional conduction field-effect transistor can be automatically switched without the need for a software program to control its on-off state. Therefore, even if a software problem occurs in the mobile terminal (for example, It can also automatically protect each rechargeable battery 102 from generating current backflow when it supplies power to the load.
- a first field-effect tube 103 is provided on the connection path between each rechargeable battery 102 and the load.
- the connection relationship between each electrode in the first field-effect tube 103 and the rechargeable battery 102 and the load is: the first field The drain (ie, the D pole) of the effect transistor 103 is connected to the above-mentioned rechargeable battery 102, the source (ie, the S pole) of the first field effect transistor 103 is connected to the above load, and the gate (i.e., the first field effect transistor 103) G pole) ground.
- the above-mentioned charging and discharging device further includes: a charging control module 105;
- the input terminal of the charging control module 105 is connected to a charging interface for connecting an external power source, and the output terminal of the charging control module 105 is connected to a rechargeable battery 102;
- the charging control module 105 is configured to collect electric energy provided by an external power source through a charging interface, and transmit the electric energy to the rechargeable battery 102 to charge the rechargeable battery 102.
- the rechargeable battery 102 can be charged at the same time as the PMIC module 101, that is, the two charging channels of the PMIC module 101 and the charging control module 105 are used to charge the multi-rechargeable battery. Charging the rechargeable battery 102 in parallel with a large current reduces the charging time of the rechargeable battery 102 and improves the charging efficiency of the rechargeable battery 102.
- a new charging control module 105 is used to collect charging The electrical signal of the interface is used for charging identification. After determining that the external power supply needs to be charged, it sends a corresponding instruction to the PMIC module 101 to trigger charging of the rechargeable battery 102 through the charging channel where the PMIC module 101 is located. Based on this, the above charging The control module 105 is connected to the PMIC module 101;
- the charging control module 105 is configured to collect an electrical signal of the charging interface, determine whether the charging interface is connected to an external power source based on the electrical signal, and send a charging start instruction to the PMIC module 101 after determining that the external power source is connected;
- the PMIC module 101 is configured to control the field-effect switch 104 to switch to a closed state after receiving a charging start instruction sent by the charging control module 105, and transmit the power of an external power source to the rechargeable battery 102 to be the rechargeable battery 102. Charging.
- the above-mentioned charge-discharge device further includes: a second field-effect tube 106;
- connection path between each rechargeable battery 102 and the above-mentioned charge control module 105 is provided with the above-mentioned second field-effect tube 106, which is used to control the connection path between the rechargeable battery 102 and the charge-control module 105 ON or OFF.
- the above-mentioned second field-effect transistor 106 may also be a unidirectional conduction field-effect transistor shown in FIG. 3a or 3b, that is, by connecting a diode in parallel between the internal D / S poles of the P-MOSFET tube, based on this,
- the second FET 106 also includes: a switching diode and a P-channel type FET;
- the P-pole of the switching diode is connected to the drain (ie, D-pole) of the P-channel FET, and the N-pole of the switching diode is in phase with the source (ie, S-pole) of the P-channel FET. connection;
- the second field effect transistor 106 When the voltage difference between the P pole and the N pole of the switching diode is greater than the forward conduction voltage, the second field effect transistor 106 is in an on state, that is, the input voltage of the second field effect transistor 106 is a forward voltage and the voltage value is greater than the forward conduction voltage.
- the input voltage is determined by the input voltage of the charging control module 105 and the voltage of the connected rechargeable battery 102;
- the second field-effect transistor 106 When the voltage difference between the P-pole and N-pole of the switching diode is not greater than the forward conduction voltage, the second field-effect transistor 106 is in an off state, that is, the input voltage of the second field-effect transistor 106 is a reverse voltage.
- a connection path between each rechargeable battery 102 and the charging control module 105 is provided with a second field-effect transistor 106, and the connection between each electrode in the second field-effect tube 106 and the rechargeable battery 102 and the charging control module 105
- the relationship is: the drain (ie, D pole) of the second field effect transistor 106 is connected to the above-mentioned charge control module 105, the source (ie, S pole) of the second field effect transistor 106 is connected to the above-mentioned rechargeable battery 102, and the second The gate (ie, the G pole) of the field effect transistor 106 is grounded.
- the voltage difference between the rechargeable batteries 102 is greater than a preset threshold, that is, the voltage difference between the source (ie, the S pole) of the second field-effect transistor 106 is greater than the preset threshold, because the The drain (that is, the D pole) is connected to the charge control module 105, that is, the voltage value of the drain (that is, the D pole) of the second field effect transistor 106 is the same.
- the FET 106 satisfies the forward conduction condition preferentially. Therefore, the output voltage of the charging control module 105 can be controlled to control the second FET 106 connected to the rechargeable battery 102 not to conduct at the same time.
- the charging control module 105 may optionally charge the rechargeable battery 102 with a low voltage value, and the second field effect transistor 106 connected to the rechargeable battery 102 with a high voltage value is in an off state. At this time, the rechargeable battery 102 with a high voltage value and The connection path between the charging control modules 105 is disconnected, so that the rechargeable batteries 102 are not directly connected in parallel in the circuit that uses the charging control module 105 to charge the multi-rechargeable battery, thereby avoiding the current between the rechargeable batteries 102 during the charging process. Backfill phenomenon.
- the charging voltage needs to be controlled so that when the voltage difference between the two rechargeable batteries 102 is greater than a preset threshold, one of the rechargeable batteries 102
- the connected first field-effect tube 103 is in an on state, and the second field-effect tube 106 connected to another rechargeable battery 102 is in an off-state.
- the above-mentioned charge control module 105 is further configured to obtain the voltage of each rechargeable battery 102 Signal, according to the current voltage value corresponding to each voltage signal, controls the charging voltage transmitted to the rechargeable battery 102; specifically, the PMIC module 101 can collect the voltage signal of each rechargeable battery 102 and transmit the collected voltage signal to the charging control Module 105.
- the charging voltage is greater than a first voltage value and less than a second voltage value, or is equal to a specified voltage value.
- the first voltage value is the sum of the minimum value of the current voltage value and the forward voltage of the second field effect transistor 106.
- the second voltage value is the sum of the target value in the current voltage value and the forward voltage of the second field effect transistor 106.
- the target value is the first voltage value larger than the minimum threshold value.
- the current voltage values corresponding to the voltage signals of the first rechargeable battery, the second rechargeable battery, and the third rechargeable battery are: 3.6V, 3.9V, 4.0V, and the second The forward conduction voltage of the field effect transistor 106 is 0.25V. From this, it can be known that the minimum value is 3.6V and the target value is 3.9V (that is, the first voltage value larger than the minimum threshold value). Therefore, the first voltage value It is 3.85V, and the second voltage value is 4.15V, that is 3.85V ⁇ charging voltage ⁇ 4.15V.
- the charging control module 105 controls the charging voltage transmitted to the rechargeable battery to be 4.0V.
- the voltage difference between the D pole and the S pole of the second field effect transistor 106 connected to the first rechargeable battery is 0.4V.
- the diode satisfies the forward conduction condition, so that the second field-effect transistor 106 enters a conducting state, and the voltage difference between the D pole and the S pole of the second field-effect transistor 106 connected to the second rechargeable battery is 0.1V.
- the diode does not meet the forward conduction condition, so that the second FET 106 is in the off state.
- the voltage difference between the D pole and the S pole of the second FET 106 connected to the third charging voltage is 0V, which is The built-in diode does not meet the forward conduction condition, so that the second field effect transistor 106 is also in the off state.
- the charge control module 105 only the first rechargeable battery, the second rechargeable battery, and the third rechargeable battery are connected to the charge control module 105.
- the connection path between the rechargeable battery and the charging control module 105 is conducted, and the charging control module 105 charges the first rechargeable battery, thereby enabling each of the rechargeable batteries in the circuit that uses the charging control module 105 to charge the multi-rechargeable battery. Not directly connected in parallel, so as to avoid a charging current during the charging phenomenon between the intrusion of the battery.
- a rechargeable IC is provided for each rechargeable battery 102.
- the above-mentioned charging control module 105 includes multiple charging ICs and Microprocessor MCU;
- Each of the above-mentioned charging ICs is connected to the above-mentioned rechargeable battery 102 through the above-mentioned second field-effect tube 106;
- the above-mentioned microprocessor MCU is used to obtain the voltage signal of each rechargeable battery 102, and determine whether there is a voltage value greater than a preset threshold value based on the current voltage value corresponding to each voltage signal; specifically, multiple current voltage values
- the comparison is performed to determine whether there is a current reverse-charge phenomenon when the multi-rechargeable battery is turned on at the same time.
- the charging voltage of the rechargeable battery 102 is controlled so that the rechargeable battery 102 having the current reverse-charge phenomenon does not conduct at the same time.
- the specified voltage value is determined as the charging voltage of the rechargeable battery 102, wherein the specified voltage value is greater than the third voltage value, and the third voltage value is the maximum value of the current voltage value and the positive value of the second field effect transistor 106. Sum of the conduction voltage;
- the charging IC is used to control the charging voltage transmitted to the rechargeable battery 102 according to the received control instruction;
- the second field-effect transistor 106 is used to control the conduction or disconnection of the connection path between the rechargeable battery 102 and the charging IC.
- the voltage signal of each rechargeable battery 102 can be obtained through the PMIC module 101 and transmitted to the microprocessor MCU, so that the microprocessor MCU controls the charging current of the charging IC according to the voltage signal of each rechargeable battery 102 , Or control the charging IC to stop or start charging.
