WO2023153494A1 - 触媒、ホルムアミド類及び/又はアミン類の製造方法、ホルムアミド類及び/又はアルコール類の製造方法並びに錯体 - Google Patents

触媒、ホルムアミド類及び/又はアミン類の製造方法、ホルムアミド類及び/又はアルコール類の製造方法並びに錯体 Download PDF

Info

Publication number
WO2023153494A1
WO2023153494A1 PCT/JP2023/004511 JP2023004511W WO2023153494A1 WO 2023153494 A1 WO2023153494 A1 WO 2023153494A1 JP 2023004511 W JP2023004511 W JP 2023004511W WO 2023153494 A1 WO2023153494 A1 WO 2023153494A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
formula
formamides
complex
Prior art date
Application number
PCT/JP2023/004511
Other languages
English (en)
French (fr)
Inventor
京子 野崎
孝紀 岩▲崎▼
一輝 柘植
直樹 内藤
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Publication of WO2023153494A1 publication Critical patent/WO2023153494A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/64Preparation of compounds containing amino groups bound to a carbon skeleton by disproportionation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C221/00Preparation of compounds containing amino groups and doubly-bound oxygen atoms bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/16Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms
    • C07D295/18Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms by radicals derived from carboxylic acids, or sulfur or nitrogen analogues thereof
    • C07D295/182Radicals derived from carboxylic acids
    • C07D295/185Radicals derived from carboxylic acids from aliphatic carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/572Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/645Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having two nitrogen atoms as the only ring hetero atoms
    • C07F9/6503Five-membered rings
    • C07F9/6506Five-membered rings having the nitrogen atoms in positions 1 and 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to catalysts, methods for producing formamides and/or amines, methods for producing formamides and/or alcohols, and complexes.
  • Non-Patent Document 1 discloses a ruthenium complex as a catalyst for hydrogenating a carbonyl compound.
  • a ruthenium complex promotes the hydrogenation reaction of a carbonyl compound, and ultimately produces alcohols and amines.
  • Patent Document 1 discloses a method of reducing a carbonyl compound with a reducing agent in the presence of an organometallic complex having a predetermined structure, and describes that alcohols and amines are obtained as products. ing.
  • formamide and its derivatives have been widely used as basic raw materials in the organic chemical industry, and are widely used in various chemical products, plastics, pharmaceuticals, etc. It is known that formamides are produced as intermediates when urea-based compounds and urethane-based compounds are hydrogenated. However, since formamides are more reactive than urea-based compounds and urethane-based compounds, the intermediate formamides are preferentially hydrogenated, and eventually alcohols and amines are hydrogenated. progresses.
  • an object of the present invention is to provide a novel catalyst for selectively producing formamides from urea-based compounds and urethane-based compounds.
  • the present invention has the following configurations.
  • M is a group 7, 8 or 9 element, a metal having an Allred-Rochow electronegativity of 1.40 or more and a third ionization potential of 26.5 eV or more; P and M are coordinately bonded, D 1 is an atomic group containing an anionic nitrogen atom as a bond with M, X 1 is a linking group, R 1 and R 2 are each independently a substituent containing at least one selected from the group consisting of a carbon atom, an oxygen atom and a nitrogen atom, and these substituents are linked to form a ring; well, M is connected to other sites with *.
  • Ring A represents a nitrogen-containing ring containing an anionic nitrogen
  • X 1 is a linking group
  • R 1 and R 2 are each independently a substituent containing at least one selected from the group consisting of a carbon atom, an oxygen atom and a nitrogen atom, and these substituents are linked to form a ring; well, Ir is bonded to other sites with *.
  • Ring A represents a nitrogen-containing ring containing an anionic nitrogen
  • Ring B represents an aromatic ring
  • R 1 and R 2 are each independently a substituent containing at least one selected from the group consisting of a carbon atom, an oxygen atom and a nitrogen atom, and these substituents are linked to form a ring; well, Ir is bonded to other sites with *.
  • a method for producing formamides and/or amines which comprises reacting a urea-based compound with the catalyst according to any one of [1] to [5].
  • a method for producing formamides and/or alcohols which comprises reacting a urethane compound with the catalyst according to any one of [1] to [5].
  • M is a group 7, 8 or 9 element, a metal having an Allred-Rochow electronegativity of 1.40 or more and a third ionization potential of 26.5 eV or more; P and M are coordinately bonded, Ring A represents a nitrogen-containing ring containing an anionic nitrogen, Ring B represents an aromatic ring, R 1 and R 2 are each independently a substituent containing at least one selected from the group consisting of a carbon atom, an oxygen atom and a nitrogen atom, and these substituents are linked to form a ring; well, M is connected to other sites with *.
  • this invention has the following structures.
  • [A] A method for partially hydrogenating a urea-based compound, comprising adding hydrogen to a urea-based compound in the presence of the catalyst according to any one of [1] to [5] to obtain formamides and/or amines.
  • [B] A method for partially decomposing a urea-based compound, comprising decomposing a urea-based compound in the presence of the catalyst according to any one of [1] to [5] to obtain formamides and/or amines.
  • [C] A method for partially hydrogenating a urethane compound, comprising adding hydrogen to a urethane compound in the presence of the catalyst according to any one of [1] to [5] to obtain formamides and/or alcohols.
  • [D] A method for partially decomposing a urethane compound, comprising decomposing a urethane compound in the presence of the catalyst according to any one of [1] to [5] to obtain formamides and/or alcohols.
  • the hydrogen atoms in each formula in this specification include isotopes (deuterium atoms, etc.), and the atoms constituting each substituent also include their isotopes.
  • the substituents in each formula herein may be substituted with other substituents. In this case, the type of other substituent is not particularly limited as long as it is a substitutable group.
  • Other substituents include, for example, aliphatic hydrocarbon groups (e.g. alkyl groups, alkenyl groups, alkynyl groups, cycloalkyl groups), aromatic hydrocarbon groups (e.g.
  • substituent groups may be further substituted, and examples of further substituents include groups selected from the above-described substituents. In the present specification, if it is not explicitly stated that it has a substituent, it preferably has no substituent.
  • This embodiment relates to a catalyst containing a complex having a partial structure represented by formula (A) below. This embodiment also relates to a complex having a partial structure represented by formula (A) below.
  • M is a group 7, 8 or 9 element, has an Allred-Rochow electronegativity of 1.40 or more, and a third ionization potential of 26.5 eV or more.
  • P and M are coordinately bonded
  • D 1 is an atomic group containing an anionic nitrogen atom as a bond with M
  • X 1 is a linking group
  • R 1 and R 2 are each independently a substituent containing at least one selected from the group consisting of a carbon atom, an oxygen atom and a nitrogen atom, these substituents may be linked to each other to form a ring
  • M is * is connected to other sites.
  • M is a group 7, 8 or 9 element, a metal having an Allred-Rochow electronegativity of 1.40 or more and a third ionization potential of 26.5 eV or more.
  • metals include manganese (Mn), iron (Fe), cobalt (Co), ruthenium (Ru), rhodium (Rh), and iridium (Ir). The electronegativity and third ionization potential of each metal are shown in the table below.
  • the metal center can transfer electrons from the ligand in order to ensure sufficient acidity of the NH bond of the ⁇ -coordinated ligand. It will have enough electronegativity to attract. Further, by setting the third ionization potential of the metal represented by M within the above range, it is possible to suppress the formation of highly oxidized intermediates in the catalytic cycle. This makes it possible to more effectively increase the hydrogenation reaction rate of the substrate.
  • M in formula (A) is preferably at least one selected from the group consisting of manganese (Mn), iron (Fe), ruthenium (Ru) and iridium (Ir), manganese (Mn), At least one selected from the group consisting of ruthenium (Ru) and iridium (Ir) is more preferred, and iridium (Ir) is particularly preferred.
  • D 1 , X 1 and R 1 and R 2 in formula (A) are the same as D 1 , X 1 and R 1 and R 2 in formula (1) described later, and the preferred ranges and examples are also the same. be.
  • This embodiment relates to a catalyst containing an iridium complex having a partial structure represented by the following formula (1).
  • the present embodiment also relates to an iridium complex having a partial structure represented by formula (1) below.
  • D 1 is an atomic group containing an anionic nitrogen atom as a bond with Ir
  • X 1 is a linking group
  • R 1 and Each R 2 is independently a substituent containing at least one selected from the group consisting of a carbon atom, an oxygen atom and a nitrogen atom, and these substituents may be linked to each other to form a ring
  • Ir is bonded to other sites with *.
  • D1 is an atomic group containing an anionic nitrogen atom as a bond with Ir, and the anionic nitrogen atom and Ir are bonded by a covalent bond. That is, D1 is an anionic nitrogen-containing ligand. D 1 is preferably an atomic group having at least an anionic nitrogen atom as a bond with Ir and a group linked to the anionic nitrogen atom. The group linked to the anionic nitrogen atom may further have other substituents, and examples of other substituents include substitutable groups among the aforementioned substituents.
  • D 1 may be represented by a structure surrounded by a dotted line represented by the following formula (1′).
  • R represents a substituent group, and examples of the substituent group include substitutable groups among the substituent groups described above.
  • R may be, for example, an aliphatic hydrocarbon group, an aromatic hydrocarbon group, an acyl group, a sulfo group, an alkoxy group, an amino group.
  • D 1 may be an atomic group having a ring containing an anionic nitrogen atom as a bond with Ir, or an atomic group having a nitrogen-containing ring containing an anionic nitrogen atom. good.
  • X 1 is a linking group, and the linking group may have other substituents.
  • substituents include substitutable groups among the substituents described above, and other substituents are aliphatic hydrocarbon groups (alkyl groups, alkenyl groups, alkynyl groups, cycloalkyl groups, etc.).
  • the linking group represented by X1 preferably has an alkyl group or an alkenyl group as another substituent.
  • these substituents may be linked to each other to form a ring.
  • the structure of the linking group represented by X 1 is not particularly limited, but X 1 is a linking group containing at least one selected from the group consisting of a carbon atom, an oxygen atom, a nitrogen atom and a sulfur atom. is preferred, a linking group containing a carbon atom is more preferred, and a hydrocarbon group is even more preferred.
  • the number of carbon atoms constituting the linking group is preferably 1 or more, more preferably 2 or more, and even more preferably 3 or more.
  • the number of carbon atoms constituting the linking group is preferably 30 or less, more preferably 20 or less, still more preferably 15 or less, and particularly preferably 10 or less.
  • the linking group has other substituents, the number of carbon atoms includes the number of carbon atoms of the other substituents.
  • R 1 and R 2 are each independently a substituent containing at least one selected from the group consisting of a carbon atom, an oxygen atom and a nitrogen atom, and these substituents are linked to form a ring; good too.
  • “R 1 and R 2 are linked together to form a ring” means that R 1 and R 2 are linked together to form a linking group and form a ring structure together with the P atom. .
  • the number of atoms constituting the ring structure is preferably 5-7.
  • R 1 and R 2 are each independently preferably a substituent containing a carbon atom, more preferably an aliphatic hydrocarbon group, an aromatic hydrocarbon group, a heteroaliphatic cyclic group or a heteroaromatic cyclic group. It is preferably an aromatic hydrocarbon group, more preferably an aromatic hydrocarbon group.
  • the aliphatic hydrocarbon group may be linear, branched, or cyclic. Moreover, the aliphatic hydrocarbon group may be either a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • the aliphatic hydrocarbon group includes an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, and the like.
  • alkyl groups having 1 to 20 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, 2-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, 2-pentyl group, 2-methylbutyl group, 3-methylbutyl group, 1,2-dimethylpropyl group, 1,1-dimethylpropyl group, 2,2-dimethylpropyl group, 1-ethylpropyl group, n-hexyl group, 2-hexyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,3-dimethylbutyl group, 1,1 -dimethylbutyl group, 2,2-dimethylbutyl group, 3,3-dimethylbutyl group, 1,1,2-trimethylpropyl group, 1,
  • Examples of the cycloalkyl group having 3 to 20 carbon atoms include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group and adamantyl group.
  • Alkenyl groups having 2 to 20 carbon atoms include, for example, vinyl group, allyl group, prop-1-en-1-yl group, prop-2-en-1-yl group, prop-1-en-2-yl group, but-1-en-1-yl group, but-2-en-1-yl group, but-3-en-1-yl group, but-1-en-2-yl group, but-3- En-2-yl group, pent-1-en-1-yl group, pent-2-en-1-yl group, pent-3-en-1-yl group, pent-4-en-1-yl group , pent-1-en-2-yl group, pent-4-en-2-yl group, 3-methylbut-1-en-1-yl group, 3-methylbut-2-en-1-yl group, 3 -methylbut-3-en-1-yl group, hex-1-en-1-yl group, hex-5-en-1-yl group, 4-methylpent-3-en-1-yl group and the like. be done.
  • aromatic hydrocarbon groups include aryl groups having 6 to 30 carbon atoms.
  • the aryl group having 6 to 30 carbon atoms includes phenyl group, naphthyl group, anthryl group, phenanthryl group, biphenyl group and the like.
  • the aromatic hydrocarbon group may further have other substituents, and examples of the other substituents include substitutable groups among the substituents described above. Among them, when the aromatic hydrocarbon group further has another substituent, the other substituent is preferably an alkyl group.
  • the aromatic hydrocarbon group is an o-tolyl group or a p-tolyl group. , m-tolyl group, 2,3-xylyl group, 2,4-xylyl group, 2,5-xylyl group, 2,6-xylyl group and mesityl group.
  • the number of carbon atoms constituting the heteroaliphatic ring group is preferably 1-30, more preferably 3-30.
  • Heteroaliphatic cyclic groups include piperidinyl, piperazinyl, morpholinyl, quinuclidinyl, pyridinyl and oxetanyl groups.
  • the heteroaliphatic ring group may further have other substituents, and examples of the other substituents include substitutable groups among the substituents described above.
  • the heteroaromatic ring group preferably includes a heteroaryl group having 1 to 30 carbon atoms, more preferably 3 to 30 carbon atoms.
  • heteroaryl groups having 1 to 30 carbon atoms include furanyl group, thiophenyl group, pyrrolyl group, pyrazolyl group, imidazolyl group, isoxazolyl group, thiazolyl group, thiadiazolyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group and triazinyl group.
  • a benzofuranyl group an indolyl group, a thianaphthenyl group, a benzimidazolyl group, a benzoxazolyl group, a benzothiazolyl group, a benzotriazolyl group, a quinolyl group, an isoquinolyl group, a quinolyl group, a quinoxalyl group, a dibenzothiophenyl group, an acridyl group, a phenanthryl group, and the like.
  • the heteroaromatic ring group may further have other substituents, and examples of the other substituents include substitutable groups among the substituents described above.
  • R 1 and R 2 are each independently preferably an aromatic hydrocarbon group.
  • aromatic hydrocarbon groups include phenyl groups and polycyclic aryl groups.
  • polycyclic aryl group for example, bicyclic to tetracyclic aryl groups can be used, and more specific examples include naphthyl group, anthryl group, phenanthryl group and the like.
  • R 1 and R 2 are each independently preferably a phenyl group.
  • each of R 1 and R 2 may independently have other substituents, and examples of the other substituents include substitutable groups among the above-mentioned substituents.
  • Ir is bonded to other sites with *.
  • the structure of other sites to which Ir binds is not particularly limited, but Ir usually contains, in addition to D1 and P, one or two or more atoms or atomic groups (substituted group).
  • Ir, in addition to D 1 and P may be attached to one substituent, may be attached to two substituents, may be attached to three substituents, may be attached to four It may be bonded with a substituent.
  • the iridium complex having the partial structure represented by the above formula (1) is preferably an iridium monovalent complex or an iridium trivalent complex, but may have other oxidation numbers.
  • substituents When Ir is bonded to two or more substituents in addition to D1 and P, these substituents may be linked to each other to form a ring.
  • "Two or more substituents are linked to each other to form a ring” means that two or more substituents are linked to each other to form a linking group and form a ring structure together with an Ir atom. , means that two or more substituents are joined together to form a ring structure.
  • the formula weight of other sites (atoms or atomic groups (substituents)) to which Ir bonds with * is preferably 1 or more, more preferably 10 or more, and even more preferably 20 or more.
  • the formula weight of other sites (atoms or atomic groups (substituents)) is preferably 500 or less, more preferably 250 or less, and even more preferably 100 or less.
  • bonds with * may be a hydrogen atom.
  • the molecular weight of the iridium complex having the partial structure represented by formula (1) is preferably 230 or more, more preferably 250 or more, and even more preferably 300 or more. Further, the molecular weight of the iridium complex having the partial structure represented by formula (1) is preferably 2000 or less, more preferably 1000 or less, even more preferably 900 or less, and 800 or less. is particularly preferred. The molecular weight of the complex having the partial structure represented by formula (A) is also preferably within the above range.
  • Ir may have a linking structure at the site indicated by *, and the partial structure represented by the above formula (1) may be linked via the linking structure. That is, the iridium complex having the partial structure represented by the above formula (1) may be a dimer or oligomer compound represented by the following structure. In this case, the molecular weight of the oligomer compound is preferably 700 or more, more preferably 900 or more. Further, the molecular weight of the oligomer compound is preferably 3000 or less, more preferably 2500 or less.
  • the complex having the partial structure represented by formula (A) may also be a dimer or oligomer compound.
  • the catalyst of the present embodiment preferably contains an iridium complex having a partial structure represented by the following formula (1-2). That is, the iridium complex having the partial structure represented by formula (1) above is preferably an iridium complex having a partial structure represented by formula (1-2) below.
  • D 1 is an atomic group containing an anionic nitrogen atom as a bond with Ir
  • X 1 is a linking group
  • R 1 and R 2 are each independently a substituent containing at least one selected from the group consisting of a carbon atom, an oxygen atom and a nitrogen atom, and these substituents may be linked to each other to form a ring.
  • Often * represents a bond with another structure.
  • Preferred ranges and examples of D 1 , X 1 , R 1 and R 2 in formula (1-2) are the same as the preferred ranges and examples of D 1 , X 1 , R 1 and R 2 in formula (1). be.
  • Ir is bonded to two substituents in addition to D1 and P.
  • these two substituents may be connected to each other to form a ring.
  • Preferred molecular weights for these two substituents are as described above.
  • these two substituents may be hydrogen atoms.
  • These groups may form coordinate bonds with Ir as neutral ligands.
  • each of these groups may independently have other substituents, and examples of the other substituents include substitutable groups among the above-mentioned substituents.
  • the catalyst of the present embodiment preferably contains an iridium complex having a partial structure represented by the following formula (1-3). That is, the iridium complex having the partial structure represented by formula (1) above is preferably an iridium complex having a partial structure represented by formula (1-3) below.
  • D 1 is an atomic group containing an anionic nitrogen atom as a bond with Ir
  • X 1 is a linking group
  • R 1 and R 2 are each independently a substituent containing at least one selected from the group consisting of a carbon atom, an oxygen atom and a nitrogen atom, and these substituents may be linked to each other to form a ring.
  • R 3 and R 4 may each independently be a substituent, and these substituents may be linked together to form a ring.
  • the preferred ranges and examples of D 1 , X 1 , R 1 and R 2 in formula (1-3) are the same as the preferred ranges and examples of D 1 , X 1 , R 1 and R 2 in formula (1). be.
  • R 3 and R 4 are each independently a substituent.
  • -S- is preferably a monovalent group formed by combining one or more of -S-, and these groups may form a coordinate bond with Ir as a neutral ligand.
  • each of these groups may independently have other substituents, and examples of the other substituents include substitutable groups among the above-mentioned substituents.
  • R 3 and R 4 are each independently preferably a hydrocarbon group, more preferably an unsaturated hydrocarbon group.
  • R 3 and R 4 may be linked together to form a ring.
  • “R 3 and R 4 are linked to each other to form a ring” means that R 3 and R 4 are linked to each other to form a linking group and form a ring structure together with the Ir atom; 3 and R4 are linked together to form a ring structure.
  • the number of atoms constituting the ring structure is preferably 4 or more, more preferably 5 or more.
  • the number of atoms constituting the ring structure is preferably 12 or less, more preferably 10 or less.
  • R3 and R4 may be linked together to form a cyclic diene. Cyclic dienes include cyclobutadiene, cyclopentadiene, cyclohexadiene, cycloheptadiene, cyclooctadiene and the like.
  • the catalyst of the present embodiment preferably contains an iridium complex having a partial structure represented by the following formula (2). That is, the iridium complex having the partial structure represented by the above formula (1) is preferably an iridium complex having the partial structure represented by the following formula (2).
  • Ring A represents a nitrogen-containing ring containing anionic nitrogen
  • X 1 is a linking group
  • R 1 and R 2 are each independently , a substituent containing at least one selected from the group consisting of a carbon atom, an oxygen atom and a nitrogen atom, and these substituents may be linked to each other to form a ring
  • Ir is * and other connected to the part.
  • the preferred ranges and examples of X 1 , R 1 and R 2 in formula (2) are the same as the preferred ranges and examples of X 1 , R 1 and R 2 in formula (1).
  • the structure of other sites where Ir is bound by * in formula (2) is the same as the structure exemplified in formula (1) and the like.
  • Ring A represents a nitrogen-containing ring containing anionic nitrogen.
  • the anionic nitrogen atom contained in ring A and Ir are bonded by a covalent bond.
  • a nitrogen-containing ring containing an anionic nitrogen may be a nitrogen-containing alicyclic ring or a nitrogen-containing aromatic ring.
  • the nitrogen-containing ring containing an anionic nitrogen may be a monocyclic ring or a condensed ring.
  • the number of atoms (including anionic nitrogen atoms) constituting the nitrogen-containing ring containing anionic nitrogen is preferably 5 or more.
  • the number of atoms (including anionic nitrogen atoms) constituting the nitrogen-containing ring containing anionic nitrogen is preferably 20 or less.
  • the number of nitrogen atoms contained in ring A, including anionic nitrogen atoms, is preferably 1 or more and 4 or less, more preferably 1 or 2.
  • the nitrogen-containing ring containing an anionic nitrogen is preferably a nitrogen-containing aromatic ring.
  • the nitrogen-containing aromatic ring containing an anionic nitrogen include pyrrole, imidazole, benzimidazole, indole, pyrazole, and triazole. , tetrazole, isoindole, indazole, purine, carbazole and the like.
  • the nitrogen-containing aromatic ring containing anionic nitrogen is preferably a pyrrole ring, an imidazole ring or a benzimidazole ring, and particularly preferably a pyrrole ring.
  • the nitrogen-containing ring containing an anionic nitrogen represented by ring A may further have other substituents, and examples of the other substituents include groups that can be substituted among the substituents described above. can.
  • the catalyst of the present embodiment preferably contains an iridium complex having a partial structure represented by the following formula (2-2). That is, the iridium complex having the partial structure represented by formula (2) above is preferably an iridium complex having a partial structure represented by formula (2-2) below.
  • ring A represents a nitrogen-containing ring containing anionic nitrogen
  • X 1 is a linking group
  • R 1 and R 2 are each A substituent containing at least one selected from the group consisting of a carbon atom, an oxygen atom and a nitrogen atom, and these substituents may be linked to each other to form a ring;
  • the preferred ranges and examples of X 1 , R 1 and R 2 in formula (2-2) are the same as the preferred ranges and examples of X 1 , R 1 and R 2 in formula (1).
  • other structures to which * is bonded in formula (2-2) are the same as the structures exemplified in formula (1-2) and the like, and preferred ranges and examples of ring A are Similar to preferred ranges and examples.
  • the catalyst of the present embodiment preferably contains an iridium complex having a partial structure represented by the following formula (2-3). That is, the iridium complex having the partial structure represented by formula (2) above is preferably an iridium complex having a partial structure represented by formula (2-3) below.
  • ring A represents a nitrogen-containing ring containing anionic nitrogen
  • X 1 is a linking group
  • R 1 and R 2 are each A substituent independently containing at least one selected from the group consisting of a carbon atom, an oxygen atom and a nitrogen atom, and these substituents may be linked to each other to form a ring
  • R 3 and R 4 is each independently a substituent, and these substituents may be linked to each other to form a ring.
  • the preferred ranges and examples of X 1 , R 1 and R 2 in formula (2-3) are the same as the preferred ranges and examples in formula (1).
  • Preferred ranges and examples of R 3 and R 4 in formula (2-3) are the same as those in formula (1-3), and preferred ranges and examples of ring A are those in formula (2) It is the same as the preferred range and examples of Ring A.
  • the catalyst of the present embodiment preferably contains an iridium complex having a partial structure represented by the following formula (3). That is, the iridium complex having the partial structure represented by the above formula (1) is preferably an iridium complex having the partial structure represented by the following formula (3).
  • R 1 and R 2 are each independent , is a substituent containing at least one selected from the group consisting of a carbon atom, an oxygen atom and a nitrogen atom, these substituents may be linked to each other to form a ring, and Ir is * and other is connected to the part of
  • the preferred ranges and examples of R 1 and R 2 in formula (3) are the same as the preferred ranges and examples of R 1 and R 2 in formula (1).
  • Ring B represents an aromatic ring.
  • Aromatic rings include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, biphenyl ring and the like. Among them, the aromatic ring is preferably a benzene ring or a naphthalene ring.
  • the aromatic ring represented by ring B may further have other substituents, and examples of the other substituents include substitutable groups among the substituents described above.
  • the catalyst of the present embodiment preferably contains an iridium complex having a partial structure represented by the following formula (3-2). That is, the iridium complex having the partial structure represented by formula (3) above is preferably an iridium complex having a partial structure represented by formula (3-2) below.
  • R 1 and R 2 each independently a substituent containing at least one selected from the group consisting of a carbon atom, an oxygen atom and a nitrogen atom, and these substituents may be linked to each other to form a ring; represents the junction with the structure of
  • the preferred ranges and examples of R 1 and R 2 in formula (3-2) are the same as the preferred ranges and examples of R 1 and R 2 in formula (1).
  • the catalyst of the present embodiment preferably contains an iridium complex having a partial structure represented by the following formula (3-3). That is, the iridium complex having the partial structure represented by formula (3) above is preferably an iridium complex having a partial structure represented by formula (3-3) below.
  • R 1 and R 2 each independently a substituent containing at least one selected from the group consisting of a carbon atom, an oxygen atom and a nitrogen atom; these substituents may be linked to each other to form a ring;
