WO2023153500A1 - ばね部材用金属箔、ばね部材用金属箔の製造方法、および、電子機器用ばね部材 - Google Patents

ばね部材用金属箔、ばね部材用金属箔の製造方法、および、電子機器用ばね部材 Download PDF

Info

Publication number
WO2023153500A1
WO2023153500A1 PCT/JP2023/004598 JP2023004598W WO2023153500A1 WO 2023153500 A1 WO2023153500 A1 WO 2023153500A1 JP 2023004598 W JP2023004598 W JP 2023004598W WO 2023153500 A1 WO2023153500 A1 WO 2023153500A1
Authority
WO
WIPO (PCT)
Prior art keywords
difference value
thickness
subtracting
metal foil
spring member
Prior art date
Application number
PCT/JP2023/004598
Other languages
English (en)
French (fr)
Inventor
槙一 島村
昭彦 小林
弘康 相澤
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2022/035025 external-priority patent/WO2023153009A1/ja
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2023153500A1 publication Critical patent/WO2023153500A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/40Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/08Apparatus, e.g. for photomechanical printing surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/18Leaf springs

Definitions

  • the present disclosure relates to a metal foil for spring members, a method for manufacturing the metal foil for spring members, and a spring member for electronic devices.
  • the camera module of electronic devices with cameras is equipped with a drive mechanism that enables autofocus and zoom.
  • a lens drive system and a sensor drive system are known.
  • the drive mechanism of the lens drive type comprises leaf springs that allow the position of the lens to be changed in the direction of the optical axis of the lens.
  • the drive mechanism of the sensor drive system has a leaf spring that enables changing the position of the image sensor in the optical axis direction of the lens (see, for example, Patent Documents 1 and 2).
  • JP 2014-059345 A Japanese Patent Application Laid-Open No. 2020-170170
  • leaf springs are required to satisfy a specific spring load or deflection within a limited volume.
  • leaf springs In order to meet the spring load and deflection requirements, leaf springs must be made from a hard metal.
  • the width and thickness of the leaf spring greatly contribute to the spring load and deflection.
  • a metal foil which is a raw material for leaf springs, is rolled to a predetermined thickness. Since the metal foil is made of a metal with high hardness, it is more difficult to make the thickness of the metal foil uniform by rolling than when it is made of a metal with a low hardness.
  • leaf springs are formed by wet etching of metal foil. Thickness variations in the metal foil cause variations in the amount of etching, which in turn causes variations in width in the thickness direction of the leaf spring. Variations in the width of the leaf spring in the thickness direction cause variations in the spring load and deflection of the leaf spring. Therefore, it is desired to suppress variations in the width of the leaf spring in the thickness direction.
  • One aspect of the metal foil for the spring member has a square shape with a side length of 300 mm, and includes a first region for forming the spring member.
  • the absolute value of the difference value obtained by subtracting the standard deviation of thickness in the width direction orthogonal to the rolling direction from the standard deviation of thickness in the rolling direction is 0.15 ⁇ m or less, and the rolling direction
  • the maximum value of the thickness in the width direction is the first maximum value
  • the maximum value of the thickness in the width direction is the second maximum value
  • the absolute value is 0.8 ⁇ m or less.
  • One aspect of a method for producing a metal foil for a spring member includes rolling a base material, preparing a plurality of rolled materials obtained by rolling the base material, and then removing the metal foil for a spring member from the plurality of rolled materials. and filtering.
  • the rolled material has a square shape with a side length of 300 mm, and the region for forming the spring member is the first region. In the first region, the maximum thickness in the rolling direction is the first maximum value, and the maximum thickness in the width direction orthogonal to the rolling direction is the second maximum value.
  • the standard deviation of the thickness in the width direction is subtracted from the standard deviation of the thickness in the rolling direction in the first region from the plurality of rolled materials.
  • the rolled material having an absolute value of a difference value of 0.15 ⁇ m or less and an absolute value of a difference value obtained by subtracting the second maximum value from the first maximum value of 0.8 ⁇ m or less for the spring member Sort out as metal foil.
  • One aspect of the electronic device spring member is an electronic device spring member using metal foil for a spring member.
  • the absolute value of the difference obtained by subtracting the standard deviation of the thickness in the width direction orthogonal to the rolling direction from the standard deviation of the thickness in the rolling direction of the metal foil for spring member is 0.15 ⁇ m or less.
  • the maximum thickness in the rolling direction is a first maximum value
  • the maximum thickness in the width direction is a second maximum value
  • the absolute value of the difference value obtained by subtracting the second maximum value is 0.8 ⁇ m or less.
  • FIG. 1 is a perspective view showing the structure of a metal foil for spring members in one embodiment.
  • FIG. 2 is a plan view showing the structure of the electronic device spring member in the same embodiment.
  • FIG. 3 is a process chart for explaining the method of manufacturing the metal foil for spring members according to the embodiment.
  • FIG. 4 is a process chart for explaining the method of manufacturing the metal foil for spring members according to the embodiment.
  • FIG. 5 is a process chart for explaining the method of manufacturing the metal foil for spring members in the embodiment.
  • 6A to 6D are process diagrams for explaining a method of manufacturing the electronic device spring member shown in FIG. 7A to 7D are process diagrams for explaining a method of manufacturing the electronic device spring member shown in FIG.
  • FIG. 8A to 8D are process diagrams for explaining a method of manufacturing the electronic device spring member shown in FIG. 9A to 9D are process diagrams for explaining a method of manufacturing the electronic device spring member shown in FIG. 10A to 10D are process diagrams for explaining a method of manufacturing the electronic device spring member shown in FIG.
  • FIG. 11 is a plan view for explaining thickness measurement points in the metal foil for a spring member.
  • FIG. 12 is a table showing measurement results for the metal foils of Examples and Comparative Examples.
  • FIG. 13 is a graph showing the relationship between the first absolute value and the spring width difference value.
  • FIG. 14 is a graph showing the relationship between the fourth absolute value and the spring width difference value.
  • FIG. 15 is a graph showing the relationship between the second absolute value and the spring width difference value.
  • FIG. 16 is a graph showing the relationship between the third absolute value and the spring width difference value.
  • FIGS. 1 to 16 An embodiment of a metal foil for a spring member, a method for manufacturing the metal foil for a spring member, and a spring member for an electronic device will be described with reference to FIGS. 1 to 16 .
  • Metal foil for spring members A metal foil for a spring member will be described with reference to FIG.
  • the region for forming the spring member is the first region 10R1.
  • the first region 10R1 has a square shape with a side length of 300 mm.
  • the metal foil 10 is a rolled material made of a metal having a hardness high enough to achieve the spring load or deflection required for the spring member.
  • the metal foil 10 has a strip shape extending along the rolling direction DR.
  • the direction perpendicular to the rolling direction DR is the width direction DW.
  • the thickness T of the metal foil 10 is, for example, 150 ⁇ m or less, preferably 50 ⁇ m or more and 120 ⁇ m or less.
  • the thickness of the metal foil 10 is uniform such that the ratio of the difference between the maximum thickness T and the minimum thickness T of the metal foil 10 to the average thickness of the substrate is 3% or less. have.
  • the metal foil 10 satisfies Condition 1 below.
  • Condition 1 The absolute value of the difference value obtained by subtracting the standard deviation of the thickness in the width direction DW from the standard deviation of the thickness in the rolling direction DR is 0.15 ⁇ m or less, and the first maximum value to the second The absolute value of the difference value obtained by subtracting the maximum value is 0.8 ⁇ m or less.
  • the standard deviation of the thickness in the rolling direction DR is the first standard deviation
  • the standard deviation of the thickness in the width direction DW is the second standard deviation.
  • the absolute value of the difference value obtained by subtracting the second standard deviation from the first standard deviation is the first absolute value.
  • the first standard deviation is the standard deviation in thickness at each point on a straight line extending along the rolling direction DR.
  • the second standard deviation is the standard deviation of the thickness at each point on a straight line extending along the width direction DW.
  • the first maximum value is the maximum thickness in the rolling direction DR.
  • the second maximum value is the maximum thickness in the width direction DW.
  • the absolute value of the difference value obtained by subtracting the second maximum value from the first maximum value is the fourth absolute value.
  • the first absolute value is 0.15 ⁇ m or less and the fourth absolute value is 0.8 ⁇ m or less, variations in the thickness of the metal foil 10 can be suppressed. Therefore, in the spring member formed by wet etching the metal foil 10, variation in spring width in the thickness direction is suppressed.
  • the metal foil 10 has a front surface 10F and a back surface 10B opposite to the front surface 10F.
  • the thickness T of the metal foil 10 is the distance between the front surface 10F and the back surface 10B.
  • the maximum and minimum thickness values in the rolling direction DR are specified as follows. That is, a strip-shaped first measurement region R1R extending along the rolling direction DR is set in the first region 10R1.
  • the length of the first measurement region R1R in the width direction DW is, for example, 20 mm.
  • the largest value is the maximum value
  • the smallest value is the minimum value.
  • the maximum and minimum thickness values in the width direction DW are specified as follows. That is, a second measurement region R1W having a belt shape extending along the width direction DW is set in the first region 10R1.
  • the length of the second measurement region R1W in the rolling direction DR is, for example, 20 mm.
  • the largest value is the maximum value
  • the smallest value is the minimum value.
  • the variation in thickness in the rolling direction DR becomes smaller as the material for manufacturing the metal foil 10 is repeatedly rolled. Therefore, from the viewpoint of suppressing variations in the rolling direction DR, it is preferable to increase the number of times of rolling performed when manufacturing the metal foil 10 .
  • the metal foil 10 for the spring member needs to have a predetermined thickness or more from the viewpoint of achieving the spring load or deflection required for the spring member. Therefore, in manufacturing the metal foil 10 for the spring member, it is difficult to roll the metal foil 10 the number of times that can eliminate the variation in the thickness in the rolling direction DR.
  • the metal foil 10 since the thickness variation in the width direction DW is governed by the surface condition of the rolling rollers used for rolling, the variation tends to be suppressed regardless of the number of rollings. . Therefore, the metal foil 10 tends to have the second standard deviation less than or equal to the first standard deviation. In addition, the metal foil 10 tends to have a second maximum value that is less than or equal to the first maximum value.
  • the thinner the portion of the metal foil 10 the more A short time is required until the through holes are formed.
  • the through-holes formed in the metal foil 10 form a flow of the etchant between the front surface 10F and the back surface 10B of the metal foil 10, while the metal foil 10 flows in a direction perpendicular to the direction of penetration. contributes little to the progress of isotropic etching.
  • the first standard deviation and the first maximum value are used as indicators of the likelihood of isotropic etching in the rolling direction DR.
  • the second standard deviation and the second maximum value can be used as indicators of the likelihood of isotropic etching occurring in the width direction DW.
  • the first absolute value and the fourth absolute value can be used as indicators of the susceptibility of isotropic etching in the rolling direction DR to the width direction DW in which isotropic etching is less likely to occur.
  • the dispersion of the thickness T in the rolling direction DR is the first dispersion. That is, the first variance is the variance in the thickness T at each point on one straight line along the rolling direction DR.
  • the dispersion of the thickness T in the width direction DW is the second dispersion. That is, the second dispersion is the dispersion in the thickness T at each point on one straight line along the width direction DW.
  • the difference value between the maximum value and the minimum value of the thickness T in the rolling direction DR is the first difference value. That is, the thickness T at each point on one straight line along the rolling direction DR is the first thickness, and the difference value between the maximum value and the minimum value of the first thickness is the first difference value. is.
  • the difference value between the maximum value and the minimum value of the thickness T in the width direction DW is the second difference value. That is, the thickness at each point on one straight line along the width direction DW is the second thickness, and the difference value between the maximum value and the minimum value of the second thickness is the second difference value.
  • the metal foil 10 preferably satisfies at least one of conditions 2 to 5 below. That is, the metal foil 10 may satisfy only one of the conditions 2 to 5, or may satisfy two or more conditions selected from the conditions 2 to 5.
  • a difference value obtained by subtracting the second standard deviation from the first standard deviation is 0.15 ⁇ m or less.
  • a difference value obtained by subtracting the second standard deviation from the first standard deviation is the third difference value.
  • a difference value obtained by subtracting the second dispersion from the first dispersion is 0.15 ⁇ m 2 or less.
  • a difference value obtained by subtracting the second variance from the first variance is the fourth difference value.
  • the absolute value of the difference value obtained by subtracting the second difference value from the first difference value is 0.8 ⁇ m or less.
  • the absolute value of the difference value obtained by subtracting the second difference value from the first difference value is the third absolute value.
  • the metal foil 10 is made of a metal having a hardness high enough to achieve the spring load or deflection required for the spring member manufactured using the metal foil 10.
  • Metal foil 10 may be made of, for example, a stainless alloy or a copper alloy.
  • the stainless alloy may be, for example, a stainless alloy specified in JIS G 4313:2011 "Stainless steel strip for springs”.
  • the copper alloy may be, for example, a copper alloy specified in JIS H 3130:2018 "Beryllium copper, titanium copper, phosphor bronze, nickel-tin copper and nickel silver plates and strips for springs".
  • the metal foil 10 preferably contains one selected from the group consisting of stainless steel alloy, beryllium copper, nickel tin copper, phosphor bronze, Corson alloy, and titanium copper. As a result, the metal foil 10 can have high hardness, so that the durability of the spring member formed from the metal foil 10 can be enhanced.
