WO2023152808A1 - ベントシステム及びベント方法 - Google Patents

ベントシステム及びベント方法 Download PDF

Info

Publication number
WO2023152808A1
WO2023152808A1 PCT/JP2022/004975 JP2022004975W WO2023152808A1 WO 2023152808 A1 WO2023152808 A1 WO 2023152808A1 JP 2022004975 W JP2022004975 W JP 2022004975W WO 2023152808 A1 WO2023152808 A1 WO 2023152808A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
space
pipe
underground space
inert gas
Prior art date
Application number
PCT/JP2022/004975
Other languages
English (en)
French (fr)
Inventor
琢也 石川
浩二 板坂
陽 伊藤
大策 西山
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/004975 priority Critical patent/WO2023152808A1/ja
Publication of WO2023152808A1 publication Critical patent/WO2023152808A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/76Large containers for use underground
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/045Underground structures, e.g. tunnels or galleries, built in the open air or by methods involving disturbance of the ground surface all along the location line; Methods of making them
    • E02D29/05Underground structures, e.g. tunnels or galleries, built in the open air or by methods involving disturbance of the ground surface all along the location line; Methods of making them at least part of the cross-section being constructed in an open excavation or from the ground surface, e.g. assembled in a trench

Definitions

  • the present disclosure relates to venting systems and venting methods.
  • Non-Patent Document 1 describes supplying a hydrogen pipeline for transporting hydrogen and detecting leaked hydrogen with a detector.
  • hydrogen may leak from the hydrogen pipeline 93 that supplies hydrogen from the hydrogen tank 91 on the supply side to the hydrogen tank 92 on the consumption side in the underground space S1 as shown in FIG.
  • the underground space S1 is a space defined by a manhole 94 or the like provided underground.
  • hydrogen may leak from the hydrogen pipeline 93 in the pipe 95 that communicates the underground spaces S1. In such a case, the leaked hydrogen was diffused to the outside of the underground space S1 by natural diffusion. In addition, there is a risk of an explosion occurring in the underground space S1 due to hydrogen leaking into the underground space S1.
  • the hydrogen in the underground space S1 must be diffused outside the underground space S1 before the work is performed. had to start. Therefore, the operator has to wait for the gas such as hydrogen leaking from the underground space S1 in which the gas transport path such as the hydrogen pipeline 93 is provided to diffuse outside by natural diffusion, and the work can be performed quickly. It was sometimes difficult to get started.
  • An object of the present disclosure which has been made in view of such circumstances, is to provide a venting system and a venting method for quickly discharging gas that has leaked from a gas transport path in an underground space.
  • a vent system is a vent system that discharges gas in an underground space that communicates with an above-ground space through a lifting pipe, is arranged in the above-ground space, and is disposed in the above-ground space.
  • An inert gas cylinder for generating an activated gas
  • an inert gas supply pipe for supplying the inert gas to the underground space
  • a gas for measuring the concentration of the gas in the underground space and a concentration measurement sensor.
  • a venting method is a venting method executed by a vent system that discharges gas in an underground space communicating with an underground space via a lifting pipe, generating an inert gas in an aboveground space; delivering the inert gas to the subterranean space; and measuring the concentration of the gas in the subterranean space.
  • venting system and the venting method according to the present disclosure it is possible to quickly exhaust the gas that has leaked from the gas transport path in the underground space.
  • FIG. 1 is a schematic diagram of a vent system according to the present embodiment of the present disclosure
  • FIG. 2 is a sequence diagram showing an example of processing for constructing the vent system shown in FIG. 1
  • FIG. FIG. 3 is a sequence diagram showing an example of the operation of the vent system shown in FIG. 2
  • FIG. 2 is a schematic diagram for explaining a conventional underground space provided with a gas transport path;
  • FIG. 1 is a schematic diagram of a vent system 1 according to this embodiment.
  • the vent system 1 is a system for discharging the gas in the underground space S1 communicating with the surface space S2 through the uplift pipes 22 and 23.
