WO2020173249A1 - 充电系统、电子设备及充电控制方法 - Google Patents

充电系统、电子设备及充电控制方法 Download PDF

Info

Publication number
WO2020173249A1
WO2020173249A1 PCT/CN2020/072759 CN2020072759W WO2020173249A1 WO 2020173249 A1 WO2020173249 A1 WO 2020173249A1 CN 2020072759 W CN2020072759 W CN 2020072759W WO 2020173249 A1 WO2020173249 A1 WO 2020173249A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
mos transistor
capacitor
switch tube
tube group
Prior art date
Application number
PCT/CN2020/072759
Other languages
English (en)
French (fr)
Inventor
魏华兵
陈栋
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2020173249A1 publication Critical patent/WO2020173249A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the embodiments of the present disclosure relate to the field of communication technologies, and in particular, to a charging system, an electronic device, and a charging control method. Background technique
  • Electronic devices such as mobile phones in related technologies generally support fast charging.
  • the charging power of mainstream models of various brands reaches a level of about 20w ⁇ 22.5w during fast charging, and can charge a 3000mAh battery in about 90min.
  • the embodiments of the present disclosure provide a charging system to solve the problem that the charging speed and temperature rise experience of electronic devices cannot be balanced.
  • an embodiment of the present disclosure provides a charging system, including a charging port, including a half-voltage direct charging circuit and a plurality of battery cells; wherein the plurality of battery cells are connected in series, and the input of the half-voltage direct charging circuit The terminal is connected to the charging port, and the output terminal of the half-voltage direct charging circuit is connected to a battery cell.
  • an embodiment of the present disclosure also provides an electronic device, including the above-mentioned charging system.
  • embodiments of the present disclosure also provide a charging control method, which is applied to the above charging system, wherein the half-voltage direct charging circuit includes a control unit, a first capacitor, a first switch tube group, and a second switch tube The method includes: controlling the first switch tube group to be turned on within a first preset time period, so that the first capacitor is in a charged state; controlling the second switch tube group within a second preset time period Turn on, so that the first capacitor is in a discharged state.
  • an embodiment of the present disclosure also provides an electronic device, including a processor, a memory, a computer program stored on the memory and capable of running on the processor, and the computer program is used by the processor The steps of the charging control method are realized during execution.
  • the embodiments of the present disclosure also provide a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the steps of the charging control method are implemented.
  • the charging system is designed as a multi-cell series connection. Compared with a single-cell charging system, when both of them reach the same power, in a multi-cell series design, each cell corresponds to a path The charging current is less than the charging current in the single battery charging system. It can be seen that this embodiment can achieve high power in order to meet the requirements of fast charging speed, while not causing the body to heat up too fast due to too much charging current, thereby taking into account the charging speed and temperature rise experience of the electronic device. Description of the drawings
  • Fig. 1 is a block diagram of a charging system according to an embodiment of the present disclosure
  • Fig. 2 is a flowchart of a charging control method according to an embodiment of the present disclosure
  • Fig. 3 is a block diagram of an electronic device of an embodiment of the present disclosure. detailed description
  • a charging system which includes a charging port, a half-voltage direct charging circuit and a plurality of battery cells; wherein the plurality of battery cells are connected in series, and the input end of the half-voltage direct charging circuit is connected to the charging
  • the output terminal of the half-voltage direct charging circuit is connected to a battery cell.
  • the output terminal of the half-voltage direct charging circuit is connected to any battery cell. It should be noted that “multiple" means two or more.
  • the charging system is designed as a multi-cell series connection. Compared with a single-cell charging system, when both of them reach the same power, in a multi-cell series design, each cell corresponds to a path The charging current is less than the charging current in the single battery charging system. It can be seen that this embodiment can achieve high power in order to meet the requirements of fast charging speed, while not causing the body to heat up too fast due to too much charging current, thereby taking into account the charging speed and temperature rise experience of the electronic device.
  • a high-efficiency half-voltage charging circuit is used. Compared with the direct-voltage charging circuit, the voltage of the charging port can be doubled, and the charging current on the corresponding charging port can be reduced by half. It can be seen that, on the basis of reducing the charging current on the corresponding path of the battery cell, this embodiment reduces the charging current on the charging port by half, and further reduces the charging current on the charging port, thereby being suitable for the overcurrent of the traditional charging port and the data line. Ability to ensure the feasibility and versatility of the charging system in this embodiment.
  • a 2900mAh battery can be carried and a 40w (5V/8A) charger can be used.
  • the maximum charging current can be achieved during charging of 8A, which lasts for about 5 minutes, and the charging is finally completed within 1h.
  • the battery capacity reaches 3500mAh ⁇ 4000mAh, whether it is a low-voltage direct charging method or other high-efficiency step-down schemes, in order to increase the charging speed, it is necessary to design the battery current to reach 6A or more, there will be a need to improve the design cost control
  • the path impedance is limited by the temperature rise of the whole machine, and the current needs to be reduced to sacrifice the performance of the charger. It can be seen that the main drawbacks of this solution are: the charging current into the battery is too large, resulting in excessive thermal power consumption inside the whole machine. If the temperature rise of the whole machine needs to be controlled, the impedance R of each component of the path needs to be reduced, and the corresponding design needs to be increased. More cost, such as the need to select a fuel gauge integrated circuit that supports a smaller sampling resistance (Integrated Circuit, IC), FPC with larger copper thickness, etc.
  • this embodiment can effectively control the temperature rise of the whole machine and reduce the production cost at the same time.
  • dual battery cells are connected in series and a high-voltage direct charging scheme is used for charging to increase the charging power.
  • the charging current is designed to be 4A
  • the corresponding charging rate can reach 2.2c
  • the maximum current from the charging port to the cell is only 4A
  • the corresponding channel thermal power consumption is I 2 *R (16*R)
  • the thermal power consumption of the channel part is equivalent to the traditional low-voltage direct charging solution of about 20w.
  • the thermal power consumption of the charging circuit in this embodiment is equivalent to the thermal power consumption of the charging circuit in the high-voltage direct charging solution.
  • the current on the charging port can be halved, such as reducing to 2A, thereby reducing the requirements for the charging port and data cable, so as to be suitable for the traditional charging port and data cable. Further reduce production costs.
  • the charging port is a universal serial bus (Universal Serial Bus, USB) interface.
  • the half-voltage direct charging circuit includes a control unit 1, a first capacitor Cfly, a first switch tube group, and a second switch tube group.
  • the first switch tube group is connected to the charging port, and the second switch tube group is grounded;
  • control unit 1 It is used to control the first switch tube group to be turned on within the first preset period of time so that the first capacitor Cfly is in a charged state, and to control the second switch tube group to be turned on for the second preset period of time, so that the first capacitor Cfly is at Discharge state.
  • the charging port is USB interface 2.
  • the charging system in this embodiment can be implemented by a structure composed of a first switch tube group and a second switch tube group, which is similar to the charge pump in the related art.
  • switching control that is, the control unit 1 in this embodiment, the first switching tube group and the second switching tube are controlled according to a preset switching logic.
  • the switch tubes in the group are turned on and off to realize half-voltage charging. For example, when Ibat is 4A, Ibus is 2A, and the voltage on VBUS is 2*VBAT.
  • control unit 1 can control the first switch tube group to be turned on within the first preset time period according to the preset switching logic, so that the first capacitor Cfly is in the charging state; Within the second preset time period, the second switch tube group is controlled to be turned on, so that the first capacitor Cfly is in a discharged state, thereby realizing half-voltage charging.
  • the first preset duration is the first switching period
  • the second preset duration is the second switching period.
  • the first switch tube group includes a first mos transistor Q1 and a third mos transistor Q3, and the second switch tube group includes a second mos transistor Q2 and a fourth mos transistor Q4; the control unit 1 and the first The gates of the mos transistor Q1, the second mos transistor Q2, the third mos transistor Q3, and the fourth mos transistor Q4 are connected, the drain of the first mos transistor Q1 is connected to the charging port (USB interface 2), and the first mos transistor Q1