  • FIG. 2 schematically shows the planar structure of the spring member viewed from a viewpoint facing the plane on which the spring member spreads.
  • the spring member 20 includes an outer frame portion 21, an inner frame portion 22, and a spring portion 23.
  • the spring member 20 is a leaf spring.
  • the external shape of the outer frame portion 21 has an octagonal shape
  • the external shape of the inner frame portion 22 has a circular shape.
  • the spring portion 23 has a broken line shape.
  • the outer shape of the outer frame portion 21 and the outer shape of the inner frame portion 22 are changed according to the shapes of other members provided in the drive mechanism of the camera module on which the spring member 20 is mounted, that is, members other than the spring member 20. you can
  • the inner frame portion 22 is positioned within the area defined by the outer frame portion 21 .
  • the spring portion 23 connects the inner frame portion 22 to the outer frame portion 21 .
  • a pair of spring members 20 are arranged to sandwich the lens in the optical axis direction of the lens.
  • a pair of spring members 20 are arranged so as to sandwich the imaging sensor in the optical axis direction of the lens.
  • the length in the direction orthogonal to the direction in which each side of the outer frame portion 21 extends is the width of the spring member 20 in the outer frame portion 21 in a plan view facing the plane on which the spring member 20 spreads. be.
  • the length of the inner frame portion 22 along the radial direction of the inner frame portion 22 is the width of the spring member 20 in the inner frame portion 22 in a plan view facing the plane on which the spring member 20 extends.
  • the line width of the folding line of the spring portion 23 in plan view is the width of the spring portion 23, that is, the spring width SW.
  • the electronic device on which the camera module having the spring member 20 is mounted may be, for example, a mobile phone terminal, a smart phone, a tablet terminal, a laptop personal computer, or the like.
  • the method for manufacturing metal foil 10 includes rolling a base material, preparing a plurality of rolled materials obtained by rolling the base material, and then selecting metal foil 10 from the plurality of rolled materials. By sorting the metal foil 10 , a rolled material that satisfies the condition 1 described above is selected as the metal foil 10 from a plurality of rolled materials. Moreover, the method for manufacturing the metal foil 10 may further include at least one of the conditions 2 to 5 described above in the conditions for sorting the metal foil 10 from a plurality of rolled materials. That is, the conditions for selecting the metal foil 10 may include only one of the conditions 2 to 5, or may include two or more conditions selected from the conditions 2 to 5.
  • FIG. 3 schematically shows a process of rolling a base material for forming the metal foil 10.
  • FIG. 4 schematically shows the process of annealing the rolled material.
  • a strip-shaped base material BM1 extending along the rolling direction DR is prepared.
  • the base material BM1 is directed toward a rolling device RE equipped with a pair of rolling rollers RL1 and RL2 so that the rolling direction DR of the base material BM1 and the conveying direction of conveying the base material BM1 are parallel. transport it.
  • the base material BM1 When the base material BM1 reaches between the pair of rolling rollers RL1 and RL2, the base material BM1 is rolled by the pair of rolling rollers RL1 and RL2. As a result, the thickness of the base material BM1 is reduced and the base material BM1 is stretched along the conveying direction, so that the rolled material BM2 can be obtained.
  • the rolled material BM2 is wound around a core C. As shown in FIG. Note that the rolled material BM2 may be handled in a state of being stretched into a belt shape without being wound around the core C. As shown in FIG.
  • the thickness of the rolled material BM2 is, for example, 150 ⁇ m or less, preferably 50 ⁇ m or more and 120 ⁇ m or less.
  • the rolled material BM2 formed by rolling the base material BM1 is annealed using the annealing apparatus AE in order to remove the residual stress accumulated inside the rolled material BM2.
  • the rolled material BM3 after annealing is obtained. Since the rolling material BM2 is annealed while the rolling material BM2 is pulled along the conveying direction, it is possible to obtain the rolling material BM3 having a reduced residual stress compared to the rolling material BM2 before annealing.
  • the material forming the base material BM1 includes any selected from the group consisting of stainless steel alloys, beryllium copper, nickel tin copper, phosphor bronze, Corson alloys, and titanium copper. good. Since these metals have a high hardness, in other words, they are less likely to stretch than metals with a lower hardness, i.e. softer metals, variations in the degree of rolling tend to occur within the base material BM1. In addition, variation in the degree of rolling tends to occur between the plurality of base materials BM1 as well. Therefore, the selection conditions for the metal foil 10 formed by rolling the base material BM1 include the condition 1 described above, which is highly effective.
  • FIG. 5 schematically shows the process of measuring the thickness of the metal foil 10 formed through the rolling process.
  • the thickness of the first region for forming the spring member 20 in each rolled material BM3 is measured using the measuring device ME. do.
  • the measuring device ME. do Thereby, at least the above-described first absolute value is calculated for the first region of each rolled material BM3.
  • the rolled materials BM3 that satisfy the condition 1 described above are selected as the metal foils 10, and the selected metal foils 10 are used for manufacturing the spring members 20.
  • FIG. 5 schematically shows the process of measuring the thickness of the metal foil 10 formed through the rolling process.
  • first dispersion, second dispersion, second absolute value, and third absolute value may be calculated for the first region of each rolled material BM3.
  • At least one of the conditions 2 to 5 described above may be added to the conditions for selecting the metal foil 10 from the rolled material BM3. That is, as the conditions for sorting the metal foil 10 from the rolled material BM3, only one of the conditions 2 to 5 may be added, or two or more selected from the conditions 2 to 5 may be added. .
  • a contact-type measuring device or a non-contact-type measuring device may be used as the measuring device ME.
  • a length gauge can be used for the contact-type measuring device.
  • a measuring device that includes an irradiation unit that emits X-rays and a detection unit that detects fluorescent X-rays can be used.
  • the irradiation section is used to irradiate the metal foil 10 with X-rays, and the fluorescent X-rays emitted from the metal foil 10 are detected by the detection section. Since the intensity of the fluorescent X-rays detected by the detection unit depends on the thickness of the metal foil 10, it is possible to grasp the thickness of the metal foil 10 from the intensity of the fluorescent X-rays.
  • the first standard deviation, the second standard deviation, the first variance, the second variance, the first difference value, and the second difference value can be changed by changing at least one of the following: be.
  • the pressing force between rolling rollers RL1 and RL2, the temperature of rolling rollers RL1 and RL2, and the number of rolling rollers RL1 and RL2 You can change the value. That is, only one of the rotational speed of rolling rollers RL1 and RL2, the pressing force between rolling rollers RL1 and RL2, the temperature of rolling rollers RL1 and RL2, and the number of rolling rollers RL1 and RL2 is changed. good too.
  • any two or more of the rotational speed of rolling rollers RL1 and RL2, the pressing force between rolling rollers RL1 and RL2, the temperature of rolling rollers RL1 and RL2, and the number of rolling rollers RL1 and RL2 are changed. may be
  • a method of manufacturing the spring member 20 will be described with reference to FIGS. As shown in FIG. 6, when manufacturing the spring member 20, first, a first resist layer PR1 is formed on the front surface 10F of the metal foil 10, and a second resist layer PR2 is formed on the rear surface 10B. In the example described with reference to FIGS. 6 to 10, the resist layers PR1 and PR2 are made of positive photoresist, but the resist layers PR1 and PR2 are made of negative photoresist. good too.
  • a first photomask PM1 is placed on the first resist layer PR1, and a second photomask PM2 is placed on the second resist layer PR2. Then, the first resist layer PR1 is exposed using the first photomask PM1, and the second resist layer PR2 is exposed using the second photomask PM2.
  • the exposed resist layers PR1 and PR2 are developed to form a first resist mask RM1 from the first resist layer PR1 and a second resist mask RM2 from the second resist layer PR2. Form.
  • the metal foil 10 is wet-etched using the resist masks RM1 and RM2. At this time, the metal foil 10 is etched from both the front surface 10F and the back surface 10B. As a result, a through-hole is formed in the metal foil 10 through the metal foil 10 along the thickness direction, and as a result, the outer frame portion 21, the inner frame portion 22 separated from the outer frame portion 21, and the inner frame portion A spring portion 23 connecting 22 to the outer frame portion 21 is formed.
  • the metal foil 10 satisfies Condition 1
  • the metal foil 10 satisfies the condition 1
  • the variation in the spring width in the thickness direction of the spring member 20 is within a predetermined range without changing the wet etching conditions according to the variation in the thickness of the metal foil 10. It is possible to obtain a spring member 20 suppressed to . Therefore, in the manufacture of the spring member 20, it is not necessary to change the wet etching conditions according to the thickness variations, so it is possible to eliminate errors in the combination of the thickness variations and the wet etching conditions. be.
  • the spring member 20 can be obtained by cutting out the spring member 20 from the metal foil 10 after etching.
  • Example 1 Examples and comparative examples will be described with reference to FIGS. 11 to 16 .
  • Example 1 First, a rolled material was formed by subjecting a base material made of titanium copper to a rolling process. Then, the rolled material was subjected to an annealing process. As a result, a metal foil of Example 1 having a designed thickness of 120 ⁇ m was obtained.
  • Example 1 when rolling the base material, while changing at least one of the rolling speed of the rolling rollers, the pressing force between the rolling rollers, the temperature of the rolling rollers, and the number of rolling rollers, it Metal foils of Examples 2 to 8 and Comparative Examples 1 to 3 were obtained in the same manner as in Example 1 except for the above.
  • a square metal foil 30 for measurement with a side length of 300 mm was cut out from the metal foil of each example and each comparative example.
  • the direction in which the first side of each metal foil 30 for measurement extends is parallel to the rolling direction DR of the metal foil, and the direction in which the second side of each metal foil 30 for measurement extends and the width direction DW of the metal foil
  • a metal foil 30 for measurement was cut out from each metal foil such that the .
  • a measurement area 30A having a square shape including the center of the metal foil 30 for measurement and a peripheral area 30B having a rectangular frame shape surrounding the measurement area 30A were set.
  • the width W3 of the peripheral region 30B was set to 10 mm.
  • a first measurement region R1R having a strip shape extending along the rolling direction DR and a second measurement region R1W having a strip shape extending along the width direction DW were set within the measurement region 30A.
  • the width W1 which is the length in the width direction DW in the first measurement region R1R
  • the width W2 which is the length in the rolling direction DR in the second measurement region R1W, was set to 20 mm.
  • the thickness of the metal foil was measured in all the regions obtained by dividing the first measurement region R1R into 14 equal parts in the rolling direction DR.
  • the thickness of the metal foil 30 for measurement was measured in all the regions obtained by dividing the second measurement region R1W into 14 equal parts in the width direction DW.
  • the thickness was measured at the point where the diagonal lines connecting the two opposing corners intersect. That is, the thickness was measured at each point located on the same straight line.
  • the thickness of each metal foil for measurement was measured at 14 points in the rolling direction DR and 14 points in the width direction DW. However, in the region where the first measurement region R1R and the second measurement region R1W intersect, the measurement point in the rolling direction DR and the measurement point in the width direction DW are the same point, so the total of the measurement metal foils is Thickness measurements were taken at 27 points. The measured value was then rounded to the second decimal place, thereby providing the thickness measurement for each region.
  • the first standard deviation, the second standard deviation, the first variance, and the second variance were calculated.
  • the 3rd difference value which is the difference value which subtracted the 2nd standard deviation from the 1st standard deviation
  • the 1st absolute value which is the absolute value of the 3rd difference value were calculated.
  • a fourth difference value which is a difference value obtained by subtracting the second dispersion from the first dispersion
  • a second absolute value which is the absolute value of the fourth difference value
  • a contact-type thickness measuring device (MH-15M manufactured by Nikon Corporation) was used to measure the thickness of the metal foil 30 for measurement.
  • the thickness measuring machine counter attached to the measuring instrument was turned on while the probe was in contact with the bottom plate, and the zero point was adjusted by this. Thereafter, the metal foil for measurement was placed between the probe and the bottom plate, and the thickness of each portion of the metal foil for measurement was measured by lowering the probe.
  • a resist mask having a plurality of openings corresponding to the shape of the spring member 20 is formed on the front and back surfaces of each metal foil 30 for measurement. and wet etched from both.
  • unit regions each corresponding to one spring member 20 and having a square shape of 20 mm square are arranged in a grid pattern so as to be laid out in both the rolling direction DR and the width direction DW. did. Therefore, in each resist mask, unit patterns corresponding to the shape of one spring member 20 are arranged in a grid pattern so as to be laid out in both the rolling direction DR and the width direction DW.
  • the opening width of the resist pattern corresponding to the gap between the line segments parallel to each other in the spring portion 23 is set to 100 ⁇ m. and the pitch of adjacent line segments was set to 200 ⁇ m.
  • the pitch between adjacent line segments refers to the distance between center lines set in each line segment in parallel and adjacent line segments in designing an etching pattern.
  • each resist mask in a plan view facing the surface of the metal foil 30 for measurement, the entirety of one unit pattern of the resist mask located on the surface of the metal foil 30 for measurement is the same as that of the metal foil 30 for measurement.
  • a plurality of unit patterns were formed on each resist mask so as to overlap the whole of one unit pattern on the resist mask located on the back surface.
  • etching patterns corresponding to the shape of the spring member 20 were formed on the metal foil 30 for measurement.
  • the design value of the spring width in plan view of the spring portion 23 was set to 30 ⁇ m.
  • the spring portion 23 of the spring member 20 present in each measurement metal foil 30 after etching was embedded using a synthetic resin. Then, by cutting the embedded spring portion 23 using a microtome, a cross section of the spring portion 23 on a plane perpendicular to the direction in which the line segment included in the spring portion extends was exposed.
