WO2023153076A1 - ズームレンズ、および撮像装置 - Google Patents

ズームレンズ、および撮像装置 Download PDF

Info

Publication number
WO2023153076A1
WO2023153076A1 PCT/JP2022/046159 JP2022046159W WO2023153076A1 WO 2023153076 A1 WO2023153076 A1 WO 2023153076A1 JP 2022046159 W JP2022046159 W JP 2022046159W WO 2023153076 A1 WO2023153076 A1 WO 2023153076A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
zoom lens
zoom
aberration
Prior art date
Application number
PCT/JP2022/046159
Other languages
English (en)
French (fr)
Inventor
涼平 田崎
悠真 組澤
比呂生 重里
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2023153076A1 publication Critical patent/WO2023153076A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length

Definitions

  • the present disclosure relates to zoom lenses and imaging devices.
  • Patent Document 1 a high-performance, compact wide-angle zoom lens has been proposed (Patent Document 1).
  • the zoom lens proposed in Patent Document 1 is a retrofocus type consisting of a first lens group with negative refractive power and a rear lens group with positive refractive power, and has an optimum power configuration for a short back focus. By doing so, miniaturization is achieved.
  • Japanese Patent Laid-Open No. 2002-300003 proposes a zoom lens of a retrofocus type having a first lens group with negative refractive power, and having a high zoom ratio with an extended focal length on the telephoto end side.
  • the zoom lens proposed in Patent Document 1 provides a compact and high-performance zoom lens with a wide angle of view, but the zoom ratio is insufficient.
  • the zoom lens proposed in Patent Document 2 has a retrofocus type configuration similar to that of Patent Document 1, and achieves a high zoom ratio. is large and miniaturization is insufficient.
  • a zoom lens according to an embodiment of the present disclosure is composed of two or less lenses in order from an object side to an image plane side, a first lens group having a positive refractive power and a lens group having a negative refractive power. a second lens group having positive refractive power; a third lens group having positive refractive power; a fourth lens group having positive refractive power; and a fifth lens group having negative refractive power.
  • An imaging device includes a zoom lens and an imaging device that outputs an imaging signal corresponding to an optical image formed by the zoom lens, and the zoom lens is the It is configured by a zoom lens according to the form.
  • the configuration of each lens group is optimized so as to achieve compactness, high performance, and a high zoom ratio. .
  • FIG. 1 is a lens cross-sectional view showing a first configuration example (Example 1) of a zoom lens according to an embodiment of the present disclosure.
  • FIG. 2 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 1 at the wide-angle end and in focus at infinity.
  • FIG. 3 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 1 at an intermediate position and in focus at infinity.
  • FIG. 4 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 1 at the telephoto end and at the time of focusing at infinity.
  • FIG. 5 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 1 at the wide-angle end and during focusing at a short distance.
  • FIG. 1 is a lens cross-sectional view showing a first configuration example (Example 1) of a zoom lens according to an embodiment of the present disclosure.
  • FIG. 2 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 1 at the wide-angle end and in focus at in
  • FIG. 6 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 1 at an intermediate position and during focusing at a short distance.
  • FIG. 7 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 1 at the telephoto end and during focusing at a short distance.
  • FIG. 8 is an aberration diagram showing lateral aberration of the zoom lens according to Example 1 at the wide-angle end and in focus at infinity.
  • FIG. 9 is an aberration diagram showing lateral aberration of the zoom lens according to Example 1 at an intermediate position and in focus at infinity.
  • FIG. 10 is an aberration diagram showing lateral aberration of the zoom lens according to Example 1 at the telephoto end and in focus at infinity.
  • FIG. 11 is an aberration diagram showing lateral aberration of the zoom lens according to Example 1 at the wide-angle end and during focusing at a short distance.
  • FIG. 12 is an aberration diagram showing lateral aberration of the zoom lens according to Example 1 at an intermediate position and during focusing at a short distance.
  • FIG. 13 is an aberration diagram showing lateral aberration of the zoom lens according to Example 1 at the telephoto end and at the time of focusing at a short distance.
  • FIG. 14 is a lens cross-sectional view showing a second configuration example (Example 2) of the zoom lens according to one embodiment.
  • FIG. 15 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 2 at the wide-angle end and in focus at infinity.
  • FIG. 16 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 2 at an intermediate position and in focus at infinity.
  • FIG. 17 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 2 at the telephoto end and in focus at infinity.
  • FIG. 18 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 2 at the wide-angle end and during focusing at a short distance.
  • FIG. 19 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 2 at an intermediate position and during focusing at a short distance.
  • FIG. 20 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 2 at the telephoto end and during focusing at a short distance.
  • FIG. 21 is an aberration diagram showing lateral aberration of the zoom lens according to Example 2 at the wide-angle end and in focus at infinity.
  • FIG. 22 is an aberration diagram showing lateral aberration of the zoom lens according to Example 2 at an intermediate position and in focus at infinity.
  • FIG. 23 is an aberration diagram showing lateral aberration of the zoom lens according to Example 2 at the telephoto end and in focus at infinity.
  • FIG. 24 is an aberration diagram showing lateral aberration of the zoom lens according to Example 2 at the wide-angle end and during focusing at a short distance.
  • FIG. 25 is an aberration diagram showing lateral aberration of the zoom lens according to Example 2 at an intermediate position and during focusing at a short distance.
  • FIG. 26 is an aberration diagram showing lateral aberration of the zoom lens according to Example 2 at the telephoto end and during focusing at a short distance.
  • FIG. 27 is a lens cross-sectional view showing a third configuration example (Example 3) of the zoom lens according to one embodiment.
  • FIG. 28 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 3 at the wide-angle end and in focus at infinity.
  • FIG. 29 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 3 at an intermediate position and in focus at infinity.
  • FIG. 30 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 3 at the telephoto end and in focus at infinity.
  • FIG. 31 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 3 at the wide-angle end and during focusing at a short distance.
  • FIG. 32 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 3 at an intermediate position and during focusing at a short distance.
  • FIG. 33 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 3 at the telephoto end and during focusing at a short distance.
  • FIG. 34 is an aberration diagram showing lateral aberration of the zoom lens according to Example 3 at the wide-angle end and in focus at infinity.
  • FIG. 35 is an aberration diagram showing lateral aberration of the zoom lens according to Example 3 at an intermediate position and in focus at infinity.
  • FIG. 36 is an aberration diagram showing lateral aberration of the zoom lens according to Example 3 at the telephoto end and in focus at infinity.
  • FIG. 37 is an aberration diagram showing lateral aberration of the zoom lens according to Example 3 at the wide-angle end and during focusing at a short distance.
  • FIG. 38 is an aberration diagram showing lateral aberration of the zoom lens according to Example 3 at an intermediate position and during focusing at a short distance.
  • FIG. 39 is an aberration diagram showing lateral aberration of the zoom lens according to Example 3 at the telephoto end and during focusing at a short distance.
  • FIG. 40 is a lens cross-sectional view showing a fourth configuration example (Example 4) of the zoom lens according to one embodiment.
  • FIG. 40 is a lens cross-sectional view showing a fourth configuration example (Example 4) of the zoom lens according to one embodiment.
  • FIG. 41 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 4 at the wide-angle end and in focus at infinity.
  • FIG. 42 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 4 at an intermediate position and in focus at infinity.
  • FIG. 43 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 4 at the telephoto end and in focus at infinity.
  • FIG. 44 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 4 at the wide-angle end and during focusing at a short distance.
  • FIG. 45 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 4 at an intermediate position and during focusing at a short distance.
  • FIG. 46 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 4 at the telephoto end and during focusing at a short distance.
  • FIG. 47 is an aberration diagram showing lateral aberration of the zoom lens according to Example 4 at the wide-angle end and in focus at infinity.
  • FIG. 48 is an aberration diagram showing lateral aberration of the zoom lens according to Example 4 at an intermediate position and in focus at infinity.
  • FIG. 49 is an aberration diagram showing lateral aberration of the zoom lens according to Example 4 at the telephoto end and in focus at infinity.
  • FIG. 50 is an aberration diagram showing lateral aberration of the zoom lens according to Example 4 at the wide-angle end and during focusing at a short distance.
  • FIG. 51 is an aberration diagram showing lateral aberration of the zoom lens according to Example 4 at an intermediate position and during focusing at a short distance.
  • FIG. 52 is an aberration diagram showing lateral aberration of the zoom lens according to Example 4 at the telephoto end and during focusing at a short distance.
  • FIG. 53 is a lens cross-sectional view showing a fifth configuration example (Example 5) of the zoom lens according to one embodiment.
  • FIG. 54 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 5 at the wide-angle end and in focus at infinity.
  • FIG. 55 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 5 at an intermediate position and in focus at infinity.
  • FIG. 56 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 5 at the telephoto end and in focus at infinity.
  • FIG. 57 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 5 at the wide-angle end and during focusing at a short distance.
  • FIG. 58 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 5 at an intermediate position and during focusing at a short distance.
  • FIG. 59 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 5 at the telephoto end and during focusing at a short distance.
  • FIG. 60 is an aberration diagram showing lateral aberration of the zoom lens according to Example 5 at the wide-angle end and in focus at infinity.
  • FIG. 61 is an aberration diagram showing lateral aberration of the zoom lens according to Example 5 at an intermediate position and in focus at infinity.
  • FIG. 62 is an aberration diagram showing lateral aberration of the zoom lens according to Example 5 at the telephoto end and in focus at infinity.
  • FIG. 63 is an aberration diagram showing lateral aberration of the zoom lens according to Example 5 at the wide-angle end and during focusing at a short distance.
  • FIG. 64 is an aberration diagram showing lateral aberration of the zoom lens according to Example 5 at an intermediate position and during focusing at a short distance.
  • FIG. 65 is an aberration diagram showing lateral aberration of the zoom lens according to Example 5 at the telephoto end and during focusing at a short distance.
  • FIG. 66 is a lens cross-sectional view showing a sixth configuration example (Example 6) of the zoom lens according to one embodiment.
  • FIG. 67 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 6 at the wide-angle end and in focus at infinity.
  • FIG. 68 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 6 at an intermediate position and in focus at infinity.
  • FIG. 69 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 6 at the telephoto end and in focus at infinity.
  • FIG. 70 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 6 at the wide-angle end and during focusing at a short distance.
  • FIG. 71 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 6 at an intermediate position and during focusing at a short distance.
  • FIG. 72 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 6 at the telephoto end and during focusing at a short distance.
  • FIG. 73 is an aberration diagram showing lateral aberration of the zoom lens according to Example 6 at the wide-angle end and in focus at infinity.
  • FIG. 74 is an aberration diagram showing lateral aberration of the zoom lens according to Example 6 at an intermediate position and in focus at infinity.
  • FIG. 75 is an aberration diagram showing lateral aberration of the zoom lens according to Example 6 at the telephoto end and in focus at infinity.
  • FIG. 76 is an aberration diagram showing lateral aberration of the zoom lens according to Example 6 at the wide-angle end and during focusing at a short distance.
  • FIG. 77 is an aberration diagram showing lateral aberration of the zoom lens according to Example 6 at an intermediate position and during focusing at a short distance.
  • FIG. 78 is an aberration diagram showing lateral aberration of the zoom lens according to Example 6 at the telephoto end and during focusing at a short distance.
  • FIG. 79 is a lens cross-sectional view showing a seventh configuration example (Example 7) of the zoom lens according to one embodiment.
  • FIG. 80 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 7 at the wide-angle end and in focus at infinity.
  • FIG. 81 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 7 at an intermediate position and in focus at infinity.
  • FIG. 82 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 7 at the telephoto end and in focus at infinity.
  • FIG. 83 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 7 at the wide-angle end and during focusing at a short distance.
  • FIG. 84 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 7 at an intermediate position and during focusing at a short distance.
  • FIG. 85 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 7 at the telephoto end and during focusing at a short distance.
  • FIG. 86 is an aberration diagram showing lateral aberration of the zoom lens according to Example 7 at the wide-angle end and in focus at infinity.
  • FIG. 87 is an aberration diagram showing lateral aberration of the zoom lens according to Example 7 at an intermediate position and in focus at infinity.
  • FIG. 88 is an aberration diagram showing lateral aberration of the zoom lens according to Example 7 at the telephoto end and in focus at infinity.
  • FIG. 89 is an aberration diagram showing lateral aberration of the zoom lens according to Example 7 at the wide-angle end and during focusing at a short distance.
  • FIG. 90 is an aberration diagram showing lateral aberration of the zoom lens according to Example 7 at an intermediate position and during focusing at a short distance.
  • FIG. 91 is an aberration diagram showing lateral aberration of the zoom lens according to Example 7 at the telephoto end and during focusing at a short distance.
  • FIG. 92 is a lens cross-sectional view showing an eighth configuration example (Example 8) of the zoom lens according to one embodiment.
  • FIG. 93 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 8 at the wide-angle end and in focus at infinity.
  • FIG. 94 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 8 at an intermediate position and in focus at infinity.
  • FIG. 95 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 8 at the telephoto end and in focus at infinity.
  • FIG. 96 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 8 at the wide-angle end and during focusing at a short distance.
  • FIG. 97 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 8 at an intermediate position and during focusing at a short distance.
  • FIG. 98 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 8 at the telephoto end and during focusing at a short distance.
  • FIG. 99 is an aberration diagram showing lateral aberration of the zoom lens according to Example 8 at the wide-angle end and in focus at infinity.
  • FIG. 100 is an aberration diagram showing lateral aberration of the zoom lens according to Example 8 at an intermediate position and in focus at infinity.
  • FIG. 101 is an aberration diagram showing lateral aberration of the zoom lens according to Example 8 at the telephoto end and in focus at infinity.
  • FIG. 102 is an aberration diagram showing lateral aberration of the zoom lens according to Example 8 at the wide-angle end and during focusing at a short distance.
  • FIG. 103 is an aberration diagram showing lateral aberration of the zoom lens according to Example 8 at an intermediate position and during focusing at a short distance.
  • FIG. 104 is an aberration diagram showing lateral aberration of the zoom lens according to Example 8 at the telephoto end and during focusing at a short distance.
  • FIG. 105 is a lens cross-sectional view showing a ninth configuration example (Example 9) of the zoom lens according to one embodiment.
  • FIG. 106 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 9 at the wide-angle end and in focus at infinity.
  • FIG. 107 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 9 at an intermediate position and in focus at infinity.
  • FIG. 108 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 9 at the telephoto end and in focus at infinity.
  • FIG. 109 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 9 at the wide-angle end and during focusing at a short distance.
  • FIG. 110 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 9 at an intermediate position and during focusing at a short distance.
  • FIG. 111 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 9 at the telephoto end and during focusing at a short distance.
  • FIG. 112 is an aberration diagram showing lateral aberration of the zoom lens according to Example 9 at the wide-angle end and in focus at infinity.
  • FIG. 113 is an aberration diagram showing lateral aberration of the zoom lens according to Example 9 at an intermediate position and in focus at infinity.
  • FIG. 114 is an aberration diagram showing lateral aberration of the zoom lens according to Example 9 at the telephoto end and during focusing at infinity.
  • FIG. 115 is an aberration diagram showing lateral aberration of the zoom lens according to Example 9 at the wide-angle end and during focusing at a short distance.
  • FIG. 112 is an aberration diagram showing lateral aberration of the zoom lens according to Example 9 at the wide-angle end and in focus at infinity.
  • FIG. 113 is an aberration diagram showing lateral aberration of the zoom lens according to Example 9 at an intermediate position and in
  • FIG. 116 is an aberration diagram showing lateral aberration of the zoom lens according to Example 9 at an intermediate position and during focusing at a short distance.
  • FIG. 117 is an aberration diagram showing lateral aberration of the zoom lens according to Example 9 at the telephoto end and during focusing at a short distance.
  • FIG. 118 is a lens cross-sectional view showing a tenth configuration example (Example 10) of the zoom lens according to one embodiment.
  • FIG. 119 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 10 at the wide-angle end and in focus at infinity.
  • FIG. 120 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 10 at an intermediate position and in focus at infinity.
  • FIG. 121 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 10 at the telephoto end and in focus at infinity.
  • FIG. 122 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 10 at the wide-angle end and during focusing at a short distance.
  • FIG. 123 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 10 at an intermediate position and during focusing at a short distance.
  • FIG. 124 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 10 at the telephoto end and during focusing at a short distance.
  • FIG. 125 is an aberration diagram showing lateral aberration of the zoom lens according to Example 10 at the wide-angle end and in focus at infinity.
  • FIG. 126 is an aberration diagram showing lateral aberration of the zoom lens according to Example 10 at an intermediate position and in focus at infinity.
  • FIG. 127 is an aberration diagram showing lateral aberration of the zoom lens according to Example 10 at the telephoto end and in focus at infinity.
  • FIG. 128 is an aberration diagram showing lateral aberration of the zoom lens according to Example 10 at the wide-angle end and during focusing at a short distance.
  • FIG. 129 is an aberration diagram showing lateral aberration of the zoom lens according to Example 10 at an intermediate position and during focusing at a short distance.
  • FIG. 130 is an aberration diagram showing lateral aberration of the zoom lens according to Example 10 at the telephoto end and during focusing at a short distance.
  • FIG. 131 is a lens cross-sectional view showing an eleventh configuration example (Example 11) of the zoom lens according to one embodiment.
  • FIG. 132 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 11 at the wide-angle end and in focus at infinity.
  • FIG. 133 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 11 at an intermediate position and in focus at infinity.
  • FIG. 134 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 11 at the telephoto end and in focus at infinity.
  • FIG. 135 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 11 at the wide-angle end and during focusing at a short distance.
  • FIG. 141 is an aberration diagram showing lateral aberration of the zoom lens according to Example 11 at the wide-angle end and during focusing at a short distance.
  • FIG. 142 is an aberration diagram showing lateral aberration of the zoom lens according to Example 11 at an intermediate position and during focusing at a short distance.
  • FIG. 143 is an aberration diagram showing lateral aberration of the zoom lens according to Example 11 at the telephoto end and during focusing at a short distance.
  • 144 is a lens cross-sectional view showing a twelfth configuration example (Example 12) of the zoom lens according to one embodiment.
  • FIG. FIG. 145 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 12 at the wide-angle end and in focus at infinity.
  • FIG. 146 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 12 at an intermediate position and in focus at infinity.
  • FIG. 147 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 12 at the telephoto end and in focus at infinity.
  • FIG. 148 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 12 at the wide-angle end and during focusing at a short distance.
  • FIG. 149 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 12 at an intermediate position and during focusing at a short distance.
  • FIG. 150 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 12 at the telephoto end and during focusing at a short distance.
  • FIG. 151 is an aberration diagram showing lateral aberration of the zoom lens according to Example 12 at the wide-angle end and in focus at infinity.
  • FIG. 152 is an aberration diagram showing lateral aberration of the zoom lens according to Example 12 at an intermediate position and in focus at infinity.
  • FIG. 153 is an aberration diagram showing lateral aberration of the zoom lens according to Example 12 at the telephoto end and in focus at infinity.
  • FIG. 154 is an aberration diagram showing lateral aberration of the zoom lens according to Example 12 at the wide-angle end and during focusing at a short distance.
  • FIG. 155 is an aberration diagram showing lateral aberration of the zoom lens according to Example 12 at an intermediate position and during focusing at a short distance.
  • FIG. 161 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 13 at the wide-angle end and during focusing at a short distance.
  • FIG. 162 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 13 at an intermediate position and during focusing at a short distance.
  • FIG. 163 is an aberration diagram showing longitudinal aberration of the zoom lens according to Example 13 at the telephoto end and during focusing at a short distance.
  • FIG. 164 is an aberration diagram showing lateral aberration of the zoom lens according to Example 13 at the wide-angle end and in focus at infinity.
  • FIG. 165 is an aberration diagram showing lateral aberration of the zoom lens according to Example 13 at an intermediate position and in focus at infinity.
  • FIG. 166 is an aberration diagram showing lateral aberration of the zoom lens according to Example 13 at the telephoto end and in focus at infinity.
  • FIG. 167 is an aberration diagram showing lateral aberration of the zoom lens according to Example 13 at the wide-angle end and during focusing at a short distance.
  • FIG. 168 is an aberration diagram showing lateral aberration of the zoom lens according to Example 13 at an intermediate position and during focusing at a short distance.
  • FIG. 169 is an aberration diagram showing lateral aberration of the zoom lens according to Example 13 at the telephoto end and during focusing at a short distance.
  • FIG. 170 is a block diagram showing a configuration example of an imaging device.
  • FIG. 171 is a block diagram showing an example of a schematic configuration of a vehicle control system.
  • FIG. 1 shows a first configuration example of a zoom lens according to an embodiment of the present disclosure, which corresponds to the configuration of Example 1 described later.
  • FIG. 14 shows a second configuration example of the zoom lens according to one embodiment, which corresponds to the configuration of Example 2 described later.
  • FIG. 27 shows a third configuration example of the zoom lens according to one embodiment, which corresponds to the configuration of Example 3 described later.
  • FIG. 40 shows a fourth configuration example of the zoom lens according to one embodiment, which corresponds to the configuration of Example 4 described later.
  • FIG. 53 shows a fifth configuration example of the zoom lens according to one embodiment, which corresponds to the configuration of Example 5 described later.
  • FIG. 66 shows a sixth configuration example of the zoom lens according to one embodiment, which corresponds to the configuration of Example 6 described later.
  • FIG. 79 shows a seventh configuration example of the zoom lens according to one embodiment, which corresponds to the configuration of Example 7 described later.
  • FIG. 92 shows an eighth configuration example of the zoom lens according to one embodiment, which corresponds to the configuration of Example 8 described later.
  • FIG. 105 shows a ninth configuration example of a zoom lens according to an embodiment, which corresponds to the configuration of Example 9 described later.
  • FIG. 118 shows a tenth configuration example of a zoom lens according to an embodiment, which corresponds to the configuration of Example 10 described later.
  • FIG. 131 shows an eleventh configuration example of a zoom lens according to an embodiment, which corresponds to the configuration of Example 11 described later.
  • FIG. 144 shows a twelfth configuration example of a zoom lens according to an embodiment, which corresponds to the configuration of Example 12 described later.
  • FIG. 157 shows a thirteenth configuration example of a zoom lens according to an embodiment, which corresponds to the configuration of Example 13 described later.
  • Z1 indicates the optical axis.
  • An optical member such as a cover glass for protecting the imaging element may be arranged between the zoom lenses 1 to 13 according to the first to thirteenth configuration examples and the image plane IMG.
  • various optical filters such as a low-pass filter and an infrared cut filter may be arranged as optical members.
  • a zoom lens includes a plurality of lens groups.
  • the plurality of lens groups includes, in order from the object side to the image plane side, a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, and a second lens group G2 having positive refractive power. It includes three lens groups G3, a fourth lens group G4 having positive refractive power, and a fifth lens group G5 having negative refractive power.
  • the first lens group G1 is composed of two or less lenses.
  • the term "lens group” refers to a lens group that has a refractive power and changes the distance between adjacent lens groups during zooming.
  • a lens group that consists only of flat plates that have no refractive power is not defined as a lens group.
  • the zoom lenses 1 to 8 and 10 to 13 according to Examples 1 to 8 and 10 to 13 are configured to include a first lens group G1 to a sixth lens group as a plurality of lens groups.
  • a zoom lens 9 according to Example 9 is configured to include a first lens group G1 to a fifth lens group G5 as a plurality of lens groups.
  • a zoom lens according to an embodiment is configured such that at least the first lens group G1, the third lens group G3, and the fourth lens group G4 move toward the object side when zooming from the wide-angle end to the telephoto end.
  • the upper stage shows the lens arrangement at the wide-angle end (Wide) and infinity focus
  • the middle stage shows the lens arrangement at the intermediate position (Mid) and infinity focus
  • the lower part shows the lens arrangement at the telephoto end (Tele) and infinity focusing.
  • the zoom lens according to one embodiment may further satisfy predetermined conditional expressions and the like to be described later.
  • the configuration of each lens group is optimized so as to achieve compactness, high performance, and a high zoom ratio. This makes it possible to provide a compact, high-performance zoom lens with a high zoom ratio, and an imaging apparatus equipped with such a zoom lens.
  • the first lens group G1 having positive refractive power
  • the second lens group G2 having negative refractive power
  • a fourth lens group G4 having a positive refractive power
  • a fifth lens group G5 having a negative refractive power.
  • the first lens group G1, the third lens group G3, and the fourth lens group G4 are configured to move toward the object side.
  • the movement trajectories (movement amounts) of the first lens group G1, the third lens group G3, and the fourth lens group G4 may be different from each other.
  • the degree of freedom of the movement trajectory of the zoom variator is increased, and high optical performance can be secured over the entire zoom range while increasing the zoom ratio.
  • the first lens group G1 a lens group having a positive refractive power and comprising two or less lenses, an increase in the size of the first lens group G1 is suppressed, and the optical system is reduced in size and weight. be able to.
  • a zoom lens according to an embodiment may satisfy the following conditional expression (1). f1/f2 ⁇ -6.00 (1) however, Let f1 be the focal length of the first lens group G1 and f2 be the focal length of the second lens group G2.
  • Conditional expression (1) is defined in order to widen the angle of view and improve the performance of the optical system, and appropriately sets the focal length of the second lens group G2 with respect to the focal length of the first lens group G1. is a conditional expression for If the upper limit of conditional expression (1) is exceeded, the positive refractive power of the first lens group G1 will increase, making it difficult to correct various aberrations occurring in the first lens group G1. Also, the negative refractive power of the second lens group G2 becomes small, making it difficult to widen the angle.
  • the upper limit of conditional expression (1) may be set to -6.50, or even -6.80. This makes it possible to further suppress various aberrations occurring in the first lens group G1. Further, by securing the negative refractive power of the second lens group G2, it is more advantageous to widen the angle of view of the optical system. Further, when the value of conditional expression (1) becomes small, the negative refractive power of the second lens group G2 becomes strong, making it difficult to correct various aberrations.
  • the lower limit may be set to -15.00, or even -13.0.
  • the zoom lens according to one embodiment may satisfy the following conditional expression (2). 1.75 ⁇ f3/f4 ⁇ 4.20 (2) however, f3: the focal length of the third lens group G3 f4: the focal length of the fourth lens group G4.
  • Conditional expression (2) is defined to achieve a high zoom ratio and high performance of the optical system. is a conditional expression for setting If the upper limit of conditional expression (2) is exceeded, the positive refractive power of the fourth lens group G4 will increase, making it difficult to correct spherical aberration and coma aberration occurring in the fourth lens group G4. On the other hand, when the lower limit of conditional expression (2) is exceeded, the positive refractive power of the fourth lens group G4 becomes small, and the focal point of the entire optical system due to the change in the distance between the third lens group G3 and the fourth lens group G4. Since the change in distance becomes small, it becomes difficult to achieve a high zoom ratio.
  • the upper limit of conditional expression (2) may be set to 4.00, or even 3.8. This makes it possible to further suppress spherical aberration and coma aberration occurring in the fourth lens group G4. Also, from the viewpoint of increasing the zoom ratio of the optical system, the lower limit of conditional expression (2) may be set to 1.80, or even 1.85.
  • the zoom lens according to one embodiment may satisfy the following conditional expression (3). 5.0 ⁇ f1/fw ⁇ 15.0 (3) however, f1: focal length of the first lens group G1 fw: focal length of the entire system at the wide-angle end.
  • the upper limit of conditional expression (3) may be set to 13.0, or even 10.0. Also, the lower limit of conditional expression (3) may be set to 6.0, or even 6.3. This makes it possible to widen the angle of view of the optical system.
  • the zoom lens according to one embodiment may satisfy the following conditional expression (4). 0.10 ⁇ f4/ft ⁇ 0.60 (4) however, f4: focal length of the fourth lens group G4 ft: focal length of the entire system at the telephoto end.
  • Conditional expression (4) is defined for telephoto and suppression of aberration in the optical system, and appropriately sets the focal length of the entire system at the telephoto end with respect to the focal length of the fourth lens group G4. is a conditional expression for If the upper limit of conditional expression (4) is exceeded, the focal length of the entire system at the telephoto end becomes too short, and the telephoto of the optical system becomes insufficient. On the other hand, when the lower limit of conditional expression (4) is not reached, the positive refractive power of the fourth lens group G4 becomes too strong, making it difficult to correct spherical aberration and coma aberration occurring in the fourth lens group G4. .
  • conditional expression (4) may be set to 0.50, or even 0.45 from the viewpoint of telephotography of the optical system. This makes it possible to make the optical system more telephoto. Also, the lower limit of conditional expression (4) may be set to 0.20, or even 0.25. This makes it possible to further suppress spherical aberration and coma aberration occurring in the fourth lens group G4.
  • the fifth lens group G5 as a focus lens group is configured to move in the optical axis direction to perform focusing.
  • the focus lens group In recent years, in fields such as moving images, there has been a strong demand for reduction of angle-of-view fluctuations during focusing. For that purpose, it is preferable to arrange the focus lens group at a position close to the image plane IMG. Further, in the zoom lens according to one embodiment, it is preferable to secure as long a moving distance as possible between the third lens group G3 and the fourth lens group G4 as a zoom variator when zooming from the wide-angle end to the telephoto end. If the lens group G3 or the fourth lens group G4 is used as a focus lens group, it is necessary to additionally secure a moving amount in the optical axis direction for focusing, which leads to an increase in the size of the optical system. Therefore, from the viewpoint of reducing the variation of the angle of view during focusing and miniaturizing the optical system, it is preferable to use the fifth lens group G5 as the focusing group in the zoom lens according to the embodiment.
  • the zoom lens according to one embodiment may be configured to have an aperture stop St between the second lens group G2 and the third lens group G3.
  • the number of lenses arranged closer to the object than the aperture diaphragm St is This is not preferable from the viewpoint of improving the performance of the optical system because it becomes difficult to correct distortion aberration and appropriate correction of vertical rays of off-axis rays, and it becomes difficult to suppress various aberrations.
  • the aperture stop St is arranged in the third lens group G3 or closer to the image plane than the third lens group G3, the diameter of off-axis rays passing through the first lens group G1 and the second lens group G2 becomes large. Therefore, it becomes difficult to reduce the diameter of the first lens group G1.
  • the on-axis ray is diffused by the second lens group G2 and enters the third lens group G3 and the fourth lens group G4, the size of the diaphragm mechanism becomes large, which makes it difficult to reduce the size of the entire optical system. I don't like it. Therefore, it is desirable to have an aperture stop St between the second lens group G2 and the third lens group G3 from the viewpoint of suppressing various aberrations and miniaturizing the optical system.
  • the zoom lens when zooming from the wide-angle end to the telephoto end, the third lens group G3 and the last lens group GR among the plurality of lens groups may be configured to move along the same trajectory. good.
  • the zoom lenses 1 to 8 and 10 to 13 according to Examples 1 to 8 and 10 to 13 correspond to this configuration, and the third lens group G3 and the sixth lens group as the final lens group GR The lens group G6 moves along the same locus.
  • the zoom lens if the final lens group GR does not move in the optical axis direction during zooming from the wide-angle end to the telephoto end, the height of the off-axis ray incident on the final lens group GR at the telephoto end is high. This is disadvantageous for miniaturization and weight reduction.
  • the final lens group GR moves independently in the optical axis direction when zooming from the wide-angle end to the telephoto end, the number of movable lens groups increases and the mechanical structure for zooming becomes complicated. This is not preferable from the viewpoint of feasibility of configuration and miniaturization. Therefore, from the viewpoint of feasibility of the mechanical structure and miniaturization, it is desirable that the third lens group G3 and the final lens group GR move along the same trajectory when zooming from the wide-angle end to the telephoto end.
  • the fourth lens group G4 is configured to have a positive lens PL1 having an aspherical surface and satisfying the following conditional expressions (5) and (6). good too.
  • the lens L45 corresponds to the positive lens PL1.
  • the lens L41 corresponds to the positive lens PL1.
  • the lens L43 corresponds to the positive lens PL1.