  • the source is connected to the drain of the second mos transistor Q2, the source of the second mos transistor Q2 is connected to the drain of the third mos transistor Q3, and the source of the third mos transistor Q3 is connected to the drain of the fourth mos transistor Q4 ,
  • the source of the fourth mos transistor Q4 is grounded; the first plate of the first capacitor Cfly is connected to the drain Q2 of the second mos transistor Q2, and the source of
  • This embodiment provides a dual-battery charging system.
  • the batteries are connected in the form of dual-battery series charging and discharging, and are implemented by a charge pump architecture composed of Q1-Q2-Q3-Q4, which is similar to the charge pump in related technologies ,
  • a charge pump architecture composed of Q1-Q2-Q3-Q4, which is similar to the charge pump in related technologies .
  • Through the switching control control logic module to control the opening and closing of the four tubes Q1-Q2-Q3-Q4 to achieve half-voltage charging, that is, when Ibat is 4A, the Ibus current is 2A, and the voltage on VBUS is 2*VBAT .
  • This embodiment adopts the solution of connecting two battery cells in series, which can change the battery cell voltage of the charging terminal from the traditional The 4.4V of a single cell is increased to 8.8V and above, and the corresponding operating voltage is 6.8V-8.8V when starting up; and a half-voltage charging scheme with a conversion efficiency of 97% is used instead of the high-voltage direct charging scheme, and the charging wire and port The upper current is controlled within 2A, which further reduces the design cost of the entire scheme and improves the compatibility with ordinary charging lines.
  • the charging system further includes a second capacitor Cout, the first plate of the second capacitor Cout is connected in parallel with the first plate of the first capacitor Cfly, and the second plate of the second capacitor Cout is grounded.
  • the first capacitor Cfly is connected in parallel with the second capacitor Cout. During the first switching period, the Vin voltage charges the first capacitor Cfly and the second capacitor Cout.
  • the current value of the input terminal of the half-voltage direct charging circuit is equal to one-half of the current value of the output terminal of the half-voltage direct charging circuit.
  • this embodiment adopts a half-voltage direct charging circuit, which can make the current value of the input terminal of the half-voltage direct charging circuit equal to half of the current value of the output terminal of the half-voltage direct charging circuit.
  • this implementation can make the charging current on the charging path reach 4A, while reducing the charging current on the charging port to 2A. Therefore, there is no need to limit the overcurrent capability of the charging port and the charging data line, and the cost is reduced.
  • the current at the input end of the half-voltage direct charging circuit is 2A.
  • the overcurrent capability of the traditional data line is 2A, which can be used in the charging system in this embodiment, thereby ensuring the compatibility of the traditional data line, and also improving the feasibility and versatility of the charging system in this embodiment to serve More users.
  • Q1 and Q2 can also be designed in a direct mode, that is, when the charging current reaches 2A, they can be switched from the half-voltage charging state to the direct charging state to reduce the duration of high voltage on the charging port during the charging process. , Improve the possible corrosion risk of the charging port.
  • the charging system in the embodiment of the present disclosure is similar to the dual-battery high-voltage direct charging system, and it also requires discharge conversion 1C to realize power supply to the electronic device system, and boost charger 1C to realize compatibility with ordinary chargers. .
  • the corresponding charger output voltage can reach about 18V, which is twice as high as the output voltage of the charger with high-voltage direct charging specifications, and has better scalability for subsequent wireless charging applications, that is, it can be directly used for Input to the transmitter of wireless charging without the need to develop a new charger.
  • a 4000mAh battery has a charging rate of 1.5C when charged with 6A, while a current of 6A corresponds to The thermal power consumption on the charging path is I 2 *R. The larger the current, the greater the thermal power consumption.
  • the charging power can be increased to about 40w, and the battery of the electronic device can be charged within 1h; and the half-voltage compatible direct charging charging scheme is used to replace the high-voltage direct charging scheme, which reduces the overall charging line and The requirements of the charging port are more advantageous in terms of cost than the dual-battery high-voltage direct charging solution; at the same time, ordinary charging cables can be used to achieve fast charging effects and better compatibility.
  • the communication unit 3 in Figure 1 is used to communicate with the charger 4 for fast charging to realize the fast charging function.
  • the communication unit 3 is connected to the central processing unit 5 of the electronic device, and the central processing unit 5 is also connected to a power meter 6.
  • Another embodiment of the present disclosure provides an electronic device, including the charging system in the foregoing embodiment.
  • the charging system is designed as a multi-cell series connection. Compared with a single-cell charging system, when both of them reach the same power, in a multi-cell series design, each cell corresponds to a path The charging current is less than the charging current in the single battery charging system. It can be seen that this embodiment can achieve high power in order to meet the requirements of fast charging speed, while not causing the body to heat up too fast due to too much charging current, thereby taking into account the charging speed and temperature rise experience of the electronic device.
  • a high-efficiency half-voltage charging circuit is used in conjunction. Compared with a direct-voltage charging circuit, the voltage of the charging port can be doubled, and the charging current on the corresponding charging port can be reduced by half. It can be seen that, on the basis of reducing the charging current on the corresponding path of the battery cell, this embodiment reduces the charging current on the charging port by half, and further reduces the charging current on the charging port, thereby being suitable for the overcurrent of the traditional charging port and the data line.
  • This embodiment reduces the charging current on the charging port by half, and further reduces the charging current on the charging port, thereby being suitable for the overcurrent of the traditional charging port and the data line.
  • Ability to ensure the charging in this embodiment The feasibility and versatility of the system.
  • the electronic device in this embodiment includes any device with a charging function, for example, a mobile phone, a tablet computer, and so on.
  • the electronic device provided by the embodiment of the present disclosure includes the charging system in the device embodiment of FIG. 1. To avoid repetition, details are not described herein again.
  • FIG. 2 shows a flowchart of a charging control method according to another embodiment of the present disclosure, which is applied to the charging system in the above embodiment, wherein the half-voltage direct charging circuit includes a control unit 1, a first capacitor Cfly, and a first switch tube Group and the second switch tube group; methods include:
  • Step S1 controlling the first switch tube group to be turned on within a first preset time period so that the first capacitor is in a charging state.
  • Step S2 controlling the second switch tube group to be turned on within the second preset time period, so that the first capacitor is in a discharged state.
  • the charging system is designed as a multi-cell series connection. Compared with a single-cell charging system, when both of them reach the same power, in a multi-cell series design, each cell corresponds to a path The charging current is less than the charging current in the single battery charging system. It can be seen that this embodiment can achieve high power in order to meet the requirements of fast charging speed, while not causing the body to heat up too fast due to too much charging current, thereby taking into account the charging speed and temperature rise experience of the electronic device.
  • a high-efficiency half-voltage charging circuit is used in conjunction with a preset switching logic to control the first switch tube group to be turned on for the first preset time period, so that the first capacitor Cfly In a charging state; in a second preset time period after the first preset time period, the second switch tube group is controlled to turn on, so that the first capacitor Cfly is in a discharged state, thereby realizing half-voltage charging.
  • the voltage of the charging port can be doubled, and the charging current on the corresponding charging port can be reduced by half.
  • this embodiment halves the charging current on the charging port, further reducing the charging current on the charging port, and thus is suitable for the overcurrent of the traditional charging port and the data line.
  • the charging control method provided by the embodiment of the present disclosure is applied to the charging system in the device embodiment of FIG. 1. In order to avoid repetition, it will not be repeated here.
  • FIG. 3 is a schematic diagram of the hardware structure of an electronic device for implementing various embodiments of the present disclosure.