  • R 4 is independently a substituent, and these substituents may be linked together to form a ring.
  • the preferred ranges and examples of R 1 and R 2 in formula (3-3) are the same as the preferred ranges and examples of R 1 and R 2 in formula (1).
  • R 3 and R 4 in formula (3-3) are the same as those in formula (1-3), and preferred ranges and examples of ring A are those in formula (2)
  • the preferred range and examples of ring A are the same as the preferred range and examples of ring B, and the preferred range and examples of ring B are the same as the preferred range and examples of ring A in formula (3).
  • Iridium complexes having the partial structure represented by Formula (1) are specifically illustrated below, but the present invention is not limited thereto.
  • Ph represents a phenyl group below.
  • the ligand containing an anionic nitrogen atom of the complex changes from ⁇ -coordination to ⁇ -coordination. That is, in the complex, covalent bonds are formed between iridium and hydrogen atoms, and between anionic nitrogen atoms and hydrogen atoms, the bonds between nitrogen atoms and iridium are broken, and ⁇ -coordination bonds are newly formed between pyrrole and iridium. It will be.
  • the catalyst of the present embodiment when allowed to act on a urea-based compound, a reaction involving a change in the coordination mode of a ligand containing an anionic nitrogen atom occurs, so that hydrogen bound to an anionic nitrogen atom is Furthermore, it selectively forms hydrogen bonds with urea oxygen, which has a higher basicity, and as a result, formamides and amines can be selectively obtained from urea-based compounds.
  • the structure in the transition state when the catalyst of the present embodiment is allowed to act on the urea-based compound, which is a substrate, is assumed as follows.
  • a thick dashed line between Ir and pyrrole represents a ⁇ -coordinate bond.
  • formamides In conventional technology, when urea-based compounds are hydrogenated, formamides are produced as intermediates, but since formamides are more reactive than urea-based compounds, hydrogenation of formamides, which are intermediates, takes precedence. Finally, it is decomposed into alcohols and amines, making it difficult to selectively produce and obtain formamides.
  • formamides can be selectively produced by using a catalyst containing a novel complex having a partial structure represented by the above formula (A) or the above formula (1). Since formamides are important chemical products in fields such as the organic chemical industry, industrial applications can be expected if formamides can be selectively obtained by hydrogenating urea compounds.
  • formamides refer to formamide and derivatives thereof
  • amines refer to amines and derivatives thereof.
  • urea-based compounds such as polyurea and urethane-based compounds such as polyurethane.
  • Polyurea and polyurethane are also used as general-purpose plastics, and if such plastic materials can be decomposed, chemical recycling becomes possible, which is very useful from the viewpoint of environmental protection.
  • alcohol is alcohol and its derivative(s).
  • the iridium complex having the partial structure represented by formula (1) is produced by a combination of known methods.
  • an iridium complex can be obtained by coupling an anionic nitrogen atom-containing compound and a phosphorus atom-containing compound and reacting the iridium-containing compound.
  • An iridium complex can also be obtained by introducing a phosphorus atom into a compound containing an anionic nitrogen atom and a linking group.
  • an iridium-phosphine pyrrolate complex (Ir/PP complex), which is an iridium complex, can be produced according to the synthesis scheme shown below.
  • the iridium complex having the partial structure represented by the above formula (1) is produced, for example, using (2-bromophenyl)diphenylphosphine as a starting material. Specifically, methanol is added to (2-bromophenyl)diphenylphosphine, and hydrogen peroxide solution is further added to obtain an oxidized form of (2-bromophenyl)diphenylphosphine.
  • 1-Boc-2-pyrroleboronic acid Pd(dba) 2 , PPh 3 , Na 2 CO 3 and dehydrated DMF are added to the (2-bromophenyl)diphenylphosphine oxidized product to allow the reaction to proceed, A coupling product of (2-bromophenyl)diphenylphosphine and 1-Boc-2-pyrroleboronic acid is obtained.
  • HSiCl 3 , dehydrated and degassed Et 3 N and dehydrated and degassed toluene are added to the coupling product to carry out a reaction, and after the reaction, vacuum drying is performed to obtain a reduced product.
  • a complex having a partial structure represented by formula (A) is produced by a combination of known methods.
  • a ruthenium complex or a manganese complex can be obtained by coupling an anionic nitrogen atom-containing compound and a phosphorus atom-containing compound and reacting them with a ruthenium-containing compound or a manganese-containing compound.
  • the present embodiment relates to a method for producing formamides and/or amines, which comprises reacting a urea-based compound with a catalyst containing a complex having the partial structure described above.
  • the present embodiment may relate to a method for producing formamides, which comprises reacting a urea-based compound with a catalyst containing a complex having the above-described partial structure. It may also relate to a method for producing amines, which comprises acting a catalyst containing a complex having the above-mentioned partial structure. may be related to
  • the urea-based compound used in the method for producing formamides and/or amines of the present embodiment is preferably a compound represented by the following formula (11).
  • L 1 and L 2 are each independently a single bond or a linking group
  • R 11 and R 12 are each independently a hydrogen atom or a substituent
  • R 13 and R 14 are each independently , is a hydrogen atom or a substituent
  • at least one of R 13 and R 14 is a hydrogen atom
  • R 11 and R 12 may be linked together to form a ring
  • R 11 and R 13 and R 12 and R 14 may be linked to each other to form a ring
  • n is an integer of 1 or more.
  • L 1 and L 2 are each independently a single bond or a linking group.
  • n is 1, L 1 and L 2 are preferably single bonds.
  • L 1 and L 2 are each independently preferably a single bond or a linking group, more preferably a linking group.
  • the linking group is preferably a linking group containing at least one selected from the group consisting of a carbon atom, an oxygen atom and a nitrogen atom, and more preferably a linking group containing a carbon atom.
  • the atoms directly bonded to the nitrogen atoms to which L1 and L2 are respectively linked are carbon atoms.
  • the divalent hydrocarbon group may be an unsaturated hydrocarbon group, a saturated hydrocarbon group, or an arylene group.
  • the number of carbon atoms thereof is preferably 1 to 20, more preferably 1 to 10, and 1 to 5 is more preferred.
  • the divalent hydrocarbon group is an arylene group, the arylene group is preferably a phenylene group.
  • L 1 and L 2 are a linking group
  • the linking group may further have another substituent, and examples of other substituents include substitutable groups among the substituents described above. can.
  • R 11 and R 12 are each independently a hydrogen atom or a substituent.
  • the substituent is preferably a substituent containing at least one selected from the group consisting of carbon atoms, oxygen atoms and nitrogen atoms.
  • the substituent is preferably a hydrocarbon group, an amino group, an isocyanate group or a carbamoyl group.
  • substituents may further have other substituents, and examples of other substituents include substitutable groups among the substituents described above.
  • R 11 and R 12 are each independently preferably a substituent containing at least one selected from the group consisting of a carbon atom, an oxygen atom and a nitrogen atom, and a substituent containing a carbon atom and more preferably a hydrocarbon group. These substituents may further have other substituents, and examples of other substituents include substitutable groups among the substituents described above.
  • R 11 and R 12 are each independently preferably an aliphatic hydrocarbon group or an aromatic hydrocarbon group.
  • groups that R 11 and R 12 can take include alkyl groups having 1 to 20 carbon atoms, cycloalkyl groups having 3 to 20 carbon atoms, and aryl groups having 6 to 30 carbon atoms.
  • R 11 and R 12 is preferably an aromatic hydrocarbon group, more preferably a phenyl group. It is also a preferred embodiment that both R 11 and R 12 are aromatic hydrocarbon groups, and in this case as well, the aromatic hydrocarbon group is more preferably a phenyl group.
  • R 13 and R 14 are each independently a hydrogen atom or a substituent, and at least one of R 13 and R 14 is a hydrogen atom.
  • the substituent is preferably a substituent containing at least one selected from the group consisting of a carbon atom, an oxygen atom and a nitrogen atom, more preferably a substituent containing a carbon atom, and is a hydrocarbon group. is more preferred, and an aliphatic hydrocarbon group is particularly preferred.
  • the aliphatic hydrocarbon group is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, and even more preferably an alkyl group having 1 to 5 carbon atoms. , is particularly preferably an alkyl group having 1 to 3 carbon atoms.
  • At least one of R 13 and R 14 may be a hydrogen atom, but both R 13 and R 14 are preferably hydrogen atoms.
  • R 11 and R 12 are hydrocarbon groups, and R 13 and R 14 are hydrogen atoms. A certain aspect is mentioned.
  • R 11 and R 12 may be linked together to form a ring.
  • n is preferably 5 or less, more preferably 3 or less, and particularly preferably 1.
  • R 11 and R 12 are linked together to form a ring, R 11 , R 12 , L 1 , L 2 , a C atom and two N atoms form a ring structure.
  • the number of atoms constituting the ring structure is not particularly limited, and is preferably 5-30, more preferably 5-20.
  • R 11 and R 13 and R 12 and R 14 may be linked to each other to form a ring.
  • R 11 and R 13 are linked together to form a ring
  • R 11 , R 13 , L 1 and N atom form a ring structure.
  • R 12 and R 14 are linked to each other to form a ring
  • R 12 , R 14 , L 2 and N atom form a ring structure.
  • n is 2 or more
  • the most terminal R 13 forms a ring with R 11 .
  • the most terminal R 14 forms a ring with R 12 .
  • n is preferably 1 when R 11 and R 13 and R 12 and R 14 are linked to each other to form a ring.
  • n may be an integer of 1 or more. Although the upper limit of n is not particularly limited, it is preferably 2,000 or less, more preferably 1,500 or less, and even more preferably 1,000 or less. In this specification, when n is 2 or more, the urea-based compound is sometimes called polyurea. That is, the urea-based compound includes polyurea. In addition, in the present embodiment, it is also preferable to use a urea-based compound in which n is 1 and which does not have a repeating unit.
  • a urea-based compound in which R 11 and R 12 in formula (11) are the same group, R 13 and R 14 are the same group, and L 1 and L 2 are the same group is also called a symmetrical urea compound.
  • a symmetrical urea-based compound has a bilaterally symmetrical structure with the carbonyl bond site as the center line.
  • a urea-based compound in which at least R 11 and R 12 , R 13 and R 14 , or L 1 and L 2 in formula (11) are different groups is also called an asymmetric urea-based compound.
  • an appropriate urea-based compound can be selected from symmetrical urea-based compounds and asymmetrical urea-based compounds in order to produce the desired formamides and amines.
  • the urea-based compound is preferably a urea-based compound represented by formula (11-2) or formula (11-3).
  • L 1 and L 2 are each independently a single bond or a linking group
  • R 11 and R 12 are each independently a hydrogen atom or a substituent
  • R 13 and R 14 are Each independently represents a hydrogen atom or a substituent
  • at least one of R 13 and R 14 is a hydrogen atom.
  • the urea-based compound is a symmetrical urea-based compound, and when any of the above is different , the urea-based compound becomes an asymmetric urea-based compound.
  • L 1 and L 2 are each independently a single bond or a linking group
  • R 13 and R 14 are each independently a hydrogen atom or a substituent
  • R 13 and R 14 At least one is a hydrogen atom
  • each of R 21 and R 22 is independently a substituent
  • each of m1 and m2 is independently an integer of 0-5.
  • the urea-based compound is a symmetrical urea-based compound, and any of the above are different, the urea-based compound is an asymmetric urea-based compound.
  • L 1 and L 2 are each independently preferably a single bond or an alkylene group, and a single bond or an alkylene group having 1 to 5 carbon atoms. is more preferred, and a single bond is particularly preferred.
  • at least one of R 13 and R 14 is a hydrogen atom, and the other is an alkyl group having 1 to 3 carbon atoms, or R 13 and R Both of 14 are preferably hydrogen atoms.
  • R 11 and R 12 are each independently a hydrogen atom or a substituent.
  • the substituent is preferably a substituent containing at least one selected from the group consisting of carbon atoms, oxygen atoms and nitrogen atoms.
  • the substituent is preferably a hydrocarbon group, more preferably an aromatic hydrocarbon group.
  • R 21 and R 22 are each independently a substituent.
  • Substituents include aliphatic hydrocarbon groups (alkyl groups, alkenyl groups, alkynyl groups, cycloalkyl groups, etc.), aliphatic oxy groups (alkoxy groups, alkyleneoxy groups, ethyleneoxy groups, propyleneoxy groups, etc.), amino groups. , hydroxy group, halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, sulfo group, carboxy group, nitro group and the like.
  • m1 and m2 are each independently an integer of 0 to 5, preferably 0 or 1.
  • asymmetric urea compound represented by formula (11) Specific examples of the asymmetric urea compound represented by formula (11) are shown below, but the urea compound used in the present invention is not limited to these.
  • polyurea represented by formula (11) Specific examples of the polyurea represented by formula (11) are shown below, but the urea-based compound used in the present invention is not limited to these.
  • the molecular weight of the urea-based compound is preferably 70 or more, more preferably 100 or more. Also, the molecular weight of the urea-based compound is preferably 1000 or less, more preferably 500 or less. On the other hand, when n is 2 or more in formula (11) and polyurea is used, the molecular weight of polyurea is preferably 200 or more, more preferably 1000 or more. Further, the molecular weight of polyurea is preferably 1,000,000 or less, more preferably 10,000 or less.
  • Formamides produced by the method for producing formamides and/or amines of the present embodiment are preferably compounds represented by the following formula (12-1) or compounds represented by formula (12-2).
  • the amines produced by the method for producing formamides and/or amines of the present embodiment are compounds represented by the following formula (13-1) or compounds represented by the following formula (13-2). preferable.
  • the substrate is a urea-based compound and the urea-based compound is a symmetrical urea-based compound
  • the compound represented by formula (12-1) and the compound represented by formula (12-2) are the same compound.
  • the compound represented by the formula (13-1) and the compound represented by the formula (13-2) are also the same compound.
  • L 1 and L 2 are each independently a single bond or a linking group
  • R 11 and R 12 is each independently a hydrogen atom or a substituent
  • R 13 and R 14 are each independently a hydrogen atom or a substituent
  • at least one of R 13 and R 14 is a hydrogen atom
  • R 11 and R 13 and R 12 and R 14 may be linked to each other to form a ring.
  • the molecular weight of the formamides represented by formula (12-1) or formula (12-2) is preferably 60 or more, more preferably 70 or more. Further, the molecular weight of formamides is preferably 500 or less, more preferably 250 or less.
  • the molecular weight of the amine represented by formula (13-1) or formula (13-2) is preferably 30 or more, more preferably 40 or more. Also, the molecular weight of the amines is preferably 470 or less, more preferably 230 or less.
  • the lower limit of the amount of the complex to act on 1 mol of the urea-based compound is not particularly limited, but it should be 0.001 mol or more. is preferred, 0.01 mol or more is more preferred, and 0.03 mol or more is even more preferred.
  • the upper limit of the amount of the complex to act on 1 mol of the urea-based compound is not particularly limited, but for example, it is preferably 1 mol or less, more preferably 0.1 mol or less, and 0.1 mol or less. 05 mol or less is more preferable.
  • a urea-based compound as a substrate, hydrogen as a reducing agent, and a complex as a catalyst are mixed and reacted.
  • the reaction temperature at this time is preferably 50 to 200°C, more preferably 120 to 170°C.
  • the hydrogen pressure is preferably 0.1-10 MPa, more preferably 1-3 MPa.
  • the reaction time is preferably 10 to 200 hours, more preferably 40 to 150 hours.
  • a base may be added to the mixture as necessary in order to promote the above reaction.
  • t-butoxypotassium, t-butoxysodium, t-butoxylithium, methoxypotassium, ethoxypotassium and the like can be used as the base.
  • t-butoxypotassium is preferably used.
  • the amount of the base to be added is preferably, for example, 0.1 to 1 mol with respect to 1 mol of the urea-based compound.
  • Both formamides and amines are produced in the method for producing formamides and/or amines of the present embodiment.
  • the amounts of formamides and amines produced can be approximately the same. means that
  • the present embodiment relates to a method for producing formamides and/or alcohols, which comprises reacting a urethane-based compound with a catalyst containing a complex having the partial structure described above.
  • the present embodiment may relate to a method for producing formamides, which comprises reacting a urethane-based compound with a catalyst containing a complex having the above-described partial structure. It may also relate to a method for producing alcohols, comprising acting a catalyst containing a complex having the above-mentioned partial structure. may be related to
  • the urethane-based compound used in the method for producing formamides and/or alcohols of the present embodiment is preferably a compound represented by the following formula (21).
  • L 1 and L 2 are each independently a single bond or a linking group
  • R 11 and R 12 are each independently a hydrogen atom or a substituent
  • R 11 and R 12 are They may be linked to form a ring
  • n is an integer of 1 or more.
  • L 1 and L 2 are each independently a single bond or a linking group.
  • n is 1, L 1 and L 2 are preferably single bonds.
  • L 1 and L 2 are each independently preferably a single bond or a linking group, more preferably a linking group.
  • the same linking groups as L 1 and L 2 in formula (11) can be exemplified.
  • R 11 and R 12 are each independently a hydrogen atom or a substituent.
  • substituents include the same linking groups as R 11 and R 12 in formula (11).
  • n may be an integer of 1 or more. Although the upper limit of n is not particularly limited, it is preferably 2,000 or less, more preferably 1,500 or less, and even more preferably 1,000 or less. In this specification, when n is 2 or more, the urethane-based compound is sometimes called polyurethane. That is, polyurethane is also included in the urethane-based compound. In addition, in this embodiment, it is also preferable to use a urethane-based compound in which n is 1 and which does not have a repeating unit.
  • the urethane compound is preferably a urethane compound represented by formula (21-2).
  • L 1 and L 2 are each independently a single bond or a linking group
  • R 11 is a hydrogen atom or a substituent
  • R 11 and R 12 are linked together to form a ring.
  • R 22 is a substituent
  • m2 is an integer of 0-5.
  • L 1 and L 2 are each independently preferably a single bond or an alkylene group, more preferably a single bond or an alkylene group having 1 to 5 carbon atoms. is particularly preferred.
  • R 11 is preferably a substituent, and examples of the substituent include the same linking groups as R 12 in formula (11).
  • R 12 in formula (11).
  • R 11 is preferably a substituent, and examples of the substituent include the same linking groups as R 12 in formula (11).
  • R 11 is preferably a substituent, and examples of the substituent include the same linking groups as R 12 in formula (11).
  • R 11 is preferably a substituent, and examples of the substituent include the same linking groups as R 12 in formula (11).
  • the formamides produced by the method for producing formamides and/or alcohols of the present embodiment are preferably compounds represented by the following formula (22).
  • the alcohol produced by the method is preferably a compound represented by the following formula (23).
  • L 1 and L 2 are each independently a single bond or a linking group
  • R 11 and R 12 are each independently a hydrogen atom or a substituent.
  • Preferred ranges and examples of L 1 and L 2 and R 11 and R 12 in formulas (22) and (23) are the preferred ranges and examples of L 1 and L 2 and R 11 and R 12 in formula (21). is similar to
  • the molecular weight of the formamides represented by formula (22) is preferably 60 or more, more preferably 70 or more. Further, the molecular weight of formamides is preferably 500 or less, more preferably 250 or less.
  • the molecular weight of the alcohol represented by formula (23) is preferably 20 or more, more preferably 30 or more. Also, the molecular weight of the alcohol is preferably 470 or less, more preferably 300 or less.
  • the lower limit of the amount of the complex to act on 1 mol of the urethane compound is not particularly limited, but it should be 0.001 mol or more. is preferred, 0.01 mol or more is more preferred, and 0.03 mol or more is even more preferred.
  • the upper limit of the amount of the complex to act on 1 mol of the urethane compound is not particularly limited, but for example, it is preferably 1 mol or less, more preferably 0.1 mol or less, and 0.1 mol or less. 05 mol or less is more preferable.
  • a urethane compound as a substrate, hydrogen as a reducing agent, and a complex as a catalyst are mixed and reacted.
  • the reaction temperature at this time is preferably 50 to 200°C, more preferably 120 to 170°C.
  • the hydrogen pressure is preferably 0.1-10 MPa, more preferably 1-3 MPa.
  • the reaction time is preferably 10 to 200 hours, more preferably 40 to 150 hours.
  • a base may be added to the mixture as necessary in order to promote the above reaction.
  • t-butoxypotassium, t-butoxysodium, t-butoxylithium, methoxypotassium, ethoxypotassium and the like can be used as the base.
  • t-butoxypotassium is preferably used.
  • the amount of the base to be added is preferably, for example, 0.1 to 1 mol with respect to 1 mol of the urethane compound.
  • both formamides and alcohols are produced.
  • the amounts of formamides and alcohols produced can be approximately the same. means that
  • the present embodiment relates to a method for hydrogenating a urea-based compound, in which formamides and/or amines are obtained by adding hydrogen to a urea-based compound in the presence of a catalyst containing a complex having the above-described partial structure. good too.
  • the hydrogenation method of the present embodiment is not a complete hydrogenation method for producing alcohols and amines from urea-based compounds, but a method for producing formamides and amines from urea-based compounds. You can also call That is, this embodiment relates to a method of partially hydrogenating a urea-based compound in the presence of a catalyst containing a complex having the partial structure described above.
  • the present embodiment relates to a method for decomposing a urea-based compound to obtain formamides and/or amines by decomposing a urea-based compound in the presence of a catalyst containing a complex having the above-described partial structure. good.
  • the decomposition method of the present embodiment is not a complete decomposition method that decomposes a urea-based compound to generate alcohols and amines, but a method that decomposes a urea-based compound to generate formamides and amines. It can also be called a decomposition method. That is, this embodiment relates to a method of partially decomposing a urea-based compound in the presence of a catalyst containing a complex having the partial structure described above.
  • partial hydrogenation method and partial decomposition method described above it is also possible to decompose urea-based compounds such as polyurea.
  • This embodiment may relate to a method for partially hydrogenating or partially cracking polyurea. If plastic materials such as polyurea can be decomposed, chemical recycling becomes possible.
  • the above-described partial hydrogenation method and partial decomposition method are very useful methods from the viewpoint of environmental protection.
  • the present embodiment relates to a method for hydrogenating a urethane-based compound, in which formamides and/or alcohols are obtained by adding hydrogen to a urethane-based compound in the presence of a catalyst containing a complex having the above-described partial structure. good too.
  • the hydrogenation method of the present embodiment is not a complete hydrogenation method for producing amines and alcohols from a urethane compound, but a method for producing formamides and alcohols from a urethane compound. You can also call That is, this embodiment relates to a method of partially hydrogenating a urethane-based compound in the presence of a catalyst containing a complex having the partial structure described above.
  • the present embodiment relates to a method for decomposing a urethane-based compound to obtain formamides and/or alcohols by decomposing a urethane-based compound in the presence of a catalyst containing a complex having the above-described partial structure. good.
  • the decomposition method of the present embodiment is not a complete decomposition method that decomposes a urethane-based compound to generate amines and alcohols, but a method that decomposes a urethane-based compound to generate formamides and alcohols. It can also be called a decomposition method. That is, this embodiment relates to a method of partially decomposing a urethane-based compound in the presence of a catalyst containing a complex having the partial structure described above.
  • partial hydrogenation method and partial decomposition method described above it is also possible to decompose urethane-based compounds such as polyurethane.
  • This embodiment may relate to a method for partial hydrogenation or partial decomposition of polyurethane. If plastic materials such as polyurethane can be decomposed, chemical recycling becomes possible.
  • the above-described partial hydrogenation method and partial decomposition method are very useful methods from the viewpoint of environmental protection.
  • anilines were isolated instead of aniline hydrochlorides. Specifically, the reaction solution was concentrated and anilines were isolated by silica gel column chromatography (DCM/EtOAc).
  • the structures of the urea compound used as the substrate and the formamides and anilines obtained after the hydrogenation reaction were as follows.
  • the numerical value written below each compound is the yield of formamides and anilines obtained after the hydrogenation reaction.
  • the yield of each compound (mol yield of each compound per 1 mol of urea-based compound) was measured by 1 H NMR using dibromomethane/heptane as an internal standard. The numbers in parentheses are yields after isolation.
  • the structures of the urea compound used as the substrate and the formamides and anilines obtained after the hydrogenation reaction were as follows.
  • the numerical value written below each compound is the yield of formamides and anilines obtained after the hydrogenation reaction.
  • the yield of each compound (mol yield of each compound per 1 mol of urea-based compound) was measured by 1 H NMR using dibromomethane/heptane as an internal standard. The numbers in parentheses are yields after isolation.
  • a hydrogenation reaction was carried out in the same manner as above, except that the above polyurea was used as the substrate.
  • the structures of formamides and anilines obtained after the hydrogenation reaction were as follows.
  • the yield of the soluble components after the reaction was calculated by NMR in the same manner as described above. Phenylenediamine (upper left of the product) was isolated at a yield of 39% by washing the solid component after the reaction with a solvent in addition to the soluble portion.
  • the Ir complex partially hydrogenated the urethane compound to produce formamides and alcohols.
  • the Ir complex partially hydrogenated the urea-based compound to form formamides and amines.
  • Both the symmetrical urea-based compound and the asymmetrical urea-based compound of the Ir complex were partially hydrogenated.
  • the partial hydrogenation of asymmetric urea-based compounds it was possible to selectively hydrogenate one of the carbon-nitrogen bonds depending on the combination of substituents on the nitrogen atom.
  • the urea-based compound was selectively hydrogenated even when the urea-based compound contained an easily reducing functional group such as a halogen atom, an ester group, or a cyano group.
  • the Ir complex partially hydrogenated the urethane compound to produce formamides and alcohols.
  • the Ir/PB complex also partially hydrogenated the urea-based compound to produce formamides and amines.
  • PSP ligand 31 P (CDCl 3 , 162 MHz): ⁇ -15.5 1 H (CDCl 3 , 400 MHz): ⁇ 7.74-7.66 (m, 1H), 7.58-7.41 (m, 1H), 7.38-7.30 (m, 7H), 7.
  • an Ir/PSP complex was formed, and the Ir/PSP complex also partially hydrogenated the urea-based compound to produce formamides and amines.
  • the Ru/PP complex also partially hydrogenated the urea-based compound to produce formamides and amines.
  • the Ru/PP complex also partially hydrogenated the urea-based compound to produce formamides and amines.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)