  • the spring width was measured at the following positions. That is, in the spring portion 23, the spring width on the front surface of the metal foil 30 for measurement, the spring width on the back surface of the metal foil 30 for measurement, and the plane that divides the spring portion 23 into four equal parts in the thickness direction are:
  • the spring width was measured on three planes sandwiched between the front and back surfaces of the foil 30 . That is, when the depth on the surface of the metal foil 30 for measurement is set to 0 ⁇ m, the etching pattern shows the spring width at a depth of 0 ⁇ m, the spring width at a depth of approximately 30 ⁇ m, and the depth at a depth of approximately 60 ⁇ m.
  • Spring width, spring width at a depth of about 90 ⁇ m and spring width at a depth of about 120 ⁇ m were measured.
  • a digital microscope manufactured by Keyence Corporation, VHX-7000 was used, and the magnification of the objective lens in the digital microscope was set to 200 times.
  • the first standard value, the standard deviation of the spring width, the second standard value, the percentage of 3 ⁇ with respect to the average value of the spring width, and , the variance of the spring width was calculated.
  • the spring widths of all the springs included in the spring portion 23 were measured at the above five locations in the thickness direction. Then, the maximum value and the minimum value were specified for each spring, the difference value was calculated by subtracting the minimum value from the maximum value, and the average value of the spring width was calculated. Next, the average value of the maximum values was calculated from the specified maximum values for all the springs, and the average value was set as the maximum spring width value for the metal foil 30 for measurement. In addition, the average value of the minimum values was calculated from the specified minimum values for all springs, and the minimum value was set as the minimum value of the spring width of the metal foil 30 for measurement.
  • An average value of the difference values was calculated from the difference values calculated for all the springs, and the average value was set as the difference value of the metal foil 30 for measurement. Further, an average value was calculated for the average values calculated for all the springs, and the average value was set as the average value of the metal foil 30 for measurement.
  • the first standard value, the standard deviation of the spring width, the second standard value, and the percentage of 3 ⁇ with respect to the average value of the spring width was calculated.
  • the average value set for each metal foil 30 for measurement was used.
  • the first standard value is the percentage of the difference value of the spring width with respect to the design value of the spring width.
  • a difference value set for each metal foil 30 for measurement was used to calculate the first standard value.
  • the second standard value is the percentage of the standard deviation of the spring width with respect to the design value of the spring width.
  • the standard deviation of the spring width was calculated from the thickness measured at five locations for each spring.
  • the average value of the standard deviations was calculated from the standard deviations calculated for all the springs, and the average value was set as the standard deviation of the spring width of the metal foil 30 for measurement.
  • the standard deviation set for each metal foil 30 for measurement was used to calculate the second standard value.
  • the spring width dispersion was calculated from the thickness measured at five locations for each spring.
  • the average value of the variances was calculated from the variances calculated for all the springs, and the average value was set as the variance of the spring widths of the metal foil 30 for measurement.
  • Evaluation results for the thickness of the metal foil 30 for measurement and the spring width of the etching pattern will be described with reference to FIGS. 12 to 14 .
  • FIG. 12 shows the result of measuring the thickness of each metal foil 30 for measurement and the result of measuring the spring width of the etching pattern formed by wet etching each metal foil 30 for measurement.
  • the fourth absolute value is the absolute value of the difference obtained by subtracting the maximum thickness in the width direction DW from the maximum thickness in the rolling direction DR.
  • the first standard deviation is 0.313 ⁇ m in Example 1, 0.291 ⁇ m in Example 2, 0.389 ⁇ m in Example 3, and 0.261 ⁇ m in Example 4. was found to be In addition, the first standard deviation was 0.516 ⁇ m in Example 5, 0.421 ⁇ m in Example 6, 0.532 ⁇ m in Example 7, and 0.524 ⁇ m in Example 8. was taken. The first standard deviation was found to be 0.766 ⁇ m in Comparative Example 1, 0.571 ⁇ m in Comparative Example 2, and 0.498 ⁇ m in Comparative Example 3.
  • the second standard deviation was found to be 0.243 ⁇ m in Example 1, 0.303 ⁇ m in Example 2, 0.332 ⁇ m in Example 3, and 0.184 ⁇ m in Example 4. .
  • the second standard deviation was 0.447 ⁇ m in Example 5, 0.311 ⁇ m in Example 6, 0.420 ⁇ m in Example 7, and 0.412 ⁇ m in Example 8. was taken.
  • the second standard deviation was found to be 0.260 ⁇ m in Comparative Example 1, 0.218 ⁇ m in Comparative Example 2, and 0.307 ⁇ m in Comparative Example 3.
  • the third difference value is 0.069 ⁇ m in Example 1, ⁇ 0.012 ⁇ m in Example 2, 0.057 ⁇ m in Example 3, and 0.077 ⁇ m in Example 4. was accepted. Further, it was found that the third difference value was 0.068 ⁇ m in Example 5, 0.110 ⁇ m in Example 6, 0.112 ⁇ m in Example 7, and 0.111 ⁇ m in Example 8. was taken. Also, the third difference value was found to be 0.507 ⁇ m in Comparative Example 1, 0.353 ⁇ m in Comparative Example 2, and 0.191 ⁇ m in Comparative Example 3.
  • the first absolute value was 0.069 ⁇ m in Example 1, 0.012 ⁇ m in Example 2, 0.057 ⁇ m in Example 3, and 0.077 ⁇ m in Example 4. was taken. Also, the first absolute value was 0.068 ⁇ m in Example 5, 0.110 ⁇ m in Example 6, 0.112 ⁇ m in Example 7, and 0.111 ⁇ m in Example 8. was taken. Also, the first absolute value was found to be 0.507 ⁇ m in Comparative Example 1, 0.353 ⁇ m in Comparative Example 2, and 0.191 ⁇ m in Comparative Example 3.
  • the first absolute value is 0.15 ⁇ m or less, while in the metal foils 30 for measurement of Comparative Examples 1 to 3, the first absolute value is 0.15 ⁇ m or less. Absolute values were found to be greater than 0.15 ⁇ m. Specifically, in the metal foils 30 for measurement of Examples 1 to 8, the first absolute value is 0.012 ⁇ m or more and 0.112 ⁇ m or less, while the metal foils 30 for measurement of Comparative Examples 1 to 3 are , the first absolute value was found to be 0.191 ⁇ m or more and 0.507 ⁇ m or less. In addition, in the measurement metal foils 30 of Example 1, Examples 3 to 8, and the measurement metal foils 30 of Comparative Examples 1 to 3, the first standard deviation is larger than the second standard deviation. So, in Example 2, the first standard deviation was found to be smaller than the second standard deviation.
  • the first dispersion is 0.098 ⁇ m 2 in Example 1, 0.085 ⁇ m 2 in Example 2, 0.151 ⁇ m 2 in Example 3, and 0.068 ⁇ m 2 in Example 4. was recognized.
  • the first dispersion was found to be 0.266 ⁇ m 2 in Example 5, 0.177 ⁇ m 2 in Example 6, 0.283 ⁇ m 2 in Example 7, and 0.274 ⁇ m 2 in Example 8. Admitted.
  • the primary dispersion was found to be 0.587 ⁇ m 2 in Comparative Example 1, 0.326 ⁇ m 2 in Comparative Example 2, and 0.248 ⁇ m 2 in Comparative Example 3.
  • the second dispersion was found to be 0.059 ⁇ m 2 in Example 1, 0.092 ⁇ m 2 in Example 2, 0.110 ⁇ m 2 in Example 3, and 0.034 ⁇ m 2 in Example 4. Admitted.
  • the second dispersion was found to be 0.200 ⁇ m 2 in Example 5, 0.096 ⁇ m 2 in Example 6, 0.176 ⁇ m 2 in Example 7, and 0.170 ⁇ m 2 in Example 8. Admitted.
  • the secondary dispersion was found to be 0.067 ⁇ m 2 in Comparative Example 1, 0.048 ⁇ m 2 in Comparative Example 2, and 0.095 ⁇ m 2 in Comparative Example 3.
  • the fourth difference value is 0.039 ⁇ m 2 in Example 1, ⁇ 0.007 ⁇ m 2 in Example 2, 0.041 ⁇ m 2 in Example 3, and 0.034 ⁇ m in Example 4. 2 was found.
  • the fourth difference value is 0.066 ⁇ m 2 in Example 5, 0.081 ⁇ m 2 in Example 6, 0.107 ⁇ m 2 in Example 7, and 0.104 ⁇ m 2 in Example 8. was accepted. Further, it was found that the fourth difference value was 0.520 ⁇ m 2 in Comparative Example 1, 0.278 ⁇ m 2 in Comparative Example 2, and 0.154 ⁇ m 2 in Comparative Example 3.
  • the second absolute value is 0.039 ⁇ m 2 in Example 1, 0.007 ⁇ m 2 in Example 2, 0.041 ⁇ m 2 in Example 3, and 0.034 ⁇ m 2 in Example 4.
  • the second absolute value is 0.066 ⁇ m 2 in Example 5, 0.081 ⁇ m 2 in Example 6, 0.107 ⁇ m 2 in Example 7, and 0.104 ⁇ m 2 in Example 8. was accepted.
  • the second absolute value was found to be 0.520 ⁇ m 2 in Comparative Example 1, 0.278 ⁇ m 2 in Comparative Example 2, and 0.154 ⁇ m 2 in Comparative Example 3.
  • the second absolute value is 0.15 ⁇ m 2 or less, while in the metal foils 30 for measurement of Comparative Examples 1 to 3, the second absolute value is 0.15 ⁇ m 2 or less. 2 absolute value was found to be greater than 0.15 ⁇ m 2 . Specifically, in the measurement metal foils 30 of Examples 1 to 8, the second absolute value is 0.007 ⁇ m 2 or more and 0.107 ⁇ m 2 or less, while the measurement metal foils of Comparative Examples 1 to 3 It was found that the second absolute value at the foil 30 was 0.154 ⁇ m 2 or more and 0.520 ⁇ m 2 or less.
  • the third absolute value was 0.2 ⁇ m in Example 1, 0 ⁇ m in Example 2, 0.3 ⁇ m in Example 3, and 0.3 ⁇ m in Example 4. .
  • the third absolute value was 0.5 ⁇ m in Example 5, 0.4 ⁇ m in Example 6, 0.2 ⁇ m in Example 7, and 0.4 ⁇ m in Example 8. was taken.
  • the third absolute value was found to be 1.6 ⁇ m in Comparative Example 1, 1.2 ⁇ m in Comparative Example 2, and 0.9 ⁇ m in Comparative Example 3.
  • the fourth absolute value was found to be 0 ⁇ m in Example 1, 0 ⁇ m in Example 2, 0.4 ⁇ m in Example 3, and 0 ⁇ m in Example 4.
  • the fourth absolute value was found to be 0.8 ⁇ m in Example 5, 0.5 ⁇ m in Example 6, 0.4 ⁇ m in Example 7, and 0.6 ⁇ m in Example 8. .
  • the fourth absolute value was found to be 1.5 ⁇ m in Comparative Example 1, 1.1 ⁇ m in Comparative Example 2, and 0.9 ⁇ m in Comparative Example 3.
  • the difference in spring width is 8.4 ⁇ m in Example 1, 8.4 ⁇ m in Example 2, 8.2 ⁇ m in Example 3, and 7.0 ⁇ m in Example 4. Admitted. Further, the difference in spring width is 7.5 ⁇ m in Example 5, 9.1 ⁇ m in Example 6, 8.4 ⁇ m in Example 7, and 9.7 ⁇ m in Example 8. Admitted. Further, the difference in spring width was found to be 12.5 ⁇ m in Comparative Example 1, 13.7 ⁇ m in Comparative Example 2, and 14.3 ⁇ m in Comparative Example 3.
  • the first standard value is 27.9% in Example 1, 28.0% in Example 2, 27.4% in Example 3, and 23.1% in Example 4. One thing was recognized. In addition, the first standard value is 24.9% in Example 5, 30.3% in Example 6, 28.1% in Example 7, and 32.3% in Example 8. One thing was recognized. The first standard value was found to be 41.6% in Comparative Example 1, 45.6% in Comparative Example 2, and 47.5% in Comparative Example 3.
  • the standard deviation of the spring width was found to be 2.0 ⁇ m in Example 1, 1.7 ⁇ m in Example 2, 1.9 ⁇ m in Example 3, and 1.4 ⁇ m in Example 4. Ta. The standard deviation of the spring width was found to be 1.4 ⁇ m in Example 5, 1.9 ⁇ m in Example 6, 2.0 ⁇ m in Example 7, and 2.1 ⁇ m in Example 8. Ta. The standard deviation of the spring width was found to be 2.5 ⁇ m in Comparative Example 1, 2.6 ⁇ m in Comparative Example 2, and 2.6 ⁇ m in Comparative Example 3.
  • the second standard value is 6.6% in Example 1, 5.7% in Example 2, 6.3% in Example 3, and 4.7% in Example 4. was accepted.
  • the second standard value is 4.7% in Example 5, 6.3% in Example 6, 6.6% in Example 7, and 7.1% in Example 8. was accepted.
  • the second standard value was found to be 8.2% in Comparative Example 1, 8.5% in Comparative Example 2, and 8.5% in Comparative Example 3.
  • the percentage of 3 ⁇ to the average spring width was 17.8% in Example 1, 16.0% in Example 2, 18.3% in Example 3, and 13.5% in Example 4. 0% was found.
  • the percentage of 3 ⁇ to the average spring width was 13.0% in Example 5, 18.1% in Example 6, 18.3% in Example 7, and 18.3% in Example 8. was found to be 8%.
  • the percentage of 3 ⁇ to the average spring width was found to be 24.8% in Comparative Example 1, 26.4% in Comparative Example 2, and 22.0% in Comparative Example 3.
  • the spring width variance is 3.9 ⁇ m 2 in Example 1, 2.9 ⁇ m 2 in Example 2, 3.6 ⁇ m 2 in Example 3, and 2.0 ⁇ m 2 in Example 4 . was accepted.
  • the spring width variance is 2.0 ⁇ m 2 in Example 5, 3.6 ⁇ m 2 in Example 6, 4.0 ⁇ m 2 in Example 7, and 4.5 ⁇ m 2 in Example 8. was accepted.
  • the spring width variance was found to be 6.0 ⁇ m 2 in Comparative Example 1, 6.5 ⁇ m 2 in Comparative Example 2, and 6.6 ⁇ m 2 in Comparative Example 3.
  • the metal foils for spring members of Examples 1 to 8 compared to the metal foils for spring members of Comparative Examples 1 to 3, the first standard value, the standard deviation, the second standard value, and the average The 3 ⁇ percentage of the values and the variance were all found to be small. Therefore, according to the metal foils for spring members of Examples 1 to 8, the variation in spring width in the thickness direction is suppressed as compared with the metal foils for spring members of Comparative Examples 1 to 3. I can say.
  • FIG. 13 is a graph showing the relationship between the first absolute value and the spring width difference value.
  • the difference value in the spring width of the etching pattern is found to be within the range of 6.0 ⁇ m or more and 10.0 ⁇ m or less. Ta.
  • the differential value in the spring width of the etched pattern was found to exceed 12 ⁇ m. As described above, it was recognized that the variation in the spring width of the etching pattern was greatly different with the boundary of 0.15 ⁇ m for the first absolute value.
  • FIG. 14 is a graph showing the relationship between the fourth absolute value and the spring width difference value.
  • the difference value in the spring width of the etching pattern is found to be within the range of 6.0 ⁇ m or more and 10.0 ⁇ m or less. Ta.
  • the fourth absolute value was larger than 0.8 ⁇ m, the differential value in the spring width of the etched pattern was found to exceed 12 ⁇ m. As described above, it was recognized that the variation in the spring width of the etching pattern was greatly different with the boundary of 0.8 ⁇ m for the fourth absolute value.
  • FIG. 15 is a graph showing the relationship between the second absolute value and the spring width difference value.
  • the difference value in the spring width of the etching pattern is found to be within the range of 6.0 ⁇ m or more and 10.0 ⁇ m or less. was taken.
  • the second absolute value was greater than 0.15 ⁇ m 2
  • the differential value in the spring width of the etched pattern was found to exceed 12 ⁇ m. As described above, it was recognized that the variation in the spring width of the etching pattern was greatly different with the boundary of 0.15 ⁇ m 2 for the second absolute value.
  • FIG. 16 is a graph showing the relationship between the third absolute value and the spring width difference value.
  • the third absolute value is 0.8 ⁇ m or less
  • the difference value in the spring width of the etching pattern is found to be within the range of 6.0 ⁇ m or more and 10.0 ⁇ m or less. Ta.
  • the third absolute value was larger than 0.8 ⁇ m
  • the differential value in the spring width of the etched pattern was found to exceed 12 ⁇ m.
  • the metal foil for spring members As described above, according to one embodiment of the metal foil for spring members, the method for manufacturing the metal foil for spring members, and the spring member for electronic devices, the following effects can be obtained. (1) Since the metal foil 10 satisfies the condition 1, variations in the thickness of the metal foil 10 can be suppressed. Therefore, in the spring member 20 formed by wet etching the metal foil 10, variation in spring width in the thickness direction is suppressed.
  • the metal foil 10 can have high hardness, the durability of the spring member 20 formed from the metal foil 10 can be enhanced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)
  • Springs (AREA)