- the charging voltage is greater than the first voltage value (the sum of the minimum value and the forward conduction voltage of the second field-effect transistor 106) and smaller than the second voltage value (the sum of the target value and the forward conduction voltage of the second field-effect transistor 106).
- the second field-effect transistor 106 connected to the rechargeable battery 102 whose current voltage value is less than the target value is in an on state, and the second field-effect transistor 106 connected to the rechargeable battery 102 whose current voltage value is greater than or equal to the target value In the cut-off state.
- the difference between the maximum value and the minimum value of multiple current voltage values is not greater than a preset threshold (that is, there is no voltage value greater than the minimum threshold value among the multiple current voltage values), it means that the multi-charge battery is turned on at the same time There is no phenomenon of current reverse charging during charging. Therefore, it is sufficient to charge the rechargeable battery 102 according to a specified voltage value.
- the specified voltage value can make each second field effect transistor 106 meet the forward conduction condition, that is, each rechargeable battery 102.
- the connected second FETs 106 are all in a conducting state.
- two rechargeable batteries are taken as an example, that is, a multi-battery charge / discharge device includes: a primary rechargeable battery and a secondary rechargeable battery, which are respectively disposed on the primary rechargeable battery and the secondary rechargeable battery.
- the unidirectional MOSFETs connected to the path between the rechargeable battery and the load RL2 are D3 and D4, and the unidirectional MOSFETs connected to the path between the primary rechargeable battery and the secondary battery and the load RL1 are D5 and D6.
- the unidirectional conducting field effect tube provided in the connection path between the primary rechargeable battery and the charging IC2 is D1
- the unidirectional conducting field effect tube provided in the connection path between the secondary rechargeable battery and the charging IC2 is D2.
- the primary rechargeable battery and the secondary charging The battery is connected to the PWM power module in the PMIC module through field-effect switch tubes Q1 and Q2.
- the connection ends of each field-effect switch tube and the PWM power module are independent of each other.
- the microprocessor MCU is connected to the charging IC2, charging IC2, and PMIC modules. ⁇ ⁇ Phase connection.
- the first Batt FET Control module that controls the field effect switch Q1, the field effect switch Q2, and the on and off of the field effect switch Q1, and the first control that controls the on and off of the field effect switch Q2
- Two Batt, FET and Control modules are set in the PMIC module;
- the unidirectional FETs D5 and D6 can be made smaller in size and therefore can also be used.
- the unidirectional MOSFETs D5 and D6 on the connection path between the load RL1 and the rechargeable battery are also set in the PMIC module.
- the drain of the unidirectional MOSFET (ie, the D pole) is connected to the rechargeable battery, and the source of the unidirectional MOSFET (ie, the S pole) It is connected to the load RL2, and the gate of the unidirectional field-effect transistor (ie, G pole) is grounded.
- the voltage of the drain of the unidirectional field-effect transistor D3 is V bat1 (that is, the voltage of the main rechargeable battery).
- the voltage of the drain of the conducting FET D4 is V bat2 (that is, the voltage from the rechargeable battery);
- the drain (ie, D pole) of the unidirectional MOSFET is connected to the rechargeable battery, and the source (ie, S pole) of the unidirectional MOSFET is connected to the load.
- RL1 is connected, and the gate (ie, G pole) of the unidirectional MOSFET is grounded.
- the voltage of the drain of the unidirectional MOSFET D5 is V bat1 (ie, the voltage of the main rechargeable battery), and the unidirectional conduction is
- V bat2 that is, the voltage from the rechargeable battery
- the drain (ie, D pole) of the unidirectional MOSFET is connected to the charging IC, and the source (ie, S pole) of the unidirectional MOSFET is connected to the charge.
- the battery is connected, and the gate (ie, G pole) of the unidirectional MOSFET is grounded.
- the voltage of the drain of the unidirectional MOSFET D1 is the output voltage of the charging IC1.
- the voltage of the drain is the output voltage of the charging IC2.
- the voltage of the source of the unidirectional MOSFET D1 is V bat1 (that is, the voltage of the main rechargeable battery).
- the voltage of the source of the unidirectional MOSFET D2 is V bat2. (Ie the voltage from the rechargeable battery).
- the charging IC1 collects the electrical signal of the USB socket, and determines whether the charger is plugged into the USB socket based on the electrical signal.
- the MCU transmits corresponding instruction signals so that the microprocessor MCU sends a charging start instruction to the PMIC module.
- the normal working voltage range supported by the charging IC1 is judged when the input terminal voltage is higher than the lower limit of the voltage range.
- the inserted charger is valid.
- the charging IC1 will enter the overvoltage protection state.
- the USB socket charging current passes the anti-reverse module and overvoltage protection (overvoltage). protection (OVP) module flows to PMIC module and charging IC1, charging IC2;
- the charging IC has an overvoltage protection function. Specifically, by setting the overvoltage protection threshold of the input terminal of the charging IC, when the voltage on V USB is higher than the overvoltage protection threshold, the charging IC controls the OVP module to be turned off. Charging path, and alarm of overvoltage protection event, so as to protect the PMIC module and improve the reliability of the PMIC module.
- the first charging channel is: the field effect switch Q1 and the field effect switch Q2 are controlled by the first Batt FET Control module and the second Batt FET Control module, and the PWM power module in the PMIC module passes the field effect switch.
- Tube Q1 and field effect switch tube Q2 are used to charge the primary and secondary rechargeable batteries; at the same time, the PWM power module in the PMIC module supplies power to the load RL1 through the power network VPH_PWR; and the PWM power module in the PMIC module passes the field effect switch Tube Q1, field effect switch Q2, and unidirectional field effect tubes D3 and D4 supply power to load RL2;
- connection ends of the field effect switch tubes and the PWM power module are independent of each other, that is, when the field effect switch tubes are closed,
- the connection ends are independent of each other, so that the rechargeable batteries in the charging circuit controlled by the PWM power module are not directly connected in parallel, thereby avoiding the phenomenon of reverse current flowing between the rechargeable batteries during the charging process.
- the second charging channel is: the PMIC module sends a control signal to the microprocessor MCU, and the microprocessor MCU controls the charging IC1 and the charging IC2 through the unidirectional conduction field effect tubes D1 and D2 to charge the main rechargeable battery and the secondary rechargeable battery.
- the forward voltage of a unidirectional field-effect transistor is 0.25V
- the internal resistance of the primary rechargeable battery is less than the internal resistance of the secondary rechargeable battery.
- the voltage value of the primary rechargeable battery is 3.9V.
- the voltage value of the rechargeable battery is 3.6V, which shows that the minimum value is 3.6V and the target value is 3.9V (that is, the first voltage value larger than the minimum value by a preset threshold). Therefore, the first voltage value is 3.85V
- the second voltage value is 4.15V, that is 3.85V ⁇ charging voltage ⁇ 4.15V.
- the charging IC controls the charging voltage transmitted to the rechargeable battery to be 4.0V.
- the unidirectional FET connected to the rechargeable battery is a voltage difference between the D pole and the S pole of D2 of 0.4V, and its built-in The diode satisfies the forward conduction condition, so that the unidirectional conduction field effect transistor enters the conduction state for D2, and the unidirectional conduction field effect transistor connected to the main rechargeable battery is the voltage difference between the D pole and the S pole of D1 is 0.1V.
- Its built-in diode does not meet the forward conduction condition, so that the one-way conduction field effect transistor is in the off state D1.
- IC2 charges the secondary battery, so that the primary and secondary batteries are not directly connected in parallel in the circuit that uses the charging IC to charge the multi-rechargeable battery, thereby avoiding the phenomenon of reverse current flowing between the secondary batteries during the charging process.
- the charging instruction the PMIC module controls the PWM power module to stop working, the main rechargeable battery supplies power to the load RL1 through the field effect switch Q1, and the unidirectional field effect tube D5, and the rechargeable battery passes the field effect switch Q2, and the unidirectional field effect
- the tube D6 supplies power to the load RL1; and the main rechargeable battery supplies power to the load RL2 through the unidirectional field effect tube D3, and the secondary battery supplies power to the load RL2 through the unidirectional field effect tube D4.
- the unidirectional conduction field-effect tube connected to one of the rechargeable batteries is turned on, and the other rechargeable battery is turned on.
- the connected unidirectional FET is in the cut-off state, specifically:
- the forward voltage of a unidirectional field-effect transistor is 0.25V
- the internal resistance of the primary rechargeable battery is less than the internal resistance of the secondary rechargeable battery.
- the voltage value of V bat1 is 4.0V.
- the voltage value of V bat2 is 3.7V. If the primary rechargeable battery and the secondary rechargeable battery are directly connected in parallel, the current will flow backward between the primary and secondary rechargeable batteries.
- the input voltage of the unidirectional conduction field effect transistor D3 is a forward voltage, and the unidirectional conduction field effect transistor D3 enters a conducting state. After the unidirectional conduction field effect transistor D3 is turned on, the unidirectional conduction field effect transistor D4 is turned on.
- the voltage value of the source (ie, S pole) is 4.0V, and the voltage value of the drain (ie, D pole) of the unidirectional MOSFET D4 is 3.7V.
- the input voltage of the unidirectional MOSFET D4 It is a reverse voltage, so the unidirectional conduction field effect transistor D4 is in the off state.
- a unidirectional conduction field effect transistor D5 is provided between the primary rechargeable battery and the load RL1, and a unidirectional communication is provided between the secondary rechargeable battery and the load RL1.