  • the sub-device 100 includes but is not limited to: a radio frequency unit 101, a network module 102, an audio output unit 103, an input unit 104, a sensor 105, a display unit 106, a user input unit 107, an interface unit 108, a memory 109, a processor 110, and a power supply 111 and other parts.
  • Those skilled in the art can understand that the structure of the electronic device shown in FIG. 3 does not constitute a limitation on the electronic device.
  • the electronic device may include more or fewer components than those shown in the figure, or a combination of certain components, or different components. Layout.
  • electronic devices include, but are not limited to, mobile phones, tablet computers, notebook computers, palmtop computers, vehicle-mounted terminals, wearable devices, and pedometers.
  • the processor 110 is configured to control the first switch tube group to be turned on within a first preset time period, so that the first capacitor is in a charged state; and to control the second switch tube group to be turned on within a second preset time period, so that the A capacitor is in a discharged state.
  • the charging system is designed as a multi-cell series connection. Compared with a single-cell charging system, when both of them reach the same power, in a multi-cell series design, each cell corresponds to a path The charging current is less than the charging current in the single battery charging system. It can be seen that this embodiment can achieve high power in order to meet the requirements of fast charging speed, while not causing the body to heat up too fast due to too much charging current, thereby taking into account the charging speed and temperature rise experience of the electronic device.
  • a high-efficiency half-voltage charging circuit is used in conjunction with a preset switching logic to control the first switch tube group to be turned on for the first preset time period, so that the first capacitor Cfly In a charging state; in a second preset time period after the first preset time period, the second switch tube group is controlled to turn on, so that the first capacitor Cfly is in a discharged state, thereby realizing half-voltage charging.
  • the voltage of the charging port can be doubled, and the charging current on the corresponding charging port can be reduced by half.
  • this embodiment halves the charging current on the charging port, further reducing the charging current on the charging port, and thus is suitable for the overcurrent of the traditional charging port and the data line.
  • the radio frequency unit 101 can be used for receiving and sending signals during information transmission or communication. Specifically, the downlink data from the base station is received and processed by the processor 110; in addition, Uplink data is sent to the base station.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 101 can also communicate with the network and other devices through a wireless communication system.
  • the electronic device provides users with wireless broadband Internet access through the network module 102, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 103 can convert the audio data received by the radio frequency unit 101 or the network module 102 or stored in the memory 109 into audio signals and output them as sounds. Moreover, the audio output unit 103 may also provide audio output related to a specific function performed by the electronic device 100 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 103 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 104 is used to receive audio or video signals.
  • the input unit 104 may include a graphics processor (Graphics Processing Unit, GPU) 1041 and a microphone 1042.
  • the graphics processor 1041 is configured to respond to still pictures or video images obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame can be displayed on the display unit 106.
  • the image frame processed by the graphics processor 1041 may be stored in the memory 109 (or other storage medium) or sent via the radio frequency unit 101 or the network module 102.
  • the microphone 1042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 101 for output in the case of a telephone conversation mode.
  • the electronic device 100 also includes at least one sensor 105, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 1061 according to the brightness of the ambient light, and the proximity sensor can close the display panel 1061 when the electronic device 100 is moved to the ear. / Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes), and can detect the magnitude and direction of gravity when stationary, and can be used to identify the posture of electronic devices (such as horizontal and vertical screen switching, related games) , Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, percussion), etc.; the sensor 105 may also include a fingerprint sensor, a pressure sensor, an iris sensor, a molecular sensor, a gyroscope, a barometer, a hygrometer, a thermometer, Infrared sensors, etc., will not be repeated here.
  • the display unit 106 is used to display information input by the user or information provided to the user.
  • the display unit 106 can include a display panel 1061, and can be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc. Display panel 1061.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 107 can be used to receive input digital or character information, and generate key signal input related to user settings and function control of the electronic device.
  • the user input unit 107 includes a touch panel 1071 and other input devices 1072.
  • the touch panel 1071 also known as a touch screen, can collect the user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 1071 or near the touch panel 1071. operating).
  • the touch panel 1071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal caused by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and sends it To the processor 110, the command sent by the processor 110 is received and executed.
  • the touch panel 1071 can be realized by various types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 107 may also include other input devices 1072.
  • other input devices 1072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, on/off buttons, etc.), trackball, mouse, and joystick, which will not be described here.
  • the touch panel 1071 can cover the display panel 1061, and when the touch panel 1071 detects a touch operation on or near it, it transmits it to the processor 110 to determine the type of the touch event, and then the processor 110 responds to the touch The type of event provides corresponding visual output on the display panel 1061.
  • the touch panel 1071 and the display panel 1061 are used as two independent components to implement the input and output functions of the electronic device, but in some embodiments, the touch panel 1071 and the display panel 1061 can be integrated
  • the implementation of the input and output functions of the electronic device is not specifically limited here.
  • the interface unit 108 is an interface for connecting an external device and the electronic device 100.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 108 may be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the electronic device 100 or may be used to connect to the electronic device 100 and external Transfer data between devices.
  • the memory 109 can be used to store software programs and various data.
  • the memory 109 may mainly include The storage program area and the storage data area, where the storage program area can store the operating system, the application program required by at least one function (such as the sound playback function, the image playback function, etc.), etc.; the storage data area can store the creation based on the use of the mobile phone Data (such as audio data, phone book, etc.).
  • the memory 109 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 110 is the control center of the electronic device. It uses various interfaces and lines to connect various parts of the entire electronic device, runs or executes software programs and/or modules stored in the memory 109, and calls data stored in the memory 109 , Perform various functions of electronic equipment and process data, so as to monitor the electronic equipment as a whole.
  • the processor 110 may include one or more processing units; optionally, the processor 110 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, and application programs.
  • the adjustment processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 110.
  • the electronic device 100 may also include a power source 111 (such as a battery) for supplying power to various components.
  • a power source 111 such as a battery
  • the power source 111 may be logically connected to the processor 110 through a power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • the electronic device 100 includes some functional modules not shown, which will not be repeated here.
  • an embodiment of the present disclosure further provides an electronic device, including a processor 110, a memory 109, a computer program stored in the memory 109 and capable of running on the processor 110, and the computer program is executed by the processor 110
  • an electronic device including a processor 110, a memory 109, a computer program stored in the memory 109 and capable of running on the processor 110, and the computer program is executed by the processor 110
  • the embodiments of the present disclosure also provide a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, each process of the above-mentioned charging control method embodiment is realized, and the same technology can be achieved. The effect, in order to avoid repetition, will not be repeated here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • the method of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. ⁇
  • the technical solution of the present disclosure essentially or the part that contributes to the related technology can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk).
  • a terminal which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.
  • a terminal which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Abstract