Abstract

ばね部材用金属箔は、一辺の長さが300mmである正方形状を有し、ばね部材が形成されるための第1領域を備える。第1領域において、圧延方向における厚さの標準偏差から、圧延方向に直交する幅方向における厚さの標準偏差を減算した差分値の絶対値が、0.15μm以下である。第1領域において、第1最大値から第2最大値を減算した差分値の絶対値が、0.8μm以下である。

Description

ばね部材用金属箔、ばね部材用金属箔の製造方法、および、電子機器用ばね部材
 本開示は、ばね部材用金属箔、ばね部材用金属箔の製造方法、および、電子機器用ばね部材に関する。
 タブレット端末やスマートフォンなどのカメラ付き電子機器が備えるカメラモジュールは、オートフォーカスやズームを可能とするための駆動機構を備えている。駆動機構の型式には、レンズ駆動方式と、センサー駆動方式とが知られている。レンズ駆動方式の駆動機構は、レンズの光軸方向におけるレンズの位置を変更することを可能にする板ばねを備えている。これに対して、センサー駆動方式の駆動機構は、レンズの光軸方向におけるイメージセンサーの位置を変更することを可能にする板ばねを備えている(例えば、特許文献1,2を参照)。
特開2014-059345号公報 特開2020-170170号公報
 ところで、板ばねには、限られた容積のなかで特定のばね荷重またはたわみを満たすことが求められる。ばね荷重およびたわみに対する要求を満たすためには、板ばねは硬度の高い金属から形成される必要がある。
 ばね荷重およびたわみには、板ばねが有する幅と厚さとが大きく寄与する。板ばねの原料である金属箔は、圧延によって所定の厚さまで薄くされる。金属箔は硬度の高い金属から形成されるから、硬度の低い金属から形成される場合に比べて、圧延によって金属箔の厚さを均一化することが難しい。
 一方、板ばねは、金属箔のウェットエッチングによって形成される。金属箔における厚さのばらつきはエッチング量のばらつきを生じさせ、これによって板ばね厚さ方向において幅におけるばらつきを生じさせる。板ばねの厚さ方向における幅のばらつきは、板ばねが有するばね荷重およびたわみのばらつきを生じさせるから、厚さ方向におけるばね幅のばらつきを抑えることが求められている。
 ばね部材用金属箔の一態様は、一辺の長さが300mmである正方形状を有し、前記ばね部材が形成されるための第1領域を備える。前記第1領域において、圧延方向における厚さの標準偏差から、前記圧延方向に直交する幅方向における厚さの標準偏差を減算した差分値の絶対値が、0.15μm以下であり、前記圧延方向における前記厚さの最大値が第1最大値であり、前記幅方向における前記厚さの最大値が第2最大値であり、前記第1最大値から前記第2最大値を減算した差分値の絶対値が、0.8μm以下である。
 ばね部材用金属箔の製造方法の一態様は、母材を圧延することと、前記母材の圧延によって得られた圧延材を複数準備した後、前記複数の圧延材から前記ばね部材用金属箔を選別することと、を含む。前記圧延材において、一辺の長さが300mmである正方形状を有し、前記ばね部材が形成されるための領域が第1領域である。前記第1領域において、圧延方向における厚さの最大値が第1最大値であり、前記圧延方向に直交する幅方向における厚さの最大値が第2最大値である。前記ばね部材用金属箔を選別することでは、前記複数の圧延材から、前記第1領域において、前記圧延方向における前記厚さの標準偏差から、前記幅方向における前記厚さの標準偏差を減算した差分値の絶対値が0.15μm以下であり、かつ、前記第1最大値から前記第2最大値を減算した差分値の絶対値が、0.8μm以下である前記圧延材を前記ばね部材用金属箔として選別する。
 電子機器用ばね部材の一態様は、ばね部材用金属箔を用いた電子機器用ばね部材である。前記ばね部材用金属箔の圧延方向における厚さの標準偏差から、前記圧延方向に直交する幅方向における厚さの標準偏差を減算した差分値の絶対値が、0.15μm以下である。前記ばね部材用金属箔において、前記圧延方向における前記厚さの最大値が第1最大値であり、前記幅方向における前記厚さの最大値が第2最大値であり、前記第1最大値から前記第2最大値を減算した差分値の絶対値が、0.8μm以下である。
図1は、一実施形態におけるばね部材用金属箔の構造を示す斜視図である。 図2は、同実施形態における電子機器用ばね部材の構造を示す平面図である。 図3は、同実施形態におけるばね部材用金属箔の製造方法を説明するための工程図である。 図4は、同実施形態におけるばね部材用金属箔の製造方法を説明するための工程図である。 図5は、同実施形態におけるばね部材用金属箔の製造方法を説明するための工程図である。 図6は、図2が示す電子機器用ばね部材の製造方法を説明するための工程図である。 図7は、図2が示す電子機器用ばね部材の製造方法を説明するための工程図である。 図8は、図2が示す電子機器用ばね部材の製造方法を説明するための工程図である。 図9は、図2が示す電子機器用ばね部材の製造方法を説明するための工程図である。 図10は、図2が示す電子機器用ばね部材の製造方法を説明するための工程図である。 図11は、ばね部材用金属箔における厚さの測定箇所を説明するための平面図である。 図12は、実施例および比較例の金属箔における測定結果を示す表である。 図13は、第1絶対値とばね幅の差分値との関係を示すグラフである。 図14は、第4絶対値とばね幅の差分値との関係を示すグラフである。 図15は、第2絶対値とばね幅の差分値との関係を示すグラフである。 図16は、第3絶対値とばね幅の差分値との関係を示すグラフである。
 図1から図16を参照して、ばね部材用金属箔、ばね部材用金属箔の製造方法、および、電子機器用ばね部材における一実施形態を説明する。
 [ばね部材用金属箔]
 図1を参照して、ばね部材用金属箔を説明する。
 図1が示すばね部材用金属箔(以下、金属箔とも称する)10において、ばね部材が形成されるための領域が第1領域10R1である。第1領域10R1は、一辺の長さが300mmである正方形状を有している。金属箔10は、ばね部材に求められるばね荷重またはたわみを実現することが可能な程度に高い硬度を有した金属から形成された圧延材である。金属箔10は、圧延方向DRに沿って延びる帯状を有している。圧延方向DRに直交する方向が、幅方向DWである。金属箔10が有する厚さTは、例えば150μm以下であり、好ましくは50μm以上120μm以下である。金属箔10の厚さは、基材の厚さの平均値に対する、金属箔10の厚さTの最大値と厚さの最小値の差分値の比率が3%以下であるような均一性を有する。
 金属箔10は、以下の条件1を満たす。
 (条件1)圧延方向DRにおける厚さの標準偏差から、幅方向DWにおける厚さの標準偏差を減算した差分値の絶対値が、0.15μm以下であり、かつ、第1最大値から第2最大値を減算した差分値の絶対値が0.8μm以下である。
 圧延方向DRにおける厚さの標準偏差が第1標準偏差であり、幅方向DWにおける厚さの標準偏差が第2標準偏差である。第1標準偏差から第2標準偏差を減算した差分値の絶対値は、第1絶対値である。なお、第1標準偏差は、圧延方向DRに沿って延びる直線上の各点での厚さにおける標準偏差である。また、第2標準偏差は、幅方向DWに沿って延びる直線上の各点での厚さにおける標準偏差である。
 第1最大値は、圧延方向DRにおける厚さの最大値である。第2最大値は、幅方向DWにおける厚さの最大値である。なお、第1最大値から第2最大値を減算した差分値の絶対値は、第4絶対値である。
 第1絶対値が0.15μm以下であり、かつ、第4絶対値が0.8μm以下であるから、金属箔10における厚さのばらつきが抑えられる。そのため、金属箔10のウェットエッチングによって形成されたばね部材において、厚さ方向におけるばね幅のばらつきが抑えられる。
 金属箔10は、表面10Fと、表面10Fとは反対側の面である裏面10Bとを備えている。金属箔10の厚さTは、表面10Fと裏面10Bとの間の距離である。圧延方向DRにおける厚さの最大値および最小値は、以下のように特定される。すなわち、第1領域10R1に対して、圧延方向DRに沿って延びる帯状を有した第1測定領域R1Rが設定される。幅方向DWにおける第1測定領域R1Rの長さは、例えば20mmである。第1測定領域R1Rに含まれる直線上おける複数の点のそれぞれにおいて測定された金属箔10の厚さのうち、最も大きい値が最大値であり、最も小さい値が最小値である。
 幅方向DWにおける厚さの最大値および最小値は、以下のように特定される。すなわち、第1領域10R1に対して、幅方向DWに沿って延びる帯状を有した第2測定領域R1Wが設定される。圧延方向DRにおける第2測定領域R1Wの長さは、例えば20mmである。第2測定領域R1Wに含まれる直線上おける複数の点のそれぞれにおいて測定された金属箔10の厚さのうち、最も大きい値が最大値であり、最も小さい値が最小値である。
 金属箔10において、圧延方向DRでの厚さのばらつきは、金属箔10を製造するための材料に対して圧延が繰り返されるほど小さくなる。そのため、圧延方向DRでのばらつきを抑える観点では、金属箔10の製造時に行われる圧延の回数を増やすことが好ましい。しかしながら、ばね部材用の金属箔10には、ばね部材に求められるばね荷重またはたわみを実現する観点において、所定以上の厚さを有する必要がある。そのため、ばね部材用の金属箔10では、圧延方向DRでの厚さのばらつきを解消することが可能な回数の圧延を金属箔10の製造において行い難い。これに対して、金属箔10において、幅方向DWでの厚さのばらつきは、圧延に用いられる圧延ローラーの表面状態によって支配されるから、圧延の回数によらず、ばらつきが抑えられる傾向を有する。それゆえに、金属箔10は、第2標準偏差が、第1標準偏差以下になりやすい傾向を有する。また、金属箔10は、第2最大値が、第1最大値以下になりやすい傾向を有する。
 一方、金属箔10の厚さ方向に沿って金属箔10を貫通する貫通孔を形成するためのウェットエッチングが金属箔10に行われた場合には、金属箔10において厚さが薄い部分ほど、貫通孔が形成されるまでに要する時間が短い。そして、金属箔10に形成された貫通孔は、金属箔10の表面10Fと裏面10Bとの間におけるエッチング液の流れを形成する一方で、貫通する方向に対して垂直な方向への金属箔10の等方的なエッチングの進行にはほとんど寄与しない。これに対して、金属箔10において厚さが厚い部分ほど、貫通孔が形成されるまでに要する時間が長い。そのため、金属箔10において厚さが厚い部分は、金属箔10の等方的なエッチングの進行に大きく寄与する。
 それゆえに、金属箔10の厚さにおいて、第1標準偏差および第1最大値を、圧延方向DRにおいて等方的なエッチングの生じやすさの指標とすることが可能である。また、金属箔10の厚さにおいて、第2標準偏差および第2最大値を、幅方向DWにおいて等方的なエッチングの生じやすさの指標とすることが可能である。さらには、第1絶対値および第4絶対値を、等方的なエッチングの生じにくい幅方向DWに対する、圧延方向DRにおいて等方的なエッチングの生じやすさの指標とすることが可能である。
 この点、金属箔10が上述した条件1を満たす場合には、幅方向DWにおける等方的なエッチングの生じやすさを基準とした場合に、圧延方向DRでの等方的なエッチングの生じやすさが過剰に大きくなることが抑えられる。そのため、金属箔10のエッチングによって形成されるばね部材において、所望の形状が得られやすくなる。
 第1領域10R1において、圧延方向DRにおける厚さTの分散が第1分散である。すなわち、第1分散は、圧延方向DRに沿った1つの直線上の各点における厚さTにおける分散である。第1領域10R1において、幅方向DWにおける厚さTの分散が第2分散である。すなわち、第2分散は、幅方向DWに沿った1つの直線上の各点における厚さTにおける分散である。
 第1領域10R1において、圧延方向DRにおける厚さTの最大値と最小値との差分値が第1差分値である。すなわち、圧延方向DRに沿った1つの直線上の各点における厚さTが第1の厚さであり、第1の厚さのうちの最大値と最小値との差分値が第1差分値である。第1領域10R1において、幅方向DWにおける厚さTの最大値と最小値との差分値が第2差分値である。すなわち、幅方向DWに沿った1つの直線上の各点における厚さが第2の厚さであり、第2の厚さのうちの最大値と最小値との差分値が第2差分値である。
 金属箔10は、以下の条件2から条件5の少なくとも一方を満たすことが好ましい。すなわち、金属箔10は、条件2から条件5のうちの1つのみを満たしてもよいし、条件2から条件5から選択される2つ以上を満たしてもよい。
 (条件2)第1分散から第2分散を減算した差分値の絶対値が、0.15μm以下である。
 第1分散から第2分散を減算した差分値の絶対値は、第2絶対値である。
 (条件3)第1標準偏差から第2標準偏差を減算した差分値が、0.15μm以下である。
 第1標準偏差から第2標準偏差を減算した差分値が、第3差分値である。
 (条件4)第1分散から第2分散を減算した差分値が、0.15μm以下である。
 第1分散から第2分散を減算した差分値が、第4差分値である。
 (条件5)第1差分値から第2差分値を減算した差分値の絶対値が、0.8μm以下である。
 第1差分値から第2差分値を減算した差分値の絶対値は、第3絶対値である。
 金属箔10が条件2から条件5を満たす場合も、条件1を満たす場合と同様に、幅方向DWにおける等方的なエッチングの生じやすさを基準とした場合に、圧延方向DRでの等方的なエッチングの生じやすさが過剰に大きくなることが抑えられる。そのため、金属箔10のエッチングによって形成されるばね部材において、所望の形状が得られやすくなる。
 上述したように、金属箔10は、金属箔10を用いて製造されたばね部材に求められるばね荷重またはたわみを実現することが可能な程度に高い硬度を有した金属から形成されている。金属箔10は、例えば、ステンレス合金または銅合金から形成されてよい。ステンレス合金は、例えば、JIS G 4313:2011「ばね用ステンレス鋼帯」に規定されるステンレス合金であってよい。銅合金は、例えば、JIS H 3130:2018「ばね用のベリリウム銅、チタン銅、りん青銅、ニッケル-すず銅及び洋白の板及び条」に規定される銅合金であってよい。
 金属箔10は、ステンレス合金、ベリリウム銅、ニッケル錫銅、リン青銅、コルソン合金、および、チタン銅から構成される群から選択されるいずれかを含むことが好ましい。これにより、金属箔10が高い硬度を有することが可能であるから、金属箔10から形成されたばね部材の耐久性を高めることが可能である。
 [ばね部材]
 図2を参照して、ばね部材を説明する。図2は、ばね部材が広がる平面と対向する視点から見たばね部材の平面構造を模式的に示している。
 図2が示すように、ばね部材20は、外枠部21、内枠部22、および、ばね部23を備えている。ばね部材20は、板ばねである。図2が示す例では、外枠部21の外形は八角形状を有し、かつ、内枠部22の外形は円形状を有している。ばね部23は、折線状を有している。なお、外枠部21の外形および内枠部22の外形は、ばね部材20が搭載されるカメラモジュールの駆動機構が備える他の部材、すなわちばね部材20以外の部材が有する形状に応じて変更されてよい。内枠部22は、外枠部21が画定する領域内に位置している。ばね部23は、外枠部21に内枠部22を接続している。
 レンズ駆動方式の駆動機構では、レンズの光軸方向において、一対のばね部材20がレンズを挟むように配置される。光軸方向において、各外枠部21に対するその外枠部21に接続された内枠部22の位置が変わることによって、レンズの光軸方向におけるレンズの位置が変わる。これにより、レンズ駆動方式の駆動機構によって、手振れを補正することが可能である。
 これに対して、センサー駆動方式の駆動機構では、レンズの光軸方向において、一対のばね部材20が撮像センサーを挟むように配置される。光軸方向において、各外枠部21に対するその外枠部21に接続された内枠部22の位置が変わることによって、レンズの光軸方向における撮像センサーの位置が変わる。これにより、センサー駆動方式の駆動機構によって、手振れを補正することが可能である。