  • the zoom lens since the light rays are diffused by the negative refractive power of the second lens group G2, the height of the axial light rays incident on the fourth lens group G4 increases. Further, the fourth lens group G4 plays a role of a variator during zooming from the wide-angle end to the telephoto end, and it is desirable to have a stronger positive refractive power in order to achieve a high zoom ratio. In this case, since it is difficult to correct aberrations in the fourth lens group G4, it is desirable for the fourth lens group G4 to have an aspherical surface for correcting aberrations.
  • Conditional expression (5) is defined to ensure lens workability and suppress chromatic aberration, and is a conditional expression for appropriately setting the Abbe number of the positive lens PL1. If the upper limit of conditional expression (5) is exceeded, the degree of difficulty in molding the lens material becomes high, making it difficult to ensure manufacturability. If the lower limit of conditional expression (5) is not reached, it becomes difficult to correct axial chromatic aberration and off-axis chromatic aberration occurring in the positive lens PL1.
  • conditional expression (5) may be set to 95.0, or even 85.0. Also, the lower limit of conditional expression (5) may be set to 65.0, or even 70.0. This makes it possible to further suppress axial chromatic aberration and off-axis chromatic aberration caused by the positive lens PL1.
  • Conditional expression (6) is defined for suppressing chromatic aberration, and is a conditional expression for appropriately setting the anomalous dispersion of the positive lens PL1. If the upper limit of conditional expression (6) is exceeded, g-line axial chromatic aberration and off-axis chromatic aberration at the telephoto end will be overcorrected. If the lower limit of conditional expression (6) is not reached, correction of g-line axial chromatic aberration and off-axis chromatic aberration will be insufficient at the telephoto end.
  • the upper limit of conditional expression (6) may be set to 0.100 and the lower limit thereof to 0.010. Furthermore, the upper limit of conditional expression (6) may be set to 0.075 and the lower limit to 0.015.
  • the first lens group G1 may be configured to have a negative lens LN1 that satisfies the following conditional expression on the most object side.
  • the lens L11 corresponds to the negative lens LN1. 10.0 ⁇ dLN1 ⁇ 22.5 (7) however, ⁇ dL1: Abbe number of the negative lens LN1.
  • Conditional expression (7) is defined for suppressing chromatic aberration in the optical system, and is a conditional expression for appropriately setting the Abbe number of the negative lens LN1. If the upper limit of conditional expression (7) is exceeded, the correction of axial chromatic aberration and off-axis chromatic aberration at the telephoto end by the negative lens LN1 becomes insufficient. On the other hand, when the lower limit of conditional expression (7) is not reached, the negative lens LN1 overcorrects axial chromatic aberration and off-axis chromatic aberration at the telephoto end.
  • the upper limit of conditional expression (7) may be set to 21.0 and the lower limit to 15.0.
  • the zoom lens according to one embodiment may satisfy the following conditional expression (8). 0.3 ⁇ BFw/fw ⁇ 2.5 (8) however, BFw: Back focus at the wide-angle end (distance from the image-plane-side surface of the lens closest to the image-plane side to the image plane IMG at the wide-angle end) fw: The focal length of the entire system at the wide-angle end.
  • Conditional expression (8) defines the ratio between the back focus BFw at the wide-angle end and the focal length fw of the entire system at the wide-angle end within a preferable range. If the upper limit of conditional expression (8) is exceeded, the back focus BFw at the wide-angle end becomes long, making it difficult to shorten the overall length. On the other hand, below the lower limit, it becomes difficult to secure the back focus BFw at the wide-angle end, and manufacturability deteriorates.
  • conditional expression (8) may be set to 1.55. Thereby, the back focus BFw at the wide-angle end can be shortened, and the overall length can be further shortened. Also, the lower limit of conditional expression (8) may be set to 0.4. As a result, the back focus BFw at the wide-angle end can be ensured, and the productivity can be further improved.
  • FIG. 170 shows a configuration example of an imaging device 100 to which a zoom lens according to one embodiment is applied.
  • This imaging device 100 is, for example, a digital still camera, and includes a camera block 110, a camera signal processing unit 20, an image processing unit 30, an LCD (Liquid Crystal Display) 40, and a R/W (reader/writer) 50. , a CPU (Central Processing Unit) 60 , an input section 70 , and a lens driving control section 80 .
  • a camera block 110 includes a camera block 110, a camera signal processing unit 20, an image processing unit 30, an LCD (Liquid Crystal Display) 40, and a R/W (reader/writer) 50.
  • a CPU Central Processing Unit
  • input section 70 includes a lens driving control section 80 .
  • the camera block 110 has an imaging function, and has an imaging lens 111 and an imaging device 112 such as CCD (Charge Coupled Devices) or CMOS (Complementary Metal Oxide Semiconductor).
  • the imaging device 112 converts an optical image formed by the imaging lens 111 into an electrical signal, and outputs an imaging signal (image signal) corresponding to the optical image.
  • the imaging lens 111 the zoom lenses 1 to 13 according to the configuration examples shown in FIG. 1 and the like can be applied.
  • the camera signal processing unit 20 performs various signal processing such as analog-to-digital conversion, noise removal, image quality correction, and conversion to luminance/color difference signals on the image signal output from the imaging device 112 .
  • the image processing unit 30 performs recording and reproduction processing of image signals, and performs compression encoding/expansion decoding processing of image signals based on a predetermined image data format, conversion processing of data specifications such as resolution, and the like. It's becoming
  • the LCD 40 has a function of displaying various data such as the operation state of the user's input unit 70 and captured images.
  • the R/W 50 writes image data encoded by the image processing unit 30 to the memory card 1000 and reads image data recorded on the memory card 1000 .
  • the memory card 1000 is, for example, a semiconductor memory that can be inserted into and removed from a slot connected to the R/W 50 .
  • the CPU 60 functions as a control processing section that controls each circuit block provided in the imaging device 100, and controls each circuit block based on an instruction input signal or the like from the input section 70.
  • the input unit 70 includes various switches and the like that are operated by the user.
  • the input unit 70 includes, for example, a shutter release button for operating the shutter, a selection switch for selecting an operation mode, and the like, and outputs an instruction input signal to the CPU 60 according to the user's operation.
  • the lens drive control unit 80 controls driving of the lenses arranged in the camera block 110, and controls motors (not shown) that drive the lenses of the imaging lens 111 based on control signals from the CPU 60. It's becoming
  • an image signal corresponding to the image photographed by the camera block 110 is output to the LCD 40 via the camera signal processing section 20 and displayed as a camera-through image. Further, for example, when an instruction input signal for zooming or focusing is input from the input unit 70, the CPU 60 outputs a control signal to the lens drive control unit 80, and the image pickup lens 111 is moved based on the control of the lens drive control unit 80. is moved.
  • the captured image signal is output from the camera signal processing unit 20 to the image processing unit 30, where it is subjected to compression encoding processing, and a predetermined Converted to digital data in data format.
  • the converted data is output to the R/W 50 and written to the memory card 1000.
  • Focusing is performed by the lens drive control unit 80 based on a control signal from the CPU 60 when, for example, the shutter release button of the input unit 70 is half-pressed or fully-pressed for recording (photographing). This is performed by moving a predetermined lens of the imaging lens 111 .
  • predetermined image data is read from the memory card 1000 by the R/W 50 in response to an operation on the input unit 70, and decompressed and decoded by the image processing unit 30. After processing, the reproduced image signal is output to the LCD 40 to display the reproduced image.
  • the imaging device is applied to a digital still camera or the like, but the scope of application of the imaging device is not limited to the digital still camera, and can be applied to various other imaging devices. It is possible. For example, it can be applied to digital single-lens reflex cameras, digital non-reflex cameras, digital video cameras, surveillance cameras, and the like. Further, it can be widely applied as a camera unit of a digital input/output device such as a mobile phone with a built-in camera or an information terminal with a built-in camera. It can also be applied to a camera with interchangeable lenses.
  • Si indicates the number of the i-th surface, which is numbered sequentially from the object side.
  • ri indicates the value (mm) of the paraxial radius of curvature of the i-th surface.
  • di indicates the distance (mm) on the optical axis between the i-th surface and the (i+1)-th surface.
  • ndi indicates the refractive index value for the d-line (wavelength 587.6 nm) of the material of the optical element having the i-th surface.
  • ⁇ di indicates the value of the Abbe number at the d-line of the material of the optical element having the i-th surface.
  • ⁇ i indicates the value (mm) of the effective diameter of the i-th surface.
  • a portion where the value of "ri” is “ ⁇ ” indicates a flat surface, an aperture surface, or the like.
  • ASP in the surface number (Si) column indicates that the surface is configured in an aspherical shape.
  • STO in the surface number column indicates that the aperture stop St is arranged at the corresponding position.
  • OJ in the plane number column indicates that the plane is an object plane (object plane).
  • IMG in the surface number column indicates that the surface is the image surface.
  • f indicates the focal length of the entire system (unit: mm).
  • “Fno” indicates the open F value (F number).
  • indicates a half angle of view (unit: °).
  • Y indicates image height (unit: mm).
  • L indicates the total optical length (distance on the optical axis from the surface closest to the object to the image plane IMG) (unit: mm).
  • an aspherical lens surface some of the lenses used in each embodiment have an aspherical lens surface.
  • An aspheric shape is defined by the following equation. In each table showing the aspheric coefficients described later, "Ei” represents an exponential expression with the base of 10, that is, “10 -i ". For example, "0.12345E-05" 0.12345 ⁇ 10 ⁇ 5 ′′.
  • Table 1 shows basic lens data of the zoom lens 1 according to Example 1 shown in FIG.
  • Table 2 shows values of the focal length f of the entire system, the F value, the total angle of view 2 ⁇ , the image height Y, and the total optical length L of the zoom lens 1 according to Example 1.
  • Table 3 shows the data of the surface distance that changes during zooming and focusing in the zoom lens 1 according to the first embodiment.
  • Table 2 shows values when the object distance (d0) is infinite for each of the wide-angle end (Wide), the intermediate position (Mid), and the telephoto end (Tele).
  • [Table 3] shows the values for the wide-angle end (Wide), intermediate position (Mid), and telephoto end (Tele) when the object distance (d0) is infinite and short.
  • [Table 4] shows the values of the coefficients representing the shape of the aspheric surface in the zoom lens 1 according to Example 1.
  • [Table 5] shows the starting surface and focal length (unit: mm) of each lens group of the zoom lens 1 according to the first embodiment.
  • a zoom lens 1 according to Example 1 includes a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, an aperture stop St, and a third lens having positive refractive power.
  • a group G3, a fourth lens group G4 having positive refractive power, a fifth lens group G5 having negative refractive power, and a sixth lens group G6 having positive refractive power are arranged from the object side to the image plane side. It is configured to be arranged in order toward.
  • the zoom lens 1 according to Example 1 moves so that the distance between adjacent lens groups changes during zooming.
  • the third lens group G3 and the sixth lens group G6 as the final lens group GR move along the same trajectory.
  • the fifth lens group G5 moves along the optical axis toward the image plane.
  • the first lens group G1 consists of a lens L11 and a lens L12 in order from the object side to the image plane side.
  • the lens L11 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L12 is a positive meniscus lens with a convex surface facing the object side.
  • the lens L11 and the lens L12 form a cemented lens bonded together.
  • the second lens group G2 consists of lenses L21 to L24 in order from the object side to the image plane side.
  • the lens L21 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L22 is a biconcave negative lens whose both surfaces are aspherical surfaces.
  • the lens L23 is a biconvex positive lens.
  • the lens L24 is a negative meniscus lens with a concave surface facing the object side.
  • the third lens group G3 consists of a lens L31.
  • the lens L31 is a positive meniscus lens having both aspherical surfaces and a convex surface facing the object side.
  • the fourth lens group G4 consists of lenses L41 to L45 in order from the object side to the image plane side.
  • the lens L41 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L42 is a positive meniscus lens with a convex surface facing the object side.
  • the lens L41 and the lens L42 form a cemented lens bonded together.
  • the lens L43 is a positive meniscus lens with a concave surface facing the object side.
  • the lens L44 is a negative meniscus lens with a concave surface facing the object side.
  • the lens L43 and the lens L44 form a cemented lens bonded together.
  • the lens L45 is a biconvex positive lens having aspherical surfaces on both sides.
  • the fifth lens group G5 consists of a lens L51 and a lens L52 in order from the object side to the image plane side.
  • the lens L51 is a positive meniscus lens with a concave surface facing the object side.
  • the lens L52 is a biconcave negative lens whose both surfaces are aspherical surfaces.
  • the sixth lens group G6 consists of a lens L61 and a lens L62 in order from the object side to the image plane side.
  • the lens L61 is a biconvex positive lens.
  • the lens L62 is a biconcave negative lens.
  • a zoom lens with a high zoom ratio is realized while covering a wide-angle range while maintaining a compact optical system.
  • FIG. 2 shows the longitudinal aberration of the zoom lens 1 according to Example 1 at the wide-angle end and in focus at infinity.
  • FIG. 3 shows longitudinal aberration of the zoom lens 1 according to Example 1 at an intermediate position and in focus at infinity.
  • FIG. 4 shows the longitudinal aberration of the zoom lens 1 according to Example 1 at the telephoto end and during focusing at infinity.
  • FIG. 5 shows the longitudinal aberration of the zoom lens 1 according to Example 1 at the wide-angle end and during focusing at a short distance.
  • FIG. 6 shows longitudinal aberration of the zoom lens 1 according to Example 1 at an intermediate position and during focusing at a short distance.
  • FIG. 7 shows the longitudinal aberration of the zoom lens 1 according to Example 1 at the telephoto end and during focusing at a short distance.
  • FIG. 8 shows the lateral aberration of the zoom lens 1 according to Example 1 at the wide-angle end and in focus at infinity.
  • FIG. 9 shows lateral aberration of the zoom lens 1 according to Example 1 at an intermediate position and in focus at infinity.
  • FIG. 10 shows the lateral aberration of the zoom lens 1 according to Example 1 at the telephoto end and in focus at infinity.
  • FIG. 11 shows lateral aberration of the zoom lens 1 according to Example 1 at the wide-angle end and during focusing at a short distance.
  • FIG. 12 shows the lateral aberration of the zoom lens 1 according to Example 1 at an intermediate position and during focusing at a short distance.
  • FIG. 13 shows lateral aberration of the zoom lens 1 according to Example 1 at the telephoto end and during focusing at a short distance.
  • FIGS. 2 to 7 show spherical aberration, astigmatism (curvature of field), and distortion as longitudinal aberrations.
  • spherical aberration diagrams of FIGS. 2 to 7 and the lateral aberration diagrams of FIGS. 27 nm are shown.
  • S indicates the value on the sagittal image plane
  • T indicates the value on the tangential image plane.
  • the astigmatism diagrams and distortion diagrams in FIGS. 2 to 7 show values at the d-line. The same applies to aberration diagrams in other examples below.
  • the zoom lens 1 according to Example 1 has various aberrations well corrected and has excellent imaging performance.
  • [Table 6] shows basic lens data of the zoom lens 2 according to Example 2 shown in FIG.
  • [Table 7] shows values of the focal length f of the entire system, the F value, the total angle of view 2 ⁇ , the image height Y, and the total optical length L of the zoom lens 2 according to Example 2.
  • [Table 8] shows the data of the surface distance that becomes variable during zooming and focusing in the zoom lens 2 according to the second embodiment.
  • [Table 7] shows values when the object distance (d0) is infinite for each of the wide-angle end (Wide), the intermediate position (Mid), and the telephoto end (Tele).
  • [Table 8] shows the values for the wide-angle end (Wide), intermediate position (Mid), and telephoto end (Tele) when the object distance (d0) is infinite and short.
  • [Table 9] shows the values of the coefficients representing the shape of the aspheric surface in the zoom lens 2 according to Example 2.
  • [Table 10] shows the starting surface and focal length (unit: mm) of each lens group of the zoom lens 2 according to the second embodiment.
  • a zoom lens 2 according to Example 2 includes a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, an aperture stop St, and a third lens having positive refractive power.
  • a group G3, a fourth lens group G4 having positive refractive power, a fifth lens group G5 having negative refractive power, and a sixth lens group G6 having negative refractive power are arranged from the object side to the image plane side. It is configured to be arranged in order toward.
  • the zoom lens 2 according to Example 2 moves so that the distance between adjacent lens groups changes during zooming.
  • the third lens group G3 and the sixth lens group G6 as the final lens group GR move along the same trajectory.
  • the fifth lens group G5 moves along the optical axis toward the image plane.
  • the first lens group G1 consists of a lens L11 and a lens L12 in order from the object side to the image plane side.
  • the lens L11 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L12 is a positive meniscus lens with a convex surface facing the object side.
  • the lens L11 and the lens L12 form a cemented lens bonded together.
  • the second lens group G2 consists of lenses L21 to L24 in order from the object side to the image plane side.
  • the lens L21 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L22 is a negative meniscus lens having both aspherical surfaces and a concave surface facing the object side.
  • the lens L23 is a biconvex positive lens.
  • the lens L24 is a negative meniscus lens with a concave surface facing the object side.
  • the third lens group G3 consists of a lens L31.
  • the lens L31 is a positive meniscus lens having both aspherical surfaces and a convex surface facing the object side.
  • the fourth lens group G4 consists of lenses L41 to L45 in order from the object side to the image plane side.
  • the lens L41 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L42 is a positive meniscus lens with a convex surface facing the object side.
  • the lens L41 and the lens L42 form a cemented lens bonded together.
  • the lens L43 is a positive meniscus lens with a concave surface facing the object side.
  • the lens L44 is a negative meniscus lens with a concave surface facing the object side.
  • the lens L43 and the lens L44 form a cemented lens bonded together.
  • the lens L45 is a biconvex positive lens having aspherical surfaces on both sides.
  • the fifth lens group G5 consists of a lens L51 and a lens L52 in order from the object side to the image plane side.
  • the lens L51 is a positive meniscus lens with a concave surface facing the object side.
  • the lens L52 is a biconcave negative lens whose both surfaces are aspherical surfaces.
  • the sixth lens group G6 consists of a lens L61 and a lens L62 in order from the object side to the image plane side.
  • the lens L61 is a positive meniscus lens with a convex surface facing the object side.
  • Lens L62 is a negative meniscus lens with a concave surface facing the object side.
  • a zoom lens with a high zoom ratio is realized while covering a wide-angle range while maintaining a compact optical system.
  • FIG. 15 shows longitudinal aberration of the zoom lens 2 according to Example 2 at the wide-angle end and in focus at infinity.
  • FIG. 16 shows longitudinal aberration of the zoom lens 2 according to Example 2 at an intermediate position and in focus at infinity.
  • FIG. 17 shows the longitudinal aberration of the zoom lens 2 according to Example 2 at the telephoto end and in focus at infinity.
  • FIG. 18 shows the longitudinal aberration of the zoom lens 2 according to Example 2 at the wide-angle end and during focusing at a short distance.
  • FIG. 19 shows the longitudinal aberration of the zoom lens 2 according to Example 2 at an intermediate position and during focusing at a short distance.
  • FIG. 20 shows longitudinal aberration of the zoom lens 2 according to Example 2 at the telephoto end and during focusing at a short distance.
  • FIG. 21 shows lateral aberration of the zoom lens 2 according to Example 2 at the wide-angle end and in focus at infinity.
  • FIG. 22 shows lateral aberration of the zoom lens 2 according to Example 2 at an intermediate position and in focus at infinity.
  • FIG. 23 shows the lateral aberration of the zoom lens 2 according to Example 2 at the telephoto end and in focus at infinity.
  • FIG. 24 shows lateral aberration of the zoom lens 2 according to Example 2 at the wide-angle end and during focusing at a short distance.
  • FIG. 25 shows the lateral aberration of the zoom lens 2 according to Example 2 at an intermediate position and during focusing at a short distance.
  • FIG. 26 shows lateral aberration of the zoom lens 2 according to Example 2 at the telephoto end and during focusing at a short distance.
  • the zoom lens 2 according to Example 2 has various aberrations well corrected and has excellent imaging performance.
  • [Table 11] shows basic lens data of the zoom lens 3 according to Example 3 shown in FIG.
  • [Table 12] shows values of the focal length f of the entire system, the F value, the total angle of view 2 ⁇ , the image height Y, and the total optical length L of the zoom lens 3 according to Example 3.
  • [Table 13] shows the data of the surface distance that varies during zooming and focusing in the zoom lens 3 according to the third embodiment.
  • [Table 12] shows values when the object distance (d0) is infinite at the wide-angle end (Wide), the intermediate position (Mid), and the telephoto end (Tele).
  • [Table 13] shows the values for the wide-angle end (Wide), intermediate position (Mid), and telephoto end (Tele) when the object distance (d0) is infinite and when the object distance is short.
  • [Table 14] shows the values of the coefficients representing the shape of the aspheric surface in the zoom lens 3 according to Example 3.
  • [Table 15] shows the starting surface and focal length (unit: mm) of each lens group of the zoom lens 3 according to the third embodiment.
  • a zoom lens 3 according to Example 3 includes a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, an aperture diaphragm St, and a third lens having positive refractive power.
  • a group G3, a fourth lens group G4 having positive refractive power, a fifth lens group G5 having negative refractive power, and a sixth lens group G6 having negative refractive power are arranged from the object side to the image plane side. It is configured to be arranged in order toward.
  • the zoom lens 3 according to Example 3 moves so as to change the distance between adjacent lens groups during zooming.
  • the third lens group G3 and the sixth lens group G6 as the final lens group GR move along the same trajectory.
  • the fifth lens group G5 moves along the optical axis toward the image plane.
  • the first lens group G1 consists of a lens L11 and a lens L12 in order from the object side to the image plane side.
  • the lens L11 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L12 is a biconvex positive lens.
  • the lens L11 and the lens L12 form a cemented lens bonded together.
  • the second lens group G2 consists of lenses L21 to L24 in order from the object side to the image plane side.
  • the lens L21 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L22 is a negative meniscus lens having both aspherical surfaces and a concave surface facing the object side.
  • the lens L23 is a biconvex positive lens.
  • the lens L24 is a biconcave negative lens.
  • the third lens group G3 consists of a lens L31.
  • the lens L31 is a positive meniscus lens having both aspherical surfaces and a convex surface facing the object side.
  • the fourth lens group G4 consists of lenses L41 to L45 in order from the object side to the image plane side.
  • the lens L41 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L42 is a biconvex positive lens.
  • the lens L41 and the lens L42 form a cemented lens bonded together.
  • the lens L43 is a positive meniscus lens with a concave surface facing the object side.
  • the lens L44 is a negative meniscus lens with a concave surface facing the object side.
  • the lens L43 and the lens L44 form a cemented lens bonded together.
  • the lens L45 is a biconvex positive lens having aspherical surfaces on both sides.
  • the fifth lens group G5 consists of a lens L51 and a lens L52 in order from the object side to the image plane side.
  • the lens L51 is a positive meniscus lens with a concave surface facing the object side.
  • the lens L52 is a biconcave negative lens whose both surfaces are aspherical surfaces.
  • the sixth lens group G6 consists of a lens L61 and a lens L62 in order from the object side to the image plane side.
  • the lens L61 is a positive meniscus lens with a convex surface facing the object side.
  • Lens L62 is a negative meniscus lens with a concave surface facing the object side.
  • a zoom lens with a high zoom ratio is realized while covering a wide-angle range while maintaining a compact optical system.
  • FIG. 28 shows the longitudinal aberration of the zoom lens 3 according to Example 3 at the wide-angle end and in focus at infinity.
  • FIG. 29 shows longitudinal aberration of the zoom lens 3 according to Example 3 at an intermediate position and in focus at infinity.
  • FIG. 30 shows the longitudinal aberration of the zoom lens 3 according to Example 3 at the telephoto end and in focus at infinity.
  • FIG. 31 shows longitudinal aberration of the zoom lens 3 according to Example 3 at the wide-angle end and during focusing at a short distance.
  • FIG. 32 shows the longitudinal aberration of the zoom lens 3 according to Example 3 at an intermediate position and during focusing at a short distance.
  • FIG. 33 shows longitudinal aberration of the zoom lens 3 according to Example 3 at the telephoto end and during focusing at a short distance.
  • FIG. 34 shows the lateral aberration of the zoom lens 3 according to Example 3 at the wide-angle end and in focus at infinity.
  • FIG. 35 shows lateral aberration of the zoom lens 3 according to Example 3 at an intermediate position and in focus at infinity.
  • FIG. 36 shows the lateral aberration of the zoom lens 3 according to Example 3 at the telephoto end and in focus at infinity.
  • FIG. 37 shows lateral aberration of the zoom lens 3 according to Example 3 at the wide-angle end and during focusing at a short distance.
  • FIG. 38 shows the lateral aberration of the zoom lens 3 according to Example 3 at an intermediate position and during focusing at a short distance.
  • FIG. 39 shows the lateral aberration of the zoom lens 3 according to Example 3 at the telephoto end and during focusing at a short distance.
  • the zoom lens 3 according to Example 3 has various aberrations well corrected and has excellent imaging performance.
  • [Table 16] shows basic lens data of the zoom lens 4 according to Example 4 shown in FIG.
  • [Table 17] shows values of the focal length f of the entire system, the F value, the total angle of view 2 ⁇ , the image height Y, and the total optical length L of the zoom lens 4 according to Example 4.
  • [Table 18] shows the data of the surface distance that changes during zooming and focusing in the zoom lens 4 according to the fourth embodiment.
  • [Table 17] shows values when the object distance (d0) is infinite at the wide-angle end (Wide), the intermediate position (Mid), and the telephoto end (Tele).
  • [Table 18] shows the values for the wide-angle end (Wide), intermediate position (Mid), and telephoto end (Tele) when the object distance (d0) is infinite and when the object distance is short.
  • [Table 19] shows the values of the coefficients representing the shape of the aspheric surface in the zoom lens 4 according to Example 4.
  • [Table 20] shows the starting surface and focal length (unit: mm) of each lens group of the zoom lens 4 according to the fourth embodiment.
  • a zoom lens 4 according to Example 4 includes a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, an aperture stop St, and a third lens having positive refractive power.
  • a group G3, a fourth lens group G4 having positive refractive power, a fifth lens group G5 having negative refractive power, and a sixth lens group G6 having negative refractive power are arranged from the object side to the image plane side. It is configured to be arranged in order toward.
  • the zoom lens 4 according to Example 4 moves so that the distance between adjacent lens groups changes during zooming.
  • the third lens group G3 and the sixth lens group G6 as the final lens group GR move along the same trajectory.
  • the fifth lens group G5 moves along the optical axis toward the image plane.
  • the first lens group G1 consists of a lens L11 and a lens L12 in order from the object side to the image plane side.
  • the lens L11 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L12 is a positive meniscus lens with a convex surface facing the object side.
  • the lens L11 and the lens L12 form a cemented lens bonded together.
  • the second lens group G2 consists of lenses L21 to L24 in order from the object side to the image plane side.
  • the lens L21 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L22 is a negative meniscus lens having both aspherical surfaces and a concave surface facing the object side.
  • the lens L23 is a biconvex positive lens.
  • the lens L24 is a negative meniscus lens with a concave surface facing the object side.
  • the fourth lens group G4 consists of lenses L41 to L45 in order from the object side to the image plane side.
  • the lens L41 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L42 is a biconvex positive lens.
  • the lens L41 and the lens L42 form a cemented lens bonded together.
  • the lens L43 is a positive meniscus lens with a concave surface facing the object side.
  • the lens L44 is a negative meniscus lens with a concave surface facing the object side.
  • the lens L45 is a biconvex positive lens having aspherical surfaces on both sides.
  • the fifth lens group G5 consists of a lens L51 and a lens L52 in order from the object side to the image plane side.
  • the lens L51 is a positive meniscus lens with a concave surface facing the object side.
  • the lens L52 is a biconcave negative lens whose both surfaces are aspherical surfaces.
  • the sixth lens group G6 consists of a lens L61 and a lens L62 in order from the object side to the image plane side.
  • the lens L61 is a positive meniscus lens with a convex surface facing the object side.
  • Lens L62 is a negative meniscus lens with a concave surface facing the object side.
  • a zoom lens with a high zoom ratio is realized while covering a wide-angle range while maintaining a compact optical system.
  • FIG. 41 shows the longitudinal aberration of the zoom lens 4 according to Example 4 at the wide-angle end and in focus at infinity.
  • FIG. 42 shows longitudinal aberration of the zoom lens 4 according to Example 4 at an intermediate position and in focus at infinity.
  • FIG. 43 shows the longitudinal aberration of the zoom lens 4 according to Example 4 at the telephoto end and in focus at infinity.
  • FIG. 44 shows longitudinal aberration of the zoom lens 4 according to Example 4 at the wide-angle end and during focusing at a short distance.
  • FIG. 45 shows longitudinal aberration of the zoom lens 4 according to Example 4 at an intermediate position and during focusing at a short distance.
  • FIG. 46 shows the longitudinal aberration of the zoom lens 4 according to Example 4 at the telephoto end and during focusing at a short distance.
  • FIG. 47 shows lateral aberration of the zoom lens 4 according to Example 4 at the wide-angle end and in focus at infinity.
  • FIG. 48 shows lateral aberration of the zoom lens 4 according to Example 4 at an intermediate position and in focus at infinity.
  • FIG. 49 shows the lateral aberration of the zoom lens 4 according to Example 4 at the telephoto end and in focus at infinity.
  • FIG. 50 shows the lateral aberration of the zoom lens 4 according to Example 4 at the wide-angle end and during focusing at a short distance.
  • FIG. 51 shows the lateral aberration of the zoom lens 4 according to Example 4 at an intermediate position and during focusing at a short distance.
  • FIG. 52 shows lateral aberration of the zoom lens 4 according to Example 4 at the telephoto end and during focusing at a short distance.
  • the zoom lens 4 according to Example 4 has various aberrations well corrected and has excellent imaging performance.
  • [Table 21] shows basic lens data of the zoom lens 5 according to Example 5 shown in FIG.
  • [Table 22] shows values of the focal length f of the entire system, the F value, the total angle of view 2 ⁇ , the image height Y, and the total optical length L of the zoom lens 5 according to Example 5.
  • [Table 23] shows the data of the surface distance that changes during zooming and focusing in the zoom lens 5 according to the fifth embodiment.
  • [Table 22] shows values when the object distance (d0) is infinite at the wide-angle end (Wide), the intermediate position (Mid), and the telephoto end (Tele).
  • [Table 23] shows values for the wide-angle end (Wide), intermediate position (Mid), and telephoto end (Tele) when the object distance (d0) is infinite and when the object distance is short.
  • [Table 24] shows the values of the coefficients representing the shape of the aspheric surface in the zoom lens 5 according to Example 5.
  • [Table 25] shows the starting surface and focal length (unit: mm) of each lens group of the zoom lens 5 according to the fifth embodiment.
  • a zoom lens 5 according to Example 5 includes a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, an aperture stop St, and a third lens having positive refractive power.
  • a group G3, a fourth lens group G4 having positive refractive power, a fifth lens group G5 having negative refractive power, and a sixth lens group G6 having positive refractive power are arranged from the object side to the image plane side. It is configured to be arranged in order toward.
  • the zoom lens 5 according to Example 5 moves so that the distance between adjacent lens groups changes during zooming.
  • the third lens group G3 and the sixth lens group G6 as the final lens group GR move along the same trajectory.
  • the fifth lens group G5 moves along the optical axis toward the image plane.
  • the first lens group G1 consists of a lens L11.
  • the lens L11 is a biconvex positive lens.
  • the second lens group G2 consists of lenses L21 to L24 in order from the object side to the image plane side.
  • the lens L21 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L22 is a biconcave negative lens whose both surfaces are aspherical surfaces.
  • the lens L23 is a biconvex positive lens.
  • the lens L24 is a negative meniscus lens with a concave surface facing the object side.
  • the third lens group G3 consists of a lens L31.
  • the lens L31 is a positive meniscus lens having both aspherical surfaces and a convex surface facing the object side.
  • the fifth lens group G5 consists of a lens L51 and a lens L52 in order from the object side to the image plane side.
  • the lens L51 is a positive meniscus lens with a concave surface facing the object side.
  • the lens L52 is a biconcave negative lens whose both surfaces are aspherical surfaces.
  • the sixth lens group G6 consists of a lens L61 and a lens L62 in order from the object side to the image plane side.
  • the lens L61 is a positive meniscus lens with a convex surface facing the object side.
  • Lens L62 is a negative meniscus lens with a concave surface facing the object side.
  • a zoom lens with a high zoom ratio is realized while covering a wide-angle range while maintaining a compact optical system.
  • FIG. 54 shows the longitudinal aberration of the zoom lens 5 according to Example 5 at the wide-angle end and in focus at infinity.
  • FIG. 55 shows longitudinal aberration of the zoom lens 5 according to Example 5 at an intermediate position and in focus at infinity.
  • FIG. 56 shows the longitudinal aberration of the zoom lens 5 according to Example 5 at the telephoto end and in focus at infinity.
  • FIG. 57 shows longitudinal aberration of the zoom lens 5 according to Example 5 at the wide-angle end and during focusing at a short distance.
  • FIG. 58 shows the longitudinal aberration of the zoom lens 5 according to Example 5 at an intermediate position and during focusing at a short distance.
  • FIG. 59 shows the longitudinal aberration of the zoom lens 5 according to Example 5 at the telephoto end and during focusing at a short distance.
  • FIG. 60 shows lateral aberration of the zoom lens 5 according to Example 5 at the wide-angle end and in focus at infinity.
  • FIG. 61 shows lateral aberration of the zoom lens 5 according to Example 5 at an intermediate position and in focus at infinity.
  • FIG. 62 shows the lateral aberration of the zoom lens 5 according to Example 5 at the telephoto end and in focus at infinity.
  • FIG. 63 shows the lateral aberration of the zoom lens 5 according to Example 5 at the wide-angle end and during focusing at a short distance.
  • FIG. 64 shows the lateral aberration of the zoom lens 5 according to Example 5 at an intermediate position and during focusing at a short distance.
  • FIG. 65 shows lateral aberration of the zoom lens 5 according to Example 5 at the telephoto end and during focusing at a short distance.
  • the zoom lens 5 according to Example 5 has various aberrations well corrected and has excellent imaging performance.
  • [Table 26] shows basic lens data of the zoom lens 6 according to Example 6 shown in FIG.
  • [Table 27] shows values of the focal length f of the entire system, the F value, the total angle of view 2 ⁇ , the image height Y, and the total optical length L of the zoom lens 6 according to Example 6.
  • [Table 28] shows the data of the surface distance that changes during zooming and focusing in the zoom lens 6 according to the sixth embodiment.