Abstract

本発明は、ウレア系化合物やウレタン系化合物から、ホルムアミド類を選択的に生成させる新規触媒を提供することを課題とする。本発明は、式(A)で表される部分構造を有する錯体、及び該錯体を含む触媒に関する。また、本発明は、ウレア系化合物に該触媒を作用させることを含む、ホルムアミド類及び/又はアミン類の製造方法、ウレタン系化合物に該触媒を作用させることを含む、ホルムアミド類及び/又はアルコール類の製造方法に関する。

Description

触媒、ホルムアミド類及び/又はアミン類の製造方法、ホルムアミド類及び/又はアルコール類の製造方法並びに錯体
 本発明は、触媒、ホルムアミド類及び/又はアミン類の製造方法、ホルムアミド類及び/又はアルコール類の製造方法並びに錯体に関する。
 従来、有機金属錯体を用いた触媒として、カルボニル化合物の触媒的水素化反応を促進させる触媒が知られている。例えば、非特許文献1には、カルボニル化合物を水素化する触媒として、ルテニウム錯体が開示されている。ルテニウム錯体は、カルボニル化合物を水素化する反応を促進させることで、最終的にはアルコール類やアミン類を生成する。また、特許文献1には、所定の構造を有する有機金属錯体の存在下でカルボニル化合物を還元剤で還元する方法が開示されており、生成物としてアルコール類やアミン類が得られることが記載されている。
 近年、ホルムアミド及びその誘導体は有機化学工業における基礎原料として多用されており、各種化成品、プラスチック、医薬品等に広く用いられている。ウレア系化合物やウレタン系化合物を水素化すると、中間体としてホルムアミド類が生成することが知られている。しかし、ウレア系化合物やウレタン系化合物と比較してホルムアミド類の反応性が高いため、中間体であるホルムアミド類の水素化が優先して起こり、最終的にはアルコール類やアミン類にまで水素化が進行する。
特開2003-286294号公報
Journal of the American Chemical Society 2014,136,13217-13225
 上述したとおり、ウレア系化合物やウレタン系化合物を水素化すると、中間体としてホルムアミド類が生成するが、中間体であるホルムアミド類を選択的に得ることは困難であった。そこで、本発明は、ウレア系化合物やウレタン系化合物から、ホルムアミド類を選択的に生成させる新規触媒を提供することを目的とする。
 具体的に、本発明は、以下の構成を有する。
[1] 下記式(A)で表される部分構造を有する錯体、を含む触媒。

(式(A)中、
 Mは、7族、8族又は9族の元素であって、Allred-Rochowの電気陰性度が1.40以上であり、かつ第3イオン化ポテンシャルが26.5eV以上である金属であり、
 PとMは配位結合しており、
 Dは、Mとの結合手としてアニオン性窒素原子を含む原子団であり、
 Xは、連結基であり、
 R及びRはそれぞれ独立に、炭素原子、酸素原子及び窒素原子よりなる群から選択される少なくとも1種を含む置換基であり、これらの置換基は互いに連結して環を形成していてもよく、
 Mは*で他の部位と結合している。)
[2] 下記式(1)で表される部分構造を有するイリジウム錯体、を含む請求項1に記載の触媒。

(式(1)中、
 PとIrは配位結合しており、
 Dは、Irとの結合手としてアニオン性窒素原子を含む原子団であり、
 Xは、連結基であり、
 R及びRはそれぞれ独立に、炭素原子、酸素原子及び窒素原子よりなる群から選択される少なくとも1種を含む置換基であり、これらの置換基は互いに連結して環を形成していてもよく、
 Irは*で他の部位と結合している。)
[3] 下記式(2)で表される部分構造を有するイリジウム錯体、を含む[1]又は[2]に記載の触媒。