 ばね部材20において、ばね部材20が広がる平面と対向する平面視において、外枠部21が有する各辺が延びる方向と直交する方向での長さが、外枠部21におけるばね部材20の幅である。また、ばね部材20が広がる平面と対向する平面視において、内枠部22の径方向に沿う内枠部22の長さが、内枠部22におけるばね部材20の幅である。また、ばね部材20が広がる平面と対向する平面視において、ばね部23における折線の平面視における線幅が、ばね部23の幅、つまり、ばね幅SWである。
 ばね部材20を備えるカメラモジュールが搭載される電子機器は、例えば、携帯電話端末、スマートフォン、タブレット型端末、および、ノート型パーソナルコンピューターなどであってよい。
 [ばね部材用金属箔の製造方法]
 図3から図5を参照して、金属箔10の製造方法を説明する。
 金属箔10の製造方法は、母材を圧延することと、母材の圧延によって得られた圧延材を複数準備した後、複数の圧延材から金属箔10を選別することとを含む。金属箔10を選別することでは、複数の圧延材から、上述した条件1を満たす圧延材を金属箔10として選別する。また、金属箔10の製造方法は、複数の圧延材から金属箔10を選別する際の条件に、上述した条件2から条件5のうちの少なくとも一方をさらに含んでよい。すなわち、金属箔10を選別する際の条件は、条件2から条件5のうちの1つのみを含んでもよいし、条件2から条件5から選択される2つ以上を含んでもよい。
 以下、図面を参照して、金属箔10の製造方法をより詳しく説明する。
 図3は、金属箔10を形成するための母材を圧延する工程を模式的に示している。図4は、圧延材をアニールする工程を模式的に示している。
 図3が示すように、金属箔10が製造される際には、まず、圧延方向DRに沿って延びる帯状を有した母材BM1を準備する。次いで、母材BM1の圧延方向DRと、母材BM1を搬送する搬送方向とが平行になるように、母材BM1を一対の圧延ローラーRL1,RL2を備える圧延装置REに向けて搬送方向に沿って搬送する。
 母材BM1が一対の圧延ローラーRL1,RL2の間に到達すると、母材BM1が一対の圧延ローラーRL1,RL2によって圧延される。これにより、母材BM1の厚さが低減され、かつ、母材BM1が搬送方向に沿って伸ばされることで、圧延材BM2を得ることができる。圧延材BM2はコアCに巻き取られる。なお、圧延材BM2は、コアCに巻き取られることなく、帯形状に伸ばされた状態で取り扱われてもよい。圧延材BM2の厚さは、例えば150μ以下であり、好ましくは、50μm以上120μm以下である。
 図4が示すように、母材BM1の圧延によって形成された圧延材BM2の内部に蓄積された残留応力を取り除くために、アニール装置AEを用いて圧延材BM2をアニールする。これにより、アニール後の圧延材BM3が得られる。圧延材BM2のアニールは、圧延材BM2を搬送方向に沿って引っ張りながら行うため、アニール前の圧延材BM2に比べて残留応力が低減された圧延材BM3を得ることができる。
 なお、母材BM1を形成する材料は、上述したように、ステンレス合金、ベリリウム銅、ニッケル錫銅、リン青銅、コルソン合金、および、チタン銅から構成される群から選択されるいずれかを含んでよい。これらの金属は高い硬度を有するから、言い換えれば、より低い硬度を有する金属、すなわちより柔らかい金属に比べて延びにくいから、圧延される度合いにおけるばらつきが母材BM1内において生じやすい。また、複数の母材BM1間においても、圧延度合いにばらつきが生じやすい。そのため、母材BM1の圧延によって形成された金属箔10の選別条件が、上述した条件1を含むことによる実効性が高い。
 図5は、圧延工程を経て形成された金属箔10の厚さを測定する工程を模式的に示している。
 図5が示すように、圧延を経て得られた圧延材BM3を複数準備した後、各圧延材BM3においてばね部材20を形成するための第1領域について、測定装置MEを用いて厚さを測定する。これにより、各圧延材BM3の第1領域について、上述した第1絶対値を少なくとも算出する。そして、複数の圧延材BM3のうち、上述した条件1を満たす圧延材BM3を金属箔10として選別し、選別された金属箔10をばね部材20の製造に用いる。
 なお、各圧延材BM3の第1領域について、上述した第1分散、第2分散、第2絶対値および、第3絶対値を算出してもよい。そして、圧延材BM3から金属箔10を選別する条件に、上述した条件2から条件5の少なくとも一方を加えてもよい。すなわち、圧延材BM3から金属箔10を選別する条件に、条件2から条件5のうちの1つのみを加えてもよいし、条件2から条件5から選択される2つ以上を加えてもよい。また、測定装置MEには、接触式の測定装置を用いてもよいし、非接触式の測定装置を用いてもよい。
 接触式の測定装置には、例えば長さゲージを用いることができる。非接触式の測定装置には、例えば、X線を照射する照射部と、蛍光X線を検出する検出部とを備える測定装置を用いることができる。この測定装置を用いる場合には、まず、照射部を用いて金属箔10にX線を照射し、これによって金属箔10から放出される蛍光X線を検出部を用いて検出する。検出部によって検出された蛍光X線の強度は、金属箔10の厚さに依存するから、蛍光X線の強度から、金属箔10の厚さを把握することが可能である。
 なお、第1標準偏差、第2標準偏差、第1分散、第2分散、第1差分値、および、第2差分値を、以下の少なくとも1つを変更することによって、変更することが可能である。圧延ローラーRL1,RL2の回転速度、圧延ローラーRL1,RL2の間での押圧力、圧延ローラーRL1,RL2の温度、および、圧延ローラーRL1,RL2の数量の少なくとも1つを変更することによって、上述した値を変更することができる。すなわち、圧延ローラーRL1,RL2の回転速度、圧延ローラーRL1,RL2の間での押圧力、圧延ローラーRL1,RL2の温度、および、圧延ローラーRL1,RL2の数量のうちの1つのみが変更されてもよい。あるいは、圧延ローラーRL1,RL2の回転速度、圧延ローラーRL1,RL2の間での押圧力、圧延ローラーRL1,RL2の温度、および、圧延ローラーRL1,RL2の数量のうちの任意の2つ以上が変更されてもよい。
 [ばね部材の製造方法]
 図6から図10を参照して、ばね部材20の製造方法を説明する。
 図6が示すように、ばね部材20を製造する際には、まず、金属箔10の表面10Fに第1レジスト層PR1を形成し、かつ、裏面10Bに第2レジスト層PR2を形成する。なお、図6から図10を用いて説明する例では、各レジスト層PR1,PR2がポジ型のフォトレジストから形成されているが、各レジスト層PR1,PR2はネガ型のフォトレジストから形成されてもよい。
 次いで、図7が示すように、第1レジスト層PR1上に第1フォトマスクPM1を配置し、かつ、第2レジスト層PR2上に第2フォトマスクPM2を配置する。そして、第1レジスト層PR1を第1フォトマスクPM1を用いて露光し、かつ、第2レジスト層PR2を第2フォトマスクPM2を用いて露光する。
 図8が示すように、露光したレジスト層PR1,PR2を現像し、これによって、第1レジスト層PR1から第1レジストマスクRM1を形成し、かつ、第2レジスト層PR2から第2レジストマスクRM2を形成する。
 図9が示すように、レジストマスクRM1,RM2を用いて金属箔10をウェットエッチングする。この際に、金属箔10を表面10Fおよび裏面10Bの両方からエッチングする。これにより、金属箔10の厚さ方向に沿って貫通する貫通孔が金属箔10に形成され、結果として、外枠部21と、外枠部21から離れた内枠部22と、内枠部22を外枠部21に接続するばね部23とが形成される。
 この際に、金属箔10が条件1を満たすから、金属箔10の厚さ方向において、所望の形状を有したばね部材20が得られやすい。また、金属箔10が条件1を満たすから、金属箔10の厚さにおけるばらつきに応じてウェットエッチングの条件を変更せずとも、ばね部材20の厚さ方向におけるばね幅のばらつきが所定の範囲内に抑えられたばね部材20を得ることが可能である。そのため、ばね部材20の製造において、厚さのばらつきに応じてウェットエッチングの条件を変更することが不要であるから、厚さのばらつきとウェットエッチングの条件との組み合わせにおける誤りを無くすことも可能である。
 図10が示すように、レジストマスクRM1,RM2をエッチング後の金属箔10から取り除いた後、エッチング後の金属箔10からばね部材20を切り出すことによって、ばね部材20を得ることができる。
 [実施例]
 図11から図16を参照して、実施例および比較例を説明する。
 [実施例1]
 まず、チタン銅を材料とする母材に圧延工程を施すことによって圧延材を形成した。次いで、圧延材にアニール工程を施した。これによって、厚さの設計値が120μmである実施例1の金属箔を得た。
 [実施例2から実施例8、および、比較例1から比較例3]
 実施例1において、母材を圧延する際に、圧延ローラーの回転速度、圧延ローラーの間での押圧力、圧延ローラーの温度、および、圧延ローラーの数量の少なくとも1つを変更する一方で、それ以外は実施例1と同様とすることによって、実施例2から実施例8、および、比較例1から比較例3の金属箔を得た。
 [評価方法]
 [厚さの測定]
 図11を参照して、金属箔10における厚さの測定方法を説明する。
 図11が示すように、各実施例および各比較例の金属箔から、一辺の長さが300mmである正方形状を有した測定用金属箔30を切り出した。各測定用金属箔30の第1の一辺が延びる方向と金属箔の圧延方向DRとが平行であり、かつ、各測定用金属箔30の第2の一辺が延びる方向と金属箔の幅方向DWとが垂直であるように、各金属箔から測定用金属箔30を切り出した。各測定用金属箔30において、測定用金属箔30の中央を含み、正方形状を有する測定領域30Aと、測定領域30Aを取り囲む矩形枠状を有した周辺領域30Bとを設定した。この際に、周辺領域30Bの幅W3を10mmに設定した。
 また、圧延方向DRに沿って延びる帯状を有する第1測定領域R1Rと、幅方向DWに沿って延びる帯状を有する第2測定領域R1Wとを測定領域30A内に設定した。この際に、第1測定領域R1Rにおける幅方向DWの長さである幅W1を20mmに設定し、かつ、第2測定領域R1Wにおける圧延方向DRの長さである幅W2を20mmに設定した。
 そして、第1測定領域R1Rを圧延方向DRにおいて14等分した領域の全てにおいて金属箔の厚さを測定した。また、第2測定領域R1Wを幅方向DWにおいて14等分した領域の全てにおいて測定用金属箔30の厚さを測定した。
 各領域のうち、対向する2つの角部を結ぶ対角線同士が交わる点において厚さを測定した。すなわち、同一の直線上に位置する各点において厚さを測定した。測定用金属箔ごとに、圧延方向DRにおける14点、および、幅方向DWにおける14点において厚さを測定した。ただし、第1測定領域R1Rと第2測定領域R1Wとが交わる領域では、圧延方向DRにおける測定点と幅方向DWにおける測定点とが同一の点であるため、各測定用金属箔について、合計で27点において厚さの測定を行った。そして、測定された値を小数第二位において四捨五入し、これによって、各領域での厚さの測定値とした。
 これら測定値から、第1標準偏差、第2標準偏差、第1分散、および、第2分散を算出した。また、第1標準偏差から第2標準偏差を減算した差分値である第3差分値と、第3差分値の絶対値である第1絶対値とを算出した。また、第1分散から第2分散を減算した差分値である第4差分値と、第4差分値の絶対値である第2絶対値とを算出した。また、第1差分値から第2差分値を減算した差分値の絶対値である第3絶対値と、圧延方向DRにおける厚さの最大値から幅方向DWにおける厚さの最大値を減算した差分値の絶対値である第4絶対値とを算出した。
 測定用金属箔30における厚さの測定には、接触式の厚さ測定器((株)Nikon製、MH-15M)を用いた。厚さを測定する際には、まず、測定子を底盤に接触させた状態で測定器に付属する板厚測定機カウンターの電源を入れ、これによってゼロ点合わせを行った。その後、測定子と底盤との間に測定用金属箔を設置し、次いで、測定子を降下させることによって測定用金属箔における各部の厚さを測定した。
 [エッチングパターンの評価]
 各測定用金属箔30の表面と裏面とに対して、ばね部材20の形状に対応した複数の開口を有するレジストマスクを形成し、2つのレジストマスクを用いて測定用金属箔30を表面と裏面との両方からウェットエッチングした。なお、測定領域30Aに、1つのばね部材20に対応し、かつ、20mm四方の正方形状を有した単位領域を、圧延方向DRと幅方向DWとの両方において敷き詰められるように、格子状に配置した。そのため、各レジストマスクにも、1つのばね部材20の形状に対応する単位パターンを、圧延方向DRと幅方向DWとの両方において敷き詰められるように、格子状に配置した。
 単位パターンでは、ばね部材20のうち、折線状を有するばね部23を形成する部分において、ばね部23において互いに平行であり、かつ、隣り合う線分の間隙に対応するレジストパターンの開口幅を100μmに設定し、かつ、隣り合う線分のピッチを200μmに設定した。ここで、隣り合う線分のピッチとは、エッチングパターンの設計において、互いに平行であり、かつ、隣り合う線分において、各線分に設定される中央線間の距離を指す。
 なお、各レジストマスクには、測定用金属箔30の表面と対向する平面視において、測定用金属箔30の表面に位置するレジストマスクが有する1つの単位パターンの全体が、測定用金属箔30の裏面に位置するレジストマスクにおける1つの単位パターンの全体に重なるように、各レジストマスクに複数の単位パターンを形成した。
 こうしたレジストマスクを用いて、測定用金属箔30において、ばね部材20の形状に対応するエッチングパターンを複数形成した。エッチングパターンにおいて、ばね部23の平面視におけるばね幅の設計値を30μmに設定した。
 エッチング後の各測定用金属箔30に存在するばね部材20のばね部23を合成樹脂を用いて包埋した。そして、ミクロトームを用いて包埋後のばね部23を切断することによって、ばね部が含む線分が延びる方向に直交する平面でのばね部23の断面を露出させた。
 ばね部23の断面において、以下の位置におけるばね幅を測定した。すなわち、ばね部23において、測定用金属箔30の表面におけるばね幅、測定用金属箔30の裏面におけるばね幅、および、ばね部23を厚さ方向において4等分する平面のうち、測定用金属箔30の表面と裏面とに挟まれる3つの平面でのばね幅を測定した。すなわち、測定用金属箔30の表面における深さを0μmに設定する場合に、エッチングパターンにおいて、深さが0μmでのばね幅、深さが約30μmでのばね幅、深さが約60μmでのばね幅、深さが約90μmでのばね幅、および、深さが約120μmでのばね幅を測定した。ばね部23のばね幅を測定する際には、デジタルマイクロスコープ((株)キーエンス製、VHX‐7000)を用い、かつ、デジタルマイクロスコープにおいて対物レンズの倍率を200倍に設定した。
 また、各実施例および各比較例の測定用金属箔30から得られたエッチングパターンについて、第1規格値、ばね幅の標準偏差、第2規格値、ばね幅の平均値に対する3σの百分率、および、ばね幅の分散を算出した。
 なお、測定用金属箔30が含む各単位パターンについて、ばね部23が含む全てのばねにおいて、厚さ方向における上述した5箇所でのばね幅を測定した。そして、ばね毎に最大値と最小値とを特定し、最大値から最小値を減算した差分値を算出し、かつ、ばね幅の平均値を算出した。次いで、全てのばねについて特定した最大値から最大値の平均値を算出し、当該平均値をその測定用金属箔30でのばね幅の最大値に設定した。また、全てのばねについて特定した最小値から最小値の平均値を算出し、当該最小値をその測定用金属箔30でのばね幅の最小値に設定した。また、全てのばねについて算出した差分値から差分値の平均値を算出し、当該平均値をその測定用金属箔30の差分値に設定した。また、全てのばねについて算出した平均値について平均値を算出し、当該平均値をその測定用金属箔30の平均値に設定した。
