WO2023153341A1 - Mounting system and mounting method - Google Patents

Mounting system and mounting method Download PDF

Info

Publication number
WO2023153341A1
WO2023153341A1 PCT/JP2023/003702 JP2023003702W WO2023153341A1 WO 2023153341 A1 WO2023153341 A1 WO 2023153341A1 JP 2023003702 W JP2023003702 W JP 2023003702W WO 2023153341 A1 WO2023153341 A1 WO 2023153341A1
Authority
WO
WIPO (PCT)
Prior art keywords
behavior
unit
mounting
mounting system
capturing
Prior art date
Application number
PCT/JP2023/003702
Other languages
French (fr)
Japanese (ja)
Inventor
悠人 海老原
晋平 杉野
弘之 藤原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202380012591.1A priority Critical patent/CN117598038A/en
Publication of WO2023153341A1 publication Critical patent/WO2023153341A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages

Definitions

  • the present disclosure relates to an implementation system and an implementation method.
  • the nozzle picks up the component from the component supply section and mounts it on the board.
  • a component mounter normally mounts components on a board based on a production job. At this time, the component mounting apparatus performs control (servo) to automatically operate so as to follow target values using the position, orientation, attitude, etc. of the nozzle as control variables.
  • control servo
  • the component mounting apparatus includes an assembly diagnostic routine for diagnosing vibration caused by assembly of the component mounting apparatus, and an environmental vibration diagnosis routine for diagnosing vibration caused by the surrounding environment. do a routine.
  • the component mounter moves the nozzle to the imaging position and turns off the servo control of the nozzle. That is, in the diagnostic routine, the component mounting apparatus performs an operation (diagnostic routine operation) different from the normal operation described above. Then, the component mounting apparatus captures an image of the tip of the nozzle using the imaging means, obtains vibration data of the tip of the nozzle from the captured image, determines whether or not the vibration data falls within a predetermined allowable range, and determines whether or not the vibration data falls within a predetermined allowable range. If so, an error is output to the outside.
  • the diagnostic routine assembly diagnostic routine and environmental vibration diagnostic routine
  • a component mounting apparatus that mounts a component (second object) on a board (first object) as in Patent Document 1 performs diagnosis by an operation (diagnosis routine) different from normal operation. Loss of time was occurring, which reduced productivity. Therefore, it is required to detect malfunction of the apparatus while suppressing the decrease in productivity.
  • An object of the present disclosure is to provide a mounting system and a mounting method capable of detecting device failure while suppressing a decrease in productivity.
  • a mounting system performs a production operation of mounting a second object on a first object.
  • the mounting system includes a mounting head, an imaging section, a behavior detection section, a behavior determination section, and an output section.
  • the mounting head has a capturing part capable of capturing the second object.
  • the imaging section images the capture section during the production operation.
  • the behavior detection section obtains a behavior value corresponding to the behavior of the capturing section during the production operation based on the captured image of the imaging section.
  • the behavior determination unit determines whether the behavior value is within an allowable range.
  • the output unit notifies that the behavior is unsatisfactory if the behavior value does not fall within an allowable range.
  • a mounting method performs a production operation of mounting a second object on a first object.
  • the mounting method includes an imaging step, a behavior detection step, a behavior determination step, and an output step.
  • an imaging step an image of a capture unit provided in the mounting head and capable of capturing the second object is captured during the production operation.
  • the behavior detection step obtains a behavior value corresponding to the behavior of the capturing unit during the production operation based on the captured image captured in the imaging step.
  • the behavior determination step determines whether or not the behavior value is within an allowable range.
  • the outputting step indicates that the behavior is bad if the behavior value is not within an acceptable range.
  • FIG. 1 is a configuration diagram showing a mounting system according to an embodiment.
  • FIG. 2 is a perspective view showing a main part of the mounting system same as the above.
  • FIG. 3 is a block diagram showing the same mounting system.
  • FIG. 4 is a side view showing the vicinity of the capture section and imaging section of the mounting system; 5A to 5D are diagrams showing the production operation of the same mounting system.
  • FIG. 6 is a diagram showing a normal stroke operation of the above mounting system.
  • FIG. 7 is a graph showing the time change of the stroke amount of the mounting system in the normal state.
  • FIG. 8 is a diagram showing a stroke operation of the mounting system when the same mounting system is out of order.
  • FIG. 9 is a graph showing the change over time of the stroke amount when the mounting system described above is malfunctioning.
  • FIG. 1 is a configuration diagram showing a mounting system according to an embodiment.
  • FIG. 2 is a perspective view showing a main part of the mounting system same as the above.
  • FIG. 3 is
  • FIG. 10A is a diagram showing normal vibration of the mounting system
  • FIG. 10B is a graph showing the time change of the vibration behavior value in the normal state
  • FIG. 11A is a diagram showing vibration of the same mounting system when it malfunctions.
  • FIG. 11B is a graph showing temporal changes in vibration behavior values when the same is out of order.
  • FIG. 12 is a flowchart showing a mounting method executed by the mounting system
  • FIG. 13 is a graph for explaining a modification of the mounting system
  • FIG. 14 is a side view showing a modification of the imaging section of the mounting system;
  • the following embodiments generally relate to implementation systems and implementation methods. More specifically, the present invention relates to a mounting system and a mounting method that perform a production operation of mounting a second object on a first object.
  • each drawing described in the following embodiments is a schematic drawing, and the ratio of the size and thickness of each component does not necessarily reflect the actual dimensional ratio.
  • the configurations described in the following embodiments are merely examples of the present disclosure.
  • the present disclosure is not limited to the following embodiments, and various modifications can be made according to design and the like as long as the effects of the present disclosure can be achieved.
  • X-axis, Y-axis, and Z-axis that are orthogonal to each other are defined in FIGS. 1 and 2 unless otherwise specified.
  • the X and Y axes extend horizontally, and the Z axis extends vertically.
  • the mounting system 1 is a mounting apparatus (mounting machine) that performs a production operation of mounting a second object T2 on a first object T1.
  • the mounting system 1 is used, for example, in facilities such as factories, research institutes, offices, and educational facilities for manufacturing various products such as electronic devices, automobiles, clothing, foods, medicines, and handicrafts. be done.
  • the “production operation” is an operation for producing a product T3 (see FIG. 5D) in which the second object T2 is mounted on the first object T1. does not include the diagnostic operation of mounting the second object T2 in .
  • a typical electronic device has various circuit blocks such as a power supply circuit and a control circuit.
  • a solder application process cream solder is applied (or printed) on a board (including a printed wiring board).
  • the mounting process components (including electronic components) are mounted (mounted) on the board.
  • the board on which the components are mounted is heated in a reflow oven to melt creamy solder for soldering.
  • the mounting system 1 mounts the component T20, which is the second target T2, on the substrate T10, which is the first target T1. That is, in the mounting system 1 according to this embodiment, the first target T1 is the board T10, and the second target T2 is the component T20 mounted on the board T10.
  • the mounting system 1 used for mounting the second object T2 (component T20) on the first object T1 (board T10) includes, as shown in FIG. A unit 4 , a control unit 5 , a base 61 , a conveying device 62 , a plurality of component supply devices 63 and a fixed camera 7 are provided.
  • the transport device 62 has a pair of conveyor mechanisms 62a extending in the X-axis direction on the base 61, transports the substrate T10, which is the first object T1, in the X-axis direction and positions it in a predetermined mounting space. do.
  • a plurality of component supply devices 63 have tape feeders mounted side by side in the X-axis direction on a feeder base 65 of a carriage 64 connected to the base 61 .
  • Each component supply device 63 pitch-feeds the carrier tape 67 supplied from the reel 66, and supplies the component T20, which is the second object T2 held on the carrier tape 67, to the component supply port 63a.
  • a reel 66 is held by a carriage 64 .
  • the fixed camera 7 is mounted on the base 61 and images the upper side.
  • the mounting head 2 is movable along the XY plane and further has a catching section 21 for catching the second object T2.
  • the catching unit 21 is, for example, a suction nozzle capable of stroking to move (up and down) in the vertical direction along the Z-axis.
  • the mounting system 1 performs the production operation of mounting the component T20 (second target T2) on the board T10 (first target T1).
  • Production operations performed in the mounting process include catching operations and mounting operations.
  • the catching operation is an operation of moving the catching portion 21 that has not caught the component T20 so as to approach the component supply port 63a to capture (hold) the component T20 positioned at the component supply port 63a.
  • the mounting operation is an operation of moving the capturing unit 21 capturing the component T20 closer to the substrate T10 and mounting the component T20 on the mounting surface T11 of the substrate T10. Position control of the catching part 21 in such catching operation and mounting operation requires high positioning accuracy.
  • the behavior of the catching part 21 greatly affects the improvement of the positioning accuracy.
  • the behavior when the mounting head 2 moves from the component supply device 63 to above the substrate T10 and stops above the substrate T10, and the behavior when the catching part 21 performs a stroke operation to move in the vertical direction are important. Become.
  • the mounting system 1 of the present embodiment includes the mounting head 2, the imaging unit 3, the behavior detection unit 53, the behavior determination unit 54, and the output unit 55.
  • the mounting head 2 has a capture section 21 capable of capturing the component T20.
  • the imaging unit 3 images the capturing unit 21 during production operation.
  • the behavior detection unit 53 obtains a behavior value corresponding to the behavior of the capture unit 21 during production operation based on the captured image of the imaging unit 3 .
  • the behavior determination unit 54 determines whether the behavior value is within the allowable range. If the behavior value does not fall within the allowable range, the output unit 55 outputs a notification signal notifying that the behavior is not good.
  • the term "malfunction" includes not only abnormalities but also poor conditions.
  • the mounting system 1 described above can detect device malfunctions while suppressing a decline in productivity.
  • the mounting system 1 is used for mounting a component T20 by surface mount technology (SMT)
  • SMT surface mount technology
  • the component T20 is a component for surface mounting (SMD: Surface Mount Device), and is mounted by being arranged on the mounting surface T11 (front surface) of the substrate T10.
  • the mounting system 1 is not limited to this example, and may be used to mount the component T20 by an insertion mount technology (IMT).
  • IMT insertion mount technology
  • the component T20 is a component for insertion mounting having lead terminals, and is mounted on the mounting surface T11 of the substrate T10 by inserting the lead terminals into the holes of the substrate T10.
  • the “imaging optical axis” referred to in the present disclosure is an optical axis of an image captured by the imaging unit 3 (captured image of the imaging unit 3), and is an image sensor 31 (see FIG. 3) of the imaging unit 3 It is the optical axis defined by both the optical system 32 (see FIG. 3).
  • images captured by the imaging unit 3 include still images (still images) and moving images (moving images).
  • moving image includes captured images composed of a plurality of still images obtained by frame-by-frame shooting or the like.
  • the image captured by the imaging unit 3 may not be the data output from the imaging unit 3 itself.
  • the image captured by the image capturing unit 3 can be appropriately compressed, converted to another data format, processed to cut out a part of the image captured by the image capturing unit 3, adjusted in focus, adjusted in brightness, or adjusted in contrast. etc. processing may be applied.
  • the image captured by the imaging unit 3 is a full-color moving image.
  • the axes parallel to the mounting surface T11 of the substrate T10 are defined as the "X-axis" and the "Y-axis", and the thickness direction of the substrate T10
  • the axis parallel to be the "Z" axis is the upward direction
  • the other direction is the downward direction.
  • the substrate T10 is positioned below the capturing portion 21 when the capturing portion 21 faces the mounting surface T11 of the substrate T10.
  • X-axis, Y-axis, and Z-axis are all virtual axes, and the arrows indicating "X”, “Y”, and “Z” in the drawings are notated for the sake of explanation. nothing, and none of them involve substance. Moreover, these directions are not meant to limit the directions during use of the mounting system 1 .
  • the mounting system 1 is connected to a pipe for circulating cooling water, a cable for power supply, a pipe for supplying air pressure (including positive pressure and vacuum), and the like. Illustrations are omitted as appropriate.
  • a mounting system 1 includes a mounting head 2 , an imaging section 3 , a drive section 4 and a control section 5 .
  • the mounting system 1 in the present embodiment includes, as shown in FIG. A camera 7 is further provided.
  • the transport device 62 , the component supply device 63 and the fixed camera 7 are not essential components of the mounting system 1 . That is, all or part of the transport device 62 , the component supply device 63 , and the fixed camera 7 may not be included in the components of the mounting system 1 .
  • FIG. 2 only the mounting head 2, the imaging unit 3, and the driving unit 4 are illustrated, and the other configuration of the mounting system 1 is omitted as appropriate.
  • FIG. 4 shows the periphery of the mounting head 2 and omits the other configuration of the mounting system 1 as appropriate.
  • the mounting head 2 has at least one catching portion 21 .
  • the mounting head 2 has a head unit 23 and one catching part 21 is attached to the head unit 23 . Then, the mounting head 2 moves the catching portion 21 closer to the substrate T10 while catching the component T20 with the catching portion 21, and mounts the component T20 on the mounting surface T11 of the substrate T10. That is, the mounting head 2 holds the capturing part 21 movably toward the substrate T10.
  • the imaging unit 3 is fixed to the head unit 23 of the mounting head 2.
  • the imaging unit 3 has an imaging device 31 and an optical system 32 .
  • the imaging unit 3 is, for example, a video camera that captures moving images.
  • the imaging unit 3 images the capturing unit 21 during production operation.
  • the capturing unit 21 and the imaging unit 3 described above are attached to the head unit 23 , and the capturing unit 21 and the imaging unit 3 move in synchronization with the mounting head 2 .
  • Control unit 5 controls each unit of the mounting system 1.
  • Control unit 5 preferably comprises a computer system. That is, in the control unit 5, a processor such as a CPU (Central Processing Unit) or MPU (Micro Processing Unit) reads and executes a program stored in a memory, thereby performing part or all of the functions of the control unit 5 is realized.
  • the control unit 5 has a processor that operates according to a program as a main hardware configuration. Any type of processor can be used as long as it can implement functions by executing a program.
  • the processor is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or LSI (Large Scale Integration).
  • ICs and LSIs are called ICs and LSIs, but the names change depending on the degree of integration, and may be called system LSIs, VLSIs (Very Large Scale Integration), or ULSIs (Ultra Large Scale Integration).
  • a field programmable gate array (FPGA) which is programmed after the LSI is manufactured, or a reconfigurable logic device capable of reconfiguring the junction relationships inside the LSI or setting up circuit partitions inside the LSI for the same purpose. can be done.
  • a plurality of electronic circuits may be integrated on one chip or may be provided on a plurality of chips. A plurality of chips may be collectively arranged or distributed.
  • the control unit 5 is electrically connected to each of the mounting head 2, the imaging unit 3, the driving unit 4, the conveying device 62, the component supply device 63, and the fixed camera 7, for example.
  • the control unit 5 outputs control signals to the mounting head 2 and the driving unit 4, and controls the mounting head 2 and the driving unit 4 so that the component T20 captured by the capturing unit 21 is mounted on the mounting surface T11 of the substrate T10. Control.
  • the control unit 5 outputs control signals to the imaging unit 3 and the fixed camera 7 to control the imaging unit 3 and the fixed camera 7, and outputs images captured by the imaging unit 3 and the fixed camera 7 to the imaging unit 3. and the fixed camera 7, respectively.
  • the drive unit 4 is a device that moves the mounting head 2 .
  • the driving section 4 moves the mounting head 2 within the XY plane.
  • the “XY plane” referred to here is a plane including the X-axis and the Y-axis and perpendicular to the Z-axis.
  • the driving section 4 moves the mounting head 2 in the X-axis direction and the Y-axis direction.
  • the imaging unit 3 is fixed to the mounting head 2 , so the driving unit 4 also moves the imaging unit 3 together with the mounting head 2 .
  • the mounting head 2 and the imaging unit 3 are positioned above the substrate T10 positioned in the mounting space of the transport device 62 and above the component supply port 63a of the component supply device 63 by the drive unit 4. move between
  • the driving section 4 has an X-axis driving section 41 and a Y-axis driving section 42, as shown in FIG.
  • the X-axis driving section 41 moves the mounting head 2 straight in the X-axis direction.
  • the Y-axis driving section 42 moves the mounting head 2 straight in the Y-axis direction.
  • the Y-axis drive unit 42 moves the mounting head 2 along the Y-axis together with the X-axis drive unit 41, thereby linearly moving the mounting head 2 in the Y-axis direction.
  • each of the X-axis driving section 41 and the Y-axis driving section 42 includes a linear motor, and moves the mounting head 2 by driving force generated by the linear motor upon receiving power supply.
  • the component supply device 63 supplies the component T20 captured by the capturing section 21 of the mounting head 2 .
  • the component supply device 63 has, for example, a tape feeder that supplies components T20 accommodated in a carrier tape.
  • the component supply device 63 may have a tray on which a plurality of components T20 are placed.
  • the mounting head 2 captures the component T ⁇ b>20 from the component supply device 63 with the capturing section 21 .
  • the transport device 62 is a device that transports the substrate T10.
  • the conveying device 62 is implemented by, for example, a belt conveyor.
  • the transport device 62 transports the substrate T10, for example, along the X-axis.
  • the conveying device 62 conveys the substrate T10 to at least a mounting space below the mounting head 2, that is, a mounting space facing the capturing section 21 in the Z-axis direction. Then, the transport device 62 stops the board T10 in the mounting space until the mounting of the component T20 on the board T10 by the mounting head 2 is completed.
  • FIG. 5A shows an outline of the production operation performed in the mounting process.
  • the capturing portion 21 that does not capture the component T20 is located above the component supply port 63a.
  • the catching unit 21 descends in the vertical direction indicated by the arrow M1 to perform a catching operation of catching (holding) the component T20 positioned at the component supply port 63a.
  • the mounting head 2 moves in the horizontal direction indicated by the arrow M2 so as to approach the substrate T10. That is, the capturing part 21 capturing the component T20 moves closer to the substrate T10.
  • the mounting head 2 stops when the capturing part 21 moves above the substrate T10.
  • the capture unit 21 descends in the vertical direction indicated by the arrow M3, and the component T20 is mounted on the mounting surface T11 of the substrate T10, thereby producing the product T3.
  • the catching part 21 may start to descend while the mounting head 2 is moving in the horizontal direction.
  • the mounting system 1 may include a backup device, a lighting device, a communication unit, and the like.
  • the backup device backs up the board T10 transported to the mounting space by the transport device 62. That is, the substrate T10 transferred to the mounting space by the transfer device 62 is held in the mounting space by the backup device.
  • the lighting device illuminates the imaging region R1 of the imaging unit 3.
  • the lighting device may be turned on at least at the timing when the image capturing unit 3 captures an image, and for example, emits light in accordance with the image capturing timing of the image capturing unit 3 .
  • the image captured by the imaging unit 3 is a full-color moving image, so the illumination device outputs light in the wavelength range of the visible light region, such as white light.
  • the illumination device has a plurality of light sources such as LEDs (Light Emitting Diodes).
  • the illumination device illuminates the imaging region R1 of the imaging unit 3 by causing the plurality of light sources to emit light.
  • the illumination device is realized by an appropriate illumination method such as ring illumination or coaxial epi-illumination.
  • the illumination device is fixed to the mounting head 2 together with the imaging unit 3, for example.
  • the communication unit is configured to communicate with the host system directly or indirectly via a network, repeater, or the like. This allows the mounting system 1 to exchange data with the host system.
  • FIG. 2 (2.3) Mounting Head A more detailed configuration of the mounting head 2 will be described with reference to FIGS. 2, 3, and 4. FIG.
  • the mounting head 2 further includes an actuator 22 (see FIG. 3) for moving the catching portion 21, and a head unit 23 for holding the catching portion 21 and the actuator 22, in addition to the catching portion 21. have.
  • an actuator 22 see FIG. 3 for moving the catching portion 21, and a head unit 23 for holding the catching portion 21 and the actuator 22, in addition to the catching portion 21. have.
  • one capture section 21 and one actuator 22 are attached to one head unit 23 .
  • the mounting head 2 can pick up one component T20.
  • the capture unit 21 is, for example, a suction nozzle.
  • the catching unit 21 is controlled by the control unit 5 and can switch between a catching state of catching (holding) the component T20 and a released state of releasing (releasing the catching) of the component T20.
  • the catching unit 21 is not limited to the suction nozzle, and may be configured to catch (hold) the component T20 by pinching (picking) the component T20, for example, like a robot hand.
  • the mounting head 2 operates by being supplied with air pressure (vacuum) as power. In other words, the mounting head 2 switches between the captured state and the released state of the capturing section 21 by opening and closing a valve on a pneumatic (vacuum) supply path connected to the capturing section 21 .
  • the actuator 22 linearly moves the capturing part 21 in the Z-axis direction. Further, the actuator 22 rotates the catching portion 21 in a rotational direction (hereinafter referred to as "the ⁇ direction") about an axis along the Z-axis direction.
  • the actuator 22 is driven by a driving force generated by a linear motor to move the catching portion 21 in the Z-axis direction.
  • the actuator 22 is driven by a driving force generated by a rotary motor.
  • the mounting head 2 is linearly moved in the X-axis direction and the Y-axis direction by the drive unit 4 .
  • the catching portion 21 included in the mounting head 2 can be moved in the X-axis direction, the Y-axis direction, the Z-axis direction, and the ⁇ direction by the driving portion 4 and the actuator 22 .
  • the head unit 23 is made of metal and has a rectangular parallelepiped shape.
  • the head unit 23 holds the capturing part 21 and the actuator 22 by assembling the capturing part 21 and the actuator 22 to the head unit 23 .
  • the capture section 21 is indirectly held by the head unit 23 via the actuator 22 in a state in which it can move in the Z-axis direction and the ⁇ direction.
  • the mounting head 2 moves within the XY plane by moving the head unit 23 within the XY plane by the drive unit 4 .
  • the mounting head 2 moves the catching section 21 that has not caught the component T20 so as to approach the component supply port 63a, and performs a catching operation of catching (holding) the component T20 in the component supply device 63. can be done.
  • the mounting head 2 moves the catching unit 21 closer to the substrate T10 while the mounting system 1 has captured the component T20, and mounts the component T20 on the mounting surface T11 of the substrate T10. It becomes possible to perform the mounting operation.
  • Imaging Unit 3 (2.4) Imaging Unit A more detailed configuration of the imaging unit 3 will be described with reference to FIGS. 2 to 4.
  • FIG. 2 A more detailed configuration of the imaging unit 3 will be described with reference to FIGS. 2 to 4.
  • the imaging unit 3 is composed of one moving camera 3a that moves together with the mounting head 2 as shown in FIG. 4. As shown in FIG. have.
  • the optical system 32 forms a captured image of the imaging region R ⁇ b>1 on the imaging element 31 .
  • the imaging element 31 is, for example, an image sensor such as CCD (Charge Coupled Devices) or CMOS (Complementary Metal-Oxide Semiconductor).
  • the imaging device 31 converts the image formed on the light receiving surface into an electrical signal and outputs the electrical signal.
  • the optical system 32 includes one or more lenses, mirrors, and the like. As an example in this embodiment, the optical system 32 is implemented by a combination of a plurality of lenses (lens group). The optical system 32 forms an image of the light from the imaging region R1 on the light receiving surface of the imaging device 31 . Note that the optical system 32 is not limited to the configuration described above.
  • the imaging section 3 is positioned relative to the capturing section 21 so that at least the tip (lower end) 210 (see FIG. 4) of the capturing section 21 is included in the imaging region R1. Therefore, at least the tip 210 of the capturing section 21 is captured in the image captured by the imaging section 3 .
  • the imaging section 3 is arranged below the head unit 23 and on the side of the capturing section 21 in plan view from the Z-axis direction. In this manner, the imaging section 3 is attached to the head unit 23 together with the catching section 21, and the catching section 21 and the imaging section 3 move simultaneously. Therefore, the mounting system 1 can shorten the time required for mounting and improve productivity compared to a configuration in which the capture unit 21 and the imaging unit 3 are moved separately.
  • the imaging unit 3 has an imaging optical axis AX1 that intersects the Z axis (vertical direction).
  • the imaging optical axis AX1 extends obliquely with respect to the vertical direction. That is, the imaging section 3 is fixed to the head unit 23 so that the imaging direction of the imaging section 3 intersects the vertical direction. Therefore, the imaging unit 3 can capture the behavior of the capturing unit 21 in the horizontal direction and the behavior of the capturing unit 21 in the vertical direction.
  • the horizontal direction is the direction along the XY plane
  • the vertical direction is the direction orthogonal to the horizontal direction (direction along the Z-axis).
  • the fixed camera 7 takes an image of the mounting head 2 moving between the board T10 positioned in the mounting space and the component supply port 63a of the component supply device 63 from below. Therefore, the captured image of the fixed camera 7 shows the component T20 captured by the capture unit 21. As shown in FIG. That is, the image captured by the fixed camera 7 contains information on the mutual positional relationship between the capture unit 21 and the component T20, in other words, information on the displacement of the component T20 with respect to the capture unit 21.
  • the fixed camera 7 preferably takes an image of the mounting head 2 moving from the component supply port 63a to the substrate T10 from below. In this case, the fixed camera 7 does not always take an image, but takes an image at the timing when the capture unit 21 capturing the part T20 passes above the fixed camera 7 .
  • the fixed camera 7 may be installed below the component supply port 63a.
  • the mounting system 1 preferably further includes an illumination device that illuminates the imaging area of the fixed camera 7 .