- the field effect transistor D6 when the voltage difference between V bat1 and V bat2 is greater than the forward conduction voltage, the unidirectional conduction field effect transistor D5 enters the conducting state, and the unidirectional conduction field effect transistor D6 is in the off state. Therefore, the main rechargeable battery It is not directly connected in parallel with the secondary rechargeable battery, so that the current does not flow backward.
- each rechargeable battery in the multi-battery charge-discharge device is connected to a PWM power module in a PMIC module through a field effect switch tube, and the first field effect tube is used to control the rechargeable battery and The connection path between the loads is turned on or off.
- a field-effect switch is provided for each rechargeable battery, and the connection ends of each field-effect switch and the PWM power module are independent of each other, so as to prevent the phenomenon of current backflow between the batteries during the charging process, and at the same time, the rechargeable battery and the A unidirectional FET is set on the connection path between any loads to prevent the phenomenon of current back-flow between the batteries during the discharge process, so as to avoid affecting the battery life due to the current back-flow between the batteries.
- the battery charging and discharging needs provide technical support to improve the standby time of mobile terminals using the device as a power supply.
- FIG. 8 is a schematic structural diagram of a mobile terminal according to an embodiment of the present disclosure.
- the mobile terminal may be a mobile terminal related to the multi-battery charging and discharging device.
- FIG. 8 is a schematic diagram of a hardware structure of a mobile terminal that implements various embodiments of the present disclosure.
- the mobile terminal 800 shown in FIG. 8 includes, but is not limited to, a radio frequency unit 801, a network module 802, an audio output unit 803, an input unit 804, and a sensor. 805, display unit 806, user input unit 807, interface unit 808, memory 809, processor 180, and power supply 811 and other components.
- a radio frequency unit 801 includes, but is not limited to, a radio frequency unit 801, a network module 802, an audio output unit 803, an input unit 804, and a sensor. 805, display unit 806, user input unit 807, interface unit 808, memory 809, processor 180, and power supply 811 and other components.
- the mobile terminal may include more or less components than shown in the figure, or some components may be combined, or different components. Layout.
- the mobile terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a
- the above-mentioned radio frequency unit 801 may be used for receiving and transmitting signals during information transmission and reception or during a call. Specifically, after receiving downlink data from the base station, the processor 180 processes the data; in addition, it sends uplink data to the base station.
- the radio frequency unit 801 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
- the radio frequency unit 801 can also communicate with a network and other devices through a wireless communication system.
- the mobile terminal provides users with wireless broadband Internet access through the network module 802, such as helping users to send and receive email, browse web pages, and access streaming media.
- the audio output unit 803 may convert audio data received by the radio frequency unit 801 or the network module 802 or stored in the memory 809 into audio signals and output them as sound. Also, the audio output unit 803 may also provide audio output (for example, a call signal receiving sound, a message receiving sound, etc.) related to a specific function performed by the mobile terminal 800.
- the audio output unit 803 includes a speaker, a buzzer, a receiver, and the like.
- the input unit 804 is used to receive audio or video signals.
- the input unit 804 may include a graphics processing unit (GPU) 8041 and a microphone 8042.
- the graphics processor 8041 pairs images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
- the processed image frames may be displayed on a display unit 806.
- the image frames processed by the graphics processor 8041 may be stored in the memory 809 (or other storage medium) or transmitted via the radio frequency unit 801 or the network module 802.
- the microphone 8042 can receive sound, and can process such sound into audio data.
- the processed audio data can be converted into a format that can be transmitted to a mobile communication base station via the radio frequency unit 801 in the case of a telephone call mode.
- the mobile terminal 800 further includes at least one sensor 805, such as a light sensor, a motion sensor, and other sensors.
- the light sensor includes an ambient light sensor and a proximity sensor.
- the ambient light sensor can adjust the brightness of the display panel 8061 according to the brightness of the ambient light.
- the proximity sensor can close the display panel 8061 and the mobile terminal 800 when the mobile terminal 800 moves to the ear. / Or backlight.
- the accelerometer sensor can detect the magnitude of acceleration in various directions (generally three axes), and can detect the magnitude and direction of gravity when it is stationary, which can be used to identify mobile terminal attitudes (such as horizontal and vertical screen switching, related games , Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc .; sensor 805 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, Infrared sensors, etc. are not repeated here.
- the display unit 806 is configured to display information input by the user or information provided to the user.
- the display unit 806 may include a display panel 8061, and the display panel 8061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
- LCD liquid crystal display
- OLED organic light-emitting diode
- the user input unit 807 may be used to receive inputted numeric or character information, and generate key signal inputs related to user settings and function control of the mobile terminal.
- the user input unit 807 includes a touch panel 8071 and other input devices 8072.
- Touch panel 8071 also known as touch screen, can collect user's touch operations on or near it (such as the user using a finger, stylus, etc. any suitable object or accessory on touch panel 8071 or near touch panel 8071 operating).
- the touch panel 8071 may include a touch detection device and a touch controller.
- the touch detection device detects the user's touch position, and detects the signal caused by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device, converts it into contact coordinates, and sends it To the processor 180, receive the command sent by the processor 180 and execute it.
- various types such as resistive, capacitive, infrared, and surface acoustic wave can be used to implement the touch panel 8071.
- the user input unit 807 may further include other input devices 8072.
- other input devices 8072 may include, but are not limited to, a physical keyboard, function keys (such as volume control keys, switch keys, etc.), a trackball, a mouse, and a joystick, and details are not described herein again.
- the touch panel 8071 may be overlaid on the display panel 8061.
- the touch panel 8071 detects a touch operation on or near the touch panel 8071, the touch panel 8071 transmits the touch operation to the processor 180 to determine the type of the touch event.
- the type of event provides corresponding visual output on the display panel 8061.
- the touch panel 8071 and the display panel 8061 are implemented as two independent components to implement the input and output functions of the mobile terminal, in some embodiments, the touch panel 8071 and the display panel 8061 can be integrated. The implementation of the input and output functions of the mobile terminal is not specifically limited here.
- the interface unit 808 is an interface for connecting an external device with the mobile terminal 800.
- the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, and audio input / output (I / O) port, video I / O port, headphone port, and more.
- the interface unit 808 may be used to receive an input (e.g., data information, power, etc.) from an external device and transmit the received input to one or more elements within the mobile terminal 800 or may be used for the mobile terminal 800 and external Transfer data between devices.
- the memory 809 may be used to store software programs and various data.
- the memory 809 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, at least one application required by a function (such as a sound playback function, an image playback function, etc.), etc .; the storage data area may store data according to Data (such as audio data, phone book, etc.) created by the use of mobile phones.
- the memory 809 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
- the processor 180 is a control center of the mobile terminal, and uses various interfaces and lines to connect various parts of the entire mobile terminal.
- the processor 180 runs or executes software programs and / or modules stored in the memory 809, and calls data stored in the memory 809. , Perform various functions of the mobile terminal and process data, so as to monitor the mobile terminal as a whole.
- the processor 180 may include one or more processing units; optionally, the processor 180 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, and an application program, etc.
- the tuning processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 180.
- the mobile terminal 800 may further include a power source 811 (such as a battery) for supplying power to various components (loads).
- a power source 811 such as a battery
- the power source 811 may be logically connected to the processor 180 through a power management system, thereby implementing management of charging, discharging, And power management functions.
- the power source 811 includes any one of the multi-battery charge-discharge devices provided by the foregoing embodiments of the present disclosure, or at least one power source 811 is modified and implemented based on any of the multi-battery charge-discharge devices provided by the foregoing embodiments of the present disclosure. of.