 また、各実施例および各比較例の測定用金属箔30から得られたエッチングパターンについて、第1規格値、ばね幅の標準偏差、第2規格値、および、ばね幅の平均値に対する3σの百分率を算出した。ばね幅の平均値に対する3σの百分率を算出する際には、各測定用金属箔30に対して設定された平均値を用いた。なお、第1規格値は、ばね幅の設計値に対するばね幅の差分値の百分率である。第1規格値の算出には、各測定用金属箔30に対して設定された差分値を用いた。また、第2規格値は、ばね幅の設計値に対するばね幅の標準偏差の百分率である。
 ばね幅の標準偏差を算出する際には、まず、ばね毎に測定した5箇所の厚さからばね幅の標準偏差を算出した。次いで、全てのばねについて算出した標準偏差から標準偏差の平均値を算出し、当該平均値をその測定用金属箔30でのばね幅の標準偏差に設定した。また、第2規格値の算出には、各測定用金属箔30に対して設定された標準偏差を用いた。
 ばね幅の分散を算出する際には、まず、ばね毎に測定した5箇所の厚さからばね幅の分散を算出した。次いで、全てのばねについて算出した分散から分散の平均値を算出し、当該平均値をその測定用金属箔30でのばね幅の分散に設定した。
 [評価結果]
 図12から図14を参照して、測定用金属箔30の厚さ、および、エッチングパターンのばね幅における評価結果を説明する。
 図12は、各測定用金属箔30の厚さを測定した結果、および、各測定用金属箔30をウェットエッチングすることによって形成したエッチングパターンのばね幅における測定の結果を示している。なお、図12において、第4絶対値は、圧延方向DRにおける厚さの最大値から幅方向DWにおける厚さの最大値を減算した差分値の絶対値である。
 図12が示すように、第1標準偏差は、実施例1において0.313μmであり、実施例2において0.291μmであり、実施例3において0.389μmであり、実施例4において0.261μmであることが認められた。また、第1標準偏差は、実施例5において0.516μmであり、実施例6において0.421μmであり、実施例7において0.532μmであり、実施例8において0.524μmであることが認められた。また、第1標準偏差は、比較例1において0.766μmであり、比較例2において0.571μmであり、比較例3において0.498μmであることが認められた。
 第2標準偏差は、実施例1において0.243μmであり、実施例2において0.303μmであり、実施例3において0.332μmであり、実施例4において0.184μmであることが認められた。また、第2標準偏差は、実施例5において0.447μmであり、実施例6において0.311μmであり、実施例7において0.420μmであり、実施例8において0.412μmであることが認められた。第2標準偏差は、比較例1において0.260μmであり、比較例2において0.218μmであり、比較例3において0.307μmであることが認められた。
 これにより、第3差分値が、実施例1において0.069μmであり、実施例2において-0.012μmであり、実施例3において0.057μmであり、実施例4において0.077μmであることが認められた。また、第3差分値が、実施例5において0.068μmであり、実施例6において0.110μmであり、実施例7において0.112μmであり、実施例8において0.111μmであることが認められた。また、第3差分値が、比較例1において0.507μmであり、比較例2において0.353μmであり、比較例3において0.191μmであることが認められた。
 また、第1絶対値が、実施例1において0.069μmであり、実施例2において0.012μmであり、実施例3において0.057μmであり、実施例4において0.077μmであることが認められた。また、第1絶対値が、実施例5において0.068μmであり、実施例6において0.110μmであり、実施例7において0.112μmであり、実施例8において0.111μmであることが認められた。また、第1絶対値が、比較例1において0.507μmであり、比較例2において0.353μmであり、比較例3において0.191μmであることが認められた。
 このように、実施例1から実施例8の測定用金属箔30では、第1絶対値が0.15μm以下である一方で、比較例1から比較例3の測定用金属箔30では、第1絶対値が0.15μmよりも大きいことが認められた。詳細には、実施例1から実施例8の測定用金属箔30では、第1絶対値が0.012μm以上0.112μm以下である一方で、比較例1から比較例3の測定用金属箔30では、第1絶対値が0.191μm以上0.507μm以下であることが認められた。また、実施例1、実施例3から実施例8の測定用金属箔30、および、比較例1から比較例3の測定用金属箔30では、第1標準偏差が第2標準偏差よりも大きい一方で、実施例2では、第1標準偏差が第2標準偏差よりも小さいことが認められた。
 また、第1分散は、実施例1において0.098μmであり、実施例2において0.085μmであり、実施例3において0.151μmであり、実施例4において0.068μmであることが認められた。第1分散は、実施例5において0.266μmであり、実施例6において0.177μmであり、実施例7において0.283μmであり、実施例8において0.274μmであることが認められた。第1分散は、比較例1において0.587μmであり、比較例2において0.326μmであり、比較例3において0.248μmであることが認められた。
 第2分散は、実施例1において0.059μmであり、実施例2において0.092μmであり、実施例3において0.110μmであり、実施例4において0.034μmであることが認められた。第2分散は、実施例5において0.200μmであり、実施例6において0.096μmであり、実施例7において0.176μmであり、実施例8において0.170μmであることが認められた。第2分散は、比較例1において0.067μmであり、比較例2において0.048μmであり、比較例3において0.095μmであることが認められた。
 これにより、第4差分値が、実施例1において0.039μmであり、実施例2において-0.007μmであり、実施例3において0.041μmであり、実施例4において0.034μmであることが認められた。第4差分値が、実施例5において0.066μmであり、実施例6において0.081μmであり、実施例7において0.107μmであり、実施例8において0.104μmであることが認められた。また、第4差分値が、比較例1において0.520μmであり、比較例2において0.278μmであり、比較例3において0.154μmであることが認められた。
 また、第2絶対値は、実施例1において0.039μmであり、実施例2において0.007μmであり、実施例3において0.041μmであり、実施例4において0.034μmであることが認められた。第2絶対値が、実施例5において0.066μmであり、実施例6において0.081μmであり、実施例7において0.107μmであり、実施例8において0.104μmであることが認められた。また、第2絶対値が、比較例1において0.520μmであり、比較例2において0.278μmであり、比較例3において0.154μmであることが認められた。このように、実施例1から実施例8の測定用金属箔30において、第2絶対値が0.15μm以下である一方で、比較例1から比較例3の測定用金属箔30において、第2絶対値が0.15μmよりも大きいことが認められた。詳細には、実施例1から実施例8の測定用金属箔30では、第2絶対値が0.007μm以上0.107μm以下である一方で、比較例1から比較例3の測定用金属箔30での第2絶対値が0.154μm以上0.520μm以下であることが認められた。
 また、第3絶対値は、実施例1において0.2μmであり、実施例2において0μmであり、実施例3において0.3μmであり、実施例4において0.3μmであることが認められた。また、第3絶対値は、実施例5において0.5μmであり、実施例6において0.4μmであり、実施例7において0.2μmであり、実施例8において0.4μmであることが認められた。また、第3絶対値は、比較例1において1.6μmであり、比較例2において1.2μmであり、比較例3において0.9μmであることが認められた。
 また、第4絶対値は、実施例1において0μmであり、実施例2において0μmであり、実施例3において0.4μmであり、実施例4において0μmであることが認められた。第4絶対値は、実施例5において0.8μmであり、実施例6において0.5μmであり、実施例7において0.4μmであり、実施例8において0.6μmであることが認められた。第4絶対値は、比較例1において1.5μmであり、比較例2において1.1μmであり、比較例3において0.9μmであることが認められた。
 一方、ばね幅における差分値は、実施例1において8.4μmであり、実施例2において8.4μmであり、実施例3において8.2μmであり、実施例4において7.0μmであることが認められた。また、ばね幅における差分値は、実施例5において7.5μmであり、実施例6において9.1μmであり、実施例7において8.4μmであり、実施例8において9.7μmであることが認められた。また、ばね幅における差分値は、比較例1において12.5μmであり、比較例2において13.7μmであり、比較例3において14.3μmであることが認められた。
 また、第1規格値は、実施例1において27.9%であり、実施例2において28.0%であり、実施例3において27.4%であり、実施例4において23.1%であることが認められた。また、第1規格値は、実施例5において24.9%であり、実施例6において30.3%であり、実施例7において28.1%であり、実施例8において32.3%であることが認められた。第1規格値は、比較例1において41.6%であり、比較例2において45.6%であり、比較例3において47.5%であることが認められた。
 ばね幅の標準偏差は、実施例1において2.0μmであり、実施例2において1.7μmであり、実施例3において1.9μmであり、実施例4において1.4μmであることが認められた。ばね幅の標準偏差は、実施例5において1.4μmであり、実施例6において1.9μmであり、実施例7において2.0μmであり、実施例8において2.1μmであることが認められた。ばね幅の標準偏差は、比較例1において2.5μmであり、比較例2において2.6μmであり、比較例3において2.6μmであることが認められた。
 第2規格値は、実施例1において6.6%であり、実施例2において5.7%であり、実施例3において6.3%であり、実施例4において4.7%であることが認められた。第2規格値は、実施例5において4.7%であり、実施例6において6.3%であり、実施例7において6.6%であり、実施例8において7.1%であることが認められた。第2規格値は、比較例1において8.2%であり、比較例2において8.5%であり、比較例3において8.5%であることが認められた。
 ばね幅の平均値に対する3σの百分率は、実施例1において17.8%であり、実施例2において16.0%であり、実施例3において18.3%であり、実施例4において13.0%であることが認められた。ばね幅の平均値に対する3σの百分率は、実施例5において13.0%であり、実施例6において18.1%であり、実施例7において18.3%であり、実施例8において18.8%であることが認められた。ばね幅の平均値に対する3σの百分率は、比較例1において24.8%であり、比較例2において26.4%であり、比較例3において22.0%であることが認められた。
 ばね幅の分散は、実施例1において3.9μmであり、実施例2において2.9μmであり、実施例3において3.6μmであり、実施例4において2.0μmであることが認められた。ばね幅の分散は、実施例5において2.0μmであり、実施例6において3.6μmであり、実施例7において4.0μmであり、実施例8において4.5μmであることが認められた。ばね幅の分散は、比較例1において6.0μmであり、比較例2において6.5μmであり、比較例3において6.6μmであることが認められた。
 このように、実施例1から実施例8のばね部材用金属箔では、比較例1から比較例3のばね部材用金属箔に比べて、第1規格値、標準偏差、第2規格値、平均値に対する3σの百分率、および、分散の全てが小さいことが認められた。そのため、実施例1から実施例8のばね部材用金属箔によれば、比較例1から比較例3のばね部材用金属箔に比べて、厚さ方向におけるばね幅のばらつきが抑えられているといえる。
 図13は、第1絶対値と、ばね幅の差分値と関係を示すグラフである。
 図13が示すように、第1絶対値が0.15μm以下である場合には、エッチングパターンのばね幅における差分値が、6.0μm以上10.0μm以下の範囲内に含まれることが認められた。これに対して、第1絶対値が0.15μmよりも大きい場合には、エッチングパターンのばね幅における差分値が、12μmを超えることが認められた。このように、第1絶対値では、0.15μmを境界としてエッチングパターンのばね幅におけるばらつきが大きく異なることが認められた。
 図14は、第4絶対値と、ばね幅の差分値との関係を示すグラフである。
 図14が示すように、第4絶対値が0.8μm以下である場合には、エッチングパターンのばね幅における差分値が、6.0μm以上10.0μm以下の範囲内に含まれることが認められた。これに対して、第4絶対値が0.8μmよりも大きい場合には、エッチングパターンのばね幅における差分値が、12μmを超えることが認められた。このように、第4絶対値では、0.8μmを境界としてエッチングパターンのばね幅におけるばらつきが大きく異なることが認められた。
 図15は、第2絶対値と、ばね幅の差分値との関係を示すグラフである。
 図15が示すように、第2絶対値が0.15μm以下である場合には、エッチングパターンのばね幅における差分値が、6.0μm以上10.0μm以下の範囲内に含まれることが認められた。これに対して、第2絶対値が0.15μmよりも大きい場合には、エッチングパターンのばね幅における差分値が、12μmを超えることが認められた。このように、第2絶対値では、0.15μmを境界としてエッチングパターンのばね幅におけるばらつきが大きく異なることが認められた。
 図16は、第3絶対値と、ばね幅の差分値との関係を示すグラフである。
 図16が示すように、第3絶対値が0.8μm以下である場合には、エッチングパターンのばね幅における差分値が、6.0μm以上10.0μm以下の範囲内に含まれることが認められた。これに対して、第3絶対値が0.8μmよりも大きい場合には、エッチングパターンのばね幅における差分値が、12μmを超えることが認められた。このように、第3絶対値では、0.8μmを境界としてエッチングパターンのばね幅におけるばらつきが大きく異なることが認められた。
 以上説明したように、ばね部材用金属箔、ばね部材用金属箔の製造方法、および、電子機器用ばね部材における一実施形態によれば、以下に記載の効果を得ることができる。
 (1)金属箔10が条件1を満たすから、金属箔10における厚さのばらつきが抑えられる。そのため、金属箔10のウェットエッチングによって形成されたばね部材20において、厚さ方向でのばね幅のばらつきが抑えられる。
 (2)金属箔10が条件2から条件5の少なくとも1つを満たすから、金属箔10における厚さのばらつきが抑えられる。そのため、金属箔10のウェットエッチングによって形成されたばね部材20の厚さ方向において幅のばらつきが抑えられる。
 (3)金属箔10が高い硬度を有することが可能であるから、金属箔10から形成されたばね部材20の耐久性を高めることが可能である。