  • [Table 27] shows values when the object distance (d0) is infinite at the wide-angle end (Wide), the intermediate position (Mid), and the telephoto end (Tele).
  • [Table 28] shows the values for the wide-angle end (Wide), intermediate position (Mid), and telephoto end (Tele) when the object distance (d0) is infinite and when the object distance is short.
  • [Table 29] shows the values of the coefficients representing the shape of the aspheric surface in the zoom lens 6 according to Example 6.
  • [Table 30] shows the starting surface and focal length (unit: mm) of each lens group of the zoom lens 6 according to Example 6.
  • a zoom lens 6 according to Example 6 includes a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, an aperture stop St, and a third lens having positive refractive power.
  • a group G3, a fourth lens group G4 having positive refractive power, a fifth lens group G5 having negative refractive power, and a sixth lens group G6 having negative refractive power are arranged from the object side to the image plane side. It is configured to be arranged in order toward.
  • the zoom lens 6 according to Example 6 moves so as to change the distance between adjacent lens groups during zooming.
  • the third lens group G3 and the sixth lens group G6 as the final lens group GR move along the same trajectory.
  • the fifth lens group G5 moves along the optical axis toward the image plane.
  • the second lens group G2 consists of lenses L21 to L24 in order from the object side to the image plane side.
  • the lens L21 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L22 is a negative meniscus lens having both aspherical surfaces and a concave surface facing the object side.
  • the lens L23 is a biconvex positive lens.
  • the lens L24 is a biconcave negative lens.
  • the third lens group G3 consists of a lens L31 and a lens L32 in order from the object side to the image plane side.
  • the lens L31 is a biconvex positive lens having aspherical surfaces on both sides.
  • the lens L32 is a biconcave negative lens.
  • the fifth lens group G5 consists of a lens L51 and a lens L52 in order from the object side to the image plane side.
  • the lens L51 is a positive meniscus lens with a concave surface facing the object side.
  • the lens L52 is a biconcave negative lens whose both surfaces are aspherical surfaces.
  • the sixth lens group G6 consists of a lens L61.
  • Lens L61 is a negative meniscus lens with a concave surface facing the object side.
  • a zoom lens with a high zoom ratio is realized while covering a wide-angle range while maintaining a compact optical system.
  • FIG. 67 shows the longitudinal aberration of the zoom lens 6 according to Example 6 at the wide-angle end and in focus at infinity.
  • FIG. 68 shows longitudinal aberration of the zoom lens 6 according to Example 6 at an intermediate position and in focus at infinity.
  • FIG. 69 shows the longitudinal aberration of the zoom lens 6 according to Example 6 at the telephoto end and in focus at infinity.
  • FIG. 70 shows longitudinal aberration of the zoom lens 6 according to Example 6 at the wide-angle end and during focusing at a short distance.
  • FIG. 71 shows the longitudinal aberration of the zoom lens 6 according to Example 6 at an intermediate position and during focusing at a short distance.
  • FIG. 72 shows the longitudinal aberration of the zoom lens 6 according to Example 6 at the telephoto end and during focusing at a short distance.
  • FIG. 73 shows lateral aberration of the zoom lens 6 according to Example 6 at the wide-angle end and in focus at infinity.
  • FIG. 74 shows lateral aberration of the zoom lens 6 according to Example 6 at an intermediate position and in focus at infinity.
  • FIG. 75 shows the lateral aberration of the zoom lens 6 according to Example 6 at the telephoto end and in focus at infinity.
  • FIG. 76 shows the lateral aberration of the zoom lens 6 according to Example 6 at the wide-angle end and during focusing at a short distance.
  • FIG. 77 shows the lateral aberration of the zoom lens 6 according to Example 6 at an intermediate position and during focusing at a short distance.
  • FIG. 78 shows the lateral aberration of the zoom lens 6 according to Example 6 at the telephoto end and during focusing at a short distance.
  • the zoom lens 6 according to Example 6 has various aberrations well corrected and has excellent imaging performance.
  • [Table 31] shows basic lens data of the zoom lens 7 according to Example 7 shown in FIG.
  • [Table 32] shows values of the focal length f of the entire system, the F value, the total angle of view 2 ⁇ , the image height Y, and the total optical length L of the zoom lens 7 according to Example 7.
  • [Table 33] shows the data of the surface distance that changes during zooming and focusing in the zoom lens 7 according to the seventh embodiment.
  • [Table 32] shows values when the object distance (d0) is infinite at the wide-angle end (Wide), the intermediate position (Mid), and the telephoto end (Tele).
  • [Table 33] shows the values for the wide-angle end (Wide), intermediate position (Mid), and telephoto end (Tele) when the object distance (d0) is infinite and when the object distance is short.
  • [Table 34] shows the values of the coefficients representing the shape of the aspheric surface in the zoom lens 7 according to Example 7.
  • [Table 35] shows the starting surface and focal length (unit: mm) of each lens group of the zoom lens 7 according to the seventh embodiment.
  • a zoom lens 7 according to Example 7 includes a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, an aperture diaphragm St, and a third lens having positive refractive power.
  • a group G3, a fourth lens group G4 having positive refractive power, a fifth lens group G5 having negative refractive power, and a sixth lens group G6 having negative refractive power are arranged from the object side to the image plane side. It is configured to be arranged in order toward.
  • the zoom lens 7 according to Example 7 moves so that the distance between adjacent lens groups changes during zooming.
  • the third lens group G3 and the sixth lens group G6 as the final lens group GR move along the same trajectory.
  • the fifth lens group G5 moves along the optical axis toward the image plane.
  • the first lens group G1 consists of a lens L11 and a lens L12 in order from the object side to the image plane side.
  • the lens L11 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L12 is a positive meniscus lens with a convex surface facing the object side.
  • the lens L11 and the lens L12 form a cemented lens bonded together.
  • the second lens group G2 consists of lenses L21 to L24 in order from the object side to the image plane side.
  • the lens L21 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L22 is a negative meniscus lens having both aspherical surfaces and a concave surface facing the object side.
  • the lens L23 is a biconvex positive lens.
  • the lens L24 is a negative meniscus lens with a concave surface facing the object side.
  • the third lens group G3 consists of a lens L31.
  • the lens L31 is a positive meniscus lens having both aspherical surfaces and a convex surface facing the object side.
  • the fourth lens group G4 consists of lenses L41 to L45 in order from the object side to the image plane side.
  • the lens L41 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L42 is a positive meniscus lens with a convex surface facing the object side.
  • the lens L41 and the lens L42 form a cemented lens bonded together.
  • the lens L43 is a biconcave negative lens.
  • the lens L44 is a biconvex positive lens.
  • the lens L43 and the lens L44 form a cemented lens bonded together.
  • the lens L45 is a biconvex positive lens having aspherical surfaces on both sides.
  • the fifth lens group G5 consists of a lens L51 and a lens L52 in order from the object side to the image plane side.
  • the lens L51 is a positive meniscus lens with a concave surface facing the object side.
  • the lens L52 is a biconcave negative lens whose both surfaces are aspherical surfaces.
  • the sixth lens group G6 consists of a lens L61.
  • Lens L61 is a negative meniscus lens with a concave surface facing the object side.
  • a zoom lens with a high zoom ratio is realized while covering a wide-angle range while maintaining a compact optical system.
  • FIG. 80 shows the longitudinal aberration of the zoom lens 7 according to Example 7 at the wide-angle end and in focus at infinity.
  • FIG. 81 shows longitudinal aberration of the zoom lens 7 according to Example 7 at an intermediate position and in focus at infinity.
  • FIG. 82 shows the longitudinal aberration of the zoom lens 7 according to Example 7 at the telephoto end and in focus at infinity.
  • FIG. 83 shows the longitudinal aberration of the zoom lens 7 according to Example 7 at the wide-angle end and during focusing at a short distance.
  • FIG. 84 shows the longitudinal aberration of the zoom lens 7 according to Example 7 at an intermediate position and during focusing at a short distance.
  • FIG. 85 shows the longitudinal aberration of the zoom lens 7 according to Example 7 at the telephoto end and during focusing at a short distance.
  • FIG. 86 shows lateral aberration of the zoom lens 7 according to Example 7 at the wide-angle end and in focus at infinity.
  • FIG. 87 shows lateral aberration of the zoom lens 7 according to Example 7 at an intermediate position and in focus at infinity.
  • FIG. 88 shows the lateral aberration of the zoom lens 7 according to Example 7 at the telephoto end and in focus at infinity.
  • FIG. 89 shows lateral aberration of the zoom lens 7 according to Example 7 at the wide-angle end and during focusing at a short distance.
  • FIG. 90 shows the lateral aberration of the zoom lens 7 according to Example 7 at an intermediate position and during focusing at a short distance.
  • FIG. 91 shows the lateral aberration of the zoom lens 7 according to Example 7 at the telephoto end and during focusing at a short distance.
  • the zoom lens 7 according to Example 7 has various aberrations well corrected and has excellent imaging performance.
  • [Table 36] shows basic lens data of the zoom lens 8 according to Example 8 shown in FIG.
  • [Table 37] shows values of the focal length f of the entire system, the F value, the total angle of view 2 ⁇ , the image height Y, and the total optical length L of the zoom lens 8 according to Example 8.
  • [Table 38] shows the data of the surface spacing that varies during zooming and focusing in the zoom lens 8 according to the eighth embodiment.
  • [Table 37] shows values when the object distance (d0) is infinite at the wide-angle end (Wide), the intermediate position (Mid), and the telephoto end (Tele).
  • [Table 38] shows values for the wide-angle end (Wide), intermediate position (Mid), and telephoto end (Tele) when the object distance (d0) is infinite and when the object distance is short.
  • [Table 39] shows the values of the coefficients representing the shape of the aspheric surface in the zoom lens 8 according to Example 8.
  • [Table 40] shows the starting surface and focal length (unit: mm) of each lens group of the zoom lens 8 according to the eighth embodiment.
  • a zoom lens 8 according to Example 8 includes a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, an aperture diaphragm St, and a third lens having positive refractive power.
  • a group G3, a fourth lens group G4 having positive refractive power, a fifth lens group G5 having negative refractive power, and a sixth lens group G6 having negative refractive power are arranged from the object side to the image plane side. It is configured to be arranged in order toward.
  • the zoom lens 8 according to Example 8 moves so that the distance between adjacent lens groups changes during zooming.
  • the third lens group G3 and the sixth lens group G6 as the final lens group GR move along the same trajectory.
  • the fifth lens group G5 moves along the optical axis toward the image plane.
  • the first lens group G1 consists of a lens L11 and a lens L12 in order from the object side to the image plane side.
  • the lens L11 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L12 is a positive meniscus lens with a convex surface facing the object side.
  • the lens L11 and the lens L12 form a cemented lens bonded together.
  • the second lens group G2 consists of lenses L21 to L24 in order from the object side to the image plane side.
  • the lens L21 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L22 is a negative meniscus lens having both aspherical surfaces and a concave surface facing the object side.
  • the lens L23 is a biconvex positive lens.
  • the lens L24 is a negative meniscus lens with a concave surface facing the object side.
  • the third lens group G3 consists of a lens L31.
  • the lens L31 is a positive meniscus lens having both aspherical surfaces and a convex surface facing the object side.
  • the fourth lens group G4 consists of lenses L41 to L45 in order from the object side to the image plane side.
  • the lens L41 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L42 is a biconvex positive lens.
  • the lens L41 and the lens L42 form a cemented lens bonded together.
  • the lens L43 is a positive meniscus lens with a concave surface facing the object side.
  • the lens L44 is a negative meniscus lens with a concave surface facing the object side.
  • the lens L43 and the lens L44 form a cemented lens bonded together.
  • the lens L45 is a biconvex positive lens having aspherical surfaces on both sides.
  • the fifth lens group G5 consists of a lens L51 and a lens L52 in order from the object side to the image plane side.
  • the lens L51 is a positive meniscus lens with a concave surface facing the object side.
  • the lens L52 is a biconcave negative lens whose both surfaces are aspherical surfaces.
  • the sixth lens group G6 consists of a lens L61 and a lens L62 in order from the object side to the image plane side.
  • the lens L61 is a biconvex positive lens.
  • Lens L62 is a negative meniscus lens with a concave surface facing the object side.
  • a zoom lens with a high zoom ratio is realized while covering a wide-angle range while maintaining a compact optical system.
  • FIG. 93 shows the longitudinal aberration of the zoom lens 8 according to Example 8 at the wide-angle end and in focus at infinity.
  • FIG. 94 shows longitudinal aberration of the zoom lens 8 according to Example 8 at an intermediate position and in focus at infinity.
  • FIG. 95 shows the longitudinal aberration of the zoom lens 8 according to Example 8 at the telephoto end and in focus at infinity.
  • FIG. 96 shows longitudinal aberration of the zoom lens 8 according to Example 8 at the wide-angle end and during focusing at a short distance.
  • FIG. 97 shows the longitudinal aberration of the zoom lens 8 according to Example 8 at an intermediate position and during focusing at a short distance.
  • FIG. 98 shows the longitudinal aberration of the zoom lens 8 according to Example 8 at the telephoto end and during focusing at a short distance.
  • FIG. 99 shows lateral aberration of the zoom lens 8 according to Example 8 at the wide-angle end and in focus at infinity.
  • FIG. 100 shows lateral aberration of the zoom lens 8 according to Example 8 at an intermediate position and in focus at infinity.
  • FIG. 101 shows the lateral aberration of the zoom lens 8 according to Example 8 at the telephoto end and in focus at infinity.
  • FIG. 102 shows the lateral aberration of the zoom lens 8 according to Example 8 at the wide-angle end and during focusing at a short distance.
  • FIG. 103 shows the lateral aberration of the zoom lens 8 according to Example 8 at an intermediate position and during focusing at a short distance.
  • FIG. 104 shows the lateral aberration of the zoom lens 8 according to Example 8 at the telephoto end and during focusing at a short distance.
  • the zoom lens 8 according to Example 8 has various aberrations well corrected and has excellent imaging performance.
  • [Table 41] shows basic lens data of the zoom lens 9 according to Example 9 shown in FIG.
  • [Table 42] shows values of the focal length f of the entire system, the F value, the total angle of view 2 ⁇ , the image height Y, and the total optical length L of the zoom lens 9 according to Example 9.
  • [Table 43] shows the data of the surface distance that changes during zooming and focusing in the zoom lens 9 according to the ninth embodiment.
  • [Table 42] shows values when the object distance (d0) is infinite at the wide-angle end (Wide), the intermediate position (Mid), and the telephoto end (Tele).
  • [Table 43] shows the values for the wide-angle end (Wide), intermediate position (Mid), and telephoto end (Tele) when the object distance (d0) is infinite and when the object distance is short.
  • [Table 44] shows the values of the coefficients representing the shape of the aspheric surface in the zoom lens 9 according to Example 9.
  • [Table 45] shows the starting surface and focal length (unit: mm) of each lens group of the zoom lens 9 according to the ninth embodiment.
  • a zoom lens 9 according to Example 9 includes a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, an aperture stop St, and a third lens having positive refractive power.
  • a group G3, a fourth lens group G4 having positive refractive power, and a fifth lens group G5 having negative refractive power are arranged in order from the object side toward the image plane side.
  • the zoom lens 9 according to Example 9 moves so that the distance between adjacent lens groups changes during zooming.
  • the fifth lens group G5 moves along the optical axis toward the image plane.
  • the first lens group G1 consists of a lens L11 and a lens L12 in order from the object side to the image plane side.
  • the lens L11 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L12 is a positive meniscus lens with a convex surface facing the object side.
  • the lens L11 and the lens L12 form a cemented lens bonded together.
  • the second lens group G2 consists of lenses L21 to L24 in order from the object side to the image plane side.
  • the lens L21 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L22 is a biconcave negative lens whose both surfaces are aspherical surfaces.
  • the lens L23 is a biconvex positive lens.
  • the lens L24 is a negative meniscus lens with a concave surface facing the object side.
  • the third lens group G3 consists of lenses L31 to L33 in order from the object side to the image plane side.
  • the lens L31 is a biconvex positive lens having aspherical surfaces on both sides.
  • the lens L32 is a positive meniscus lens with a concave surface facing the object side.
  • the lens L33 is a biconcave negative lens.
  • the lens L32 and the lens L33 form a cemented lens bonded together.
  • the fourth lens group G4 consists of a lens L41.
  • the lens L41 is a biconvex positive lens having aspherical surfaces on both sides.
  • the fifth lens group G5 consists of a lens L51 and a lens L52 in order from the object side to the image plane side.
  • the lens L51 is a positive meniscus lens with a concave surface facing the object side.
  • the lens L52 is a biconcave negative lens whose both surfaces are aspherical surfaces.
  • a zoom lens with a high zoom ratio is realized while covering a wide-angle range while maintaining a compact optical system.
  • FIG. 106 shows the longitudinal aberration of the zoom lens 9 according to Example 9 at the wide-angle end and in focus at infinity.
  • FIG. 107 shows the longitudinal aberration of the zoom lens 9 according to Example 9 at an intermediate position and in focus at infinity.
  • FIG. 108 shows the longitudinal aberration of the zoom lens 9 according to Example 9 at the telephoto end and in focus at infinity.
  • FIG. 109 shows the longitudinal aberration of the zoom lens 9 according to Example 9 at the wide-angle end and during focusing at a short distance.
  • FIG. 110 shows the longitudinal aberration of the zoom lens 9 according to Example 9 at an intermediate position and during focusing at a short distance.
  • FIG. 111 shows the longitudinal aberration of the zoom lens 9 according to Example 9 at the telephoto end and during focusing at a short distance.
  • FIG. 112 shows lateral aberration of the zoom lens 9 according to Example 9 at the wide-angle end and in focus at infinity.
  • FIG. 113 shows the lateral aberration of the zoom lens 9 according to Example 9 at an intermediate position and in focus at infinity.
  • FIG. 114 shows the lateral aberration of the zoom lens 9 according to Example 9 at the telephoto end and in focus at infinity.
  • FIG. 115 shows the lateral aberration of the zoom lens 9 according to Example 9 at the wide-angle end and during focusing at a short distance.
  • FIG. 116 shows the lateral aberration of the zoom lens 9 according to Example 9 at an intermediate position and during focusing at a short distance.
  • FIG. 117 shows the lateral aberration of the zoom lens 9 according to Example 9 at the telephoto end and during focusing at a short distance.
  • the zoom lens 9 according to Example 9 has various aberrations well corrected and has excellent imaging performance.
  • [Table 46] shows basic lens data of the zoom lens 10 according to Example 10 shown in FIG.
  • [Table 47] shows values of the focal length f of the entire system, the F value, the total angle of view 2 ⁇ , the image height Y, and the total optical length L of the zoom lens 10 according to Example 10.
  • [Table 48] shows the data of the surface spacing that varies during zooming and focusing in the zoom lens 10 according to the tenth embodiment.
  • [Table 47] shows values when the object distance (d0) is infinite at the wide-angle end (Wide), the intermediate position (Mid), and the telephoto end (Tele).
  • [Table 48] shows the values for the wide-angle end (Wide), intermediate position (Mid), and telephoto end (Tele) when the object distance (d0) is infinite and when the object distance is short.
  • [Table 49] shows the values of the coefficients representing the shape of the aspheric surface in the zoom lens 10 according to Example 10.
  • [Table 50] shows the starting surface and focal length (unit: mm) of each lens group of the zoom lens 10 according to the tenth embodiment.
  • a zoom lens 10 according to Example 10 includes a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, an aperture stop St, and a third lens having positive refractive power.
  • a group G3, a fourth lens group G4 having positive refractive power, a fifth lens group G5 having negative refractive power, and a sixth lens group G6 having negative refractive power are arranged from the object side to the image plane side. It is configured to be arranged in order toward.
  • the zoom lens 10 according to Example 10 moves so that the distance between adjacent lens groups changes during zooming.
  • the third lens group G3 and the sixth lens group G6 as the final lens group GR move along the same trajectory.
  • the fifth lens group G5 moves along the optical axis toward the image plane.
  • the first lens group G1 consists of a lens L11 and a lens L12 in order from the object side to the image plane side.
  • the lens L11 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L12 is a positive meniscus lens with a convex surface facing the object side.
  • the lens L11 and the lens L12 form a cemented lens bonded together.
  • the second lens group G2 consists of lenses L21 to L24 in order from the object side to the image plane side.
  • the lens L21 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L22 is a biconcave negative lens whose both surfaces are aspherical surfaces.
  • the lens L23 is a biconvex positive lens.
  • the lens L24 is a negative meniscus lens with a concave surface facing the object side.
  • the third lens group G3 consists of lenses L31 to L35 in order from the object side to the image plane side.
  • the lens L31 is a biconvex positive lens having aspherical surfaces on both sides.
  • the lens L32 is a positive meniscus lens with a concave surface facing the object side.
  • the lens L33 is a negative meniscus lens with a concave surface facing the object side.
  • the lens L32 and the lens L33 form a cemented lens bonded together.
  • the lens L34 is a biconcave negative lens.
  • the lens L35 is a positive meniscus lens with a convex surface facing the object side.
  • the lens L34 and the lens L35 form a cemented lens bonded together.
  • the fourth lens group G4 consists of a lens L41.
  • the lens L41 is a biconvex positive lens having aspherical surfaces on both sides.
  • the fifth lens group G5 consists of a lens L51 and a lens L52 in order from the object side to the image plane side.
  • the lens L51 is a positive meniscus lens with a concave surface facing the object side.
  • the lens L52 is a biconcave negative lens whose both surfaces are aspherical surfaces.
  • the sixth lens group G6 consists of a lens L61.
  • Lens L61 is a negative meniscus lens with a concave surface facing the object side.
  • a zoom lens with a high zoom ratio is realized while covering a wide-angle range while maintaining a compact optical system.
  • FIG. 119 shows the longitudinal aberration of the zoom lens 10 according to Example 10 at the wide-angle end and in focus at infinity.
  • FIG. 120 shows longitudinal aberration of the zoom lens 10 according to Example 10 at an intermediate position and in focus at infinity.
  • FIG. 121 shows the longitudinal aberration of the zoom lens 10 according to Example 10 at the telephoto end and in focus at infinity.
  • FIG. 122 shows longitudinal aberration of the zoom lens 10 according to Example 10 at the wide-angle end and during focusing at a short distance.
  • FIG. 123 shows the longitudinal aberration of the zoom lens 10 according to Example 10 at an intermediate position and during focusing at a short distance.
  • FIG. 124 shows longitudinal aberration of the zoom lens 10 according to Example 10 at the telephoto end and during focusing at a short distance.
  • FIG. 125 shows lateral aberration of the zoom lens 10 according to Example 10 at the wide-angle end and in focus at infinity.
  • FIG. 126 shows lateral aberration of the zoom lens 10 according to Example 10 at an intermediate position and in focus at infinity.
  • FIG. 127 shows the lateral aberration of the zoom lens 10 according to Example 10 at the telephoto end and in focus at infinity.
  • FIG. 128 shows the lateral aberration of the zoom lens 10 according to Example 10 at the wide-angle end and during focusing at a short distance.
  • FIG. 129 shows the lateral aberration of the zoom lens 10 according to Example 10 at an intermediate position and during focusing at a short distance.
  • FIG. 130 shows the lateral aberration of the zoom lens 10 according to Example 10 at the telephoto end and during focusing at a short distance.
  • the zoom lens 10 according to Example 10 has various aberrations well corrected and has excellent imaging performance.
  • [Table 51] shows basic lens data of the zoom lens 11 according to Example 11 shown in FIG.
  • [Table 52] shows values of the focal length f of the entire system, the F value, the total angle of view 2 ⁇ , the image height Y, and the total optical length L of the zoom lens 11 according to Example 11.
  • [Table 53] shows the data of the surface spacing that changes during zooming and focusing in the zoom lens 11 according to the eleventh embodiment.
  • [Table 52] shows values when the object distance (d0) is infinite at the wide-angle end (Wide), the intermediate position (Mid), and the telephoto end (Tele).
  • [Table 53] shows the values for the wide-angle end (Wide), intermediate position (Mid), and telephoto end (Tele) when the object distance (d0) is infinite and when the object distance is short.
  • [Table 54] shows the values of the coefficients representing the shape of the aspheric surface in the zoom lens 11 according to Example 11.
  • [Table 55] shows the starting surface and focal length (unit: mm) of each lens group of the zoom lens 11 according to the eleventh embodiment.
  • a zoom lens 11 according to Example 11 includes a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, an aperture stop St, and a third lens having positive refractive power.
  • a group G3, a fourth lens group G4 having positive refractive power, a fifth lens group G5 having negative refractive power, and a sixth lens group G6 having negative refractive power are arranged from the object side to the image plane side. It is configured to be arranged in order toward.
  • the zoom lens 11 according to Example 11 moves so that the distance between adjacent lens groups changes during zooming.
  • the third lens group G3 and the sixth lens group G6 as the final lens group GR move along the same trajectory.
  • the fifth lens group G5 moves along the optical axis toward the image plane.
  • the first lens group G1 consists of a lens L11 and a lens L12 in order from the object side to the image plane side.
  • the lens L11 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L12 is a positive meniscus lens with a convex surface facing the object side.
  • the lens L11 and the lens L12 form a cemented lens bonded together.
  • the second lens group G2 consists of lenses L21 to L24 in order from the object side to the image plane side.
  • the lens L21 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L22 is a biconcave negative lens whose both surfaces are aspherical surfaces.
  • the lens L23 is a biconvex positive lens.
  • the lens L24 is a negative meniscus lens with a concave surface facing the object side.
  • the third lens group G3 consists of lenses L31 to L34 in order from the object side to the image plane side.
  • the lens L31 is a biconvex positive lens having aspherical surfaces on both sides.
  • the lens L32 is a biconvex positive lens.
  • the lens L33 is a negative meniscus lens with a concave surface facing the object side.
  • the lens L32 and the lens L33 form a cemented lens bonded together.
  • the lens L34 is a negative meniscus lens with a concave surface facing the object side.
  • the fourth lens group G4 consists of a lens L41.
  • the lens L41 is a biconvex positive lens having aspherical surfaces on both sides.
  • the fifth lens group G5 consists of a lens L51 and a lens L52 in order from the object side to the image plane side.
  • the lens L51 is a biconvex positive lens.
  • the lens L52 is a biconcave negative lens whose both surfaces are aspherical surfaces.
  • the sixth lens group G6 consists of a lens L61.
  • Lens L61 is a negative meniscus lens with a concave surface facing the object side.
  • a zoom lens with a high zoom ratio is realized while covering a wide-angle range while maintaining a compact optical system.
  • FIG. 132 shows the longitudinal aberration of the zoom lens 11 according to Example 11 at the wide-angle end and in focus at infinity.
  • FIG. 133 shows longitudinal aberration of the zoom lens 11 according to Example 11 at an intermediate position and in focus at infinity.
  • FIG. 134 shows the longitudinal aberration of the zoom lens 11 according to Example 11 at the telephoto end and in focus at infinity.
  • FIG. 135 shows longitudinal aberration of the zoom lens 11 according to Example 11 at the wide-angle end and during focusing at a short distance.
  • FIG. 136 shows longitudinal aberration of the zoom lens 11 according to Example 11 at an intermediate position and during focusing at a short distance.
  • FIG. 137 shows longitudinal aberration of the zoom lens 11 according to Example 11 at the telephoto end and during focusing at a short distance.
  • FIG. 138 shows lateral aberration of the zoom lens 11 according to Example 11 at the wide-angle end and in focus at infinity.
  • FIG. 139 shows lateral aberration of the zoom lens 11 according to Example 11 at an intermediate position and in focus at infinity.
  • FIG. 140 shows the lateral aberration of the zoom lens 11 according to Example 11 at the telephoto end and in focus at infinity.
  • FIG. 141 shows lateral aberration of the zoom lens 11 according to Example 11 at the wide-angle end and during focusing at a short distance.
  • FIG. 142 shows the lateral aberration of the zoom lens 11 according to Example 11 at an intermediate position and during focusing at a short distance.
  • FIG. 143 shows the lateral aberration of the zoom lens 11 according to Example 11 at the telephoto end and during focusing at a short distance.
  • the zoom lens 11 according to Example 11 has various aberrations well corrected and has excellent imaging performance.
  • [Table 56] shows basic lens data of the zoom lens 12 according to Example 12 shown in FIG.
  • [Table 57] shows values of the focal length f of the entire system, the F value, the total angle of view 2 ⁇ , the image height Y, and the total optical length L of the zoom lens 12 according to Example 12.
  • [Table 58] shows the data of the surface spacing that varies during zooming and focusing in the zoom lens 12 according to Example 12.
  • [Table 57] shows values when the object distance (d0) is infinite at the wide-angle end (Wide), the intermediate position (Mid), and the telephoto end (Tele).
  • [Table 58] shows the values for the wide-angle end (Wide), the intermediate position (Mid), and the telephoto end (Tele) when the object distance (d0) is infinite and when the object distance is short.
  • [Table 59] shows the values of the coefficients representing the shape of the aspheric surface in the zoom lens 12 according to Example 12.
  • [Table 60] shows the starting surface and focal length (unit: mm) of each lens group of the zoom lens 12 according to the twelfth embodiment.
  • a zoom lens 12 according to Example 12 includes a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, an aperture stop St, and a third lens having positive refractive power.
  • a group G3, a fourth lens group G4 having positive refractive power, a fifth lens group G5 having negative refractive power, and a sixth lens group G6 having negative refractive power are arranged from the object side to the image plane side. It is configured to be arranged in order toward.
  • the zoom lens 12 according to Example 12 moves so that the distance between adjacent lens groups changes during zooming.
  • the third lens group G3 and the sixth lens group G6 as the final lens group GR move along the same trajectory.
  • the fifth lens group G5 moves along the optical axis toward the image plane.
  • the first lens group G1 consists of a lens L11 and a lens L12 in order from the object side to the image plane side.
  • the lens L11 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L12 is a positive meniscus lens with a convex surface facing the object side.
  • the lens L11 and the lens L12 form a cemented lens bonded together.
  • the second lens group G2 consists of lenses L21 to L24 in order from the object side to the image plane side.
  • the lens L21 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L22 is a negative meniscus lens having both aspherical surfaces and a convex surface facing the object side.
  • the lens L23 is a biconvex positive lens.
  • the lens L24 is a negative meniscus lens with a concave surface facing the object side.
  • the third lens group G3 consists of lenses L31 to L33 in order from the object side to the image plane side.
  • the lens L31 is a positive meniscus lens having both aspherical surfaces and a convex surface facing the object side.
  • the lens L32 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L33 is a positive meniscus lens with a convex surface facing the object side.
  • the lens L32 and the lens L33 form a cemented lens bonded together.
  • the fourth lens group G4 consists of lenses L41 to L43 in order from the object side to the image plane side.
  • the lens L41 is a biconvex positive lens.
  • the lens L42 is a biconcave negative lens.
  • the lens L41 and the lens L42 form a cemented lens bonded together.
  • the lens L43 is a biconvex positive lens having aspherical surfaces on both sides.
  • the fifth lens group G5 consists of a lens L51 and a lens L52 in order from the object side to the image plane side.
  • the lens L51 is a positive meniscus lens with a concave surface facing the object side.
  • the lens L52 is a biconcave negative lens whose both surfaces are aspherical surfaces.
  • the sixth lens group G6 consists of a lens L61.
  • Lens L61 is a negative meniscus lens with a concave surface facing the object side.
  • a zoom lens with a high zoom ratio is realized while covering a wide-angle range while maintaining a compact optical system.
  • FIG. 145 shows the longitudinal aberration of the zoom lens 12 according to Example 12 at the wide-angle end and in focus at infinity.
  • FIG. 146 shows longitudinal aberration of the zoom lens 12 according to Example 12 at an intermediate position and in focus at infinity.
  • FIG. 147 shows the longitudinal aberration of the zoom lens 12 according to Example 12 at the telephoto end and in focus at infinity.
  • FIG. 148 shows longitudinal aberration of the zoom lens 12 according to Example 12 at the wide-angle end and during focusing at a short distance.
  • FIG. 149 shows the longitudinal aberration of the zoom lens 12 according to Example 12 at an intermediate position and during focusing at a short distance.
  • FIG. 150 shows longitudinal aberration of the zoom lens 12 according to Example 12 at the telephoto end and during focusing at a short distance.
  • FIG. 151 shows lateral aberration of the zoom lens 12 according to Example 12 at the wide-angle end and in focus at infinity.
  • FIG. 152 shows lateral aberration of the zoom lens 12 according to Example 12 at an intermediate position and in focus at infinity.
  • FIG. 153 shows the lateral aberration of the zoom lens 12 according to Example 12 at the telephoto end and in focus at infinity.
  • FIG. 154 shows lateral aberration of the zoom lens 12 according to Example 12 at the wide-angle end and during focusing at a short distance.
  • FIG. 155 shows the lateral aberration of the zoom lens 12 according to Example 12 at an intermediate position and during focusing at a short distance.
  • FIG. 156 shows the lateral aberration of the zoom lens 12 according to Example 12 at the telephoto end and during focusing at a short distance.
  • the zoom lens 12 according to Example 12 has various aberrations well corrected and has excellent imaging performance.
  • a zoom lens 13 according to Example 13 includes a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, an aperture stop St, and a third lens having positive refractive power.
  • a group G3, a fourth lens group G4 having positive refractive power, a fifth lens group G5 having negative refractive power, and a sixth lens group G6 having negative refractive power are arranged from the object side to the image plane side. It is configured to be arranged in order toward.
  • the zoom lens 13 according to Example 13 moves so that the distance between adjacent lens groups changes during zooming.
  • the third lens group G3 and the sixth lens group G6 as the final lens group GR move along the same trajectory.
  • the fifth lens group G5 moves along the optical axis toward the image plane.
  • the second lens group G2 consists of lenses L21 to L24 in order from the object side to the image plane side.
  • the lens L21 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L22 is a biconcave negative lens whose both surfaces are aspherical surfaces.
  • the lens L23 is a biconvex positive lens.
  • the lens L24 is a biconcave negative lens.
  • the fourth lens group G4 consists of lenses L41 to L45 in order from the object side to the image plane side.
  • the lens L41 is a negative meniscus lens with a convex surface facing the object side.
  • the lens L42 is a positive meniscus lens with a convex surface facing the object side.
  • the lens L41 and the lens L42 form a cemented lens bonded together.
  • the lens L43 is a biconvex positive lens.
  • the lens L44 is a biconcave negative lens.
  • the lens L43 and the lens L44 form a cemented lens bonded together.
  • the lens L45 is a biconvex positive lens having aspherical surfaces on both sides.
  • the sixth lens group G6 consists of a lens L61 and a lens L62 in order from the object side to the image plane side.
  • the lens L61 is a biconvex positive lens.
  • Lens L62 is a negative meniscus lens with a concave surface facing the object side.