本公开实施例提供了一种充电系统、电子设备及充电控制方法。其中,所述充电系统,包括充电端口、半压直充电路和多个电芯;其中,所述多个电芯串联,所述半压直充电路的输入端连接所述充电端口,所述半压直充电路的输出端连接一电芯。

Description

充电系统、 电子设备及充电控制方法 相关申请的交叉引用
本申请主张在 2019 年 2 月 28 日在中国提交的中国专利申请号 No. 201910152614.4的优先权, 其全部内容通过引用包含于此。 技术领域
本公开实施例涉及通信技术领域, 尤其涉及一种充电系统、 电子设备及 充电控制方法。 背景技术
相关技术中的手机等电子设备普遍支持快速充电功能, 各品牌的主流机 型快充时充电功率达到了 20w〜 22.5w 左右的水平, 可以在 90min 左右对 3000mAh左右的电池完成充电。
而调研结果显示, 大多用户对充电时间的期望是在 lh以内完成, 因此需 要继续提高电子设备等产品的充电功率到 30w〜 40w左右的功率水平。但若将 电子设备等产品的充电功率到 30w〜 40w左右的功率水平, 无法实现维持相关 技术中的 20w左右快充机型的温升体验, 又能显著提升充电速度。
可见, 相关技术中, 在提高充电速度的同时, 不可避免地会导致电子设 备升温过快, 从而无法兼顾电子设备的充电速度和温升体验。 发明内容
本公开实施例提供一种充电系统, 以解决无法兼顾电子设备的充电速度 和温升体验的问题。
为了解决上述技术问题, 本公开是这样实现的:
第一方面, 本公开实施例提供了一种充电系统, 包括充电端口, 包括半 压直充电路和多个电芯; 其中, 所述多个电芯串联, 所述半压直充电路的输 入端连接所述充电端口, 所述半压直充电路的输出端连接一电芯。
第二方面, 本公开实施例还提供了一种电子设备, 包括上述充电系统。 第三方面, 本公开实施例还提供了一种充电控制方法, 应用于上述充电 系统, 其中, 所述半压直充电路包括控制单元、 第一电容、 第一开关管组和第 二开关管组;所述方法包括:控制所述第一开关管组在第一预设时长内导通, 使得所述第一电容处于充电状态; 控制所述第二开关管组在第二预设时长内 导通, 使得所述第一电容处于放电状态。
第四方面, 本公开实施例还提供了一种电子设备, 包括处理器, 存储器, 存储在所述存储器上并可在所述处理器上运行的计算机程序, 所述计算机程 序被所述处理器执行时实现所述充电控制方法的步骤。
第五方面, 本公开实施例还提供了一种计算机可读存储介质, 所述计算 机可读存储介质上存储有计算机程序, 所述计算机程序被处理器执行时实现 所述充电控制方法的步骤。
在本公开实施例中, 充电系统设计为多电芯串联, 相比于单电池充电系 统, 在二者均达到同等功率的情况下, 在多电芯串联的设计中, 每个电芯对 应通路的充电电流均小于单电池充电系统中的充电电流。 可见, 本实施例为 了满足快速充电速度可达到大功率, 而同时又不会因充电电流太大导致机身 升温过快, 从而兼顾电子设备的充电速度和温升体验。 附图说明
图 1是本公开实施例的充电系统的框图;
图 2是本公开实施例的充电控制方法的流程图;
图 3是本公开实施例的电子设备的框图。 具体实施方式
下面将结合本公开实施例中的附图, 对本公开实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本公开一部分实施例, 而不是全 部的实施例。 基于本公开中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本公开保护的范围。
在本公开一个实施例中, 提供了一种充电系统, 包括充电端口、 半压直 充电路和多个电芯; 其中, 多个电芯串联, 半压直充电路的输入端连接充电 端口, 半压直充电路的输出端连接一电芯。 也就是说, 半压直充电路的输出 端连接任一电芯。 需要说明的是, “多个” 的含义为两个或两个以上。
在本公开实施例中, 充电系统设计为多电芯串联, 相比于单电池充电系 统, 在二者均达到同等功率的情况下, 在多电芯串联的设计中, 每个电芯对 应通路的充电电流均小于单电池充电系统中的充电电流。 可见, 本实施例为 了满足快速充电速度可达到大功率, 而同时又不会因充电电流太大导致机身 升温过快, 从而兼顾电子设备的充电速度和温升体验。
另外, 本实施例的充电系统中, 配合使用了高效率的半压充电电路, 相 比于采用直压充电电路, 可使充电端口的电压提高一倍, 对应充电端口上的 充电电流降低一半。 可见, 本实施例在降低电芯对应通路上的充电电流的基 础上,使得充电端口上的充电电流减半,进一步降低充电端口上的充电电流, 从而适用于传统充电端口和数据线的过流能力, 进而确保本实施例中的充电 系统的可行性和通用性。
在一种单电池的设计方案中, 可搭载 2900mAh 的电池, 并使用 40w (5V/8A) 的充电器, 在充电时最大可以实现 8A的充电电流, 持续 5min左 右, 最终在 lh内完成充电。 该方案采用低压直充的方式, 从充电端口到电池 电芯的通路电流最大为 8A, 对应的通路热功耗为 I2*R (64*R), 其中, 可根 据公式: Ploss=I2*R, 得到热功耗, Ploss表示热功耗, I表示电流, R表示通 路各组件的阻抗。 因此, 在设计过程中, 需要从线材、 端口、 器件柔性印刷电 路板 (Flexible Printed Circuit, FPC)、 电池保护板等全通路做严格的阻抗控制 以降低充电通路的热功耗, 从而需要付出较高的设计成本, 且最终受限于温 升和大电流时通路产生的符高电压,只能在电量较低时实现 8A的充电电流, 持续 5min 时间, 之后需要降低电流充电。 进一步地, 当电池容量达到 3500mAh〜 4000mAh 时, 无论是采用低压直充的方式还是其他高效率的降压 方案, 为提高充电速度, 需要设计进电池电流达到 6A以上, 都会存在需要提 高设计成本控制通路阻抗和受限于整机温升需要降电流牺牲充电器性能的问 题。 可见, 该方案主要弊端是: 进电池的充电电流过大, 导致整机内部的热功 耗过大, 如果需要控制整机温升, 则需要降低通路各组件的阻抗 R, 对应设 计上需要增加较多成本, 比如需要选用支持更小采样电阻的电量计集成电路 (Integrated Circuit, IC)、 采用铜厚更大的 FPC等等。
可见, 与上述单电池的设计方案相比, 本实施例可有效控制整机升温, 同时降低生产成本。
在一种双电池的设计方案中, 采用双节电芯串联, 并采用充电器高压直 充的方案进行充电以提高充电功率。 如采用两节 1800mAh的电芯串联, 充电 电流设计成 4A, 对应的充电倍率可以达到 2.2c, 而从充电端口到电芯的通路 最大电流只有 4A, 对应的通路热功耗为 I2*R ( 16*R), 通路部分热功耗与传 统的 20w左右的低压直充方案通路热功耗水平相当, 不需要额外增加成本降 低通路的阻抗, 对应的充电功率提高到了 40w ( 10v/4A) o 该方案可以更好的 发挥充电器的性能, 在恒流阶段持续输出最大功率给电子设备快充, 且热功 耗控制更容易实现。 但该方案需要使用定制的能够过 4A 电流的充电端口和 数据线线材才能实现 40w快充, 充电线的兼容性受到限制, 且成本未达到最 优。