Claims (51)

  1.  ばね部材を製造するためのばね部材用金属箔であって、
     一辺の長さが300mmである正方形状を有し、前記ばね部材が形成されるための第1領域を備え、
     前記第1領域において、
     圧延方向における厚さの標準偏差から、前記圧延方向に直交する幅方向における厚さの標準偏差を減算した差分値の絶対値が、0.15μm以下であり、
     前記圧延方向における前記厚さの最大値が第1最大値であり、前記幅方向における前記厚さの最大値が第2最大値であり、前記第1最大値から前記第2最大値を減算した差分値の絶対値が、0.8μm以下である
     ばね部材用金属箔。
  2.  前記第1領域において、前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値の絶対値が、0.15μm以下である
     請求項1に記載のばね部材用金属箔。
  3.  前記第1領域において、前記圧延方向における前記厚さの前記標準偏差から、前記幅方向における前記厚さの前記標準偏差を減算した差分値が、0.15μm以下である
     請求項1に記載のばね部材用金属箔。
  4.  前記第1領域において、前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値が、0.15μm以下である
     請求項1に記載のばね部材用金属箔。
  5.  前記第1領域において、前記圧延方向における前記厚さの最大値から最小値を減算した差分値が第1差分値であり、前記幅方向における前記厚さの最大値から最小値を減算した差分値が第2差分値であり、
     前記第1差分値から前記第2差分値を減算した差分値の絶対値が、0.8μm以下である
     請求項1に記載のばね部材用金属箔。
  6.  前記第1領域において、
     前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値の絶対値が、0.15μm以下であり、
     前記圧延方向における前記厚さの前記標準偏差から、前記幅方向における前記厚さの前記標準偏差を減算した差分値が、0.15μm以下である
     請求項1に記載のばね部材用金属箔。
  7.  前記第1領域において、
     前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値の絶対値が、0.15μm以下であり、
     前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値が、0.15μm以下である
     請求項1に記載のばね部材用金属箔。
  8.  前記第1領域において、
     前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値の絶対値が、0.15μm以下であり、
     前記圧延方向における前記厚さの最大値から最小値を減算した差分値が第1差分値であり、前記幅方向における前記厚さの最大値から最小値を減算した差分値が第2差分値であり、
     前記第1差分値から前記第2差分値を減算した差分値の絶対値が、0.8μm以下である
     請求項1に記載のばね部材用金属箔。
  9.  前記第1領域において、
     前記圧延方向における前記厚さの前記標準偏差から、前記幅方向における前記厚さの前記標準偏差を減算した差分値が、0.15μm以下であり、
     前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値が、0.15μm以下である
     請求項1に記載のばね部材用金属箔。
  10.  前記第1領域において、
     前記圧延方向における前記厚さの前記標準偏差から、前記幅方向における前記厚さの前記標準偏差を減算した差分値が、0.15μm以下であり、
     前記圧延方向における前記厚さの最大値から最小値を減算した差分値が第1差分値であり、前記幅方向における前記厚さの最大値から最小値を減算した差分値が第2差分値であり、
     前記第1差分値から前記第2差分値を減算した差分値の絶対値が、0.8μm以下である
     請求項1に記載のばね部材用金属箔。
  11.  前記第1領域において、
     前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値が、0.15μm以下であり、
     前記圧延方向における前記厚さの最大値から最小値を減算した差分値が第1差分値であり、前記幅方向における前記厚さの最大値から最小値を減算した差分値が第2差分値であり、
     前記第1差分値から前記第2差分値を減算した差分値の絶対値が、0.8μm以下である
     請求項1に記載のばね部材用金属箔。
  12.  前記第1領域において、
     前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値の絶対値が、0.15μm以下であり、
     前記圧延方向における前記厚さの前記標準偏差から、前記幅方向における前記厚さの前記標準偏差を減算した差分値が、0.15μm以下であり、
     前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値が、0.15μm以下である
     請求項1に記載のばね部材用金属箔。
  13.  前記第1領域において、
     前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値の絶対値が、0.15μm以下であり、
     前記圧延方向における前記厚さの前記標準偏差から、前記幅方向における前記厚さの前記標準偏差を減算した差分値が、0.15μm以下であり、
     前記圧延方向における前記厚さの最大値から最小値を減算した差分値が第1差分値であり、前記幅方向における前記厚さの最大値から最小値を減算した差分値が第2差分値であり、
     前記第1差分値から前記第2差分値を減算した差分値の絶対値が、0.8μm以下である
     請求項1に記載のばね部材用金属箔。
  14.  前記第1領域において、
     前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値の絶対値が、0.15μm以下であり、
     前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値が、0.15μm以下であり、
     前記圧延方向における前記厚さの最大値から最小値を減算した差分値が第1差分値であり、前記幅方向における前記厚さの最大値から最小値を減算した差分値が第2差分値であり、
     前記第1差分値から前記第2差分値を減算した差分値の絶対値が、0.8μm以下である
     請求項1に記載のばね部材用金属箔。
  15.  前記第1領域において、
     前記圧延方向における前記厚さの前記標準偏差から、前記幅方向における前記厚さの前記標準偏差を減算した差分値が、0.15μm以下であり、
     前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値が、0.15μm以下であり、
     前記圧延方向における前記厚さの最大値から最小値を減算した差分値が第1差分値であり、前記幅方向における前記厚さの最大値から最小値を減算した差分値が第2差分値であり、
     前記第1差分値から前記第2差分値を減算した差分値の絶対値が、0.8μm以下である
     請求項1に記載のばね部材用金属箔。
  16.  前記第1領域において、
     前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値の絶対値が、0.15μm以下であり、
     前記圧延方向における前記厚さの前記標準偏差から、前記幅方向における前記厚さの前記標準偏差を減算した差分値が、0.15μm以下であり、
     前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値が、0.15μm以下であり、
     前記圧延方向における前記厚さの最大値から最小値を減算した差分値が第1差分値であり、前記幅方向における前記厚さの最大値から最小値を減算した差分値が第2差分値であり、
     前記第1差分値から前記第2差分値を減算した差分値の絶対値が、0.8μm以下である
     請求項1に記載のばね部材用金属箔。
  17.  前記ばね部材用金属箔は、ステンレス合金、ベリリウム銅、ニッケル錫銅、リン青銅、コルソン合金、および、チタン銅から構成される群から選択されるいずれかを含む
     請求項1から16のいずれか一項に記載のばね部材用金属箔。
  18.  ばね部材を製造するためのばね部材用金属箔の製造方法であって、
     母材を圧延することと、
     前記母材の圧延によって得られた圧延材を複数準備した後、前記複数の圧延材から前記ばね部材用金属箔を選別することと、を含み、
     前記圧延材において、一辺の長さが300mmである正方形状を有し、前記ばね部材が形成されるための領域が第1領域であり、
     前記第1領域において、圧延方向における厚さの最大値が第1最大値であり、前記圧延方向に直交する幅方向における厚さの最大値が第2最大値であり、
     前記ばね部材用金属箔を選別することでは、前記複数の圧延材から、前記第1領域において、前記圧延方向における前記厚さの標準偏差から、前記幅方向における前記厚さの標準偏差を減算した差分値の絶対値が0.15μm以下であり、かつ、前記第1最大値から前記第2最大値を減算した差分値の絶対値が、0.8μm以下である前記圧延材を前記ばね部材用金属箔として選別する
     ばね部材用金属箔の製造方法。
  19.  前記ばね部材用金属箔を選別することは、
     前記ばね部材用金属箔を選別する条件に、前記第1領域において、前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値の絶対値が、0.15μm以下であることをさらに含む
     請求項18に記載のばね部材用金属箔の製造方法。
  20.  前記ばね部材用金属箔を選別することは、
     前記ばね部材用金属箔を選別する条件に、前記第1領域において、前記圧延方向における前記厚さの前記標準偏差から、前記幅方向における前記厚さの前記標準偏差を減算した差分値が、0.15μm以下であることを含む
     請求項18に記載のばね部材用金属箔の製造方法。
  21.  前記ばね部材用金属箔を選別することは、
     前記ばね部材用金属箔を選別する条件に、前記第1領域において、前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値が、0.15μm以下であることを含む
     請求項18に記載のばね部材用金属箔の製造方法。
  22.  前記第1領域において、前記圧延方向における前記厚さの最大値から最小値を減算した差分値が第1差分値であり、前記幅方向における前記厚さの最大値から最小値を減算した差分値が第2差分値であり、
     前記ばね部材用金属箔を選別することは、
     前記ばね部材用金属箔を選別する条件に、
     前記第1差分値から前記第2差分値を減算した差分値の絶対値が、0.8μm以下であることを含む
     請求項18に記載のばね部材用金属箔の製造方法。
  23.  前記ばね部材用金属箔を選別することは、
     前記ばね部材用金属箔を選別する条件に、前記第1領域において、前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値の絶対値が、0.15μm以下であること、および、
     前記第1領域において、前記圧延方向における前記厚さの前記標準偏差から、前記幅方向における前記厚さの前記標準偏差を減算した差分値が、0.15μm以下であることを含む
     請求項18に記載のばね部材用金属箔の製造方法。
  24.  前記ばね部材用金属箔を選別することは、
     前記ばね部材用金属箔を選別する条件に、前記第1領域において、前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値の絶対値が、0.15μm以下であること、および、
     前記第1領域において、前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値が、0.15μm以下であることを含む
     請求項18に記載のばね部材用金属箔の製造方法。
  25.  前記第1領域において、前記圧延方向における前記厚さの最大値から最小値を減算した差分値が第1差分値であり、前記幅方向における前記厚さの最大値から最小値を減算した差分値が第2差分値であり、
     前記ばね部材用金属箔を選別することは、
     前記ばね部材用金属箔を選別する条件に、前記第1領域において、前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値の絶対値が、0.15μm以下であること、および、
     前記第1差分値から前記第2差分値を減算した差分値の絶対値が、0.8μm以下であることを含む
     請求項18に記載のばね部材用金属箔の製造方法。
  26.  前記ばね部材用金属箔を選別することは、
     前記ばね部材用金属箔を選別する条件に、前記第1領域において、前記圧延方向における前記厚さの前記標準偏差から、前記幅方向における前記厚さの前記標準偏差を減算した差分値が、0.15μm以下であること、および、
     前記第1領域において、前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値が、0.15μm以下であることを含む
     請求項18に記載のばね部材用金属箔の製造方法。
  27.  前記第1領域において、前記圧延方向における前記厚さの最大値から最小値を減算した差分値が第1差分値であり、前記幅方向における前記厚さの最大値から最小値を減算した差分値が第2差分値であり、
     前記ばね部材用金属箔を選別することは、
     前記ばね部材用金属箔を選別する条件に、前記第1領域において、前記圧延方向における前記厚さの前記標準偏差から、前記幅方向における前記厚さの前記標準偏差を減算した差分値が、0.15μm以下であること、および、
     前記第1差分値から前記第2差分値を減算した差分値の絶対値が、0.8μm以下であることを含む
     請求項18に記載のばね部材用金属箔の製造方法。
  28.  前記第1領域において、前記圧延方向における前記厚さの最大値から最小値を減算した差分値が第1差分値であり、前記幅方向における前記厚さの最大値から最小値を減算した差分値が第2差分値であり、
     前記ばね部材用金属箔を選別することは、
     前記ばね部材用金属箔を選別する条件に、前記第1領域において、前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値が、0.15μm以下であること、および、
     前記第1差分値から前記第2差分値を減算した差分値の絶対値が、0.8μm以下であることを含む
     請求項18に記載のばね部材用金属箔の製造方法。
  29.  前記ばね部材用金属箔を選別することは、
     前記ばね部材用金属箔を選別する条件に、前記第1領域において、前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値の絶対値が、0.15μm以下であること、
     前記第1領域において、前記圧延方向における前記厚さの前記標準偏差から、前記幅方向における前記厚さの前記標準偏差を減算した差分値が、0.15μm以下であること、および、
     前記第1領域において、前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値が、0.15μm以下であることを含む
     請求項18に記載のばね部材用金属箔の製造方法。
  30.  前記第1領域において、前記圧延方向における前記厚さの最大値から最小値を減算した差分値が第1差分値であり、前記幅方向における前記厚さの最大値から最小値を減算した差分値が第2差分値であり、
     前記ばね部材用金属箔を選別することは、
     前記ばね部材用金属箔を選別する条件に、前記第1領域において、前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値の絶対値が、0.15μm以下であること、
     前記第1領域において、前記圧延方向における前記厚さの前記標準偏差から、前記幅方向における前記厚さの前記標準偏差を減算した差分値が、0.15μm以下であること、および、
     前記第1差分値から前記第2差分値を減算した差分値の絶対値が、0.8μm以下であることを含む
     請求項18に記載のばね部材用金属箔の製造方法。
  31.  前記第1領域において、前記圧延方向における前記厚さの最大値から最小値を減算した差分値が第1差分値であり、前記幅方向における前記厚さの最大値から最小値を減算した差分値が第2差分値であり、
     前記ばね部材用金属箔を選別することは、
     前記ばね部材用金属箔を選別する条件に、前記第1領域において、前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値の絶対値が、0.15μm以下であること、
     前記第1領域において、前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値が、0.15μm以下であること、および、
     前記第1差分値から前記第2差分値を減算した差分値の絶対値が、0.8μm以下であることを含む
     請求項18に記載のばね部材用金属箔の製造方法。
  32.  前記第1領域において、前記圧延方向における前記厚さの最大値から最小値を減算した差分値が第1差分値であり、前記幅方向における前記厚さの最大値から最小値を減算した差分値が第2差分値であり、
     前記ばね部材用金属箔を選別することは、
     前記ばね部材用金属箔を選別する条件に、前記第1領域において、前記圧延方向における前記厚さの前記標準偏差から、前記幅方向における前記厚さの前記標準偏差を減算した差分値が、0.15μm以下であること、
     前記第1領域において、前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値が、0.15μm以下であること、および、
     前記第1差分値から前記第2差分値を減算した差分値の絶対値が、0.8μm以下であることを含む
     請求項18に記載のばね部材用金属箔の製造方法。
  33.  前記第1領域において、前記圧延方向における前記厚さの最大値から最小値を減算した差分値が第1差分値であり、前記幅方向における前記厚さの最大値から最小値を減算した差分値が第2差分値であり、
     前記ばね部材用金属箔を選別することは、
     前記ばね部材用金属箔を選別する条件に、前記第1領域において、前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値の絶対値が、0.15μm以下であること、
     前記第1領域において、前記圧延方向における前記厚さの前記標準偏差から、前記幅方向における前記厚さの前記標準偏差を減算した差分値が、0.15μm以下であること、
     前記第1領域において、前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値が、0.15μm以下であること、および、
     前記第1差分値から前記第2差分値を減算した差分値の絶対値が、0.8μm以下であることを含む
     請求項18に記載のばね部材用金属箔の製造方法。
  34.  前記ばね部材用金属箔は、ステンレス合金、ベリリウム銅、ニッケル錫銅、リン青銅、コルソン合金、および、チタン銅から構成される群から選択されるいずれかを含む
     請求項18から33のいずれか一項に記載のばね部材用金属箔の製造方法。
  35.  ばね部材用金属箔を用いた電子機器用ばね部材であって、
     前記ばね部材用金属箔の圧延方向における厚さの標準偏差から、前記圧延方向に直交する幅方向における厚さの標準偏差を減算した差分値の絶対値が、0.15μm以下であり、
     前記ばね部材用金属箔において、前記圧延方向における前記厚さの最大値が第1最大値であり、前記幅方向における前記厚さの最大値が第2最大値であり、前記第1最大値から前記第2最大値を減算した差分値の絶対値が、0.8μm以下である
     電子機器用ばね部材。
  36.  前記ばね部材用金属箔において、前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値の絶対値が、0.15μm以下である
     請求項35に記載の電子機器用ばね部材。
  37.  前記ばね部材用金属箔において、前記圧延方向における前記厚さの前記標準偏差から、前記幅方向における前記厚さの前記標準偏差を減算した差分値が、0.15μm以下である
     請求項35に記載の電子機器用ばね部材。
  38.  前記ばね部材用金属箔において、前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値が、0.15μm以下である
     請求項35に記載の電子機器用ばね部材。
  39.  前記ばね部材用金属箔において、前記圧延方向における前記厚さの最大値から最小値を減算した差分値が第1差分値であり、前記幅方向における前記厚さの最大値から最小値を減算した差分値が第2差分値であり、
     前記第1差分値から前記第2差分値を減算した差分値の絶対値が、0.8μm以下である
     請求項35に記載の電子機器用ばね部材。
  40.  前記ばね部材用金属箔において、
     前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値の絶対値が、0.15μm以下であり、
     前記圧延方向における前記厚さの前記標準偏差から、前記幅方向における前記厚さの前記標準偏差を減算した差分値が、0.15μm以下である
     請求項35に記載の電子機器用ばね部材。
  41.  前記ばね部材用金属箔において、
     前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値の絶対値が、0.15μm以下であり、
     前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値が、0.15μm以下である
     請求項35に記載の電子機器用ばね部材。
  42.  前記ばね部材用金属箔において、
     前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値の絶対値が、0.15μm以下であり、
     前記圧延方向における前記厚さの最大値から最小値を減算した差分値が第1差分値であり、前記幅方向における前記厚さの最大値から最小値を減算した差分値が第2差分値であり、
     前記第1差分値から前記第2差分値を減算した差分値の絶対値が、0.8μm以下である
     請求項35に記載の電子機器用ばね部材。
  43.  前記ばね部材用金属箔において、
     前記圧延方向における前記厚さの前記標準偏差から、前記幅方向における前記厚さの前記標準偏差を減算した差分値が、0.15μm以下であり、
     前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値が、0.15μm以下である
     請求項35に記載の電子機器用ばね部材。
  44.  前記ばね部材用金属箔において、
     前記圧延方向における前記厚さの前記標準偏差から、前記幅方向における前記厚さの前記標準偏差を減算した差分値が、0.15μm以下であり、
     前記圧延方向における前記厚さの最大値から最小値を減算した差分値が第1差分値であり、前記幅方向における前記厚さの最大値から最小値を減算した差分値が第2差分値であり、
     前記第1差分値から前記第2差分値を減算した差分値の絶対値が、0.8μm以下である
     請求項35に記載の電子機器用ばね部材。
  45.  前記ばね部材用金属箔において、
     前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値が、0.15μm以下であり、
     前記圧延方向における前記厚さの最大値から最小値を減算した差分値が第1差分値であり、前記幅方向における前記厚さの最大値から最小値を減算した差分値が第2差分値であり、
     前記第1差分値から前記第2差分値を減算した差分値の絶対値が、0.8μm以下である
     請求項35に記載の電子機器用ばね部材。
  46.  前記ばね部材用金属箔において、
     前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値の絶対値が、0.15μm以下であり、
     前記圧延方向における前記厚さの前記標準偏差から、前記幅方向における前記厚さの前記標準偏差を減算した差分値が、0.15μm以下であり、
     前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値が、0.15μm以下である
     請求項35に記載の電子機器用ばね部材。
  47.  前記ばね部材用金属箔において、
     前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値の絶対値が、0.15μm以下であり、
     前記圧延方向における前記厚さの前記標準偏差から、前記幅方向における前記厚さの前記標準偏差を減算した差分値が、0.15μm以下であり、
     前記圧延方向における前記厚さの最大値から最小値を減算した差分値が第1差分値であり、前記幅方向における前記厚さの最大値から最小値を減算した差分値が第2差分値であり、
     前記第1差分値から前記第2差分値を減算した差分値の絶対値が、0.8μm以下である
     請求項35に記載の電子機器用ばね部材。
  48.  前記ばね部材用金属箔において、
     前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値の絶対値が、0.15μm以下であり、
     前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値が、0.15μm以下であり、
     前記圧延方向における前記厚さの最大値から最小値を減算した差分値が第1差分値であり、前記幅方向における前記厚さの最大値から最小値を減算した差分値が第2差分値であり、
     前記第1差分値から前記第2差分値を減算した差分値の絶対値が、0.8μm以下である
     請求項35に記載の電子機器用ばね部材。
  49.  前記ばね部材用金属箔において、
     前記圧延方向における前記厚さの前記標準偏差から、前記幅方向における前記厚さの前記標準偏差を減算した差分値が、0.15μm以下であり、
     前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値が、0.15μm以下であり、
     前記圧延方向における前記厚さの最大値から最小値を減算した差分値が第1差分値であり、前記幅方向における前記厚さの最大値から最小値を減算した差分値が第2差分値であり、
     前記第1差分値から前記第2差分値を減算した差分値の絶対値が、0.8μm以下である
     請求項35に記載の電子機器用ばね部材。
  50.  前記ばね部材用金属箔において、
     前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値の絶対値が、0.15μm以下であり、
     前記圧延方向における前記厚さの前記標準偏差から、前記幅方向における前記厚さの前記標準偏差を減算した差分値が、0.15μm以下であり、
     前記圧延方向における前記厚さの分散から、前記幅方向における前記厚さの分散を減算した差分値が、0.15μm以下であり、
     前記圧延方向における前記厚さの最大値から最小値を減算した差分値が第1差分値であり、前記幅方向における前記厚さの最大値から最小値を減算した差分値が第2差分値であり、
     前記第1差分値から前記第2差分値を減算した差分値の絶対値が、0.8μm以下である
     請求項35に記載の電子機器用ばね部材。
  51.  前記ばね部材用金属箔は、ステンレス合金、ベリリウム銅、ニッケル錫銅、リン青銅、コルソン合金、および、チタン銅から構成される群から選択されるいずれかを含む
     請求項35から50のいずれか一項に記載の電子機器用ばね部材。
PCT/JP2023/004598 2022-02-10 2023-02-10 ばね部材用金属箔、ばね部材用金属箔の製造方法、および、電子機器用ばね部材 WO2023153500A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022-019988 2022-02-10
JP2022019988 2022-02-10
JPPCT/JP2022/035025 2022-09-20
PCT/JP2022/035025 WO2023153009A1 (ja) 2022-02-10 2022-09-20 ばね部材用金属箔、電子機器用ばね部材、ばね部材用金属箔の製造方法、および、電子機器用ばね部材の製造方法
JP2022158951A JP7355192B2 (ja) 2022-02-10 2022-09-30 ばね部材用金属箔、ばね部材用金属箔の製造方法、および、電子機器用ばね部材
JP2022-158951 2022-09-30