  • the control unit 5 includes a head control unit 51 , an image acquisition unit 52 , a behavior detection unit 53 , a behavior determination unit 54 and an output unit 55 .
  • the head control unit 51 controls the mounting head 2 and the driving unit 4 by outputting control signals to the mounting head 2 and the driving unit 4 .
  • the head control unit 51 outputs a horizontal control signal to the driving unit 4 and controls the driving unit 4 to move the mounting head 2 and the imaging unit 3 within the XY plane.
  • the head control unit 51 also outputs a vertical control signal to the actuator 22 and controls the actuator 22 to move the catching unit 21 along the Z axis.
  • the head control unit 51 outputs a rotation control signal to the actuator 22 and controls the actuator 22 to rotate the catching unit 21 in the ⁇ direction.
  • the head control unit 51 feedback-controls the driving unit 4 and the actuator 22 based on the captured image of the imaging unit 3 in the capturing operation of capturing the component T20 and the mounting operation of mounting the component T20.
  • the head control unit 51 corrects the capturing position and the mounting position by feedback-controlling the driving unit 4 and the actuator 22 based on the captured image of the imaging unit 3 .
  • the mounting system 1 can improve the capturing accuracy in the capturing operation and the mounting accuracy in the mounting operation.
  • the image acquisition unit 52 has a function of a communication interface for acquiring (receiving) captured image data from the imaging unit 3 .
  • Wireless communication is, for example, Wi-Fi (registered trademark) or wireless communication conforming to standards such as low-power wireless (specified low-power wireless) that does not require a license.
  • Wired communication is wired communication via, for example, a twisted pair cable, a dedicated communication line, or a LAN (Local Area Network) cable.
  • the behavior detection unit 53 obtains a behavior value corresponding to the behavior of the capturing unit 21 during production operation based on the captured image of the imaging unit 3 .
  • the behavior detection unit 53 can detect the behavior of the capture unit 21 in the horizontal direction and the behavior of the capture unit 21 in the vertical direction based on the captured image. Then, the behavior detection unit 53 analyzes the behavior of the trapping unit 21 in the horizontal direction and the behavior of the trapping unit 21 in the vertical direction, thereby obtaining a behavior value corresponding to the behavior.
  • the behavior of the catching portion 21 includes the stroke motion of the catching portion 21 and the behavior of the tip 210 of the catching portion 21 .
  • the behavior of the tip 210 of the catching portion 21 is vibration of the tip 210 of the catching portion 21 .
  • the behavior value of the stroke operation of the catching unit 21 is called a stroke behavior value.
  • Behavior values for the behavior of tip 210 are referred to as vibration behavior values.
  • the stroke motion of the catching part 21 is the motion of moving the catching part 21 in the vertical direction (direction along the Z-axis).
  • the stroke motion of the catcher 21 is included in the production motion.
  • the stroking motion includes a lower stroking motion performed with each of the mounting and catching motions, and an upward stroking motion performed after each of the mounting and catching motions.
  • the lower stroke operation in the mounting operation is the operation of lowering the capturing unit 21 when moving the capturing unit 21 capturing the component T20 so as to approach the substrate T10 (see FIG. 5D).
  • the upward stroke operation after the mounting operation is an operation to raise the catcher 21 after mounting the component T20 on the mounting surface T11 of the substrate T10.
  • the downward stroke operation in the catching operation is an operation of lowering the catching portion 21 when moving the catching portion 21 that does not catch the component T20 so as to approach the component supply port 63a (see FIG. 5A).
  • the upward stroke operation after the catching operation is an operation for raising the catching unit 21 after the component supply device 63 has caught the component T20.
  • the moving distance in the vertical direction of the catching unit 21 that is performing the stroke operation will be referred to as the stroke amount. That is, the stroke amount of the catching portion 21 that is moving downward is the downward movement distance of the catching portion 21 .
  • the stroke amount of the catching portion 21 performing the upward movement is the moving distance of the catching portion 21 in the upward direction.
  • the behavior detection unit 53 creates stroke behavior data indicating changes in the stroke amount over time (changes over time) of the catching unit 21 that is performing the stroke operation, and obtains stroke behavior values based on the stroke behavior data.
  • This stroke behavior value is the amount of change in stroke amount per unit time.
  • the catching part 21 moves in the vertical direction with substantially uniform acceleration. Therefore, the stroke behavior value falls within a predetermined allowable range according to the elapsed time from the stroke start.
  • the catching part 21 moves in the vertical direction at a faster or slower speed than in normal times, or the dispersion of acceleration in the vertical direction becomes larger than in normal times. . Therefore, stroke behavior values occur that fall outside the predetermined tolerance range.
  • the capturing unit 21 may change the acceleration on the way.
  • FIG. 6 shows the downward stroke operation of the catching part 21 when the behavior is normal.
  • FIG. 7 shows the change over time of the stroke amount in the downward stroke operation of the catching unit 21 in normal times.
  • Time t1 is before starting the downward stroke motion.
  • Time t2 is the timing after the unit time ta has passed from time t1.
  • Time t3 is the timing after the unit time ta has passed from time t2.
  • Time t4 is the timing after the unit time ta has passed from time t3.
  • the tip 210 of the catching portion 21 moves (falls) downward from the vertical position P1->P2->P3->P4 as time passes in the order of t1->t2->t3->t4.
  • the stroke behavior value ⁇ P1 between the vertical positions P1-P2 is the difference obtained by subtracting the Z-axis coordinate of P1 from the Z-axis coordinate of P2.
  • the stroke behavior value ⁇ P2 between the vertical positions P2-P3 is the difference obtained by subtracting the Z-axis coordinate of P2 from the Z-axis coordinate of P3.
  • the stroke behavior value ⁇ P3 between the vertical positions P3-P4 is the difference obtained by subtracting the Z-axis coordinate of P3 from the Z-axis coordinate of P4.
  • each of the stroke behavior values ⁇ P1, ⁇ P2, and ⁇ P3 falls within a stroke allowable range (allowable range) determined in advance according to the elapsed time from the start of the stroke.
  • each of the stroke behavior values ⁇ P1, ⁇ P2, and ⁇ P3 falls within a range equal to or lower than the upper limit value of the allowable stroke range and equal to or higher than the lower limit value of the allowable stroke range.
  • the allowable stroke range is set to a predetermined range centered on the design value of the stroke behavior value.
  • FIG. 8 shows the downward stroke operation of the catching part 21 when the behavior is bad.
  • FIG. 9 shows the change over time of the stroke amount in the downward stroke operation of the catching unit 21 in a malfunction.
  • Time t11 is before starting the downward stroke motion.
  • Time t12 is the timing after the unit time ta has passed from time t11.
  • Time t13 is the timing after the unit time ta has passed from time t12.
  • Time t14 is the timing after the unit time ta has passed from time t13.
  • Time t15 is the timing after the unit time ta has passed from time t14.
  • the tip 210 of the catching portion 21 moves (falls) downward from the vertical position P11 ⁇ P12 ⁇ P13 ⁇ P14 ⁇ P15 as time passes from t11 ⁇ t12 ⁇ t13 ⁇ t14 ⁇ t15.
  • the stroke behavior value ⁇ P11 between the vertical positions P11-P12 is the difference obtained by subtracting the Z-axis coordinate of P11 from the Z-axis coordinate of P12.
  • the stroke behavior value ⁇ P12 between the vertical positions P12-P13 is the difference obtained by subtracting the Z-axis coordinate of P12 from the Z-axis coordinate of P13.
  • the stroke behavior value ⁇ P13 between the vertical positions P13-P14 is the difference obtained by subtracting the Z-axis coordinate of P13 from the Z-axis coordinate of P14.
  • the stroke behavior value ⁇ P14 between the vertical positions P14-P15 is the difference obtained by subtracting the Z-axis coordinate of P14 from the Z-axis coordinate of P15.
  • at least one of the behavior values deviates from the stroke allowable range predetermined according to the elapsed time from the start of the stroke.
  • all of the behavior values ⁇ P11, ⁇ P12, ⁇ P13, and ⁇ P14 are out of the allowable stroke range.
  • each of the stroke behavior values ⁇ P11, ⁇ P12, and ⁇ P14 is less than the lower limit value of the allowable stroke range, and the stroke behavior value ⁇ P13 is greater than the upper limit value of the allowable stroke range.
  • the behavior of the tip 210 of the catching portion 21 is vibration of the tip 210 of the catching portion 21 .
  • the mounting head 2 that performs the mounting operation moves closer to the substrate T10 while the catching unit 21 is catching the component T20. Then, as shown in FIG. 5C, the mounting head 2 suddenly decelerates and stops (sudden stop) when the catching portion 21 moves above the substrate T10. Specifically, when the mounting head 2 reaches the target position (head target position) on the XY plane, the head control section 51 stops the driving of the mounting head 2 by the driving section 4 .
  • the head control unit 51 may start the downward stroke operation of the catching unit 21 before the mounting head 2 reaches the head target position, or may start the downward stroke operation of the catching unit 21 after the mounting head 2 reaches the head target position. Stroke motion may be initiated. When stopping, the mounting head 2 may be decelerated at a constant acceleration from the start of deceleration and then stopped.
  • the capturing part 21 attached to the mounting head 2 vibrates due to inertia. Specifically, the distal end 210 swings with the proximal end (upper end) of the catching portion 21 as a fulcrum. This deflection of the tip 210 also affects the operation of the catching portion 21 . Therefore, the behavior detection section 53 detects the amplitude of the vibration of the tip 210 of the catching section 21 before the catching section 21 stops moving.
  • the capturing unit 21 stops moving when it reaches a target position (capturing unit target position) determined by the coordinates of the X-axis, Y-axis, Z-axis, and ⁇ .
  • the behavior detection unit 53 detects the target position of the catching unit immediately before the catching unit 21 performing the downward stroke operation reaches the target position of the catching unit (for example, when it approaches the target position of the catching unit by a predetermined distance).
  • the amplitude of the vibration of the tip 210 is detected during the detection period up to and including .
  • the behavior detection unit 53 takes the amplitude of the vibration of the tip 210 as the vibration behavior value.
  • the vibration behavior value is the instantaneous value of the tip 210 amplitude.
  • the vibration behavior value during normal times falls within a predetermined allowable range.
  • the vibration behavior value during malfunction may deviate from the predetermined allowable range.
  • the catching section 21 that performs the mounting operation reaches the catching section target position
  • the component T20 that is caught by the catching section 21 comes into contact with the mounting surface T11.
  • the tip 210 of the catching portion 21 comes into contact with the component T20. That is, the catching part target position in the mounting operation corresponds to the mounting position, and the catching part target position in the catching operation corresponds to the catching position.
  • FIG. 10A shows the vibration V1 of the tip 210 of the catching portion 21 during normal operation.
  • FIG. 10B shows the change over time of the vibration behavior value W1 due to the vibration V1 during normal operation.
  • the mounting head 2 stops moving in the horizontal direction at time t21, and the component T20 is brought into contact with the mounting surface T11 at time t22 by the lowered catcher 21.
  • the normal vibration behavior value W1 falls within a predetermined vibration allowable range K10.
  • the allowable vibration range K10 is an amplitude range defined by an upper limit value K11 (positive value) and a lower limit value K12 (negative value).
  • FIG. 11A shows the vibration V11 of the tip 210 of the catching part 21 when the behavior is bad.
  • FIG. 11B shows the change over time of the vibration behavior value W11 due to the vibration V11 during malfunction.
  • the mounting head 2 stops moving in the horizontal direction at time t31, and the component T20 is brought into contact with the mounting surface T11 at time t32 by the lowered catcher 21.
  • the vibration behavior value W11 at the time of malfunction may deviate from the vibration allowable range K10.
  • the vibration behavior value W11 is out of the vibration allowable range K10 at times t33 and t34.
  • the behavior determination unit 54 determines whether or not the behavior value is within the allowable range.
  • the behavior determination unit 54 periodically determines whether or not the stroke behavior value falls within the stroke allowable range when the capturing unit 21 starts the stroke motion.
  • the stroke behavior values fall within the allowable stroke range, like the stroke behavior values ⁇ P1, ⁇ P2, and ⁇ P3 in FIGS.
  • stroke behavior values outside the allowable stroke range occur, such as the stroke behavior values ⁇ P11, ⁇ P12, ⁇ P13, and ⁇ P14 in FIGS.
  • the behavior determination unit 54 determines that the behavior of the catching unit 21 is unsatisfactory if a stroke behavior value outside the allowable stroke range is generated. In this case, the cause of the malfunction may be foreign matter caught in the driving portion 4, lack of lubricant, or the like.
  • the behavior determination unit 54 may determine that the behavior of the catching unit 21 is bad when a predetermined number (two or more) of stroke behavior values outside the allowable stroke range occur.
  • the behavior determination unit 54 may determine the behavior of the capture unit 21 based on the average value of the stroke behavior values.
  • the behavior determination unit 54 determines whether or not the vibration behavior value is within the vibration allowable range.
  • the vibration behavior value falls within the vibration allowable range like the vibration behavior value W1 in FIG. 10B.
  • the vibration of the tip 210 of the catching portion 21 during malfunction may deviate from the vibration allowable range K10, as shown by the vibration behavior value W11 in FIG. 11B.
  • the behavior determining unit 54 determines that the behavior of the catching unit 21 is abnormal if a vibration behavior value outside the allowable vibration range is generated. In this case, factors of malfunction include loosening of bolts, wear of parts constituting the actuator 22, and the like.
  • the behavior determination unit 54 may determine that the behavior of the capture unit 21 is abnormal when a predetermined number (2 or more) of vibration behavior values outside the vibration allowable range K10 occur. Further, even if the vibration behavior value is within the vibration allowable range K10, the behavior determination unit 54 determines whether the behavior of the capturing unit 21 is malfunctioning when there is a sign (tendency) that the vibration behavior value deviates from the vibration allowable range K10. It may be determined that there is an omen.
  • the behavior determination unit 54 may determine the behavior of the capture unit 21 based on the average value of the vibration behavior values.
  • the output unit 55 outputs a notification signal indicating that the behavior is unsatisfactory if the behavior value does not fall within the allowable range.
  • the notification signal contains information such as a warning, a comparison result between the behavior value (stroke behavior value and vibration behavior value) and the allowable range (stroke allowable range and vibration allowable range K10), the occurrence of malfunction, and the cause of the malfunction. included.
  • the output unit 55 outputs the notification signal to information terminals such as equipment monitors, personal computers, tablet terminals, and smartphones used by the administrator.
  • the notification signal is a signal containing image information and may further contain audio information.
  • This notification signal is a signal that prompts the administrator to perform maintenance on the mounting system 1 .
  • the administrator sees the image information displayed on the information terminal, grasps the state of malfunction, and performs maintenance of the mounting system 1 . In other words, the administrator can take appropriate measures to return the behavior of the capture unit 21 to the normal behavior.
  • the output unit 55 may output a notification signal to the management system.
  • the management system updates the maintenance scheduler for maintenance of the mounting system 1 based on the notification signal. That is, the management system can take appropriate measures to restore the behavior of the capture unit 21 to the normal behavior.
  • the output unit 55 may output a notification signal notifying that the behavior is normal if the behavior value is within the allowable range.
  • the notification signal includes information indicating that the behavior is normal, information such as a behavior value, and the like.
  • the mounting system 1 determines whether or not the behavior is abnormal based on the captured image of the capture unit 21 during production operation. That is, the mounting system 1 can determine in real time whether or not the behavior is abnormal during the production operation without performing a diagnostic operation or the like that is different from the production operation. Therefore, the mounting system 1 can determine whether or not there is a malfunction in the behavior that greatly affects the mounting accuracy of the product T3 in the production operation for actually producing the product T3, and notify that the behavior is malfunctioning. can. As a result, the mounting system 1 can detect malfunction of the device while suppressing a decrease in productivity.
  • the implementation system 1 can notify the administrator or the management system that the behavior of the capturing unit 21 deviates from the normal behavior (preferred behavior) by notifying that the behavior is unsatisfactory.
  • the term “malfunction” includes not only abnormalities but also poor conditions.
  • the “normal behavior” is a behavior that can maintain the positioning accuracy of the catching portion 21 at a predetermined accuracy or higher.
  • the administrator or management system can take measures to restore the behavior of the capture unit 21 to the normal behavior.
  • the mounting system 1 can suppress the behavior of the capture unit 21 from deviating from the normal behavior, thereby suppressing a decrease in productivity due to malfunction of the device.
  • the maintenance cycle is set to be shorter than the period during which the performance of the mounting system can be ensured so that maintenance can be performed before the deterioration of the performance of the mounting system becomes unacceptable. Therefore, if the operator decides to change the maintenance execution timing, there is a possibility that the performance of the mounting system cannot be maintained.
  • the mounting system 1 can detect signs of malfunction based on the behavior during production operation, and can instruct the implementation of maintenance at the timing necessary for the mounting system 1 .
  • the frequency of maintenance can be reduced while maintaining the performance of the mounting system 1, and the operator's workload is reduced.
  • the mounting method performs a production operation to produce a product T3 in which the component T20 is mounted on the board T10.
  • the implementation method includes an imaging step S1, a behavior detection step S2, a behavior determination step S3, and an output step S4.
  • the image capturing step S1 the image capturing unit 3 captures an image of the capturing unit 21 provided in the mounting head 2 and capable of capturing the component T20 during the production operation.
  • the behavior detection unit 53 obtains a behavior value corresponding to the behavior of the capture unit 21 during the production operation based on the captured image captured at the imaging step S1.
  • the behavior determination unit 54 determines whether or not the behavior value is within the allowable range.
  • the output unit 55 notifies that the behavior is not good if the behavior value is not within the allowable range.
  • the mounting method described above can determine whether or not there is a malfunction in the behavior that greatly affects the mounting accuracy of the product T3 in the production operation for actually producing the product T3, and can notify that the behavior is malfunctioning. .
  • the mounting method can detect malfunction of the apparatus while suppressing a decrease in productivity.
  • the implementation method can suppress the behavior of the capture unit 21 from deviating from the normal behavior by notifying that the behavior is malfunctioning, thereby suppressing the decrease in productivity due to the malfunction of the device.
  • the mounting method can reduce the frequency of maintenance while maintaining the performance of the mounting system 1, thus reducing the workload of the operator. In addition, it is possible to prevent the performance of the mounting system 1 from deteriorating excessively due to delays in maintenance.
  • the stroke behavior value described above may be the position of the tip 210 of the catching portion 21 in the vertical direction.
  • the position of the tip 210 is represented by the stroke amount, which is the moving distance of the catching portion 21 in the vertical direction.
  • the stroke behavior value is the stroke amount.
  • the stroke behavior value falls within a predetermined allowable range according to the elapsed time from the start of the stroke.
  • the catching portion 21 moves in the vertical direction at a faster or slower speed than in the normal state, or the dispersion of the acceleration in the vertical direction becomes larger than in the normal state. or Therefore, stroke behavior values occur that fall outside the predetermined tolerance range.
  • the behavior determination unit 54 periodically determines whether the stroke amount (stroke behavior value) is within the allowable range.
  • the behavior determination unit 54 sets an allowable stroke range K20 for the stroke amount L1, as shown in FIG.
  • the permissible stroke range K20 is predetermined according to the elapsed time from the start of the stroke, and the permissible stroke range is set within a predetermined range (eg ⁇ 10%) around the design value of the stroke amount L1.
  • the behavior determination unit 54 determines that the behavior of the catching unit 21 is not good if the stroke amount L1 is out of the allowable stroke range K20.
  • the behavior determination unit 54 determines that the behavior of the catching unit 21 is normal if the stroke amount L1 that deviates from the allowable stroke range K20 does not occur.
  • FIG. 14 shows a modification of the imaging section 3 .
  • the imaging unit 3 in FIG. 14 includes two moving cameras 3b and 3c.
  • the moving cameras 3b and 3c are so-called stereo cameras arranged side by side along the Y-axis direction. Therefore, the imaging unit 3 can capture the behavior of the capturing unit 21 in the horizontal direction and the behavior of the capturing unit 21 in the vertical direction.
  • the behavior detection unit 53 detects, as stroke motions to be detected, a downward stroke motion performed in each of the mounting motion and the capturing motion, and an upward stroke motion performed after each of the mounting motion and the capturing motion. including.
  • the behavior detection unit 53 detects the behavior of the tip 210 of the catching unit 21 to be detected as the behavior when the catching unit 21 stops above the substrate T10 for the mounting operation, and the behavior when the catching unit 21 stops above the substrate T10 for the catching operation. 21 stops above the parts supply port 63a.
  • the relative positions of the capturing part 21 and the first target object T1 such as the substrate T10 are not limited to the configuration in which they face each other in the vertical direction along the Z-axis. That is, the relative positions of the capturing part 21 and the first target object T1 may be other configurations such as a configuration in which they face each other in the horizontal direction.
  • the mounting system (1) of the first aspect performs a production operation of mounting the second object (T2) on the first object (T1).
  • a mounting system (1) includes a mounting head (2), an imaging section (3), a behavior detection section (53), a behavior determination section (54), and an output section (55).
  • the mounting head (2) has a capturing part (21) capable of capturing the second object (T2).
  • the imaging unit (3) images the capturing unit (21) during production operation.
  • a behavior detector (53) detects behavior values ( ⁇ P1 to ⁇ P3, ⁇ P11 to ⁇ P14, W1, W11, L1 ).
  • a behavior determination unit (54) determines whether or not the behavior values ( ⁇ P1 to ⁇ P3, ⁇ P11 to ⁇ P14, W1, W11, L1) are within allowable ranges (K10, K20). If the behavior values ( ⁇ P1 to ⁇ P3, ⁇ P11 to ⁇ P14, W1, W11, L1) are not within the allowable range (K10, K20), the output section (55) notifies that the behavior is not good.
  • the mounting system (1) described above can detect equipment malfunctions while suppressing productivity declines.
  • the behavior preferably includes a stroke motion of the catching part (21).
  • the mounting system (1) described above can improve the accuracy of the stroke motion.
  • the behavior detection section (53) detects the change in the stroke amount over time of the capturing section (21) performing the stroke motion. Create stroke behavior data to show.
  • the behavior detector (53) preferably obtains behavior values ( ⁇ P1 to ⁇ P3, ⁇ P11 to ⁇ P14, L1) based on the stroke behavior data.
  • the mounting system (1) described above can obtain behavior values ( ⁇ P1 to ⁇ P3, ⁇ P11 to ⁇ P14, L1) corresponding to stroke motion accuracy.
  • the behavior values are changes in stroke amount per unit time (ta). is preferred.
  • the mounting system (1) described above can obtain the behavior values ( ⁇ P1 to ⁇ P3, ⁇ P11 to ⁇ P14) corresponding to the stroke motion.
  • the stroke motion is a motion of moving the catching part (21) in the vertical direction. preferable.
  • the mounting system (1) described above can improve the accuracy of the mounting operation and the capturing operation.
  • the behavior preferably includes the behavior of the tip (210) of the catching part (21) .
  • the mounting system (1) described above can improve the accuracy of production operations that are affected by the behavior of the tip (210) of the catching part (21).
  • the behavior detection unit (53) detects the behavior values (W1, W11) before the capture unit (21) stops moving. It is preferable to ask
  • the mounting system (1) described above can obtain behavior values (W1, W11) corresponding to the behavior of the tip (210).
  • the behavior of the tip (210) of the catching part (21) is the vibration (V1, V11) of the tip (210) is preferably
  • the mounting system (1) described above can improve the accuracy of production operations affected by the vibration of the tip (210) of the catch (21).
  • the behavior values (W1, W11) are preferably the amplitudes of the vibrations (V1, V11).
  • the mounting system (1) described above can obtain behavior values (W1, W11) corresponding to the behavior of the tip (210) of the catching part (21).
  • the imaging unit (3) controls the behavior of the capturing unit (21) in the horizontal direction and the behavior in the vertical direction. It is preferable that the behavior of the capture section (21) in the direction can be imaged.
  • the mounting system (1) described above can accurately detect the behavior of the capture unit (21).
  • the capture unit (21) moves in the vertical direction, and the imaging direction of the imaging unit (3) intersects the vertical direction. is preferred.
  • the mounting system (1) described above can accurately detect the behavior of the capture unit (21).
  • the imaging unit (3) can move in synchronization with the mounting head (2). preferable.
  • the implementation system (1) described above can easily detect the behavior of the capture unit (21).
  • the mounting system (1) of the thirteenth aspect according to the embodiment, in the twelfth aspect, further comprises a head unit (23) to which the capturing section (21) and the imaging section (3) are attached.
  • the implementation system (1) described above can easily detect the behavior of the capture unit (21).
  • the mounting method of the fourteenth aspect performs the production operation of mounting the second target (T2) on the first target (T1).
  • the implementation method includes an imaging step (S1), a behavior detection step (S2), a behavior determination step (S3), and an output step (S4).
  • the image capturing step (S1) captures an image of a capture unit (21) provided in the mounting head (2) and capable of capturing a second object (T2) during production operation.
  • behavior detection step (S2) behavior values ( ⁇ P1 to ⁇ P3, ⁇ P11 to ⁇ P14, W1, W11, L1) are obtained.
  • the behavior determination step (S3) determines whether the behavior values ( ⁇ P1 to ⁇ P3, ⁇ P11 to ⁇ P14, W1, W11, L1) are within the allowable range (K10, K20). If the behavior values ( ⁇ P1 to ⁇ P3, ⁇ P11 to ⁇ P14, W1, W11, L1) are not within the allowable range (K10, K20), the output step (S4) notifies that the behavior is bad.
  • the implementation method described above can detect equipment malfunctions while suppressing productivity declines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