(式(2)中、
 PとIrは配位結合しており、
 環Aは、アニオン性窒素を含む窒素含有環を表し、
 Xは、連結基であり、
 R及びRはそれぞれ独立に、炭素原子、酸素原子及び窒素原子よりなる群から選択される少なくとも1種を含む置換基であり、これらの置換基は互いに連結して環を形成していてもよく、
 Irは*で他の部位と結合している。)
[4] 下記式(3)で表される部分構造を有するイリジウム錯体、を含む[1]~[3]のいずれかに記載の触媒。

(式(3)中、
 PとIrは配位結合しており、
 環Aは、アニオン性窒素を含む窒素含有環を表し、
 環Bは、芳香族環を表し、
 R及びRはそれぞれ独立に、炭素原子、酸素原子及び窒素原子よりなる群から選択される少なくとも1種を含む置換基であり、これらの置換基は互いに連結して環を形成していてもよく、
 Irは*で他の部位と結合している。)
[5] R及びRはそれぞれ独立に、芳香族炭化水素基である、[1]~[4]のいずれかに記載の触媒。
[6] ウレア系化合物に、[1]~[5]のいずれかに記載の触媒を作用させることを含む、ホルムアミド類及び/又はアミン類の製造方法。
[7] ウレア系化合物は、下記式(11)で表される化合物である、[6]に記載のホルムアミド類及び/又はアミン類の製造方法。

(式(11)中、
 L及びLはそれぞれ独立に、単結合又は連結基であり、
 R11及びR12はそれぞれ独立に、水素原子又は置換基であり、
 R13及びR14はそれぞれ独立に、水素原子又は置換基であり、R13及びR14の少なくとも一方は水素原子であり、
 R11とR12は、互いに連結して環を形成していてもよく、もしくは、R11とR13並びにR12とR14は、それぞれ互いに連結して環を形成していてもよく、
 nは、1以上の整数である。)
[8] 式(11)中、R11及びR12は炭化水素基であり、R13及びR14は水素原子である、[7]に記載のホルムアミド類及び/又はアミン類の製造方法。
[9] 式(11)中、R11とR12は同一の基であり、R13とR14は同一の基であり、かつ、LとLが同一の基である、[7]又は[8]に記載のホルムアミド類及び/又はアミン類の製造方法。
[10] 式(11)中、少なくともR11とR12、R13とR14、もしくはLとLが異なる基である、[7]又は[8]に記載のホルムアミド類及び/又はアミン類の製造方法。
[11] ウレタン系化合物に、[1]~[5]のいずれかに記載の触媒を作用させることを含む、ホルムアミド類及び/又はアルコール類の製造方法。
[12] 下記式(B)で表される部分構造を有する錯体。

(式(B)中、
 Mは、7族、8族又は9族の元素であって、Allred-Rochowの電気陰性度が1.40以上であり、かつ第3イオン化ポテンシャルが26.5eV以上である金属であり、
 PとMは配位結合しており、
 環Aは、アニオン性窒素を含む窒素含有環を表し、
 環Bは、芳香族環を表し、
 R及びRはそれぞれ独立に、炭素原子、酸素原子及び窒素原子よりなる群から選択される少なくとも1種を含む置換基であり、これらの置換基は互いに連結して環を形成していてもよく、
 Mは*で他の部位と結合している。)
[13] 下記式(3)で表される部分構造を有する、[12]に記載の錯体。