- the mobile terminal 800 includes some functional modules that are not shown, and details are not described herein again.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
本公开实施例提供了一种多电池充放电装置及移动终端。所述充放电装置包括:PMIC模块、至少两个充电电池、第一场效应管;其中,每个所述充电电池通过场效应开关管与所述PMIC模块中的PWM电源模块相连接,各所述场效应开关管与所述PWM电源模块的连接端相互独立,每个所述充电电池与负载的连接通路上设置有所述第一场效应管;所述第一场效应管,用于控制所述充电电池与所述负载之间连接通路的导通或断开。
Description
相关申请的交叉引用
本申请主张在2018年7月25日在中国提交的中国专利申请No.201810826095.0的优先权,其全部内容通过引用包含于此。
本公开涉及充电电源领域,尤其涉及一种多电池充放电装置及移动终端。
目前,随着移动通信技术的快速发展,移动终端(如智能手机等)已成为人们日常生活中必不可少的电子消费品,随着智能手机越来越普及,同时,智能手机的功能不断升级、优化,智能手机已经融入生活的各个方面,用户经常在各种场合各种地点使用智能手机。
随着移动终端的显示屏越来越大、功能越来越强、中央处理器(central processing unit,CPU)的处理速度也越来越快,使得移动终端的耗电急剧增加,因此,对电池的续航能力要求越来越高,对电源的供电时间要求越来越高,为了不影响待机时间,移动终端配备的电池的容量也必将越来越大。然而,由于单个电池的容量的增大,会使电池充电时间增加,从而将降低用户的充电使用体验,因此,为了保证不增加电池充电时间,又能够延长电池的使用时间,提供了一种多电池并联的充电电源,也就是说,由多个并联的充电电池为移动终端用电负载供电,然而,由于多电池之间的连接关系是并联关系,当充电电池之间的电阻差异比较大时,导致充电电池之间将存在一定电压差,从而将出现电压大的充电电池对电压小的充电电池进行充电的现象,即将会出现多电池间的电流倒灌问题。
由此可知,在相关技术提供的多电池充放电装置中,当充电电池之间的电阻差异比较大时,将会出现多电池间的电流倒灌问题,这样不仅缩短了电源的供电时间,还将对充电电池造成一定损害,从而缩短了充电电池的使用寿命。
发明内容
本公开实施例的目的是提供一种多电池充放电装置及移动终端,以解决当充电电池之间的电阻差异比较大时,将会出现多电池间的电流倒灌问题,这样不仅缩短了电源的供电时间,还将对充电电池造成一定损害,从而缩短了充电电池的使用寿命的技术问题。
为了解决上述技术问题,本公开实施例是这样实现的:
第一方面,本公开实施例提供了一种多电池充放电装置,包括:电源管理集成电路PMIC模块、至少两个充电电池、第一场效应管;
其中,每个所述充电电池通过场效应开关管与所述PMIC模块中的脉宽调制PWM电源模块相连接,各所述场效应开关管与所述PWM电源模块的连接端相互独立,每个所述充电电池与负载的连接通路上设置有所述第一场效应管;
所述第一场效应管,用于控制所述充电电池与所述负载之间连接通路的导通或断开。
第二方面,本公开实施例提供了一种移动终端,所述移动终端包括:至少一个负载和第一方面所述的多电池充放电装置;
所述多电池充放电装置,用于为所述至少一个负载供电。
本公开实施例中的多电池充放电装置及移动终端,该多电池充放电装置中每个充电电池通过场效应开关管与PMIC模块中的PWM电源模块相连接,以及利用第一场效应管控制充电电池与负载之间连接通路的导通或断开。即通过分别为每个充电电池配备一个场效应开关管,且各场效应开关管与PWM电源模块的连接端相互独立,来防止充电过程中电池之间存在电流倒灌现象。同时,在充电电池与任一负载之间的连接通路上均设置一个单向导通场效应管,来防止放电过程中电池之间存在电流倒灌现象,从而避免因电池之间存在电流倒灌而影响电池使用寿命,为实现多电池充放电需求提供技术支持,提高使用该装置作为电源供电的移动终端的待机时间。
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面 描述中的附图仅仅是本公开中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的多电池充放电装置的第一种结构示意图;
图2a为本公开实施例提供的两充电电池的并联充放电电路示意图;
图2b为本公开实施例提供的两充电电池的并联充放电电路的等效电路示意图;
图3a为本公开实施例提供的多电池充放电装置中的单向导通场效应管的第一示意图;
图3b为本公开实施例提供的多电池充放电装置中的单向导通场效应管的第二示意图;
图4为本公开实施例提供的多电池充放电装置的第二种结构示意图;
图5为本公开实施例提供的多电池充放电装置的第三种结构示意图;
图6为本公开实施例提供的多电池充放电装置的第四种结构示意图;
图7为本公开实施例提供的多电池充放电装置的第五种结构示意图;
图8为本公开实施例提供的移动终端的结构示意图。
为了使本技术领域的人员更好地理解本公开中的技术方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本公开保护的范围。
本公开实施例提供了一种多电池充放电装置及移动终端,通过分别为每个充电电池配备一个场效应开关管,且各场效应开关管与脉冲宽度调制(Pulse Width Modulation,PWM)电源模块的连接端相互独立,来防止充电过程中电池之间存在电流倒灌现象,同时,在充电电池与任一负载之间的连接通路上均设置一个单向导通场效应管,来防止放电过程中电池之间存在电流倒灌现象,从而避免因电池之间存在电流倒灌而影响电池使用寿命,为实现多电池充放电需求提供技术支持,提高使用该装置作为电源供电的移动终端的待 机时间。
本公开实施例中,移动终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备等,本公开实施例以常见的智能手机为例进行说明。
图1为本公开一实施例提供的一种多电池充放电装置的示意图,如图1所示,该充放电装置包括:电源管理集成电路(Power management integrated circuit,PMIC)模块101、至少两个充电电池102、第一场效应管103;
其中,每个充电电池102通过场效应开关管104与上述PMIC模块101中的PWM电源模块1011相连接,各场效应开关管104与PWM电源模块1011的连接端相互独立,即各场效应开关管104与PWM电源模块1011相连接的接入端相互独立,因此,当场效应开关管104均闭合时各充电电池102与PWM电源模块1011的相连接的接入端相互独立,这样使得利用PWM电源模块1011控制充电的充电电路中各充电电池102之间并非直接并联连接,从而避免充电过程中充电电池102之间的电流倒灌现象;
其中,每个充电电池102与负载的连接通路上设置有上述第一场效应管103;该第一场效应管103,用于控制充电电池102与负载之间连接通路的导通或断开,具体的,当充电电池102之间的电压差值大于预设阈值时,电压值大的充电电池102连接的第一场效应管103满足正向导通条件,此时,电压值大的充电电池102为负载供电,而电压值小的充电电池102连接的第一场效应管103输入电压为反向电压,处于截止状态,此时,电压值小的充电电池102与负载之间的连接通路断开,这样使得利用多充电电池为负载供电的放电电路中各充电电池102之间并非直接并联连接,从而避免放电过程中充电电池102之间的电流倒灌现象。
具体的,PMIC模块101是指电源管理集成电路(Power Management IC),主要用来管理主机系统中的电源设备,常用于手机以及各种移动终端设备;PWM电源模块1011是指脉冲宽度调制(Pulse Width Modulation)电源模块,场效应开关管104在PMIC模块101的控制下闭合或断开;第一场效应管103具有单向导通特性,当第一场效应管103的输入电压满足正向导通条件时,自动切换到导通状态,而当第一场效应管103的输入电压不满足正向导通条件时,处于截止状态。
需要说明的是,在图1中,以多电池充放电装置为两个负载供电为例,即负载RL1和负载RL2,多电池充放电装置中的多充电电池为负载RL1和负载RL2供电,以使负载RL1和负载RL2正常运行。
针对智能手机而言,负载RL1包括:终端整机基本功能模块,例如,CMOS摄像头模组(CMOS camera module,CCM)、指纹、液晶显示模块(Liquid crystal display module,LCM)、音频功放、触摸屏、红外传感器等,负载RL2包括:第一代(2G)功率放大器(Power amplifier,PA)、第三代(3G)PA、第四代(4G)PA、PAPM(PA射频功放电源管理模块)等。
本公开实施例中,通过分别为每个充电电池102配备一个场效应开关管104,且各场效应开关管104与PWM电源模块1011的连接端相互独立,来防止充电过程中电池之间存在电流倒灌现象,同时,在充电电池102与任一负载之间的连接通路上均设置一个单向导通场效应管,来防止放电过程中电池之间存在电流倒灌现象,从而避免因电池之间存在电流倒灌而影响电池使用寿命,为实现多电池充放电需求提供技术支持,进而缩短充电所需时间,并提高使用该装置作为电源供电的移动终端的待机时间,提升用户使用体验。
具体的,如图2a所示,第一充电电池与第二充电电池的一端均接地,第一充电电池与第二充电电池的另一端相连,且与外接充电电源相连接,针对充电电池放电过程,第一充电电池与第二充电电池并联为负载RL供电。
如图2b所示,为图2a中示意的充放电电路的等效电路,每个充电电池等效于一个内阻和一个恒压源,即第一充电电池等效于内阻R1和恒压源1,第二充电电池等效于内阻R2和恒压源2;
例如,内阻R1和内阻R2的初始值均为100毫欧,随着充电电池的充放电使用,如果第二充电电池对应的内阻R2增加,变为250毫欧,而第一充电电池对应的内阻R1不变,仍为100毫欧,此时,在外接充电电源为第一充电电池和第二充电电池充电过程中,由于内阻R2大于内阻R1,流经第二充电电池的充电电流小于流经第一充电电池的充电电流,因此,第二充电电池的电压上升慢,而第一充电电池的电压上升快。
当第一充电电池的电压比第二充电电池的电压大预设值(例如,0.25V)时,第一充电电池在充电的同时,还将对第二充电电池放电,放电电流(即倒灌电流)为第一充电电池与第二充电电池的电压差除以内阻R2(不考虑 RL负载,RL负载远远大于电池内阻,例如,0.25V/250毫欧=1A),这样将影响第一充电电池的使用寿命。
基于上述充电电池之间的电流倒灌现象,在本公开实施例中,充分利用单向导通场效应管的单向导通特性,以使充电电池之间的电压差值大于预设阈值时,其中一个充电电池连接的单向导通场效应管处于导通状态,而另一个充电电池连接的单向导通场效应管处于截止状态,即充放电装置中一个或多个电池内阻变化时,由于单向导通场效应管的单向导通特性,实现导通状态和截止状态的自动切换,这样避免出现多个充电电池的正负极直接并联的情况,进而即使充电电池之间的电压差值大于预设阈值,也不会出现电流倒灌现象。
如图3a所示,当单向导通场效应管的输入电压为正向电压且电压值大于正向导通电压时,即上正下负,单向导通场效应管内部的二极管先导通,从而V
GS为负电压,基于单向导通场效应管的单向导通特性参数表可知,单向导通场效应管的V