Publications (1)

Publication Number Publication Date
WO2023153500A1 true WO2023153500A1 (ja) 2023-08-17

Family

ID=87564521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004598 WO2023153500A1 (ja) 2022-02-10 2023-02-10 ばね部材用金属箔、ばね部材用金属箔の製造方法、および、電子機器用ばね部材

Country Status (3)

Country Link
JP (1) JP2023171828A (ja)
TW (1) TW202346942A (ja)
WO (1) WO2023153500A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229213A (ja) * 1983-06-08 1984-12-22 Sumitomo Metal Ind Ltd 金属帯の幅方向厚み分布変更方法
JP2005279738A (ja) * 2004-03-30 2005-10-13 Jfe Steel Kk 冷間圧延機における自動板厚制御方法
JP2014059345A (ja) * 2012-09-14 2014-04-03 Dainippon Printing Co Ltd 板バネの製造方法
JP2014205911A (ja) * 2013-03-21 2014-10-30 大日本印刷株式会社 ステンレス鋼加工部材およびステンレス鋼加工部材の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229213A (ja) * 1983-06-08 1984-12-22 Sumitomo Metal Ind Ltd 金属帯の幅方向厚み分布変更方法
JP2005279738A (ja) * 2004-03-30 2005-10-13 Jfe Steel Kk 冷間圧延機における自動板厚制御方法
JP2014059345A (ja) * 2012-09-14 2014-04-03 Dainippon Printing Co Ltd 板バネの製造方法
JP2014205911A (ja) * 2013-03-21 2014-10-30 大日本印刷株式会社 ステンレス鋼加工部材およびステンレス鋼加工部材の製造方法

Also Published As

Publication number Publication date
JP2023171828A (ja) 2023-12-05
TW202346942A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
US11706968B2 (en) Metal mask base, metal mask and method for producing metal mask
DE202018006884U1 (de) Metallplatte zur Herstellung von Gasphasenabscheidungsmasken
DE112016003230T5 (de) Metallmaskensubstrat, metallmaskensubstratkontrollverfahren, metallmaske und metallmaskenherstellungsverfahren
JP2006281249A (ja) 銅張積層基板用高光沢圧延銅箔及びその製造方法
WO2023153500A1 (ja) ばね部材用金属箔、ばね部材用金属箔の製造方法、および、電子機器用ばね部材
WO2023153499A1 (ja) ばね部材用金属箔、ばね部材用金属箔の製造方法、および、電子機器用ばね部材
WO2023153501A1 (ja) ばね部材用金属箔、ばね部材用金属箔の製造方法、および、電子機器用ばね部材
WO2023153502A1 (ja) ばね部材用金属箔、ばね部材用金属箔の製造方法、および、電子機器用ばね部材
CN109884862A (zh) 三维存储器曝光系统中套刻偏差的补偿装置及方法
WO2023153009A1 (ja) ばね部材用金属箔、電子機器用ばね部材、ばね部材用金属箔の製造方法、および、電子機器用ばね部材の製造方法
KR102197435B1 (ko) 도전성 필름, 터치 패널 센서, 및 터치 패널
WO2012128098A1 (ja) 圧延銅箔及びその製造方法、並びに銅張積層板
CN114086114B (zh) 金属遮罩及其制造方法
KR102639339B1 (ko) 증착 마스크
JP6888128B1 (ja) 蒸着マスク
JP7485116B2 (ja) メタルマスク基材、および、メタルマスクの製造方法
JP5351404B2 (ja) メッシュ織物の製造方法
JP2021173897A (ja) 遮光部材とその製造方法、遮光部材を有するレンズユニット並びにカメラモジュール、および電子機器
JP6787832B2 (ja) 帯状金属材の製造方法
US7270920B2 (en) Fabrication method of a semiconductor device
TW202044944A (zh) 印刷配線板的製造方法
KR20190029500A (ko) 스크린 인쇄용 금속박 메쉬 부재, 스크린 인쇄판 및 해당 스크린 인쇄판을 사용한 태양 전지의 제조 방법
JP2010056122A (ja) 電磁波遮蔽フィルタ、多機能フィルタ及び画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752962

Country of ref document: EP

Kind code of ref document: A1