  • a zoom lens with a high zoom ratio is realized while covering a wide-angle range while maintaining a compact optical system.
  • FIG. 158 shows the longitudinal aberration of the zoom lens 13 according to Example 13 at the wide-angle end and in focus at infinity.
  • FIG. 159 shows longitudinal aberration of the zoom lens 13 according to Example 13 at an intermediate position and in focus at infinity.
  • FIG. 160 shows the longitudinal aberration of the zoom lens 13 according to Example 13 at the telephoto end and in focus at infinity.
  • FIG. 161 shows the longitudinal aberration of the zoom lens 13 according to Example 13 at the wide-angle end and during focusing at a short distance.
  • FIG. 162 shows longitudinal aberration of the zoom lens 13 according to Example 13 at an intermediate position and during focusing at a short distance.
  • FIG. 163 shows longitudinal aberration of the zoom lens 13 according to Example 13 at the telephoto end and during focusing at a short distance.
  • FIG. 158 shows the longitudinal aberration of the zoom lens 13 according to Example 13 at the wide-angle end and in focus at infinity.
  • FIG. 159 shows longitudinal aberration of the zoom lens 13 according to Example 13 at an intermediate position and
  • FIG. 164 shows lateral aberration of the zoom lens 13 according to Example 13 at the wide-angle end and in focus at infinity.
  • FIG. 165 shows lateral aberration of the zoom lens 13 according to Example 13 at an intermediate position and in focus at infinity.
  • FIG. 166 shows the lateral aberration of the zoom lens 13 according to Example 13 at the telephoto end and in focus at infinity.
  • FIG. 167 shows the lateral aberration of the zoom lens according to Example 13 at the wide-angle end and during focusing at a short distance.
  • FIG. 168 shows the lateral aberration of the zoom lens 13 according to Example 13 at the intermediate position and at the time of focusing at a short distance.
  • FIG. 169 shows the lateral aberration of the zoom lens 13 according to Example 13 at the telephoto end and during focusing at a short distance.
  • the zoom lens 13 according to Example 13 has various aberrations well corrected and has excellent imaging performance.
  • [Other Numerical Data of Each Example] [Table 66] to [Table 68] show values for each of the conditional expressions described above for each example. As can be seen from [Table 66] to [Table 68], the values of each embodiment fall within the numerical ranges for conditional expressions (1) to (6) and (8). As for conditional expression (7), the values of each example other than Example 5 are within its numerical range.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure can be applied to any type of movement such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, robots, construction machinery, agricultural machinery (tractors), etc. It may also be implemented as a body-mounted device.
  • FIG. 171 is a block diagram showing a schematic configuration example of a vehicle control system 7000, which is an example of a mobile control system to which the technology according to the present disclosure can be applied.
  • Vehicle control system 7000 comprises a plurality of electronic control units connected via communication network 7010 .
  • the vehicle control system 7000 includes a drive system control unit 7100, a body system control unit 7200, a battery control unit 7300, an outside information detection unit 7400, an inside information detection unit 7500, and an integrated control unit 7600.
  • the communication network 7010 connecting these multiple control units conforms to any standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network) or FlexRay (registered trademark). It may be an in-vehicle communication network.
  • Each control unit includes a microcomputer that performs arithmetic processing according to various programs, a storage unit that stores programs executed by the microcomputer or parameters used in various calculations, and a drive circuit that drives various devices to be controlled. Prepare.
  • Each control unit has a network I/F for communicating with other control units via a communication network 7010, and communicates with devices or sensors inside and outside the vehicle by wired communication or wireless communication. A communication I/F for communication is provided. In FIG.
  • the functional configuration of the integrated control unit 7600 includes a microcomputer 7610, a general-purpose communication I/F 7620, a dedicated communication I/F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle equipment I/F 7660, an audio image output unit 7670, An in-vehicle network I/F 7680 and a storage unit 7690 are shown.
  • Other control units are similarly provided with microcomputers, communication I/Fs, storage units, and the like.
  • the drive system control unit 7100 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the driving system control unit 7100 includes a driving force generator for generating driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism to adjust and a brake device to generate braking force of the vehicle.
  • Drive system control unit 7100 may have a function as a control device such as ABS (Antilock Brake System) or ESC (Electronic Stability Control).
  • a vehicle state detection section 7110 is connected to the drive system control unit 7100 .
  • the vehicle state detection unit 7110 includes, for example, a gyro sensor that detects the angular velocity of the axial rotational motion of the vehicle body, an acceleration sensor that detects the acceleration of the vehicle, an accelerator pedal operation amount, a brake pedal operation amount, and a steering wheel steering. At least one of sensors for detecting angle, engine speed or wheel rotation speed is included.
  • Drive system control unit 7100 performs arithmetic processing using signals input from vehicle state detection unit 7110, and controls the internal combustion engine, drive motor, electric power steering device, brake device, and the like.
  • the body system control unit 7200 controls the operation of various devices equipped on the vehicle body according to various programs.
  • the body system control unit 7200 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, winkers or fog lamps.
  • body system control unit 7200 can receive radio waves transmitted from a portable device that substitutes for a key or signals from various switches.
  • Body system control unit 7200 receives these radio waves or signals and controls the door lock device, power window device, lamps, and the like of the vehicle.
  • the battery control unit 7300 controls the secondary battery 7310, which is the power supply source for the driving motor, according to various programs. For example, the battery control unit 7300 receives information such as battery temperature, battery output voltage, or remaining battery capacity from a battery device including a secondary battery 7310 . The battery control unit 7300 performs arithmetic processing using these signals, and performs temperature adjustment control of the secondary battery 7310 or control of a cooling device provided in the battery device.
  • the vehicle exterior information detection unit 7400 detects information outside the vehicle in which the vehicle control system 7000 is installed.
  • the imaging section 7410 and the vehicle exterior information detection section 7420 is connected to the vehicle exterior information detection unit 7400 .
  • the imaging unit 7410 includes at least one of a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, an infrared camera, and other cameras.
  • the vehicle exterior information detection unit 7420 includes, for example, an environment sensor for detecting the current weather or weather, or a sensor for detecting other vehicles, obstacles, pedestrians, etc. around the vehicle equipped with the vehicle control system 7000. ambient information detection sensor.
  • the environmental sensor may be, for example, at least one of a raindrop sensor that detects rainy weather, a fog sensor that detects fog, a sunshine sensor that detects the degree of sunshine, and a snow sensor that detects snowfall.
  • the ambient information detection sensor may be at least one of an ultrasonic sensor, a radar device, and a LIDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging) device.
  • LIDAR Light Detection and Ranging, Laser Imaging Detection and Ranging
  • These imaging unit 7410 and vehicle exterior information detection unit 7420 may be provided as independent sensors or devices, or may be provided as a device in which a plurality of sensors or devices are integrated.
  • FIG. 172 shows an example of the installation positions of the imaging unit 7410 and the vehicle exterior information detection unit 7420.
  • the imaging units 7910 , 7912 , 7914 , 7916 , and 7918 are provided, for example, at least one of the front nose, side mirrors, rear bumper, back door, and windshield of the vehicle 7900 .
  • An imaging unit 7910 provided in the front nose and an imaging unit 7918 provided above the windshield in the vehicle interior mainly acquire images of the front of the vehicle 7900 .
  • Imaging units 7912 and 7914 provided in the side mirrors mainly acquire side images of the vehicle 7900 .
  • An imaging unit 7916 provided in the rear bumper or back door mainly acquires an image behind the vehicle 7900 .
  • An imaging unit 7918 provided above the windshield in the passenger compartment is mainly used for detecting preceding vehicles, pedestrians, obstacles, traffic lights, traffic signs, lanes, and the like.
  • FIG. 172 shows an example of the imaging range of each of the imaging units 7910, 7912, 7914, and 7916.
  • the imaging range a indicates the imaging range of the imaging unit 7910 provided in the front nose
  • the imaging ranges b and c indicate the imaging ranges of the imaging units 7912 and 7914 provided in the side mirrors, respectively
  • the imaging range d is The imaging range of an imaging unit 7916 provided on the rear bumper or back door is shown. For example, by superimposing the image data captured by the imaging units 7910, 7912, 7914, and 7916, a bird's-eye view image of the vehicle 7900 viewed from above can be obtained.
  • the vehicle exterior information detection units 7920, 7922, 7924, 7926, 7928, and 7930 provided on the front, rear, sides, corners, and above the windshield of the vehicle interior of the vehicle 7900 may be, for example, ultrasonic sensors or radar devices.
  • the exterior information detectors 7920, 7926, and 7930 provided above the front nose, rear bumper, back door, and windshield of the vehicle 7900 may be LIDAR devices, for example.
  • These vehicle exterior information detection units 7920 to 7930 are mainly used to detect preceding vehicles, pedestrians, obstacles, and the like.
  • the vehicle exterior information detection unit 7400 causes the imaging section 7410 to capture an image of the exterior of the vehicle, and receives the captured image data.
  • the vehicle exterior information detection unit 7400 also receives detection information from the vehicle exterior information detection unit 7420 connected thereto.
  • the vehicle exterior information detection unit 7420 is an ultrasonic sensor, radar device, or LIDAR device
  • the vehicle exterior information detection unit 7400 emits ultrasonic waves, electromagnetic waves, or the like, and receives reflected wave information.
  • the vehicle exterior information detection unit 7400 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received information.
  • the vehicle exterior information detection unit 7400 may perform environment recognition processing for recognizing rainfall, fog, road surface conditions, etc., based on the received information.
  • the vehicle exterior information detection unit 7400 may calculate the distance to the vehicle exterior object based on the received information.
  • the vehicle exterior information detection unit 7400 may perform image recognition processing or distance detection processing for recognizing people, vehicles, obstacles, signs, characters on the road surface, etc., based on the received image data.
  • the vehicle exterior information detection unit 7400 performs processing such as distortion correction or alignment on the received image data, and synthesizes image data captured by different imaging units 7410 to generate a bird's-eye view image or a panoramic image. good too.
  • the vehicle exterior information detection unit 7400 may perform viewpoint conversion processing using image data captured by different imaging units 7410 .
  • the in-vehicle information detection unit 7500 detects in-vehicle information.
  • the in-vehicle information detection unit 7500 is connected to, for example, a driver state detection section 7510 that detects the state of the driver.
  • the driver state detection unit 7510 may include a camera that captures an image of the driver, a biosensor that detects the biometric information of the driver, a microphone that collects sounds in the vehicle interior, or the like.
  • a biosensor is provided, for example, on a seat surface, a steering wheel, or the like, and detects biometric information of a passenger sitting on a seat or a driver holding a steering wheel.
  • the in-vehicle information detection unit 7500 may calculate the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 7510, and determine whether the driver is dozing off. You may The in-vehicle information detection unit 7500 may perform processing such as noise canceling processing on the collected sound signal.
  • the integrated control unit 7600 controls overall operations within the vehicle control system 7000 according to various programs.
  • An input section 7800 is connected to the integrated control unit 7600 .
  • the input unit 7800 is realized by a device that can be input-operated by the passenger, such as a touch panel, button, microphone, switch or lever.
  • the integrated control unit 7600 may be input with data obtained by recognizing voice input by a microphone.
  • the input unit 7800 may be, for example, a remote control device using infrared rays or other radio waves, or may be an external connection device such as a mobile phone or PDA (Personal Digital Assistant) corresponding to the operation of the vehicle control system 7000.
  • PDA Personal Digital Assistant
  • the input unit 7800 may be, for example, a camera, in which case the passenger can input information through gestures.
  • the input section 7800 may include an input control circuit that generates an input signal based on information input by a passenger or the like using the input section 7800 and outputs the signal to the integrated control unit 7600, for example.
  • a passenger or the like operates the input unit 7800 to input various data to the vehicle control system 7000 and instruct processing operations.
  • the storage unit 7690 may include a ROM (Read Only Memory) that stores various programs executed by the microcomputer, and a RAM (Random Access Memory) that stores various parameters, calculation results, sensor values, and the like.
  • the storage section 7690 may be realized by a magnetic storage device such as a HDD (Hard Disc Drive), a semiconductor storage device, an optical storage device, a magneto-optical storage device, or the like.
  • General-purpose communication I / F 7620 for example, via a base station or access point, external network (e.g., Internet, cloud network or operator-specific network) equipment (e.g., application server or control server) connected to You may
  • external network e.g., Internet, cloud network or operator-specific network
  • equipment e.g., application server or control server
  • the general-purpose communication I / F 7620 uses, for example, P2P (Peer To Peer) technology, terminals that exist near the vehicle (for example, terminals of drivers, pedestrians or stores, or MTC (Machine Type Communication) terminals) may be connected with P2P (Peer To Peer) technology
  • terminals that exist near the vehicle for example, terminals of drivers, pedestrians or stores, or MTC (Machine Type Communication) terminals
  • MTC Machine Type Communication
  • the dedicated communication I/F 7630 is a communication I/F that supports a communication protocol designed for use in vehicles.
  • Dedicated communication I / F7630 for example, WAVE (Wireless Access in Vehicle Environment), which is a combination of lower layer IEEE802.11p and upper layer IEEE1609, DSRC (Dedicated Short Range Communications), or a standard protocol such as a cellular communication protocol May be implemented.
  • the dedicated communication I/F 7630 is typically used for vehicle-to-vehicle communication, vehicle-to-infrastructure communication, vehicle-to-home communication, and vehicle-to-pedestrian communication. ) perform V2X communication, which is a concept involving one or more of the communications.
  • the positioning unit 7640 receives GNSS signals from GNSS (Global Navigation Satellite System) satellites (for example, GPS signals from GPS (Global Positioning System) satellites) to perform positioning, and obtains the latitude, longitude, and altitude of the vehicle. Generate location information containing Note that the positioning unit 7640 may specify the current position by exchanging signals with a wireless access point, or may acquire position information from a terminal such as a mobile phone, PHS, or smart phone having a positioning function.
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • the beacon receiving unit 7650 receives, for example, radio waves or electromagnetic waves transmitted from wireless stations installed on the road, and acquires information such as the current position, traffic jams, road closures, or required time. Note that the function of the beacon reception unit 7650 may be included in the dedicated communication I/F 7630 described above.
  • the in-vehicle device I/F 7660 is a communication interface that mediates connections between the microcomputer 7610 and various in-vehicle devices 7760 present in the vehicle.
  • the in-vehicle device I/F 7660 may establish a wireless connection using a wireless communication protocol such as wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication), or WUSB (Wireless USB).
  • a wireless communication protocol such as wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication), or WUSB (Wireless USB).
  • the in-vehicle device I/F7660 is connected via a connection terminal (and cable if necessary) (not shown) via USB (Universal Serial Bus), HDMI (registered trademark) (High-Definition Multimedia Interface), or MHL (Mobile A wired connection such as High-definition Link) may be established.
  • USB Universal Serial Bus
  • HDMI registered trademark
  • MHL Mobile A wired connection such as High-definition Link
  • In-vehicle equipment 7760 may include, for example, at least one of a mobile device or wearable device possessed by a passenger, or an information device carried or attached to a vehicle. In-vehicle equipment 7760 may also include a navigation device that searches for a route to an arbitrary destination. In-vehicle device I/F 7660 exchanges control signals or data signals with these in-vehicle devices 7760 .
  • the in-vehicle network I/F 7680 is an interface that mediates communication between the microcomputer 7610 and the communication network 7010. In-vehicle network I/F 7680 transmits and receives signals and the like according to a predetermined protocol supported by communication network 7010 .
  • the microcomputer 7610 of the integrated control unit 7600 uses at least one of a general-purpose communication I/F 7620, a dedicated communication I/F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle device I/F 7660, and an in-vehicle network I/F 7680.
  • the vehicle control system 7000 is controlled according to various programs on the basis of the information acquired by. For example, the microcomputer 7610 calculates control target values for the driving force generator, steering mechanism, or braking device based on acquired information on the inside and outside of the vehicle, and outputs a control command to the drive system control unit 7100. good too.
  • the microcomputer 7610 implements ADAS (Advanced Driver Assistance System) functions including collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, or vehicle lane deviation warning.
  • ADAS Advanced Driver Assistance System
  • Cooperative control may be performed for the purpose of
  • the microcomputer 7610 controls the driving force generator, the steering mechanism, the braking device, etc. based on the acquired information about the surroundings of the vehicle, thereby autonomously traveling without depending on the operation of the driver.
  • Cooperative control may be performed for the purpose of driving or the like.
  • Microcomputer 7610 receives information obtained through at least one of general-purpose communication I/F 7620, dedicated communication I/F 7630, positioning unit 7640, beacon receiving unit 7650, in-vehicle device I/F 7660, and in-vehicle network I/F 7680. Based on this, three-dimensional distance information between the vehicle and surrounding objects such as structures and people may be generated, and local map information including the surrounding information of the current position of the vehicle may be created. Further, based on the acquired information, the microcomputer 7610 may predict dangers such as vehicle collisions, pedestrians approaching or entering closed roads, and generate warning signals.
  • the warning signal may be, for example, a signal for generating a warning sound or lighting a warning lamp.
  • the audio/image output unit 7670 transmits at least one of audio and/or image output signals to an output device capable of visually or audibly notifying the passengers of the vehicle or the outside of the vehicle.
  • an audio speaker 7710, a display section 7720 and an instrument panel 7730 are exemplified as output devices.
  • Display 7720 may include, for example, at least one of an on-board display and a head-up display.
  • the display unit 7720 may have an AR (Augmented Reality) display function.
  • the output device may be headphones, a wearable device such as an eyeglass-type display worn by a passenger, a projector, a lamp, or other device.
  • the display device displays the results obtained by various processes performed by the microcomputer 7610 or information received from other control units in various formats such as text, images, tables, and graphs. Display visually.
  • the voice output device converts an audio signal including reproduced voice data or acoustic data into an analog signal and outputs the analog signal audibly.
  • At least two control units connected via the communication network 7010 may be integrated as one control unit.
  • an individual control unit may be composed of multiple control units.
  • vehicle control system 7000 may comprise other control units not shown.
  • some or all of the functions that any control unit has may be provided to another control unit. In other words, as long as information is transmitted and received via the communication network 7010, the predetermined arithmetic processing may be performed by any one of the control units.
  • sensors or devices connected to any control unit may be connected to other control units, and multiple control units may send and receive detection information to and from each other via communication network 7010. .
  • the zoom lens and imaging device of the present disclosure can be applied to the imaging unit 7410 and the imaging units 7910, 7912, 7914, 7916, and 7918.
  • a medical imaging system is a medical system using imaging technology, such as an endoscope system or a microscope system.
  • FIG. 173 is a diagram showing an example of a schematic configuration of an endoscope system 5000 to which technology according to the present disclosure can be applied.
  • FIG. 174 is a diagram showing an example of the configuration of an endoscope 5001 and a CCU (Camera Control Unit) 5039.
  • FIG. 173 shows an operator (for example, a doctor) 5067 who is a surgical participant performing surgery on a patient 5071 on a patient bed 5069 using an endoscope system 5000 .
  • FIG. 173 shows an operator (for example, a doctor) 5067 who is a surgical participant performing surgery on a patient 5071 on a patient bed 5069 using an endoscope system 5000 .
  • the endoscope system 5000 supports an endoscope 5001 as a medical imaging device, a CCU 5039, a light source device 5043, a recording device 5053, an output device 5055, and an endoscope 5001. and a support device 5027 .
  • an insertion aid called a trocar 5025 is punctured into a patient 5071. Then, the scope 5003 and surgical instrument 5021 connected to the endoscope 5001 are inserted into the body of the patient 5071 via the trocar 5025 .
  • the surgical instrument 5021 is, for example, an energy device such as an electric scalpel, forceps, or the like.
  • a surgical image which is a medical image of the inside of the patient's 5071 photographed by the endoscope 5001, is displayed on the display device 5041.
  • the operator 5067 uses the surgical instrument 5021 to treat the surgical target while viewing the surgical image displayed on the display device 5041 .
  • the medical images are not limited to surgical images, and may be diagnostic images captured during diagnosis.
  • the endoscope 5001 is an imaging unit for imaging the inside of the body of a patient 5071.
  • a camera 5005 includes a zoom optical system 50052 that enables optical zoom, a focus optical system 50053 that enables focus adjustment by changing the focal length of an imaging unit, and a light receiving element 50054 .
  • the endoscope 5001 converges light on the light receiving element 50054 through the connected scope 5003 to generate pixel signals, and outputs the pixel signals to the CCU 5039 through the transmission system.
  • the scope 5003 is an insertion portion that has an objective lens at its tip and guides light from the connected light source device 5043 into the body of the patient 5071 .
  • the scope 5003 is, for example, a rigid scope for rigid scopes and a flexible scope for flexible scopes.
  • the scope 5003 may be a direct scope or a perspective scope.
  • the pixel signal may be a signal based on a signal output from a pixel, such as a RAW signal or an image signal.
  • a memory may be installed in the transmission system connecting the endoscope 5001 and the CCU 5039, and the parameters relating to the endoscope 5001 and the CCU 5039 may be stored in the memory.
  • the memory may be arranged, for example, on the connection part of the transmission system or on the cable.
  • the parameters of the endoscope 5001 at the time of shipment and the parameters changed when the power is supplied may be stored in the memory of the transmission system, and the operation of the endoscope may be changed based on the parameters read from the memory.
  • an endoscope and a transmission system may be collectively referred to as an endoscope.
  • the light receiving element 50054 is a sensor that converts received light into pixel signals, and is, for example, a CMOS (Complementary Metal Oxide Semiconductor) type imaging element.
  • the light receiving element 50054 is preferably an imaging element having a Bayer arrangement and capable of color imaging.
  • the light receiving element 50054 is, for example, 4K (horizontal pixel number 3840 ⁇ vertical pixel number 2160), 8K (horizontal pixel number 7680 ⁇ vertical pixel number 4320) or square 4K (horizontal pixel number 3840 or more ⁇ vertical pixel number 3840 or more). It is preferable that the image sensor has a number of pixels corresponding to the resolution.
  • the light receiving element 50054 may be a single sensor chip or a plurality of sensor chips.
  • a prism may be provided to separate the incident light into predetermined wavelength bands, and each wavelength band may be imaged by a different light-receiving element.
  • a plurality of light receiving elements may be provided for stereoscopic vision.
  • the light receiving element 50054 may be a sensor including an arithmetic processing circuit for image processing in a chip structure, or may be a ToF (Time of Flight) sensor.
  • the transmission system is, for example, an optical fiber cable or wireless transmission. The wireless transmission is sufficient as long as the pixel signals generated by the endoscope 5001 can be transmitted.
  • Mirror 5001 and CCU 5039 may be connected.
  • the endoscope 5001 may transmit not only the pixel signal but also information related to the pixel signal (for example, processing priority of the pixel signal, synchronization signal, etc.) at the same time.
  • the endoscope may be configured by integrating a scope and a camera, or by providing a light-receiving element at the tip of the scope.
  • the CCU 5039 is a control device that comprehensively controls the connected endoscope 5001 and light source device 5043. For example, as shown in FIG. processing equipment. Also, the CCU 5039 may centrally control the connected display device 5041 , recording device 5053 and output device 5055 . For example, the CCU 5039 controls the irradiation timing and irradiation intensity of the light source device 5043 and the type of irradiation light source.
  • the CCU 5039 performs image processing such as development processing (for example, demosaicing processing) and correction processing on the pixel signals output from the endoscope 5001, and outputs the processed pixel signals (for example, image processing) to an external device such as the display device 5041. ). Also, the CCU 5039 transmits a control signal to the endoscope 5001 to control driving of the endoscope 5001 .
  • the control signal is, for example, information about imaging conditions such as magnification and focal length of the imaging unit.
  • the CCU 5039 may have an image down-conversion function, and may be configured to output a high-resolution (eg, 4K) image to the display device 5041 and a low-resolution (eg, HD) image to the recording device 5053 at the same time.
  • a high-resolution (eg, 4K) image to the display device 5041
  • a low-resolution (eg, HD) image to the recording device 5053 at the same time.
  • the CCU 5039 is connected to external devices (eg, recording device, display device, output device, support device) via an IP converter that converts signals into a predetermined communication protocol (eg, IP (Internet Protocol)).
  • IP Internet Protocol
  • the connection between the IP converter and the external device may be configured by a wired network, or part or all of the network may be configured by a wireless network.
  • the IP converter on the CCU5039 side has a wireless communication function, and the received video is sent to an IP switcher or output via a wireless communication network such as the 5th generation mobile communication system (5G) or the 6th generation mobile communication system (6G). It may be sent to the side IP converter.
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • the light source device 5043 is a device capable of emitting light in a predetermined wavelength band, and includes, for example, a plurality of light sources and a light source optical system that guides light from the plurality of light sources.
  • the light source is, for example, a xenon lamp, an LED light source, or an LD light source.
  • the light source device 5043 has, for example, LED light sources corresponding to the three primary colors R, G, and B, and emits white light by controlling the output intensity and output timing of each light source. Further, the light source device 5043 may have a light source capable of irradiating special light used for special light observation separately from the light source for irradiating normal light used for normal light observation.
  • Special light is light in a predetermined wavelength band different from normal light that is light for normal light observation.
  • Normal light is, for example, white light or green light.
  • narrow-band light observation which is a type of special light observation, by alternately irradiating blue light and green light, the wavelength dependence of light absorption in body tissues can be used to detect specific tissues such as blood vessels on the surface of the mucous membrane. can be shot with high contrast.
  • fluorescence observation which is a type of special light observation, excitation light that excites the drug injected into the body tissue is irradiated, and fluorescence emitted by the body tissue or the drug as a marker is received to obtain a fluorescence image.
  • a drug such as indocyanine green (ICG) injected into the body tissue is irradiated with infrared light having an excitation wavelength band, and the fluorescence of the drug is received to detect the body tissue. structure and the affected area can be easily visualized.
  • an agent for example, 5-ALA
  • the light source device 5043 sets the type of irradiation light under the control of the CCU 5039 .
  • the CCU 5039 may have a mode in which normal light observation and special light observation are alternately performed by controlling the light source device 5043 and the endoscope 5001 .
  • information based on pixel signals obtained by special light observation is preferably superimposed on pixel signals obtained by normal light observation.
  • the special light observation may be infrared light observation in which infrared light is irradiated to look deeper than the surface of the organ, or multispectral observation utilizing hyperspectral spectroscopy. Additionally, photodynamic therapy may be combined.
  • a recording device 5053 is a device for recording pixel signals (for example, an image) acquired from the CCU 5039, and is, for example, a recorder.
  • a recording device 5053 records the image acquired from the CCU 5039 on an HDD, an SDD, or an optical disk.
  • the recording device 5053 may be connected to a hospital network and accessible from equipment outside the operating room. Also, the recording device 5053 may have an image down-conversion function or an image up-conversion function.
  • the display device 5041 is a device capable of displaying an image, such as a display monitor.
  • a display device 5041 displays a display image based on pixel signals obtained from the CCU 5039 .
  • the display device 5041 may function as an input device that enables line-of-sight recognition, voice recognition, and gesture-based instruction input by being equipped with a camera and a microphone.
  • the output device 5055 is a device for outputting information acquired from the CCU 5039, such as a printer.
  • the output device 5055 prints on paper a print image based on the pixel signals acquired from the CCU 5039, for example.
  • the support device 5027 is an articulated arm including a base portion 5029 having an arm control device 5045 , an arm portion 5031 extending from the base portion 5029 , and a holding portion 5032 attached to the tip of the arm portion 5031 .
  • the arm control device 5045 is configured by a processor such as a CPU, and operates according to a predetermined program to control driving of the arm section 5031 .
  • the support device 5027 controls parameters such as the length of each link 5035 constituting the arm portion 5031 and the rotation angle and torque of each joint 5033 by means of the arm control device 5045 .
  • the support device 5027 functions as an endoscope support arm that supports the endoscope 5001 during surgery. Thereby, the support device 5027 can take the place of the scopist who is an assistant holding the endoscope 5001 .
  • the support device 5027 may be a device that supports a microscope device 5301, which will be described later, and can also be called a medical support arm.
  • the control of the support device 5027 may be an autonomous control method by the arm control device 5045, or may be a control method in which the arm control device 5045 controls based on the user's input.
  • control method is a master/slave method in which the support device 5027 as a slave device (replica device), which is a patient cart, is controlled based on the movement of the master device (primary device), which is the operator console at hand of the user. It's okay. Also, the control of the support device 5027 may be remotely controlled from outside the operating room.
  • slave device replica device
  • master device primary device
  • control of the support device 5027 may be remotely controlled from outside the operating room.
  • FIG. 175 is a diagram showing an example of a schematic configuration of a microsurgery system to which technology according to the present disclosure can be applied;
  • the same reference numerals are given to the same configurations as those of the endoscope system 5000, and duplicate descriptions thereof will be omitted.
  • FIG. 175 schematically shows an operator 5067 performing surgery on a patient 5071 on a patient bed 5069 using a microsurgery system 5300.
  • FIG. 175 for the sake of simplicity, the cart 5037 in the configuration of the microsurgery system 5300 is omitted, and the microscope device 5301 that replaces the endoscope 5001 is simplified.
  • the microscope device 5301 in this description may refer to the microscope section 5303 provided at the tip of the link 5035 or may refer to the entire configuration including the microscope section 5303 and the support device 5027 .
  • an image of a surgical site captured by a microscope device 5301 is enlarged and displayed on a display device 5041 installed in the operating room.
  • the display device 5041 is installed at a position facing the operator 5067, and the operator 5067 observes the state of the operation site by the image displayed on the display device 5041, for example, resection of the affected area.
  • Various measures are taken against Microsurgery systems are used, for example, in ophthalmic and brain surgery.
  • the support device 5027 can support other observation devices or other surgical tools instead of the endoscope 5001 or the microscope section 5303 at its distal end.
  • the other observation device for example, forceps, forceps, a pneumoperitoneum tube for pneumoperitoneum, or an energy treatment instrument for incising tissue or sealing a blood vessel by cauterization can be applied.
  • the technology according to the present disclosure may be applied to a support device that supports components other than such a microscope section.
  • the technology according to the present disclosure can be suitably applied to the camera 5005 among the configurations described above.
  • the zoom lens of the present disclosure can be suitably applied to at least part of the optical system of the condensing optical system 50051, zoom optical system 50052, and focus optical system 50053 in the camera 5005.
  • the present technology can also have the following configuration.
  • the configuration of each lens group is optimized so as to achieve compactness, high performance, and a high zoom ratio. This makes it possible to provide a compact, high-performance zoom lens with a high zoom ratio, and an imaging apparatus equipped with such a zoom lens.
  • a first lens group composed of two or less lenses and having a positive refractive power; a second lens group having negative refractive power; a third lens group having positive refractive power; a fourth lens group having positive refractive power; A fifth lens group having negative refractive power and a plurality of lens groups including
  • zooming from the wide-angle end to the telephoto end at least the first lens group, the third lens group, and the fourth lens group are configured to move toward the object side, A zoom lens that satisfies the following conditions.
  • the zoom lens is From the object side to the image plane side, A first lens group composed of two or less lenses and having a positive refractive power; a second lens group having negative refractive power; a third lens group having positive refractive power; a fourth lens group having positive refractive power; A fifth lens group having negative refractive power and a plurality of lens groups including When zooming from the wide-angle end to the telephoto end, at least the first lens group, the third lens group, and the fourth lens group are configured to move toward the object side, An imaging device that satisfies the following conditional expression.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