GS为负电压且在一定阀值(-1.0到-2.5V)时,单向导通场效应管DS导通,此时,单向导通场效应管满足单向导通条件,因此,单向导通场效应管处于导通状态;
如图3b所示,当单向导通场效应管的输入电压为反向电压时,即上负下正,单向导通场效应管内部的二极管处于截止状态,从而V
GS为正电压,此时,单向导通场效应管不满足单向导通条件,因此,单向导通场效应管处于截止状态,也就是说,基于单向导通场效应管的输入电压的变化,单向导通场效应管自动在导通状态与截止状态之间自由切换。
具体的,上述第一场效应管103可以是图3a或图3b中所示的单向导通场效应管,即通过在P-MOSFET管的内部D/S极之间并联二极管,基于此,上述第一场效应管103包括:开关二极管和P沟道型场效应管;
上述开关二极管的P极与P沟道型场效应管的漏极(即D极)相连接,上述开关二极管的N极与P沟道型场效应管的源极(即S极)相连接;
当开关二极管的P极与N极的电压差大于正向导通电压时,第一场效应管103处于导通状态,即第一场效应管103的输入电压为正向电压且电压值大于正向导通电压,该输入电压由各充电电池102的电压决定;
当开关二极管的P极与N极的电压差不大于正向导通电压时,第一场效 应管103处于截止状态,即第一场效应管103的输入电压为反向电压。
具体的,单向导通场效应管的单向导通特性是内部二极管P极与N极的电压差大于正向导通电压时,二极管首先导通后,使得V
GS为负电压且保持在一定阀值(例如,-1.0到-2.5V)时,P-MOSFET管DS导通,而内部二极管P极与N极的电压差不大于正向导通电压时,二极管反向截止,V
GS为正电压,P-MOSFET管DS断开,从而能够实现单向导通场效应管的导通状态与截止状态之间的自动切换,无需软件程序控制其通断状态,因此,即使移动终端出现软件问题(例如,死机或卡死)时,也能够自动保护各充电电池102在为负载供电时不会产生电流倒灌问题。
具体的,每个充电电池102与负载的连接通路上均设置一个第一场效应管103,该第一场效应管103中各电极与充电电池102和负载之间的连接关系为:第一场效应管103的漏极(即D极)与上述充电电池102相连接,第一场效应管103的源极(即S极)与上述负载相连接,第一场效应管103的栅极(即G极)接地。
进一步的,为了实现通过更大电流为充电电池102充电,从而缩短充电电池102的充电时间,提高充电电池102的充电效率,如图4所示,上述充放电装置还包括:充电控制模块105;
其中,上述充电控制模块105的输入端与用于连接外接电源的充电接口相连接,以及上述充电控制模块105的输出端与充电电池102相连接;
上述充电控制模块105,用于通过充电接口采集外接电源所提供的电能,并将该电能传输至充电电池102,以为充电电池102充电。
在本公开实施例中,通过增加充电控制模块105,实现与PMIC模块101同时为充电电池102充电,即由PMIC模块101和充电控制模块105两条充电通道为多充电电池充电,能够实现多电池并联大电流为充电电池102充电,从而缩短充电电池102的充电时间,提高充电电池102的充电效率。
进一步的,考虑到PMIC模块101是比较核心的元器件,为了防止PMIC模块101因采集充电接口的电信号出现电流冲击而导致其性能受损的情况,由新增的充电控制模块105来采集充电接口的电信号,并进行充电识别,在确定接入外接电源需要开始充电后,向PMIC模块101发送相应的指令,以触发通过PMIC模块101所在充电通道为充电电池102充电,基于此,上述 充电控制模块105与PMIC模块101相连接;
上述充电控制模块105,用于采集充电接口的电信号,根据该电信号判断充电接口是否接入外接电源,在确定接入外接电源后,向上述PMIC模块101发送开始充电指令;
上述PMIC模块101,用于在接收到充电控制模块105发送的开始充电指令后,控制上述场效应开关管104切换至闭合状态,并将外接电源的电能传输至上述充电电池102,以为充电电池102充电。
进一步的,考虑到在采用充电控制模块105为充电电池102充电的充电通道中,也可能因充电电池102之间内阻相差比较大,导致充电电池102之间的电压差大于预设阈值,进而存在充电电池102间的电流倒灌现象,基于此,如图5所示,上述充放电装置还包括:第二场效应管106;
其中,每个充电电池102与上述充电控制模块105的连接通路上设置有上述第二场效应管106,该第二场效应管106,用于控制充电电池102与充电控制模块105之间连接通路的导通或断开。
同样的,上述第二场效应管106也可以是图3a或图3b中所示的单向导通场效应管,即通过在P-MOSFET管的内部D/S极之间并联二极管,基于此,上述第二场效应管106也包括:开关二极管和P沟道型场效应管;
其中,上述开关二极管的P极与P沟道型场效应管的漏极(即D极)相连接,上述开关二极管的N极与P沟道型场效应管的源极(即S极)相连接;
当开关二极管的P极与N极的电压差大于正向导通电压时,第二场效应管106处于导通状态,即第二场效应管106的输入电压为正向电压且电压值大于正向导通电压,该输入电压由充电控制模块105的输入电压和连接的充电电池102的电压决定;
当开关二极管的P极与N极的电压差不大于正向导通电压时,第二场效应管106处于截止状态,即第二场效应管106的输入电压为反向电压。
具体的,每个充电电池102与充电控制模块105的连接通路上均设置一个第二场效应管106,该第二场效应管106中各电极与充电电池102和充电控制模块105之间的连接关系为:第二场效应管106的漏极(即D极)与上述充电控制模块105相连接,第二场效应管106的源极(即S极)与上述充电电池102相连接,第二场效应管106的栅极(即G极)接地。
其中,当充电电池102之间的电压差值大于预设阈值时,即第二场效应管106的源极(即S极)的电压差值大于预设阈值,由于第二场效应管106的漏极(即D极)均与充电控制模块105相连接,即第二场效应管106的漏极(即D极)的电压值相同,此时,电压值小的充电电池102连接的第二场效应管106优先满足正向导通条件,因此,可以通过控制充电控制模块105的输出电压来控制与充电电池102连接的第二场效应管106不同时导通。具体的,充电控制模块105可选为电压值小的充电电池102充电,而电压值大的充电电池102连接的第二场效应管106处于截止状态,此时,电压值大的充电电池102与充电控制模块105之间的连接通路断开,这样使得利用充电控制模块105为多充电电池充电的电路中各充电电池102之间并非直接并联连接,从而避免充电过程中充电电池102之间的电流倒灌现象。
具体的,在采用充电控制模块105为充电电池102充电的充电通道中,需要对充电电压进行控制,以使两个充电电池102之间的电压差值大于预设阈值时,其中一个充电电池102连接的第一场效应管103处于导通状态,而另一个充电电池102连接的第二场效应管106处于截止状态,基于此,上述充电控制模块105,还用于获取各充电电池102的电压信号,根据各电压信号对应的当前电压值,控制向充电电池102传输的充电电压;具体的,可以由PMIC模块101采集各充电电池102的电压信号,并将采集到的电压信号传输至充电控制模块105。
其中,上述充电电压大于第一电压值且小于第二电压值、或者等于指定电压值,该第一电压值为当前电压值中最小值与第二场效应管106的正向导通电压之和,该第二电压值为当前电压值中目标值与第二场效应管106的正向导通电压之和,该目标值为首个比最小值大预设阈值的电压值,这样当充电电池102之间的电压差值大于预设阈值时,电压值小的充电电池102连接的第二场效应管106处于导通状态,而电压值大的充电电池102连接的第二场效应管106处于截止状态。
其中,以充电电池102的数量为3为例,如果第一充电电池、第二充电电池、第三充电电池的电压信号对应的当前电压值分别为:3.6V、3.9V、4.0V,第二场效应管106的正向导通电压为0.25V,由此可知,最小值为3.6V,目标值为3.9V(即首个比最小值大预设阈值的电压值),因此,第一电压值为 3.85V,第二电压值为4.15V,即3.85V<充电电压<4.15V。
例如,充电控制模块105控制向充电电池传输的充电电压为4.0V,此时,与第一充电电池连接的第二场效应管106的D极与S极的电压差值为0.4V,其内置二极管满足正向导通条件,使得该第二场效应管106进入导通状态,而与第二充电电池连接的第二场效应管106的D极与S极的电压差值为0.1V,其内置二极管不满足正向导通条件,使得该第二场效应管106处于截止状态,同样的,与第三充电电压连接的第二场效应管106的D极与S极的电压差值为0V,其内置二极管不满足正向导通条件,使得该第二场效应管106也处于截止状态,这样第一充电电池、第二充电电池和第三充电电池与充电控制模块105的连接通路中,只有第一充电电池与充电控制模块105的连接通路导通,充电控制模块105为第一充电电池充电,进而使得利用充电控制模块105为多充电电池充电的电路中各充电电池之间并非直接并联连接,从而避免充电过程中充电电池之间的电流倒灌现象。
具体的,为了便于更好地对充电电池102的充电进行控制,分别为每个充电电池102配备一个充电IC,基于此,如图6所示,上述充电控制模块105包括:多个充电IC和微处理器MCU;
其中,每个上述充电IC通过上述第二场效应管106与上述充电电池102相连接;
上述微处理器MCU,用于获取各充电电池102的电压信号,根据各电压信号对应的当前电压值,判断是否存在比最小值大预设阈值的电压值;具体的,将多个当前电压值进行比对,以确定多充电电池同时导通充电是否存在电流倒灌现象,当确定存在电流倒灌现象时,控制充电电池102的充电电压,使得存在电流倒灌现象的充电电池102不同时导通。
若是,则确定最小值和首个比该最小值大预设阈值的目标值;将大于第一电压值且小于第二电压值的电压确定为充电电池102的充电电压,其中,该第一电压值为最小值与第二场效应管106的正向导通电压之和,该第二电压值为目标值与第二场效应管106的正向导通电压之和;
若否,则将指定电压值确定为充电电池102的充电电压,其中,该指定电压值大于第三电压值,该第三电压值为当前电压值中最大值与第二场效应管106的正向导通电压之和;
在确定出充电电压后,向充电IC传输携带确定出的充电电压的控制指令;
上述充电IC,用于根据接收到的控制指令,控制向充电电池102传输的充电电压;
上述第二场效应管106,用于控制充电电池102与充电IC之间连接通路的导通或断开。
具体的,可以通过PMIC模块101获取各充电电池102的电压信号,并将该电压信号传输至微处理器MCU,以使微处理器MCU根据各充电电池102的电压信号控制充电IC的充电电流大小,或者控制控制充电IC停止或开始充电。
当多个当前电压值中电压值的差值大于预设阈值(即在多个当前电压值中存在比最小值大预设阈值的电压值),说明对应的充电电池102同时导通充电将出现电流倒灌的现象,因此,需要控制小于目标值的充电电池102连接的第二场效应管106处于导通状态,而大于等于目标值的充电电池102连接的第二场效应管106处于截止状态,即保证当前电压值比较小的充电电池102连接的第二场效应管106满足正向导通条件,而当前电压值比较大的充电电池102连接的第二场效应管106不满足正向导通条件。其中,由于充电电压大于第一电压值(最小值与第二场效应管106的正向导通电压之和)且小于第二电压值(目标值与第二场效应管106的正向导通电压之和),此时,当前电压值小于目标值的充电电池102连接的第二场效应管106处于导通状态,而当前电压值大于或等于目标值的充电电池102连接的第二场效应管106处于截止状态。