(式(3)中、
 PとIrは配位結合しており、
 環Aは、アニオン性窒素を含む窒素含有環を表し、
 環Bは、芳香族環を表し、
 R及びRはそれぞれ独立に、炭素原子、酸素原子及び窒素原子よりなる群から選択される少なくとも1種を含む置換基であり、これらの置換基は互いに連結して環を形成していてもよく、
 Irは*で他の部位と結合している。)
 また、本発明は、以下の構成を有する。
[A][1]~[5]のいずれかに記載の触媒の存在下、ウレア系化合物に水素を付加し、ホルムアミド類及び/又はアミン類を得る、ウレア系化合物の部分水素化方法。
[B][1]~[5]のいずれかに記載の触媒の存在下、ウレア系化合物を分解し、ホルムアミド類及び/5又はアミン類を得る、ウレア系化合物の部分分解方法。
[C][1]~[5]のいずれかに記載の触媒の存在下、ウレタン系化合物に水素を付加し、ホルムアミド類及び/又はアルコール類を得る、ウレタン系化合物の部分水素化方法。
[D][1]~[5]のいずれかに記載の触媒の存在下、ウレタン系化合物を分解し、ホルムアミド類及び/又はアルコール類を得る、ウレタン系化合物の部分分解方法。
 本発明によれば、ウレア系化合物やウレタン系化合物から、ホルムアミド類を選択的に生成させる新規触媒を提供することができる。
 以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書における各式の水素原子は同位体(重水素原子等)も含み、また各置換基を構成する原子は、その同位体も含んでいる。また、本明細書における各式の置換基は他の置換基によって置換されていてもよい。この場合、他の置換基の種類は特に限定されず、置換可能な基であればよい。他の置換基としては、例えば、脂肪族炭化水素基(例えばアルキル基、アルケニル基、アルキニル基、シクロアルキル基)、芳香族炭化水素基(例えばフェニル基、ナフチル基、アントリル基、フェナントリル基、ビフェニル基)、ヘテロ環基、アシル基、アルコキシ基、アミノ基、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、シリル基、ホスホリル基等の置換基を挙げることができる。なお、これらの置換基群は更に置換されてもよく、更なる置換基としては、以上に説明した置換基から選択される基を挙げることができる。本明細書において、置換基を有していることを明示していない場合は、置換基を有さないことが好ましい。
(触媒/錯体)
 本実施形態は、下記式(A)で表される部分構造を有する錯体、を含む触媒に関する。また、本実施形態は、下記式(A)で表される部分構造を有する錯体に関するものでもある。
 式(A)中、Mは、7族、8族又は9族の元素であって、Allred-Rochowの電気陰性度が1.40以上であり、かつ第3イオン化ポテンシャルが26.5eV以上である金属であり、PとMは配位結合しており、Dは、Mとの結合手としてアニオン性窒素原子を含む原子団であり、Xは、連結基であり、R及びRはそれぞれ独立に、炭素原子、酸素原子及び窒素原子よりなる群から選択される少なくとも1種を含む置換基であり、これらの置換基は互いに連結して環を形成していてもよく、Mは*で他の部位と結合している。
 Mは、7族、8族又は9族の元素であって、Allred-Rochowの電気陰性度が1.40以上であり、かつ第3イオン化ポテンシャルが26.5eV以上である金属である。このような金属としては、例えば、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ルテニウム(Ru)、ロジウム(Rh)、イリジウム(Ir)が挙げられる。なお、各金属の電気陰性度と第3イオン化ポテンシャルは以下の表に記載のとおりである。
 Mで表される金属の電気陰性度を上記範囲内とすることで、π配位した配位子のNH結合の酸性度を十分なものとするために、金属中心は配位子から電子を引きつけるのに十分な電気陰性度を有することとなる。また、Mで表される金属の第3イオン化ポテンシャルを上記範囲内とすることにより、触媒サイクルにおいて高酸化状態の中間体の生成を抑制することができる。これにより、基質の水素化反応速度をより効果的に高めることができる。
 中でも、式(A)におけるMは、マンガン(Mn)、鉄(Fe)、ルテニウム(Ru)及びイリジウム(Ir)よりなる群から選択される少なくとも1種であることが好ましく、マンガン(Mn)、ルテニウム(Ru)及びイリジウム(Ir)よりなる群から選択される少なくとも1種であることがより好ましく、イリジウム(Ir)であることが特に好ましい。
 なお、式(A)におけるD、X並びにR及びRは、後述する式(1)におけるD、X並びにR及びRと同様である、好ましい範囲及び例示も同様である。
 本実施形態は、下記式(1)で表される部分構造を有するイリジウム錯体、を含む触媒に関する。また、本実施形態は、下記式(1)で表される部分構造を有するイリジウム錯体に関するものでもある。
 式(1)中、PとIrは配位結合しており、Dは、Irとの結合手としてアニオン性窒素原子を含む原子団であり、Xは、連結基であり、R及びRはそれぞれ独立に、炭素原子、酸素原子及び窒素原子よりなる群から選択される少なくとも1種を含む置換基であり、これらの置換基は互いに連結して環を形成していてもよく、Irは*で他の部位と結合している。
 Dは、Irとの結合手としてアニオン性窒素原子を含む原子団であり、アニオン性窒素原子とIrは共有結合により結合している。すなわち、Dは、アニオン性窒素含有配位子である。Dは、Irとの結合手としてアニオン性窒素原子と、該アニオン性窒素原子に連結する基を少なくとも有する原子団であることが好ましい。アニオン性窒素原子に連結する基は、さらに他の置換基を有していてもよく、他の置換基としては、上述した置換基のうち置換可能な基を例示することができる。
 例えば、Dは下記式(1’)で表される点線で囲まれた構造で表されるものであってもよい。下記式(1’)において、Rは置換基を表し、当該置換基としては、上述した置換基のうち置換可能な基を例示することができる。Rは例えば、脂肪族炭化水素基、芳香族炭化水素基、アシル基、スルホ基、アルコキシ基、アミノ基であってもよい。
 なお、後述するようにDは、Irとの結合手としてアニオン性窒素原子を含む環を有する原子団であってもよく、アニオン性窒素原子を含む窒素含有環を有する原子団であってもよい。
 Xは、連結基であり、連結基は他の置換基を有していてもよい。他の置換基としては、上述した置換基のうち置換可能な基を例示することができるが、他の置換基は脂肪族炭化水素基(アルキル基、アルケニル基、アルキニル基、シクロアルキル基等)であることが好ましい。中でも、Xで表される連結基は、他の置換基としてアルキル基又はアルケニル基を有していることが好ましい。また、Xの連結基に他の置換基が複数導入されている場合、これら置換基は互いに連結して環を形成していてもよい。
 Xで表される連結基の構造は特に限定されるものではないが、Xは、炭素原子、酸素原子、窒素原子及び硫黄原子よりなる群から選択される少なくとも1種を含む連結基であることが好ましく、炭素原子を含む連結基であることがより好ましく、炭化水素基であることがさらに好ましい。この場合、連結基を構成する炭素数は1以上であることが好ましく、2以上であることがより好ましく、3以上であることがさらに好ましい。また、連結基を構成する炭素数は30以下であることが好ましく、20以下であることがより好ましく、15以下であることがさらに好ましく、10以下であることが特に好ましい。なお、上記炭素数は、連結基が他の置換基を有する場合、他の置換基が有する炭素数も含めた数である。
 Xで表される連結基としては、例えば、2価の炭化水素基、あるいは、2価の炭化水素基と、-O-、-C(=O)-、-NR-(但し、Rは、水素原子、アルキル基又はアリール基を表す)、-S-を1つ以上組み合わせてなる基を挙げることができる。
 R及びRはそれぞれ独立に、炭素原子、酸素原子及び窒素原子よりなる群から選択される少なくとも1種を含む置換基であり、これらの置換基は互いに連結して環を形成していてもよい。「R及びRが互いに連結して環を形成」するとは、R及びRが互いに結合して、結果的に連結基を形成し、P原子とともに環構造を形成することを意味する。この場合、環構造を構成する原子数は5~7であることが好ましい。
 R及びRはそれぞれ独立に、炭素原子を含む置換基であることが好ましく、脂肪族炭化水素基、芳香族炭化水素基、複素脂肪族環基又は複素芳香族環基であることがより好ましく、芳香族炭化水素基であることがさらに好ましい。
 脂肪族炭化水素基は、直鎖状、分岐状、環状のいずれであってもよい。また、脂肪族炭化水素基は、飽和炭化水素基、不飽和炭化水素基のいずれであってもよい。脂肪族炭化水素基としては、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数2~20のアルケニル基等が挙げられる。炭素数1~20のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、2-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、2-ペンチル基、2-メチルブチル基、3-メチルブチル基、1,2-ジメチルプロピル基、1,1-ジメチルプロピル基、2,2-ジメチルプロピル基、1-エチルプロピル基、n-ヘキシル基、2-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,3-ジメチルブチル基、1,1-ジメチルブチル基、2,2-ジメチルブチル基、3,3-ジメチルブチル基、1,1,2-トリメチルプロピル基、1,2,2-トリメチルプロピル基、1-エチルブチル基、2-エチルブチル基、1-エチル-2-メチルプロピル基、n-へプチル基、2-ヘプチル基、3-ヘプチル基、2-エチルペンチル基、1-プロピルブチル基、n-オクチル基、2-エチルヘキシル基、2-プロピルヘプチル基、ノニル基、デシル基等が挙げられる。炭素数3~20のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、アダマンチル基等が挙げられる。炭素数2~20のアルケニル基としては、例えば、ビニル基、アリル基、プロパ-1-エン-1-イル基、プロパ-2-エン-1-イル基、プロパ-1-エン-2-イル基、ブタ-1-エン-1-イル基、ブタ-2-エン-1-イル基、ブタ-3-エン-1-イル基、ブタ-1-エン-2-イル基、ブタ-3-エン-2-イル基、ペンタ-1-エン-1-イル基、ペンタ-2-エン-1-イル基、ペンタ-3-エン-1-イル基、ペンタ-4-エン-1-イル基、ペンタ-1-エン-2-イル基、ペンタ-4-エン-2-イル基、3-メチルブタ-1-エン-1-イル基、3-メチルブタ-2-エン-1-イル基、3-メチルブタ-3-エン-1-イル基、ヘキサ-1-エン-1-イル基、ヘキサ-5-エン-1-イル基又、4-メチルペンタ-3-エン-1-イル基等が挙げられる。脂肪族炭化水素基は、さらに他の置換基を有していてもよく、他の置換基としては、上述した置換基のうち置換可能な基を例示することができる。
 芳香族炭化水素基としては、炭素数6~30のアリール基等が挙げられる。炭素数6~30のアリール基としては、フェニル基、ナフチル基、アントリル基、フェナントリル、ビフェニル基等が挙げられる。芳香族炭化水素基は、さらに他の置換基を有していてもよく、他の置換基としては、上述した置換基のうち置換可能な基を例示することができる。中でも、芳香族炭化水素基がさらに他の置換基を有する場合、他の置換基は、アルキル基であることが好ましく、この場合、芳香族炭化水素基は、o-トリル基、p-トリル基、m-トリル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、メシチル基であってもよい。
 複素脂肪族環基を構成する炭素数は1~30であることが好ましく、3~30であることがより好ましい。複素脂肪族環基としては、ピペリジニル基、ピペラジニル基、モルホリニル基、キヌクリジニル基、ピリジニル基、オキセタニル基等が挙げられる。複素脂肪族環基は、さらに他の置換基を有していてもよく、他の置換基としては、上述した置換基のうち置換可能な基を例示することができる。
 複素芳香族環基としては、好ましくは炭素数1~30、より好ましくは炭素数3~30のヘテロアリール基等が挙げられる。炭素数1~30のヘテロアリール基としては、フラニル基、チオフェニル基、ピロリル基、ピラゾリル基、イミダゾリル基、イソキサゾリル基、チアゾリル基、チアジアゾリル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、ベンゾフラニル基、インドリル基、チアナフテニル基、ベンズイミダゾリル基、ベンゾキサゾリル基、ベンゾチアゾリル基、ベンゾトリアゾリル基、キノリル基、イソキノリル基、チノリル基、キノキサリル基、ジベンゾチオフェニル基、アクリジル基、フェナントリル基等が挙げられる。複素芳香族環基は、さらに他の置換基を有していてもよく、他の置換基としては、上述した置換基のうち置換可能な基を例示することができる。
 中でも、R及びRはそれぞれ独立に、芳香族炭化水素基であることが好ましい。芳香族炭化水素基としては、フェニル基のほか、多環式アリール基を挙げることができる。多環式アリール基としては、例えば2~4環式のアリール基を用いることができ、より具体的にはナフチル基、アントリル基、フェナントリル基などが挙げられる。中でも、R及びRはそれぞれ独立に、フェニル基であることが好ましい。なお、R及びRはそれぞれ独立に、さらに他の置換基を有していてもよく、他の置換基としては、上述した置換基のうち置換可能な基を例示することができる。
 Irは*で他の部位と結合している。ここで、Irが結合する他の部位の構造は特に限定されるものではないが、Irは、通常は、DおよびPに加え、さらに、1つまたは2つ以上の原子もしくは原子団(置換基)と結合している。例えば、Irは、DおよびPに加え、1つの置換基と結合していてもよく、2つの置換基と結合していてもよく、3つの置換基と結合していてもよく、4つの置換基と結合していてもよい。すなわち、上記式(1)で表される部分構造を有するイリジウム錯体は、イリジウム1価錯体やイリジウム3価錯体が好ましいが、それ以外の酸化数であってもよい。なお、IrがDおよびPに加え、2つ以上の置換基と結合している場合、これら置換基は互いに連結して環を形成していてもよい。「2つ以上の置換基が互いに連結して環を形成」するとは、2つ以上の置換基が互いに結合して、結果的に連結基を形成し、Ir原子とともに環構造を形成することや、2つ以上の置換基が互いに結合して、環構造を形成すことを意味する。
 Irが*で結合する他の部位(原子もしくは原子団(置換基))の式量は、1以上であることが好ましく、10以上であることがより好ましく、20以上であることがさらに好ましい。また、他の部位(原子もしくは原子団(置換基))の式量は、500以下であることが好ましく、250以下であることがより好ましく、100以下であることがさらに好ましい。なお、Irが*で結合する他の部位は水素原子であってもよい。
 式(1)で表される部分構造を有するイリジウム錯体の分子量は、230以上であることが好ましく、250以上であることがより好ましく、300以上であることがさらに好ましい。また、式(1)で表される部分構造を有するイリジウム錯体の分子量は、2000以下であることが好ましく、1000以下であることがより好ましく、900以下であることがさらに好ましく、800以下であることが特に好ましい。なお、式(A)で表される部分構造を有する錯体の分子量も上記範囲内であることが好ましい。
 なお、Irは*の部位に連結構造を有し、その連結構造を介してさらに上記式(1)で表される部分構造が連結していてもよい。すなわち、上記式(1)で表される部分構造を有するイリジウム錯体は、下記構造で示すような2量体やオリゴマー化合物であってもよい。この場合、オリゴマー化合物の分子量は、700以上であることが好ましく、900以上であることがより好ましい。また、オリゴマー化合物の分子量は3000以下であることが好ましく、2500以下であることがより好ましい。また、式(A)で表される部分構造を有する錯体も2量体やオリゴマー化合物であってもよい。
 本実施形態の触媒は、下記式(1-2)で表される部分構造を有するイリジウム錯体、を含むものであることが好ましい。すなわち、上記式(1)で表される部分構造を有するイリジウム錯体は下記式(1-2)で表される部分構造を有するイリジウム錯体であることが好ましい。
 式(1-2)中、PとIrは配位結合しており、Dは、Irとの結合手としてアニオン性窒素原子を含む原子団であり、Xは、連結基であり、R及びRはそれぞれ独立に、炭素原子、酸素原子及び窒素原子よりなる群から選択される少なくとも1種を含む置換基であり、これらの置換基は互いに連結して環を形成していてもよく、*は他の構造との結合部を表す。式(1-2)中のD、X、R及びRの好ましい範囲及び例示は、式(1)におけるD、X、R及びRの好ましい範囲及び例示と同様である。
 上記式(1-2)において、Irは、DおよびPに加え、2つの置換基と結合している。なお、これら2つの置換基は互いに連結して環を形成していてもよい。これら2つの置換基の好ましい分子量は上述したとおりである。なお、これら2つの置換基は水素原子であってもよい。
 Irが結合する2つの置換基は特に限定されるものではないが、置換基としては、例えば、炭化水素基、ハロゲン原子、あるいは、炭化水素基と、-O-、-C(=O)-、-NR-(但し、Rは、水素原子、アルキル基又はアリール基を表す)、-S-を1つ以上組み合わせてなる1価の基を挙げることができる。これらの基は中性の配位子としてIrと配位結合を形成していてもよい。また、これらの基は、それぞれ独立に、さらに他の置換基を有していてもよく、他の置換基としては、上述した置換基のうち置換可能な基を例示することができる。
 本実施形態の触媒は、下記式(1-3)で表される部分構造を有するイリジウム錯体、を含むものであることが好ましい。すなわち、上記式(1)で表される部分構造を有するイリジウム錯体は下記式(1-3)で表される部分構造を有するイリジウム錯体であることが好ましい。
 式(1-3)中、PとIrは配位結合しており、Dは、Irとの結合手としてアニオン性窒素原子を含む原子団であり、Xは、連結基であり、R及びRはそれぞれ独立に、炭素原子、酸素原子及び窒素原子よりなる群から選択される少なくとも1種を含む置換基であり、これらの置換基は互いに連結して環を形成していてもよく、R及びRはそれぞれ独立に、置換基であり、これらの置換基は互いに連結して環を形成していてもよい。式(1-3)中のD、X、R及びRの好ましい範囲及び例示は、式(1)におけるD、X、R及びRの好ましい範囲及び例示と同様である。
 R及びRはそれぞれ独立に、置換基である。置換基は、炭化水素基、ハロゲン原子、あるいは、炭化水素基と、-O-、-C(=O)-、-NR-(但し、Rは、水素原子、アルキル基又はアリール基を表す)、-S-を1つ以上組み合わせてなる1価の基であることが好ましく、これらの基は中性の配位子としてIrと配位結合を形成していてもよい。また、これらの基は、それぞれ独立に、さらに他の置換基を有していてもよく、他の置換基としては、上述した置換基のうち置換可能な基を例示することができる。中でも、R及びRはそれぞれ独立に、炭化水素基であることが好ましく、不飽和炭化水素基であることがより好ましい。
 R及びRは互いに連結して環を形成していてもよい。「R及びRが互いに連結して環を形成」するとは、R及びRが互いに結合して、結果的に連結基を形成し、Ir原子とともに環構造を形成することや、R及びRが互いに結合して、環構造を形成することを意味する。R及びRが互いに結合して、環を形成する場合、環構造を構成する原子数は4以上であることが好ましく、5以上であることがより好ましい。また、環構造を構成する原子数は12以下であることが好ましく、10以下であることがより好ましい。例えば、R及びRは互いに連結して環状ジエンを形成してもよい。環状ジエンとしては、シクロブタジエン、シクロペンタジエン、シクロヘキサジエン、シクロヘプタジエン、シクロオクタジエン等が挙げられる。
 本実施形態の触媒は、下記式(2)で表される部分構造を有するイリジウム錯体、を含むものであることが好ましい。すなわち、上記式(1)で表される部分構造を有するイリジウム錯体は下記式(2)で表される部分構造を有するイリジウム錯体であることが好ましい。
 式(2)中、PとIrは配位結合しており、環Aは、アニオン性窒素を含む窒素含有環を表し、Xは、連結基であり、R及びRはそれぞれ独立に、炭素原子、酸素原子及び窒素原子よりなる群から選択される少なくとも1種を含む置換基であり、これらの置換基は互いに連結して環を形成していてもよく、Irは*で他の部位と結合している。式(2)中のX、R及びRの好ましい範囲及び例示は、式(1)におけるX、R及びRの好ましい範囲及び例示と同様である。また、式(2)中のIrが*で結合している他の部位の構造も式(1)等で例示した構造と同様である。
 環Aは、アニオン性窒素を含む窒素含有環を表す。環Aが含むアニオン性窒素原子とIrは共有結合により結合している。アニオン性窒素を含む窒素含有環は、窒素含有脂環式環であっても、窒素含有芳香族環であってもよい。また、アニオン性窒素を含む窒素含有環は、単環であっても縮合環であってもよい。アニオン性窒素を含む窒素含有環を構成する原子数(アニオン性窒素原子も含む)は、5以上であることが好ましい。また、アニオン性窒素を含む窒素含有環を構成する原子数(アニオン性窒素原子も含む)は、20以下であることが好ましい。なお、環Aに含まれる窒素原子の数は、アニオン性窒素原子を含めて、1つ以上4つ以下であることが好ましく、1つ又は2つであることがより好ましい。中でも、アニオン性窒素を含む窒素含有環は、窒素含有芳香族環であることが好ましく、アニオン性窒素を含む窒素含有芳香族環としては、例えば、ピロール、イミダゾール、ベンゾイミダゾール、インドール、ピラゾール、トリアゾール、テトラゾール、イソインドール、インダゾール、プリン、カルバゾール等を挙げることができる。中でも、アニオン性窒素を含む窒素含有芳香族環は、ピロール環、イミダゾール環又はベンゾイミダゾール環であることが好ましく、ピロール環であることが特に好ましい。環Aが表す、アニオン性窒素を含む窒素含有環は、さらに他の置換基を有していてもよく、他の置換基としては、上述した置換基のうち置換可能な基を例示することができる。
 本実施形態の触媒は、下記式(2-2)で表される部分構造を有するイリジウム錯体、を含むものであることが好ましい。すなわち、上記式(2)で表される部分構造を有するイリジウム錯体は下記式(2-2)で表される部分構造を有するイリジウム錯体であることが好ましい。
 式(2-2)中、PとIrは配位結合しており、環Aは、アニオン性窒素を含む窒素含有環を表し、Xは、連結基であり、R及びRはそれぞれ独立に、炭素原子、酸素原子及び窒素原子よりなる群から選択される少なくとも1種を含む置換基であり、これらの置換基は互いに連結して環を形成していてもよく、*は他の構造との結合部を表す。式(2-2)中のX、R及びRの好ましい範囲及び例示は、式(1)におけるX、R及びRの好ましい範囲及び例示と同様である。また、式(2-2)において*が結合する他の構造も式(1-2)等で例示した構造と同様であり、環Aの好ましい範囲及び例示は、式(2)における環Aの好ましい範囲及び例示と同様である。
 上記式(2-2)において、Irは、NおよびPに加え、2つの置換基と結合している。なお、これら2つの置換基は互いに連結して環を形成していてもよい。これら2つの置換基の好ましい範囲及び例示は、式(1-2)におけるこれら2つの置換基の好ましい範囲及び例示と同様である。
 本実施形態の触媒は、下記式(2-3)で表される部分構造を有するイリジウム錯体、を含むものであることが好ましい。すなわち、上記式(2)で表される部分構造を有するイリジウム錯体は下記式(2-3)で表される部分構造を有するイリジウム錯体であることが好ましい。
 式(2-3)中、PとIrは配位結合しており、環Aは、アニオン性窒素を含む窒素含有環を表し、Xは、連結基であり、R及びRはそれぞれ独立に、炭素原子、酸素原子及び窒素原子よりなる群から選択される少なくとも1種を含む置換基であり、これらの置換基は互いに連結して環を形成していてもよく、R及びRはそれぞれ独立に、置換基であり、これらの置換基は互いに連結して環を形成していてもよい。式(2-3)中のX、R及びRの好ましい範囲及び例示は、式(1)における好ましい範囲及び例示と同様である。式(2-3)中のR及びRの好ましい範囲及び例示は、式(1-3)における好ましい範囲及び例示と同様であり、環Aの好ましい範囲及び例示は、式(2)における環Aの好ましい範囲及び例示と同様である。
 本実施形態の触媒は、下記式(3)で表される部分構造を有するイリジウム錯体、を含むものであることが好ましい。すなわち、上記式(1)で表される部分構造を有するイリジウム錯体は下記式(3)で表される部分構造を有するイリジウム錯体であることが好ましい。
 式(3)中、PとIrは配位結合しており、環Aは、アニオン性窒素を含む窒素含有環を表し、環Bは、芳香族環を表し、R及びRはそれぞれ独立に、炭素原子、酸素原子及び窒素原子よりなる群から選択される少なくとも1種を含む置換基であり、これらの置換基は互いに連結して環を形成していてもよく、Irは*で他の部位と結合している。式(3)中のR及びRの好ましい範囲及び例示は、式(1)におけるR及びRの好ましい範囲及び例示と同様である。また、式(3)中のIrが*で結合している他の部位の構造も式(1)等で例示した構造と同様であり、環Aの好ましい範囲及び例示は、式(2)における環Aの好ましい範囲及び例示と同様である。
 環Bは、芳香族環を表す。芳香族環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ビフェニル環等が挙げられる。中でも、芳香族環は、ベンゼン環又はナフタレン環であることが好ましい。環Bで表される芳香族環は、さらに他の置換基を有していてもよく、他の置換基としては、上述した置換基のうち置換可能な基を例示することができる。
 本実施形態の触媒は、下記式(3-2)で表される部分構造を有するイリジウム錯体、を含むものであることが好ましい。すなわち、上記式(3)で表される部分構造を有するイリジウム錯体は下記式(3-2)で表される部分構造を有するイリジウム錯体であることが好ましい。
 式(3-2)中、PとIrは配位結合しており、環Aは、アニオン性窒素を含む窒素含有環を表し、環Bは、芳香族環を表し、R及びRはそれぞれ独立に、炭素原子、酸素原子及び窒素原子よりなる群から選択される少なくとも1種を含む置換基であり、これらの置換基は互いに連結して環を形成していてもよく、*は他の構造との結合部を表す。式(3-2)中のR及びRの好ましい範囲及び例示は、式(1)におけるR及びRの好ましい範囲及び例示と同様である。また、式(3-2)において*が結合する他の構造も式(1-2)等で例示した構造と同様であり、環Aの好ましい範囲及び例示は、式(2)における環Aの好ましい範囲及び例示と同様であり、環Bの好ましい範囲及び例示は、式(3)における環Aの好ましい範囲及び例示と同様である。
 上記式(3-2)において、Irは、NおよびPに加え、2つの置換基と結合している。なお、これら2つの置換基は互いに連結して環を形成していてもよい。これら2つの置換基の好ましい範囲及び例示は、式(1-2)におけるこれら2つの置換基の好ましい範囲及び例示と同様である。
 本実施形態の触媒は、下記式(3-3)で表される部分構造を有するイリジウム錯体、を含むものであることが好ましい。すなわち、上記式(3)で表される部分構造を有するイリジウム錯体は下記式(3-3)で表される部分構造を有するイリジウム錯体であることが好ましい。
 式(3-3)中、PとIrは配位結合しており、環Aは、アニオン性窒素を含む窒素含有環を表し、環Bは、芳香族環を表し、R及びRはそれぞれ独立に、炭素原子、酸素原子及び窒素原子よりなる群から選択される少なくとも1種を含む置換基であり、これらの置換基は互いに連結して環を形成していてもよく、R及びRはそれぞれ独立に、置換基であり、これらの置換基は互いに連結して環を形成していてもよい。式(3-3)中のR及びRの好ましい範囲及び例示は、式(1)におけるR及びRの好ましい範囲及び例示と同様である。式(3-3)中のR及びRの好ましい範囲及び例示は、式(1-3)における好ましい範囲及び例示と同様であり、環Aの好ましい範囲及び例示は、式(2)における環Aの好ましい範囲及び例示と同様であり、環Bの好ましい範囲及び例示は、式(3)における環Aの好ましい範囲及び例示と同様である。
 式(1)で表される部分構造を有するイリジウム錯体を以下に具体的に例示するが、本発明はこれらに限定されない。なお、以下においてPhはフェニル基を表す。
 例えば、本実施形態の触媒を基質であるウレア系化合物に作用さると、還元剤である水素分子がイリジウムにπ配位する。π配位錯体としては以下のような構造が想定される。
 そして遷移状態においては、錯体が有するアニオン性窒素原子を含む配位子がσ配位からπ配位に変化する。すなわち、錯体においてイリジウムと水素原子、アニオン性窒素原子と水素原子の間に共有結合が生成し、窒素原子とイリジウムとの結合が切断され、あらたにピロールとイリジウムの間にπ配位結合が生じることになる。このように、本実施形態の触媒をウレア系化合物に作用させた場合、アニオン性窒素原子を含む配位子の配位様式の変化を伴う反応が生じるため、アニオン性窒素原子に結合した水素がより、塩基性度の高いウレア酸素と選択的に水素結合を形成し、その結果、ウレア系化合物からホルムアミド類とアミン類を選択的に得ることができる。なお、本実施形態の触媒を基質であるウレア系化合物に作用させた場合の遷移状態における構造は以下のとおり想定される。なお、Irとピロール間の太破線はπ配位結合を表している。
 従来技術ではウレア系化合物を水素化すると、中間体としてホルムアミド類が生成するものの、ウレア系化合物と比較してホルムアミド類の反応性が高いため、中間体であるホルムアミド類の水素化が優先して起こり、最終的にはアルコール類やアミン類にまで分解されてしまい、ホルムアミド類を選択的に生成し、得ることが困難であった。しかしながら、本発明においては、上記式(A)や上記式(1)で表される部分構造を有する新規錯体を含む触媒を用いることでホルムアミド類を選択的に生成させることできる。ホルムアミド類は有機化学工業等の分野において重要な化成品であるため、ウレア系化合物を水素化することでホルムアミド類を選択的に得ることができれば、産業上の応用が期待できる。なお、本明細書において、ホルムアミド類とはホルムアミド及びその誘導体であり、アミン類とはアミン及びその誘導体である。
 また、本実施形態においては、上記式で表される部分構造を有する新規錯体を含む触媒を用いることで、ポリウレアといったウレア系化合物やポリウレタンといったウレタン系化合物を分解することも可能となる。ポリウレアやポリウレタンは汎用プラスチックとしても用いられており、このようなプラスチック材料を分解することできれば、ケミカルリサイクルが可能となり環境保護の観点からも非常に有用である。なお、本明細書において、アルコール類とはアルコール及びその誘導体である。
(錯体の合成方法)
 上記式(1)で表される部分構造を有するイリジウム錯体は、公知の方法を組み合わせることにより製造される。例えば、アニオン性窒素原子含有化合物とリン原子含有化合物をカップリングさせ、イリジウム含有化合物を反応させることで、イリジウム錯体を得ることができる。また、アニオン性窒素原子と連結基を含有する化合物にリン原子を導入することによってもイリジウム錯体を得ることができる。
 例えば、イリジウム錯体であるイリジウム-ホスフィンピロラート錯体(Ir/PP錯体)は、次に示す合成スキームにしたがって製造することができる。
 上記式(1)で表される部分構造を有するイリジウム錯体は、例えば、(2-ブロモフェニル)ジフェニルホスフィンを原料として製造される。具体的には、(2-ブロモフェニル)ジフェニルホスフィンにメタノールを加え、さらに過酸化水素水を加えることで(2-ブロモフェニル)ジフェニルホスフィンの酸化体を得る。次いで、(2-ブロモフェニル)ジフェニルホスフィン酸化体に、1-Boc-2-ピロールボロン酸、Pd(dba)、PPh、NaCO及び脱水DMFを加え、反応を進行させることで、(2-ブロモフェニル)ジフェニルホスフィンと1-Boc-2-ピロールボロン酸のカップリング体を得る。次いで、カップリング体に、HSiCl、脱水脱気EtN及び脱水脱気トルエンを加え反応を行い、反応後に真空乾燥を行うことにより還元体を得る。そして、還元体にTHFを加えて攪拌し、さらにNaHを加えて反応を行い、反応後のろ液に[IrCl(cod)]を加えて反応を行い、溶媒で抽出することで、ホスフィンピロラートを支持配位子とするイリジウム-ホスフィンピロラート錯体(Ir/PP錯体)を得ることができる。
 また、上記式(A)で表される部分構造を有する錯体は、公知の方法を組み合わせることにより製造される。例えば、アニオン性窒素原子含有化合物とリン原子含有化合物をカップリングさせ、ルテニウム含有化合物もしくはマンガン含有化合物を反応させることで、ルテニウム錯体やマンガン錯体を得ることができる。