本開示のズームレンズは、物体側から像面側に向かって順に、2枚以下のレンズで構成され、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、負の屈折力を有する第5レンズ群とを含む複数のレンズ群を備え、広角端から望遠端へのズーミングに際し、少なくとも第1レンズ群、第3レンズ群、および第4レンズ群が物体側に移動するように構成され、所定の条件式を満足する。

Description

ズームレンズ、および撮像装置
 本開示は、ズームレンズ、および撮像装置に関する。
 近年、デジタルカメラ等の撮像装置は撮像素子の大型化や高画質化が進み、それに伴い、それらの撮像装置に用いられる撮像レンズにも高い性能が求められている。その一方で、ミラーレスカメラ等によるショートフランジバック化が進む中、光学系の小型化も求められている。そのような背景の中、高性能でコンパクトな広画角のズームレンズが提案されている(特許文献1)。特許文献1で提案されているズームレンズは、負の屈折力の第1群と、正の屈折力の後群とからなるレトロフォーカスタイプとなっており、短いバックフォーカスに最適なパワー構成を取ることで小型化を達成している。また、特許文献2では同様に負の屈折力の第1群を有するレトロフォーカスタイプを取りつつ、望遠端側の焦点距離を拡張した高変倍比を有するズームレンズが提案されている。
特開2020-34946号公報 特開2021-67805号公報
 特許文献1で提案されているズームレンズは広画角域でコンパクトかつ高性能なズームレンズが提供されているが、変倍比が不十分である。また、特許文献2で提案されているズームレンズは特許文献1と同様のレトロフォーカスタイプの構成を取りつつ、高変倍比化を実現しているが、全長が長く、また第1群の径が大きくなっており小型化が不十分である。
 コンパクトで高性能かつ高変倍比のズームレンズ、およびそのようなズームレンズを備えた撮像装置を提供することが望ましい。
 本開示の一実施の形態に係るズームレンズは、物体側から像面側に向かって順に、2枚以下のレンズで構成され、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、負の屈折力を有する第5レンズ群とを含む複数のレンズ群を備え、広角端から望遠端へのズーミングに際し、少なくとも第1レンズ群、第3レンズ群、および第4レンズ群が物体側に移動するように構成され、以下の条件式を満足する。
 f1/f2<-6.00 ……(1)
 1.75<f3/f4<4.20 ……(2)
ただし、
 f1:第1レンズ群の焦点距離
 f2:第2レンズ群の焦点距離
 f3:第3レンズ群の焦点距離
 f4:第4レンズ群の焦点距離
とする。
 本開示の一実施の形態に係る撮像装置は、ズームレンズと、ズームレンズによって形成された光学像に応じた撮像信号を出力する撮像素子とを含み、ズームレンズを、上記本開示の一実施の形態に係るズームレンズによって構成したものである。
 本開示の一実施の形態に係るズームレンズ、または撮像装置では、コンパクトで高性能かつ高変倍比を実現することが可能となるように、各レンズ群の構成の最適化が図られている。
図1は、本開示の一実施の形態に係るズームレンズの第1の構成例(実施例1)を示すレンズ断面図である。 図2は、実施例1に係るズームレンズの広角端かつ無限遠合焦時における縦収差を示す収差図である。 図3は、実施例1に係るズームレンズの中間位置かつ無限遠合焦時における縦収差を示す収差図である。 図4は、実施例1に係るズームレンズの望遠端かつ無限遠合焦時における縦収差を示す収差図である。 図5は、実施例1に係るズームレンズの広角端かつ近距離合焦時における縦収差を示す収差図である。 図6は、実施例1に係るズームレンズの中間位置かつ近距離合焦時における縦収差を示す収差図である。 図7は、実施例1に係るズームレンズの望遠端かつ近距離合焦時における縦収差を示す収差図である。 図8は、実施例1に係るズームレンズの広角端かつ無限遠合焦時における横収差を示す収差図である。 図9は、実施例1に係るズームレンズの中間位置かつ無限遠合焦時における横収差を示す収差図である。 図10は、実施例1に係るズームレンズの望遠端かつ無限遠合焦時における横収差を示す収差図である。 図11は、実施例1に係るズームレンズの広角端かつ近距離合焦時における横収差を示す収差図である。 図12は、実施例1に係るズームレンズの中間位置かつ近距離合焦時における横収差を示す収差図である。 図13は、実施例1に係るズームレンズの望遠端かつ近距離合焦時における横収差を示す収差図である。 図14は、一実施の形態に係るズームレンズの第2の構成例(実施例2)を示すレンズ断面図である。 図15は、実施例2に係るズームレンズの広角端かつ無限遠合焦時における縦収差を示す収差図である。 図16は、実施例2に係るズームレンズの中間位置かつ無限遠合焦時における縦収差を示す収差図である。 図17は、実施例2に係るズームレンズの望遠端かつ無限遠合焦時における縦収差を示す収差図である。 図18は、実施例2に係るズームレンズの広角端かつ近距離合焦時における縦収差を示す収差図である。 図19は、実施例2に係るズームレンズの中間位置かつ近距離合焦時における縦収差を示す収差図である。 図20は、実施例2に係るズームレンズの望遠端かつ近距離合焦時における縦収差を示す収差図である。 図21は、実施例2に係るズームレンズの広角端かつ無限遠合焦時における横収差を示す収差図である。 図22は、実施例2に係るズームレンズの中間位置かつ無限遠合焦時における横収差を示す収差図である。 図23は、実施例2に係るズームレンズの望遠端かつ無限遠合焦時における横収差を示す収差図である。 図24は、実施例2に係るズームレンズの広角端かつ近距離合焦時における横収差を示す収差図である。 図25は、実施例2に係るズームレンズの中間位置かつ近距離合焦時における横収差を示す収差図である。 図26は、実施例2に係るズームレンズの望遠端かつ近距離合焦時における横収差を示す収差図である。 図27は、一実施の形態に係るズームレンズの第3の構成例(実施例3)を示すレンズ断面図である。 図28は、実施例3に係るズームレンズの広角端かつ無限遠合焦時における縦収差を示す収差図である。 図29は、実施例3に係るズームレンズの中間位置かつ無限遠合焦時における縦収差を示す収差図である。 図30は、実施例3に係るズームレンズの望遠端かつ無限遠合焦時における縦収差を示す収差図である。 図31は、実施例3に係るズームレンズの広角端かつ近距離合焦時における縦収差を示す収差図である。 図32は、実施例3に係るズームレンズの中間位置かつ近距離合焦時における縦収差を示す収差図である。 図33は、実施例3に係るズームレンズの望遠端かつ近距離合焦時における縦収差を示す収差図である。 図34は、実施例3に係るズームレンズの広角端かつ無限遠合焦時における横収差を示す収差図である。 図35は、実施例3に係るズームレンズの中間位置かつ無限遠合焦時における横収差を示す収差図である。 図36は、実施例3に係るズームレンズの望遠端かつ無限遠合焦時における横収差を示す収差図である。 図37は、実施例3に係るズームレンズの広角端かつ近距離合焦時における横収差を示す収差図である。 図38は、実施例3に係るズームレンズの中間位置かつ近距離合焦時における横収差を示す収差図である。 図39は、実施例3に係るズームレンズの望遠端かつ近距離合焦時における横収差を示す収差図である。 図40は、一実施の形態に係るズームレンズの第4の構成例(実施例4)を示すレンズ断面図である。 図41は、実施例4に係るズームレンズの広角端かつ無限遠合焦時における縦収差を示す収差図である。 図42は、実施例4に係るズームレンズの中間位置かつ無限遠合焦時における縦収差を示す収差図である。 図43は、実施例4に係るズームレンズの望遠端かつ無限遠合焦時における縦収差を示す収差図である。 図44は、実施例4に係るズームレンズの広角端かつ近距離合焦時における縦収差を示す収差図である。 図45は、実施例4に係るズームレンズの中間位置かつ近距離合焦時における縦収差を示す収差図である。 図46は、実施例4に係るズームレンズの望遠端かつ近距離合焦時における縦収差を示す収差図である。 図47は、実施例4に係るズームレンズの広角端かつ無限遠合焦時における横収差を示す収差図である。 図48は、実施例4に係るズームレンズの中間位置かつ無限遠合焦時における横収差を示す収差図である。 図49は、実施例4に係るズームレンズの望遠端かつ無限遠合焦時における横収差を示す収差図である。 図50は、実施例4に係るズームレンズの広角端かつ近距離合焦時における横収差を示す収差図である。 図51は、実施例4に係るズームレンズの中間位置かつ近距離合焦時における横収差を示す収差図である。 図52は、実施例4に係るズームレンズの望遠端かつ近距離合焦時における横収差を示す収差図である。 図53は、一実施の形態に係るズームレンズの第5の構成例(実施例5)を示すレンズ断面図である。 図54は、実施例5に係るズームレンズの広角端かつ無限遠合焦時における縦収差を示す収差図である。 図55は、実施例5に係るズームレンズの中間位置かつ無限遠合焦時における縦収差を示す収差図である。 図56は、実施例5に係るズームレンズの望遠端かつ無限遠合焦時における縦収差を示す収差図である。 図57は、実施例5に係るズームレンズの広角端かつ近距離合焦時における縦収差を示す収差図である。 図58は、実施例5に係るズームレンズの中間位置かつ近距離合焦時における縦収差を示す収差図である。 図59は、実施例5に係るズームレンズの望遠端かつ近距離合焦時における縦収差を示す収差図である。 図60は、実施例5に係るズームレンズの広角端かつ無限遠合焦時における横収差を示す収差図である。 図61は、実施例5に係るズームレンズの中間位置かつ無限遠合焦時における横収差を示す収差図である。 図62は、実施例5に係るズームレンズの望遠端かつ無限遠合焦時における横収差を示す収差図である。 図63は、実施例5に係るズームレンズの広角端かつ近距離合焦時における横収差を示す収差図である。 図64は、実施例5に係るズームレンズの中間位置かつ近距離合焦時における横収差を示す収差図である。 図65は、実施例5に係るズームレンズの望遠端かつ近距離合焦時における横収差を示す収差図である。 図66は、一実施の形態に係るズームレンズの第6の構成例(実施例6)を示すレンズ断面図である。 図67は、実施例6に係るズームレンズの広角端かつ無限遠合焦時における縦収差を示す収差図である。 図68は、実施例6に係るズームレンズの中間位置かつ無限遠合焦時における縦収差を示す収差図である。 図69は、実施例6に係るズームレンズの望遠端かつ無限遠合焦時における縦収差を示す収差図である。 図70は、実施例6に係るズームレンズの広角端かつ近距離合焦時における縦収差を示す収差図である。 図71は、実施例6に係るズームレンズの中間位置かつ近距離合焦時における縦収差を示す収差図である。 図72は、実施例6に係るズームレンズの望遠端かつ近距離合焦時における縦収差を示す収差図である。 図73は、実施例6に係るズームレンズの広角端かつ無限遠合焦時における横収差を示す収差図である。 図74は、実施例6に係るズームレンズの中間位置かつ無限遠合焦時における横収差を示す収差図である。 図75は、実施例6に係るズームレンズの望遠端かつ無限遠合焦時における横収差を示す収差図である。 図76は、実施例6に係るズームレンズの広角端かつ近距離合焦時における横収差を示す収差図である。 図77は、実施例6に係るズームレンズの中間位置かつ近距離合焦時における横収差を示す収差図である。 図78は、実施例6に係るズームレンズの望遠端かつ近距離合焦時における横収差を示す収差図である。 図79は、一実施の形態に係るズームレンズの第7の構成例(実施例7)を示すレンズ断面図である。 図80は、実施例7に係るズームレンズの広角端かつ無限遠合焦時における縦収差を示す収差図である。 図81は、実施例7に係るズームレンズの中間位置かつ無限遠合焦時における縦収差を示す収差図である。 図82は、実施例7に係るズームレンズの望遠端かつ無限遠合焦時における縦収差を示す収差図である。 図83は、実施例7に係るズームレンズの広角端かつ近距離合焦時における縦収差を示す収差図である。 図84は、実施例7に係るズームレンズの中間位置かつ近距離合焦時における縦収差を示す収差図である。 図85は、実施例7に係るズームレンズの望遠端かつ近距離合焦時における縦収差を示す収差図である。 図86は、実施例7に係るズームレンズの広角端かつ無限遠合焦時における横収差を示す収差図である。 図87は、実施例7に係るズームレンズの中間位置かつ無限遠合焦時における横収差を示す収差図である。 図88は、実施例7に係るズームレンズの望遠端かつ無限遠合焦時における横収差を示す収差図である。 図89は、実施例7に係るズームレンズの広角端かつ近距離合焦時における横収差を示す収差図である。 図90は、実施例7に係るズームレンズの中間位置かつ近距離合焦時における横収差を示す収差図である。 図91は、実施例7に係るズームレンズの望遠端かつ近距離合焦時における横収差を示す収差図である。 図92は、一実施の形態に係るズームレンズの第8の構成例(実施例8)を示すレンズ断面図である。 図93は、実施例8に係るズームレンズの広角端かつ無限遠合焦時における縦収差を示す収差図である。 図94は、実施例8に係るズームレンズの中間位置かつ無限遠合焦時における縦収差を示す収差図である。 図95は、実施例8に係るズームレンズの望遠端かつ無限遠合焦時における縦収差を示す収差図である。 図96は、実施例8に係るズームレンズの広角端かつ近距離合焦時における縦収差を示す収差図である。 図97は、実施例8に係るズームレンズの中間位置かつ近距離合焦時における縦収差を示す収差図である。 図98は、実施例8に係るズームレンズの望遠端かつ近距離合焦時における縦収差を示す収差図である。 図99は、実施例8に係るズームレンズの広角端かつ無限遠合焦時における横収差を示す収差図である。 図100は、実施例8に係るズームレンズの中間位置かつ無限遠合焦時における横収差を示す収差図である。 図101は、実施例8に係るズームレンズの望遠端かつ無限遠合焦時における横収差を示す収差図である。 図102は、実施例8に係るズームレンズの広角端かつ近距離合焦時における横収差を示す収差図である。 図103は、実施例8に係るズームレンズの中間位置かつ近距離合焦時における横収差を示す収差図である。 図104は、実施例8に係るズームレンズの望遠端かつ近距離合焦時における横収差を示す収差図である。 図105は、一実施の形態に係るズームレンズの第9の構成例(実施例9)を示すレンズ断面図である。 図106は、実施例9に係るズームレンズの広角端かつ無限遠合焦時における縦収差を示す収差図である。 図107は、実施例9に係るズームレンズの中間位置かつ無限遠合焦時における縦収差を示す収差図である。 図108は、実施例9に係るズームレンズの望遠端かつ無限遠合焦時における縦収差を示す収差図である。 図109は、実施例9に係るズームレンズの広角端かつ近距離合焦時における縦収差を示す収差図である。 図110は、実施例9に係るズームレンズの中間位置かつ近距離合焦時における縦収差を示す収差図である。 図111は、実施例9に係るズームレンズの望遠端かつ近距離合焦時における縦収差を示す収差図である。 図112は、実施例9に係るズームレンズの広角端かつ無限遠合焦時における横収差を示す収差図である。 図113は、実施例9に係るズームレンズの中間位置かつ無限遠合焦時における横収差を示す収差図である。 図114は、実施例9に係るズームレンズの望遠端かつ無限遠合焦時における横収差を示す収差図である。 図115は、実施例9に係るズームレンズの広角端かつ近距離合焦時における横収差を示す収差図である。 図116は、実施例9に係るズームレンズの中間位置かつ近距離合焦時における横収差を示す収差図である。 図117は、実施例9に係るズームレンズの望遠端かつ近距離合焦時における横収差を示す収差図である。 図118は、一実施の形態に係るズームレンズの第10の構成例(実施例10)を示すレンズ断面図である。 図119は、実施例10に係るズームレンズの広角端かつ無限遠合焦時における縦収差を示す収差図である。 図120は、実施例10に係るズームレンズの中間位置かつ無限遠合焦時における縦収差を示す収差図である。 図121は、実施例10に係るズームレンズの望遠端かつ無限遠合焦時における縦収差を示す収差図である。 図122は、実施例10に係るズームレンズの広角端かつ近距離合焦時における縦収差を示す収差図である。 図123は、実施例10に係るズームレンズの中間位置かつ近距離合焦時における縦収差を示す収差図である。 図124は、実施例10に係るズームレンズの望遠端かつ近距離合焦時における縦収差を示す収差図である。 図125は、実施例10に係るズームレンズの広角端かつ無限遠合焦時における横収差を示す収差図である。 図126は、実施例10に係るズームレンズの中間位置かつ無限遠合焦時における横収差を示す収差図である。 図127は、実施例10に係るズームレンズの望遠端かつ無限遠合焦時における横収差を示す収差図である。 図128は、実施例10に係るズームレンズの広角端かつ近距離合焦時における横収差を示す収差図である。 図129は、実施例10に係るズームレンズの中間位置かつ近距離合焦時における横収差を示す収差図である。 図130は、実施例10に係るズームレンズの望遠端かつ近距離合焦時における横収差を示す収差図である。 図131は、一実施の形態に係るズームレンズの第11の構成例(実施例11)を示すレンズ断面図である。 図132は、実施例11に係るズームレンズの広角端かつ無限遠合焦時における縦収差を示す収差図である。 図133は、実施例11に係るズームレンズの中間位置かつ無限遠合焦時における縦収差を示す収差図である。 図134は、実施例11に係るズームレンズの望遠端かつ無限遠合焦時における縦収差を示す収差図である。 図135は、実施例11に係るズームレンズの広角端かつ近距離合焦時における縦収差を示す収差図である。 図136は、実施例11に係るズームレンズの中間位置かつ近距離合焦時における縦収差を示す収差図である。 図137は、実施例11に係るズームレンズの望遠端かつ近距離合焦時における縦収差を示す収差図である。 図138は、実施例11に係るズームレンズの広角端かつ無限遠合焦時における横収差を示す収差図である。 図139は、実施例11に係るズームレンズの中間位置かつ無限遠合焦時における横収差を示す収差図である。 図140は、実施例11に係るズームレンズの望遠端かつ無限遠合焦時における横収差を示す収差図である。 図141は、実施例11に係るズームレンズの広角端かつ近距離合焦時における横収差を示す収差図である。 図142は、実施例11に係るズームレンズの中間位置かつ近距離合焦時における横収差を示す収差図である。 図143は、実施例11に係るズームレンズの望遠端かつ近距離合焦時における横収差を示す収差図である。 図144は、一実施の形態に係るズームレンズの第12の構成例(実施例12)を示すレンズ断面図である。 図145は、実施例12に係るズームレンズの広角端かつ無限遠合焦時における縦収差を示す収差図である。 図146は、実施例12に係るズームレンズの中間位置かつ無限遠合焦時における縦収差を示す収差図である。 図147は、実施例12に係るズームレンズの望遠端かつ無限遠合焦時における縦収差を示す収差図である。 図148は、実施例12に係るズームレンズの広角端かつ近距離合焦時における縦収差を示す収差図である。 図149は、実施例12に係るズームレンズの中間位置かつ近距離合焦時における縦収差を示す収差図である。 図150は、実施例12に係るズームレンズの望遠端かつ近距離合焦時における縦収差を示す収差図である。 図151は、実施例12に係るズームレンズの広角端かつ無限遠合焦時における横収差を示す収差図である。 図152は、実施例12に係るズームレンズの中間位置かつ無限遠合焦時における横収差を示す収差図である。 図153は、実施例12に係るズームレンズの望遠端かつ無限遠合焦時における横収差を示す収差図である。 図154は、実施例12に係るズームレンズの広角端かつ近距離合焦時における横収差を示す収差図である。 図155は、実施例12に係るズームレンズの中間位置かつ近距離合焦時における横収差を示す収差図である。 図156は、実施例12に係るズームレンズの望遠端かつ近距離合焦時における横収差を示す収差図である。 図157は、一実施の形態に係るズームレンズの第13の構成例(実施例13)を示すレンズ断面図である。 図158は、実施例13に係るズームレンズの広角端かつ無限遠合焦時における縦収差を示す収差図である。 図159は、実施例13に係るズームレンズの中間位置かつ無限遠合焦時における縦収差を示す収差図である。 図160は、実施例13に係るズームレンズの望遠端かつ無限遠合焦時における縦収差を示す収差図である。 図161は、実施例13に係るズームレンズの広角端かつ近距離合焦時における縦収差を示す収差図である。 図162は、実施例13に係るズームレンズの中間位置かつ近距離合焦時における縦収差を示す収差図である。 図163は、実施例13に係るズームレンズの望遠端かつ近距離合焦時における縦収差を示す収差図である。 図164は、実施例13に係るズームレンズの広角端かつ無限遠合焦時における横収差を示す収差図である。 図165は、実施例13に係るズームレンズの中間位置かつ無限遠合焦時における横収差を示す収差図である。 図166は、実施例13に係るズームレンズの望遠端かつ無限遠合焦時における横収差を示す収差図である。 図167は、実施例13に係るズームレンズの広角端かつ近距離合焦時における横収差を示す収差図である。 図168は、実施例13に係るズームレンズの中間位置かつ近距離合焦時における横収差を示す収差図である。 図169は、実施例13に係るズームレンズの望遠端かつ近距離合焦時における横収差を示す収差図である。 図170は、撮像装置の一構成例を示すブロック図である。 図171は、車両制御システムの概略的な構成の一例を示すブロック図である。 図172は、車外情報検出部及び撮像部の設置位置の一例を示す説明図である。 図173は、内視鏡システムの概略的な構成の一例を示す図である。 図174は、図173に示すカメラ及びCCUの機能構成の一例を示すブロック図である。 顕微鏡手術システムの概略的な構成の一例を示す図である。
 以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
 1.レンズの基本構成
 2.作用・効果
 3.撮像装置への適用例
 4.レンズの数値実施例
 5.応用例
 6.その他の実施の形態
 
<1.レンズの基本構成>
 本開示の一実施の形態は、デジタルスチルカメラやデジタルミラーレスカメラなどに最適なズームレンズ、およびそのようなズームレンズを有する光学機器に関する。特に、良好な収差補正を行うことのできる群構成およびズーミング軌跡を適用した小型軽量かつズーム全域で高性能な撮像レンズ、およびそのような撮像レンズを備えた撮像装置に関する。
 図1は、本開示の一実施の形態に係るズームレンズの第1の構成例を示しており、後述する実施例1の構成に相当する。図14は、一実施の形態に係るズームレンズの第2の構成例を示しており、後述する実施例2の構成に相当する。図27は、一実施の形態に係るズームレンズの第3の構成例を示しており、後述する実施例3の構成に相当する。図40は、一実施の形態に係るズームレンズの第4の構成例を示しており、後述する実施例4の構成に相当する。図53は、一実施の形態に係るズームレンズの第5の構成例を示しており、後述する実施例5の構成に相当する。図66は、一実施の形態に係るズームレンズの第6の構成例を示しており、後述する実施例6の構成に相当する。図79は、一実施の形態に係るズームレンズの第7の構成例を示しており、後述する実施例7の構成に相当する。図92は、一実施の形態に係るズームレンズの第8の構成例を示しており、後述する実施例8の構成に相当する。図105は、一実施の形態に係るズームレンズの第9の構成例を示しており、後述する実施例9の構成に相当する。図118は、一実施の形態に係るズームレンズの第10の構成例を示しており、後述する実施例10の構成に相当する。図131は、一実施の形態に係るズームレンズの第11の構成例を示しており、後述する実施例11の構成に相当する。図144は、一実施の形態に係るズームレンズの第12の構成例を示しており、後述する実施例12の構成に相当する。図157は、一実施の形態に係るズームレンズの第13の構成例を示しており、後述する実施例13の構成に相当する。
 図1等において、Z1は光軸を示す。第1ないし第13の構成例に係るズームレンズ1~13と像面IMGとの間には、撮像素子保護用のカバーガラス等の光学部材が配置されていてもよい。また、カバーガラスの他にも、光学部材として、ローパスフィルタや赤外カットフィルタ等の各種の光学フィルタが配置されていてもよい。
 以下、本開示の一実施の形態に係るズームレンズの構成を、適宜図1等に示した各構成例に係るズームレンズ1~13に対応付けて説明するが、本開示による技術は、図示した構成例に限定されるものではない。
 一実施の形態に係るズームレンズは、複数のレンズ群を備える。複数のレンズ群は、物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5とを含む。第1レンズ群G1は、2枚以下のレンズで構成されている。
 ここで、一実施の形態に係るズームレンズにおいて、「レンズ群」とは、屈折力を持ち、ズーミングに際して隣り合うレンズ群の間隔が変化するものをいう。屈折力を持たない平板のみで構成されるものはレンズ群として定義しない。
 後述する実施例において、実施例1~8,10~13に係るズームレンズ1~8,10~13は、複数のレンズ群として、第1レンズ群G1~第6レンズ群を含む構成とされている。実施例9に係るズームレンズ9は、複数のレンズ群として、第1レンズ群G1~第5レンズ群G5を含む構成とされている。
 一実施の形態に係るズームレンズは、広角端から望遠端へのズーミングに際し、少なくとも第1レンズ群G1、第3レンズ群G3、および第4レンズ群G4が物体側に移動するように構成されている。なお、図1等では、上段に広角端(Wide)かつ無限遠合焦時のレンズ配置を示し、中段に中間位置(Mid)かつ無限遠合焦時のレンズ配置を示す。また、下段に、望遠端(Tele)かつ無限遠合焦時のレンズ配置を示す。
 その他、一実施の形態に係るズームレンズは、後述する所定の条件式等をさらに満足していてもよい。
<2.作用・効果>
 次に、本開示の一実施の形態に係るズームレンズの作用および効果を説明する。併せて、本開示の一実施の形態に係るズームレンズにおける、より好ましい構成と、その作用および効果を説明する。
 なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。
 一実施の形態に係るズームレンズによれば、コンパクトで高性能かつ高変倍比を実現することが可能となるように、各レンズ群の構成の最適化が図られている。これにより、コンパクトで高性能かつ高変倍比のズームレンズ、およびそのようなズームレンズを備えた撮像装置を提供することが可能となる。
 一実施の形態に係るズームレンズでは、物体側から像面側に向かって順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5とを含み、かつ広角端から望遠端へのズーミングに際し、少なくとも第1レンズ群G1、第3レンズ群G3、および第4レンズ群G4が物体側に移動する構成とされている。ズーミングに際し、第1レンズ群G1、第3レンズ群G3、および第4レンズ群G4の移動軌跡(移動量)は互いに異なっていてもよい。これにより、ズームバリエータの移動軌跡の自由度が高くなり、変倍比を稼ぎつつズーム全域で高い光学性能を確保することができる。また、第1レンズ群G1を正の屈折力を有するレンズ群とし、かつ2枚以下のレンズで構成することによって、第1レンズ群G1の大型化を抑制して光学系を小型、軽量化することができる。
 一実施の形態に係るズームレンズは、以下の条件式(1)を満足してもよい。
 f1/f2<-6.00 ……(1)
ただし、
 f1:第1レンズ群G1の焦点距離
 f2:第2レンズ群G2の焦点距離
とする。
 条件式(1)は、光学系の広角化と高性能化とを図るために規定されたものであり、第1レンズ群G1の焦点距離に対する第2レンズ群G2の焦点距離を適切に設定するための条件式である。条件式(1)の上限値を上回ると、第1レンズ群G1の正の屈折力が大きくなり、第1レンズ群G1で発生する諸収差を補正することが困難となる。また、第2レンズ群G2の負の屈折力が小さくなり広角化が困難となる。
 なお、条件式(1)の上限値は、-6.50、さらには-6.80に設定するようにしてもよい。これにより、第1レンズ群G1で発生する諸収差をより抑制することができる。また、第2レンズ群G2の負の屈折力を確保することにより、光学系の広角化がより有利となる。また、条件式(1)の値が小さくなると第2レンズ群G2の負の屈折力が強くなり、諸収差の補正が難しくなるため、光学系の高性能化の観点から条件式(1)の下限値を-15.00、さらには-13.0に設定するようにしてもよい。
 また、一実施の形態に係るズームレンズは、以下の条件式(2)を満足してもよい。
 1.75<f3/f4<4.20 ……(2)
ただし、
 f3:第3レンズ群G3の焦点距離
 f4:第4レンズ群G4の焦点距離
とする。
 条件式(2)は、光学系の高変倍比化と高性能化とを図るために規定されたものであり、第3レンズ群G3の焦点距離に対する第4レンズ群G4の焦点距離を適切に設定するための条件式である。条件式(2)の上限値を上回ると、第4レンズ群G4の正の屈折力が大きくなり、第4レンズ群G4で発生する球面収差とコマ収差とを補正することが困難となる。一方で、条件式(2)の下限値を下回ると、第4レンズ群G4の正の屈折力が小さくなり、第3レンズ群G3と第4レンズ群G4との間隔変化による光学系全体の焦点距離変化が小さくなるため、高変倍比化することが困難となる。
 なお、条件式(2)の上限値は、4.00、さらには3.8に設定するようにしてもよい。これにより、第4レンズ群G4において発生する球面収差とコマ収差とをより抑制することができる。また、光学系の高変倍比化の観点から条件式(2)の下限値を1.80、さらには1.85に設定するようにしてもよい。
 また、一実施の形態に係るズームレンズは、以下の条件式(3)を満足してもよい。
 5.0<f1/fw<15.0 ……(3)
ただし、
 f1:第1レンズ群G1の焦点距離
 fw:広角端における全系の焦点距離
とする。
 条件式(3)は、光学系の小型化と光学系の広角化のために規定されたものであり、第1レンズ群G1の焦点距離に対する広角端における全系の焦点距離を適切に設定するための条件式である。条件式(3)の上限値を上回ると、第1レンズ群G1の正の屈折力が弱くなり、変倍時の第1レンズ群G1の移動量が大きくなるため、光学系の小型化が困難となる。一方、条件式(3)の下限値を下回ると、広角端における全系の焦点距離が大きくなり、光学系の広角化が不十分になる。
 なお、光学系の小型化の観点から条件式(3)の上限値を13.0、さらには10.0に設定するようにしてもよい。また、条件式(3)の下限値は、6.0、さらには6.3に設定するようにしてもよい。これにより、光学系をより広角化できる。
 また、一実施の形態に係るズームレンズは、以下の条件式(4)を満足してもよい。
 0.10<f4/ft<0.60 ……(4)
ただし、
 f4:第4レンズ群G4の焦点距離
 ft:望遠端における全系の焦点距離
とする。
 条件式(4)は、光学系の望遠化と光学系の収差抑制のために規定されたものであり、第4レンズ群G4の焦点距離に対する望遠端における全系の焦点距離を適切に設定するための条件式である。条件式(4)の上限値を上回ると、望遠端における全系の焦点距離が小さくなりすぎ、光学系の望遠化が不十分になる。一方、条件式(4)の下限値を下回ると、第4レンズ群G4の正の屈折力が強くなりすぎて、第4レンズ群G4で発生する球面収差とコマ収差との補正が困難となる。
 なお、光学系の望遠化の観点から条件式(4)の上限値を0.50、さらには0.45に設定するようにしてもよい。これにより、光学系をより望遠化できる。また、条件式(4)の下限値は、0.20、さらには0.25に設定するようにしてもよい。これにより、第4レンズ群G4において発生する球面収差とコマ収差とをより抑制することができる。
 また、一実施の形態に係るズームレンズにおいて、物体距離が無限遠から近距離へと変化する際に、第5レンズ群G5がフォーカスレンズ群として光軸方向に移動することによってフォーカシングを行うように構成してもよい。図1等には、無限遠から近距離へとフォーカシングする際のフォーカスレンズ群の移動方向を矢印で示す。
 近年、動画などの分野において、フォーカシング時の画角変動の低減が強く要望されている。そのためには、像面IMGに近い位置にフォーカスレンズ群を配置するとよい。また、一実施の形態に係るズームレンズでは、広角端から望遠端へのズーミングに際してズームバリエータとして第3レンズ群G3と第4レンズ群G4との移動距離をなるべく長く確保することが好ましく、第3レンズ群G3または第4レンズ群G4をフォーカスレンズ群とした場合、フォーカシングによる光軸方向の移動量を追加で確保する必要があり、光学系の大型化につながる。よって、フォーカシング時の画角変動の低減と光学系の小型化の観点から、一実施の形態に係るズームレンズでは第5レンズ群G5をフォーカシング群とするとよい。
 また、一実施の形態に係るズームレンズにおいて、第2レンズ群G2と第3レンズ群G3との間に開口絞りStを有するように構成してもよい。
 一実施の形態に係るズームレンズでは、開口絞りStを第2レンズ群G2内もしくは第2レンズ群G2よりも物体側に配置した場合、開口絞りStよりも物体側に配置されるレンズの枚数が少なくなり、歪曲収差の補正、および軸外光線の上下光線の適切な補正が難しく諸収差の抑制が困難になるため光学系の高性能化の観点で好ましくない。一方、開口絞りStを第3レンズ群G3内もしくは第3レンズ群G3よりも像面側に配置した場合、第1レンズ群G1、および第2レンズ群G2を通過する軸外光線の径が大きくなるため第1レンズ群G1の小径化が難しくなる。また、第2レンズ群G2によって拡散された状態で軸上光線が第3レンズ群G3、および第4レンズ群G4に入射してくるため、絞り機構が大型化してしまい光学系全体の小型化に好ましくない。したがって、諸収差の抑制と光学系の小型化の観点から第2レンズ群G2と第3レンズ群G3との間に開口絞りStを有することが望ましい。
 また、一実施の形態に係るズームレンズにおいて、広角端から望遠端へのズーミングに際し、第3レンズ群G3と複数のレンズ群における最終レンズ群GRとが同じ軌跡で移動するように構成してもよい。なお、後述する実施例において、実施例1~8,10~13に係るズームレンズ1~8,10~13がこの構成に該当し、第3レンズ群G3と、最終レンズ群GRとしての第6レンズ群G6とが同じ軌跡で移動する。
 一実施の形態に係るズームレンズでは、最終レンズ群GRが広角端から望遠端へのズーミングに際して光軸方向に移動しない場合、望遠端時に最終レンズ群GRに入射する軸外光線の高さが高くなり小型、軽量化に不利となる。一方で、最終レンズ群GRが広角端から望遠端へのズーミングに際し独立して光軸方向に移動する場合、ズーミング時の可動レンズ群が多くなりズーミングのためのメカ構成が煩雑化するので、メカ構成の成立性と小型化の観点で好ましくない。したがって、メカ構成の成立性と小型化の観点から広角端から望遠端へのズーミングに際し、第3レンズ群G3と最終レンズ群GRとが同じ軌跡で移動することが望ましい。
 また、一実施の形態に係るズームレンズにおいて、第4レンズ群G4は、非球面を有し、かつ以下の条件式(5),(6)を満足する正レンズPL1を有するように構成してもよい。なお、後述する実施例において、実施例1~4,6~8,13に係るズームレンズ1~4,6~8,13では、レンズL45が正レンズPL1に該当する。また、実施例9~11に係るズームレンズ9~11では、レンズL41が正レンズPL1に該当する。また、実施例12に係るズームレンズ12では、レンズL43が正レンズPL1に該当する。
 60.0<νdPL1<100.0 ……(5)
 0.005<ΔPgFPL1<0.150 ……(6)
ただし、
 νdPL1:正レンズPL1のアッベ数
 ΔPgFPL1:正レンズPL1の異常分散性
 ΔPgFPL1=PgFPL1-0.64833+0.00180×νdPL1
 PgFPL1:正レンズPL1のg線とF線との間の部分分散比
とする。
 一実施の形態に係るズームレンズでは、第2レンズ群G2において負の屈折力によって光線を拡散するため、第4レンズ群G4に入射する軸上光線の高さが高くなる。また、第4レンズ群G4は広角端から望遠端へのズーミングに際してバリエータの役割を担っており、高変倍率化のためにより強い正の屈折力を有することが望ましい。この場合、第4レンズ群G4では収差補正が困難となるため、収差補正のために第4レンズ群G4が非球面を有することが望ましい。
 条件式(5)は、レンズ加工性の確保と色収差の抑制のために規定されたものであり、正レンズPL1のアッベ数を適切に設定するための条件式である。条件式(5)の上限値を上回ると、レンズの材料の成形難易度が高く、製造性の担保が難しくなる。条件式(5)の下限値を下回ると、正レンズPL1で発生する軸上色収差、および軸外色収差の補正が難しくなる。
 なお、レンズの製造性の観点から条件式(5)の上限値を95.0、さらには85.0に設定するようにしてもよい。また、条件式(5)の下限値を65.0、さらには70.0に設定するようにしてもよい。これにより、正レンズPL1により発生する軸上色収差、および軸外色収差をより抑制することができる。
 条件式(6)は、色収差抑制のために規定されたものであり、正レンズPL1の異常分散性を適切に設定するための条件式である。条件式(6)の上限値を上回ると、望遠端でのg線の軸上色収差、および軸外色収差の過補正となる。条件式(6)の下限値を下回ると、望遠端でのg線の軸上色収差、および軸外色収差の補正不足となる。
 なお、光学系の色収差補正の観点から条件式(6)の上限値を0.100、下限値を0.010に設定するようにしてもよい。さらには、条件式(6)の上限値を0.075、下限値を0.015に設定するようにしてもよい。
 また、一実施の形態に係るズームレンズにおいて、第1レンズ群G1は、最も物体側に、以下の条件式を満足する負レンズLN1を有するように構成してもよい。なお、後述する実施例1~4,6~13に係るズームレンズ1~4,6~13において、レンズL11が負レンズLN1に相当する。
 10.0<νdLN1<22.5 ……(7)
ただし、
 νdL1:負レンズLN1のアッベ数
とする。
 条件式(7)は、光学系の色収差抑制のために規定されたものであり、負レンズLN1のアッベ数を適切に設定するための条件式である。条件式(7)の上限値を上回ると、負レンズLN1による望遠端の軸上色収差、および軸外色収差の補正が不十分となる。一方、条件式(7)の下限値を下回ると、負レンズLN1による望遠端の軸上色収差、および軸外色収差の補正が過補正となる。
 なお、光学系の色収差補正の観点から条件式(7)の上限値を21.0、下限値を15.0に設定するようにしてもよい。
 また、一実施の形態に係るズームレンズは、以下の条件式(8)を満足してもよい。
 0.3<BFw/fw<2.5 ……(8)
ただし、
 BFw:広角端におけるバックフォーカス(広角端における、最も像面側のレンズの像面側の面から像面IMGまでの距離)
 fw:広角端における全系の焦点距離
とする。
 条件式(8)は、広角端におけるバックフォーカスBFwと広角端における全系の焦点距離fwとの比を好ましい範囲に規定するものである。条件式(8)の上限値を上回ると、広角端におけるバックフォーカスBFwが長くなってしまうため、全長を短縮することが困難となる。一方、下限値を下回ると、広角端におけるバックフォーカスBFwを確保することが困難となり、製造性が悪化する。
 なお、条件式(8)の上限値を1.55に設定するようにしてもよい。これにより、広角端におけるバックフォーカスBFwを短くし、より全長を短縮することができる。また、条件式(8)の下限値を0.4に設定するようにしてもよい。これにより、広角端におけるバックフォーカスBFwを確保できるため、より製造性を高めることができる。
<3.撮像装置への適用例>
 次に、本開示の一実施の形態に係るズームレンズの具体的な撮像装置への適用例を説明する。
 図170は、一実施の形態に係るズームレンズを適用した撮像装置100の一構成例を示している。この撮像装置100は、例えばデジタルスチルカメラであり、カメラブロック110と、カメラ信号処理部20と、画像処理部30と、LCD(Liquid Crystal Display)40と、R/W(リーダ/ライタ)50と、CPU(Central Processing Unit)60と、入力部70と、レンズ駆動制御部80とを備えている。
 カメラブロック110は、撮像機能を担うものであり、撮像レンズ111と、CCD(Charge Coupled Devices)やCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子112とを有している。撮像素子112は、撮像レンズ111によって形成された光学像を電気信号へ変換することで、光学像に応じた撮像信号(画像信号)を出力するようになっている。撮像レンズ111として、図1等に示した各構成例に係るズームレンズ1~13を適用可能である。
 カメラ信号処理部20は、撮像素子112から出力された画像信号に対してアナログ-デジタル変換、ノイズ除去、画質補正、輝度・色差信号への変換等の各種の信号処理を行うものである。
 画像処理部30は、画像信号の記録再生処理を行うものであり、所定の画像データフォーマットに基づく画像信号の圧縮符号化・伸張復号化処理や解像度等のデータ仕様の変換処理等を行うようになっている。
 LCD40は、ユーザの入力部70に対する操作状態や撮影した画像等の各種のデータを表示する機能を有している。R/W50は、画像処理部30によって符号化された画像データのメモリカード1000への書き込み、およびメモリカード1000に記録された画像データの読み出しを行うものである。メモリカード1000は、例えば、R/W50に接続されたスロットに対して着脱可能な半導体メモリーである。
 CPU60は、撮像装置100に設けられた各回路ブロックを制御する制御処理部として機能するものであり、入力部70からの指示入力信号等に基づいて各回路ブロックを制御するようになっている。入力部70は、ユーザによって所要の操作が行われる各種のスイッチ等からなる。入力部70は例えば、シャッタ操作を行うためのシャッタレリーズボタンや、動作モードを選択するための選択スイッチ等によって構成され、ユーザによる操作に応じた指示入力信号をCPU60に対して出力するようになっている。レンズ駆動制御部80は、カメラブロック110に配置されたレンズの駆動を制御するものであり、CPU60からの制御信号に基づいて撮像レンズ111の各レンズを駆動する図示しないモータ等を制御するようになっている。
 以下に、撮像装置100における動作を説明する。
 撮影の待機状態では、CPU60による制御の下で、カメラブロック110において撮影された画像に相当する画像信号が、カメラ信号処理部20を介してLCD40に出力され、カメラスルー画像として表示される。また、例えば入力部70からのズーミングやフォーカシングのための指示入力信号が入力されると、CPU60がレンズ駆動制御部80に制御信号を出力し、レンズ駆動制御部80の制御に基づいて撮像レンズ111の所定のレンズが移動する。
 入力部70からの指示入力信号によりカメラブロック110の図示しないシャッタが動作されると、撮影された画像信号がカメラ信号処理部20から画像処理部30に出力されて圧縮符号化処理され、所定のデータフォーマットのデジタルデータに変換される。変換されたデータはR/W50に出力され、メモリカード1000に書き込まれる。
 なお、フォーカシングは、例えば、入力部70のシャッタレリーズボタンが半押しされた場合や記録(撮影)のために全押しされた場合等に、CPU60からの制御信号に基づいてレンズ駆動制御部80が撮像レンズ111の所定のレンズを移動させることにより行われる。
 メモリカード1000に記録された画像データを再生する場合には、入力部70に対する操作に応じて、R/W50によってメモリカード1000から所定の画像データが読み出され、画像処理部30によって伸張復号化処理が行われた後、再生画像信号がLCD40に出力されて再生画像が表示される。
 なお、上記した実施の形態においては、撮像装置をデジタルスチルカメラ等に適用した例を示したが、撮像装置の適用範囲はデジタルスチルカメラに限られることはなく、他の種々の撮像装置に適用可能である。例えば、デジタル一眼レフカメラ、デジタルノンレフレックスカメラ、デジタルビデオカメラ、および監視カメラ等に適用することができる。また、カメラが組み込まれた携帯電話や、カメラが組み込まれた情報端末等のデジタル入出力機器のカメラ部等として広く適用することができる。また、レンズ交換式のカメラにも適用することができる。
<4.レンズの数値実施例>
 次に、本開示の一実施の形態に係るズームレンズの具体的な数値実施例について説明する。ここでは、図1等に示した各構成例に係るズームレンズ1~13に、具体的な数値を適用した実施例を説明する。
 なお、以下の各表や説明において示した記号の意味等については、下記に示す通りである。「Si」は、最も物体側から順次増加するようにして符号を付したi番目の面の番号を示している。「ri」は、i番目の面の近軸の曲率半径の値(mm)を示す。「di」はi番目の面とi+1番目の面との間の光軸上の間隔の値(mm)を示す。「ndi」はi番目の面を有する光学要素の材質のd線(波長587.6nm)に対する屈折率の値を示す。「νdi」はi番目の面を有する光学要素の材質のd線におけるアッベ数の値を示す。「φi」はi番目の面の有効径の値(mm)を示す。「ri」の値が「∞」となっている部分は平面、または絞り面等を示す。面番号(Si)の欄の「ASP」は、当該面が非球面形状で構成されていることを示す。面番号の欄の「STO」は該当位置に開口絞りStが配置されていることを示す。面番号の欄の「OBJ」は、当該面が物体面(被写体面)であることを示す。面番号の欄の「IMG」は、当該面が像面であることを示す。「f」は全系の焦点距離を示す(単位:mm)。「Fno」は開放F値(Fナンバー)を示す。「ω」は半画角を示す(単位:°)。「Y」は像高を示す(単位:mm)。「L」は光学全長(最も物体側の面から像面IMGまでの光軸上の距離)を示す(単位:mm)。
 また、各実施例において用いられるレンズには、レンズ面が非球面によって構成されるものがある。非球面形状は、以下の式によって定義される。なお、後述する非球面係数を示す各表において、「E-i」は10を底とする指数表現、すなわち、「10-i」を表しており、例えば、「0.12345E-05」は「0.12345×10-5」を表している。
(非球面の式)
 x=c/(1+(1-(1+k)c1/2)+A4・y+A6・y+A8・y+A10・y10+A12・y12
 ここで、レンズ面の頂点から光軸方向の距離(サグ量)を「x」、光軸と垂直な方向の高さを「y」、レンズ面の頂点での近軸曲率(曲率半径の逆数)を「c」、円錐(コーニック)定数を「k」とする。A4、A6、A8、A10およびA12は、それぞれ第4次、第6次、第8次、第10次および第12次の非球面係数である。
[実施例1]
 [表1]に、図1に示した実施例1に係るズームレンズ1の基本的なレンズデータを示す。[表2]には、実施例1に係るズームレンズ1における全系の焦点距離f、F値、全画角2ω、像高Y、および光学全長Lの値を示す。[表3]には、実施例1に係るズームレンズ1においてズーミングおよびフォーカシングの際に可変となる面間隔のデータを示す。なお、[表2]には、広角端(Wide)、中間位置(Mid)および望遠端(Tele)のそれぞれについて、物体距離(d0)が無限遠の場合における値を示す。[表3]には、広角端(Wide)、中間位置(Mid)および望遠端(Tele)のそれぞれについて、物体距離(d0)が無限遠の場合と近距離の場合とにおける値を示す。[表4]には、実施例1に係るズームレンズ1における、非球面の形状を表す係数の値を示す。[表5]には、実施例1に係るズームレンズ1の各レンズ群の始面と焦点距離(単位:mm)とを示す。
 実施例1に係るズームレンズ1は、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りStと、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6とが、物体側から像面側へ向かって順に配置された構成とされている。
 実施例1に係るズームレンズ1は、ズーミングに際して、隣り合うレンズ群同士の間隔が変化するように移動する。広角端から望遠端へのズーミングに際しては、第3レンズ群G3と、最終レンズ群GRとしての第6レンズ群G6とが同じ軌跡で移動する。物体距離を無限遠から近距離へとフォーカシングする際には、第5レンズ群G5が光軸方向を像面側に移動する。
 第1レンズ群G1は、物体側から像面側に向かって順に、レンズL11と、レンズL12とからなる。レンズL11は、物体側に凸面を向けた負メニスカスレンズである。レンズL12は、物体側に凸面を向けた正メニスカスレンズである。レンズL11とレンズL12は、互いに貼り合わされた接合レンズを構成する。
 第2レンズ群G2は、物体側から像面側に向かって順に、レンズL21~L24からなる。レンズL21は、物体側に凸面を向けた負メニスカスレンズである。レンズL22は、両面が非球面からなる両凹形状の負レンズである。レンズL23は、両凸形状の正レンズである。レンズL24は、物体側に凹面を向けた負メニスカスレンズである。
 第3レンズ群G3は、レンズL31からなる。レンズL31は、両面が非球面からなる物体側に凸面を向けた正メニスカスレンズである。
 第4レンズ群G4は、物体側から像面側に向かって順に、レンズL41~L45からなる。レンズL41は、物体側に凸面を向けた負メニスカスレンズである。レンズL42は、物体側に凸面を向けた正メニスカスレンズである。レンズL41とレンズL42は、互いに貼り合わされた接合レンズを構成する。レンズL43は、物体側に凹面を向けた正メニスカスレンズである。レンズL44は、物体側に凹面を向けた負メニスカスレンズである。レンズL43とレンズL44は、互いに貼り合わされた接合レンズを構成する。レンズL45は、両面が非球面からなる両凸形状の正レンズである。
 第5レンズ群G5は、物体側から像面側に向かって順に、レンズL51と、レンズL52とからなる。レンズL51は、物体側に凹面を向けた正メニスカスレンズである。レンズL52は、両面が非球面からなる両凹形状の負レンズである。
 第6レンズ群G6は、物体側から像面側に向かって順に、レンズL61と、レンズL62とからなる。レンズL61は、両凸形状の正レンズである。レンズL62は、両凹形状の負レンズである。
 以上の構成により、小型な光学系ながらも、広角領域をカバーしつつ高変倍比なズームレンズを実現している。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
 図2には、実施例1に係るズームレンズ1の広角端かつ無限遠合焦時における縦収差を示す。図3には、実施例1に係るズームレンズ1の中間位置かつ無限遠合焦時における縦収差を示す。図4には、実施例1に係るズームレンズ1の望遠端かつ無限遠合焦時における縦収差を示す。図5には、実施例1に係るズームレンズ1の広角端かつ近距離合焦時における縦収差を示す。図6には、実施例1に係るズームレンズ1の中間位置かつ近距離合焦時における縦収差を示す。図7には、実施例1に係るズームレンズ1の望遠端かつ近距離合焦時における縦収差を示す。図8には、実施例1に係るズームレンズ1の広角端かつ無限遠合焦時における横収差を示す。図9には、実施例1に係るズームレンズ1の中間位置かつ無限遠合焦時における横収差を示す。図10には、実施例1に係るズームレンズ1の望遠端かつ無限遠合焦時における横収差を示す。図11には、実施例1に係るズームレンズ1の広角端かつ近距離合焦時における横収差を示す。図12には、実施例1に係るズームレンズ1の中間位置かつ近距離合焦時における横収差を示す。図13には、実施例1に係るズームレンズ1の望遠端かつ近距離合焦時における横収差を示す。
 図2ないし図7には、縦収差として、球面収差、非点収差(像面湾曲)、および歪曲収差を示す。図2ないし図7における球面収差図、および図8ないし図13における横収差図において、実線はd線(587.56nm)、一点鎖線はg線(435.84nm)、破線はC線(656.27nm)における値を示す。図2ないし図7における非点収差図において、Sはサジタル像面、Tはタンジェンシャル像面における値を示す。図2ないし図7における非点収差図および歪曲収差図には、d線における値を示す。
 以降の他の実施例における収差図についても同様である。
 各収差図から分かるように、実施例1に係るズームレンズ1は、諸収差が良好に補正され、優れた結像性能を有している。
[実施例2]
 [表6]に、図14に示した実施例2に係るズームレンズ2の基本的なレンズデータを示す。[表7]には、実施例2に係るズームレンズ2における全系の焦点距離f、F値、全画角2ω、像高Y、および光学全長Lの値を示す。[表8]には、実施例2に係るズームレンズ2においてズーミングおよびフォーカシングの際に可変となる面間隔のデータを示す。なお、[表7]には、広角端(Wide)、中間位置(Mid)および望遠端(Tele)のそれぞれについて、物体距離(d0)が無限遠の場合における値を示す。[表8]には、広角端(Wide)、中間位置(Mid)および望遠端(Tele)のそれぞれについて、物体距離(d0)が無限遠の場合と近距離の場合とにおける値を示す。[表9]には、実施例2に係るズームレンズ2における、非球面の形状を表す係数の値を示す。[表10]には、実施例2に係るズームレンズ2の各レンズ群の始面と焦点距離(単位:mm)とを示す。
 実施例2に係るズームレンズ2は、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りStと、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6とが、物体側から像面側へ向かって順に配置された構成とされている。
 実施例2に係るズームレンズ2は、ズーミングに際して、隣り合うレンズ群同士の間隔が変化するように移動する。広角端から望遠端へのズーミングに際しては、第3レンズ群G3と、最終レンズ群GRとしての第6レンズ群G6とが同じ軌跡で移動する。物体距離を無限遠から近距離へとフォーカシングする際には、第5レンズ群G5が光軸方向を像面側に移動する。
 第1レンズ群G1は、物体側から像面側に向かって順に、レンズL11と、レンズL12とからなる。レンズL11は、物体側に凸面を向けた負メニスカスレンズである。レンズL12は、物体側に凸面を向けた正メニスカスレンズである。レンズL11とレンズL12は、互いに貼り合わされた接合レンズを構成する。
 第2レンズ群G2は、物体側から像面側に向かって順に、レンズL21~L24からなる。レンズL21は、物体側に凸面を向けた負メニスカスレンズである。レンズL22は、両面が非球面からなる物体側に凹面を向けた負メニスカスレンズである。レンズL23は、両凸形状の正レンズである。レンズL24は、物体側に凹面を向けた負メニスカスレンズである。
 第3レンズ群G3は、レンズL31からなる。レンズL31は、両面が非球面からなる物体側に凸面を向けた正メニスカスレンズである。
 第4レンズ群G4は、物体側から像面側に向かって順に、レンズL41~L45からなる。レンズL41は、物体側に凸面を向けた負メニスカスレンズである。レンズL42は、物体側に凸面を向けた正メニスカスレンズである。レンズL41とレンズL42は、互いに貼り合わされた接合レンズを構成する。レンズL43は、物体側に凹面を向けた正メニスカスレンズである。レンズL44は、物体側に凹面を向けた負メニスカスレンズである。レンズL43とレンズL44は、互いに貼り合わされた接合レンズを構成する。レンズL45は、両面が非球面からなる両凸形状の正レンズである。
 第5レンズ群G5は、物体側から像面側に向かって順に、レンズL51と、レンズL52とからなる。レンズL51は、物体側に凹面を向けた正メニスカスレンズである。レンズL52は、両面が非球面からなる両凹形状の負レンズである。
 第6レンズ群G6は、物体側から像面側に向かって順に、レンズL61と、レンズL62とからなる。レンズL61は、物体側に凸面を向けた正メニスカスレンズである。レンズL62は、物体側に凹面を向けた負メニスカスレンズである。
 以上の構成により、小型な光学系ながらも、広角領域をカバーしつつ高変倍比なズームレンズを実現している。
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000010
 