  • the underground space S1 is a space defined by an underground structure 21 such as a manhole, a tunnel, a handhole, etc., provided in the underground A.
  • a lifting pipe 22 and a lifting pipe 23 are attached to the underground structure 21 , and the underground space S1 is communicated with the ground space S2 by the lifting pipe 22 and the lifting pipe 23 .
  • the vent system 1 includes a gas leak detector 11 , an inert gas cylinder 12 , an inert gas supply pipe 13 , a discharge pipe 14 and a gas concentration measurement sensor 15 .
  • the gas leakage detector 11 detects gas leakage from the gas transport pipeline 24 in the underground space S1.
  • the gas transport pipeline 24 is a pipeline for transporting gas from the gas tank 25 on the supply side disposed in the ground space S2 to the gas tank 26 on the consumption side.
  • the gas is hydrogen and the gas transfer line 24 is a hydrogen pipeline, but is not so limited.
  • a part of the gas transportation pipeline 24 is arranged in the underground space S1. Specifically, one end of the gas transport pipeline 24 is connected to the supply port of the gas tank 25 on the supply side, and the gas supplied from the gas tank 25 on the supply side is transported from the one end. It is provided to be received in line 24 . The other end of the gas transport pipeline 24 is connected to the receiving port of the gas tank 26 on the consumption side, and receives the gas supplied from the gas tank 25 on the supply side and transported through the gas transport pipeline 24. , is provided to flow into the gas tank 26 on the consumption side through an inlet. A part of the gas transport pipeline 24 is arranged inside the underground space S1 and the pipeline 27 that communicates the underground spaces S1 with each other.
  • the gas leak detector 11 may include a gas concentration measurement sensor installed in the underground space S1.
  • the gas concentration measurement sensor measures the gas concentration in the underground space S1.
  • the gas leak detector 11 may further include a controller that determines whether the gas concentration is greater than or equal to the leak threshold. In such a configuration, the controller determines that the gas is leaking when determining that the gas concentration is equal to or higher than the leakage threshold, and determines that the gas is leaking when determining that the gas concentration is less than the leakage threshold. determine that it is not.
  • the controller may output to any output interface information indicating whether or not it has been determined that gas is leaking.
  • the controller may be composed of dedicated hardware such as ASIC (Application Specific Integrated Circuit) or FPGA (Field-Programmable Gate Array), may be composed of a processor, or may be composed of both. good.
  • the gas leakage detector 11 may be configured by a controller that determines whether gas is leaking based on the internal pressure of the gas tank 25 on the supply side and the internal pressure of the gas tank 26 on the consumption side. good. In such a configuration, the controller determines whether the difference between the internal pressure of the gas tank 25 on the supply side and the internal pressure of the gas tank 26 on the consumption side is greater than or equal to the difference threshold. The controller determines that the gas is leaking when determining that the difference is equal to or greater than the difference threshold, and determines that the gas is not leaking when determining that the difference is less than the difference threshold. . In addition, the controller may output to any output interface information indicating whether or not it has been determined that gas is leaking.
  • the inert gas cylinder 12 is placed in the ground space S2 and generates inert gas.
  • An inert gas is a gas that is chemically stable and does not readily react with other elements or compounds.
  • the inert gas can be, for example, helium, neon, argon, krypton, xenon, radon, nitrogen gas, carbon dioxide, and the like.
  • the inert gas cylinder 12 may be arranged in the ground space S2. Also, the inert gas cylinder 12 is portable and may be moved to the surface space S2 above the underground space S1 where the gas leak is detected.
  • the inert gas supply pipe 13 is a pipe for supplying the inert gas to the underground space S1.
  • One end (underground space S1 side) of the inert gas supply pipe 13 is placed in the underground space S1, and the other end (ground space S2 side) is placed in the ground space S2. .
  • the inert gas cylinder 12 is connected to the end of the inert gas supply pipe 13 on the side of the ground space S2, whereby the inert gas supply pipe 13 is generated by the inert gas cylinder 12