可见, 与上述双电池的设计方案相比, 本实施例中的充电回路的热功耗 与高压直充方案中充电回路的热功耗相当。 而且在通路上达到 4A 电流的基 础上, 可将充电端口上的电流减半, 如降低至 2A, 从而降低对充电端口和数 据线线材的要求, 以适用于传统的充电端口和数据线线材, 进而进一步降低 生产成本。
可选地, 充电端口为通用串行总线 (Universal Serial Bus, USB) 接口。 参见图 1, 半压直充电路包括控制单元 1、 第一电容 Cfly、 第一开关管组 和第二开关管组, 第一开关管组连接充电端口, 第二开关管组接地; 控制单 元 1 用于控制第一开关管组在第一预设时长内导通, 使得第一电容 Cfly处于 充电状态,以及控制第二开关管组在第二预设时长内导通,使得第一电容 Cfly 处于放电状态。
在图 1 中, 充电端口为 USB接口 2。
基于半压直充电路所运用的电荷泵 (charge Pump) 技术, 本实施例中的 充电系统可由第一开关管组和第二开关管组构成的架构实现, 该架构与相关 技术中的 charge pump类似, 通过开关控制 ( switching control) , 即本实施例 中的控制单元 1, 根据预先设定的开关逻辑控制第一开关管组和第二开关管 组中的开关管的导通和关断, 实现半压充电。 例如, 当 Ibat为 4A时, Ibus为 2A, 且 VBUS上电压为 2*VBAT。
具体实现时, 控制单元 1 可根据预先设定的开关逻辑控制第一开关管组 在第一预设时长内导通, 以使得第一电容 Cfly处于充电状态; 在第一预设时 长之后的第二预设时长内, 再控制第二开关管组导通, 以使得第一电容 Cfly 处于放电状态, 从而实现半压充电。
其中, 第一预设时长为第一开关周期, 第二预设时长为第二开关周期。 参见图 1, 进一步地, 第一开关管组包括第一 mos晶体管 Q1和第三 mos 晶体管 Q3, 第二开关管组包括第二 mos晶体管 Q2和第四 mos晶体管 Q4 ; 控制单元 1分别与第一 mos晶体管 Q1、 第二 mos晶体管 Q2、 第三 mos晶体 管 Q3和第四 mos晶体管 Q4的栅极连接, 第一 mos晶体管 Q1的漏极与充电 端口 (USB接口 2) 连接, 第一 mos晶体管 Q1的源极与第二 mos晶体管 Q2 的漏极连接,第二 mos晶体管 Q2的源极与第三 mos晶体管 Q3的漏极连接, 第三 mos晶体管 Q3的源极与第四 mos晶体管 Q4的漏极连接, 第四 mos晶 体管 Q4 的源极接地; 第一电容 Cfly 的第一极板与第二 mos 晶体管的漏极 Q2、 第二 mos晶体管 Q2的源极连接, 第一电容 Cfly的第二极板与第三 mos 晶体管 Q3的源极、 第四 mos晶体管 Q4的漏极连接; 多个电芯包括第一电芯 Celll和第二电芯 Cell2 ; 第一电容 Cfly的第一极板与第一电芯 Celll 并联, 第二电芯 Cell2接地。
本实施例提供了一种双电池的充电系统, 电池采用双电池串充串放的形 式连接, 由 Q1-Q2-Q3-Q4 构成的 charge Pump架构实现, 该架构与相关技术 中的 charge pump类似, 通过 switching control控制逻辑模块去控制 Q1-Q2 - Q3-Q4四个管子的开通和关断, 实现半压充电, 即当 Ibat为 4A时, Ibus电 流为 2A, 且 VBUS上电压为 2*VBAT。
在第一个开关周期内, 控制 Q1和 Q3导通, Vin电压给第一电容 Cfly充 电; 第二个开关周期内, 控制 Q2和 Q4导通, 第一电容 Cfly给输出端放电。 相当于 Vin先对第一电容 Cfly充电, 然后第一电容 Cfly对输出放电, 通过控 制充放电的占空比, 使输出电压为输入电压的一半。
本实施例采用两节电芯串联的方案, 可以把充电终端的电芯电压从传统 单电芯的 4.4V左右提升到 8.8V及以上,对应的开机时工作电压为 6.8V-8.8V; 并使用转换效率达到 97%的半压充电方案代替高压直充方案, 将充电线材和 端口上的电流控制在 2A以内,进一步降低整个方案的设计成本,提高对普通 充电线的兼容性。
进一步地, 充电系统还包括第二电容 Cout, 第二电容 Cout的第一极板与 第一电容 Cfly的第一极板并联, 第二电容 Cout的第二极板接地。
第一电容 Cfly与第二电容 Cout并联, 在第一个开关周期内, Vin电压给 第一电容 Cfly和第二电容 Cout充电。
半压直充电路的输入端的电流值等于半压直充电路的输出端的电流值的 二分之一。
相比于前述的双电池高压直充方案, 本实施例采用半压直充电路, 可使 半压直充电路的输入端的电流值等于半压直充电路的输出端的电流值的二分 之一。 例如, 结合前述的双电池高压直充方案, 本实施可使充电通路上的充 电电流达到 4A, 同时使充电端口上的充电电流降至 2A。 从而无需限制充电 端口和充电数据线的过流能力, 降低成本。
进一步地, 半压直充电路的输入端的电流为 2A。
传统的数据线的过流能力为 2A, 可用于本实施例中的充电系统, 从而确 保传统数据线的兼容性,也提高了本实施例中的充电系统的可行性和通用性, 以服务于更多的用户。
在更多的实施例走, Q1和 Q2还可以设计成直通模式, 即在充电电流达 到 2A时, 可以从半压充电状态切换到直充状态, 来减少充电过程中充电端口 上高压持续的时间, 改善充电端口可能存在的腐蚀风险。
其中, 本公开实施例中的充电系统与双电池的高压直充充电系统类似, 还需要放电转换 1C实现对电子设备系统的供电, 以及增压器 (boost charger) 1C实现对普通充电器的兼容。
另外, 在本公开实施例中, 对应的充电器输出电压可以达到 18V 左右, 比高压直充规格的充电器输出电压高一倍, 对于后续无线充电的应用拓展性 更好, 即可以直接用于给无线充电的发射端做输入, 而不需要额外再开发新 的充电器。 综上所述, 在使用单电池充电时, 如果需要提高充电速度, 通常需要设 计成较大的充电电流, 比如 4000mAh的电池, 用 6A充电时才 1.5C的充电倍 率, 而 6A的电流对应的充电通路上热功耗为 I2*R, 电流越大时, 热功耗越 大, 而受限于整机温升的要求, 已经实现不了 6A及以上的电流去充电。 因此 提出上述双电池串联充电系统, 单节电芯 2000mAh时, 使用 4A给两节串联 的电芯充电, 充电倍率可以达到 2C, 比单节 4000mAh的电芯用 6A充电速度 还快。
而且, 结合了半压充电这种方案, 通过提高充电线上的电压降低了充电 线上的电流, 可以降低充电线和充电端口的设计成本。
由此, 可以提升充电功率到 40w左右的水平, 在 lh时间内完成对电子设 备电池的充电; 并通过采用半压兼容直充的充电方案替代高压直充方案, 降 低了整个方案对充电线和充电端口的要求, 在成本上会比双电池高压直充方 案更有优势; 同时可以使用普通的充电线实现快充效果, 兼容性更好。