 図15には、実施例2に係るズームレンズ2の広角端かつ無限遠合焦時における縦収差を示す。図16には、実施例2に係るズームレンズ2の中間位置かつ無限遠合焦時における縦収差を示す。図17には、実施例2に係るズームレンズ2の望遠端かつ無限遠合焦時における縦収差を示す。図18には、実施例2に係るズームレンズ2の広角端かつ近距離合焦時における縦収差を示す。図19には、実施例2に係るズームレンズ2の中間位置かつ近距離合焦時における縦収差を示す。図20には、実施例2に係るズームレンズ2の望遠端かつ近距離合焦時における縦収差を示す。図21には、実施例2に係るズームレンズ2の広角端かつ無限遠合焦時における横収差を示す。図22には、実施例2に係るズームレンズ2の中間位置かつ無限遠合焦時における横収差を示す。図23には、実施例2に係るズームレンズ2の望遠端かつ無限遠合焦時における横収差を示す。図24には、実施例2に係るズームレンズ2の広角端かつ近距離合焦時における横収差を示す。図25には、実施例2に係るズームレンズ2の中間位置かつ近距離合焦時における横収差を示す。図26には、実施例2に係るズームレンズ2の望遠端かつ近距離合焦時における横収差を示す。
 各収差図から分かるように、実施例2に係るズームレンズ2は、諸収差が良好に補正され、優れた結像性能を有している。
[実施例3]
 [表11]に、図27に示した実施例3に係るズームレンズ3の基本的なレンズデータを示す。[表12]には、実施例3に係るズームレンズ3における全系の焦点距離f、F値、全画角2ω、像高Y、および光学全長Lの値を示す。[表13]には、実施例3に係るズームレンズ3においてズーミングおよびフォーカシングの際に可変となる面間隔のデータを示す。なお、[表12]には、広角端(Wide)、中間位置(Mid)および望遠端(Tele)のそれぞれについて、物体距離(d0)が無限遠の場合における値を示す。[表13]には、広角端(Wide)、中間位置(Mid)および望遠端(Tele)のそれぞれについて、物体距離(d0)が無限遠の場合と近距離の場合とにおける値を示す。[表14]には、実施例3に係るズームレンズ3における、非球面の形状を表す係数の値を示す。[表15]には、実施例3に係るズームレンズ3の各レンズ群の始面と焦点距離(単位:mm)とを示す。
 実施例3に係るズームレンズ3は、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りStと、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6とが、物体側から像面側へ向かって順に配置された構成とされている。
 実施例3に係るズームレンズ3は、ズーミングに際して、隣り合うレンズ群同士の間隔が変化するように移動する。広角端から望遠端へのズーミングに際しては、第3レンズ群G3と、最終レンズ群GRとしての第6レンズ群G6とが同じ軌跡で移動する。物体距離を無限遠から近距離へとフォーカシングする際には、第5レンズ群G5が光軸方向を像面側に移動する。
 第1レンズ群G1は、物体側から像面側に向かって順に、レンズL11と、レンズL12とからなる。レンズL11は、物体側に凸面を向けた負メニスカスレンズである。レンズL12は、両凸形状の正レンズである。レンズL11とレンズL12は、互いに貼り合わされた接合レンズを構成する。
 第2レンズ群G2は、物体側から像面側に向かって順に、レンズL21~L24からなる。レンズL21は、物体側に凸面を向けた負メニスカスレンズである。レンズL22は、両面が非球面からなる物体側に凹面を向けた負メニスカスレンズである。レンズL23は、両凸形状の正レンズである。レンズL24は、両凹形状の負レンズである。
 第3レンズ群G3は、レンズL31からなる。レンズL31は、両面が非球面からなる物体側に凸面を向けた正メニスカスレンズである。
 第4レンズ群G4は、物体側から像面側に向かって順に、レンズL41~L45からなる。レンズL41は、物体側に凸面を向けた負メニスカスレンズである。レンズL42は、両凸形状の正レンズである。レンズL41とレンズL42は、互いに貼り合わされた接合レンズを構成する。レンズL43は、物体側に凹面を向けた正メニスカスレンズである。レンズL44は、物体側に凹面を向けた負メニスカスレンズである。レンズL43とレンズL44は、互いに貼り合わされた接合レンズを構成する。レンズL45は、両面が非球面からなる両凸形状の正レンズである。
 第5レンズ群G5は、物体側から像面側に向かって順に、レンズL51と、レンズL52とからなる。レンズL51は、物体側に凹面を向けた正メニスカスレンズである。レンズL52は、両面が非球面からなる両凹形状の負レンズである。
 第6レンズ群G6は、物体側から像面側に向かって順に、レンズL61と、レンズL62とからなる。レンズL61は、物体側に凸面を向けた正メニスカスレンズである。レンズL62は、物体側に凹面を向けた負メニスカスレンズである。
 以上の構成により、小型な光学系ながらも、広角領域をカバーしつつ高変倍比なズームレンズを実現している。
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000012
 
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000014
 
Figure JPOXMLDOC01-appb-T000015
 
 図28には、実施例3に係るズームレンズ3の広角端かつ無限遠合焦時における縦収差を示す。図29には、実施例3に係るズームレンズ3の中間位置かつ無限遠合焦時における縦収差を示す。図30には、実施例3に係るズームレンズ3の望遠端かつ無限遠合焦時における縦収差を示す。図31には、実施例3に係るズームレンズ3の広角端かつ近距離合焦時における縦収差を示す。図32には、実施例3に係るズームレンズ3の中間位置かつ近距離合焦時における縦収差を示す。図33には、実施例3に係るズームレンズ3の望遠端かつ近距離合焦時における縦収差を示す。図34には、実施例3に係るズームレンズ3の広角端かつ無限遠合焦時における横収差を示す。図35には、実施例3に係るズームレンズ3の中間位置かつ無限遠合焦時における横収差を示す。図36には、実施例3に係るズームレンズ3の望遠端かつ無限遠合焦時における横収差を示す。図37には、実施例3に係るズームレンズ3の広角端かつ近距離合焦時における横収差を示す。図38には、実施例3に係るズームレンズ3の中間位置かつ近距離合焦時における横収差を示す。図39には、実施例3に係るズームレンズ3の望遠端かつ近距離合焦時における横収差を示す。
 各収差図から分かるように、実施例3に係るズームレンズ3は、諸収差が良好に補正され、優れた結像性能を有している。
[実施例4]
 [表16]に、図40に示した実施例4に係るズームレンズ4の基本的なレンズデータを示す。[表17]には、実施例4に係るズームレンズ4における全系の焦点距離f、F値、全画角2ω、像高Y、および光学全長Lの値を示す。[表18]には、実施例4に係るズームレンズ4においてズーミングおよびフォーカシングの際に可変となる面間隔のデータを示す。なお、[表17]には、広角端(Wide)、中間位置(Mid)および望遠端(Tele)のそれぞれについて、物体距離(d0)が無限遠の場合における値を示す。[表18]には、広角端(Wide)、中間位置(Mid)および望遠端(Tele)のそれぞれについて、物体距離(d0)が無限遠の場合と近距離の場合とにおける値を示す。[表19]には、実施例4に係るズームレンズ4における、非球面の形状を表す係数の値を示す。[表20]には、実施例4に係るズームレンズ4の各レンズ群の始面と焦点距離(単位:mm)とを示す。
 実施例4に係るズームレンズ4は、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りStと、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6とが、物体側から像面側へ向かって順に配置された構成とされている。
 実施例4に係るズームレンズ4は、ズーミングに際して、隣り合うレンズ群同士の間隔が変化するように移動する。広角端から望遠端へのズーミングに際しては、第3レンズ群G3と、最終レンズ群GRとしての第6レンズ群G6とが同じ軌跡で移動する。物体距離を無限遠から近距離へとフォーカシングする際には、第5レンズ群G5が光軸方向を像面側に移動する。
 第1レンズ群G1は、物体側から像面側に向かって順に、レンズL11と、レンズL12とからなる。レンズL11は、物体側に凸面を向けた負メニスカスレンズである。レンズL12は、物体側に凸面を向けた正メニスカスレンズである。レンズL11とレンズL12は、互いに貼り合わされた接合レンズを構成する。
 第2レンズ群G2は、物体側から像面側に向かって順に、レンズL21~L24からなる。レンズL21は、物体側に凸面を向けた負メニスカスレンズである。レンズL22は、両面が非球面からなる物体側に凹面を向けた負メニスカスレンズである。レンズL23は、両凸形状の正レンズである。レンズL24は、物体側に凹面を向けた負メニスカスレンズである。
 第3レンズ群G3は、レンズL31からなる。レンズL31は、両面が非球面からなる物体側に凸面を向けた正メニスカスレンズである。
 第4レンズ群G4は、物体側から像面側に向かって順に、レンズL41~L45からなる。レンズL41は、物体側に凸面を向けた負メニスカスレンズである。レンズL42は、両凸形状の正レンズである。レンズL41とレンズL42は、互いに貼り合わされた接合レンズを構成する。レンズL43は、物体側に凹面を向けた正メニスカスレンズである。レンズL44は、物体側に凹面を向けた負メニスカスレンズである。レンズL45は、両面が非球面からなる両凸形状の正レンズである。
 第5レンズ群G5は、物体側から像面側に向かって順に、レンズL51と、レンズL52とからなる。レンズL51は、物体側に凹面を向けた正メニスカスレンズである。レンズL52は、両面が非球面からなる両凹形状の負レンズである。
 第6レンズ群G6は、物体側から像面側に向かって順に、レンズL61と、レンズL62とからなる。レンズL61は、物体側に凸面を向けた正メニスカスレンズである。レンズL62は、物体側に凹面を向けた負メニスカスレンズである。
 以上の構成により、小型な光学系ながらも、広角領域をカバーしつつ高変倍比なズームレンズを実現している。
Figure JPOXMLDOC01-appb-T000016
 
Figure JPOXMLDOC01-appb-T000017
 
Figure JPOXMLDOC01-appb-T000018
 
Figure JPOXMLDOC01-appb-T000019
 
Figure JPOXMLDOC01-appb-T000020
 
 図41には、実施例4に係るズームレンズ4の広角端かつ無限遠合焦時における縦収差を示す。図42には、実施例4に係るズームレンズ4の中間位置かつ無限遠合焦時における縦収差を示す。図43には、実施例4に係るズームレンズ4の望遠端かつ無限遠合焦時における縦収差を示す。図44には、実施例4に係るズームレンズ4の広角端かつ近距離合焦時における縦収差を示す。図45には、実施例4に係るズームレンズ4の中間位置かつ近距離合焦時における縦収差を示す。図46には、実施例4に係るズームレンズ4の望遠端かつ近距離合焦時における縦収差を示す。図47には、実施例4に係るズームレンズ4の広角端かつ無限遠合焦時における横収差を示す。図48には、実施例4に係るズームレンズ4の中間位置かつ無限遠合焦時における横収差を示す。図49には、実施例4に係るズームレンズ4の望遠端かつ無限遠合焦時における横収差を示す。図50には、実施例4に係るズームレンズ4の広角端かつ近距離合焦時における横収差を示す。図51には、実施例4に係るズームレンズ4の中間位置かつ近距離合焦時における横収差を示す。図52には、実施例4に係るズームレンズ4の望遠端かつ近距離合焦時における横収差を示す。
 各収差図から分かるように、実施例4に係るズームレンズ4は、諸収差が良好に補正され、優れた結像性能を有している。
[実施例5]
 [表21]に、図53に示した実施例5に係るズームレンズ5の基本的なレンズデータを示す。[表22]には、実施例5に係るズームレンズ5における全系の焦点距離f、F値、全画角2ω、像高Y、および光学全長Lの値を示す。[表23]には、実施例5に係るズームレンズ5においてズーミングおよびフォーカシングの際に可変となる面間隔のデータを示す。なお、[表22]には、広角端(Wide)、中間位置(Mid)および望遠端(Tele)のそれぞれについて、物体距離(d0)が無限遠の場合における値を示す。[表23]には、広角端(Wide)、中間位置(Mid)および望遠端(Tele)のそれぞれについて、物体距離(d0)が無限遠の場合と近距離の場合とにおける値を示す。[表24]には、実施例5に係るズームレンズ5における、非球面の形状を表す係数の値を示す。[表25]には、実施例5に係るズームレンズ5の各レンズ群の始面と焦点距離(単位:mm)とを示す。
 実施例5に係るズームレンズ5は、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りStと、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6とが、物体側から像面側へ向かって順に配置された構成とされている。
 実施例5に係るズームレンズ5は、ズーミングに際して、隣り合うレンズ群同士の間隔が変化するように移動する。広角端から望遠端へのズーミングに際しては、第3レンズ群G3と、最終レンズ群GRとしての第6レンズ群G6とが同じ軌跡で移動する。物体距離を無限遠から近距離へとフォーカシングする際には、第5レンズ群G5が光軸方向を像面側に移動する。
 第1レンズ群G1は、レンズL11からなる。レンズL11は、両凸形状の正レンズである。
 第2レンズ群G2は、物体側から像面側に向かって順に、レンズL21~L24からなる。レンズL21は、物体側に凸面を向けた負メニスカスレンズである。レンズL22は、両面が非球面からなる両凹形状の負レンズである。レンズL23は、両凸形状の正レンズである。レンズL24は、物体側に凹面を向けた負メニスカスレンズである。
 第3レンズ群G3は、レンズL31からなる。レンズL31は、両面が非球面からなる物体側に凸面を向けた正メニスカスレンズである。
 第4レンズ群G4は、物体側から像面側に向かって順に、レンズL41~L44からなる。レンズL41は、物体側に凸面を向けた負メニスカスレンズである。レンズL42は、両凸形状の正レンズである。レンズL41とレンズL42は、互いに貼り合わされた接合レンズを構成する。レンズL43は、物体側が平面で像面側が凹面形状の負レンズである。レンズL44は、両面が非球面からなる両凸形状の正レンズである。
 第5レンズ群G5は、物体側から像面側に向かって順に、レンズL51と、レンズL52とからなる。レンズL51は、物体側に凹面を向けた正メニスカスレンズである。レンズL52は、両面が非球面からなる両凹形状の負レンズである。
 第6レンズ群G6は、物体側から像面側に向かって順に、レンズL61と、レンズL62とからなる。レンズL61は、物体側に凸面を向けた正メニスカスレンズである。レンズL62は、物体側に凹面を向けた負メニスカスレンズである。
 以上の構成により、小型な光学系ながらも、広角領域をカバーしつつ高変倍比なズームレンズを実現している。
Figure JPOXMLDOC01-appb-T000021
 
Figure JPOXMLDOC01-appb-T000022
 
Figure JPOXMLDOC01-appb-T000023
 
Figure JPOXMLDOC01-appb-T000024
 
Figure JPOXMLDOC01-appb-T000025
 
 図54には、実施例5に係るズームレンズ5の広角端かつ無限遠合焦時における縦収差を示す。図55には、実施例5に係るズームレンズ5の中間位置かつ無限遠合焦時における縦収差を示す。図56には、実施例5に係るズームレンズ5の望遠端かつ無限遠合焦時における縦収差を示す。図57には、実施例5に係るズームレンズ5の広角端かつ近距離合焦時における縦収差を示す。図58には、実施例5に係るズームレンズ5の中間位置かつ近距離合焦時における縦収差を示す。図59には、実施例5に係るズームレンズ5の望遠端かつ近距離合焦時における縦収差を示す。図60には、実施例5に係るズームレンズ5の広角端かつ無限遠合焦時における横収差を示す。図61には、実施例5に係るズームレンズ5の中間位置かつ無限遠合焦時における横収差を示す。図62には、実施例5に係るズームレンズ5の望遠端かつ無限遠合焦時における横収差を示す。図63には、実施例5に係るズームレンズ5の広角端かつ近距離合焦時における横収差を示す。図64には、実施例5に係るズームレンズ5の中間位置かつ近距離合焦時における横収差を示す。図65には、実施例5に係るズームレンズ5の望遠端かつ近距離合焦時における横収差を示す。
 各収差図から分かるように、実施例5に係るズームレンズ5は、諸収差が良好に補正され、優れた結像性能を有している。
[実施例6]
 [表26]に、図66に示した実施例6に係るズームレンズ6の基本的なレンズデータを示す。[表27]には、実施例6に係るズームレンズ6における全系の焦点距離f、F値、全画角2ω、像高Y、および光学全長Lの値を示す。[表28]には、実施例6に係るズームレンズ6においてズーミングおよびフォーカシングの際に可変となる面間隔のデータを示す。なお、[表27]には、広角端(Wide)、中間位置(Mid)および望遠端(Tele)のそれぞれについて、物体距離(d0)が無限遠の場合における値を示す。[表28]には、広角端(Wide)、中間位置(Mid)および望遠端(Tele)のそれぞれについて、物体距離(d0)が無限遠の場合と近距離の場合とにおける値を示す。[表29]には、実施例6に係るズームレンズ6における、非球面の形状を表す係数の値を示す。[表30]には、実施例6に係るズームレンズ6の各レンズ群の始面と焦点距離(単位:mm)とを示す。
 実施例6に係るズームレンズ6は、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りStと、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6とが、物体側から像面側へ向かって順に配置された構成とされている。
 実施例6に係るズームレンズ6は、ズーミングに際して、隣り合うレンズ群同士の間隔が変化するように移動する。広角端から望遠端へのズーミングに際しては、第3レンズ群G3と、最終レンズ群GRとしての第6レンズ群G6とが同じ軌跡で移動する。物体距離を無限遠から近距離へとフォーカシングする際には、第5レンズ群G5が光軸方向を像面側に移動する。
 第1レンズ群G1は、物体側から像面側に向かって順に、レンズL11と、レンズL12とからなる。レンズL11は、物体側に凸面を向けた負メニスカスレンズである。レンズL12は、物体側に凸面を向けた正メニスカスレンズである。レンズL11とレンズL12は、互いに貼り合わされた接合レンズを構成する。
 第2レンズ群G2は、物体側から像面側に向かって順に、レンズL21~L24からなる。レンズL21は、物体側に凸面を向けた負メニスカスレンズである。レンズL22は、両面が非球面からなる物体側に凹面を向けた負メニスカスレンズである。レンズL23は、両凸形状の正レンズである。レンズL24は、両凹形状の負レンズである。
 第3レンズ群G3は、物体側から像面側に向かって順に、レンズL31と、レンズL32とからなる。レンズL31は、両面が非球面からなる両凸形状の正レンズである。レンズL32は、両凹形状の負レンズである。
 第4レンズ群G4は、物体側から像面側に向かって順に、レンズL41~L45からなる。レンズL41は、両凸形状の正レンズである。レンズL42は、両凹形状の負レンズである。レンズL41とレンズL42は、互いに貼り合わされた接合レンズを構成する。レンズL43は、物体側に凸面を向けた負メニスカスレンズである。レンズL44は、物体側に凸面を向けた正メニスカスレンズである。レンズL43とレンズL44は、互いに貼り合わされた接合レンズを構成する。レンズL45は、両面が非球面からなる両凸形状の正レンズである。
 第5レンズ群G5は、物体側から像面側に向かって順に、レンズL51と、レンズL52とからなる。レンズL51は、物体側に凹面を向けた正メニスカスレンズである。レンズL52は、両面が非球面からなる両凹形状の負レンズである。
 第6レンズ群G6は、レンズL61からなる。レンズL61は、物体側に凹面を向けた負メニスカスレンズである。
 以上の構成により、小型な光学系ながらも、広角領域をカバーしつつ高変倍比なズームレンズを実現している。
Figure JPOXMLDOC01-appb-T000026
 
Figure JPOXMLDOC01-appb-T000027
 
Figure JPOXMLDOC01-appb-T000028
 
Figure JPOXMLDOC01-appb-T000029
 
Figure JPOXMLDOC01-appb-T000030
 
 図67には、実施例6に係るズームレンズ6の広角端かつ無限遠合焦時における縦収差を示す。図68には、実施例6に係るズームレンズ6の中間位置かつ無限遠合焦時における縦収差を示す。図69には、実施例6に係るズームレンズ6の望遠端かつ無限遠合焦時における縦収差を示す。図70には、実施例6に係るズームレンズ6の広角端かつ近距離合焦時における縦収差を示す。図71には、実施例6に係るズームレンズ6の中間位置かつ近距離合焦時における縦収差を示す。図72には、実施例6に係るズームレンズ6の望遠端かつ近距離合焦時における縦収差を示す。図73には、実施例6に係るズームレンズ6の広角端かつ無限遠合焦時における横収差を示す。図74には、実施例6に係るズームレンズ6の中間位置かつ無限遠合焦時における横収差を示す。図75には、実施例6に係るズームレンズ6の望遠端かつ無限遠合焦時における横収差を示す。図76には、実施例6に係るズームレンズ6の広角端かつ近距離合焦時における横収差を示す。図77には、実施例6に係るズームレンズ6の中間位置かつ近距離合焦時における横収差を示す。図78には、実施例6に係るズームレンズ6の望遠端かつ近距離合焦時における横収差を示す。
 各収差図から分かるように、実施例6に係るズームレンズ6は、諸収差が良好に補正され、優れた結像性能を有している。
[実施例7]
 [表31]に、図79に示した実施例7に係るズームレンズ7の基本的なレンズデータを示す。[表32]には、実施例7に係るズームレンズ7における全系の焦点距離f、F値、全画角2ω、像高Y、および光学全長Lの値を示す。[表33]には、実施例7に係るズームレンズ7においてズーミングおよびフォーカシングの際に可変となる面間隔のデータを示す。なお、[表32]には、広角端(Wide)、中間位置(Mid)および望遠端(Tele)のそれぞれについて、物体距離(d0)が無限遠の場合における値を示す。[表33]には、広角端(Wide)、中間位置(Mid)および望遠端(Tele)のそれぞれについて、物体距離(d0)が無限遠の場合と近距離の場合とにおける値を示す。[表34]には、実施例7に係るズームレンズ7における、非球面の形状を表す係数の値を示す。[表35]には、実施例7に係るズームレンズ7の各レンズ群の始面と焦点距離(単位:mm)とを示す。
 実施例7に係るズームレンズ7は、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りStと、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6とが、物体側から像面側へ向かって順に配置された構成とされている。
 実施例7に係るズームレンズ7は、ズーミングに際して、隣り合うレンズ群同士の間隔が変化するように移動する。広角端から望遠端へのズーミングに際しては、第3レンズ群G3と、最終レンズ群GRとしての第6レンズ群G6とが同じ軌跡で移動する。物体距離を無限遠から近距離へとフォーカシングする際には、第5レンズ群G5が光軸方向を像面側に移動する。
 第1レンズ群G1は、物体側から像面側に向かって順に、レンズL11と、レンズL12とからなる。レンズL11は、物体側に凸面を向けた負メニスカスレンズである。レンズL12は、物体側に凸面を向けた正メニスカスレンズである。レンズL11とレンズL12は、互いに貼り合わされた接合レンズを構成する。
 第2レンズ群G2は、物体側から像面側に向かって順に、レンズL21~L24からなる。レンズL21は、物体側に凸面を向けた負メニスカスレンズである。レンズL22は、両面が非球面からなる物体側に凹面を向けた負メニスカスレンズである。レンズL23は、両凸形状の正レンズである。レンズL24は、物体側に凹面を向けた負メニスカスレンズである。
 第3レンズ群G3は、レンズL31からなる。レンズL31は、両面が非球面からなる物体側に凸面を向けた正メニスカスレンズである。
 第4レンズ群G4は、物体側から像面側に向かって順に、レンズL41~L45からなる。レンズL41は、物体側に凸面を向けた負メニスカスレンズである。レンズL42は、物体側に凸面を向けた正メニスカスレンズである。レンズL41とレンズL42は、互いに貼り合わされた接合レンズを構成する。レンズL43は、両凹形状の負レンズである。レンズL44は、両凸形状の正レンズである。レンズL43とレンズL44は、互いに貼り合わされた接合レンズを構成する。レンズL45は、両面が非球面からなる両凸形状の正レンズである。
 第5レンズ群G5は、物体側から像面側に向かって順に、レンズL51と、レンズL52とからなる。レンズL51は、物体側に凹面を向けた正メニスカスレンズである。レンズL52は、両面が非球面からなる両凹形状の負レンズである。
 第6レンズ群G6は、レンズL61からなる。レンズL61は、物体側に凹面を向けた負メニスカスレンズである。
 以上の構成により、小型な光学系ながらも、広角領域をカバーしつつ高変倍比なズームレンズを実現している。
Figure JPOXMLDOC01-appb-T000031
 
Figure JPOXMLDOC01-appb-T000032
 
Figure JPOXMLDOC01-appb-T000033
 
Figure JPOXMLDOC01-appb-T000034
 
Figure JPOXMLDOC01-appb-T000035
 
 図80には、実施例7に係るズームレンズ7の広角端かつ無限遠合焦時における縦収差を示す。図81には、実施例7に係るズームレンズ7の中間位置かつ無限遠合焦時における縦収差を示す。図82には、実施例7に係るズームレンズ7の望遠端かつ無限遠合焦時における縦収差を示す。図83には、実施例7に係るズームレンズ7の広角端かつ近距離合焦時における縦収差を示す。図84には、実施例7に係るズームレンズ7の中間位置かつ近距離合焦時における縦収差を示す。図85には、実施例7に係るズームレンズ7の望遠端かつ近距離合焦時における縦収差を示す。図86には、実施例7に係るズームレンズ7の広角端かつ無限遠合焦時における横収差を示す。図87には、実施例7に係るズームレンズ7の中間位置かつ無限遠合焦時における横収差を示す。図88には、実施例7に係るズームレンズ7の望遠端かつ無限遠合焦時における横収差を示す。図89には、実施例7に係るズームレンズ7の広角端かつ近距離合焦時における横収差を示す。図90には、実施例7に係るズームレンズ7の中間位置かつ近距離合焦時における横収差を示す。図91には、実施例7に係るズームレンズ7の望遠端かつ近距離合焦時における横収差を示す。
 各収差図から分かるように、実施例7に係るズームレンズ7は、諸収差が良好に補正され、優れた結像性能を有している。
[実施例8]
 [表36]に、図92に示した実施例8に係るズームレンズ8の基本的なレンズデータを示す。[表37]には、実施例8に係るズームレンズ8における全系の焦点距離f、F値、全画角2ω、像高Y、および光学全長Lの値を示す。[表38]には、実施例8に係るズームレンズ8においてズーミングおよびフォーカシングの際に可変となる面間隔のデータを示す。なお、[表37]には、広角端(Wide)、中間位置(Mid)および望遠端(Tele)のそれぞれについて、物体距離(d0)が無限遠の場合における値を示す。[表38]には、広角端(Wide)、中間位置(Mid)および望遠端(Tele)のそれぞれについて、物体距離(d0)が無限遠の場合と近距離の場合とにおける値を示す。[表39]には、実施例8に係るズームレンズ8における、非球面の形状を表す係数の値を示す。[表40]には、実施例8に係るズームレンズ8の各レンズ群の始面と焦点距離(単位:mm)とを示す。
 実施例8に係るズームレンズ8は、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りStと、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6とが、物体側から像面側へ向かって順に配置された構成とされている。
 実施例8に係るズームレンズ8は、ズーミングに際して、隣り合うレンズ群同士の間隔が変化するように移動する。広角端から望遠端へのズーミングに際しては、第3レンズ群G3と、最終レンズ群GRとしての第6レンズ群G6とが同じ軌跡で移動する。物体距離を無限遠から近距離へとフォーカシングする際には、第5レンズ群G5が光軸方向を像面側に移動する。
 第1レンズ群G1は、物体側から像面側に向かって順に、レンズL11と、レンズL12とからなる。レンズL11は、物体側に凸面を向けた負メニスカスレンズである。レンズL12は、物体側に凸面を向けた正メニスカスレンズである。レンズL11とレンズL12は、互いに貼り合わされた接合レンズを構成する。
 第2レンズ群G2は、物体側から像面側に向かって順に、レンズL21~L24からなる。レンズL21は、物体側に凸面を向けた負メニスカスレンズである。レンズL22は、両面が非球面からなる物体側に凹面を向けた負メニスカスレンズである。レンズL23は、両凸形状の正レンズである。レンズL24は、物体側に凹面を向けた負メニスカスレンズである。
 第3レンズ群G3は、レンズL31からなる。レンズL31は、両面が非球面からなる物体側に凸面を向けた正メニスカスレンズである。
 第4レンズ群G4は、物体側から像面側に向かって順に、レンズL41~L45からなる。レンズL41は、物体側に凸面を向けた負メニスカスレンズである。レンズL42は、両凸形状の正レンズである。レンズL41とレンズL42は、互いに貼り合わされた接合レンズを構成する。レンズL43は、物体側に凹面を向けた正メニスカスレンズである。レンズL44は、物体側に凹面を向けた負メニスカスレンズである。レンズL43とレンズL44は、互いに貼り合わされた接合レンズを構成する。レンズL45は、両面が非球面からなる両凸形状の正レンズである。
 第5レンズ群G5は、物体側から像面側に向かって順に、レンズL51と、レンズL52とからなる。レンズL51は、物体側に凹面を向けた正メニスカスレンズである。レンズL52は、両面が非球面からなる両凹形状の負レンズである。
 第6レンズ群G6は、物体側から像面側に向かって順に、レンズL61と、レンズL62とからなる。レンズL61は、両凸形状の正レンズである。レンズL62は、物体側に凹面を向けた負メニスカスレンズである。
 以上の構成により、小型な光学系ながらも、広角領域をカバーしつつ高変倍比なズームレンズを実現している。
Figure JPOXMLDOC01-appb-T000036
 