The present disclosure addresses the problem of providing a mounting system and mounting method which make it possible to detect a malfunction of a device while suppressing deterioration in productivity. A mounting system (1) performs a production operation for mounting a second object (T2) to a first object (T1). A behavior detection unit (53) obtains a behavior value corresponding to the behavior of a capturing unit (21) during the production operation on the basis of an image picked up by an image pickup unit (3). A behavior determination unit (54) determines whether or not the behavior value falls within an allowable range. An output unit (55) notifies that the behavior is showing an abnormal condition if the behavior value does not fall within the allowable range.

Description

実装システム、及び実装方法Mounting system and mounting method
 本開示は、実装システム、及び実装方法に関する。 The present disclosure relates to an implementation system and an implementation method.
 特許文献1の部品実装装置では、ノズルが部品供給部から部品をピックアップして基板上に実装する。 In the component mounting apparatus of Patent Document 1, the nozzle picks up the component from the component supply section and mounts it on the board.
 通常、部品実装装置は、生産ジョブに基づいて基板へ部品を実装する。このとき、部品実装装置は、ノズルの位置、方位、姿勢などを制御量として目標値に追従するように自動で作動する制御(サーボ)を実行している。 A component mounter normally mounts components on a board based on a production job. At this time, the component mounting apparatus performs control (servo) to automatically operate so as to follow target values using the position, orientation, attitude, etc. of the nozzle as control variables.
 そして、部品実装装置は、上述の通常の動作とは別に、部品実装装置の組み付けに起因する振動を診断するための組み付け診断ルーチン、及び周囲の環境に起因する振動を診断するための環境振動診断ルーチンを行う。 In addition to the normal operation described above, the component mounting apparatus includes an assembly diagnostic routine for diagnosing vibration caused by assembly of the component mounting apparatus, and an environmental vibration diagnosis routine for diagnosing vibration caused by the surrounding environment. do a routine.
 部品実装装置は、診断ルーチン(組み付け診断ルーチン及び環境振動診断ルーチン)では、ノズルを撮像位置に移動させ、ノズルのサーボ制御をオフにする。すなわち、部品実装装置は、診断ルーチンでは、上述の通常の動作とは別の動作(診断ルーチンの動作)を行う。そして、部品実装装置は、撮像手段によりノズルの先端部を撮像し、撮像した画像からノズルの先端部の振動データを求め、振動データが所定の許容範囲に収まるか否かを判定し、収まらなかったならば外部へ異常を出力する。 In the diagnostic routine (assembly diagnostic routine and environmental vibration diagnostic routine), the component mounter moves the nozzle to the imaging position and turns off the servo control of the nozzle. That is, in the diagnostic routine, the component mounting apparatus performs an operation (diagnostic routine operation) different from the normal operation described above. Then, the component mounting apparatus captures an image of the tip of the nozzle using the imaging means, obtains vibration data of the tip of the nozzle from the captured image, determines whether or not the vibration data falls within a predetermined allowable range, and determines whether or not the vibration data falls within a predetermined allowable range. If so, an error is output to the outside.
 特許文献1のように基板(第1対象物)に部品(第2対象物)を実装する部品実装装置(実装システム)は、通常の動作とは別の動作(診断ルーチン)によって診断を行うため時間ロスが発生しており、生産性を低下させていた。そこで、生産性の低下を抑えながら装置の不調を検知することが求められている。 A component mounting apparatus (mounting system) that mounts a component (second object) on a board (first object) as in Patent Document 1 performs diagnosis by an operation (diagnosis routine) different from normal operation. Loss of time was occurring, which reduced productivity. Therefore, it is required to detect malfunction of the apparatus while suppressing the decrease in productivity.
特開2016-178188号公報JP 2016-178188 A
 本開示の目的は、生産性の低下を抑えながら装置の不調を検知することができる実装システム、及び実装方法を提供することにある。 An object of the present disclosure is to provide a mounting system and a mounting method capable of detecting device failure while suppressing a decrease in productivity.
 本開示の一態様に係る実装システムは、第1対象物に第2対象物を実装する生産動作を行う。前記実装システムは、実装ヘッドと、撮像部と、挙動検出部と、挙動判定部と、出力部と、を備える。前記実装ヘッドは、前記第2対象物を捕捉可能な捕捉部を有する。前記撮像部は、前記生産動作中の前記捕捉部を撮像する。前記挙動検出部は、前記撮像部の撮像画像に基づいて、前記生産動作中の前記捕捉部の挙動に対応する挙動値を求める。前記挙動判定部は、前記挙動値が許容範囲に収まっているか否かを判定する。前記出力部は、前記挙動値が許容範囲に収まっていなければ、前記挙動が不調であることを通知する。 A mounting system according to one aspect of the present disclosure performs a production operation of mounting a second object on a first object. The mounting system includes a mounting head, an imaging section, a behavior detection section, a behavior determination section, and an output section. The mounting head has a capturing part capable of capturing the second object. The imaging section images the capture section during the production operation. The behavior detection section obtains a behavior value corresponding to the behavior of the capturing section during the production operation based on the captured image of the imaging section. The behavior determination unit determines whether the behavior value is within an allowable range. The output unit notifies that the behavior is unsatisfactory if the behavior value does not fall within an allowable range.
 本開示の一態様に係る実装方法は、第1対象物に第2対象物を実装する生産動作を行う。前記実装方法は、撮像ステップと、挙動検出ステップと、挙動判定ステップと、出力ステップと、を含む。前記撮像ステップは、実装ヘッドに設けられて前記第2対象物を捕捉可能な捕捉部を前記生産動作中に撮像する。前記挙動検出ステップは、前記撮像ステップで撮像された撮像画像に基づいて、前記生産動作中の前記捕捉部の挙動に対応する挙動値を求める。前記挙動判定ステップは、前記挙動値が許容範囲に収まっているか否かを判定する。前記出力ステップは、前記挙動値が許容範囲に収まっていなければ、前記挙動が不調であることを通知する。 A mounting method according to one aspect of the present disclosure performs a production operation of mounting a second object on a first object. The mounting method includes an imaging step, a behavior detection step, a behavior determination step, and an output step. In the imaging step, an image of a capture unit provided in the mounting head and capable of capturing the second object is captured during the production operation. The behavior detection step obtains a behavior value corresponding to the behavior of the capturing unit during the production operation based on the captured image captured in the imaging step. The behavior determination step determines whether or not the behavior value is within an allowable range. The outputting step indicates that the behavior is bad if the behavior value is not within an acceptable range.
図1は、実施形態の実装システムを示す構成図である。FIG. 1 is a configuration diagram showing a mounting system according to an embodiment. 図2は、同上の実装システムの要部を示す斜視図である。FIG. 2 is a perspective view showing a main part of the mounting system same as the above. 図3は、同上の実装システムを示すブロック図である。FIG. 3 is a block diagram showing the same mounting system. 図4は、同上の実装システムの捕捉部及び撮像部の近傍を示す側面図である。FIG. 4 is a side view showing the vicinity of the capture section and imaging section of the mounting system; 図5A~図5Dは、同上の実装システムの生産動作を示す図である。5A to 5D are diagrams showing the production operation of the same mounting system. 図6は、同上の実装システムの通常時のストローク動作を示す図である。FIG. 6 is a diagram showing a normal stroke operation of the above mounting system. 図7は、同上の実装システムの通常時のストローク量の時間変化を示すグラフである。FIG. 7 is a graph showing the time change of the stroke amount of the mounting system in the normal state. 図8は、同上の実装システムの不調時のストローク動作を示す図である。FIG. 8 is a diagram showing a stroke operation of the mounting system when the same mounting system is out of order. 図9は、同上の実装システムの不調時のストローク量の時間変化を示すグラフである。FIG. 9 is a graph showing the change over time of the stroke amount when the mounting system described above is malfunctioning. 図10Aは、同上の実装システムの正常時の振動を示す図である。図10Bは、同上の正常時の振動挙動値の時間変化を示すグラフである。FIG. 10A is a diagram showing normal vibration of the mounting system; FIG. 10B is a graph showing the time change of the vibration behavior value in the normal state; 図11Aは、同上の実装システムの不調時の振動を示す図である。図11Bは、同上の不調時の振動挙動値の時間変化を示すグラフである。FIG. 11A is a diagram showing vibration of the same mounting system when it malfunctions. FIG. 11B is a graph showing temporal changes in vibration behavior values when the same is out of order. 図12は、同上の実装システムが実行する実装方法を示すフローチャートである。FIG. 12 is a flowchart showing a mounting method executed by the mounting system; 図13は、同上の実装システムの変形例を説明するためのグラフである。FIG. 13 is a graph for explaining a modification of the mounting system; 図14は、同上の実装システムの撮像部の変形例を示す側面図である。FIG. 14 is a side view showing a modification of the imaging section of the mounting system;
 以下の実施形態は、一般に、実装システム、及び実装方法に関する。より詳細には、第1対象物に第2対象物を実装する生産動作を行う実装システム、及び実装方法に関する。 The following embodiments generally relate to implementation systems and implementation methods. More specifically, the present invention relates to a mounting system and a mounting method that perform a production operation of mounting a second object on a first object.
 以下、実施形態に係る実装システム、及び実装方法について、図1~図14を参照して詳細に説明する。ただし、下記の実施形態において説明する各図は模式的な図であり、各構成要素の大きさや厚さそれぞれの比が必ずしも実際の寸法比を反映しているとは限らない。なお、以下の実施形態で説明する構成は本開示の一例にすぎない。本開示は、以下の実施形態に限定されず、本開示の効果を奏することができれば、設計等に応じて種々の変更が可能である。 The mounting system and mounting method according to the embodiment will be described in detail below with reference to FIGS. 1 to 14. FIG. However, each drawing described in the following embodiments is a schematic drawing, and the ratio of the size and thickness of each component does not necessarily reflect the actual dimensional ratio. Note that the configurations described in the following embodiments are merely examples of the present disclosure. The present disclosure is not limited to the following embodiments, and various modifications can be made according to design and the like as long as the effects of the present disclosure can be achieved.
 また、以下の説明では、特に断りのない限り、図1及び図2において、互いに直交するX軸、Y軸、及びZ軸を規定する。本実施形態では、X軸及びY軸は水平方向に延び、Z軸は鉛直方向に延びている。 In addition, in the following description, X-axis, Y-axis, and Z-axis that are orthogonal to each other are defined in FIGS. 1 and 2 unless otherwise specified. In this embodiment, the X and Y axes extend horizontally, and the Z axis extends vertically.
 (1)実装システムの概要
 以下、本実施形態に係る実装システム1の概要について説明する。
(1) Overview of Mounting System An overview of the mounting system 1 according to this embodiment will be described below.
 実装システム1は、図1、図5A~図5Dに示すように、第1対象物T1に第2対象物T2を実装する生産動作を行う実装装置(実装機)である。実装システム1は、例えば、工場、研究所、事務所及び教育施設等の施設において、電子機器、自動車、衣料品、食料品、医薬品及び工芸品等の種々の製品の製造のための作業に用いられる。 The mounting system 1, as shown in FIGS. 1 and 5A to 5D, is a mounting apparatus (mounting machine) that performs a production operation of mounting a second object T2 on a first object T1. The mounting system 1 is used, for example, in facilities such as factories, research institutes, offices, and educational facilities for manufacturing various products such as electronic devices, automobiles, clothing, foods, medicines, and handicrafts. be done.
 「生産動作」は、第1対象物T1に第2対象物T2が実装されている生産物T3(図5D参照)を生産する動作であり、実装システム1のメンテナンスのために第1対象物T1に第2対象物T2を実装する診断動作を含まない。 The “production operation” is an operation for producing a product T3 (see FIG. 5D) in which the second object T2 is mounted on the first object T1. does not include the diagnostic operation of mounting the second object T2 in .
 本実施形態では、実装システム1が、工場での電子機器の製造に用いられる場合について説明する。一般的な電子機器は、例えば、電源回路及び制御回路等の各種の回路ブロックを有している。これらの回路ブロックの製造にあたっては、一例として、はんだ塗布工程、実装工程、及びはんだ付け工程が、この順で行われる。はんだ塗布工程では、基板(プリント配線板を含む)にクリーム状はんだが塗布(又は印刷)される。実装工程では、基板に部品(電子部品を含む)が実装(搭載)される。はんだ付け工程では、例えば、部品が実装された状態の基板を、リフロー炉にて加熱することにより、クリーム状はんだを溶かしてはんだ付けが行われる。実装システム1は、実装工程において、第1対象物T1である基板T10に対して、第2対象物T2である部品T20を実装する作業を行う。すなわち、本実施形態に係る実装システム1では、第1対象物T1は、基板T10であり、第2対象物T2は、基板T10に実装される部品T20である。 In this embodiment, a case where the mounting system 1 is used for manufacturing electronic devices in a factory will be described. A typical electronic device has various circuit blocks such as a power supply circuit and a control circuit. In manufacturing these circuit blocks, for example, a solder application process, a mounting process, and a soldering process are performed in this order. In the solder application process, cream solder is applied (or printed) on a board (including a printed wiring board). In the mounting process, components (including electronic components) are mounted (mounted) on the board. In the soldering process, for example, the board on which the components are mounted is heated in a reflow oven to melt creamy solder for soldering. In the mounting process, the mounting system 1 mounts the component T20, which is the second target T2, on the substrate T10, which is the first target T1. That is, in the mounting system 1 according to this embodiment, the first target T1 is the board T10, and the second target T2 is the component T20 mounted on the board T10.
 このように、第1対象物T1(基板T10)への第2対象物T2(部品T20)の実装に用いられる実装システム1は、図1に示すように、実装ヘッド2、撮像部3、駆動部4、制御部5、基台61、搬送装置62、複数の部品供給装置63、及び固定カメラ7を備えている。 Thus, the mounting system 1 used for mounting the second object T2 (component T20) on the first object T1 (board T10) includes, as shown in FIG. A unit 4 , a control unit 5 , a base 61 , a conveying device 62 , a plurality of component supply devices 63 and a fixed camera 7 are provided.
 搬送装置62は、基台61上をX軸方向に延びた一対のコンベア機構62aを有しており、第1対象物T1である基板T10をX軸方向に搬送して所定の実装スペースに位置決めする。 The transport device 62 has a pair of conveyor mechanisms 62a extending in the X-axis direction on the base 61, transports the substrate T10, which is the first object T1, in the X-axis direction and positions it in a predetermined mounting space. do.
 複数の部品供給装置63は、基台61に連結される台車64のフィーダベース65にX軸方向に並んで取り付けられたテープフィーダを有する。各部品供給装置63は、リール66より供給されるキャリアテープ67をピッチ送りし、キャリアテープ67に保持された第2対象物T2である部品T20を部品供給口63aに供給する。リール66は台車64に保持されている。固定カメラ7は、基台61上に取り付けられ、上方を撮像する。 A plurality of component supply devices 63 have tape feeders mounted side by side in the X-axis direction on a feeder base 65 of a carriage 64 connected to the base 61 . Each component supply device 63 pitch-feeds the carrier tape 67 supplied from the reel 66, and supplies the component T20, which is the second object T2 held on the carrier tape 67, to the component supply port 63a. A reel 66 is held by a carriage 64 . The fixed camera 7 is mounted on the base 61 and images the upper side.
 実装ヘッド2は、X-Y平面に沿って移動可能であり、さらに第2対象物T2を捕捉するための捕捉部21を有する。捕捉部21は、一例としてZ軸に沿って鉛直方向に移動(上昇及び下降)するストローク動作が可能な吸着ノズルからなる。 The mounting head 2 is movable along the XY plane and further has a catching section 21 for catching the second object T2. The catching unit 21 is, for example, a suction nozzle capable of stroking to move (up and down) in the vertical direction along the Z-axis.
 実装システム1は、実装工程において、基板T10(第1対象物T1)に部品T20(第2対象物T2)を実装する生産動作を行う。実装工程で行われる生産動作は、捕捉動作及び実装動作を含む。捕捉動作とは、部品T20を捕捉していない捕捉部21を部品供給口63aに近付けるように移動させ、部品供給口63aに位置する部品T20を捕捉(保持)する動作である。実装動作とは、部品T20を捕捉している捕捉部21を基板T10に近づけるように移動させ、部品T20を基板T10の実装面T11に実装する動作である。このような捕捉動作及び実装動作における捕捉部21の位置制御は、高い位置決め精度を要する。 In the mounting process, the mounting system 1 performs the production operation of mounting the component T20 (second target T2) on the board T10 (first target T1). Production operations performed in the mounting process include catching operations and mounting operations. The catching operation is an operation of moving the catching portion 21 that has not caught the component T20 so as to approach the component supply port 63a to capture (hold) the component T20 positioned at the component supply port 63a. The mounting operation is an operation of moving the capturing unit 21 capturing the component T20 closer to the substrate T10 and mounting the component T20 on the mounting surface T11 of the substrate T10. Position control of the catching part 21 in such catching operation and mounting operation requires high positioning accuracy.
 この位置決め精度の向上には、捕捉部21の挙動が大きく影響する。特に、実装ヘッド2が部品供給装置63から基板T10の上方に移動し、基板T10の上方で停止したときの挙動、及び捕捉部21が鉛直方向に移動するストローク動作を行うときの挙動が重要になる。 The behavior of the catching part 21 greatly affects the improvement of the positioning accuracy. In particular, the behavior when the mounting head 2 moves from the component supply device 63 to above the substrate T10 and stops above the substrate T10, and the behavior when the catching part 21 performs a stroke operation to move in the vertical direction are important. Become.
 そこで、本実施形態の実装システム1は、実装ヘッド2と、撮像部3と、挙動検出部53と、挙動判定部54と、出力部55と、を備える。実装ヘッド2は、部品T20を捕捉可能な捕捉部21を有する。撮像部3は、生産動作中の捕捉部21を撮像する。挙動検出部53は、撮像部3の撮像画像に基づいて、生産動作中の捕捉部21の挙動に対応する挙動値を求める。挙動判定部54は、挙動値が許容範囲に収まっているか否かを判定する。出力部55は、挙動値が許容範囲に収まっていなければ、挙動が不調であることを通知する通知信号を出力する。なお、「不調」とは、異常だけでなく、調子が悪い状態も含む。 Therefore, the mounting system 1 of the present embodiment includes the mounting head 2, the imaging unit 3, the behavior detection unit 53, the behavior determination unit 54, and the output unit 55. The mounting head 2 has a capture section 21 capable of capturing the component T20. The imaging unit 3 images the capturing unit 21 during production operation. The behavior detection unit 53 obtains a behavior value corresponding to the behavior of the capture unit 21 during production operation based on the captured image of the imaging unit 3 . The behavior determination unit 54 determines whether the behavior value is within the allowable range. If the behavior value does not fall within the allowable range, the output unit 55 outputs a notification signal notifying that the behavior is not good. It should be noted that the term "malfunction" includes not only abnormalities but also poor conditions.
 上述の実装システム1は、生産性の低下を抑えながら装置の不調を検知することができる。 The mounting system 1 described above can detect device malfunctions while suppressing a decline in productivity.
 (2)詳細
 (2.1)前提
 本実施形態では一例として、表面実装技術(SMT:Surface Mount Technology)による部品T20の実装に、実装システム1が用いられる場合について説明する。つまり、部品T20は、表面実装用の部品(SMD:Surface Mount Device)であって、基板T10の実装面T11(表面)上に配置されることをもって実装される。ただし、この例に限らず、挿入実装技術(IMT:Insertion Mount Technology)による部品T20の実装に、実装システム1が用いられてもよい。この場合、部品T20は、リード端子を有する挿入実装用の部品であり、基板T10の孔にリード端子を挿入することをもって、基板T10の実装面T11上に実装される。
(2) Details (2.1) Premises In this embodiment, as an example, a case where the mounting system 1 is used for mounting a component T20 by surface mount technology (SMT) will be described. That is, the component T20 is a component for surface mounting (SMD: Surface Mount Device), and is mounted by being arranged on the mounting surface T11 (front surface) of the substrate T10. However, the mounting system 1 is not limited to this example, and may be used to mount the component T20 by an insertion mount technology (IMT). In this case, the component T20 is a component for insertion mounting having lead terminals, and is mounted on the mounting surface T11 of the substrate T10 by inserting the lead terminals into the holes of the substrate T10.
 また、本開示でいう「撮像光軸」は、撮像部3で撮像される画像(撮像部3の撮像画像)についての光軸であって、撮像部3の撮像素子31(図3参照)及び光学系32(図3参照)の両方によって定まる光軸である。つまり、撮像素子31の受光面の中心と、光学系32を通して撮像素子31の受光面の中心に結像する撮像領域R1(図4参照)内の部位と、を結ぶ直線が撮像部3の撮像光軸AX1(図4参照)となる。 In addition, the “imaging optical axis” referred to in the present disclosure is an optical axis of an image captured by the imaging unit 3 (captured image of the imaging unit 3), and is an image sensor 31 (see FIG. 3) of the imaging unit 3 It is the optical axis defined by both the optical system 32 (see FIG. 3). In other words, the straight line that connects the center of the light receiving surface of the image pickup device 31 and the part within the image pickup region R1 (see FIG. It becomes the optical axis AX1 (see FIG. 4).