其中, 图 1 中的通信单元 3用来跟充电器 4做快充的通信, 实现快充功 能。
通信单元 3与电子设备的中央处理器 5连接, 中央处理器 5还连接有电 量计 6。
本公开另一个实施例提供了一种电子设备, 包括上述实施例中的充电系 统。
在本公开实施例中, 充电系统设计为多电芯串联, 相比于单电池充电系 统, 在二者均达到同等功率的情况下, 在多电芯串联的设计中, 每个电芯对 应通路的充电电流均小于单电池充电系统中的充电电流。 可见, 本实施例为 了满足快速充电速度可达到大功率, 而同时又不会因充电电流太大导致机身 升温过快, 从而兼顾电子设备的充电速度和温升体验。
而且, 本实施例的充电系统中, 配合使用了高效率的半压充电电路, 相 比于采用直压充电电路, 可使充电端口的电压提高一倍, 对应充电端口上的 充电电流降低一半。 可见, 本实施例在降低电芯对应通路上的充电电流的基 础上,使得充电端口上的充电电流减半,进一步降低充电端口上的充电电流, 从而适用于传统充电端口和数据线的过流能力, 进而确保本实施例中的充电 系统的可行性和通用性。
其中, 本实施例中的电子设备包括任一具有充电功能的设备, 例如, 手 机、 平板电脑等。
本公开实施例提供的电子设备包括图 1 的装置实施例中的充电系统, 为 避免重复, 这里不再赘述。
图 2示出了本公开另一个实施例的充电控制方法的流程图, 应用于上述 实施例中的充电系统, 其中, 半压直充电路包括控制单元 1、 第一电容 Cfly、 第一开关管组和第二开关管组; 方法包括:
步骤 S1 : 控制第一开关管组在第一预设时长内导通, 使得第一电容处于 充电状态。
步骤 S2 : 控制第二开关管组在第二预设时长内导通, 使得第一电容处于 放电状态。
在本公开实施例中, 充电系统设计为多电芯串联, 相比于单电池充电系 统, 在二者均达到同等功率的情况下, 在多电芯串联的设计中, 每个电芯对 应通路的充电电流均小于单电池充电系统中的充电电流。 可见, 本实施例为 了满足快速充电速度可达到大功率, 而同时又不会因充电电流太大导致机身 升温过快, 从而兼顾电子设备的充电速度和温升体验。
而且, 本实施例的充电系统中, 配合使用了高效率的半压充电电路, 根 据预先设定的开关逻辑控制第一开关管组在第一预设时长内导通, 以使得第 一电容 Cfly处于充电状态; 在第一预设时长之后的第二预设时长内, 再控制 第二开关管组导通,以使得第一电容 Cfly处于放电状态,从而实现半压充电。 相比于采用直压充电电路, 可使充电端口的电压提高一倍, 对应充电端口上 的充电电流降低一半。 可见, 本实施例在降低电芯对应通路上的充电电流的 基础上, 使得充电端口上的充电电流减半, 进一步降低充电端口上的充电电 流, 从而适用于传统充电端口和数据线的过流能力, 进而确保本实施例中的 充电系统的可行性和通用性。
本公开实施例提供的充电控制方法应用于图 1 的装置实施例中的充电系 统, 为避免重复, 这里不再赘述。
图 3 为实现本公开各个实施例的一种电子设备的硬件结构示意图, 该电 子设备 100包括但不限于:射频单元 101、网络模块 102、音频输出单元 103、 输入单元 104、传感器 105、显示单元 106、用户输入单元 107、接口单元 108、 存储器 109、 处理器 110、 以及电源 111 等部件。 本领域技术人员可以理解, 图 3 中示出的电子设备结构并不构成对电子设备的限定, 电子设备可以包括 比图示更多或更少的部件, 或者组合某些部件, 或者不同的部件布置。 在本 公开实施例中, 电子设备包括但不限于手机、 平板电脑、 笔记本电脑、 掌上电 脑、 车载终端、 可穿戴设备、 以及计步器等。
其中, 处理器 110, 用于控制第一开关管组在第一预设时长内导通, 使得 第一电容处于充电状态; 控制第二开关管组在第二预设时长内导通, 使得第 一电容处于放电状态。
在本公开实施例中, 充电系统设计为多电芯串联, 相比于单电池充电系 统, 在二者均达到同等功率的情况下, 在多电芯串联的设计中, 每个电芯对 应通路的充电电流均小于单电池充电系统中的充电电流。 可见, 本实施例为 了满足快速充电速度可达到大功率, 而同时又不会因充电电流太大导致机身 升温过快, 从而兼顾电子设备的充电速度和温升体验。
而且, 本实施例的充电系统中, 配合使用了高效率的半压充电电路, 根 据预先设定的开关逻辑控制第一开关管组在第一预设时长内导通, 以使得第 一电容 Cfly处于充电状态; 在第一预设时长之后的第二预设时长内, 再控制 第二开关管组导通,以使得第一电容 Cfly处于放电状态,从而实现半压充电。 相比于采用直压充电电路, 可使充电端口的电压提高一倍, 对应充电端口上 的充电电流降低一半。 可见, 本实施例在降低电芯对应通路上的充电电流的 基础上, 使得充电端口上的充电电流减半, 进一步降低充电端口上的充电电 流, 从而适用于传统充电端口和数据线的过流能力, 进而确保本实施例中的 充电系统的可行性和通用性。
应理解的是, 本公开实施例中, 射频单元 101 可用于收发信息或通话过 程中, 信号的接收和发送, 具体的, 将来自基站的下行数据接收后, 给处理器 110处理; 另外, 将上行的数据发送给基站。 通常, 射频单元 101包括但不限 于天线、 至少一个放大器、 收发信机、 耦合器、 低噪声放大器、 双工器等。 此 外, 射频单元 101还可以通过无线通信系统与网络和其他设备通信。 电子设备通过网络模块 102为用户提供了无线的宽带互联网访问, 如帮 助用户收发电子邮件、 浏览网页和访问流式媒体等。
音频输出单元 103可以将射频单元 101或网络模块 102接收的或者在存 储器 109 中存储的音频数据转换成音频信号并且输出为声音。 而且, 音频输 出单元 103 还可以提供与电子设备 100 执行的特定功能相关的音频输出(例 如,呼叫信号接收声音、消息接收声音等等)。音频输出单元 103包括扬声器、 蜂鸣器以及受话器等。
输入单元 104用于接收音频或视频信号。 输入单元 104可以包括图形处 理器(Graphics Processing Unit, GPU) 1041和麦克风 1042, 图形处理器 1041 对在视频捕获模式或图像捕获模式中由图像捕获装置 (如摄像头) 获得的静 态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元 106 上。 经图形处理器 1041处理后的图像帧可以存储在存储器 109 (或其它存储 介质) 中或者经由射频单元 101或网络模块 102进行发送。 麦克风 1042可以 接收声音, 并且能够将这样的声音处理为音频数据。 处理后的音频数据可以 在电话通话模式的情况下转换为可经由射频单元 101 发送到移动通信基站的 格式输出。