当多个当前电压值中最大值与最小值的差值不大于预设阈值(即在多个当前电压值中不存在比最小值大预设阈值的电压值),说明多充电电池同时导通充电不会出现电流倒灌的现象,因此,直接按照指定电压值为充电电池102充电即可,该指定电压值能够使得各第二场效应管106均满足正向导通条件,即使得各充电电池102连接的第二场效应管106均处于导通状态。
具体的,在一些可选实施例中,如图7所示,以两个充电电池为例,即多电池充放电装置中包括:主充电电池和从充电电池,分别设置于主充电电池、从充电电池与负载RL2之间连接通路的单向导通场效应管为D3和D4,分别设置于主充电电池、从充电电池与负载RL1之间连接通路的单向导通场 效应管为D5和D6,设置于主充电电池与充电IC2之间连接通路的单向导通场效应管为D1,设置于从充电电池与充电IC2之间连接通路的单向导通场效应管为D2,主充电电池、从充电电池分别通过场效应开关管Q1和Q2与PMIC模块中的PWM电源模块相连接,各场效应开关管与PWM电源模块的连接端相互独立,微处理器MCU分别于充电IC2、充电IC2、PMIC模块相连接。
可选地,为了便于PMIC模块统一控制,将场效应开关管Q1、场效应开关管Q2、控制场效应开关管Q1通断的第一Batt FET Control模块、控制场效应开关管Q2通断的第二Batt FET Control模块均设置于PMIC模块内;
另外,由于负载RL1耗电比较小,消耗的电流较小,因此,相较于单向导通场效应管D1、D2,单向导通场效应管D5和D6可以做得体积比较小,因而也可以将负载RL1与充电电池连接通路上的单向导通场效应管D5和D6也设置于PMIC模块内。
其中,(1)针对单向导通场效应管D3和D4,单向导通场效应管的漏极(即D极)与充电电池相连接,单向导通场效应管的源极(即S极)与负载RL2相连接,单向导通场效应管的栅极(即G极)接地;具体的,单向导通场效应管D3的漏极的电压为V
bat1(即主充电电池的电压),单向导通场效应管D4的漏极的电压为V
bat2(即从充电电池的电压);
(2)针对单向导通场效应管D5和D6,单向导通场效应管的漏极(即D极)与充电电池相连接,单向导通场效应管的源极(即S极)与负载RL1相连接,单向导通场效应管的栅极(即G极)接地;具体的,单向导通场效应管D5的漏极的电压为V
bat1(即主充电电池的电压),单向导通场效应管D6的漏极的电压为V
bat2(即从充电电池的电压);
(3)针对单向导通场效应管D1和D2,单向导通场效应管的漏极(即D极)与充电IC相连接,单向导通场效应管的源极(即S极)与充电电池相连接,单向导通场效应管的栅极(即G极)接地;具体的,单向导通场效应管D1的漏极的电压为充电IC1的输出电压,单向导通场效应管D2的漏极的电压为充电IC2的输出电压,单向导通场效应管D1的源极的电压为V
bat1(即主充电电池的电压),单向导通场效应管D2的源极的电压为V
bat2(即从充电电池的电压)。
首先,针对主充电电池和从充电电池的充电过程,充电IC1采集USB插 座的电信号,根据该电信号判断充电器是否插入USB插座,在确定插入(即接入外接电源)后,向微处理器MCU传输相应的指示信号,以使微处理器MCU向PMIC模块发送开始充电指令;具体的,充电IC1支持的正常工作电压范围,当输入端电压高于该电压范围的下限值时,判断插入的充电器有效,当输入端电压高于该电压范围的上限值时,充电IC1将进入过压保护状态;在开始充电以后,USB插座充电电流经过防反插模块、过压保护(overvoltage protection,OVP)模块流向PMIC模块和充电IC1、充电IC2;
其中,充电IC具有过压保护功能,具体的,通过设置充电IC的输入端过压保护门限值,当V
USB上电压高于该过压保护门限值时,充电IC控制OVP模块关断充电通路,并进行过压保护事件报警,从而保护PMIC模块,提升PMIC模块的可靠性。
其中,第一充电通道为:通过第一Batt FET Control模块和第二Batt FET Control模块分别控制场效应开关管Q1、场效应开关管Q2导通,由PMIC模块中的PWM电源模块经过场效应开关管Q1、场效应开关管Q2为主充电电池和从充电电池充电;同时,由PMIC模块中的PWM电源模块经过电源网络VPH_PWR给负载RL1供电;以及由PMIC模块中的PWM电源模块经过场效应开关管Q1、场效应开关管Q2、单向导通场效应管D3和D4给负载RL2供电;
利用第一充电通道为主充电电池和从充电电池充电的过程中,由于各场效应开关管与PWM电源模块的连接端相互独立,即当场效应开关管均闭合时各充电电池与PWM电源模块的连接端相互独立,这样使得利用PWM电源模块控制充电的充电电路中各充电电池之间并非直接并联连接,从而避免充电过程中充电电池之间的电流倒灌现象。
第二充电通道为:PMIC模块向微处理器MCU发送控制信号,由微处理器MCU控制充电IC1、充电IC2经过单向导通场效应管D1和D2为主充电电池和从充电电池充电。
例如,单向导通场效应管的正向导通电压为0.25V,主充电电池的内阻小于从充电电池的内阻,充电IC开始为充电电池前,主充电电池的电压值为3.9V,从充电电池的电压值为3.6V,由此可知,最小值为3.6V,目标值为3.9V(即首个比最小值大预设阈值的电压值),因此,第一电压值为3.85V,第二 电压值为4.15V,即3.85V<充电电压<4.15V。
具体的,充电IC控制向充电电池传输的充电电压为4.0V,此时,与从充电电池连接的单向导通场效应管为D2的D极与S极的电压差值为0.4V,其内置二极管满足正向导通条件,使得该单向导通场效应管为D2进入导通状态,而与主充电电池连接的单向导通场效应管为D1的D极与S极的电压差值为0.1V,其内置二极管不满足正向导通条件,使得该单向导通场效应管为D1处于截止状态,这样充电电池与充电IC的连接通路中,只有从充电电池与充电IC2的连接通路导通,充电IC2为从充电电池充电,进而使得利用充电IC为多充电电池充电的电路中主充电电池与从充电电池之间并非直接并联连接,从而避免充电过程中充电电池之间的电流倒灌现象。
其次,针对主充电电池和从充电电池的放电过程,充电IC1检测到插入USB插座的充电器拔出后,向微处理器MCU传输相应的指示信号,以使微处理器MCU向PMIC模块发送停止充电指令,PMIC模块控制PWM电源模块停止工作,主充电电池通过场效应开关管Q1、单向导通场效应管D5给负载RL1供电,且从充电电池通过场效应开关管Q2、单向导通场效应管D6给负载RL1供电;以及主充电电池通过单向导通场效应管D3给负载RL2供电,且从充电电池通过单向导通场效应管D4给负载RL2供电。
在充电电池为负载供电过程中,一旦主充电电池与从充电电池之间的电压差大于预设阈值时,其中一个充电电池连接的单向导通场效应管处于导通状态,而另一个充电电池连接的单向导通场效应管处于截止状态,具体为:
例如,单向导通场效应管的正向导通电压为0.25V,主充电电池的内阻小于从充电电池的内阻,主充电电池和从充电电池充电完成后,V
bat1的电压值为4.0V,V
bat2的电压值为3.7V,如果主充电电池与从充电电池直接并联,主从充电电池之间将出现电流倒灌现象,然而,针对主充电电池与从充电电池为负载RL2供电的过程,由于主充电电池与负载RL2之间设置有单向导通场效应管D3,从充电电池与负载RL2之间设置有单向导通场效应管D4,当V
bat1与V
bat2的电压差值大于正向导通电压时,单向导通场效应管D3进入导通状态,单向导通场效应管D4处于截止状态,因此,主充电电池与从充电电池并非直接并联,从而不会出现电流倒灌现象;
具体的,单向导通场效应管D3的输入电压为正向电压,单向导通场效 应管D3进入导通状态,在单向导通场效应管D3导通后,单向导通场效应管D4的源极(即S极)的电压值为4.0V,而单向导通场效应管D4的漏极(即D极)的电压值为3.7V,此时,单向导通场效应管D4的输入电压为反向电压,因此,单向导通场效应管D4处于截止状态。
同样的,针对主充电电池与从充电电池为负载RL1供电的过程,由于主充电电池与负载RL1之间设置有单向导通场效应管D5,从充电电池与负载RL1之间设置有单向导通场效应管D6,当V
bat1与V
bat2的电压差值大于正向导通电压时,单向导通场效应管D5进入导通状态,单向导通场效应管D6处于截止状态,因此,主充电电池与从充电电池并非直接并联,从而不会出现电流倒灌现象。
本公开实施例中的多电池充放电装置,该多电池充放电装置中每个充电电池通过场效应开关管与PMIC模块中的PWM电源模块相连接,以及利用第一场效应管控制充电电池与负载之间连接通路的导通或断开。即通过分别为每个充电电池配备一个场效应开关管,且各场效应开关管与PWM电源模块的连接端相互独立,来防止充电过程中电池之间存在电流倒灌现象,同时,在充电电池与任一负载之间的连接通路上均设置一个单向导通场效应管,来防止放电过程中电池之间存在电流倒灌现象,从而避免因电池之间存在电流倒灌而影响电池使用寿命,为实现多电池充放电需求提供技术支持,提高使用该装置作为电源供电的移动终端的待机时间。
为进一步说明上述多电池充放电装置涉及的移动终端,本公开还提供一种设有本公开提供的多电池充放电装置的移动终端,图8为本公开实施例提供的移动终端的结构示意图,该移动终端可以为上述多电池充放电装置涉及的移动终端。
图8为实现本公开各个实施例的一种移动终端的硬件结构示意图,图8所示的移动终端800包括但不限于:射频单元801、网络模块802、音频输出单元803、输入单元804、传感器805、显示单元806、用户输入单元807、接口单元808、存储器809、处理器180、以及电源811等部件。本领域技术人员可以理解,图8中示出的移动终端结构并不构成对移动终端的限定,移动终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,移动终端包括但不限于手机、平板电脑、笔 记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,上述射频单元801可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器180处理;另外,将上行的数据发送给基站。通常,射频单元801包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元801还可以通过无线通信系统与网络和其他设备通信。
移动终端通过网络模块802为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元803可以将射频单元801或网络模块802接收的或者在存储器809中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元803还可以提供与移动终端800执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元803包括扬声器、蜂鸣器以及受话器等。
输入单元804用于接收音频或视频信号。输入单元804可以包括图形处理器(Graphics Processing Unit,GPU)8041和麦克风8042,图形处理器8041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元806上。经图形处理器8041处理后的图像帧可以存储在存储器809(或其它存储介质)中或者经由射频单元801或网络模块802进行发送。麦克风8042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元801发送到移动通信基站的格式输出。