 また、本開示において、撮像部3の撮像画像は、静止画(静止画像)及び動画(動画像)を含む。さらに、「動画」は、コマ撮り等により得られる複数の静止画にて構成される撮像画像を含む。撮像部3の撮像画像は、撮像部3から出力されたデータそのものでなくてもよい。例えば、撮像部3の撮像画像は、必要に応じて適宜データの圧縮、他のデータ形式への変換、又は撮像部3の撮像画像から一部を切り出す加工、ピント調整、明度調整、若しくはコントラスト調整等の加工が施されていてもよい。本実施形態では一例として、撮像部3の撮像画像は、フルカラーの動画である。 In addition, in the present disclosure, images captured by the imaging unit 3 include still images (still images) and moving images (moving images). Furthermore, "moving image" includes captured images composed of a plurality of still images obtained by frame-by-frame shooting or the like. The image captured by the imaging unit 3 may not be the data output from the imaging unit 3 itself. For example, the image captured by the image capturing unit 3 can be appropriately compressed, converted to another data format, processed to cut out a part of the image captured by the image capturing unit 3, adjusted in focus, adjusted in brightness, or adjusted in contrast. etc. processing may be applied. In this embodiment, as an example, the image captured by the imaging unit 3 is a full-color moving image.
 以下では一例として、互いに直交するX軸、Y軸及びZ軸の3軸を設定し、基板T10の実装面T11に平行な軸を「X軸」及び「Y軸」とし、基板T10の厚み方向に平行な軸を「Z」軸とする。さらに、Z軸に沿う両方向のうち一方向を上方向とし、他方向を下方向とする。例えば、捕捉部21が基板T10の実装面T11に対向しているとき、基板T10は、捕捉部21の下方に位置する。なお、X軸、Y軸、及びZ軸は、いずれも仮想的な軸であり、図面中の「X」、「Y」、「Z」を示す矢印は、説明のために表記しているに過ぎず、いずれも実体を伴わない。また、これらの方向は実装システム1の使用時の方向を限定する趣旨ではない。 In the following, as an example, three axes, the X-axis, the Y-axis, and the Z-axis, which are orthogonal to each other, are set, and the axes parallel to the mounting surface T11 of the substrate T10 are defined as the "X-axis" and the "Y-axis", and the thickness direction of the substrate T10 Let the axis parallel to be the "Z" axis. Furthermore, one of the two directions along the Z-axis is the upward direction, and the other direction is the downward direction. For example, the substrate T10 is positioned below the capturing portion 21 when the capturing portion 21 faces the mounting surface T11 of the substrate T10. Note that the X-axis, Y-axis, and Z-axis are all virtual axes, and the arrows indicating "X", "Y", and "Z" in the drawings are notated for the sake of explanation. nothing, and none of them involve substance. Moreover, these directions are not meant to limit the directions during use of the mounting system 1 .
 また、実装システム1には、冷却水の循環用のパイプ、電力供給用のケーブル及び空圧(正圧及び真空を含む)供給用のパイプ等が接続されるが、本実施形態では、これらの図示を適宜省略する。 Also, the mounting system 1 is connected to a pipe for circulating cooling water, a cable for power supply, a pipe for supplying air pressure (including positive pressure and vacuum), and the like. Illustrations are omitted as appropriate.
 (2.2)全体構成
 次に、本実施形態に係る実装システム1の要部について、図1~図4、及び図5A~図5Dを参照して説明する。
(2.2) Overall Configuration Next, the main part of the mounting system 1 according to this embodiment will be described with reference to FIGS. 1 to 4 and 5A to 5D.
 本実施形態に係る実装システム1は、実装ヘッド2と、撮像部3と、駆動部4と、制御部5と、を備えている。また、本実施形態では、実装システム1は、図3に示すように、実装ヘッド2、撮像部3、駆動部4、及び制御部5に加えて、搬送装置62、部品供給装置63、及び固定カメラ7を更に備えている。ただし、搬送装置62、部品供給装置63、及び固定カメラ7は、実装システム1に必須の構成ではない。つまり、搬送装置62、部品供給装置63、及び固定カメラ7の全部又は一部は、実装システム1の構成要素に含まれなくてもよい。また、図2では、実装ヘッド2、撮像部3、及び駆動部4のみを図示し、その他の実装システム1の構成の図示を適宜省略している。また、図4では、実装ヘッド2の周辺を図示し、その他の実装システム1の構成の図示を適宜省略している。 A mounting system 1 according to this embodiment includes a mounting head 2 , an imaging section 3 , a drive section 4 and a control section 5 . In addition to the mounting head 2, the imaging unit 3, the driving unit 4, and the control unit 5, the mounting system 1 in the present embodiment includes, as shown in FIG. A camera 7 is further provided. However, the transport device 62 , the component supply device 63 and the fixed camera 7 are not essential components of the mounting system 1 . That is, all or part of the transport device 62 , the component supply device 63 , and the fixed camera 7 may not be included in the components of the mounting system 1 . Moreover, in FIG. 2, only the mounting head 2, the imaging unit 3, and the driving unit 4 are illustrated, and the other configuration of the mounting system 1 is omitted as appropriate. In addition, FIG. 4 shows the periphery of the mounting head 2 and omits the other configuration of the mounting system 1 as appropriate.
 実装ヘッド2は、少なくとも1つの捕捉部21を有している。本実施形態では、実装ヘッド2はヘッドユニット23を有し、ヘッドユニット23には1つの捕捉部21が取り付けられている。そして、実装ヘッド2は、捕捉部21にて部品T20を捕捉した状態で、捕捉部21を基板T10に近づけるように移動させ、部品T20を基板T10の実装面T11に実装する。つまり、実装ヘッド2は、捕捉部21を、基板T10に向けて移動可能に保持する。 The mounting head 2 has at least one catching portion 21 . In this embodiment, the mounting head 2 has a head unit 23 and one catching part 21 is attached to the head unit 23 . Then, the mounting head 2 moves the catching portion 21 closer to the substrate T10 while catching the component T20 with the catching portion 21, and mounts the component T20 on the mounting surface T11 of the substrate T10. That is, the mounting head 2 holds the capturing part 21 movably toward the substrate T10.
 撮像部3は、実装ヘッド2のヘッドユニット23に固定されている。撮像部3は、撮像素子31と、光学系32と、を有している。撮像部3は、例えば、動画を撮像するビデオカメラである。撮像部3は、生産動作中の捕捉部21を撮像する。 The imaging unit 3 is fixed to the head unit 23 of the mounting head 2. The imaging unit 3 has an imaging device 31 and an optical system 32 . The imaging unit 3 is, for example, a video camera that captures moving images. The imaging unit 3 images the capturing unit 21 during production operation.
 上述の捕捉部21及び撮像部3はヘッドユニット23に取り付けられており、捕捉部21及び撮像部3は、実装ヘッド2と同期して移動する。 The capturing unit 21 and the imaging unit 3 described above are attached to the head unit 23 , and the capturing unit 21 and the imaging unit 3 move in synchronization with the mounting head 2 .
 制御部5は、実装システム1の各部を制御する。制御部5は、コンピュータシステムを備えることが好ましい。すなわち、制御部5では、CPU(Central Processing Unit)、又はMPU(Micro Processing Unit)などのプロセッサがメモリに記憶されているプログラムを読み出して実行することによって、制御部5の一部又は全部の機能が実現される。制御部5は、プログラムに従って動作するプロセッサを主なハードウェア構成として備える。プロセッサは、プログラムを実行することによって機能を実現することができれば、その種類は問わない。プロセッサは、半導体集積回路(IC)、又はLSI(Large Scale Integration)を含む一つ又は複数の電子回路で構成される。ここでは、ICやLSIと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(Very Large Scale Integration)、若しくはULSI(Ultra Large Scale Integration)と呼ばれるものであってもよい。LSIの製造後にプログラムされる、フィールド・プログラマブル・ゲート・アレイ(FPGA)、又はLSI内部の接合関係の再構成又はLSI内部の回路区画のセットアップができる再構成可能な論理デバイスも同じ目的で使うことができる。複数の電子回路は、一つのチップに集積されてもよいし、複数のチップに設けられてもよい。複数のチップは集約して配置されてもよいし、分散して配置されてもよい。 The control unit 5 controls each unit of the mounting system 1. Control unit 5 preferably comprises a computer system. That is, in the control unit 5, a processor such as a CPU (Central Processing Unit) or MPU (Micro Processing Unit) reads and executes a program stored in a memory, thereby performing part or all of the functions of the control unit 5 is realized. The control unit 5 has a processor that operates according to a program as a main hardware configuration. Any type of processor can be used as long as it can implement functions by executing a program. The processor is composed of one or more electronic circuits including a semiconductor integrated circuit (IC) or LSI (Large Scale Integration). Here, they are called ICs and LSIs, but the names change depending on the degree of integration, and may be called system LSIs, VLSIs (Very Large Scale Integration), or ULSIs (Ultra Large Scale Integration). A field programmable gate array (FPGA), which is programmed after the LSI is manufactured, or a reconfigurable logic device capable of reconfiguring the junction relationships inside the LSI or setting up circuit partitions inside the LSI for the same purpose. can be done. A plurality of electronic circuits may be integrated on one chip or may be provided on a plurality of chips. A plurality of chips may be collectively arranged or distributed.
 制御部5は、例えば、実装ヘッド2、撮像部3、駆動部4、搬送装置62、部品供給装置63、及び固定カメラ7の各々と電気的に接続されている。制御部5は、実装ヘッド2、及び駆動部4に制御信号を出力し、捕捉部21にて捕捉した部品T20を基板T10の実装面T11に実装するように、実装ヘッド2及び駆動部4を制御する。また、制御部5は、撮像部3及び固定カメラ7に制御信号を出力して、撮像部3及び固定カメラ7を制御したり、撮像部3及び固定カメラ7のそれぞれの撮像画像を撮像部3及び固定カメラ7のそれぞれから取得したりする。 The control unit 5 is electrically connected to each of the mounting head 2, the imaging unit 3, the driving unit 4, the conveying device 62, the component supply device 63, and the fixed camera 7, for example. The control unit 5 outputs control signals to the mounting head 2 and the driving unit 4, and controls the mounting head 2 and the driving unit 4 so that the component T20 captured by the capturing unit 21 is mounted on the mounting surface T11 of the substrate T10. Control. In addition, the control unit 5 outputs control signals to the imaging unit 3 and the fixed camera 7 to control the imaging unit 3 and the fixed camera 7, and outputs images captured by the imaging unit 3 and the fixed camera 7 to the imaging unit 3. and the fixed camera 7, respectively.
 駆動部4は、実装ヘッド2を移動させる装置である。本実施形態では、駆動部4は、X-Y平面内で、実装ヘッド2を移動させる。ここでいう「X-Y平面」は、X軸及びY軸を含む平面であって、Z軸と直交する平面である。言い換えると、駆動部4は、実装ヘッド2をX軸方向及びY軸方向に移動させる。本実施形態では、撮像部3が実装ヘッド2に固定されているため、駆動部4は、撮像部3についても実装ヘッド2と共に移動させる。言い換えると、図1において、実装ヘッド2及び撮像部3は、駆動部4によって、搬送装置62の実装スペースに位置決めされている基板T10の上方と部品供給装置63の部品供給口63aの上方との間を移動する。 The drive unit 4 is a device that moves the mounting head 2 . In this embodiment, the driving section 4 moves the mounting head 2 within the XY plane. The “XY plane” referred to here is a plane including the X-axis and the Y-axis and perpendicular to the Z-axis. In other words, the driving section 4 moves the mounting head 2 in the X-axis direction and the Y-axis direction. In this embodiment, the imaging unit 3 is fixed to the mounting head 2 , so the driving unit 4 also moves the imaging unit 3 together with the mounting head 2 . In other words, in FIG. 1, the mounting head 2 and the imaging unit 3 are positioned above the substrate T10 positioned in the mounting space of the transport device 62 and above the component supply port 63a of the component supply device 63 by the drive unit 4. move between
 具体的には、駆動部4は、図2に示すように、X軸駆動部41と、Y軸駆動部42と、を有している。X軸駆動部41は、実装ヘッド2をX軸方向に直進移動させる。Y軸駆動部42は、実装ヘッド2をY軸方向に直進移動させる。Y軸駆動部42は、実装ヘッド2を、X軸駆動部41ごとY軸に沿って移動させることで、実装ヘッド2をY軸方向に直進移動させる。本実施形態では一例として、X軸駆動部41及びY軸駆動部42の各々は、リニアモータを含み、電力供給を受けてリニアモータで発生する駆動力により、実装ヘッド2を移動させる。 Specifically, the driving section 4 has an X-axis driving section 41 and a Y-axis driving section 42, as shown in FIG. The X-axis driving section 41 moves the mounting head 2 straight in the X-axis direction. The Y-axis driving section 42 moves the mounting head 2 straight in the Y-axis direction. The Y-axis drive unit 42 moves the mounting head 2 along the Y-axis together with the X-axis drive unit 41, thereby linearly moving the mounting head 2 in the Y-axis direction. In this embodiment, as an example, each of the X-axis driving section 41 and the Y-axis driving section 42 includes a linear motor, and moves the mounting head 2 by driving force generated by the linear motor upon receiving power supply.
 部品供給装置63は、実装ヘッド2の捕捉部21にて捕捉される部品T20を供給する。部品供給装置63は、一例として、キャリアテープに収容された部品T20を供給するテープフィーダを有している。または、部品供給装置63は、複数の部品T20が載せ置かれたトレイを有していてもよい。実装ヘッド2は、このような部品供給装置63から、部品T20を捕捉部21にて捕捉する。 The component supply device 63 supplies the component T20 captured by the capturing section 21 of the mounting head 2 . The component supply device 63 has, for example, a tape feeder that supplies components T20 accommodated in a carrier tape. Alternatively, the component supply device 63 may have a tray on which a plurality of components T20 are placed. The mounting head 2 captures the component T<b>20 from the component supply device 63 with the capturing section 21 .
 搬送装置62は、基板T10を搬送する装置である。搬送装置62は、例えば、ベルトコンベヤ等で実現される。搬送装置62は、基板T10を、例えば、X軸に沿って搬送する。搬送装置62は、少なくとも実装ヘッド2の下方、つまりZ軸方向において捕捉部21と対向する実装スペースに、基板T10を搬送する。そして、搬送装置62は、実装ヘッド2による基板T10への部品T20の実装が完了するまでは、実装スペースに基板T10を停止させる。 The transport device 62 is a device that transports the substrate T10. The conveying device 62 is implemented by, for example, a belt conveyor. The transport device 62 transports the substrate T10, for example, along the X-axis. The conveying device 62 conveys the substrate T10 to at least a mounting space below the mounting head 2, that is, a mounting space facing the capturing section 21 in the Z-axis direction. Then, the transport device 62 stops the board T10 in the mounting space until the mounting of the component T20 on the board T10 by the mounting head 2 is completed.
 図5A~図5Dは、実装工程で行われる生産動作の概略を示す。まず、図5Aでは、部品T20を捕捉していない捕捉部21が部品供給口63aの上方に位置している。そして、捕捉部21は、矢印M1で示される鉛直方向に下降して、部品供給口63aに位置する部品T20を捕捉(保持)する捕捉動作を行う。そして、図5Bに示すように、実装ヘッド2は、基板T10に近付くように、矢印M2で示される水平方向に移動する。すなわち、部品T20を捕捉している捕捉部21は、基板T10に近付くように移動する。そして、図5Cに示すように、実装ヘッド2は、捕捉部21が基板T10の上方にまで移動すると停止する。そして、図5Dに示すように、捕捉部21が矢印M3で示される鉛直方向に下降して、基板T10の実装面T11に部品T20を実装する実装動作を行うことで、生産物T3が生産される。なお、図5Bにおいて、実装ヘッド2が水平方向に移動しているときに、捕捉部21が下降を開始してもよい。  Figures 5A to 5D show an outline of the production operation performed in the mounting process. First, in FIG. 5A, the capturing portion 21 that does not capture the component T20 is located above the component supply port 63a. Then, the catching unit 21 descends in the vertical direction indicated by the arrow M1 to perform a catching operation of catching (holding) the component T20 positioned at the component supply port 63a. Then, as shown in FIG. 5B, the mounting head 2 moves in the horizontal direction indicated by the arrow M2 so as to approach the substrate T10. That is, the capturing part 21 capturing the component T20 moves closer to the substrate T10. Then, as shown in FIG. 5C, the mounting head 2 stops when the capturing part 21 moves above the substrate T10. Then, as shown in FIG. 5D, the capture unit 21 descends in the vertical direction indicated by the arrow M3, and the component T20 is mounted on the mounting surface T11 of the substrate T10, thereby producing the product T3. be. In addition, in FIG. 5B, the catching part 21 may start to descend while the mounting head 2 is moving in the horizontal direction.
 実装システム1は、上記構成に加えて、バックアップ装置、照明装置、及び通信部などを備えていてもよい。 In addition to the above configuration, the mounting system 1 may include a backup device, a lighting device, a communication unit, and the like.
 バックアップ装置は、搬送装置62によって実装スペースに搬送された基板T10をバックアップする。つまり、搬送装置62によって実装スペースに搬送された基板T10は、バックアップ装置にて、実装スペースに保持される。 The backup device backs up the board T10 transported to the mounting space by the transport device 62. That is, the substrate T10 transferred to the mounting space by the transfer device 62 is held in the mounting space by the backup device.
 照明装置は、撮像部3の撮像領域R1を照明する。照明装置は、少なくとも撮像部3が撮像するタイミングで点灯すればよく、例えば、撮像部3の撮像タイミングに合わせて発光する。本実施形態では、撮像部3の撮像画像は、フルカラーの動画であるので、照明装置は、白色光等の可視光領域の波長域の光を出力する。本実施形態では一例として、照明装置は、LED(Light Emitting Diode)等の光源を複数有している。照明装置は、これら複数の光源を発光させることで、撮像部3の撮像領域R1を照らす。照明装置は、例えば、リング照明又は同軸落射照明等の適宜の照明方式にて実現される。照明装置は、例えば、撮像部3と共に実装ヘッド2に固定されている。 The lighting device illuminates the imaging region R1 of the imaging unit 3. The lighting device may be turned on at least at the timing when the image capturing unit 3 captures an image, and for example, emits light in accordance with the image capturing timing of the image capturing unit 3 . In the present embodiment, the image captured by the imaging unit 3 is a full-color moving image, so the illumination device outputs light in the wavelength range of the visible light region, such as white light. In this embodiment, as an example, the illumination device has a plurality of light sources such as LEDs (Light Emitting Diodes). The illumination device illuminates the imaging region R1 of the imaging unit 3 by causing the plurality of light sources to emit light. The illumination device is realized by an appropriate illumination method such as ring illumination or coaxial epi-illumination. The illumination device is fixed to the mounting head 2 together with the imaging unit 3, for example.
 通信部は、直接的、又はネットワーク若しくは中継器等を介して間接的に、上位システムと通信するように構成されている。これにより、実装システム1は、上位システムとの間でデータを授受することが可能である。 The communication unit is configured to communicate with the host system directly or indirectly via a network, repeater, or the like. This allows the mounting system 1 to exchange data with the host system.
 (2.3)実装ヘッド
 実装ヘッド2のより詳細な構成について、図2、図3、及び図4を参照して説明する。
(2.3) Mounting Head A more detailed configuration of the mounting head 2 will be described with reference to FIGS. 2, 3, and 4. FIG.
 本実施形態では、実装ヘッド2は、捕捉部21に加えて、捕捉部21を移動させるためのアクチュエータ22(図3参照)と、捕捉部21及びアクチュエータ22を保持するヘッドユニット23と、を更に有している。本実施形態に係る実装システム1では、1つのヘッドユニット23に、捕捉部21及びアクチュエータ22が1つずつ取り付けられている。これにより、実装ヘッド2では、1つの部品T20を捕捉可能である。 In this embodiment, the mounting head 2 further includes an actuator 22 (see FIG. 3) for moving the catching portion 21, and a head unit 23 for holding the catching portion 21 and the actuator 22, in addition to the catching portion 21. have. In the mounting system 1 according to the present embodiment, one capture section 21 and one actuator 22 are attached to one head unit 23 . Thus, the mounting head 2 can pick up one component T20.
 捕捉部21は、例えば、吸着ノズルである。捕捉部21は、制御部5にて制御され、部品T20を捕捉(保持)する捕捉状態と、部品T20を解放(捕捉を解除)する解放状態と、を切替可能である。ただし、捕捉部21は、吸着ノズルに限らず、例えば、ロボットハンドのように部品T20を挟む(摘む)ことによって捕捉(保持)する構成でもよい。 The capture unit 21 is, for example, a suction nozzle. The catching unit 21 is controlled by the control unit 5 and can switch between a catching state of catching (holding) the component T20 and a released state of releasing (releasing the catching) of the component T20. However, the catching unit 21 is not limited to the suction nozzle, and may be configured to catch (hold) the component T20 by pinching (picking) the component T20, for example, like a robot hand.
 捕捉部21による部品T20の捕捉に関しては、実装ヘッド2は、動力としての空圧(真空)の供給を受けて動作する。つまり、実装ヘッド2は、捕捉部21に繋がる空圧(真空)の供給路上のバルブを開閉することによって、捕捉部21の捕捉状態と、解放状態と、を切り替える。 Regarding the capturing of the component T20 by the capturing unit 21, the mounting head 2 operates by being supplied with air pressure (vacuum) as power. In other words, the mounting head 2 switches between the captured state and the released state of the capturing section 21 by opening and closing a valve on a pneumatic (vacuum) supply path connected to the capturing section 21 .
 アクチュエータ22は、捕捉部21をZ軸方向に直進移動させる。さらに、アクチュエータ22は、捕捉部21をZ軸方向に沿った軸線を中心とする回転方向(以下、「θ方向」という)に回転移動させる。本実施形態では一例として、Z軸方向への捕捉部21の移動に関しては、アクチュエータ22は、リニアモータで発生する駆動力にて駆動する。θ方向への捕捉部21の移動に関しては、アクチュエータ22は、回転型モータで発生する駆動力にて駆動する。一方で、上述したように、実装ヘッド2は、駆動部4によりX軸方向及びY軸方向に直進移動する。結果的に、実装ヘッド2に含まれる捕捉部21は、駆動部4及びアクチュエータ22によって、X軸方向、Y軸方向、Z軸方向及びθ方向に移動することが可能である。 The actuator 22 linearly moves the capturing part 21 in the Z-axis direction. Further, the actuator 22 rotates the catching portion 21 in a rotational direction (hereinafter referred to as "the θ direction") about an axis along the Z-axis direction. In this embodiment, as an example, the actuator 22 is driven by a driving force generated by a linear motor to move the catching portion 21 in the Z-axis direction. Regarding the movement of the capturing part 21 in the θ direction, the actuator 22 is driven by a driving force generated by a rotary motor. On the other hand, as described above, the mounting head 2 is linearly moved in the X-axis direction and the Y-axis direction by the drive unit 4 . As a result, the catching portion 21 included in the mounting head 2 can be moved in the X-axis direction, the Y-axis direction, the Z-axis direction, and the θ direction by the driving portion 4 and the actuator 22 .