电子设备 100还包括至少一种传感器 105, 比如光传感器、运动传感器以 及其他传感器。具体地, 光传感器包括环境光传感器及接近传感器, 其中, 环 境光传感器可根据环境光线的明暗来调节显示面板 1061的亮度,接近传感器 可在电子设备 100移动到耳边时, 关闭显示面板 1061 和 /或背光。 作为运动 传感器的一种, 加速计传感器可检测各个方向上 (一般为三轴) 加速度的大 小, 静止时可检测出重力的大小及方向, 可用于识别电子设备姿态 (比如横 竖屏切换、 相关游戏、 磁力计姿态校准)、 振动识别相关功能 (比如计步器、 敲击) 等; 传感器 105还可以包括指纹传感器、 压力传感器、 虹膜传感器、 分子传感器、 陀螺仪、 气压计、 湿度计、 温度计、 红外线传感器等, 在此不再 赘述。
显示单元 106 用于显示由用户输入的信息或提供给用户的信息。 显示单 元 106可包括显示面板 1061, 可以采用液晶显示器 (Liquid Crystal Display, LCD)、 有机发光二极管 ( Organic Light-Emitting Diode, OLED) 等形式来配置 显示面板 1061。
用户输入单元 107 可用于接收输入的数字或字符信息, 以及产生与电子 设备的用户设置以及功能控制有关的键信号输入。具体地, 用户输入单元 107 包括触控面板 1071 以及其他输入设备 1072。触控面板 1071,也称为触摸屏, 可收集用户在其上或附近的触摸操作 (比如用户使用手指、 触笔等任何适合 的物体或附件在触控面板 1071上或在触控面板 1071附近的操作)。触控面板 1071可包括触摸检测装置和触摸控制器两个部分。 其中, 触摸检测装置检测 用户的触摸方位, 并检测触摸操作带来的信号, 将信号传送给触摸控制器; 触摸控制器从触摸检测装置上接收触摸信息, 并将它转换成触点坐标, 再送 给处理器 110, 接收处理器 110发来的命令并加以执行。 此外, 可以采用电阻 式、 电容式、 红外线以及表面声波等多种类型实现触控面板 1071。 除了触控 面板 1071, 用户输入单元 107还可以包括其他输入设备 1072。 具体地, 其他 输入设备 1072可以包括但不限于物理键盘、 功能键 (比如音量控制按键、 开 关按键等)、 轨迹球、 鼠标、 操作杆, 在此不再赘述。
进一步的, 触控面板 1071可覆盖在显示面板 1061上, 当触控面板 1071 检测到在其上或附近的触摸操作后, 传送给处理器 110 以确定触摸事件的类 型, 随后处理器 110根据触摸事件的类型在显示面板 1061上提供相应的视觉 输出。 虽然在图 3 中, 触控面板 1071 与显示面板 1061是作为两个独立的部 件来实现电子设备的输入和输出功能, 但是在某些实施例中, 可以将触控面 板 1071 与显示面板 1061集成而实现电子设备的输入和输出功能, 具体此处 不做限定。
接口单元 108为外部装置与电子设备 100连接的接口。 例如, 外部装置 可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或 无线数据端口、 存储卡端口、 用于连接具有识别模块的装置的端口、 音频输 入 /输出(I/O)端口、 视频 I/O端口、 耳机端口等等。 接口单元 108可以用于接 收来自外部装置的输入(例如, 数据信息、 电力等等)并且将接收到的输入传输 到电子设备 100 内的一个或多个元件或者可以用于在电子设备 100和外部装 置之间传输数据。
存储器 109可用于存储软件程序以及各种数据。 存储器 109可主要包括 存储程序区和存储数据区, 其中, 存储程序区可存储操作系统、 至少一个功 能所需的应用程序(比如声音播放功能、 图像播放功能等)等; 存储数据区可 存储根据手机的使用所创建的数据(比如音频数据、 电话本等) 等。 此外, 存 储器 109可以包括高速随机存取存储器, 还可以包括非易失性存储器, 例如 至少一个磁盘存储器件、 闪存器件、 或其他易失性固态存储器件。
处理器 110是电子设备的控制中心, 利用各种接口和线路连接整个电子 设备的各个部分,通过运行或执行存储在存储器 109内的软件程序和 /或模块, 以及调用存储在存储器 109内的数据,执行电子设备的各种功能和处理数据, 从而对电子设备进行整体监控。 处理器 110 可包括一个或多个处理单元; 可 选的, 处理器 110可集成应用处理器和调制解调处理器, 其中, 应用处理器 主要处理操作系统、 用户界面和应用程序等, 调制解调处理器主要处理无线 通信。 可以理解的是, 上述调制解调处理器也可以不集成到处理器 110中。
电子设备 100还可以包括给各个部件供电的电源 111 (比如电池), 可选 的, 电源 111 可以通过电源管理系统与处理器 110逻辑相连, 从而通过电源 管理系统实现管理充电、 放电、 以及功耗管理等功能。
另外, 电子设备 100包括一些未示出的功能模块, 在此不再赘述。
可选的, 本公开实施例还提供一种电子设备, 包括处理器 110, 存储器 109, 存储在存储器 109上并可在所述处理器 110上运行的计算机程序, 该计 算机程序被处理器 110执行时实现上述充电控制方法实施例的各个过程, 且 能达到相同的技术效果, 为避免重复, 这里不再赘述。
本公开实施例还提供一种计算机可读存储介质, 计算机可读存储介质上 存储有计算机程序, 该计算机程序被处理器执行时实现上述充电控制方法实 施例的各个过程, 且能达到相同的技术效果, 为避免重复, 这里不再赘述。其 中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory, ROM)、 随机存取存储器 (Random Access Memory, RAM)、 磁碟或者光盘等。
需要说明的是, 在本文中, 术语“包括”、“包含’’或者其任何其他变体意在 涵盖非排他性的包含, 从而使得包括一系列要素的过程、 方法、 物品或者装 置不仅包括那些要素, 而且还包括没有明确列出的其他要素, 或者是还包括 为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下, 由语句“包括一个 ... ...’’限定的要素, 并不排除在包括该要素的过程、 方法、物 品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述, 本领域的技术人员可以清楚地了解到上述 实施例方法可借助软件加必需的通用硬件平台的方式来实现, 当然也可以通 过硬件, 但很多情况下前者是更佳的实施方式。 基于这样的理解, 本公开的 技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体 现出来, 该计算机软件产品存储在一个存储介质 (如 ROM/RAM、 磁碟、 光 盘) 中, 包括若干指令用以使得一台终端 (可以是手机, 计算机, 服务器, 空 调器, 或者网络设备等) 执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述, 但是本公开并不局限于上 述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的, 本领域的普通技术人员在本公开的启示下, 在不脱离本公开宗旨和权利要求 所保护的范围情况下, 还可做出很多形式, 均属于本公开的保护之内。