(ホルムアミド類及び/又はアミン類の製造方法)
<ウレア系化合物>
 本実施形態は、ウレア系化合物に、上述した部分構造を有する錯体を含む触媒を作用させることを含む、ホルムアミド類及び/又はアミン類の製造方法に関する。本実施形態は、ウレア系化合物に、上述した部分構造を有する錯体を含む触媒を作用させることを含む、ホルムアミド類の製造方法に関するものであってもよく、ウレア系化合物に、上述した部分構造を有する錯体を含む触媒を作用させることを含む、アミン類の製造方法に関するものであってもよく、上述した部分構造を有する錯体を含む触媒を作用させることを含む、ホルムアミド類及びアミン類の製造方法に関するものであってもよい。
 本実施形態のホルムアミド類及び/又はアミン類の製造方法に用いるウレア系化合物は、下記式(11)で表される化合物であることが好ましい。
 式(11)中、L及びLはそれぞれ独立に、単結合又は連結基であり、R11及びR12はそれぞれ独立に、水素原子又は置換基であり、R13及びR14はそれぞれ独立に、水素原子又は置換基であり、R13及びR14の少なくとも一方は水素原子であり、R11とR12は、互いに連結して環を形成していてもよく、もしくは、R11とR13並びにR12とR14は、それぞれ互いに連結して環を形成していてもよく、nは、1以上の整数である。
 L及びLはそれぞれ独立に、単結合又は連結基である。nが1である場合は、L及びLは単結合であることが好ましい。nが2以上の整数である場合、L及びLはそれぞれ独立に、単結合又は連結基であることが好ましく、連結基であることがより好ましい。この場合、連結基は炭素原子、酸素原子及び窒素原子よりなる群から選択される少なくとも1種を含む連結基であることが好ましく、炭素原子を含む連結基であることがより好ましい。例えば、連結基は、2価の炭化水素基、あるいは、2価の炭化水素基と、-O-、-NR-、-C(=O)-を1つ以上組み合わせてなる基であることが好ましい。なお、式(11)において、L及びLがそれぞれ連結する窒素原子に直接結合する原子は炭素原子である。2価の炭化水素基は不飽和炭化水素基であってもよく、飽和炭化水素基であってもよく、アリーレン基であってもよい。2価の炭化水素基が2価の不飽和炭化水素基もしくは飽和炭化水素基である場合、これらの炭素数は1~20であることが好ましく、1~10であることがより好ましく、1~5であることがさらに好ましい。また、2価の炭化水素基がアリーレン基の場合、アリーレン基はフェニレン基であることが好ましい。LとLが連結基である場合、連結基はさらに他の置換基を有していてもよく、他の置換基としては、上述した置換基のうち置換可能な基を例示することができる。
 R11及びR12はそれぞれ独立に、水素原子又は置換基である。置換基は、炭素原子、酸素原子及び窒素原子よりなる群から選択される少なくとも1種を含む置換基であることが好ましい。このような置換基としては、例えば、炭化水素基、アミノ基、イソシアネート基、あるいは、炭化水素基と、-O-、-C(=O)-、-NR-(但し、Rは、水素原子、アルキル基又はアリール基を表す)を1つ以上組み合わせてなる1価の基を挙げることができる。中でも、置換基は、炭化水素基、アミノ基、イソシアネート基又はカルバモイル基であることが好ましい。これらの置換基は、さらに他の置換基を有していてもよく、他の置換基としては、上述した置換基のうち置換可能な基を例示することができる。
 nが1の場合、R11及びR12はそれぞれ独立に、炭素原子、酸素原子及び窒素原子よりなる群から選択される少なくとも1種を含む置換基であることが好ましく、炭素原子を含む置換基であることがより好ましく、炭化水素基であることがさらに好ましい。これらの置換基は、さらに他の置換基を有していてもよく、他の置換基としては、上述した置換基のうち置換可能な基を例示することができる。中でも、R11及びR12はそれぞれ独立に、脂肪族炭化水素基又は芳香族炭化水素基であることが好ましい。例えばR11及びR12が取りうる基としては、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~30のアリール基等が挙げられる。中でも、R11及びR12のうち少なくとも一方は芳香族炭化水素基であることが好ましく、芳香族炭化水素基はフェニル基であることがより好ましい。また、R11及びR12の両方が芳香族炭化水素基であることも好ましい態様であり、この場合も芳香族炭化水素基はフェニル基であることがより好ましい。
 R13及びR14はそれぞれ独立に、水素原子又は置換基であり、R13及びR14の少なくとも一方は水素原子である。置換基は、炭素原子、酸素原子及び窒素原子よりなる群から選択される少なくとも1種を含む置換基であることが好ましく、炭素原子を含む置換基であることがより好ましく、炭化水素基であることがさらに好ましく、脂肪族炭化水素基であることが特に好ましい。脂肪族炭化水素基は、炭素数1~20のアルキル基であることが好ましく、炭素数1~10のアルキル基であることがより好ましく、炭素数1~5のアルキル基であることがさらに好ましく、炭素数1~3のアルキル基であることが特に好ましい。なお、R13及びR14の少なくとも一方が水素原子であればよいが、R13及びR14の両方が水素原子であることも好ましい。
 中でも、ホルムアミド類及び/又はアミン類の製造方法に用いるウレア系化合物の好ましい態様としては、式(11)においてR11及びR12は炭化水素基であり、かつR13及びR14は水素原子である態様が挙げられる。
 R11とR12は、互いに連結して環を形成していてもよい。R11とR12は、互いに連結して環を形成する場合、nは5以下であることが好ましく、3以下であることがより好ましく、1であることが特に好ましい。R11とR12が互いに連結して環を形成する場合、R11 12、L、L、C原子及び2つのN原子が環構造を形成することになる。なお、環構造を構成する原子数(C原子及び2つのN原子を含む原子数)は特に限定されるものではなく、5~30であることが好ましく、5~20であることがより好ましい。
 また、R11とR13並びにR12とR14は、それぞれ互いに連結して環を形成していてもよい。R11とR13が互いに連結して環を形成する場合、R11、R13、L及びN原子が環構造を形成することになる。また、R12とR14が互いに連結して環を形成する場合、R12、R14、L及びN原子が環構造を形成することになる。なお、R11とR13並びにR12とR14がそれぞれ互いに連結して環を形成する場合であって、nが2以上の場合、最も末端に存在するR13がR11と環を形成し、最も末端に存在するR14がR12と環を形成することになる。但し、R11とR13並びにR12とR14がそれぞれ互いに連結して環を形成する場合、nは1であることが好ましい。
 nは、1以上の整数であればよい。nの上限は特に限定されるものではないが、例えば、2000以下であることが好ましく、1500以下であることがより好ましく、1000以下であることがさらに好ましい。本明細書においては、nが2以上の場合、上記ウレア系化合物をポリウレアと呼ぶこともある。すなわち、上記ウレア系化合物にはポリウレアも含まれる。なお、本実施形態においては、nが1であり、繰り返し単位を有さないウレア系化合物を用いることも好ましい。
 本明細書において、式(11)におけるR11とR12が同一の基であり、R13とR14が同一の基であり、かつ、LとLが同一の基であるウレア系化合物を対称型ウレア系化合物ともいう。対称型ウレア系化合物においては、カルボニル結合部位を中心線として左右対称の構造を有している。また、式(11)において少なくともR11とR12、R13とR14、もしくはLとLが異なる基であるウレア系化合物を非対称型ウレア系化合物ともいう。本実施形態のホルムアミド類及び/又はアミン類の製造方法においては、対称型ウレア系化合物のみならず、非対称型ウレア系化合物も基質として用いることができる。このため、本実施形態においては、目的とするホルムアミド類及びアミン類を生成するために、対称型ウレア系化合物及び非対称型ウレア系化合物から適切なウレア系化合物を選択することができる。
 nが1の場合、ウレア系化合物は、式(11-2)又は式(11-3)で表されるウレア系化合物であることが好ましい。
 式(11-2)中、L及びLはそれぞれ独立に、単結合又は連結基であり、R11及びR12はそれぞれ独立に、水素原子又は置換基であり、R13及びR14はそれぞれ独立に、水素原子又は置換基であり、R13及びR14の少なくとも一方は水素原子である。式(11-2)において、LとL、R11とR12、R13とR14がそれぞれ同一である場合、ウレア系化合物は対称型ウレア系化合物となり、上記のいずれかが異なる場合、ウレア系化合物は非対称型ウレア系化合物となる。
 式(11-3)中、L及びLはそれぞれ独立に、単結合又は連結基であり、R13及びR14はそれぞれ独立に、水素原子又は置換基であり、R13及びR14の少なくとも一方は水素原子であり、R21及びR22はそれぞれ独立に、置換基であり、m1及びm2はそれぞれ独立に0~5の整数である。式(11-3)において、LとL、R13とR14、R21とR22、m1とm2がそれぞれ同一である場合、ウレア系化合物は対称型ウレア系化合物となり、上記のいずれかが異なる場合、ウレア系化合物は非対称型ウレア系化合物となる。
 式(11-2)及び式(11-3)において、L及びLはそれぞれ独立に、単結合又はアルキレン基であることが好ましく、単結合又は炭素数が1~5のアルキレン基であることがより好ましく、単結合であることが特に好ましい。また、式(11-2)及び式(11-3)において、R13及びR14の少なくとも一方は水素原子であり、他方が炭素数1~3のアルキル基であるか、もしくはR13及びR14の両方が水素原子であることが好ましい。
 式(11-2)において、R11及びR12はそれぞれ独立に、水素原子又は置換基である。置換基は、炭素原子、酸素原子及び窒素原子よりなる群から選択される少なくとも1種を含む置換基であることが好ましい。このような置換基としては、例えば、炭化水素基、アミノ基、イソシアネート基、あるいは、炭化水素基と、-O-、-C(=O)-、-NR-(但し、Rは、水素原子、アルキル基又はアリール基を表す)を1つ以上組み合わせてなる1価の基を挙げることができる。中でも、置換基は、炭化水素基であることが好ましく、芳香族炭化水素基であることがより好ましい。
 式(11-3)において、R21及びR22はそれぞれ独立に、置換基である。置換基としては、脂肪族炭化水素基(アルキル基、アルケニル基、アルキニル基、シクロアルキル基等)、脂肪族オキシ基(アルコキシ基、アルキレンオキシ基、エチレンオキシ基、プロピレンオキシ基等)、アミノ基、ヒドロキシ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシ基、ニトロ基等を挙げることができる。なお、m1及びm2はそれぞれ独立に、0~5の整数であり、0又は1であることが好ましい。
 通常、R21やR22にハロゲン原子やエステル基、ニトロ基といった易還元性官能基が存在する場合、これらの易還元性官能基の水素化が起こることが予測され、ウレア系化合物の分解(水素化)性が損なわれることが危惧される。しかしながら、本発明においては、触媒として、上述した部分構造を有する錯体を含む触媒を用いていることで、上記のような易還元性官能基の共存下であってもウレア系化合物の分解(水素化)性を損なうことなく、ホルムアミド類とアミン類を生成することができる。このように、本発明で触媒は、易還元性官能基の存在下であってもウレア系化合物に作用し、ホルムアミド類とアミン類を効率よく生成することができる。
 式(11)で表される対称型ウレア系化合物の具体例を以下に示すが、本発明で用いるウレア系化合物はこれらに限定されない。なお、以下においてBuはブチル基を、Meはメチル基を表す。
 また、式(11)で表される非対称型ウレア系化合物の具体例を以下に示すが、本発明で用いるウレア系化合物はこれらに限定されない。
 式(11)で表されるポリウレアの具体例を以下に示すが、本発明で用いるウレア系化合物はこれらに限定されない。
 式(11)においてnが1の場合、ウレア系化合物の分子量は70以上であることが好ましく、100以上であることがより好ましい。また、ウレア系化合物の分子量は1000以下であることが好ましく、500以下であることがより好ましい。一方、式(11)においてnが2以上でありポリウレアの場合、ポリウレアの分子量は200以上であることが好ましく、1000以上であることがより好ましい。また、ポリウレアの分子量は、1000000以下であることが好ましく、10000以下であることがより好ましい。
<ホルムアミド類/アミン類>
 本実施形態のホルムアミド類及び/又はアミン類の製造方法で生成されるホルムアミド類は下記式(12-1)で表される化合物もしくは式(12-2)で表される化合物であることが好ましく、本実施形態のホルムアミド類及び/又はアミン類の製造方法で生成されるアミン類は下記式(13-1)で表される化合物もしくは式(13-2)で表される化合物であることが好ましい。なお、基質がウレア系化合物であって、ウレア系化合物が対称型ウレア系化合物である場合、式(12-1)で表される化合物と式(12-2)で表される化合物は同一化合物であり、式(13-1)で表される化合物と(13-2)で表される化合物もまた同一化合物である。

 式(12-1)、式(12-2)、式(13-1)及び式(13-2)中、L及びLはそれぞれ独立に、単結合又は連結基であり、R11及びR12はそれぞれ独立に、水素原子又は置換基であり、R13及びR14はそれぞれ独立に、水素原子又は置換基であり、R13及びR14の少なくとも一方は水素原子であり、R11とR13並びにR12とR14は、それぞれ互いに連結して環を形成していてもよい。式(12-1)、式(12-2)、式(13-1)及び式(13-2)中のLとL、R11とR12、R13とR14の好ましい範囲及び例示は、式(11)におけるLとL、R11とR12、R13とR14の好ましい範囲及び例示と同様である。
 式(12-1)もしくは式(12-2)で表されるホルムアミド類の分子量は、60以上であることが好ましく、70以上であることがより好ましい。また、ホルムアミド類の分子量は500以下であることが好ましく、250以下であることがより好ましい。式(13-1)もしくは式(13-2)で表されるアミン類の分子量は、30以上であることが好ましく、40以上であることがより好ましい。また、アミン類の分子量は470以下であることが好ましく、230以下であることがより好ましい。
 本実施形態のホルムアミド類及び/又はアミン類の製造方法においては、ウレア系化合物1molに対して作用させる錯体の量は、下限値が特に限定されるものではないが、0.001mol以上であることが好ましく、0.01mol以上であることがより好ましく、0.03mol以上であることがさらに好ましい。また、ウレア系化合物1molに対して作用させる錯体の量の上限値は特に限定されるものではないが、例えば、1mol以下であることが好ましく、0.1mol以下であることがより好ましく、0.05mol以下であることがさらに好ましい。
 本実施形態のホルムアミド類及び/又はアミン類の製造方法においては、基質としてのウレア系化合物、還元剤としての水素、触媒としての錯体を混合し、反応を行う。この際の反応温度は50~200℃であることが好ましく、120~170℃であることがより好ましい。水素圧は0.1~10MPaであることが好ましく、1~3MPaであることがより好ましい。また、反応時間は10~200時間であることが好ましく、40~150時間であることがより好ましい。
 上記反応を促進させるために、必要に応じて、混合液に塩基を添加してもよい。この場合、塩基としては、t-ブトキシカリウム、t-ブトキシナトリウム、t-ブトキシリチウム、メトキシカリウム、エトキシカリウム等を用いることができる。中でも、t-ブトキシカリウムは好ましく用いられる。添加する塩基の量は、ウレア系化合物1molに対して、例えば、0.1~1molであることが好ましい。
 本実施形態のホルムアミド類及び/又はアミン類の製造方法においては、ホルムアミド類とアミン類の両方が生成される。ホルムアミド類の生成量(mol)とアミン類の生成量(mol)の比率は、ホルムアミド類の生成量(mol):アミン類の生成量(mol)=5:1~1:5であることが好ましく、4:1~1:4であることがより好ましく、3:1~1:3であることがさらに好ましく、2:1~1:2であることが特に好ましい。本実施形態のホルムアミド類及び/又はアミン類の製造方法においては、ホルムアミド類とアミン類の生成量は同等程度とすることができ、このことは、ウレア系化合物の水素化が選択的に行われていることを意味する。
(ホルムアミド類及び/又はアルコール類の製造方法)
<ウレタン系化合物>
 本実施形態は、ウレタン系化合物に、上述した部分構造を有する錯体を含む触媒を作用させることを含む、ホルムアミド類及び/又はアルコール類の製造方法に関する。本実施形態は、ウレタン系化合物に、上述した部分構造を有する錯体を含む触媒を作用させることを含む、ホルムアミド類の製造方法に関するものであってもよく、ウレタン系化合物に、上述した部分構造を有する錯体を含む触媒を作用させることを含む、アルコール類の製造方法に関するものであってもよく、上述した部分構造を有する錯体を含む触媒を作用させることを含む、ホルムアミド類及びアルコール類の製造方法に関するものであってもよい。
 本実施形態のホルムアミド類及び/又はアルコール類の製造方法に用いるウレタン系化合物は、下記式(21)で表される化合物であることが好ましい。
 式(21)中、L及びLはそれぞれ独立に、単結合又は連結基であり、R11及びR12はそれぞれ独立に、水素原子又は置換基であり、R11とR12は、互いに連結して環を形成していてもよく、nは、1以上の整数である。
 L及びLはそれぞれ独立に、単結合又は連結基である。nが1である場合は、L及びLは単結合であることが好ましい。nが2以上の整数である場合、L及びLはそれぞれ独立に、単結合又は連結基であることが好ましく、連結基であることがより好ましい。この場合、連結基としては、式(11)中におけるL及びLと同様の連結基を例示することができる。
 R11及びR12はそれぞれ独立に、水素原子又は置換基である。置換基としては、式(11)中におけるR11及びR12と同様の連結基を例示することができる。
 nは、1以上の整数であればよい。nの上限は特に限定されるものではないが、例えば、2000以下であることが好ましく、1500以下であることがより好ましく、1000以下であることがさらに好ましい。本明細書においては、nが2以上の場合、上記ウレタン系化合物をポリウレタンと呼ぶこともある。すなわち、上記ウレタン系化合物にはポリウレタンも含まれる。なお、本実施形態においては、nが1であり、繰り返し単位を有さないウレタン系化合物を用いることも好ましい。
 nが1の場合、ウレタン系化合物は、式(21-2)で表されるウレタン系化合物であることが好ましい。
 式(21-2)中、L及びLはそれぞれ独立に、単結合又は連結基であり、R11は水素原子又は置換基であり、R11とR12は、互いに連結して環を形成していてもよく、R22は置換基であり、m2は0~5の整数である。
 式(21-2)において、L及びLはそれぞれ独立に、単結合又はアルキレン基であることが好ましく、単結合又は炭素数が1~5のアルキレン基であることがより好ましく、単結合であることが特に好ましい。また、式(21-2)において、R11は、置換基であることが好ましく、置換基としては、式(11)中におけるR12と同様の連結基を例示することができる。例えば、炭化水素基、アミノ基、イソシアネート基、あるいは、炭化水素基と、-O-、-C(=O)-、-NR-(但し、Rは、水素原子、アルキル基又はアリール基を表す)を1つ以上組み合わせてなる1価の基を挙げることができ、炭化水素基と-O-を1つ以上組み合わせてなる1価の基であることが好ましい。なお、m2はそれぞれ独立に、0~5の整数であり、0又は1であることが好ましい。
<ホルムアミド類/アルコール類>
 本実施形態のホルムアミド類及び/又はアルコール類の製造方法で生成されるホルムアミド類は下記式(22)で表される化合物であることが好ましく、本実施形態のホルムアミド類及び/又はアルコール類の製造方法で生成されるアルコール類は下記式(23)で表される化合物であることが好ましい。