 ヘッドユニット23は、一例として、金属製であって直方体状に形成されている。捕捉部21及びアクチュエータ22がヘッドユニット23に組み付けられることによって、ヘッドユニット23は捕捉部21及びアクチュエータ22を保持する。本実施形態では、捕捉部21は、Z軸方向及びθ方向への移動が可能な状態で、アクチュエータ22を介してヘッドユニット23に間接的に保持される。実装ヘッド2は、ヘッドユニット23が駆動部4にてX-Y平面内で移動させられることによって、X-Y平面内を移動する。 As an example, the head unit 23 is made of metal and has a rectangular parallelepiped shape. The head unit 23 holds the capturing part 21 and the actuator 22 by assembling the capturing part 21 and the actuator 22 to the head unit 23 . In this embodiment, the capture section 21 is indirectly held by the head unit 23 via the actuator 22 in a state in which it can move in the Z-axis direction and the θ direction. The mounting head 2 moves within the XY plane by moving the head unit 23 within the XY plane by the drive unit 4 .
 上述した構成によれば、実装ヘッド2は、部品T20を捕捉していない捕捉部21を部品供給口63aに近付けるように移動させ、部品供給装置63において部品T20を捕捉(保持)する捕捉動作を行うことが可能となる。また、実装ヘッド2は、実装システム1は、捕捉部21にて部品T20を捕捉した状態で、捕捉部21を基板T10に近づけるように移動させ、部品T20を基板T10の実装面T11に実装する実装動作を行うことが可能となる。 According to the above-described configuration, the mounting head 2 moves the catching section 21 that has not caught the component T20 so as to approach the component supply port 63a, and performs a catching operation of catching (holding) the component T20 in the component supply device 63. can be done. In addition, the mounting head 2 moves the catching unit 21 closer to the substrate T10 while the mounting system 1 has captured the component T20, and mounts the component T20 on the mounting surface T11 of the substrate T10. It becomes possible to perform the mounting operation.
 (2.4)撮像部
 撮像部3のより詳細な構成について、図2~図4を参照して説明する。
(2.4) Imaging Unit A more detailed configuration of the imaging unit 3 will be described with reference to FIGS. 2 to 4. FIG.
 本実施形態では、撮像部3は、図4に示すように実装ヘッド2とともに移動する1つの移動カメラ3aで構成されており、図3に示すように、撮像素子31と、光学系32と、を有している。光学系32は、撮像素子31に対して、撮像領域R1を撮像した撮像画像を結像する。 In this embodiment, the imaging unit 3 is composed of one moving camera 3a that moves together with the mounting head 2 as shown in FIG. 4. As shown in FIG. have. The optical system 32 forms a captured image of the imaging region R<b>1 on the imaging element 31 .
 撮像素子31は、例えば、CCD(Charge Coupled Devices)又はCMOS(Complementary Metal-Oxide Semiconductor)のようなイメージセンサである。撮像素子31は、受光面に結像した画像を電気信号に変換して出力する。 The imaging element 31 is, for example, an image sensor such as CCD (Charge Coupled Devices) or CMOS (Complementary Metal-Oxide Semiconductor). The imaging device 31 converts the image formed on the light receiving surface into an electrical signal and outputs the electrical signal.
 光学系32は、1つ以上のレンズ及びミラー等を含んでいる。本実施形態では一例として、光学系32は、複数のレンズの組み合わせ(レンズ群)にて実現される。光学系32は、撮像領域R1からの光を撮像素子31の受光面に結像させる。なお、光学系32は、上記の構成に限定されない。 The optical system 32 includes one or more lenses, mirrors, and the like. As an example in this embodiment, the optical system 32 is implemented by a combination of a plurality of lenses (lens group). The optical system 32 forms an image of the light from the imaging region R1 on the light receiving surface of the imaging device 31 . Note that the optical system 32 is not limited to the configuration described above.
 撮像部3は、少なくとも捕捉部21の先端(下端)210(図4参照)を撮像領域R1に含むように、捕捉部21との相対的な位置を決められている。したがって、撮像部3の撮像画像には、少なくとも捕捉部21の先端210が写る。 The imaging section 3 is positioned relative to the capturing section 21 so that at least the tip (lower end) 210 (see FIG. 4) of the capturing section 21 is included in the imaging region R1. Therefore, at least the tip 210 of the capturing section 21 is captured in the image captured by the imaging section 3 .
 具体的には、図1に示すように、撮像部3は、ヘッドユニット23の下方において、Z軸方向から見た平面視において捕捉部21の側方に配置されることになる。このように、撮像部3は捕捉部21とともにヘッドユニット23に取り付けられており、捕捉部21と撮像部3とは同時に移動する。したがって、実装システム1は、捕捉部21と撮像部3とを別々に移動させる構成に比べて実装に要する時間を短縮して、生産性を向上させることができる。 Specifically, as shown in FIG. 1, the imaging section 3 is arranged below the head unit 23 and on the side of the capturing section 21 in plan view from the Z-axis direction. In this manner, the imaging section 3 is attached to the head unit 23 together with the catching section 21, and the catching section 21 and the imaging section 3 move simultaneously. Therefore, the mounting system 1 can shorten the time required for mounting and improve productivity compared to a configuration in which the capture unit 21 and the imaging unit 3 are moved separately.
 さらに、撮像部3は、Z軸(鉛直方向)に対して交差する撮像光軸AX1を有している。言い換えると、撮像光軸AX1は、鉛直方向に対して斜めに延びている。つまり、撮像部3は、撮像部3の撮像方向が鉛直方向に交差するように、ヘッドユニット23に固定されている。したがって、撮像部3は、水平方向における捕捉部21の挙動、及び鉛直方向における捕捉部21の挙動を撮像することができる。なお、水平方向はX-Y平面に沿った方向であり、鉛直方向は水平方向に直交する方向(Z軸に沿う方向)である。 Furthermore, the imaging unit 3 has an imaging optical axis AX1 that intersects the Z axis (vertical direction). In other words, the imaging optical axis AX1 extends obliquely with respect to the vertical direction. That is, the imaging section 3 is fixed to the head unit 23 so that the imaging direction of the imaging section 3 intersects the vertical direction. Therefore, the imaging unit 3 can capture the behavior of the capturing unit 21 in the horizontal direction and the behavior of the capturing unit 21 in the vertical direction. The horizontal direction is the direction along the XY plane, and the vertical direction is the direction orthogonal to the horizontal direction (direction along the Z-axis).
 (2.5)固定カメラ
 固定カメラ7のより詳細な構成について、図1を参照して説明する。
(2.5) Fixed Camera A more detailed configuration of the fixed camera 7 will be described with reference to FIG.
 固定カメラ7は、実装スペースに位置決めされている基板T10の上方と部品供給装置63の部品供給口63aの上方との間を移動している実装ヘッド2を下方から撮像する。したがって、固定カメラ7の撮像画像には、捕捉部21に捕捉されている部品T20が写っている。すなわち、固定カメラ7の撮像画像には、捕捉部21と部品T20との相互の位置関係の情報、言い換えると捕捉部21に対する部品T20のずれの情報が含まれている。 The fixed camera 7 takes an image of the mounting head 2 moving between the board T10 positioned in the mounting space and the component supply port 63a of the component supply device 63 from below. Therefore, the captured image of the fixed camera 7 shows the component T20 captured by the capture unit 21. As shown in FIG. That is, the image captured by the fixed camera 7 contains information on the mutual positional relationship between the capture unit 21 and the component T20, in other words, information on the displacement of the component T20 with respect to the capture unit 21. FIG.
 なお、固定カメラ7は、部品供給口63aから基板T10に移動している実装ヘッド2を下方から撮像することが好ましい。この場合、固定カメラ7は、常時撮像するのではなく、部品T20を捕捉している捕捉部21が固定カメラ7の上方を通過するタイミングで撮像する。 It should be noted that the fixed camera 7 preferably takes an image of the mounting head 2 moving from the component supply port 63a to the substrate T10 from below. In this case, the fixed camera 7 does not always take an image, but takes an image at the timing when the capture unit 21 capturing the part T20 passes above the fixed camera 7 .
 また、固定カメラ7は、部品供給口63aの下方に設置されてもよい。 Also, the fixed camera 7 may be installed below the component supply port 63a.
 また、実装システム1は、固定カメラ7の撮像領域を照明する照明装置を更に備えることが好ましい。 Also, the mounting system 1 preferably further includes an illumination device that illuminates the imaging area of the fixed camera 7 .
 (2.6)制御部
 制御部5は、ヘッド制御部51、画像取得部52、挙動検出部53、挙動判定部54、及び出力部55を備える。
(2.6) Control Unit The control unit 5 includes a head control unit 51 , an image acquisition unit 52 , a behavior detection unit 53 , a behavior determination unit 54 and an output unit 55 .
 (2.6.1)ヘッド制御部
 ヘッド制御部51は、実装ヘッド2及び駆動部4に制御信号を出力することで、実装ヘッド2及び駆動部4を制御する。
(2.6.1) Head Control Unit The head control unit 51 controls the mounting head 2 and the driving unit 4 by outputting control signals to the mounting head 2 and the driving unit 4 .
 具体的に、ヘッド制御部51は、駆動部4に水平制御信号を出力し、駆動部4を制御することで、実装ヘッド2及び撮像部3をX-Y平面内で移動させる。また、ヘッド制御部51は、アクチュエータ22に鉛直制御信号を出力し、アクチュエータ22を制御することで、捕捉部21をZ軸に沿って移動させる。また、ヘッド制御部51は、アクチュエータ22に回転制御信号を出力し、アクチュエータ22を制御することで、捕捉部21をθ方向に回転させる。 Specifically, the head control unit 51 outputs a horizontal control signal to the driving unit 4 and controls the driving unit 4 to move the mounting head 2 and the imaging unit 3 within the XY plane. The head control unit 51 also outputs a vertical control signal to the actuator 22 and controls the actuator 22 to move the catching unit 21 along the Z axis. Further, the head control unit 51 outputs a rotation control signal to the actuator 22 and controls the actuator 22 to rotate the catching unit 21 in the θ direction.
 特に、ヘッド制御部51は、部品T20を捕捉する捕捉動作、及び部品T20を実装する実装動作では、撮像部3の撮像画像に基づいて駆動部4及びアクチュエータ22をフィードバック制御する。ヘッド制御部51は、撮像部3の撮像画像に基づいて駆動部4及びアクチュエータ22をフィードバック制御することで、捕捉位置及び実装位置を補正する。この結果、実装システム1は、捕捉動作における捕捉精度、及び実装動作における実装精度を向上させることができる。 In particular, the head control unit 51 feedback-controls the driving unit 4 and the actuator 22 based on the captured image of the imaging unit 3 in the capturing operation of capturing the component T20 and the mounting operation of mounting the component T20. The head control unit 51 corrects the capturing position and the mounting position by feedback-controlling the driving unit 4 and the actuator 22 based on the captured image of the imaging unit 3 . As a result, the mounting system 1 can improve the capturing accuracy in the capturing operation and the mounting accuracy in the mounting operation.
 (2.6.2)画像取得部
 画像取得部52は、撮像部3から撮像画像のデータを取得する(受け取る)通信インタフェースの機能を有する。
(2.6.2) Image Acquisition Unit The image acquisition unit 52 has a function of a communication interface for acquiring (receiving) captured image data from the imaging unit 3 .
 撮像部3と画像取得部52との間の通信は、無線通信及び有線通信のいずれでもよい。無線通信は、例えばWi-Fi(登録商標)、又は免許を必要としない小電力無線(特定小電力無線)等の規格に準拠した無線通信である。有線通信は、例えばツイストペアケーブル、専用通信線、又はLAN(Local Area Network)ケーブルなどを介した有線通信である。 Communication between the imaging unit 3 and the image acquisition unit 52 may be either wireless communication or wired communication. Wireless communication is, for example, Wi-Fi (registered trademark) or wireless communication conforming to standards such as low-power wireless (specified low-power wireless) that does not require a license. Wired communication is wired communication via, for example, a twisted pair cable, a dedicated communication line, or a LAN (Local Area Network) cable.
 (2.6.3)挙動検出部
 挙動検出部53は、撮像部3の撮像画像に基づいて、生産動作中の捕捉部21の挙動に対応する挙動値を求める。
(2.6.3) Behavior Detection Unit The behavior detection unit 53 obtains a behavior value corresponding to the behavior of the capturing unit 21 during production operation based on the captured image of the imaging unit 3 .
 具体的に、挙動検出部53は、撮像画像に基づいて、水平方向における捕捉部21の挙動、及び鉛直方向における捕捉部21の挙動を検出できる。そして、挙動検出部53は、水平方向における捕捉部21の挙動、及び鉛直方向における捕捉部21の挙動を解析することで、当該挙動に対応する挙動値を求める。 Specifically, the behavior detection unit 53 can detect the behavior of the capture unit 21 in the horizontal direction and the behavior of the capture unit 21 in the vertical direction based on the captured image. Then, the behavior detection unit 53 analyzes the behavior of the trapping unit 21 in the horizontal direction and the behavior of the trapping unit 21 in the vertical direction, thereby obtaining a behavior value corresponding to the behavior.
 捕捉部21の挙動には、捕捉部21のストローク動作、及び捕捉部21の先端210の挙動が含まれる。本実施形態では、捕捉部21の先端210の挙動は、捕捉部21の先端210の振動である。なお、捕捉部21のストローク動作の挙動値をストローク挙動値と呼ぶ。先端210の挙動の挙動値を振動挙動値と呼ぶ。 The behavior of the catching portion 21 includes the stroke motion of the catching portion 21 and the behavior of the tip 210 of the catching portion 21 . In this embodiment, the behavior of the tip 210 of the catching portion 21 is vibration of the tip 210 of the catching portion 21 . Note that the behavior value of the stroke operation of the catching unit 21 is called a stroke behavior value. Behavior values for the behavior of tip 210 are referred to as vibration behavior values.
 (捕捉部のストローク動作)
 捕捉部21のストローク動作は、捕捉部21が鉛直方向(Z軸に沿う方向)に移動する動作である。捕捉部21のストローク動作は、生産動作に含まれる。ストローク動作は、実装動作及び捕捉動作のそれぞれで行われる下ストローク動作、及び実装動作及び捕捉動作のそれぞれの後に行われる上ストローク動作を含む。
(Stroke operation of catcher)
The stroke motion of the catching part 21 is the motion of moving the catching part 21 in the vertical direction (direction along the Z-axis). The stroke motion of the catcher 21 is included in the production motion. The stroking motion includes a lower stroking motion performed with each of the mounting and catching motions, and an upward stroking motion performed after each of the mounting and catching motions.
 実装動作における下ストローク動作は、部品T20を捕捉している捕捉部21を基板T10に近づけるように移動させるときに捕捉部21を下降させる動作である(図5D参照)。実装動作の後の上ストローク動作は、部品T20を基板T10の実装面T11に実装した後に捕捉部21を上昇させる動作である。 The lower stroke operation in the mounting operation is the operation of lowering the capturing unit 21 when moving the capturing unit 21 capturing the component T20 so as to approach the substrate T10 (see FIG. 5D). The upward stroke operation after the mounting operation is an operation to raise the catcher 21 after mounting the component T20 on the mounting surface T11 of the substrate T10.
 捕捉動作における下ストローク動作は、部品T20を捕捉していない捕捉部21を部品供給口63aに近付けるように移動させるときに捕捉部21を下降させる動作である(図5A参照)。捕捉動作の後の上ストローク動作は、部品供給装置63において部品T20を捕捉した後、捕捉部21を上昇させる動作である。 The downward stroke operation in the catching operation is an operation of lowering the catching portion 21 when moving the catching portion 21 that does not catch the component T20 so as to approach the component supply port 63a (see FIG. 5A). The upward stroke operation after the catching operation is an operation for raising the catching unit 21 after the component supply device 63 has caught the component T20.
 以下では、ストローク動作を行っている捕捉部21の鉛直方向の移動距離をストローク量と呼ぶ。すなわち、下降動作を行っている捕捉部21のストローク量は、捕捉部21の下方向の移動距離である。上昇動作を行っている捕捉部21のストローク量は、捕捉部21の上方向の移動距離である。 Below, the moving distance in the vertical direction of the catching unit 21 that is performing the stroke operation will be referred to as the stroke amount. That is, the stroke amount of the catching portion 21 that is moving downward is the downward movement distance of the catching portion 21 . The stroke amount of the catching portion 21 performing the upward movement is the moving distance of the catching portion 21 in the upward direction.
 そして、挙動検出部53は、ストローク動作を行っている捕捉部21の時間経過に対するストローク量の変化(時間変化)を示すストローク挙動データを作成し、ストローク挙動データに基づいてストローク挙動値を求める。このストローク挙動値は、ストローク量の単位時間当たりの変化量である。挙動が不調でない通常時の捕捉部21のストローク動作では、捕捉部21は、ほぼ等加速度で鉛直方向に移動する。したがって、ストローク挙動値は、ストローク開始からの経過時間に応じて予め決められた許容範囲に収まる。一方、不調時の捕捉部21のストローク動作では、捕捉部21は、通常時よりも速い速度又は遅い速度で鉛直方向に移動したり、鉛直方向における加速度のばらつきが通常時よりも大きくなったりする。したがって、予め決められた許容範囲から外れるストローク挙動値が発生する。なお、捕捉部21は、途中で加速度を変更してもよい。 Then, the behavior detection unit 53 creates stroke behavior data indicating changes in the stroke amount over time (changes over time) of the catching unit 21 that is performing the stroke operation, and obtains stroke behavior values based on the stroke behavior data. This stroke behavior value is the amount of change in stroke amount per unit time. In the normal stroke operation of the catching part 21 when the behavior is not bad, the catching part 21 moves in the vertical direction with substantially uniform acceleration. Therefore, the stroke behavior value falls within a predetermined allowable range according to the elapsed time from the stroke start. On the other hand, in the stroke operation of the catching part 21 in a malfunction, the catching part 21 moves in the vertical direction at a faster or slower speed than in normal times, or the dispersion of acceleration in the vertical direction becomes larger than in normal times. . Therefore, stroke behavior values occur that fall outside the predetermined tolerance range. Note that the capturing unit 21 may change the acceleration on the way.
 図6は、挙動が不調でない通常時の捕捉部21の下ストローク動作を示す。図7は、通常時の捕捉部21の下ストローク動作におけるストローク量の時間変化を示す。 FIG. 6 shows the downward stroke operation of the catching part 21 when the behavior is normal. FIG. 7 shows the change over time of the stroke amount in the downward stroke operation of the catching unit 21 in normal times.
 図6では、時間t1→t2→t3→t4と時間が経過するにつれて、捕捉部21の先端210の鉛直方向の位置(鉛直位置)は、P1→P2→P3→P4と下方に移動(下降)している。時間t1は、下ストローク動作を開始する前である。時間t2は、時間t1から単位時間taだけ経過したタイミングである。時間t3は、時間t2から単位時間taだけ経過したタイミングである。時間t4は、時間t3から単位時間taだけ経過したタイミングである。 In FIG. 6, as the time passes from t1 to t2 to t3 to t4, the vertical position (vertical position) of the tip 210 of the catching portion 21 moves downward (falls) from P1 to P2 to P3 to P4. are doing. Time t1 is before starting the downward stroke motion. Time t2 is the timing after the unit time ta has passed from time t1. Time t3 is the timing after the unit time ta has passed from time t2. Time t4 is the timing after the unit time ta has passed from time t3.
 捕捉部21の先端210は、時間t1→t2→t3→t4と時間が経過するにつれて、鉛直位置P1→P2→P3→P4と下方に移動(下降)している。この場合、鉛直位置P1-P2間のストローク挙動値ΔP1は、P2のZ軸座標からP1のZ軸座標を引いた差分である。鉛直位置P2-P3間のストローク挙動値ΔP2は、P3のZ軸座標からP2のZ軸座標を引いた差分である。鉛直位置P3-P4間のストローク挙動値ΔP3は、P4のZ軸座標からP3のZ軸座標を引いた差分である。図6及び図7は、挙動が不調でない通常時の捕捉部21の下ストローク動作であるので、ストローク挙動値ΔP1、ΔP2、ΔP3は、時間の経過に伴って曲線状に増加する。すなわち、ストローク挙動値ΔP1、ΔP2、ΔP3のそれぞれは、ストローク開始からの経過時間に応じて予め決められたストローク許容範囲(許容範囲)に収まる。言い換えると、ストローク挙動値ΔP1、ΔP2、ΔP3のそれぞれは、ストローク許容範囲の上限値以下、かつ、ストローク許容範囲の下限値以上の範囲に収まる。なお、ストローク許容範囲は、ストローク挙動値の設計値を中心とする所定範囲に設定されている。 The tip 210 of the catching portion 21 moves (falls) downward from the vertical position P1->P2->P3->P4 as time passes in the order of t1->t2->t3->t4. In this case, the stroke behavior value ΔP1 between the vertical positions P1-P2 is the difference obtained by subtracting the Z-axis coordinate of P1 from the Z-axis coordinate of P2. The stroke behavior value ΔP2 between the vertical positions P2-P3 is the difference obtained by subtracting the Z-axis coordinate of P2 from the Z-axis coordinate of P3. The stroke behavior value ΔP3 between the vertical positions P3-P4 is the difference obtained by subtracting the Z-axis coordinate of P3 from the Z-axis coordinate of P4. 6 and 7 show the lower stroke operation of the catching unit 21 when the behavior is normal, so the stroke behavior values ΔP1, ΔP2, and ΔP3 increase in a curve shape with the lapse of time. That is, each of the stroke behavior values ΔP1, ΔP2, and ΔP3 falls within a stroke allowable range (allowable range) determined in advance according to the elapsed time from the start of the stroke. In other words, each of the stroke behavior values ΔP1, ΔP2, and ΔP3 falls within a range equal to or lower than the upper limit value of the allowable stroke range and equal to or higher than the lower limit value of the allowable stroke range. Note that the allowable stroke range is set to a predetermined range centered on the design value of the stroke behavior value.
 図8は、挙動が不調である不調時の捕捉部21の下ストローク動作を示す。図9は、不調時の捕捉部21の下ストローク動作におけるストローク量の時間変化を示す。 FIG. 8 shows the downward stroke operation of the catching part 21 when the behavior is bad. FIG. 9 shows the change over time of the stroke amount in the downward stroke operation of the catching unit 21 in a malfunction.