Figure JPOXMLDOC01-appb-T000037
 
Figure JPOXMLDOC01-appb-T000038
 
Figure JPOXMLDOC01-appb-T000039
 
Figure JPOXMLDOC01-appb-T000040
 
 図93には、実施例8に係るズームレンズ8の広角端かつ無限遠合焦時における縦収差を示す。図94には、実施例8に係るズームレンズ8の中間位置かつ無限遠合焦時における縦収差を示す。図95には、実施例8に係るズームレンズ8の望遠端かつ無限遠合焦時における縦収差を示す。図96には、実施例8に係るズームレンズ8の広角端かつ近距離合焦時における縦収差を示す。図97には、実施例8に係るズームレンズ8の中間位置かつ近距離合焦時における縦収差を示す。図98には、実施例8に係るズームレンズ8の望遠端かつ近距離合焦時における縦収差を示す。図99には、実施例8に係るズームレンズ8の広角端かつ無限遠合焦時における横収差を示す。図100には、実施例8に係るズームレンズ8の中間位置かつ無限遠合焦時における横収差を示す。図101には、実施例8に係るズームレンズ8の望遠端かつ無限遠合焦時における横収差を示す。図102には、実施例8に係るズームレンズ8の広角端かつ近距離合焦時における横収差を示す。図103には、実施例8に係るズームレンズ8の中間位置かつ近距離合焦時における横収差を示す。図104には、実施例8に係るズームレンズ8の望遠端かつ近距離合焦時における横収差を示す。
 各収差図から分かるように、実施例8に係るズームレンズ8は、諸収差が良好に補正され、優れた結像性能を有している。
[実施例9]
 [表41]に、図105に示した実施例9に係るズームレンズ9の基本的なレンズデータを示す。[表42]には、実施例9に係るズームレンズ9における全系の焦点距離f、F値、全画角2ω、像高Y、および光学全長Lの値を示す。[表43]には、実施例9に係るズームレンズ9においてズーミングおよびフォーカシングの際に可変となる面間隔のデータを示す。なお、[表42]には、広角端(Wide)、中間位置(Mid)および望遠端(Tele)のそれぞれについて、物体距離(d0)が無限遠の場合における値を示す。[表43]には、広角端(Wide)、中間位置(Mid)および望遠端(Tele)のそれぞれについて、物体距離(d0)が無限遠の場合と近距離の場合とにおける値を示す。[表44]には、実施例9に係るズームレンズ9における、非球面の形状を表す係数の値を示す。[表45]には、実施例9に係るズームレンズ9の各レンズ群の始面と焦点距離(単位:mm)とを示す。
 実施例9に係るズームレンズ9は、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りStと、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5とが、物体側から像面側へ向かって順に配置された構成とされている。
 実施例9に係るズームレンズ9は、ズーミングに際して、隣り合うレンズ群同士の間隔が変化するように移動する。物体距離を無限遠から近距離へとフォーカシングする際には、第5レンズ群G5が光軸方向を像面側に移動する。
 第1レンズ群G1は、物体側から像面側に向かって順に、レンズL11と、レンズL12とからなる。レンズL11は、物体側に凸面を向けた負メニスカスレンズである。レンズL12は、物体側に凸面を向けた正メニスカスレンズである。レンズL11とレンズL12は、互いに貼り合わされた接合レンズを構成する。
 第2レンズ群G2は、物体側から像面側に向かって順に、レンズL21~L24からなる。レンズL21は、物体側に凸面を向けた負メニスカスレンズである。レンズL22は、両面が非球面からなる両凹形状の負レンズである。レンズL23は、両凸形状の正レンズである。レンズL24は、物体側に凹面を向けた負メニスカスレンズである。
 第3レンズ群G3は、物体側から像面側に向かって順に、レンズL31~L33からなる。レンズL31は、両面が非球面からなる両凸形状の正レンズである。レンズL32は、物体側に凹面を向けた正メニスカスレンズである。レンズL33は、両凹形状の負レンズである。レンズL32とレンズL33は、互いに貼り合わされた接合レンズを構成する。
 第4レンズ群G4は、レンズL41からなる。レンズL41は、両面が非球面からなる両凸形状の正レンズである。
 第5レンズ群G5は、物体側から像面側に向かって順に、レンズL51と、レンズL52とからなる。レンズL51は、物体側に凹面を向けた正メニスカスレンズである。レンズL52は、両面が非球面からなる両凹形状の負レンズである。
 以上の構成により、小型な光学系ながらも、広角領域をカバーしつつ高変倍比なズームレンズを実現している。
Figure JPOXMLDOC01-appb-T000041
 
Figure JPOXMLDOC01-appb-T000042
 
Figure JPOXMLDOC01-appb-T000043
 
Figure JPOXMLDOC01-appb-T000044
 
Figure JPOXMLDOC01-appb-T000045
 
 図106には、実施例9に係るズームレンズ9の広角端かつ無限遠合焦時における縦収差を示す。図107には、実施例9に係るズームレンズ9の中間位置かつ無限遠合焦時における縦収差を示す。図108には、実施例9に係るズームレンズ9の望遠端かつ無限遠合焦時における縦収差を示す。図109には、実施例9に係るズームレンズ9の広角端かつ近距離合焦時における縦収差を示す。図110には、実施例9に係るズームレンズ9の中間位置かつ近距離合焦時における縦収差を示す。図111には、実施例9に係るズームレンズ9の望遠端かつ近距離合焦時における縦収差を示す。図112には、実施例9に係るズームレンズ9の広角端かつ無限遠合焦時における横収差を示す。図113には、実施例9に係るズームレンズ9の中間位置かつ無限遠合焦時における横収差を示す。図114には、実施例9に係るズームレンズ9の望遠端かつ無限遠合焦時における横収差を示す。図115には、実施例9に係るズームレンズ9の広角端かつ近距離合焦時における横収差を示す。図116には、実施例9に係るズームレンズ9の中間位置かつ近距離合焦時における横収差を示す。図117には、実施例9に係るズームレンズ9の望遠端かつ近距離合焦時における横収差を示す。
 各収差図から分かるように、実施例9に係るズームレンズ9は、諸収差が良好に補正され、優れた結像性能を有している。
[実施例10]
 [表46]に、図118に示した実施例10に係るズームレンズ10の基本的なレンズデータを示す。[表47]には、実施例10に係るズームレンズ10における全系の焦点距離f、F値、全画角2ω、像高Y、および光学全長Lの値を示す。[表48]には、実施例10に係るズームレンズ10においてズーミングおよびフォーカシングの際に可変となる面間隔のデータを示す。なお、[表47]には、広角端(Wide)、中間位置(Mid)および望遠端(Tele)のそれぞれについて、物体距離(d0)が無限遠の場合における値を示す。[表48]には、広角端(Wide)、中間位置(Mid)および望遠端(Tele)のそれぞれについて、物体距離(d0)が無限遠の場合と近距離の場合とにおける値を示す。[表49]には、実施例10に係るズームレンズ10における、非球面の形状を表す係数の値を示す。[表50]には、実施例10に係るズームレンズ10の各レンズ群の始面と焦点距離(単位:mm)とを示す。
 実施例10に係るズームレンズ10は、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りStと、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6とが、物体側から像面側へ向かって順に配置された構成とされている。
 実施例10に係るズームレンズ10は、ズーミングに際して、隣り合うレンズ群同士の間隔が変化するように移動する。広角端から望遠端へのズーミングに際しては、第3レンズ群G3と、最終レンズ群GRとしての第6レンズ群G6とが同じ軌跡で移動する。物体距離を無限遠から近距離へとフォーカシングする際には、第5レンズ群G5が光軸方向を像面側に移動する。
 第1レンズ群G1は、物体側から像面側に向かって順に、レンズL11と、レンズL12とからなる。レンズL11は、物体側に凸面を向けた負メニスカスレンズである。レンズL12は、物体側に凸面を向けた正メニスカスレンズである。レンズL11とレンズL12は、互いに貼り合わされた接合レンズを構成する。
 第2レンズ群G2は、物体側から像面側に向かって順に、レンズL21~L24からなる。レンズL21は、物体側に凸面を向けた負メニスカスレンズである。レンズL22は、両面が非球面からなる両凹形状の負レンズである。レンズL23は、両凸形状の正レンズである。レンズL24は、物体側に凹面を向けた負メニスカスレンズである。
 第3レンズ群G3は、物体側から像面側に向かって順に、レンズL31~L35からなる。レンズL31は、両面が非球面からなる両凸形状の正レンズである。レンズL32は、物体側に凹面を向けた正メニスカスレンズである。レンズL33は、物体側に凹面を向けた負メニスカスレンズである。レンズL32とレンズL33は、互いに貼り合わされた接合レンズを構成する。レンズL34は、両凹形状の負レンズである。レンズL35は、物体側に凸面を向けた正メニスカスレンズである。レンズL34とレンズL35は、互いに貼り合わされた接合レンズを構成する。
 第4レンズ群G4は、レンズL41からなる。レンズL41は、両面が非球面からなる両凸形状の正レンズである。
 第5レンズ群G5は、物体側から像面側に向かって順に、レンズL51と、レンズL52とからなる。レンズL51は、物体側に凹面を向けた正メニスカスレンズである。レンズL52は、両面が非球面からなる両凹形状の負レンズである。
 第6レンズ群G6は、レンズL61からなる。レンズL61は、物体側に凹面を向けた負メニスカスレンズである。
 以上の構成により、小型な光学系ながらも、広角領域をカバーしつつ高変倍比なズームレンズを実現している。
Figure JPOXMLDOC01-appb-T000046
 
Figure JPOXMLDOC01-appb-T000047
 
Figure JPOXMLDOC01-appb-T000048
 
Figure JPOXMLDOC01-appb-T000049
 
Figure JPOXMLDOC01-appb-T000050
 
 図119には、実施例10に係るズームレンズ10の広角端かつ無限遠合焦時における縦収差を示す。図120には、実施例10に係るズームレンズ10の中間位置かつ無限遠合焦時における縦収差を示す。図121には、実施例10に係るズームレンズ10の望遠端かつ無限遠合焦時における縦収差を示す。図122には、実施例10に係るズームレンズ10の広角端かつ近距離合焦時における縦収差を示す。図123には、実施例10に係るズームレンズ10の中間位置かつ近距離合焦時における縦収差を示す。図124には、実施例10に係るズームレンズ10の望遠端かつ近距離合焦時における縦収差を示す。図125には、実施例10に係るズームレンズ10の広角端かつ無限遠合焦時における横収差を示す。図126には、実施例10に係るズームレンズ10の中間位置かつ無限遠合焦時における横収差を示す。図127には、実施例10に係るズームレンズ10の望遠端かつ無限遠合焦時における横収差を示す。図128には、実施例10に係るズームレンズ10の広角端かつ近距離合焦時における横収差を示す。図129には、実施例10に係るズームレンズ10の中間位置かつ近距離合焦時における横収差を示す。図130には、実施例10に係るズームレンズ10の望遠端かつ近距離合焦時における横収差を示す。
 各収差図から分かるように、実施例10に係るズームレンズ10は、諸収差が良好に補正され、優れた結像性能を有している。
[実施例11]
 [表51]に、図131に示した実施例11に係るズームレンズ11の基本的なレンズデータを示す。[表52]には、実施例11に係るズームレンズ11における全系の焦点距離f、F値、全画角2ω、像高Y、および光学全長Lの値を示す。[表53]には、実施例11に係るズームレンズ11においてズーミングおよびフォーカシングの際に可変となる面間隔のデータを示す。なお、[表52]には、広角端(Wide)、中間位置(Mid)および望遠端(Tele)のそれぞれについて、物体距離(d0)が無限遠の場合における値を示す。[表53]には、広角端(Wide)、中間位置(Mid)および望遠端(Tele)のそれぞれについて、物体距離(d0)が無限遠の場合と近距離の場合とにおける値を示す。[表54]には、実施例11に係るズームレンズ11における、非球面の形状を表す係数の値を示す。[表55]には、実施例11に係るズームレンズ11の各レンズ群の始面と焦点距離(単位:mm)とを示す。
 実施例11に係るズームレンズ11は、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りStと、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6とが、物体側から像面側へ向かって順に配置された構成とされている。
 実施例11に係るズームレンズ11は、ズーミングに際して、隣り合うレンズ群同士の間隔が変化するように移動する。広角端から望遠端へのズーミングに際しては、第3レンズ群G3と、最終レンズ群GRとしての第6レンズ群G6とが同じ軌跡で移動する。物体距離を無限遠から近距離へとフォーカシングする際には、第5レンズ群G5が光軸方向を像面側に移動する。
 第1レンズ群G1は、物体側から像面側に向かって順に、レンズL11と、レンズL12とからなる。レンズL11は、物体側に凸面を向けた負メニスカスレンズである。レンズL12は、物体側に凸面を向けた正メニスカスレンズである。レンズL11とレンズL12は、互いに貼り合わされた接合レンズを構成する。
 第2レンズ群G2は、物体側から像面側に向かって順に、レンズL21~L24からなる。レンズL21は、物体側に凸面を向けた負メニスカスレンズである。レンズL22は、両面が非球面からなる両凹形状の負レンズである。レンズL23は、両凸形状の正レンズである。レンズL24は、物体側に凹面を向けた負メニスカスレンズである。
 第3レンズ群G3は、物体側から像面側に向かって順に、レンズL31~L34からなる。レンズL31は、両面が非球面からなる両凸形状の正レンズである。レンズL32は、両凸形状の正レンズである。レンズL33は、物体側に凹面を向けた負メニスカスレンズである。レンズL32とレンズL33は、互いに貼り合わされた接合レンズを構成する。レンズL34は、物体側に凹面を向けた負メニスカスレンズである。
 第4レンズ群G4は、レンズL41からなる。レンズL41は、両面が非球面からなる両凸形状の正レンズである。
 第5レンズ群G5は、物体側から像面側に向かって順に、レンズL51と、レンズL52とからなる。レンズL51は、両凸形状の正レンズである。レンズL52は、両面が非球面からなる両凹形状の負レンズである。
 第6レンズ群G6は、レンズL61からなる。レンズL61は、物体側に凹面を向けた負メニスカスレンズである。
 以上の構成により、小型な光学系ながらも、広角領域をカバーしつつ高変倍比なズームレンズを実現している。
Figure JPOXMLDOC01-appb-T000051
 
Figure JPOXMLDOC01-appb-T000052
 
Figure JPOXMLDOC01-appb-T000053
 
Figure JPOXMLDOC01-appb-T000054
 
Figure JPOXMLDOC01-appb-T000055
 
 図132には、実施例11に係るズームレンズ11の広角端かつ無限遠合焦時における縦収差を示す。図133には、実施例11に係るズームレンズ11の中間位置かつ無限遠合焦時における縦収差を示す。図134には、実施例11に係るズームレンズ11の望遠端かつ無限遠合焦時における縦収差を示す。図135には、実施例11に係るズームレンズ11の広角端かつ近距離合焦時における縦収差を示す。図136には、実施例11に係るズームレンズ11の中間位置かつ近距離合焦時における縦収差を示す。図137には、実施例11に係るズームレンズ11の望遠端かつ近距離合焦時における縦収差を示す。図138には、実施例11に係るズームレンズ11の広角端かつ無限遠合焦時における横収差を示す。図139には、実施例11に係るズームレンズ11の中間位置かつ無限遠合焦時における横収差を示す。図140には、実施例11に係るズームレンズ11の望遠端かつ無限遠合焦時における横収差を示す。図141には、実施例11に係るズームレンズ11の広角端かつ近距離合焦時における横収差を示す。図142には、実施例11に係るズームレンズ11の中間位置かつ近距離合焦時における横収差を示す。図143には、実施例11に係るズームレンズ11の望遠端かつ近距離合焦時における横収差を示す。
 各収差図から分かるように、実施例11に係るズームレンズ11は、諸収差が良好に補正され、優れた結像性能を有している。
[実施例12]
 [表56]に、図144に示した実施例12に係るズームレンズ12の基本的なレンズデータを示す。[表57]には、実施例12に係るズームレンズ12における全系の焦点距離f、F値、全画角2ω、像高Y、および光学全長Lの値を示す。[表58]には、実施例12に係るズームレンズ12においてズーミングおよびフォーカシングの際に可変となる面間隔のデータを示す。なお、[表57]には、広角端(Wide)、中間位置(Mid)および望遠端(Tele)のそれぞれについて、物体距離(d0)が無限遠の場合における値を示す。[表58]には、広角端(Wide)、中間位置(Mid)および望遠端(Tele)のそれぞれについて、物体距離(d0)が無限遠の場合と近距離の場合とにおける値を示す。[表59]には、実施例12に係るズームレンズ12における、非球面の形状を表す係数の値を示す。[表60]には、実施例12に係るズームレンズ12の各レンズ群の始面と焦点距離(単位:mm)とを示す。
 実施例12に係るズームレンズ12は、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りStと、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6とが、物体側から像面側へ向かって順に配置された構成とされている。
 実施例12に係るズームレンズ12は、ズーミングに際して、隣り合うレンズ群同士の間隔が変化するように移動する。広角端から望遠端へのズーミングに際しては、第3レンズ群G3と、最終レンズ群GRとしての第6レンズ群G6とが同じ軌跡で移動する。物体距離を無限遠から近距離へとフォーカシングする際には、第5レンズ群G5が光軸方向を像面側に移動する。
 第1レンズ群G1は、物体側から像面側に向かって順に、レンズL11と、レンズL12とからなる。レンズL11は、物体側に凸面を向けた負メニスカスレンズである。レンズL12は、物体側に凸面を向けた正メニスカスレンズである。レンズL11とレンズL12は、互いに貼り合わされた接合レンズを構成する。
 第2レンズ群G2は、物体側から像面側に向かって順に、レンズL21~L24からなる。レンズL21は、物体側に凸面を向けた負メニスカスレンズである。レンズL22は、両面が非球面からなる物体側に凸面を向けた負メニスカスレンズである。レンズL23は、両凸形状の正レンズである。レンズL24は、物体側に凹面を向けた負メニスカスレンズである。
 第3レンズ群G3は、物体側から像面側に向かって順に、レンズL31~L33からなる。レンズL31は、両面が非球面からなる物体側に凸面を向けた正メニスカスレンズである。レンズL32は、物体側に凸面を向けた負メニスカスレンズである。レンズL33は、物体側に凸面を向けた正メニスカスレンズである。レンズL32とレンズL33は、互いに貼り合わされた接合レンズを構成する。
 第4レンズ群G4は、物体側から像面側に向かって順に、レンズL41~L43からなる。レンズL41は、両凸形状の正レンズである。レンズL42は、両凹形状の負レンズである。レンズL41とレンズL42は、互いに貼り合わされた接合レンズを構成する。レンズL43は両面が非球面からなる両凸形状の正レンズである。
 第5レンズ群G5は、物体側から像面側に向かって順に、レンズL51と、レンズL52とからなる。レンズL51は、物体側に凹面を向けた正メニスカスレンズである。レンズL52は、両面が非球面からなる両凹形状の負レンズである。
 第6レンズ群G6は、レンズL61からなる。レンズL61は、物体側に凹面を向けた負メニスカスレンズである。
 以上の構成により、小型な光学系ながらも、広角領域をカバーしつつ高変倍比なズームレンズを実現している。
Figure JPOXMLDOC01-appb-T000056
 
Figure JPOXMLDOC01-appb-T000057
 
Figure JPOXMLDOC01-appb-T000058
 
Figure JPOXMLDOC01-appb-T000059
 
Figure JPOXMLDOC01-appb-T000060
 
 図145には、実施例12に係るズームレンズ12の広角端かつ無限遠合焦時における縦収差を示す。図146には、実施例12に係るズームレンズ12の中間位置かつ無限遠合焦時における縦収差を示す。図147には、実施例12に係るズームレンズ12の望遠端かつ無限遠合焦時における縦収差を示す。図148には、実施例12に係るズームレンズ12の広角端かつ近距離合焦時における縦収差を示す。図149には、実施例12に係るズームレンズ12の中間位置かつ近距離合焦時における縦収差を示す。図150には、実施例12に係るズームレンズ12の望遠端かつ近距離合焦時における縦収差を示す。図151には、実施例12に係るズームレンズ12の広角端かつ無限遠合焦時における横収差を示す。図152には、実施例12に係るズームレンズ12の中間位置かつ無限遠合焦時における横収差を示す。図153には、実施例12に係るズームレンズ12の望遠端かつ無限遠合焦時における横収差を示す。図154には、実施例12に係るズームレンズ12の広角端かつ近距離合焦時における横収差を示す。図155には、実施例12に係るズームレンズ12の中間位置かつ近距離合焦時における横収差を示す。図156には、実施例12に係るズームレンズ12の望遠端かつ近距離合焦時における横収差を示す。
 各収差図から分かるように、実施例12に係るズームレンズ12は、諸収差が良好に補正され、優れた結像性能を有している。
[実施例13]
 [表61]に、図157に示した実施例13に係るズームレンズ13の基本的なレンズデータを示す。[表62]には、実施例13に係るズームレンズ13における全系の焦点距離f、F値、全画角2ω、像高Y、および光学全長Lの値を示す。[表63]には、実施例13に係るズームレンズ13においてズーミングおよびフォーカシングの際に可変となる面間隔のデータを示す。なお、[表62]には、広角端(Wide)、中間位置(Mid)および望遠端(Tele)のそれぞれについて、物体距離(d0)が無限遠の場合における値を示す。[表63]には、広角端(Wide)、中間位置(Mid)および望遠端(Tele)のそれぞれについて、物体距離(d0)が無限遠の場合と近距離の場合とにおける値を示す。[表64]には、実施例13に係るズームレンズ13における、非球面の形状を表す係数の値を示す。[表65]には、実施例13に係るズームレンズ13の各レンズ群の始面と焦点距離(単位:mm)とを示す。
 実施例13に係るズームレンズ13は、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りStと、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6とが、物体側から像面側へ向かって順に配置された構成とされている。
 実施例13に係るズームレンズ13は、ズーミングに際して、隣り合うレンズ群同士の間隔が変化するように移動する。広角端から望遠端へのズーミングに際しては、第3レンズ群G3と、最終レンズ群GRとしての第6レンズ群G6とが同じ軌跡で移動する。物体距離を無限遠から近距離へとフォーカシングする際には、第5レンズ群G5が光軸方向を像面側に移動する。
 第1レンズ群G1は、物体側から像面側に向かって順に、レンズL11と、レンズL12とからなる。レンズL11は、物体側に凸面を向けた負メニスカスレンズである。レンズL12は、物体側に凸面を向けた正メニスカスレンズである。レンズL11とレンズL12は、互いに貼り合わされた接合レンズを構成する。
 第2レンズ群G2は、物体側から像面側に向かって順に、レンズL21~L24からなる。レンズL21は、物体側に凸面を向けた負メニスカスレンズである。レンズL22は、両面が非球面からなる両凹形状の負レンズである。レンズL23は、両凸形状の正レンズである。レンズL24は、両凹形状の負レンズである。
 第3レンズ群G3は、レンズL31からなる。レンズL31は、両面が非球面からなる物体側に凸面を向けた正メニスカスレンズである。
 第4レンズ群G4は、物体側から像面側に向かって順に、レンズL41~L45からなる。レンズL41は、物体側に凸面を向けた負メニスカスレンズである。レンズL42は、物体側に凸面を向けた正メニスカスレンズである。レンズL41とレンズL42は、互いに貼り合わされた接合レンズを構成する。レンズL43は、両凸形状の正レンズである。レンズL44は、両凹形状の負レンズである。レンズL43とレンズL44は、互いに貼り合わされた接合レンズを構成する。レンズL45は、両面が非球面からなる両凸形状の正レンズである。
 第5レンズ群G5は、物体側から像面側に向かって順に、レンズL51と、レンズL52とからなる。レンズL51は、物体側に凹面を向けた正メニスカスレンズである。レンズL52は、両面が非球面からなる両凹形状の負レンズである。
 第6レンズ群G6は、物体側から像面側に向かって順に、レンズL61と、レンズL62とからなる。レンズL61は、両凸形状の正レンズである。レンズL62は、物体側に凹面を向けた負メニスカスレンズである。
 以上の構成により、小型な光学系ながらも、広角領域をカバーしつつ高変倍比なズームレンズを実現している。
Figure JPOXMLDOC01-appb-T000061
 
Figure JPOXMLDOC01-appb-T000062
 
Figure JPOXMLDOC01-appb-T000063
 
Figure JPOXMLDOC01-appb-T000064
 
Figure JPOXMLDOC01-appb-T000065
 
 図158には、実施例13に係るズームレンズ13の広角端かつ無限遠合焦時における縦収差を示す。図159には、実施例13に係るズームレンズ13の中間位置かつ無限遠合焦時における縦収差を示す。図160には、実施例13に係るズームレンズ13の望遠端かつ無限遠合焦時における縦収差を示す。図161には、実施例13に係るズームレンズ13の広角端かつ近距離合焦時における縦収差を示す。図162には、実施例13に係るズームレンズ13の中間位置かつ近距離合焦時における縦収差を示す。図163には、実施例13に係るズームレンズ13の望遠端かつ近距離合焦時における縦収差を示す。図164には、実施例13に係るズームレンズ13の広角端かつ無限遠合焦時における横収差を示す。図165には、実施例13に係るズームレンズ13の中間位置かつ無限遠合焦時における横収差を示す。図166には、実施例13に係るズームレンズ13の望遠端かつ無限遠合焦時における横収差を示す。図167には、実施例13に係るズームレンズの広角端かつ近距離合焦時における横収差を示す。図168には、実施例13に係るズームレンズ13の中間位置かつ近距離合焦時における横収差を示す。図169には、実施例13に係るズームレンズ13の望遠端かつ近距離合焦時における横収差を示す。
 各収差図から分かるように、実施例13に係るズームレンズ13は、諸収差が良好に補正され、優れた結像性能を有している。
[各実施例のその他の数値データ]
 [表66]~[表68]には、上述の各条件式に関する値を、各実施例についてまとめたものを示す。[表66]~[表68]から分かるように、条件式(1)~(6),(8)については、各実施例の値がその数値範囲内となっている。条件式(7)は、実施例5以外の各実施例の値がその数値範囲内となっている。
Figure JPOXMLDOC01-appb-T000066
 