 式(22)、式(23)中、L及びLはそれぞれ独立に、単結合又は連結基であり、R11及びR12はそれぞれ独立に、水素原子又は置換基である。式(22)及び式(23)中のLとL、R11とR12の好ましい範囲及び例示は、式(21)におけるLとL、R11とR12の好ましい範囲及び例示と同様である。
 式(22)で表されるホルムアミド類の分子量は、60以上であることが好ましく、70以上であることがより好ましい。また、ホルムアミド類の分子量は500以下であることが好ましく、250以下であることがより好ましい。式(23)で表されるアルコール類の分子量は、20以上であることが好ましく、30以上であることがより好ましい。また、アルコール類の分子量は470以下であることが好ましく、300以下であることがより好ましい。
 本実施形態のホルムアミド類及び/又はアルコール類の製造方法においては、ウレタン系化合物1molに対して作用させる錯体の量は、下限値が特に限定されるものではないが、0.001mol以上であることが好ましく、0.01mol以上であることがより好ましく、0.03mol以上であることがさらに好ましい。また、ウレタン系化合物1molに対して作用させる錯体の量の上限値は特に限定されるものではないが、例えば、1mol以下であることが好ましく、0.1mol以下であることがより好ましく、0.05mol以下であることがさらに好ましい。
 本実施形態のホルムアミド類及び/又はアルコール類の製造方法においては、基質としてのウレタン系化合物、還元剤としての水素、触媒としての錯体を混合し、反応を行う。この際の反応温度は50~200℃であることが好ましく、120~170℃であることがより好ましい。水素圧は0.1~10MPaであることが好ましく、1~3MPaであることがより好ましい。また、反応時間は10~200時間であることが好ましく、40~150時間であることがより好ましい。
 上記反応を促進させるために、必要に応じて、混合液に塩基を添加してもよい。この場合、塩基としては、t-ブトキシカリウム、t-ブトキシナトリウム、t-ブトキシリチウム、メトキシカリウム、エトキシカリウム等を用いることができる。中でも、t-ブトキシカリウムは好ましく用いられる。添加する塩基の量は、ウレタン系化合物1molに対して、例えば、0.1~1molであることが好ましい。
 本実施形態のホルムアミド類及び/又はアルコール類の製造方法においては、ホルムアミド類とアルコール類の両方が生成される。ホルムアミド類の生成量(mol)とアルコール類の生成量(mol)の比率は、ホルムアミド類の生成量(mol):アルコール類の生成量(mol)=5:1~1:5であることが好ましく、4:1~1:4であることがより好ましく、3:1~1:3であることがさらに好ましく、2:1~1:2であることが特に好ましい。本実施形態のホルムアミド類及び/又はアルコール類の製造方法においては、ホルムアミド類とアルコール類の生成量は同等程度とすることができ、このことは、ウレタン系化合物の水素化が選択的に行われていることを意味する。
(部分水素化方法/部分分解方法)
<ウレア系化合物>
 本実施形態は、上述した部分構造を有する錯体を含む触媒の存在下、ウレア系化合物に水素を付加し、ホルムアミド類及び/又はアミン類を得る、ウレア系化合物の水素化方法に関するものであってもよい。本実施形態の水素化方法は、ウレア系化合物からアルコール類とアミン類を生成する完全水素化方法ではなく、ウレア系化合物からホルムアミド類とアミン類を生成する方法であるため、部分水素化方法と呼ぶこともできる。すなわち、本実施形態は、上述した部分構造を有する錯体を含む触媒の存在下、ウレア系化合物を部分水素化する方法に関する。
 また、本実施形態は、上述した部分構造を有する錯体を含む触媒の存在下、ウレア系化合物を分解し、ホルムアミド類及び/又はアミン類を得る、ウレア系化合物の分解方法に関するものであってもよい。本実施形態の分解方法は、ウレア系化合物を分解してアルコール類とアミン類を生成する完全分解方法ではなく、ウレア系化合物を分解してホルムアミド類とアミン類を生成する方法であるため、部分分解方法と呼ぶこともできる。すなわち、本実施形態は、上述した部分構造を有する錯体を含む触媒の存在下、ウレア系化合物を部分分解する方法に関する。
 上述した部分水素化方法や部分分解方法により、ポリウレアといったウレア系化合物を分解することも可能となる。本実施形態はポリウレアの部分水素化方法もしくは部分分解方法に関するものであってもよい。ポリウレアのようなプラスチック材料を分解することできれば、ケミカルリサイクルが可能となる。このように、上述した部分水素化方法や部分分解方法は、環境保護の観点からも非常に有用な方法である。
<ウレタン系化合物>
 本実施形態は、上述した部分構造を有する錯体を含む触媒の存在下、ウレタン系化合物に水素を付加し、ホルムアミド類及び/又はアルコール類を得る、ウレタン系化合物の水素化方法に関するものであってもよい。本実施形態の水素化方法は、ウレタン系化合物からアミン類とアルコール類を生成する完全水素化方法ではなく、ウレタン系化合物からホルムアミド類とアルコール類を生成する方法であるため、部分水素化方法と呼ぶこともできる。すなわち、本実施形態は、上述した部分構造を有する錯体を含む触媒の存在下、ウレタン系化合物を部分水素化する方法に関する。
 また、本実施形態は、上述した部分構造を有する錯体を含む触媒の存在下、ウレタン系化合物を分解し、ホルムアミド類及び/又はアルコール類を得る、ウレタン系化合物の分解方法に関するものであってもよい。本実施形態の分解方法は、ウレタン系化合物を分解してアミン類とアルコール類を生成する完全分解方法ではなく、ウレタン系化合物を分解してホルムアミド類とアルコール類を生成する方法であるため、部分分解方法と呼ぶこともできる。すなわち、本実施形態は、上述した部分構造を有する錯体を含む触媒の存在下、ウレタン系化合物を部分分解する方法に関する。
 上述した部分水素化方法や部分分解方法により、ポリウレタンといったウレタン系化合物を分解することも可能となる。本実施形態はポリウレタンの部分水素化方法もしくは部分分解方法に関するものであってもよい。ポリウレタンのようなプラスチック材料を分解することできれば、ケミカルリサイクルが可能となる。このように、上述した部分水素化方法や部分分解方法は、環境保護の観点からも非常に有用な方法である。
 以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
(試験例1)
(イリジウム-ホスフィンピロラート錯体(Ir/PP錯体)の合成)
 300mlナスフラスコに(2-ブロモフェニル)ジフェニルホスフィン5.29g(0.0155mol)とMeOH(200ml)を加え、0℃に冷やして過酸化水素水(34.5質量%)を8当量加えた。その後、溶液温度を室温に上げて1時間反応させた。反応後、TLCで反応終了を確認し、ジクロロメタン(DCM)で抽出、MgSOで乾燥、濾過後、真空乾燥により酸化体を得た。
 20mlシュレンクに得られた酸化体847mg(2.37mmol)、1-Boc-2-ピロールボロン酸2.0当量、Pd(dba) 0.03当量、PPh 0.12当量、NaCO 3.0当量、脱水DMF(8.5ml)を加え、N雰囲気下130℃で、4日間反応させた。反応後、溶液温度を室温に戻し、水で希釈してDCMで抽出、MgSOで乾燥、濾過後、シリカゲルカラムクロマトグラフィー(Hex/EtOAc=4:1)を行い、真空乾燥によりカップリング体を得た。
 20mlシュレンクに得られたカップリング体755mg(2.2mmol)、HSiCl 5.0当量、脱水脱気EtN5.5当量、脱水脱気トルエン(20ml)を加え、N雰囲気下120℃で5時間還流させた。反応後、飽和NaHCO水溶液を2ml加え、5分間攪拌した後、アルミナ濾過を行い、ろ液を濃縮してシリカゲルカラムクロマトグラフィー(Hex/EtOAc=9:1)を行い、真空乾燥により還元体を得た。
 グローブボックス中、バイアルに得られた還元体33mg(0.1mmol)、THF(2ml)を加えて攪拌し、そこにNaH1.5当量を加えて室温で14時間反応させた。反応後、メンブレンフィルターを用いて溶液を濾過し、ろ液に[IrCl(cod)] 0.5当量を加えて室温24時間反応させた。反応後、溶液を濃縮し、ヘキサンで洗浄、トルエンで抽出し、抽出溶液を濃縮することでイリジウム-ホスフィンピロラート錯体(Ir/PP錯体)を得た。
 得られたイリジウム-ホスフィンピロラート錯体(Ir/PP錯体)のスペクトルデータは以下のとおりであった。
 PP配位子
H NMR(400MHz,CDCl):δ8.78(brs,1H),7.54-7.28(m,12H),7.16(dd,J=7.6,7.6Hz,1H),6.97(dd,J=6.8,4.8Hz,1H),6.77(m,1H),6.25(m,1H),6.19(m,1H)31P NMR(162MHz,CDCl):δ-11.2
 PP/Ir錯体
H NMR(400MHz,C):δ7.87(dd,J=8.0,4.8Hz,1H),7.50(m,4H),7.19-6.91(m,10H),6.74(m,1H),6.61(m,1H),5.46(dd,J=5.6,2.4Hz,2H),2.82(dd,J=5.2,2.8Hz,2H),2.19(m,2H),2.01(m,2H),1.70(m,4H);31P NMR(162MHz,C):δ16.9
(ウレア系化合物(対称型ウレア系化合物)との反応)
<水素化反応>
 グローブボックス中、基質(以下に例示したウレア系化合物1a~1q)0.5mmol、触媒(上記で得られたIr錯体)3mol%、必要に応じて塩基(t-ブトキシカリウム)、溶媒(THFもしくはトルエン)3mlをガラス性中管に入れ、オートクレーブで密閉し、グローブボックスから出して水素圧をかけ、各反応温度に設定したchemistationで反応を開始した。
<クエンチ・定量>
 オートクレーブをchemistationから取り出し、冷却して室温まで冷やしてから水素圧を抜いた。反応後の溶液中に基質のウレア系化合物が溶け残っている場合はDMSO-d(2ml)を加えて溶液を均一にしてからNMR解析を行った。NMR解析はDMSO-d/THF(toluene)=2/1になるような条件で行った。内標としてジブロモメタンを用いたが、ピークの重なりが見られた場合は、内標として代わりにヘプタンを用いるか、DMSO-d/THF/toluene=4/1/1となるようにトルエンとTHFの混合溶媒を加えてNMR解析を行った。
<単離>
-塩酸塩として単離する場合-
 水素化反応後の溶液を酢酸エチルで希釈した後、1M塩酸水溶液でアニリン類をアニリン塩酸塩類として抽出した。抽出した水層については炭酸水素ナトリウムで中和し、続けて、DCMでアニリン類として抽出した。その後、DCM層をbrineで洗浄し、NaSOで乾燥、濾過後、溶液をMeOH・HCl溶液と反応させることでアニリン塩酸塩類を形成させ、溶液を濃縮し、真空乾燥によりアニリン塩酸塩類を単離した。酢酸エチル層についてはbrineで洗浄し、NaSOで乾燥、濾過後、シリカゲルカラムクロマトグラフィー(DCM/EtOAc)によりホルムアミド類を単離した。
-アニリン類として単離する場合-
 以下において1c、1i~1lのウレア系化合物を用いた場合においては、アニリン塩酸塩類ではなくアニリン類として単離を行った。具体的には、反応溶液を濃縮し、シリカゲルカラムクロマトグラフィー(DCM/EtOAc)によりアニリン類を単離した。
 基質として用いたウレア系化合物と、水素化反応後に得られたホルムアミド類及びアニリン類の構造は以下の通りであった。各化合物の下方に表記した数値は、水素化反応後に得られたホルムアミド類及びアニリン類の収率である。各化合物の収率(ウレア系化合物1molに対する各化合物のmol収率)は、ジブロモメタン/ヘプタンを内部標準としたH NMRで測定した。なお、括弧内の数字は単離後の収率である。
(ウレア系化合物(非対称型ウレア系化合物)との反応)
 基質として、以下に示すウレア系化合物を用いた以外は上記と同様の方法で水素化反応を行った。
 基質として用いたウレア系化合物と、水素化反応後に得られたホルムアミド類及びアニリン類の構造は以下の通りであった。各化合物の下方に表記した数値は、水素化反応後に得られたホルムアミド類及びアニリン類の収率である。各化合物の収率(ウレア系化合物1molに対する各化合物のmol収率)は、ジブロモメタン/ヘプタンを内部標準としたH NMRで測定した。なお、括弧内の数字は単離後の収率である。
 
(添加剤の検討)
 水素化反応時の添加剤(塩基)として、t-ブトキシカリウム(KOBu)に代えて、t-ブトキシナトリウム(NaOBu)もしくはt-ブトキシリチウム(LiOBu)を用いた。水素化反応時の添加剤(塩基)としては、t-ブトキシカリウム(KOBu)を用いた場合に好ましい結果が得られた。
(ポリウレアとの反応)
<ポリウレアの合成>
 50ml二口ナスフラスコに1,4-フェニレンジイソシアナート1.60g(10mmol)と脱水DMFを加え、そこにN,N’-ジメチル-1,6-ヘキサンジアミン1.0当量を滴下によって加えた。その後、溶液温度を80℃に上げて17時間反応させた。反応後、1.0当量の水を加え、200mlのTHFで二度洗浄した後、100℃で8時間真空乾燥を行い、ポリウレアを得た。
 基質として、上記ポリウレアを用いた以外は上記と同様の方法で水素化反応を行った。水素化反応後に得られたホルムアミド類及びアニリン類の構造は以下の通りであった。反応後の可溶性成分は上記と同様にNMRにより収率を算出した。なお、フェニレンジアミン(生成物左上)については可溶性部分に加え、反応後の固体成分を溶媒で洗浄することで39%の収率で単離した。
 