 図8では、時間t11→t12→t13→t14→t15と時間が経過するにつれて、捕捉部21の先端210の鉛直位置は、P11→P12→P13→P14→P15と下方に移動(下降)している。時間t11は、下ストローク動作を開始する前である。時間t12は、時間t11から単位時間taだけ経過したタイミングである。時間t13は、時間t12から単位時間taだけ経過したタイミングである。時間t14は、時間t13から単位時間taだけ経過したタイミングである。時間t15は、時間t14から単位時間taだけ経過したタイミングである。 In FIG. 8, the vertical position of the tip 210 of the catching part 21 moves (falls) downward in the order of P11->P12->P13->P14->P15 with the passage of time t11->t12->t13->t14->t15. there is Time t11 is before starting the downward stroke motion. Time t12 is the timing after the unit time ta has passed from time t11. Time t13 is the timing after the unit time ta has passed from time t12. Time t14 is the timing after the unit time ta has passed from time t13. Time t15 is the timing after the unit time ta has passed from time t14.
 捕捉部21の先端210は、時間t11→t12→t13→t14→t15と時間が経過するにつれて、鉛直位置P11→P12→P13→P14→P15と下方に移動(下降)している。この場合、鉛直位置P11-P12間のストローク挙動値ΔP11は、P12のZ軸座標からP11のZ軸座標を引いた差分である。鉛直位置P12-P13間のストローク挙動値ΔP12は、P13のZ軸座標からP12のZ軸座標を引いた差分である。鉛直位置P13-P14間のストローク挙動値ΔP13は、P14のZ軸座標からP13のZ軸座標を引いた差分である。鉛直位置P14-P15間のストローク挙動値ΔP14は、P15のZ軸座標からP14のZ軸座標を引いた差分である。不調時の捕捉部21の下ストローク動作では、挙動値の少なくとも1つは、ストローク開始からの経過時間に応じて予め決められたストローク許容範囲から外れてしまう。図8及び図9では、挙動値ΔP11、ΔP12、ΔP13、ΔP14の全てがストローク許容範囲から外れている。具体的に、ストローク挙動値ΔP11、ΔP12、ΔP14のそれぞれは、ストローク許容範囲の下限値未満であり、ストローク挙動値ΔP13は、ストローク許容範囲の上限値より大きくなっている。 The tip 210 of the catching portion 21 moves (falls) downward from the vertical position P11→P12→P13→P14→P15 as time passes from t11→t12→t13→t14→t15. In this case, the stroke behavior value ΔP11 between the vertical positions P11-P12 is the difference obtained by subtracting the Z-axis coordinate of P11 from the Z-axis coordinate of P12. The stroke behavior value ΔP12 between the vertical positions P12-P13 is the difference obtained by subtracting the Z-axis coordinate of P12 from the Z-axis coordinate of P13. The stroke behavior value ΔP13 between the vertical positions P13-P14 is the difference obtained by subtracting the Z-axis coordinate of P13 from the Z-axis coordinate of P14. The stroke behavior value ΔP14 between the vertical positions P14-P15 is the difference obtained by subtracting the Z-axis coordinate of P14 from the Z-axis coordinate of P15. In the downward stroke operation of the catching unit 21 in a malfunction, at least one of the behavior values deviates from the stroke allowable range predetermined according to the elapsed time from the start of the stroke. In FIGS. 8 and 9, all of the behavior values ΔP11, ΔP12, ΔP13, and ΔP14 are out of the allowable stroke range. Specifically, each of the stroke behavior values ΔP11, ΔP12, and ΔP14 is less than the lower limit value of the allowable stroke range, and the stroke behavior value ΔP13 is greater than the upper limit value of the allowable stroke range.
 (捕捉部の先端の振動)
 本実施形態では、捕捉部21の先端210の挙動は、捕捉部21の先端210の振動である。
(Vibration of tip of capturing part)
In this embodiment, the behavior of the tip 210 of the catching portion 21 is vibration of the tip 210 of the catching portion 21 .
 具体的に、実装動作を行う実装ヘッド2は、捕捉部21が部品T20を捕捉している状態で、基板T10に近付くように移動する。そして、図5Cに示すように、実装ヘッド2は、捕捉部21が基板T10の上方にまで移動すると、急に減速して停止する(急停止)。具体的に、ヘッド制御部51は、実装ヘッド2がX-Y平面上の目標位置(ヘッド目標位置)に達すると、駆動部4による実装ヘッド2の駆動を停止する。ヘッド制御部51は、実装ヘッド2がヘッド目標位置に達する前から、捕捉部21の下ストローク動作を開始してもよいし、実装ヘッド2がヘッド目標位置に達した後に、捕捉部21の下ストローク動作を開始してもよい。なお、実装ヘッド2は、停止時には、減速開始時から一定の加速度で減速して停止してもよい。 Specifically, the mounting head 2 that performs the mounting operation moves closer to the substrate T10 while the catching unit 21 is catching the component T20. Then, as shown in FIG. 5C, the mounting head 2 suddenly decelerates and stops (sudden stop) when the catching portion 21 moves above the substrate T10. Specifically, when the mounting head 2 reaches the target position (head target position) on the XY plane, the head control section 51 stops the driving of the mounting head 2 by the driving section 4 . The head control unit 51 may start the downward stroke operation of the catching unit 21 before the mounting head 2 reaches the head target position, or may start the downward stroke operation of the catching unit 21 after the mounting head 2 reaches the head target position. Stroke motion may be initiated. When stopping, the mounting head 2 may be decelerated at a constant acceleration from the start of deceleration and then stopped.
 駆動部4によって水平方向に移動している実装ヘッド2がヘッド目標位置に達して水平方向の移動を停止すると、実装ヘッド2に取り付けられている捕捉部21は慣性で振動する。具体的に、捕捉部21の基端(上端)を支点として先端210が振れる。この先端210の振れは、捕捉部21の動作にも影響する。そこで、挙動検出部53は、捕捉部21が移動を停止する前から、捕捉部21の先端210の振動の振幅を検出する。捕捉部21は、X軸、Y軸、Z軸、θの各座標で決まる目標位置(捕捉部目標位置)に到着すると、移動を停止する。 When the mounting head 2 moving in the horizontal direction by the driving part 4 reaches the head target position and stops moving in the horizontal direction, the capturing part 21 attached to the mounting head 2 vibrates due to inertia. Specifically, the distal end 210 swings with the proximal end (upper end) of the catching portion 21 as a fulcrum. This deflection of the tip 210 also affects the operation of the catching portion 21 . Therefore, the behavior detection section 53 detects the amplitude of the vibration of the tip 210 of the catching section 21 before the catching section 21 stops moving. The capturing unit 21 stops moving when it reaches a target position (capturing unit target position) determined by the coordinates of the X-axis, Y-axis, Z-axis, and θ.
 具体的に、挙動検出部53は、下ストローク動作を行っている捕捉部21が捕捉部目標位置に到着する直前(例えば、捕捉部目標位置に所定距離まで近付いたとき)から、捕捉部目標位置に到着するまでを含む検出期間において、先端210の振動の振幅を検出する。そして、挙動検出部53は、先端210の振動の振幅を振動挙動値とする。本実施形態では、振動挙動値は、先端210の振幅の瞬時値である。通常時(捕捉部21の先端210の挙動が不調でないとき)の振動挙動値は、予め決められた許容範囲に収まる。一方、不調時の振動挙動値は、予め決められた許容範囲から外れることがある。 Specifically, the behavior detection unit 53 detects the target position of the catching unit immediately before the catching unit 21 performing the downward stroke operation reaches the target position of the catching unit (for example, when it approaches the target position of the catching unit by a predetermined distance). The amplitude of the vibration of the tip 210 is detected during the detection period up to and including . Then, the behavior detection unit 53 takes the amplitude of the vibration of the tip 210 as the vibration behavior value. In this embodiment, the vibration behavior value is the instantaneous value of the tip 210 amplitude. The vibration behavior value during normal times (when the behavior of the tip 210 of the catching portion 21 is not malfunctioning) falls within a predetermined allowable range. On the other hand, the vibration behavior value during malfunction may deviate from the predetermined allowable range.
 なお、実装動作を行う捕捉部21が捕捉部目標位置に到着すると、捕捉部21に捕捉されている部品T20が実装面T11に接触する。また、捕捉動作を行う捕捉部21が部品供給口63aに近付いて捕捉部目標位置に到着すると、捕捉部21の先端210が部品T20に接触する。すなわち、実装動作における捕捉部目標位置は実装位置に対応し、捕捉動作における捕捉部目標位置は捕捉位置に対応する。 It should be noted that when the catching section 21 that performs the mounting operation reaches the catching section target position, the component T20 that is caught by the catching section 21 comes into contact with the mounting surface T11. Further, when the catching portion 21 that performs the catching operation approaches the component supply port 63a and reaches the catching portion target position, the tip 210 of the catching portion 21 comes into contact with the component T20. That is, the catching part target position in the mounting operation corresponds to the mounting position, and the catching part target position in the catching operation corresponds to the catching position.
 図10Aは、通常時の捕捉部21の先端210の振動V1を示す。図10Bは、通常時の振動V1による振動挙動値W1の時間変化を示す。図10Bでは、時間t21に実装ヘッド2が水平方向の移動を停止し、下降した捕捉部21によって時間t22に部品T20が実装面T11に接触している。通常時の振動挙動値W1は、予め決められた振動許容範囲K10に収まる。振動許容範囲K10は、上限値K11(正値)及び下限値K12(負値)で定義される振幅の範囲である。 FIG. 10A shows the vibration V1 of the tip 210 of the catching portion 21 during normal operation. FIG. 10B shows the change over time of the vibration behavior value W1 due to the vibration V1 during normal operation. In FIG. 10B, the mounting head 2 stops moving in the horizontal direction at time t21, and the component T20 is brought into contact with the mounting surface T11 at time t22 by the lowered catcher 21. In FIG. The normal vibration behavior value W1 falls within a predetermined vibration allowable range K10. The allowable vibration range K10 is an amplitude range defined by an upper limit value K11 (positive value) and a lower limit value K12 (negative value).
 図11Aは、挙動が不調である不調時の捕捉部21の先端210の振動V11を示す。図11Bは、不調時の振動V11による振動挙動値W11の時間変化を示す。図11Bでは、時間t31に実装ヘッド2が水平方向の移動を停止し、下降した捕捉部21によって時間t32に部品T20が実装面T11に接触している。不調時の振動挙動値W11は、振動許容範囲K10から外れることがある。図11Bでは、時間t33、t34において振動挙動値W11が振動許容範囲K10から外れている。 FIG. 11A shows the vibration V11 of the tip 210 of the catching part 21 when the behavior is bad. FIG. 11B shows the change over time of the vibration behavior value W11 due to the vibration V11 during malfunction. In FIG. 11B, the mounting head 2 stops moving in the horizontal direction at time t31, and the component T20 is brought into contact with the mounting surface T11 at time t32 by the lowered catcher 21. In FIG. The vibration behavior value W11 at the time of malfunction may deviate from the vibration allowable range K10. In FIG. 11B, the vibration behavior value W11 is out of the vibration allowable range K10 at times t33 and t34.
 (2.6.4)挙動判定部
 挙動判定部54は、挙動値が許容範囲に収まっているか否かを判定する。
(2.6.4) Behavior Determination Unit The behavior determination unit 54 determines whether or not the behavior value is within the allowable range.
 (ストローク挙動値)
 挙動判定部54は、捕捉部21がストローク動作を開始すると、周期的にストローク挙動値がストローク許容範囲に収まっているか否かを判定する。
(Stroke behavior value)
The behavior determination unit 54 periodically determines whether or not the stroke behavior value falls within the stroke allowable range when the capturing unit 21 starts the stroke motion.
 通常時の捕捉部21のストローク動作では、図6及び図7のストローク挙動値ΔP1、ΔP2、ΔP3のように、ストローク挙動値はストローク許容範囲に収まる。不調時の捕捉部21のストローク動作では、図8及び図9のストローク挙動値ΔP11、ΔP12、ΔP13、ΔP14のように、ストローク許容範囲から外れるストローク挙動値が発生する。挙動判定部54は、ストローク許容範囲から外れるストローク挙動値が発生していれば、捕捉部21の挙動が不調であると判定する。この場合、不調の要因としては、駆動部4への異物の噛み込み、潤滑材の不足などがある。 In the normal stroke operation of the catching unit 21, the stroke behavior values fall within the allowable stroke range, like the stroke behavior values ΔP1, ΔP2, and ΔP3 in FIGS. In the stroke operation of the catching unit 21 during malfunction, stroke behavior values outside the allowable stroke range occur, such as the stroke behavior values ΔP11, ΔP12, ΔP13, and ΔP14 in FIGS. The behavior determination unit 54 determines that the behavior of the catching unit 21 is unsatisfactory if a stroke behavior value outside the allowable stroke range is generated. In this case, the cause of the malfunction may be foreign matter caught in the driving portion 4, lack of lubricant, or the like.
 なお、挙動判定部54は、ストローク許容範囲から外れるストローク挙動値が、予め決められた数(2以上)発生したときに、捕捉部21の挙動が不調であると判定してもよい。 It should be noted that the behavior determination unit 54 may determine that the behavior of the catching unit 21 is bad when a predetermined number (two or more) of stroke behavior values outside the allowable stroke range occur.
 また、挙動判定部54は、ストローク挙動値の平均値に基づいて、捕捉部21の挙動を判定してもよい。 Also, the behavior determination unit 54 may determine the behavior of the capture unit 21 based on the average value of the stroke behavior values.
 (振動挙動値)
 挙動判定部54は、振動挙動値が振動許容範囲に収まっているか否かを判定する。
(Vibration behavior value)
The behavior determination unit 54 determines whether or not the vibration behavior value is within the vibration allowable range.
 通常時の捕捉部21の先端210の振動では、図10Bの振動挙動値W1のように、振動挙動値は振動許容範囲に収まる。不調時の捕捉部21の先端210の振動では、図11Bの振動挙動値W11のように、振動許容範囲K10から外れることがある。挙動判定部54は、振動許容範囲から外れる振動挙動値が発生していれば、捕捉部21の挙動が不調であると判定する。この場合、不調の要因としては、ボルトの緩み、アクチュエータ22を構成する部品の摩耗などがある。 In the normal vibration of the tip 210 of the catching portion 21, the vibration behavior value falls within the vibration allowable range like the vibration behavior value W1 in FIG. 10B. The vibration of the tip 210 of the catching portion 21 during malfunction may deviate from the vibration allowable range K10, as shown by the vibration behavior value W11 in FIG. 11B. The behavior determining unit 54 determines that the behavior of the catching unit 21 is abnormal if a vibration behavior value outside the allowable vibration range is generated. In this case, factors of malfunction include loosening of bolts, wear of parts constituting the actuator 22, and the like.
 なお、挙動判定部54は、振動許容範囲K10から外れる振動挙動値が、予め決められた数(2以上)発生したときに、捕捉部21の挙動が不調であると判定してもよい。また、挙動判定部54は、振動挙動値が振動許容範囲K10に収まっていても、振動挙動値が振動許容範囲K10から外れる予兆(傾向)がある場合には、捕捉部21の挙動の不調の予兆があると判定してもよい。 Note that the behavior determination unit 54 may determine that the behavior of the capture unit 21 is abnormal when a predetermined number (2 or more) of vibration behavior values outside the vibration allowable range K10 occur. Further, even if the vibration behavior value is within the vibration allowable range K10, the behavior determination unit 54 determines whether the behavior of the capturing unit 21 is malfunctioning when there is a sign (tendency) that the vibration behavior value deviates from the vibration allowable range K10. It may be determined that there is an omen.
 また、挙動判定部54は、振動挙動値の平均値に基づいて、捕捉部21の挙動を判定してもよい。 Also, the behavior determination unit 54 may determine the behavior of the capture unit 21 based on the average value of the vibration behavior values.
 (2.6.5)出力部
 出力部55は、挙動値が許容範囲に収まっていなければ、挙動が不調であることを通知する通知信号を出力する。通知信号には、警告、挙動値(ストローク挙動値、及び振動挙動値)と許容範囲(ストローク許容範囲及び振動許容範囲K10)との比較結果、不調の発生状況、及び不調の要因などの情報が含まれる。
(2.6.5) Output Unit The output unit 55 outputs a notification signal indicating that the behavior is unsatisfactory if the behavior value does not fall within the allowable range. The notification signal contains information such as a warning, a comparison result between the behavior value (stroke behavior value and vibration behavior value) and the allowable range (stroke allowable range and vibration allowable range K10), the occurrence of malfunction, and the cause of the malfunction. included.
 具体的に、出力部55は、管理者が使用する設備モニタ、パーソナルコンピュータ、タブレット端末、スマートフォンなどの情報端末に通知信号を出力する。この場合、通知信号は、画像情報を含む信号であり、さらには音声情報を含んでいてもよい。この通知信号は、実装システム1のメンテナンスの実施を管理者に促す信号である。管理者は、情報端末に表示された画像情報を見て、不調の状況を把握して、実装システム1のメンテナンスを行う。すなわち、管理者は、捕捉部21の挙動を通常時の挙動に戻すための適切な対応をとることができる。 Specifically, the output unit 55 outputs the notification signal to information terminals such as equipment monitors, personal computers, tablet terminals, and smartphones used by the administrator. In this case, the notification signal is a signal containing image information and may further contain audio information. This notification signal is a signal that prompts the administrator to perform maintenance on the mounting system 1 . The administrator sees the image information displayed on the information terminal, grasps the state of malfunction, and performs maintenance of the mounting system 1 . In other words, the administrator can take appropriate measures to return the behavior of the capture unit 21 to the normal behavior.
 また、出力部55は、管理システムに通知信号を出力してもよい。この場合、管理システムは、通知信号に基づいて、実装システム1のメンテナンスを行うためのメンテナンススケジューラを更新する。すなわち、管理システムは、捕捉部21の挙動を通常時の挙動に戻すための適切な対応をとることができる。 Also, the output unit 55 may output a notification signal to the management system. In this case, the management system updates the maintenance scheduler for maintenance of the mounting system 1 based on the notification signal. That is, the management system can take appropriate measures to restore the behavior of the capture unit 21 to the normal behavior.
 なお、出力部55は、挙動値が許容範囲に収まっていれば、挙動が通常であることを通知する通知信号を出力してもよい。通知信号には、挙動が通常であることを示す情報、及び挙動値などの情報などが含まれる。 Note that the output unit 55 may output a notification signal notifying that the behavior is normal if the behavior value is within the allowable range. The notification signal includes information indicating that the behavior is normal, information such as a behavior value, and the like.
 (3)利点
 上述のように、実装システム1は、生産動作中の捕捉部21の撮像画像に基づいて、挙動が不調であるか否かを判断する。すなわち、実装システム1は、生産動作とは異なる診断動作などを行うことなく、生産動作中にリアルタイムで挙動が不調であるか否かを判断することができる。したがって、実装システム1は、生産物T3を実際に生産する生産動作において、生産物T3の実装精度に大きく影響する挙動の不調の有無を判断して、挙動が不調であることを通知することができる。この結果、実装システム1は、生産性の低下を抑えながら装置の不調を検知することができる。
(3) Advantages As described above, the mounting system 1 determines whether or not the behavior is abnormal based on the captured image of the capture unit 21 during production operation. That is, the mounting system 1 can determine in real time whether or not the behavior is abnormal during the production operation without performing a diagnostic operation or the like that is different from the production operation. Therefore, the mounting system 1 can determine whether or not there is a malfunction in the behavior that greatly affects the mounting accuracy of the product T3 in the production operation for actually producing the product T3, and notify that the behavior is malfunctioning. can. As a result, the mounting system 1 can detect malfunction of the device while suppressing a decrease in productivity.
 また、実装システム1は、挙動が不調であることを通知することで、捕捉部21の挙動が、通常時の挙動(好ましい挙動)から外れたことを、管理者又は管理システムに通知できる。「不調」とは、異常だけでなく、調子が悪い状態も含む。また、「通常時の挙動」とは、捕捉部21の位置決め精度を所定精度以上に保つことができる挙動である。管理者又は管理システムは、挙動が不調であることを通知されると、捕捉部21の挙動を通常時の挙動に戻すための対応をとることができる。この結果、実装システム1は、捕捉部21の挙動が通常時の挙動から外れることを抑制して、装置の不調による生産性の低下を抑えることができる。 In addition, the implementation system 1 can notify the administrator or the management system that the behavior of the capturing unit 21 deviates from the normal behavior (preferred behavior) by notifying that the behavior is unsatisfactory. The term “malfunction” includes not only abnormalities but also poor conditions. Also, the “normal behavior” is a behavior that can maintain the positioning accuracy of the catching portion 21 at a predetermined accuracy or higher. When notified that the behavior is not good, the administrator or management system can take measures to restore the behavior of the capture unit 21 to the normal behavior. As a result, the mounting system 1 can suppress the behavior of the capture unit 21 from deviating from the normal behavior, thereby suppressing a decrease in productivity due to malfunction of the device.
 また、従来は、決められた周期で定期的に実装システムのメンテナンスを実施していた。しかし、従来のメンテナンス方法では、メンテナンスの頻度を減らすことができず、管理者又は作業者などのオペレータの負担を軽減させることができなかった。従来のメンテナンス方法は、実装システムの性能の低下が許容できなくなる前にメンテナンスを実施できるように、メンテナンス周期を、実装システムの性能を確保可能な期間より短い周期としている。このため、オペレータの独断でメンテナンスの実施タイミングを変更すると、実装システムの性能を維持できない可能性がある。 Also, in the past, maintenance of the mounting system was carried out periodically at a determined cycle. However, with conventional maintenance methods, the frequency of maintenance cannot be reduced, and the burden on operators such as administrators and workers cannot be reduced. In the conventional maintenance method, the maintenance cycle is set to be shorter than the period during which the performance of the mounting system can be ensured so that maintenance can be performed before the deterioration of the performance of the mounting system becomes unacceptable. Therefore, if the operator decides to change the maintenance execution timing, there is a possibility that the performance of the mounting system cannot be maintained.