Claims

权 利 要 求 书
1、一种充电系统, 包括充电端口, 包括半压直充电路和多个电芯;其中, 所述多个电芯串联, 所述半压直充电路的输入端连接所述充电端口, 所 述半压直充电路的输出端连接一电芯。
2、 根据权利要求 1所述的充电系统, 其中, 所述半压直充电路包括控制 单元、 第一电容、 第一开关管组和第二开关管组, 所述第一开关管组连接所 述充电端口, 所述第二开关管组接地;
所述控制单元用于控制所述第一开关管组在第一预设时长内导通, 使得 所述第一电容处于充电状态, 以及控制所述第二开关管组在第二预设时长内 导通, 使得所述第一电容处于放电状态。
3、 根据权利要求 2所述的充电系统, 其中, 所述第一开关管组包括第一 mos晶体管和第三 mos晶体管, 所述第二开关管组包括第二 mos晶体管和第 四 mos晶体管;
所述控制单元分别与所述第一 mos晶体管、 所述第二 mos晶体管、 所述 第三 mos晶体管和所述第四 mos晶体管的栅极连接,所述第一 mos晶体管的 漏极与所述充电端口连接, 所述第一 mos晶体管的源极与所述第二 mos晶体 管的漏极连接, 所述第二 mos晶体管的源极与所述第三 mos晶体管的漏极连 接, 所述第三 mos晶体管的源极与所述第四 mos晶体管的漏极连接, 所述第 四 mos晶体管的源极接地;
所述第一电容的第一极板与所述第二 mos晶体管的漏极、 所述第二 mos 晶体管的源极连接,所述第一电容的第二极板与所述第三 mos晶体管的源极、 所述第四 mos晶体管的漏极连接;
所述多个电芯包括第一电芯和第二电芯;
所述第一电容的第一极板与所述第一电芯并联, 所述第二电芯接地。
4、 根据权利要求 3所述的充电系统, 还包括第二电容, 所述第二电容的 第一极板与所述第一电容的第一极板并联, 所述第二电容的第二极板接地。
5、 根据权利要求 3所述的充电系统, 其中, 所述半压直充电路的输入端 的电流值等于所述半压直充电路的输出端的电流值的二分之一。
6、 根据权利要求 5所述的充电系统, 其中, 所述半压直充电路的输入端 的电流为 2A。
7、 一种电子设备, 包括权利要求 1〜 6任一项所述的充电系统。
8、 一种充电控制方法, 应用于权利要求 1〜 6任一项所述的充电系统, 其 中, 所述半压直充电路包括控制单元、 第一电容、 第一开关管组和第二开关 管组;
所述方法包括:
控制所述第一开关管组在第一预设时长内导通, 使得所述第一电容处于 充电状态;
控制所述第二开关管组在第二预设时长内导通, 使得所述第一电容处于 放电状态。
9、 一种电子设备, 包括处理器, 存储器, 存储在所述存储器上并可在所 述处理器上运行的计算机程序, 所述计算机程序被所述处理器执行时实现如 权利要求 8所述的充电控制方法的步骤。
10、 一种计算机可读存储介质, 所述计算机可读存储介质上存储有计算 机程序, 所述计算机程序被处理器执行时实现如权利要求 8所述的充电控制 方法的步骤。
PCT/CN2020/072759 2019-02-28 2020-01-17 充电系统、电子设备及充电控制方法 WO2020173249A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910152614.4A CN109861335A (zh) 2019-02-28 2019-02-28 充电系统、电子设备及充电控制方法
CN201910152614.4 2019-02-28

Publications (1)

Publication Number Publication Date
WO2020173249A1 true WO2020173249A1 (zh) 2020-09-03

Family

ID=66899453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072759 WO2020173249A1 (zh) 2019-02-28 2020-01-17 充电系统、电子设备及充电控制方法

Country Status (2)

Country Link
CN (1) CN109861335A (zh)
WO (1) WO2020173249A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109861335A (zh) * 2019-02-28 2019-06-07 维沃移动通信有限公司 充电系统、电子设备及充电控制方法
CN112787374B (zh) * 2020-12-30 2023-12-22 维沃移动通信有限公司 充电系统、电子设备及其充电控制方法
CN113030781B (zh) * 2021-02-26 2023-06-20 维沃移动通信有限公司 漏电检测方法及电子设备
CN115001062B (zh) * 2021-09-10 2023-04-14 荣耀终端有限公司 充电管理电路和电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108233461A (zh) * 2017-09-04 2018-06-29 珠海市魅族科技有限公司 一种充电电路及终端设备
CN108539832A (zh) * 2018-03-16 2018-09-14 维沃移动通信有限公司 无线充电接收端设备、无线充电方法、系统及终端设备
CN109861335A (zh) * 2019-02-28 2019-06-07 维沃移动通信有限公司 充电系统、电子设备及充电控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205945143U (zh) * 2016-08-15 2017-02-08 珠海市魅族科技有限公司 一种充电电路、系统及移动终端
CN107947252B (zh) * 2016-10-12 2020-09-22 Oppo广东移动通信有限公司 终端和设备
CN107069888B (zh) * 2017-05-22 2020-09-11 维沃移动通信有限公司 一种充电电路及移动终端
CN206878499U (zh) * 2017-05-23 2018-01-12 维沃移动通信有限公司 一种充电电路、移动终端及充电系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108233461A (zh) * 2017-09-04 2018-06-29 珠海市魅族科技有限公司 一种充电电路及终端设备
CN108539832A (zh) * 2018-03-16 2018-09-14 维沃移动通信有限公司 无线充电接收端设备、无线充电方法、系统及终端设备
CN109861335A (zh) * 2019-02-28 2019-06-07 维沃移动通信有限公司 充电系统、电子设备及充电控制方法

Also Published As

Publication number Publication date
CN109861335A (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
WO2020173249A1 (zh) 充电系统、电子设备及充电控制方法
WO2020168892A1 (zh) 充电控制电路、终端设备及控制方法
WO2020020124A1 (zh) 多电池充放电装置及移动终端
WO2021233345A1 (zh) 电池及其控制方法和电子设备
CN107546808B (zh) 一种充电识别电路、识别方法及终端设备
WO2021063249A1 (zh) 电子设备的控制方法及电子设备
WO2021129529A1 (zh) 设备切换方法及相关设备
CN109842872B (zh) 工作模式控制方法、蓝牙耳机、终端及计算机存储介质
WO2020156240A1 (zh) 电池组件和终端
CN107516917A (zh) 充电控制方法、终端、智能充电设备及计算机存储介质
WO2020200005A1 (zh) 连接器、电子设备、数据传输方法及装置
CN109713746B (zh) 一种充电电路及充电控制方法、移动终端
WO2021169869A1 (zh) 音频播放装置、音频播放方法及电子设备
WO2021238806A1 (zh) 接口电路与电子设备
WO2021129835A1 (zh) 音量控制方法、设备及计算机可读存储介质
WO2020173343A1 (zh) 终端及无线充电控制方法
JP2023538685A (ja) 電子機器アセンブリ及びその制御方法、並びに電子機器の制御装置
CN109729475A (zh) 蓝牙耳机充电方法、电路、终端及计算机可读存储介质
US20210320526A1 (en) Wireless charging control method, circuit and terminal device
WO2021136264A1 (zh) 可分离式摄像头模组的供电装置
WO2020221043A1 (zh) 充电控制电路、终端设备及数据线
CN108009116B (zh) MicroUSB接口电路及其移动终端
JP7442551B2 (ja) 移動端末及び制御方法
CN212517830U (zh) 多功能转接装置
US20220416557A1 (en) Electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20762671

Country of ref document: EP

Kind code of ref document: A1