(ポリウレアの水素化分解)
 基質として、上記ポリウレアを用い、以下の条件で水素化反応を行った。
 ポリウレアの水素化分解について、entry4の結果は以下のとおりであった。
(ウレタン系化合物の水素化分解)
 基質として、下記のウレタン系化合物を用い、以下の条件で水素化反応を行った。
 Ir錯体はウレタン系化合物を部分水素化し、ホルムアミド類とアルコール類を生成した。
(結果)
 上述のとおり、Ir錯体はウレア系化合物を部分水素化し、ホルムアミド類とアミン類を生成した。Ir錯体は対称型ウレア系化合物及び非対称型ウレア系化合物のいずれも部分水素化した。非対称型ウレア系化合物の部分水素化では、窒素原子上の置換基の組み合わせによって、一方の炭素と窒素の結合を選択的に水素化することができた。また、ウレア系化合物にハロゲン原子やエステル基、シアノ基といった易還元性官能基が存在する場合であってもウレア系化合物を選択的に水素化した。また、Ir錯体は、ウレタン系化合物を部分水素化し、ホルムアミド類とアルコール類を生成した。
(試験例2)
(イリジウム-ホスフィンベンゾイミダゾラート錯体(Ir/PB錯体)の合成)
 300mlナスフラスコにエタノール/水(5/1)混合溶媒(13mL)、2-ニトロアニリン27mg(2.0mmol)、(2-ジフェニルホスフィノ)ベンズアルデヒド697mg(2.4mmol)、Na4 1.4g(8.0mmol)を加え、75℃で6時間反応させた。反応後、エタノールを減圧留去し、水と酢酸エチルを加え、酢酸エチルで抽出し、濃縮後、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)を行い、真空乾燥により酸化体を39%収率で得た。
 トルエン(6.4mL)に酸化体253mg(0.64mmol)、トリクロロシラン567mg(4.2mmol)、トリエチルアミン480mg(4.7mmol)を0 ℃で加えた。溶液を17時間還流させ、反応後、溶媒と過剰の試薬を減圧留去し、脱気した飽和NaHCO水溶液を10mL加え、窒素雰囲気下、ジクロロメタンで抽出し、溶媒を減圧留去した。得られた固体をヘキサンで洗浄し、真空乾燥により還元体を97%収率で得た。
 グローブボックス中、THF(9mL)に還元体128mg(0.34mmol)を加えて攪拌させ、そこに90%純度のNaH13.5mg(0.51mmol)を加えて室温で24時間反応させた。反応後、メンブレンフィルターを用いて溶液を濾過し、ろ液に[IrCl(cod)] 113mg(0.17mmol)を加えて室温で24時間反応させた。反応後、溶液を減圧留去し、ヘキサンで抽出し、アルミナ濾過(2CVのジエチルエーテルで洗浄した後、4CVのTHFで溶出させた)し、真空乾燥によりイリジウム-ホスフィンベンゾイミダゾラート錯体(Ir/PB錯体)を23%収率で得た。
 得られたイリジウム-ホスフィンベンゾイミダゾラート錯体(Ir/PB錯体)のスペクトルデータは以下のとおりであった。
 PB配位子
H NMR(500MHz,DMSO-d):δ12.7(s,1H),7.88(dd,J=7.5,3.5Hz,1H),7.56(t,J=5.0Hz,1H),7.49-7.43(m,3H),7.35-7.30(m,6H),7.23-7.17(m,5H),7.14-7.11(m,1H),7.04-7.02(dd,J=7.5,3.5Hz,1H);31P NMR(202MHz,DMSO-d):δ?10.7;13C NMR(126MHz,DMSO-d):δ151.2,143.2,138.4(d,J=11.8Hz),137.6(d,J=23.7Hz),135.5(d,J=23.7Hz),134.4(d,J=18.3Hz),133.3(d,J=20.0Hz),129.3,128.8,128.4(d,J=7.3Hz),122.5,121.3,119.0,111.3.
 Ir/PB錯体
H NMR(500MHz,C):δ9.32-9.29(m,1H),8.11(d,J=7.5Hz,1H),7.97(d,J=8.0Hz,1H),7.44-7.41(m,4H),7.32-7.27(m,1H),7.24-7.20(m,2H),6.89-6.80(m,7H),5.36(br,2H),3.11(d,J=2.0Hz,2H),2.09-2.06(m,2H),1.91-1.83(m,2H),1.60-1.51(m,4H),the one remaining proton peak is overlapped with the solvent peak;31P NMR(202MHz,C):δ22.3;13C NMR(126MHz,C):δ156.0(d,J=6.4Hz),150.3,145.7,142.5(d,J=13.9Hz),134.6(d,J=11.1Hz),132.1(d,J=9.2Hz),131.4(d,J=1.9Hz),130.8(d,J=1.9Hz),130.7(d,J=2.8Hz),129.5(d,J=52.5Hz),128.4(overlapped with solvent peaks and confirmed by DEPT analysis,d,J=10.5Hz),127.6(d,J=7.3Hz),123.0(d,J=49.6Hz),121.3,120.3(d,J=8.3Hz),116.1,92.0(d,J=12.0Hz),58.5,33.0,30.2;m.p.:no clear melting point was observed upon heating until 227oC;HRMS(ESI)m/z calcd. for C3330IrNP([M])678.1776,found 678.1747.
(ウレア系化合物(対称型ウレア系化合物)との反応)
<水素化反応>
 グローブボックス中、基質(以下に例示したウレア系化合物)0.5mmol、触媒(上記で得られたIr/PB錯体)3mol%、溶媒(トルエン)3mlをガラス性中管に入れ、オートクレーブで密閉し、グローブボックスから出して水素圧をかけ、下記反応温度に設定したchemistationで反応を開始した。なお、定量は上述した方法と同様の方法で行った。
Figure JPOXMLDOC01-appb-C000064
 上述のとおり、Ir/PB錯体もウレア系化合物を部分水素化し、ホルムアミド類とアミン類を生成した。
(試験例3)
(PSP配位子の合成)
 ethyl 2-(diphenylphosphaneyl)benzoate(451.2mg,1.35mmol)のTHF(1.1mL)溶液にsodium hydride(oil free,90%purity,43.2mg,1.62mmol)を室温でくわえた。0℃に冷却し、1-vinylpyrrolidin-2-one(162.0mg,1.46mmol)を加えた。80℃で2.5時間撹拌した後、6M HCl水溶液(2.2mL)を滴下した。反応溶液が茶色から黄色に変化した後、減圧下、THFを留去した。残渣に6M HCl水溶液(3mL)を加え、100℃で14時間撹拌した。冷却後、6M NaOH水溶液(6mL)を加え、塩基性とすると濃赤色の溶液が得られた。窒素下でEtOAc(6mL,seven times)により抽出し、EtOAcを留去すると白色固体が得られた。この固体をシリカゲルカラム(dichloromethane/methanol=100/0to85/15)により精製することでイミン(100.6mg)を得た。
このイミンをmethanol(2.5mL)とacetic acid(1.0mL)に溶解し、sodium borohydride(27.1mg,0.72mmol separated into three times)を-65°Cで加えた後室温で17時間撹拌した。溶媒を留去し、残渣にwater(3mL)と6M HCl水溶液(2mL)を加えEt2O(5mL,four times)で洗浄した。水相に10M NaOH水溶液(1.5mL)を加え、塩基性条件とし、dichloromethane(7mL,five times)で抽出し、溶媒を留去することで白色固体を得た。これをシリカゲルカラム(dichloromethane/methanol=100/0to80/20)により精製することでPSPを白色固体として得た(17.5mg,0.053mmol,3.9%)。
 得られたPSP配位子のスペクトルデータは以下のとおりであった。
 PSP配位子
31P(CDCl,162MHz):δ-15.5
H(CDCl,400MHz):δ7.74-7.66(m,1H),7.58-7.41(m,1H),7.38-7.30(m,7H),7.14-7.10(m,1H),6.86-6.83(m,1H),4.88(dd,J=15.4Hz,7.2Hz,1H),3.19-3.14(m,1H),2.97-2.91(m,1H),2.38(s,1H),1.93-1.80(m,2H),1.79-1.60(m,1H),1.52-1.43(m,1H).the three remaining aromatic proton peaks are overlapped with the solvent peak.
(Ir/PSP錯体を用いたウレアの水素化分解)
 グローブボックス中、基質(以下に例示したウレア系化合物)0.5mmol、上記で得られたPSP配位子 3mol%、[IrCl(cod)] 3mol%Ir、溶媒(トルエン)3mlをガラス性中管に入れ、オートクレーブで密閉し、グローブボックスから出して水素圧をかけ、下記反応温度に設定したchemistationで反応を開始した。なお、定量は上述した方法と同様の方法で行った。
Figure JPOXMLDOC01-appb-C000065
 反応系では、Ir/PSP錯体が形成されており、Ir/PSP錯体もウレア系化合物を部分水素化し、ホルムアミド類とアミン類を生成した。
(試験例4)
(ルテニウム-ホスフィンピロラート錯体(Ru/PP錯体)の合成)
 グローブボックス中、THF(0.8mL)に2-(2-ジフェニルホスフィノフェニル)ピロール15mg(0.045mmol)を加えて攪拌し、そこに90%純度のNaHを2.5当量加えて室温で23時間反応させた。反応後、メンブレンフィルターを用いて溶液を濾過し、ろ液に[RuCl(cod)]を1当量加え、THFを1.0mL追加し、50℃で18時間反応させた。反応後、1.8mLのTHF溶液のうち0.2mLを取り、ルテニウム-ホスフィンピロラート錯体(Ru/PP錯体)を得た。
(ウレア系化合物(対称型ウレア系化合物)との反応)
<水素化反応>
 グローブボックス中、基質(以下に例示したウレア系化合物)0.17mmol、触媒/THF溶液(上記で得られたRu/PP錯体)0.2mL、溶媒(トルエン)1.8mlをガラス性中管に入れ、オートクレーブで密閉し、グローブボックスから出して2MPaの水素圧をかけ、130℃に設定したケミステーションで18時間の反応を開始した。なお、定量は上述した方法と同様の方法で行った。
 上述のとおり、Ru/PP錯体もウレア系化合物を部分水素化し、ホルムアミド類とアミン類を生成した。
(試験例5)
(マンガン-ホスフィンピロラート錯体(Mn/PP錯体)の合成)
 試験例1におけるIr/PP錯体の合成にならい、MnBr(CO)を用いることでマンガン-ホスフィンピロラート錯体(Mn/PP錯体)を87%収率で得た。
(ウレア系化合物(対称型ウレア系化合物)との反応)
<水素化反応>
 グローブボックス中、基質(以下に例示したウレア系化合物)0.167mmol、触媒(上記で得られたMn/PP錯体)3mol%、塩基(t-ブトキシカリウム)10mol%、溶媒(トルエン)3mlをガラス性中管に入れ、オートクレーブで密閉し、グローブボックスから出して水素圧をかけ、下記反応温度に設定したchemistationで反応を開始した。なお、定量は上述した方法と同様の方法で行った。
Figure JPOXMLDOC01-appb-C000068
 上述のとおり、Ru/PP錯体もウレア系化合物を部分水素化し、ホルムアミド類とアミン類を生成した。
(試験例6)
(カチオン性錯体の合成)
 THF(3mL)に2-(2-ジフェニルホスフィノフェニル)ピロール49mg(0.15mmol)と[Ir(cod)]BAr 191mg(0.15mmol)を加え、室温で16時間反応させた。反応後、溶液を減圧留去し、得られた固体をヘキサンで洗浄し、真空乾燥によりIr錯体(カチオン性錯体)を220mg得た。
 得られたIr錯体(カチオン性錯体)のスペクトルデータは以下のとおりであった。
H NMR(500MHz,THF-d):δ11.8(br,0.8H),8.11-7.46(m,33H),7.39(s,0.8H),7.24(d,J=5.5Hz,0.2H),7.04(d,J=2.0Hz,0.8H),6.25(s,0.8H),5.38(br,0.4H),5.21(br,1.6H),4.96(s,0.4H),3.45(br,0.4H),3.41(br,1.6H),2.33-2.08(m,8H),1.63-1.31(m,8H);31PNMR(202MHz,THF-d):δ26.1,18.0;13CNMR(126MHz,THF-d):δ162.9(q,J=49.7Hz),156.2,141.7(d,J=7.3Hz),141.1(d,J=19.0Hz),137.0(d,J=14.5Hz),136.6,135.7,135.3(d,J=11.0Hz),134.5(d,J=8.2Hz),133.9,133.8(d,J=1.8Hz),133.7(d,J=5.5Hz),133.6(d,J=20.0Hz),133.0(d,J=2.6Hz),132.9(d,J=2.8Hz),131.4(d,J=6.3Hz),131.0,130.5-129.7(m),129.4,128.8,127.4(d,J=55.6Hz),126.7,126.2(d,J=47.3Hz),125.7,124.5,122.3,118.3-118.2(m),95.9(d,J=12.7Hz),85.8,72.6,71.4,66.0,33.2(d,J=2.6Hz),31.2,30.6(d,J=1.9Hz),27.7.
 カチオン性錯体においてピロールのπ配位を確認した。また、ピロールのπ配位とσ配位が平衡であった。この結果は、上述した段落0064~0065の反応機構を支持するものであった。

Claims (13)

  1.  下記式(A)で表される部分構造を有する錯体、を含む触媒。

    (式(A)中、
     Mは、7族、8族又は9族の元素であって、Allred-Rochowの電気陰性度が1.40以上であり、かつ第3イオン化ポテンシャルが26.5eV以上である金属であり、
     PとMは配位結合しており、
     Dは、Mとの結合手としてアニオン性窒素原子を含む原子団であり、
     Xは、連結基であり、
     R及びRはそれぞれ独立に、炭素原子、酸素原子及び窒素原子よりなる群から選択される少なくとも1種を含む置換基であり、これらの置換基は互いに連結して環を形成していてもよく、
     Mは*で他の部位と結合している。)
  2.  下記式(1)で表される部分構造を有するイリジウム錯体、を含む請求項1に記載の触媒。

    (式(1)中、
     PとIrは配位結合しており、
     Dは、Irとの結合手としてアニオン性窒素原子を含む原子団であり、
     Xは、連結基であり、
     R及びRはそれぞれ独立に、炭素原子、酸素原子及び窒素原子よりなる群から選択される少なくとも1種を含む置換基であり、これらの置換基は互いに連結して環を形成していてもよく、
     Irは*で他の部位と結合している。)
  3.  下記式(2)で表される部分構造を有するイリジウム錯体、を含む請求項1又は2に記載の触媒。

    (式(2)中、
     PとIrは配位結合しており、
     環Aは、アニオン性窒素を含む窒素含有環を表し、
     Xは、連結基であり、
     R及びRはそれぞれ独立に、炭素原子、酸素原子及び窒素原子よりなる群から選択される少なくとも1種を含む置換基であり、これらの置換基は互いに連結して環を形成していてもよく、
     Irは*で他の部位と結合している。)
  4.  下記式(3)で表される部分構造を有するイリジウム錯体、を含む、請求項1~3のいずれか1項に記載の触媒。

    (式(3)中、
     PとIrは配位結合しており、
     環Aは、アニオン性窒素を含む窒素含有環を表し、
     環Bは、芳香族環を表し、
     R及びRはそれぞれ独立に、炭素原子、酸素原子及び窒素原子よりなる群から選択される少なくとも1種を含む置換基であり、これらの置換基は互いに連結して環を形成していてもよく、
     Irは*で他の部位と結合している。)
  5.  R及びRはそれぞれ独立に、芳香族炭化水素基である、請求項1~4のいずれか1項に記載の触媒。
  6.  ウレア系化合物に、請求項1~5のいずれか1項に記載の触媒を作用させることを含む、ホルムアミド類及び/又はアミン類の製造方法。
  7.  前記ウレア系化合物は、下記式(11)で表される化合物である、請求項6に記載のホルムアミド類及び/又はアミン類の製造方法。

    (式(11)中、
     L及びLはそれぞれ独立に、単結合又は連結基であり、
     R11及びR12はそれぞれ独立に、水素原子又は置換基であり、
     R13及びR14はそれぞれ独立に、水素原子又は置換基であり、R13及びR14の少なくとも一方は水素原子であり、
     R11とR12は、互いに連結して環を形成していてもよく、もしくは、R11とR13並びにR12とR14は、それぞれ互いに連結して環を形成していてもよく、
     nは、1以上の整数である。)
  8.  前記式(11)中、R11及びR12は炭化水素基であり、R13及びR14は水素原子である、請求項7に記載のホルムアミド類及び/又はアミン類の製造方法。
  9.  前記式(11)中、R11とR12は同一の基であり、R13とR14は同一の基であり、かつ、LとLが同一の基である、請求項7又は8に記載のホルムアミド類及び/又はアミン類の製造方法。
  10.  前記式(11)中、少なくともR11とR12、R13とR14、もしくはLとLが異なる基である、請求項7又は8に記載のホルムアミド類及び/又はアミン類の製造方法。
  11.  ウレタン系化合物に、請求項1~5のいずれか1項に記載の触媒を作用させることを含む、ホルムアミド類及び/又はアルコール類の製造方法。
  12.  下記式(B)で表される部分構造を有する錯体。

    (式(B)中、
     Mは、7族、8族又は9族の元素であって、Allred-Rochowの電気陰性度が1.40以上であり、かつ第3イオン化ポテンシャルが26.5eV以上である金属であり、
     PとMは配位結合しており、
     環Aは、アニオン性窒素を含む窒素含有環を表し、
     環Bは、芳香族環を表し、
     R及びRはそれぞれ独立に、炭素原子、酸素原子及び窒素原子よりなる群から選択される少なくとも1種を含む置換基であり、これらの置換基は互いに連結して環を形成していてもよく、
     Mは*で他の部位と結合している。)
  13.  下記式(3)で表される部分構造を有する、請求項12に記載の錯体。

    (式(3)中、
     PとIrは配位結合しており、
     環Aは、アニオン性窒素を含む窒素含有環を表し、
     環Bは、芳香族環を表し、
     R及びRはそれぞれ独立に、炭素原子、酸素原子及び窒素原子よりなる群から選択される少なくとも1種を含む置換基であり、これらの置換基は互いに連結して環を形成していてもよく、
     Irは*で他の部位と結合している。)
PCT/JP2023/004511 2022-02-14 2023-02-10 触媒、ホルムアミド類及び/又はアミン類の製造方法、ホルムアミド類及び/又はアルコール類の製造方法並びに錯体 WO2023153494A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022020544 2022-02-14
JP2022-020544 2022-02-14

Publications (1)

Publication Number Publication Date
WO2023153494A1 true WO2023153494A1 (ja) 2023-08-17

Family

ID=87564507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004511 WO2023153494A1 (ja) 2022-02-14 2023-02-10 触媒、ホルムアミド類及び/又はアミン類の製造方法、ホルムアミド類及び/又はアルコール類の製造方法並びに錯体

Country Status (1)

Country Link
WO (1) WO2023153494A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249677A (ja) * 1995-12-22 1997-09-22 Basf Ag キラルなルテニウム錯体、その製造方法、及びプロキラルなケトンの鏡像選択的なトランスファー水素添加の方法
JP2006347884A (ja) * 2004-06-09 2006-12-28 M Carreira Erick モノホスフィン化合物、その遷移金属錯体および該錯体を不斉触媒として用いる光学活性化合物の製造方法
JP2010527316A (ja) * 2007-05-18 2010-08-12 カナタ ケミカル テクノロジーズ インコーポレイティッド アンモニアボランからの水素の製造方法
WO2012102247A1 (ja) * 2011-01-24 2012-08-02 国立大学法人名古屋大学 ルテニウム錯体を含む水素移動反応用触媒及び水素移動反応物の製造方法
US20120253042A1 (en) * 2007-10-30 2012-10-04 Yeda Research And Development Co. Ltd. Use of ruthenium complexes for formation and/or hydrogenation of amides and related carboxylic acid derivatives
WO2014136795A1 (ja) * 2013-03-04 2014-09-12 国立大学法人名古屋大学 配位子、その配位子を含む金属錯体、及びその金属錯体を用いた反応
JP2021509684A (ja) * 2018-01-08 2021-04-01 ユニヴァーシティー コート オブ ザ ユニヴァーシティー オブ セント アンドリューズ マンガン触媒によるエステルの水素化

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249677A (ja) * 1995-12-22 1997-09-22 Basf Ag キラルなルテニウム錯体、その製造方法、及びプロキラルなケトンの鏡像選択的なトランスファー水素添加の方法
JP2006347884A (ja) * 2004-06-09 2006-12-28 M Carreira Erick モノホスフィン化合物、その遷移金属錯体および該錯体を不斉触媒として用いる光学活性化合物の製造方法
JP2010527316A (ja) * 2007-05-18 2010-08-12 カナタ ケミカル テクノロジーズ インコーポレイティッド アンモニアボランからの水素の製造方法
US20120253042A1 (en) * 2007-10-30 2012-10-04 Yeda Research And Development Co. Ltd. Use of ruthenium complexes for formation and/or hydrogenation of amides and related carboxylic acid derivatives
WO2012102247A1 (ja) * 2011-01-24 2012-08-02 国立大学法人名古屋大学 ルテニウム錯体を含む水素移動反応用触媒及び水素移動反応物の製造方法
WO2014136795A1 (ja) * 2013-03-04 2014-09-12 国立大学法人名古屋大学 配位子、その配位子を含む金属錯体、及びその金属錯体を用いた反応
JP2021509684A (ja) * 2018-01-08 2021-04-01 ユニヴァーシティー コート オブ ザ ユニヴァーシティー オブ セント アンドリューズ マンガン触媒によるエステルの水素化

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAZUKI TSUGE, TAKANORI IWASAKI, KYOKO NOZA: "Iridium-catalyzed Selective Hydrogenation of Urea Derivatives to Formamides and Aminesk", D203-1VN-02. CHEMICAL SOCIETY OF JAPAN 102ND SPRING ANNUAL MEETING (2022), 9 March 2022 (2022-03-09), XP093084180 *

Similar Documents

Publication Publication Date Title
JP5923105B2 (ja) キラルスピロ−ピリジルアミドフォスフィン配位子化合物、その合成方法及びその利用
JP2018508511A (ja) ホルムアミド系化合物を製造する方法
CN108299423B (zh) 一种二氢吡咯并2-氨基喹啉类化合物的合成方法
Jadhav et al. Efficient N-arylation of amines catalyzed by Cu–Fe–hydrotalcite
Mendoza-Espinosa et al. Copper (II) complexes supported by click generated mixed NN, NO, and NS 1, 2, 3-triazole based ligands and their catalytic activity in azide–alkyne cycloaddition
Sun et al. CoPc/Cu (OAc) 2-catalyzed N-arylation of amines with arylhydrazines leading to N-aryl amines
Duan et al. Ionic liquid-mediated solvothermal synthesis of 4, 4′-methylenediphenyl diisocyanate (MDI): an efficient and environment-friendly process
WO2023153494A1 (ja) 触媒、ホルムアミド類及び/又はアミン類の製造方法、ホルムアミド類及び/又はアルコール類の製造方法並びに錯体
Ma et al. Cationic quaternary ammonium-stabilized Nb oxoclusters catalyze reductive amination of carbon dioxide with hydrosilane
CA2864201A1 (en) A telescoping synthesis of 5-amino-4-nitroso-1-alkyl-1h-pyrazole salt
Damljanović et al. The palladium (II) complex of N, N-diethyl-1-ferrocenyl-3-thiabutanamine: Synthesis, solution and solid state structure and catalytic activity in Suzuki–Miyaura reaction
CN103748065B (zh) 2-烯基胺化合物的制造方法
CN113754606B (zh) 吩噁嗪二胺衍生物和/或吩噻嗪二胺衍生物及其制备方法
CN113683549A (zh) 一种手性3,4-二取代琥珀酰亚胺及其衍生物的制备方法
CN114133373A (zh) 一种合成维兰特罗中间体的前驱体的方法
CN110545912B (zh) 用于由d2o制备氘代乙醇的方法
Nirmala et al. Ruthenium (II) complexes bearing pyridine-functionalized N-heterocyclic carbene ligands: Synthesis, structure and catalytic application over amide synthesis
CN111302962A (zh) 一种将脂肪族硝基化合物中的硝基还原成氨基的快捷方法
Li et al. Half-sandwich ruthenium complexes with acylhydrazone ligands: synthesis and catalytic activity in the N-alkylation of hydrazides
CN114989137B (zh) 一种手性含亚胺喹啉咪唑啉类化合物及其金属络合物以及制备方法和应用
CA3024425A1 (en) Novel ionic half sandwich ruthenium complexes supported by n-heterocyclic carbene and/or phosphines, as efficient transfer hydrogenation catalysts
CN108774137B (zh) 一种双核锰配合物催化合成仲胺化合物的方法
JP3750011B2 (ja) 金属錯体の製造方法とアミノ酸修飾金属錯体
WO2024124895A1 (zh) 一种手性磷酸催化剂的合成方法
WO2023097696A1 (zh) 一种合成(1r)-1-(2,2-二甲基-4h-1,3-苯并二恶英-6-基)-2-硝基乙醇的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752956

Country of ref document: EP

Kind code of ref document: A1