 一方、実装システム1は、生産動作中の挙動に基づいて不調の予兆を検知し、実装システム1にとって必要なタイミングで、メンテナンスの実施を指示することができる。この結果、適切なタイミングでのメンテナンスが可能となるため、実装システム1の性能を維持しながらメンテナンスの頻度を低減でき、オペレータの作業負荷が軽減される。また、メンテナンスに実施が遅くなって、実装システム1の性能が低下し過ぎることも抑制できる。 On the other hand, the mounting system 1 can detect signs of malfunction based on the behavior during production operation, and can instruct the implementation of maintenance at the timing necessary for the mounting system 1 . As a result, since maintenance can be performed at appropriate timing, the frequency of maintenance can be reduced while maintaining the performance of the mounting system 1, and the operator's workload is reduced. In addition, it is possible to prevent the performance of the mounting system 1 from deteriorating excessively due to delays in maintenance.
 (4)実装方法
 上述の実装システム1が実行する実装方法をまとめると、図12のフローチャートで表される。
(4) Mounting Method The mounting method executed by the mounting system 1 described above is summarized in the flow chart of FIG.
 実装方法は、基板T10に部品T20が実装されている生産物T3を生産する生産動作を行う。実装方法は、撮像ステップS1と、挙動検出ステップS2と、挙動判定ステップS3と、出力ステップS4と、を含む。撮像ステップS1では、撮像部3が、実装ヘッド2に設けられて部品T20を捕捉可能な捕捉部21を生産動作中に撮像する。挙動検出ステップS2では、挙動検出部53が、撮像ステップS1で撮像された撮像画像に基づいて、生産動作中の捕捉部21の挙動に対応する挙動値を求める。挙動判定ステップS3では、挙動判定部54が、挙動値が許容範囲に収まっているか否かを判定する。出力ステップS4では、出力部55が、挙動値が許容範囲に収まっていなければ、挙動が不調であることを通知する。 The mounting method performs a production operation to produce a product T3 in which the component T20 is mounted on the board T10. The implementation method includes an imaging step S1, a behavior detection step S2, a behavior determination step S3, and an output step S4. In the image capturing step S1, the image capturing unit 3 captures an image of the capturing unit 21 provided in the mounting head 2 and capable of capturing the component T20 during the production operation. At the behavior detection step S2, the behavior detection unit 53 obtains a behavior value corresponding to the behavior of the capture unit 21 during the production operation based on the captured image captured at the imaging step S1. In the behavior determination step S3, the behavior determination unit 54 determines whether or not the behavior value is within the allowable range. In the output step S4, the output unit 55 notifies that the behavior is not good if the behavior value is not within the allowable range.
 上述の実装方法は、生産物T3を実際に生産する生産動作において、生産物T3の実装精度に大きく影響する挙動の不調の有無を判断して、挙動が不調であることを通知することができる。この結果、実装方法は、生産性の低下を抑えながら装置の不調を検知することができる。 The mounting method described above can determine whether or not there is a malfunction in the behavior that greatly affects the mounting accuracy of the product T3 in the production operation for actually producing the product T3, and can notify that the behavior is malfunctioning. . As a result, the mounting method can detect malfunction of the apparatus while suppressing a decrease in productivity.
 また、実装方法は、挙動が不調であることを通知することで、捕捉部21の挙動が通常時の挙動から外れることを抑制して、装置の不調による生産性の低下を抑えることができる。 In addition, the implementation method can suppress the behavior of the capture unit 21 from deviating from the normal behavior by notifying that the behavior is malfunctioning, thereby suppressing the decrease in productivity due to the malfunction of the device.
 また、実装方法は、実装システム1の性能を維持しながらメンテナンスの頻度を低減でき、オペレータの作業負荷が軽減される。また、メンテナンスに実施が遅くなって、実装システム1の性能が低下し過ぎることも抑制できる。 In addition, the mounting method can reduce the frequency of maintenance while maintaining the performance of the mounting system 1, thus reducing the workload of the operator. In addition, it is possible to prevent the performance of the mounting system 1 from deteriorating excessively due to delays in maintenance.
 (5)第1変形例
 上述のストローク挙動値は、鉛直方向における捕捉部21の先端210の位置であってもよい。先端210の位置は、捕捉部21の鉛直方向の移動距離であるストローク量で表される。この場合、ストローク挙動値は、ストローク量となる。挙動が不調でない通常時の捕捉部21のストローク動作では、捕捉部21は、ほぼ等加速度で鉛直方向に移動する。したがって、ストローク挙動値(ストローク量)は、ストローク開始からの経過時間に応じて予め決められた許容範囲に収まる。一方、不調時の捕捉部21のストローク動作では、捕捉部21は、通常時よりも速い速度又は遅い速度で鉛直方向に移動したり、鉛直方向に移動する加速度のばらつきが通常時よりも大きくなったりする。したがって、予め決められた許容範囲から外れるストローク挙動値が発生する。
(5) First Modification The stroke behavior value described above may be the position of the tip 210 of the catching portion 21 in the vertical direction. The position of the tip 210 is represented by the stroke amount, which is the moving distance of the catching portion 21 in the vertical direction. In this case, the stroke behavior value is the stroke amount. In the normal stroke operation of the catching part 21 when the behavior is not bad, the catching part 21 moves in the vertical direction with substantially uniform acceleration. Therefore, the stroke behavior value (stroke amount) falls within a predetermined allowable range according to the elapsed time from the start of the stroke. On the other hand, in the stroke operation of the catching portion 21 in the malfunction state, the catching portion 21 moves in the vertical direction at a faster or slower speed than in the normal state, or the dispersion of the acceleration in the vertical direction becomes larger than in the normal state. or Therefore, stroke behavior values occur that fall outside the predetermined tolerance range.
 そこで、挙動判定部54は、捕捉部21がストローク動作を開始すると、周期的にストローク量(ストローク挙動値)が許容範囲に収まっているか否かを判定する。この場合、挙動判定部54は、図13に示すように、ストローク量L1に対してストローク許容範囲K20を設定する。ストローク許容範囲K20は、ストローク開始からの経過時間に応じて予め決められており、ストローク許容範囲は、ストローク量L1の設計値を中心とする所定範囲(例えば±10%)に設定されている。挙動判定部54は、ストローク許容範囲K20から外れるストローク量L1が発生していれば、捕捉部21の挙動が不調であると判定する。挙動判定部54は、ストローク許容範囲K20から外れるストローク量L1が発生していなければ、捕捉部21の挙動は不調でないと判定する。 Therefore, when the catching unit 21 starts the stroke operation, the behavior determination unit 54 periodically determines whether the stroke amount (stroke behavior value) is within the allowable range. In this case, the behavior determination unit 54 sets an allowable stroke range K20 for the stroke amount L1, as shown in FIG. The permissible stroke range K20 is predetermined according to the elapsed time from the start of the stroke, and the permissible stroke range is set within a predetermined range (eg ±10%) around the design value of the stroke amount L1. The behavior determination unit 54 determines that the behavior of the catching unit 21 is not good if the stroke amount L1 is out of the allowable stroke range K20. The behavior determination unit 54 determines that the behavior of the catching unit 21 is normal if the stroke amount L1 that deviates from the allowable stroke range K20 does not occur.
 (6)第2変形例
 図14は、撮像部3の変形例を示す。
(6) Second Modification FIG. 14 shows a modification of the imaging section 3 .
 図14の撮像部3は2つの移動カメラ3b、3cを備える。移動カメラ3b、3cは、Y軸方向に沿って並んで配置された、所謂ステレオカメラである。したがって、撮像部3は、水平方向における捕捉部21の挙動、及び鉛直方向における捕捉部21の挙動を撮像することができる。 The imaging unit 3 in FIG. 14 includes two moving cameras 3b and 3c. The moving cameras 3b and 3c are so-called stereo cameras arranged side by side along the Y-axis direction. Therefore, the imaging unit 3 can capture the behavior of the capturing unit 21 in the horizontal direction and the behavior of the capturing unit 21 in the vertical direction.
 (7)第3変形例
 挙動検出部53は、検出対象となるストローク動作として、実装動作及び捕捉動作のそれぞれで行われる下ストローク動作、及び実装動作及び捕捉動作のそれぞれの後に行われる上ストローク動作を含む。
(7) Third Modified Example The behavior detection unit 53 detects, as stroke motions to be detected, a downward stroke motion performed in each of the mounting motion and the capturing motion, and an upward stroke motion performed after each of the mounting motion and the capturing motion. including.
 また、挙動検出部53は、検出対象となる捕捉部21の先端210の挙動として、実装動作のために捕捉部21が基板T10の上方で停止するときの挙動、及び捕捉動作のために捕捉部21が部品供給口63aの上方で停止するときの挙動を含む。 In addition, the behavior detection unit 53 detects the behavior of the tip 210 of the catching unit 21 to be detected as the behavior when the catching unit 21 stops above the substrate T10 for the mounting operation, and the behavior when the catching unit 21 stops above the substrate T10 for the catching operation. 21 stops above the parts supply port 63a.
 また、捕捉部21と基板T10などの第1対象物T1との相対的な位置は、Z軸に沿った上下方向に対向する構成に限定されない。すなわち、捕捉部21と第1対象物T1との相対的な位置は、水平方向に対向する構成などの他の構成であってもよい。 Also, the relative positions of the capturing part 21 and the first target object T1 such as the substrate T10 are not limited to the configuration in which they face each other in the vertical direction along the Z-axis. That is, the relative positions of the capturing part 21 and the first target object T1 may be other configurations such as a configuration in which they face each other in the horizontal direction.
 また、上述の実施形態、及び各変形例で説明した構成は、適宜組み合わせて適用可能である。 Also, the configurations described in the above-described embodiment and each modified example can be applied in combination as appropriate.
 (8)まとめ
 実施形態に係る第1の態様の実装システム(1)は、第1対象物(T1)に第2対象物(T2)を実装する生産動作を行う。実装システム(1)は、実装ヘッド(2)と、撮像部(3)と、挙動検出部(53)と、挙動判定部(54)と、出力部(55)と、を備える。実装ヘッド(2)は、第2対象物(T2)を捕捉可能な捕捉部(21)を有する。撮像部(3)は、生産動作中の捕捉部(21)を撮像する。挙動検出部(53)は、撮像部(3)の撮像画像に基づいて、生産動作中の捕捉部(21)の挙動に対応する挙動値(ΔP1~ΔP3、ΔP11~ΔP14、W1、W11、L1)を求める。挙動判定部(54)は、挙動値(ΔP1~ΔP3、ΔP11~ΔP14、W1、W11,L1)が許容範囲(K10、K20)に収まっているか否かを判定する。出力部(55)は、挙動値(ΔP1~ΔP3、ΔP11~ΔP14、W1、W11、L1)が許容範囲(K10、K20)に収まっていなければ、挙動が不調であることを通知する。
(8) Summary The mounting system (1) of the first aspect according to the embodiment performs a production operation of mounting the second object (T2) on the first object (T1). A mounting system (1) includes a mounting head (2), an imaging section (3), a behavior detection section (53), a behavior determination section (54), and an output section (55). The mounting head (2) has a capturing part (21) capable of capturing the second object (T2). The imaging unit (3) images the capturing unit (21) during production operation. A behavior detector (53) detects behavior values (ΔP1 to ΔP3, ΔP11 to ΔP14, W1, W11, L1 ). A behavior determination unit (54) determines whether or not the behavior values (ΔP1 to ΔP3, ΔP11 to ΔP14, W1, W11, L1) are within allowable ranges (K10, K20). If the behavior values (ΔP1 to ΔP3, ΔP11 to ΔP14, W1, W11, L1) are not within the allowable range (K10, K20), the output section (55) notifies that the behavior is not good.
 上述の実装システム(1)は、生産性の低下を抑えながら装置の不調を検知することができる。 The mounting system (1) described above can detect equipment malfunctions while suppressing productivity declines.
 実施形態に係る第2の態様の実装システム(1)では、第1の態様において、挙動は、捕捉部(21)のストローク動作を含むことが好ましい。 In the mounting system (1) of the second aspect according to the embodiment, in the first aspect, the behavior preferably includes a stroke motion of the catching part (21).
 上述の実装システム(1)は、ストローク動作の精度を向上させることができる。 The mounting system (1) described above can improve the accuracy of the stroke motion.
 実施形態に係る第3の態様の実装システム(1)では、第2の態様において、挙動検出部(53)は、ストローク動作を行っている捕捉部(21)の時間経過に対するストローク量の変化を示すストローク挙動データを作成する。そして、挙動検出部(53)は、ストローク挙動データに基づいて挙動値(ΔP1~ΔP3、ΔP11~ΔP14、L1)を求めることが好ましい。 In the mounting system (1) of the third aspect according to the embodiment, in the second aspect, the behavior detection section (53) detects the change in the stroke amount over time of the capturing section (21) performing the stroke motion. Create stroke behavior data to show. The behavior detector (53) preferably obtains behavior values (ΔP1 to ΔP3, ΔP11 to ΔP14, L1) based on the stroke behavior data.
 上述の実装システム(1)は、ストローク動作の精度に対応する挙動値(ΔP1~ΔP3、ΔP11~ΔP14、L1)を求めることができる。 The mounting system (1) described above can obtain behavior values (ΔP1 to ΔP3, ΔP11 to ΔP14, L1) corresponding to stroke motion accuracy.
 実施形態に係る第4の態様の実装システム(1)では、第3の態様において、挙動値(ΔP1~ΔP3、ΔP11~ΔP14)は、ストローク量の単位時間(ta)当たりの変化量であることが好ましい。 In the mounting system (1) of the fourth aspect according to the embodiment, in the third aspect, the behavior values (ΔP1 to ΔP3, ΔP11 to ΔP14) are changes in stroke amount per unit time (ta). is preferred.
 上述の実装システム(1)は、ストローク動作に対応する挙動値(ΔP1~ΔP3、ΔP11~ΔP14)を求めることができる。 The mounting system (1) described above can obtain the behavior values (ΔP1 to ΔP3, ΔP11 to ΔP14) corresponding to the stroke motion.
 実施形態に係る第5の態様の実装システム(1)では、第2乃至第4の態様のいずれか1つにおいて、ストローク動作は、捕捉部(21)が鉛直方向に移動する動作であることが好ましい。 In the mounting system (1) of the fifth aspect according to the embodiment, in any one of the second to fourth aspects, the stroke motion is a motion of moving the catching part (21) in the vertical direction. preferable.
 上述の実装システム(1)は、実装動作及び捕捉動作の精度を向上させることができる。 The mounting system (1) described above can improve the accuracy of the mounting operation and the capturing operation.
 実施形態に係る第6の態様の実装システム(1)では、第1乃至第5の態様のいずれか1つにおいて、挙動は、捕捉部(21)の先端(210)の挙動を含むことが好ましい。 In the mounting system (1) of the sixth aspect according to the embodiment, in any one of the first to fifth aspects, the behavior preferably includes the behavior of the tip (210) of the catching part (21) .
 上述の実装システム(1)は、捕捉部(21)の先端(210)の挙動に影響される生産動作の精度を向上させることができる。 The mounting system (1) described above can improve the accuracy of production operations that are affected by the behavior of the tip (210) of the catching part (21).
 実施形態に係る第7の態様の実装システム(1)では、第6の態様において、挙動検出部(53)は、捕捉部(21)が移動を停止する前から挙動値(W1、W11)を求めることが好ましい。 In the mounting system (1) of the seventh aspect according to the embodiment, in the sixth aspect, the behavior detection unit (53) detects the behavior values (W1, W11) before the capture unit (21) stops moving. It is preferable to ask
 上述の実装システム(1)は、先端(210)の挙動に対応する挙動値(W1、W11)を求めることができる。 The mounting system (1) described above can obtain behavior values (W1, W11) corresponding to the behavior of the tip (210).
 実施形態に係る第8の態様の実装システム(1)では、第6又は第7の態様において、捕捉部(21)の先端(210)の挙動は、先端(210)の振動(V1、V11)であることが好ましい。 In the mounting system (1) of the eighth aspect according to the embodiment, in the sixth or seventh aspect, the behavior of the tip (210) of the catching part (21) is the vibration (V1, V11) of the tip (210) is preferably
 上述の実装システム(1)は、捕捉部(21)の先端(210)の振動に影響される生産動作の精度を向上させることができる。 The mounting system (1) described above can improve the accuracy of production operations affected by the vibration of the tip (210) of the catch (21).
 実施形態に係る第9の態様の実装システム(1)では、第8の態様において、挙動値(W1、W11)は、振動(V1、V11)の振幅であることが好ましい。 In the mounting system (1) of the ninth aspect according to the embodiment, in the eighth aspect, the behavior values (W1, W11) are preferably the amplitudes of the vibrations (V1, V11).
 上述の実装システム(1)は、捕捉部(21)の先端(210)の挙動に対応する挙動値(W1、W11)を求めることができる。 The mounting system (1) described above can obtain behavior values (W1, W11) corresponding to the behavior of the tip (210) of the catching part (21).
 実施形態に係る第10の態様の実装システム(1)では、第1乃至第9の態様のいずれか1つにおいて、撮像部(3)は、水平方向における捕捉部(21)の挙動、及び鉛直方向における捕捉部(21)の挙動を撮像可能に構成されていることが好ましい。 In the mounting system (1) of the tenth aspect according to the embodiment, in any one of the first to ninth aspects, the imaging unit (3) controls the behavior of the capturing unit (21) in the horizontal direction and the behavior in the vertical direction. It is preferable that the behavior of the capture section (21) in the direction can be imaged.
 上述の実装システム(1)は、捕捉部(21)の挙動を精度よく検出できる。 The mounting system (1) described above can accurately detect the behavior of the capture unit (21).
 実施形態に係る第11の態様の実装システム(1)では、第10の態様において、捕捉部(21)は、鉛直方向に移動し、撮像部(3)の撮像方向は、鉛直方向に交差することが好ましい。 In the mounting system (1) of the eleventh aspect according to the embodiment, in the tenth aspect, the capture unit (21) moves in the vertical direction, and the imaging direction of the imaging unit (3) intersects the vertical direction. is preferred.
 上述の実装システム(1)は、捕捉部(21)の挙動を精度よく検出できる。 The mounting system (1) described above can accurately detect the behavior of the capture unit (21).
 実施形態に係る第12の態様の実装システム(1)では、第1乃至第11の態様のいずれか1つにおいて、撮像部(3)は、実装ヘッド(2)と同期して移動することが好ましい。 In the mounting system (1) of the twelfth aspect according to the embodiment, in any one of the first to eleventh aspects, the imaging unit (3) can move in synchronization with the mounting head (2). preferable.
 上述の実装システム(1)は、捕捉部(21)の挙動を容易に検出できる。 The implementation system (1) described above can easily detect the behavior of the capture unit (21).
 実施形態に係る第13の態様の実装システム(1)では、第12の態様において、捕捉部(21)及び撮像部(3)が取り付けられているヘッドユニット(23)を更に備える。 The mounting system (1) of the thirteenth aspect according to the embodiment, in the twelfth aspect, further comprises a head unit (23) to which the capturing section (21) and the imaging section (3) are attached.
 上述の実装システム(1)は、捕捉部(21)の挙動を容易に検出できる。 The implementation system (1) described above can easily detect the behavior of the capture unit (21).
 実施形態に係る第14の態様の実装方法は、第1対象物(T1)に第2対象物(T2)を実装する生産動作を行う。実装方法は、撮像ステップ(S1)と、挙動検出ステップ(S2)と、挙動判定ステップ(S3)と、出力ステップ(S4)と、を含む。撮像ステップ(S1)は、実装ヘッド(2)に設けられて第2対象物(T2)を捕捉可能な捕捉部(21)を生産動作中に撮像する。挙動検出ステップ(S2)は、撮像ステップ(S1)で撮像された撮像画像に基づいて、生産動作中の捕捉部(21)の挙動に対応する挙動値(ΔP1~ΔP3、ΔP11~ΔP14、W1、W11、L1)を求める。挙動判定ステップ(S3)は、挙動値(ΔP1~ΔP3、ΔP11~ΔP14、W1、W11、L1)が許容範囲(K10、K20)に収まっているか否かを判定する。出力ステップ(S4)は、挙動値(ΔP1~ΔP3、ΔP11~ΔP14、W1、W11、L1)が許容範囲(K10、K20)に収まっていなければ、挙動が不調であることを通知する。 The mounting method of the fourteenth aspect according to the embodiment performs the production operation of mounting the second target (T2) on the first target (T1). The implementation method includes an imaging step (S1), a behavior detection step (S2), a behavior determination step (S3), and an output step (S4). The image capturing step (S1) captures an image of a capture unit (21) provided in the mounting head (2) and capable of capturing a second object (T2) during production operation. In the behavior detection step (S2), behavior values (ΔP1 to ΔP3, ΔP11 to ΔP14, W1, W11, L1) are obtained. The behavior determination step (S3) determines whether the behavior values (ΔP1 to ΔP3, ΔP11 to ΔP14, W1, W11, L1) are within the allowable range (K10, K20). If the behavior values (ΔP1 to ΔP3, ΔP11 to ΔP14, W1, W11, L1) are not within the allowable range (K10, K20), the output step (S4) notifies that the behavior is bad.
 上述の実装方法は、生産性の低下を抑えながら装置の不調を検知することができる。 The implementation method described above can detect equipment malfunctions while suppressing productivity declines.
 1 実装システム
 2 実装ヘッド
 21 捕捉部
 210 先端
 23 ヘッドユニット
 3 撮像部
 53 挙動検出部
 54 挙動判定部
 55 出力部
 T1 第1対象物
 T2 第2対象物
 ΔP1~ΔP3、ΔP11~ΔP14、L1 ストローク挙動値(挙動値)
 W1、W11 振動挙動値(挙動値)
 K10 振動許容範囲(許容範囲)
 K20 ストローク許容範囲(許容範囲)
 ta 単位時間
 V1、V11 振動
 S1 撮像ステップ
 S2 挙動検出ステップ
 S3 挙動判定ステップ
 S4 出力ステップ
1 mounting system 2 mounting head 21 capturing unit 210 tip 23 head unit 3 imaging unit 53 behavior detection unit 54 behavior determination unit 55 output unit T1 first object T2 second object ΔP1 to ΔP3, ΔP11 to ΔP14, L1 stroke behavior value (behavior value)
W1, W11 Vibration behavior value (behavior value)
K10 Vibration tolerance (permissible range)
K20 stroke tolerance (permissible range)
ta Unit time V1, V11 Vibration S1 Imaging step S2 Behavior detection step S3 Behavior determination step S4 Output step