移动终端800还包括至少一种传感器805,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板8061的亮度,接近传感器可在移动终端800移动到耳边时,关闭显示面板8061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别移动终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器805还可以包括指纹传感器、压力传感器、虹膜传感器、 分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元806用于显示由用户输入的信息或提供给用户的信息。显示单元806可包括显示面板8061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板8061。
用户输入单元807可用于接收输入的数字或字符信息,以及产生与移动终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元807包括触控面板8071以及其他输入设备8072。触控面板8071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板8071上或在触控面板8071附近的操作)。触控面板8071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器180,接收处理器180发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板8071。除了触控面板8071,用户输入单元807还可以包括其他输入设备8072。具体地,其他输入设备8072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板8071可覆盖在显示面板8061上,当触控面板8071检测到在其上或附近的触摸操作后,传送给处理器180以确定触摸事件的类型,随后处理器180根据触摸事件的类型在显示面板8061上提供相应的视觉输出。虽然在图8中,触控面板8071与显示面板8061是作为两个独立的部件来实现移动终端的输入和输出功能,但是在某些实施例中,可以将触控面板8071与显示面板8061集成而实现移动终端的输入和输出功能,具体此处不做限定。
接口单元808为外部装置与移动终端800连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元808可以用于接 收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到移动终端800内的一个或多个元件或者可以用于在移动终端800和外部装置之间传输数据。
存储器809可用于存储软件程序以及各种数据。存储器809可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器809可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器180是移动终端的控制中心,利用各种接口和线路连接整个移动终端的各个部分,通过运行或执行存储在存储器809内的软件程序和/或模块,以及调用存储在存储器809内的数据,执行移动终端的各种功能和处理数据,从而对移动终端进行整体监控。处理器180可包括一个或多个处理单元;可选的,处理器180可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器180中。
移动终端800还可以包括给各个部件(负载)供电的电源811(比如电池),可选的,电源811可以通过电源管理系统与处理器180逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。其中,该电源811包括本公开前述实施例提供的任一种多电池充放电装置,或者至少有一个电源811是在本公开前述实施例提供的任一种多电池充放电装置的基础上变更实施的。
另外,移动终端800包括一些未示出的功能模块,在此不再赘述。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具 有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本公开的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
最后应说明的是:上面结合附图对本公开的实施例进行了描述,用以说明本公开的技术方案,但是本公开并不局限于上述的具体实施方式,本公开的保护范围并不局限于此,上述的具体实施方式仅仅是示意性的,而不是限制性的,尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本公开实施例技术方案的范围。都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应所述以权利要求的保护范围为准。
Claims (10)
- 一种多电池充放电装置,包括:电源管理集成电路(Power Management Integrated Circuit,PMIC)模块、至少两个充电电池、第一场效应管;其中,每个所述充电电池通过场效应开关管与所述PMIC模块中的PWM电源模块相连接,各所述场效应开关管与所述脉冲宽度调制(Pulse width modulation,PWM)电源模块的连接端相互独立,每个所述充电电池与负载的连接通路上设置有所述第一场效应管;所述第一场效应管,用于控制所述充电电池与所述负载之间连接通路的导通或断开。
- 根据权利要求1所述的装置,还包括:充电控制模块;其中,所述充电控制模块的输入端与用于连接外接电源的充电接口相连接,以及所述充电控制模块的输出端与所述充电电池相连接;所述充电控制模块,用于通过所述充电接口采集外接电源所提供的电能,并将所述电能传输至所述充电电池,以为所述充电电池充电。
- 根据权利要求2所述的装置,还包括:第二场效应管;其中,每个所述充电电池与所述充电控制模块的连接通路上设置有所述第二场效应管;所述第二场效应管,用于控制所述充电电池与所述充电控制模块之间连接通路的导通或断开。
- 根据权利要求1所述的装置,其中,所述第一场效应管包括:开关二极管和P沟道型场效应管;其中,所述开关二极管的P极与所述P沟道型场效应管的漏极相连接,所述开关二极管的N极与所述P沟道型场效应管的源极相连接;当所述开关二极管的P极与N极的电压差大于正向导通电压时,所述第一场效应管处于导通状态,当所述开关二极管的P极与N极的电压差不大于正向导通电压时,所述第一场效应管处于截止状态。
- 根据权利要求2所述的装置,其中,所述充电控制模块与所述PMIC模块相连接;所述充电控制模块,用于采集所述充电接口的电信号,根据所述电信号判断所述充电接口是否接入外接电源,在确定接入所述外接电源后,向所述PMIC模块发送开始充电指令;所述PMIC模块,用于在接收到所述开始充电指令后,控制所述场效应开关管切换至闭合状态,并将所述外接电源的电能传输至所述充电电池,以为所述充电电池充电。
- 根据权利要求3所述的装置,其中,所述充电控制模块,还用于获取各所述充电电池的电压信号,根据各所述电压信号对应的当前电压值,控制向所述充电电池传输的充电电压;其中,所述充电电压大于第一电压值且小于第二电压值、或者等于指定电压值,所述第一电压值为所述当前电压值中最小值与所述第二场效应管的正向导通电压之和,所述第二电压值为所述当前电压值中目标值与所述第二场效应管的正向导通电压之和,所述目标值为首个比最小值大预设阈值的电压值。
- 根据权利要求6所述的装置,其中,所述充电控制模块包括:多个充电IC和微处理器MCU;其中,每个所述充电IC通过所述第二场效应管与所述充电电池相连接;所述微处理器MCU,用于获取各所述充电电池的电压信号,根据各所述电压信号对应的当前电压值,判断是否存在比最小值大预设阈值的电压值;若是,则确定最小值和首个比该最小值大预设阈值的目标值,将大于所述第一电压值且小于所述第二电压值的电压确定为所述充电电池的充电电压,若否,则将指定电压值确定为所述充电电池的充电电压;向所述充电IC传输携带确定出的所述充电电压的控制指令;所述充电IC,用于根据所述控制指令,控制向所述充电电池传输的充电电压;所述第二场效应管,用于控制所述充电电池与所述充电IC之间连接通路的导通或断开。
- 根据权利要求1所述的装置,其中,所述第一场效应管的漏极与所述充电电池相连接,所述第一场效应管的源极与所述负载相连接,所述第一场效应管的栅极接地。
- 根据权利要求3所述的装置,其中,所述第二场效应管的漏极与所述充电控制模块相连接,所述第二场效应管的源极与所述充电电池相连接,所述第二场效应管的栅极接地。
- 一种移动终端,包括:至少一个负载和如权利要求1至9中任一项所述的多电池充放电装置;所述多电池充放电装置,用于为所述至少一个负载供电。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19840448.5A EP3820014A4 (en) | 2018-07-25 | 2019-07-23 | CHARGING AND DISCHARGING DEVICE FOR MULTIPLE BATTERIES AND MOBILE DEVICE |
US17/156,845 US11336105B2 (en) | 2018-07-25 | 2021-01-25 | Multi-battery charging and discharging device and mobile terminal |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810826095.0 | 2018-07-25 | ||
CN201810826095.0A CN108899952B (zh) | 2018-07-25 | 2018-07-25 | 一种多电池充放电装置及移动终端 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/156,845 Continuation US11336105B2 (en) | 2018-07-25 | 2021-01-25 | Multi-battery charging and discharging device and mobile terminal |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020020124A1 true WO2020020124A1 (zh) | 2020-01-30 |
Family
ID=64351845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/097218 WO2020020124A1 (zh) | 2018-07-25 | 2019-07-23 | 多电池充放电装置及移动终端 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11336105B2 (zh) |
EP (1) | EP3820014A4 (zh) |
CN (1) | CN108899952B (zh) |