Figure JPOXMLDOC01-appb-T000067
 
Figure JPOXMLDOC01-appb-T000068
 
<5.応用例>
[5.1 第1の応用例]
 本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット、建設機械、農業機械(トラクター)などのいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図171は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システム7000の概略的な構成例を示すブロック図である。車両制御システム7000は、通信ネットワーク7010を介して接続された複数の電子制御ユニットを備える。図171に示した例では、車両制御システム7000は、駆動系制御ユニット7100、ボディ系制御ユニット7200、バッテリ制御ユニット7300、車外情報検出ユニット7400、車内情報検出ユニット7500、及び統合制御ユニット7600を備える。これらの複数の制御ユニットを接続する通信ネットワーク7010は、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)、LAN(Local Area Network)又はFlexRay(登録商標)等の任意の規格に準拠した車載通信ネットワークであってよい。
 各制御ユニットは、各種プログラムにしたがって演算処理を行うマイクロコンピュータと、マイクロコンピュータにより実行されるプログラム又は各種演算に用いられるパラメータ等を記憶する記憶部と、各種制御対象の装置を駆動する駆動回路とを備える。各制御ユニットは、通信ネットワーク7010を介して他の制御ユニットとの間で通信を行うためのネットワークI/Fを備えるとともに、車内外の装置又はセンサ等との間で、有線通信又は無線通信により通信を行うための通信I/Fを備える。図171では、統合制御ユニット7600の機能構成として、マイクロコンピュータ7610、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660、音声画像出力部7670、車載ネットワークI/F7680及び記憶部7690が図示されている。他の制御ユニットも同様に、マイクロコンピュータ、通信I/F及び記憶部等を備える。
 駆動系制御ユニット7100は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット7100は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。駆動系制御ユニット7100は、ABS(Antilock Brake System)又はESC(Electronic Stability Control)等の制御装置としての機能を有してもよい。
 駆動系制御ユニット7100には、車両状態検出部7110が接続される。車両状態検出部7110には、例えば、車体の軸回転運動の角速度を検出するジャイロセンサ、車両の加速度を検出する加速度センサ、あるいは、アクセルペダルの操作量、ブレーキペダルの操作量、ステアリングホイールの操舵角、エンジン回転数又は車輪の回転速度等を検出するためのセンサのうちの少なくとも一つが含まれる。駆動系制御ユニット7100は、車両状態検出部7110から入力される信号を用いて演算処理を行い、内燃機関、駆動用モータ、電動パワーステアリング装置又はブレーキ装置等を制御する。
 ボディ系制御ユニット7200は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット7200は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット7200には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット7200は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 バッテリ制御ユニット7300は、各種プログラムにしたがって駆動用モータの電力供給源である二次電池7310を制御する。例えば、バッテリ制御ユニット7300には、二次電池7310を備えたバッテリ装置から、バッテリ温度、バッテリ出力電圧又はバッテリの残存容量等の情報が入力される。バッテリ制御ユニット7300は、これらの信号を用いて演算処理を行い、二次電池7310の温度調節制御又はバッテリ装置に備えられた冷却装置等の制御を行う。
 車外情報検出ユニット7400は、車両制御システム7000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット7400には、撮像部7410及び車外情報検出部7420のうちの少なくとも一方が接続される。撮像部7410には、ToF(Time Of Flight)カメラ、ステレオカメラ、単眼カメラ、赤外線カメラ及びその他のカメラのうちの少なくとも一つが含まれる。車外情報検出部7420には、例えば、現在の天候又は気象を検出するための環境センサ、あるいは、車両制御システム7000を搭載した車両の周囲の他の車両、障害物又は歩行者等を検出するための周囲情報検出センサのうちの少なくとも一つが含まれる。
 環境センサは、例えば、雨天を検出する雨滴センサ、霧を検出する霧センサ、日照度合いを検出する日照センサ、及び降雪を検出する雪センサのうちの少なくとも一つであってよい。周囲情報検出センサは、超音波センサ、レーダ装置及びLIDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)装置のうちの少なくとも一つであってよい。これらの撮像部7410及び車外情報検出部7420は、それぞれ独立したセンサないし装置として備えられてもよいし、複数のセンサないし装置が統合された装置として備えられてもよい。
 ここで、図172は、撮像部7410及び車外情報検出部7420の設置位置の例を示す。撮像部7910,7912,7914,7916,7918は、例えば、車両7900のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部のうちの少なくとも一つの位置に設けられる。フロントノーズに備えられる撮像部7910及び車室内のフロントガラスの上部に備えられる撮像部7918は、主として車両7900の前方の画像を取得する。サイドミラーに備えられる撮像部7912,7914は、主として車両7900の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部7916は、主として車両7900の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部7918は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図172には、それぞれの撮像部7910,7912,7914,7916の撮影範囲の一例が示されている。撮像範囲aは、フロントノーズに設けられた撮像部7910の撮像範囲を示し、撮像範囲b,cは、それぞれサイドミラーに設けられた撮像部7912,7914の撮像範囲を示し、撮像範囲dは、リアバンパ又はバックドアに設けられた撮像部7916の撮像範囲を示す。例えば、撮像部7910,7912,7914,7916で撮像された画像データが重ね合わせられることにより、車両7900を上方から見た俯瞰画像が得られる。
 車両7900のフロント、リア、サイド、コーナ及び車室内のフロントガラスの上部に設けられる車外情報検出部7920,7922,7924,7926,7928,7930は、例えば超音波センサ又はレーダ装置であってよい。車両7900のフロントノーズ、リアバンパ、バックドア及び車室内のフロントガラスの上部に設けられる車外情報検出部7920,7926,7930は、例えばLIDAR装置であってよい。これらの車外情報検出部7920~7930は、主として先行車両、歩行者又は障害物等の検出に用いられる。
 図171に戻って説明を続ける。車外情報検出ユニット7400は、撮像部7410に車外の画像を撮像させるとともに、撮像された画像データを受信する。また、車外情報検出ユニット7400は、接続されている車外情報検出部7420から検出情報を受信する。車外情報検出部7420が超音波センサ、レーダ装置又はLIDAR装置である場合には、車外情報検出ユニット7400は、超音波又は電磁波等を発信させるとともに、受信された反射波の情報を受信する。車外情報検出ユニット7400は、受信した情報に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。車外情報検出ユニット7400は、受信した情報に基づいて、降雨、霧又は路面状況等を認識する環境認識処理を行ってもよい。車外情報検出ユニット7400は、受信した情報に基づいて、車外の物体までの距離を算出してもよい。
 また、車外情報検出ユニット7400は、受信した画像データに基づいて、人、車、障害物、標識又は路面上の文字等を認識する画像認識処理又は距離検出処理を行ってもよい。車外情報検出ユニット7400は、受信した画像データに対して歪補正又は位置合わせ等の処理を行うとともに、異なる撮像部7410により撮像された画像データを合成して、俯瞰画像又はパノラマ画像を生成してもよい。車外情報検出ユニット7400は、異なる撮像部7410により撮像された画像データを用いて、視点変換処理を行ってもよい。
 車内情報検出ユニット7500は、車内の情報を検出する。車内情報検出ユニット7500には、例えば、運転者の状態を検出する運転者状態検出部7510が接続される。運転者状態検出部7510は、運転者を撮像するカメラ、運転者の生体情報を検出する生体センサ又は車室内の音声を集音するマイク等を含んでもよい。生体センサは、例えば、座面又はステアリングホイール等に設けられ、座席に座った搭乗者又はステアリングホイールを握る運転者の生体情報を検出する。車内情報検出ユニット7500は、運転者状態検出部7510から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。車内情報検出ユニット7500は、集音された音声信号に対してノイズキャンセリング処理等の処理を行ってもよい。
 統合制御ユニット7600は、各種プログラムにしたがって車両制御システム7000内の動作全般を制御する。統合制御ユニット7600には、入力部7800が接続されている。入力部7800は、例えば、タッチパネル、ボタン、マイクロフォン、スイッチ又はレバー等、搭乗者によって入力操作され得る装置によって実現される。統合制御ユニット7600には、マイクロフォンにより入力される音声を音声認識することにより得たデータが入力されてもよい。入力部7800は、例えば、赤外線又はその他の電波を利用したリモートコントロール装置であってもよいし、車両制御システム7000の操作に対応した携帯電話又はPDA(Personal Digital Assistant)等の外部接続機器であってもよい。入力部7800は、例えばカメラであってもよく、その場合搭乗者はジェスチャにより情報を入力することができる。あるいは、搭乗者が装着したウェアラブル装置の動きを検出することで得られたデータが入力されてもよい。さらに、入力部7800は、例えば、上記の入力部7800を用いて搭乗者等により入力された情報に基づいて入力信号を生成し、統合制御ユニット7600に出力する入力制御回路などを含んでもよい。搭乗者等は、この入力部7800を操作することにより、車両制御システム7000に対して各種のデータを入力したり処理動作を指示したりする。
 記憶部7690は、マイクロコンピュータにより実行される各種プログラムを記憶するROM(Read Only Memory)、及び各種パラメータ、演算結果又はセンサ値等を記憶するRAM(Random Access Memory)を含んでいてもよい。また、記憶部7690は、HDD(Hard Disc Drive)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス又は光磁気記憶デバイス等によって実現してもよい。
 汎用通信I/F7620は、外部環境7750に存在する様々な機器との間の通信を仲介する汎用的な通信I/Fである。汎用通信I/F7620は、GSM(登録商標)(Global System of Mobile communications)、WiMAX(登録商標)、LTE(登録商標)(Long Term Evolution)若しくはLTE-A(LTE-Advanced)などのセルラー通信プロトコル、又は無線LAN(Wi-Fi(登録商標)ともいう)、Bluetooth(登録商標)などのその他の無線通信プロトコルを実装してよい。汎用通信I/F7620は、例えば、基地局又はアクセスポイントを介して、外部ネットワーク(例えば、インターネット、クラウドネットワーク又は事業者固有のネットワーク)上に存在する機器(例えば、アプリケーションサーバ又は制御サーバ)へ接続してもよい。また、汎用通信I/F7620は、例えばP2P(Peer To Peer)技術を用いて、車両の近傍に存在する端末(例えば、運転者、歩行者若しくは店舗の端末、又はMTC(Machine Type Communication)端末)と接続してもよい。
 専用通信I/F7630は、車両における使用を目的として策定された通信プロトコルをサポートする通信I/Fである。専用通信I/F7630は、例えば、下位レイヤのIEEE802.11pと上位レイヤのIEEE1609との組合せであるWAVE(Wireless Access in Vehicle Environment)、DSRC(Dedicated Short Range Communications)、又はセルラー通信プロトコルといった標準プロトコルを実装してよい。専用通信I/F7630は、典型的には、車車間(Vehicle to Vehicle)通信、路車間(Vehicle to Infrastructure)通信、車両と家との間(Vehicle to Home)の通信及び歩車間(Vehicle to Pedestrian)通信のうちの1つ以上を含む概念であるV2X通信を遂行する。
 測位部7640は、例えば、GNSS(Global Navigation Satellite System)衛星からのGNSS信号(例えば、GPS(Global Positioning System)衛星からのGPS信号)を受信して測位を実行し、車両の緯度、経度及び高度を含む位置情報を生成する。なお、測位部7640は、無線アクセスポイントとの信号の交換により現在位置を特定してもよく、又は測位機能を有する携帯電話、PHS若しくはスマートフォンといった端末から位置情報を取得してもよい。
 ビーコン受信部7650は、例えば、道路上に設置された無線局等から発信される電波あるいは電磁波を受信し、現在位置、渋滞、通行止め又は所要時間等の情報を取得する。なお、ビーコン受信部7650の機能は、上述した専用通信I/F7630に含まれてもよい。
 車内機器I/F7660は、マイクロコンピュータ7610と車内に存在する様々な車内機器7760との間の接続を仲介する通信インタフェースである。車内機器I/F7660は、無線LAN、Bluetooth(登録商標)、NFC(Near Field Communication)又はWUSB(Wireless USB)といった無線通信プロトコルを用いて無線接続を確立してもよい。また、車内機器I/F7660は、図示しない接続端子(及び、必要であればケーブル)を介して、USB(Universal Serial Bus)、HDMI(登録商標)(High-Definition Multimedia Interface)、又はMHL(Mobile High-definition Link)等の有線接続を確立してもよい。車内機器7760は、例えば、搭乗者が有するモバイル機器若しくはウェアラブル機器、又は車両に搬入され若しくは取り付けられる情報機器のうちの少なくとも1つを含んでいてもよい。また、車内機器7760は、任意の目的地までの経路探索を行うナビゲーション装置を含んでいてもよい。車内機器I/F7660は、これらの車内機器7760との間で、制御信号又はデータ信号を交換する。
 車載ネットワークI/F7680は、マイクロコンピュータ7610と通信ネットワーク7010との間の通信を仲介するインタフェースである。車載ネットワークI/F7680は、通信ネットワーク7010によりサポートされる所定のプロトコルに則して、信号等を送受信する。
 統合制御ユニット7600のマイクロコンピュータ7610は、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660及び車載ネットワークI/F7680のうちの少なくとも一つを介して取得される情報に基づき、各種プログラムにしたがって、車両制御システム7000を制御する。例えば、マイクロコンピュータ7610は、取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット7100に対して制御指令を出力してもよい。例えば、マイクロコンピュータ7610は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行ってもよい。また、マイクロコンピュータ7610は、取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行ってもよい。
 マイクロコンピュータ7610は、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660及び車載ネットワークI/F7680のうちの少なくとも一つを介して取得される情報に基づき、車両と周辺の構造物や人物等の物体との間の3次元距離情報を生成し、車両の現在位置の周辺情報を含むローカル地図情報を作成してもよい。また、マイクロコンピュータ7610は、取得される情報に基づき、車両の衝突、歩行者等の近接又は通行止めの道路への進入等の危険を予測し、警告用信号を生成してもよい。警告用信号は、例えば、警告音を発生させたり、警告ランプを点灯させたりするための信号であってよい。
 音声画像出力部7670は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図171の例では、出力装置として、オーディオスピーカ7710、表示部7720及びインストルメントパネル7730が例示されている。表示部7720は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。表示部7720は、AR(Augmented Reality)表示機能を有していてもよい。出力装置は、これらの装置以外の、ヘッドホン、搭乗者が装着する眼鏡型ディスプレイ等のウェアラブルデバイス、プロジェクタ又はランプ等の他の装置であってもよい。出力装置が表示装置の場合、表示装置は、マイクロコンピュータ7610が行った各種処理により得られた結果又は他の制御ユニットから受信された情報を、テキスト、イメージ、表、グラフ等、様々な形式で視覚的に表示する。また、出力装置が音声出力装置の場合、音声出力装置は、再生された音声データ又は音響データ等からなるオーディオ信号をアナログ信号に変換して聴覚的に出力する。
 なお、図171に示した例において、通信ネットワーク7010を介して接続された少なくとも二つの制御ユニットが一つの制御ユニットとして一体化されてもよい。あるいは、個々の制御ユニットが、複数の制御ユニットにより構成されてもよい。さらに、車両制御システム7000が、図示されていない別の制御ユニットを備えてもよい。また、上記の説明において、いずれかの制御ユニットが担う機能の一部又は全部を、他の制御ユニットに持たせてもよい。つまり、通信ネットワーク7010を介して情報の送受信がされるようになっていれば、所定の演算処理が、いずれかの制御ユニットで行われるようになってもよい。同様に、いずれかの制御ユニットに接続されているセンサ又は装置が、他の制御ユニットに接続されるとともに、複数の制御ユニットが、通信ネットワーク7010を介して相互に検出情報を送受信してもよい。
 以上説明した車両制御システム7000において、本開示のズームレンズ、および撮像装置は、撮像部7410、および撮像部7910,7912,7914,7916,7918に適用することができる。
[5.2 第2の応用例]
 本開示に係る技術は、医療イメージングシステムに適用することができる。医療イメージングシステムは、イメージング技術を用いた医療システムであり、例えば、内視鏡システムや顕微鏡システムである。
 [内視鏡システム]
 内視鏡システムの例を図173、図174を用いて説明する。図173は、本開示に係る技術が適用可能な内視鏡システム5000の概略的な構成の一例を示す図である。図174は、内視鏡5001およびCCU(Camera Control Unit)5039の構成の一例を示す図である。図173では、手術参加者である術者(例えば、医師)5067が、内視鏡システム5000を用いて、患者ベッド5069上の患者5071に手術を行っている様子が図示されている。図173に示すように、内視鏡システム5000は、医療イメージング装置である内視鏡5001と、CCU5039と、光源装置5043と、記録装置5053と、出力装置5055と、内視鏡5001を支持する支持装置5027と、から構成される。
 内視鏡手術では、トロッカ5025と呼ばれる挿入補助具が患者5071に穿刺される。そして、トロッカ5025を介して、内視鏡5001に接続されたスコープ5003や術具5021が患者5071の体内に挿入される。術具5021は例えば、電気メス等のエネルギーデバイスや、鉗子などである。
 内視鏡5001によって撮影された患者5071の体内を映した医療画像である手術画像が、表示装置5041に表示される。術者5067は、表示装置5041に表示された手術画像を見ながら術具5021を用いて手術対象に処置を行う。なお、医療画像は手術画像に限らず、診断中に撮像された診断画像であってもよい。
 [内視鏡]
 内視鏡5001は、患者5071の体内を撮像する撮像部であり、例えば、図174に示すように、入射した光を集光する集光光学系50051と、撮像部の焦点距離を変更して光学ズームを可能とするズーム光学系50052と、撮像部の焦点距離を変更してフォーカス調整を可能とするフォーカス光学系50053と、受光素子50054と、を含むカメラ5005である。内視鏡5001は、接続されたスコープ5003を介して光を受光素子50054に集光することで画素信号を生成し、CCU5039に伝送系を通じて画素信号を出力する。なお、スコープ5003は、対物レンズを先端に有し、接続された光源装置5043からの光を患者5071の体内に導光する挿入部である。スコープ5003は、例えば硬性鏡では硬性スコープ、軟性鏡では軟性スコープである。スコープ5003は直視鏡や斜視鏡であってもよい。また、画素信号は画素から出力された信号に基づいた信号であればよく、例えば、RAW信号や画像信号である。また、内視鏡5001とCCU5039とを接続する伝送系にメモリを搭載し、メモリに内視鏡5001やCCU5039に関するパラメータを記憶する構成にしてもよい。メモリは、例えば、伝送系の接続部分やケーブル上に配置されてもよい。例えば、内視鏡5001の出荷時のパラメータや通電時に変化したパラメータを伝送系のメモリに記憶し、メモリから読みだしたパラメータに基づいて内視鏡の動作を変更してもよい。また、内視鏡と伝送系をセットにして内視鏡と称してもよい。受光素子50054は、受光した光を画素信号に変換するセンサであり、例えばCMOS(Complementary Metal Oxide Semiconductor)タイプの撮像素子である。受光素子50054は、Bayer配列を有するカラー撮影可能な撮像素子であることが好ましい。また、受光素子50054は、例えば4K(水平画素数3840×垂直画素数2160)、8K(水平画素数7680×垂直画素数4320)または正方形4K(水平画素数3840以上×垂直画素数3840以上)の解像度に対応した画素数を有する撮像素子であることが好ましい。受光素子50054は、1枚のセンサチップであってもよいし、複数のセンサチップでもよい。例えば、入射光を所定の波長帯域ごとに分離するプリズムを設けて、各波長帯域を異なる受光素子で撮像する構成であってもよい。また、立体視のために受光素子を複数設けてもよい。また、受光素子50054は、チップ構造の中に画像処理用の演算処理回路を含んでいるセンサであってもよいし、ToF(Time of Flight)用センサであってもよい。なお、伝送系は例えば光ファイバケーブルや無線伝送である。無線伝送は、内視鏡5001で生成された画素信号が伝送可能であればよく、例えば、内視鏡5001とCCU5039が無線接続されてもよいし、手術室内の基地局を経由して内視鏡5001とCCU5039が接続されてもよい。このとき、内視鏡5001は画素信号だけでなく、画素信号に関連する情報(例えば、画素信号の処理優先度や同期信号等)を同時に送信してもよい。なお、内視鏡はスコープとカメラを一体化してもよく、スコープの先端部に受光素子を設ける構成としてもよい。
 [CCU(Camera Control Unit)]
 CCU5039は、接続された内視鏡5001や光源装置5043を統括的に制御する制御装置であり、例えば、図174に示すように、FPGA50391、CPU50392、RAM50393、ROM50394、GPU50395、I/F50396を有する情報処理装置である。また、CCU5039は、接続された表示装置5041や記録装置5053、出力装置5055を統括的に制御してもよい。例えば、CCU5039は、光源装置5043の照射タイミングや照射強度、照射光源の種類を制御する。また、CCU5039は、内視鏡5001から出力された画素信号に対して現像処理(例えばデモザイク処理)や補正処理といった画像処理を行い、表示装置5041等の外部装置に処理後の画素信号(例えば画像)を出力する。また、CCU5039は、内視鏡5001に対して制御信号を送信し、内視鏡5001の駆動を制御する。制御信号は、例えば、撮像部の倍率や焦点距離などの撮像条件に関する情報である。なお、CCU5039は画像のダウンコンバート機能を有し、表示装置5041に高解像度(例えば4K)の画像を、記録装置5053に低解像度(例えばHD)の画像を同時に出力可能な構成としてもよい。
 また、CCU5039は、信号を所定の通信プロトコル(例えば、IP(Internet Protocol))に変換するIPコンバータを経由して外部機器(例えば、記録装置や表示装置、出力装置、支持装置)と接続されてもよい。IPコンバータと外部機器との接続は、有線ネットワークで構成されてもよいし、一部または全てのネットワークが無線ネットワークで構築されてもよい。例えば、CCU5039側のIPコンバータは無線通信機能を有し、受信した映像を第5世代移動通信システム(5G)、第6世代移動通信システム(6G)等の無線通信ネットワークを介してIPスイッチャーや出力側IPコンバータに送信してもよい。
 [光源装置]
 光源装置5043は、所定の波長帯域の光を照射可能な装置であり、例えば、複数の光源と、複数の光源の光を導光する光源光学系と、を備える。光源は、例えばキセノンランプ、LED光源やLD光源である。光源装置5043は、例えば三原色R、G、Bのそれぞれに対応するLED光源を有し、各光源の出力強度や出力タイミングを制御することで白色光を出射する。また、光源装置5043は、通常光観察に用いられる通常光を照射する光源とは別に、特殊光観察に用いられる特殊光を照射可能な光源を有していてもよい。特殊光は、通常光観察用の光である通常光とは異なる所定の波長帯域の光であり、例えば、近赤外光(波長が760nm以上の光)や赤外光、青色光、紫外光である。通常光は、例えば白色光や緑色光である。特殊光観察の一種である狭帯域光観察では、青色光と緑色光を交互に照射することにより、体組織における光の吸収の波長依存性を利用して、粘膜表層の血管等の所定の組織を高コントラストで撮影することができる。また、特殊光観察の一種である蛍光観察では、体組織に注入された薬剤を励起する励起光を照射し、体組織または標識である薬剤が発する蛍光を受光して蛍光画像を得ることで、通常光では術者が視認しづらい体組織等を、術者が視認しやすくすることができる。例えば、赤外光を用いる蛍光観察では、体組織に注入されたインドシアニングリーン(ICG)等の薬剤に励起波長帯域を有する赤外光を照射し、薬剤の蛍光を受光することで、体組織の構造や患部を視認しやすくすることができる。また、蛍光観察では、青色波長帯域の特殊光で励起され、赤色波長帯域の蛍光を発する薬剤(例えば5-ALA)を用いてもよい。なお、光源装置5043は、CCU5039の制御により照射光の種類を設定される。CCU5039は、光源装置5043と内視鏡5001を制御することにより、通常光観察と特殊光観察が交互に行われるモードを有してもよい。このとき、通常光観察で得られた画素信号に特殊光観察で得られた画素信号に基づく情報を重畳されることが好ましい。また、特殊光観察は、赤外光を照射して臓器表面より奥を見る赤外光観察や、ハイパースペクトル分光を活用したマルチスペクトル観察であってもよい。さらに、光線力学療法を組み合わせてもよい。
 [記録装置]
 記録装置5053は、CCU5039から取得した画素信号(例えば画像)を記録する装置であり、例えばレコーダーである。記録装置5053は、CCU5039から取得した画像をHDDやSDD、光ディスクに記録する。記録装置5053は、病院内のネットワークに接続され、手術室外の機器からアクセス可能にしてもよい。また、記録装置5053は画像のダウンコンバート機能またはアップコンバート機能を有していてもよい。
 [表示装置]
 表示装置5041は、画像を表示可能な装置であり、例えば表示モニタである。表示装置5041は、CCU5039から取得した画素信号に基づく表示画像を表示する。なお、表示装置5041はカメラやマイクを備えることで、視線認識や音声認識、ジェスチャによる指示入力を可能にする入力デバイスとしても機能してよい。
 [出力装置]
 出力装置5055は、CCU5039から取得した情報を出力する装置であり、例えばプリンタである。出力装置5055は、例えば、CCU5039から取得した画素信号に基づく印刷画像を紙に印刷する。
 [支持装置]
 支持装置5027は、アーム制御装置5045を有するベース部5029と、ベース部5029から延伸するアーム部5031と、アーム部5031の先端に取り付けられた保持部5032とを備える多関節アームである。アーム制御装置5045は、CPU等のプロセッサによって構成され、所定のプログラムに従って動作することにより、アーム部5031の駆動を制御する。支持装置5027は、アーム制御装置5045によってアーム部5031を構成する各リンク5035の長さや各関節5033の回転角やトルク等のパラメータを制御することで、例えば保持部5032が保持する内視鏡5001の位置や姿勢を制御する。これにより、内視鏡5001を所望の位置または姿勢に変更し、スコープ5003を患者5071に挿入でき、また、体内での観察領域を変更できる。支持装置5027は、術中に内視鏡5001を支持する内視鏡支持アームとして機能する。これにより、支持装置5027は、内視鏡5001を持つ助手であるスコピストの代わりを担うことができる。また、支持装置5027は、後述する顕微鏡装置5301を支持する装置であってもよく、医療用支持アームと呼ぶこともできる。なお、支持装置5027の制御は、アーム制御装置5045による自律制御方式であってもよいし、ユーザの入力に基づいてアーム制御装置5045が制御する制御方式であってもよい。例えば、制御方式は、ユーザの手元の術者コンソールであるマスター装置(プライマリ装置)の動きに基づいて、患者カートであるスレイブ装置(レプリカ装置)としての支持装置5027が制御されるマスタ・スレイブ方式でもよい。また、支持装置5027の制御は、手術室の外から遠隔制御が可能であってもよい。
 以上、本開示に係る技術が適用され得る内視鏡システム5000の一例について説明した。例えば、本開示に係る技術は、顕微鏡システムに適用されてもよい。
 [顕微鏡システム]
 図175は、本開示に係る技術が適用され得る顕微鏡手術システムの概略的な構成の一例を示す図である。なお、以下の説明において、内視鏡システム5000と同様の構成については、同一の符号を付し、その重複する説明を省略する。
 図175では、術者5067が、顕微鏡手術システム5300を用いて、患者ベッド5069上の患者5071に対して手術を行っている様子を概略的に示している。なお、図175では、簡単のため、顕微鏡手術システム5300の構成のうちカート5037の図示を省略するとともに、内視鏡5001に代わる顕微鏡装置5301を簡略化して図示している。ただし、本説明における顕微鏡装置5301は、リンク5035の先端に設けられた顕微鏡部5303を指していてもよいし、顕微鏡部5303及び支持装置5027を含む構成全体を指していてもよい。
 図175に示すように、手術時には、顕微鏡手術システム5300を用いて、顕微鏡装置5301によって撮影された術部の画像が、手術室に設置される表示装置5041に拡大表示される。表示装置5041は、術者5067と対向する位置に設置されており、術者5067は、表示装置5041に映し出された映像によって術部の様子を観察しながら、例えば患部の切除等、当該術部に対して各種の処置を行う。顕微鏡手術システムは、例えば眼科手術や脳外科手術に使用される。
 以上、本開示に係る技術が適用され得る内視鏡システム5000及び顕微鏡手術システム5300の例についてそれぞれ説明した。なお、本開示に係る技術が適用され得るシステムはかかる例に限定されない。例えば、支持装置5027は、その先端に内視鏡5001又は顕微鏡部5303に代えて他の観察装置や他の術具を支持し得る。当該他の観察装置としては、例えば、鉗子、攝子、気腹のための気腹チューブ、又は焼灼によって組織の切開や血管の封止を行うエネルギー処置具等が適用され得る。これらの観察装置や術具を支持装置によって支持することにより、医療スタッフが人手で支持する場合に比べて、より安定的に位置を固定することが可能となるとともに、医療スタッフの負担を軽減することが可能となる。本開示に係る技術は、このような顕微鏡部以外の構成を支持する支持装置に適用されてもよい。
 本開示に係る技術は、以上説明した構成のうち、カメラ5005に好適に適用され得る。特に、本開示のズームレンズは、カメラ5005における、集光光学系50051、ズーム光学系50052、およびフォーカス光学系50053のうち、少なくとも一部の光学系に好適に適用され得る。
<6.その他の実施の形態>
 本開示による技術は、上記実施の形態および実施例の説明に限定されず種々の変形実施が可能である。
 例えば、上記一実施の形態および実施例において示した各部の形状および数値は、いずれも本技術を実施するための具体化のほんの一例に過ぎず、これらによって本技術の技術的範囲が限定的に解釈されることがあってはならないものである。
 また、例えば、上記一実施の形態および実施例において示したレンズ枚数とは異なる枚数のレンズを備えた構成であってもよい。さらに、実質的に屈折力を有さないレンズをさらに備えた構成であってもよい。
 例えば、本技術は以下のような構成を取ることもできる。
 以下の構成の本技術によれば、コンパクトで高性能かつ高変倍比を実現することが可能となるように、各レンズ群の構成の最適化が図られている。これにより、コンパクトで高性能かつ高変倍比のズームレンズ、およびそのようなズームレンズを備えた撮像装置を提供することが可能となる。
[1]
 物体側から像面側に向かって順に、
 2枚以下のレンズで構成され、正の屈折力を有する第1レンズ群と、
 負の屈折力を有する第2レンズ群と、
 正の屈折力を有する第3レンズ群と、
 正の屈折力を有する第4レンズ群と、
 負の屈折力を有する第5レンズ群と
 を含む複数のレンズ群を備え、
 広角端から望遠端へのズーミングに際し、少なくとも前記第1レンズ群、前記第3レンズ群、および前記第4レンズ群が物体側に移動するように構成され、
 以下の条件式を満足する
 ズームレンズ。
 f1/f2<-6.00 ……(1)
 1.75<f3/f4<4.20 ……(2)
ただし、
 f1:前記第1レンズ群の焦点距離
 f2:前記第2レンズ群の焦点距離
 f3:前記第3レンズ群の焦点距離
 f4:前記第4レンズ群の焦点距離
とする。
[2]
 さらに、以下の条件式を満足する
 上記[1]に記載のズームレンズ。
 5.0<f1/fw<15.0 ……(3)
ただし、
 f1:前記第1レンズ群の焦点距離
 fw:広角端における全系の焦点距離
とする。
[3]
 さらに、以下の条件式を満足する
 上記[1]または[2]に記載のズームレンズ。
 0.10<f4/ft<0.60 ……(4)
ただし、
 f4:前記第4レンズ群の焦点距離
 ft:望遠端における全系の焦点距離
とする。
[4]
 物体距離が無限遠から近距離へと変化する際に、前記第5レンズ群が光軸方向に移動することによってフォーカシングを行うように構成されている
 上記[1]ないし[3]のいずれか1つに記載のズームレンズ。
[5]
 前記第2レンズ群と前記第3レンズ群との間に開口絞りを有する
 上記[1]ないし[4]のいずれか1つに記載のズームレンズ。
[6]
 広角端から望遠端へのズーミングに際し、前記第3レンズ群と前記複数のレンズ群における最終レンズ群とが同じ軌跡で移動する
 上記[1]ないし[5]のいずれか1つに記載のズームレンズ。
[7]
 前記第4レンズ群は、非球面を有し、かつ以下の条件式を満足する正レンズを有する
 上記[1]ないし[6]のいずれか1つに記載のズームレンズ。
 60.0<νdPL1<100.0 ……(5)
 0.005<ΔPgFPL1<0.150 ……(6)
ただし、
 νdPL1:前記正レンズのアッベ数
 ΔPgFPL1:前記正レンズの異常分散性
 ΔPgFPL1=PgFPL1-0.64833+0.00180×νdPL1
 PgFPL1:前記正レンズのg線とF線との間の部分分散比
とする。
[8]
 前記第1レンズ群は、最も物体側に、以下の条件式を満足する負レンズを有する
 上記[1]ないし[7]のいずれか1つに記載のズームレンズ。
 10.0<νdLN1<22.5 ……(7)
ただし、
 νdL1:前記負レンズのアッベ数
とする。
[9]
 さらに、以下の条件式を満足する
 上記[1]ないし[8]のいずれか1つに記載のズームレンズ。
 0.3<BFw/fw<2.5 ……(8)
ただし、
 BFw:広角端におけるバックフォーカス(広角端における、最も像面側のレンズの像面側の面から像面までの距離)
 fw:広角端における全系の焦点距離
とする。
[10]
 ズームレンズと、前記ズームレンズによって形成された光学像に応じた撮像信号を出力する撮像素子とを含み、
 前記ズームレンズは、
 物体側から像面側に向かって順に、
 2枚以下のレンズで構成され、正の屈折力を有する第1レンズ群と、
 負の屈折力を有する第2レンズ群と、
 正の屈折力を有する第3レンズ群と、
 正の屈折力を有する第4レンズ群と、
 負の屈折力を有する第5レンズ群と
 を含む複数のレンズ群を備え、
 広角端から望遠端へのズーミングに際し、少なくとも前記第1レンズ群、前記第3レンズ群、および前記第4レンズ群が物体側に移動するように構成され、
 以下の条件式を満足する
 撮像装置。
 f1/f2<-6.00 ……(1)
 1.75<f3/f4<4.20 ……(2)
ただし、
 f1:前記第1レンズ群の焦点距離
 f2:前記第2レンズ群の焦点距離
 f3:前記第3レンズ群の焦点距離
 f4:前記第4レンズ群の焦点距離
とする。
[11]
 実質的に屈折力を有さないレンズをさらに備える
 上記[1]ないし[9]のいずれか1つに記載のズームレンズ。
[12]
 前記ズームレンズは、実質的に屈折力を有さないレンズをさらに備える
 上記[10]に記載の撮像装置。
 本出願は、日本国特許庁において2022年2月9日に出願された日本特許出願番号第2022-19115号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (10)

  1.  物体側から像面側に向かって順に、
     2枚以下のレンズで構成され、正の屈折力を有する第1レンズ群と、
     負の屈折力を有する第2レンズ群と、
     正の屈折力を有する第3レンズ群と、
     正の屈折力を有する第4レンズ群と、
     負の屈折力を有する第5レンズ群と
     を含む複数のレンズ群を備え、
     広角端から望遠端へのズーミングに際し、少なくとも前記第1レンズ群、前記第3レンズ群、および前記第4レンズ群が物体側に移動するように構成され、
     以下の条件式を満足する
     ズームレンズ。
     f1/f2<-6.00 ……(1)
     1.75<f3/f4<4.20 ……(2)
    ただし、
     f1:前記第1レンズ群の焦点距離
     f2:前記第2レンズ群の焦点距離
     f3:前記第3レンズ群の焦点距離
     f4:前記第4レンズ群の焦点距離
    とする。
  2.  さらに、以下の条件式を満足する
     請求項1に記載のズームレンズ。
     5.0<f1/fw<15.0 ……(3)
    ただし、
     f1:前記第1レンズ群の焦点距離
     fw:広角端における全系の焦点距離
    とする。
  3.  さらに、以下の条件式を満足する
     請求項1に記載のズームレンズ。
     0.10<f4/ft<0.60 ……(4)
    ただし、
     f4:前記第4レンズ群の焦点距離
     ft:望遠端における全系の焦点距離
    とする。
  4.  物体距離が無限遠から近距離へと変化する際に、前記第5レンズ群が光軸方向に移動することによってフォーカシングを行うように構成されている
     請求項1に記載のズームレンズ。
  5.  前記第2レンズ群と前記第3レンズ群との間に開口絞りを有する
     請求項1に記載のズームレンズ。
  6.  広角端から望遠端へのズーミングに際し、前記第3レンズ群と前記複数のレンズ群における最終レンズ群とが同じ軌跡で移動する
     請求項1に記載のズームレンズ。
  7.  前記第4レンズ群は、非球面を有し、かつ以下の条件式を満足する正レンズを有する
     請求項1に記載のズームレンズ。
     60.0<νdPL1<100.0 ……(5)
     0.005<ΔPgFPL1<0.150 ……(6)
    ただし、
     νdPL1:前記正レンズのアッベ数
     ΔPgFPL1:前記正レンズの異常分散性
     ΔPgFPL1=PgFPL1-0.64833+0.00180×νdPL1
     PgFPL1:前記正レンズのg線とF線との間の部分分散比
    とする。
  8.  前記第1レンズ群は、最も物体側に、以下の条件式を満足する負レンズを有する
     請求項1に記載のズームレンズ。
     10.0<νdLN1<22.5 ……(7)
    ただし、
     νdL1:前記負レンズのアッベ数
    とする。
  9.  さらに、以下の条件式を満足する
     請求項1に記載のズームレンズ。
     0.3<BFw/fw<2.5 ……(8)
    ただし、
     BFw:広角端におけるバックフォーカス(広角端における、最も像面側のレンズの像面側の面から像面までの距離)
     fw:広角端における全系の焦点距離
    とする。
  10.  ズームレンズと、前記ズームレンズによって形成された光学像に応じた撮像信号を出力する撮像素子とを含み、
     前記ズームレンズは、
     物体側から像面側に向かって順に、
     2枚以下のレンズで構成され、正の屈折力を有する第1レンズ群と、
     負の屈折力を有する第2レンズ群と、
     正の屈折力を有する第3レンズ群と、
     正の屈折力を有する第4レンズ群と、
     負の屈折力を有する第5レンズ群と
     を含む複数のレンズ群を備え、
     広角端から望遠端へのズーミングに際し、少なくとも前記第1レンズ群、前記第3レンズ群、および前記第4レンズ群が物体側に移動するように構成され、
     以下の条件式を満足する
     撮像装置。
     f1/f2<-6.00 ……(1)
     1.75<f3/f4<4.20 ……(2)
    ただし、
     f1:前記第1レンズ群の焦点距離
     f2:前記第2レンズ群の焦点距離
     f3:前記第3レンズ群の焦点距離
     f4:前記第4レンズ群の焦点距離
    とする。
PCT/JP2022/046159 2022-02-09 2022-12-15 ズームレンズ、および撮像装置 WO2023153076A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022019115 2022-02-09
JP2022-019115 2022-02-09

Publications (1)

Publication Number Publication Date
WO2023153076A1 true WO2023153076A1 (ja) 2023-08-17

Family

ID=87564197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046159 WO2023153076A1 (ja) 2022-02-09 2022-12-15 ズームレンズ、および撮像装置

Country Status (1)

Country Link
WO (1) WO2023153076A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333770A (ja) * 2003-05-06 2004-11-25 Canon Inc ズームレンズ及びそれを有する光学機器
WO2015146067A1 (ja) * 2014-03-28 2015-10-01 パナソニックIpマネジメント株式会社 ズームレンズ系、交換レンズ装置、及びカメラシステム
JP2017102323A (ja) * 2015-12-03 2017-06-08 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2017134104A (ja) * 2016-01-25 2017-08-03 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2020190679A (ja) * 2019-05-23 2020-11-26 コニカミノルタ株式会社 ズームレンズ、撮像光学装置およびデジタル機器
JP2020190680A (ja) * 2019-05-23 2020-11-26 コニカミノルタ株式会社 ズームレンズ、撮像光学装置およびデジタル機器
WO2021039814A1 (ja) * 2019-08-30 2021-03-04 株式会社ニコン 光学系、光学機器、および光学系の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333770A (ja) * 2003-05-06 2004-11-25 Canon Inc ズームレンズ及びそれを有する光学機器
WO2015146067A1 (ja) * 2014-03-28 2015-10-01 パナソニックIpマネジメント株式会社 ズームレンズ系、交換レンズ装置、及びカメラシステム
JP2017102323A (ja) * 2015-12-03 2017-06-08 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2017134104A (ja) * 2016-01-25 2017-08-03 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2020190679A (ja) * 2019-05-23 2020-11-26 コニカミノルタ株式会社 ズームレンズ、撮像光学装置およびデジタル機器
JP2020190680A (ja) * 2019-05-23 2020-11-26 コニカミノルタ株式会社 ズームレンズ、撮像光学装置およびデジタル機器
WO2021039814A1 (ja) * 2019-08-30 2021-03-04 株式会社ニコン 光学系、光学機器、および光学系の製造方法

Similar Documents

Publication Publication Date Title
JP7364022B2 (ja) 撮像レンズおよび撮像装置
WO2020090368A1 (ja) 撮像レンズおよび撮像装置
WO2020202965A1 (ja) 撮像レンズおよび撮像装置
CN113474707A (zh) 可变焦距透镜系统和成像设备
WO2022059463A1 (ja) 広角レンズおよび撮像装置
JP7428179B2 (ja) 光学系および撮像装置
WO2021117497A1 (ja) 撮像レンズおよび撮像装置
JP7192852B2 (ja) ズームレンズおよび撮像装置
WO2022009760A1 (ja) 魚眼レンズおよび撮像装置
WO2021200257A1 (ja) ズームレンズおよび撮像装置
JP2022140076A (ja) 撮像レンズおよび撮像装置
WO2023153076A1 (ja) ズームレンズ、および撮像装置
WO2023181666A1 (ja) ズームレンズ、および撮像装置
WO2024135126A1 (ja) ズームレンズ、および撮像装置
WO2023181667A1 (ja) ズームレンズ、および撮像装置
JP2023044106A (ja) ズームレンズ、および撮像装置
WO2021200207A1 (ja) ズームレンズおよび撮像装置
WO2021200206A1 (ja) ズームレンズおよび撮像装置
JP2023039817A (ja) ズームレンズ、および撮像装置
WO2021200253A1 (ja) ズームレンズおよび撮像装置
WO2020246427A1 (ja) 光学系および撮像装置
JP2024021243A (ja) ズームレンズ、および撮像装置
JP2023144567A (ja) 撮像レンズ、および撮像装置
WO2021085154A1 (ja) 撮像レンズおよび撮像装置
JP2023172781A (ja) 結像光学系、および撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926090

Country of ref document: EP

Kind code of ref document: A1