Claims (14)

  1.  第1対象物に第2対象物を実装する生産動作を行う実装システムであって、
     前記第2対象物を捕捉可能な捕捉部を有する実装ヘッドと、
     前記生産動作中の前記捕捉部を撮像する撮像部と、
     前記撮像部の撮像画像に基づいて、前記生産動作中の前記捕捉部の挙動に対応する挙動値を求める挙動検出部と、
     前記挙動値が許容範囲に収まっているか否かを判定する挙動判定部と、
     前記挙動値が許容範囲に収まっていなければ、前記挙動が不調であることを通知する出力部と、を備える
     実装システム。
    A mounting system that performs a production operation for mounting a second object on a first object,
    a mounting head having a capturing portion capable of capturing the second object;
    an imaging unit that images the capturing unit during the production operation;
    a behavior detection unit that obtains a behavior value corresponding to the behavior of the capturing unit during the production operation based on the captured image of the imaging unit;
    a behavior determination unit that determines whether the behavior value is within an allowable range;
    an output unit that notifies that the behavior is unsatisfactory if the behavior value does not fall within an allowable range.
  2.  前記挙動は、前記捕捉部のストローク動作を含む
     請求項1の実装システム。
    2. The mounting system of claim 1, wherein the behavior includes stroking motion of the catch.
  3.  前記挙動検出部は、
      前記ストローク動作を行っている前記捕捉部の時間経過に対するストローク量の変化を示すストローク挙動データを作成し、
      前記ストローク挙動データに基づいて前記挙動値を求める
     請求項2の実装システム。
    The behavior detection unit is
    creating stroke behavior data indicating a change in stroke amount over time of the catching portion performing the stroke operation;
    3. The mounting system of claim 2, wherein the behavior value is obtained based on the stroke behavior data.
  4.  前記挙動値は、前記ストローク量の単位時間当たりの変化量である
     請求項3の実装システム。
    4. The mounting system according to claim 3, wherein the behavior value is an amount of change in the stroke amount per unit time.
  5.  前記ストローク動作は、前記捕捉部が鉛直方向に移動する動作である
     請求項2乃至4のいずれか1つの実装システム。
    5. The mounting system according to any one of claims 2 to 4, wherein the stroking motion is a motion of moving the catching part in a vertical direction.
  6.  前記挙動は、前記捕捉部の先端の挙動を含む
     請求項1の実装システム。
    The mounting system according to claim 1, wherein the behavior includes behavior of the tip of the trap.
  7.  前記挙動検出部は、前記捕捉部が移動を停止する前から前記挙動値を求める
     請求項6の実装システム。
    7. The mounting system according to claim 6, wherein the behavior detection unit obtains the behavior value before the capture unit stops moving.
  8.  前記捕捉部の前記先端の挙動は、前記先端の振動である
     請求項6又は7の実装システム。
    The mounting system according to claim 6 or 7, wherein the behavior of the tip of the catching part is vibration of the tip.
  9.  前記挙動値は、前記振動の振幅である
     請求項8の実装システム。
    9. The mounting system of claim 8, wherein the behavior value is the amplitude of the vibration.
  10.  前記撮像部は、水平方向における前記捕捉部の挙動、及び鉛直方向における前記捕捉部の挙動を撮像可能に構成されている
     請求項1、2、6のいずれか1つの実装システム。
    7. The mounting system according to any one of claims 1, 2, and 6, wherein the imaging section is configured to be capable of imaging the behavior of the capturing section in a horizontal direction and the behavior of the capturing section in a vertical direction.
  11.  前記捕捉部は、鉛直方向に移動し、
     前記撮像部の撮像方向は、前記鉛直方向に交差する
     請求項10の実装システム。
    The trap moves vertically,
    11. The mounting system according to claim 10, wherein an imaging direction of said imaging unit intersects with said vertical direction.
  12.  前記撮像部は、前記実装ヘッドと同期して移動する
     請求項1の実装システム。
    2. The mounting system according to claim 1, wherein said imaging unit moves in synchronization with said mounting head.
  13.  前記捕捉部及び前記撮像部はヘッドユニットに取り付けられている
     請求項12の実装システム。
    13. The mounting system according to claim 12, wherein said capturing unit and said imaging unit are attached to a head unit.
  14.  第1対象物に第2対象物を実装する生産動作を行う実装方法であって、
     実装ヘッドに設けられて前記第2対象物を捕捉可能な捕捉部を前記生産動作中に撮像する撮像ステップと、
     前記撮像ステップで撮像された撮像画像に基づいて、前記生産動作中の前記捕捉部の挙動に対応する挙動値を求める挙動検出ステップと、
     前記挙動値が許容範囲に収まっているか否かを判定する挙動判定ステップと、
     前記挙動値が許容範囲に収まっていなければ、前記挙動が不調であることを通知する出力ステップと、を含む
     実装方法。
    A mounting method for performing a production operation of mounting a second object on a first object,
    an image capturing step of capturing an image of a capture unit provided in the mounting head and capable of capturing the second object during the production operation;
    a behavior detection step of obtaining a behavior value corresponding to the behavior of the capturing unit during the production operation based on the captured image captured in the imaging step;
    a behavior determination step of determining whether the behavior value is within an allowable range;
    an output step of notifying that the behavior is unhealthy if the behavior value is not within an acceptable range.
PCT/JP2023/003702 2022-02-08 2023-02-06 Mounting system and mounting method WO2023153341A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380012591.1A CN117598038A (en) 2022-02-08 2023-02-06 Mounting system and mounting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022018237 2022-02-08
JP2022-018237 2022-02-08

Publications (1)

Publication Number Publication Date
WO2023153341A1 true WO2023153341A1 (en) 2023-08-17

Family

ID=87564390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003702 WO2023153341A1 (en) 2022-02-08 2023-02-06 Mounting system and mounting method

Country Status (2)

Country Link
CN (1) CN117598038A (en)
WO (1) WO2023153341A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098411A (en) * 2006-10-12 2008-04-24 Juki Corp Carrying-component inspecting method
JP2010010463A (en) * 2008-06-27 2010-01-14 Juki Corp Electronic component mounting device
JP2019169678A (en) * 2018-03-26 2019-10-03 パナソニックIpマネジメント株式会社 Mounting head and part mounting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098411A (en) * 2006-10-12 2008-04-24 Juki Corp Carrying-component inspecting method
JP2010010463A (en) * 2008-06-27 2010-01-14 Juki Corp Electronic component mounting device
JP2019169678A (en) * 2018-03-26 2019-10-03 パナソニックIpマネジメント株式会社 Mounting head and part mounting device

Also Published As

Publication number Publication date
CN117598038A (en) 2024-02-23

Similar Documents

Publication Publication Date Title
JP2015162519A (en) Device and method for mounting electronic component
JP4348343B2 (en) Component mounter
JP2007214212A (en) Method, program and device for packaging state determination and packaging method
JP2008091815A (en) Mounting machine, and components imaging method thereof
JP2016096174A (en) Component mounting machine and component mounting head
WO2023153341A1 (en) Mounting system and mounting method
CN210121750U (en) Assembling device
WO2021205980A1 (en) Mounting system, mounting method, and program
WO2021125102A1 (en) Mounting system and mounting method
JP2023115818A (en) Mounting system and mounting method
JP4809251B2 (en) Implementation method
JP2017191888A (en) Component mounting machine and component mounting head
JP2017005217A (en) Insertion component mounting method and insertion component mounting device
JP2024034498A (en) Implementation system, and implementation method
JP2024034496A (en) Implementation system, and implementation method
JP2022175449A (en) Mounting system, mounting method, and correction system
WO2023163027A1 (en) Mounting system and mounting method
WO2023276309A1 (en) Operating system, drive system, parameter setting method and program
JP6804653B2 (en) Parts allocation device
CN116889112A (en) Mounting system and mounting method
US11330751B2 (en) Board work machine
WO2021060065A1 (en) Mounting system, head unit, and imaging method
WO2021060064A1 (en) Mounting system, head unit, and imaging method
JP2024066869A (en) Component mounting method and component mounting system
WO2022049875A1 (en) Mounting system, mounting method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752806

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202380012591.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023580227

Country of ref document: JP