WO (1) | WO2020020124A1 (zh) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108899952B (zh) | 2018-07-25 | 2021-07-27 | 维沃移动通信有限公司 | 一种多电池充放电装置及移动终端 |
CN112117786B (zh) * | 2019-06-20 | 2022-05-31 | Oppo广东移动通信有限公司 | 电子设备的充电电路与电子设备 |
CN115136444A (zh) * | 2020-03-23 | 2022-09-30 | 创科无线普通合伙 | 用于便携式装置的多电池管理 |
WO2021217315A1 (zh) * | 2020-04-26 | 2021-11-04 | 深圳市大疆创新科技有限公司 | 充电控制方法、充电器、充电系统及存储介质 |
CN113454870A (zh) * | 2020-04-30 | 2021-09-28 | 深圳市大疆创新科技有限公司 | 充电控制电路及具有其的充电管理系统、充电装置 |
JP7449159B2 (ja) | 2020-04-30 | 2024-03-13 | キヤノン株式会社 | 電子機器および制御方法 |
CN112688383B (zh) * | 2020-12-15 | 2023-06-20 | 维沃移动通信有限公司 | 供电控制电路、供电控制方法、装置及电子设备 |
CN113054705A (zh) * | 2021-03-11 | 2021-06-29 | 美钻能源科技(上海)有限公司 | 一种电池均衡装置及方法 |
CN115133589A (zh) * | 2021-03-24 | 2022-09-30 | 北京小米移动软件有限公司 | 充放电系统及终端设备 |
CN112928809B (zh) * | 2021-04-23 | 2024-05-14 | 阳光电源股份有限公司 | 一种电源装置、控制方法及系统 |
CN113937862A (zh) * | 2021-10-29 | 2022-01-14 | 深圳市优必选科技股份有限公司 | 一种电池充电系统、方法及机器人 |
CN114243831A (zh) * | 2021-12-14 | 2022-03-25 | 湖南安泰康成生物科技有限公司 | 利用电场抑制肿瘤增殖的设备和供电控制方法 |
CN114336843B (zh) * | 2021-12-28 | 2024-06-07 | 歌尔科技有限公司 | 一种可充电终端设备及其充电系统 |
CN116846039B (zh) * | 2023-08-30 | 2024-02-20 | 浙江大华技术股份有限公司 | 充放电装置、方法、设备和存储介质 |
CN117458676B (zh) * | 2023-12-22 | 2024-04-30 | 广东省洛仑兹技术股份有限公司 | 充电控制方法、装置、设备及存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103178581A (zh) * | 2013-02-27 | 2013-06-26 | 山东省科学院自动化研究所 | 电动汽车低压大电流电池组组合装置及控制方法 |
CN104505890A (zh) * | 2014-12-24 | 2015-04-08 | 广东欧珀移动通信有限公司 | 一种移动终端 |
CN206759070U (zh) * | 2017-02-20 | 2017-12-15 | 东莞市迈思普电子有限公司 | 一种电池充电器电路 |
US20180019607A1 (en) * | 2016-07-13 | 2018-01-18 | Samsung Sdi Co., Ltd. | Battery pack |
CN108899952A (zh) * | 2018-07-25 | 2018-11-27 | 维沃移动通信有限公司 | 一种多电池充放电装置及移动终端 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5479083A (en) * | 1993-06-21 | 1995-12-26 | Ast Research, Inc. | Non-dissipative battery charger equalizer |
JP3069498B2 (ja) * | 1994-09-01 | 2000-07-24 | 富士通株式会社 | 充放電装置および電子機器 |
KR100831160B1 (ko) | 2005-04-15 | 2008-05-20 | 주식회사 엘지화학 | 배터리 셀의 밸런싱을 위한 스위칭 회로 |
US8493028B2 (en) * | 2009-04-03 | 2013-07-23 | Marvell World Trade Ltd. | Power management circuit for rechargeable battery stack |
US9153974B2 (en) * | 2012-06-13 | 2015-10-06 | GM Global Technology Operations LLC | Battery parallel balancing circuit |
JP6101039B2 (ja) * | 2012-10-18 | 2017-03-22 | 矢崎総業株式会社 | 均等化装置 |
CN106716771B (zh) * | 2016-09-22 | 2018-11-13 | 深圳市大疆创新科技有限公司 | 电池组的控制方法、控制系统、存储介质及无人飞行器 |
CN106712207B (zh) * | 2017-02-07 | 2023-06-09 | 长春工程学院 | 一种防反接防倒灌电池充电保护电路 |
CN107895982B (zh) * | 2017-11-28 | 2021-01-08 | 维沃移动通信有限公司 | 充放电设备、方法及装置 |
-
2018
- 2018-07-25 CN CN201810826095.0A patent/CN108899952B/zh active Active
-
2019
- 2019-07-23 WO PCT/CN2019/097218 patent/WO2020020124A1/zh unknown
- 2019-07-23 EP EP19840448.5A patent/EP3820014A4/en active Pending
-
2021
- 2021-01-25 US US17/156,845 patent/US11336105B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103178581A (zh) * | 2013-02-27 | 2013-06-26 | 山东省科学院自动化研究所 | 电动汽车低压大电流电池组组合装置及控制方法 |
CN104505890A (zh) * | 2014-12-24 | 2015-04-08 | 广东欧珀移动通信有限公司 | 一种移动终端 |
US20180019607A1 (en) * | 2016-07-13 | 2018-01-18 | Samsung Sdi Co., Ltd. | Battery pack |
CN206759070U (zh) * | 2017-02-20 | 2017-12-15 | 东莞市迈思普电子有限公司 | 一种电池充电器电路 |
CN108899952A (zh) * | 2018-07-25 | 2018-11-27 | 维沃移动通信有限公司 | 一种多电池充放电装置及移动终端 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3820014A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3820014A1 (en) | 2021-05-12 |
US11336105B2 (en) | 2022-05-17 |
US20210175731A1 (en) | 2021-06-10 |
EP3820014A4 (en) | 2021-08-18 |
CN108899952A (zh) | 2018-11-27 |
CN108899952B (zh) | 2021-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020020124A1 (zh) | 多电池充放电装置及移动终端 | |
US12057725B2 (en) | Charging control circuit, terminal device, control method and computer-readable storage medium | |
US11929635B2 (en) | Charging method and charging device | |
CN107546808B (zh) | 一种充电识别电路、识别方法及终端设备 | |
WO2017161587A1 (zh) | 一种负载供电电路和终端 | |
CN108461834B (zh) | 一种电池组结构、移动终端及充放电控制方法 | |
CN107749647B (zh) | 一种电池组结构、移动终端及充电控制方法 | |
WO2020156240A1 (zh) | 电池组件和终端 | |
WO2020173249A1 (zh) | 充电系统、电子设备及充电控制方法 | |
WO2020215970A1 (zh) | 电源控制装置、方法及终端设备 | |
CN115933852A (zh) | 一种存储系统的供电架构及其备电控制方法 | |
CN117148248A (zh) | 一种bms采样电流的校准方法、装置及系统 | |
CN110071542B (zh) | 一种充电电路、充电方法及终端 | |
CN111384754B (zh) | 充电方法、装置、存储介质及移动终端 | |
CN107562167B (zh) | 多路径充电方法、移动终端及计算机可读存储介质 | |
CN110739742A (zh) | 充电保护方法、充电保护电路、充电系统以及终端 | |
CN110071559A (zh) | 一种充电电路及移动终端 | |
CN112383117B (zh) | 一种充电控制电路 | |
CN111030226B (zh) | 一种设备检测方法及电子设备 | |
CN118199194A (zh) | 保护电路以及终端设备 | |
CN115276180A (zh) | 充电电路、电子设备及充电系统 | |
CN118232444A (zh) | 充电电路控制方法、装置、设备及存储介质 | |
CN113572232A (zh) | 充电电路及移动终端 | |
CN117543945A (zh) | 高边驱动电路以及电子设备 | |
CN118796014A (zh) | 一种服务器供电保护系统、服务器供电方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19840448 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019840448 Country of ref document: EP Effective date: 20210202 |