  • the inert gas can be received from the end on the side of the ground space S2, and the inert gas can be pumped.
  • the inert gas supply pipe 13 may be a flexible pipe arranged inside the lifting pipe 22 .
  • the pull-up pipe 22 may be, for example, a pipe already installed on a utility pole already installed near the underground structure 21 such as a manhole.
  • the flexible pipe is made of a material that can withstand a gas pumping force (eg, 0.95 Mpa), and the material can be, for example, stainless steel (SUS: Steel Use Stainless).
  • the flexible tube has a diameter that allows it to be inserted into the pulling tube 22 .
  • An example of the diameter of the pull-up tube 22 used for a general utility pole is 75 mm.
  • the discharge pipe 14 is a pipe for discharging the gas in the underground space S1 to the surface space S2.
  • the end of the discharge pipe 14 on the side of the underground space S1 is arranged in the underground space S1, and the end on the side of the ground space S2 is arranged in the ground space S2.
  • the discharge pipe 14 receives the gas flowing out from the underground space S1 as the inert gas is supplied to the underground space S1 from the end on the underground space S1 side. Then, the gas received from the end on the side of the underground space S1 reaches the end on the side of the ground space S2 through the discharge pipe 14 and is discharged to the ground space S2.
  • the discharge pipe 14 may be a flexible pipe arranged inside the lifting pipe 23 .
  • the pull-up pipe 23 may be, for example, a pipe already installed on a utility pole already installed near the underground structure 21 such as a manhole.
  • the flexible pipe is made of a material that can withstand the pressure of gas, and the material can be stainless steel, for example.
  • the flexible tube has a diameter that allows it to be inserted into the pull-up tube 23 .
  • An example of the diameter of the pull-up tube 23 used for a general utility pole is 75 mm.
  • the gas concentration measurement sensor 15 measures the gas concentration in the underground space S1.
  • the gas concentration measurement sensor 15 may measure the concentration of gas in the underground space S1 discharged to the surface space S2.
  • the gas concentration measurement sensor 15 may be a gas concentration measurement sensor that constitutes the gas leak detector 11. In such a configuration, the gas concentration measurement sensor 15 measures the amount of gas in the underground space S1. Concentration may be measured.
  • FIG. 2 is a sequence diagram showing an example of processing for constructing the vent system 1 according to this embodiment.
  • step S11 gas is pumped from the gas tank 25 on the supply side to the gas tank 26 on the consumption side.
  • step S12 the gas leakage detector 11 detects whether gas is leaking from the gas transport pipeline 24 in the underground space S1.
  • the gas leakage detector 11 may detect whether or not gas is leaking based on the gas concentration. It may be detected whether or not gas is leaking based on the internal pressure of the .
  • the vent system 1 is constructed. Specifically, the inert gas cylinder 12 is arranged so that the inert gas generated by the inert gas cylinder 12 is received at the end of the inert gas air supply pipe 13 on the side of the ground space S2. .
  • a flexible tube may be arranged within the updraft tube 22 . Also, a flexible tube may be arranged in the pulling tube 23 .
  • step S14 the vent system 1 is operated.
  • FIG. 3 is a sequence diagram showing an example of operations in the vent system 1 according to this embodiment.
  • the operation of the vent system 1 described with reference to FIG. 3 corresponds to the venting method performed by the vent system 1 according to this embodiment.
  • step S141 the inert gas cylinder 12 generates inert gas in the ground space S2.
  • step S142 the inert gas supply pipe 13 supplies the inert gas generated in step S141 to the underground space S1.
  • step S143 the gas concentration measurement sensor 15 measures the gas concentration.
  • step S143 When it is determined that the gas concentration measured in step S143 is equal to or higher than the predetermined value, the process returns to step S141 and the operation is repeated. If it is determined that the gas concentration measured in step S143 is less than the predetermined value, the vent system 1 ends its operation.
  • the operator enters the underground space S1 and repairs the equipment installed in the underground space S1. can start.
  • the facility to be repaired by the operator is, for example, the gas transportation pipeline 24 .
  • the vent system 1 includes the inert gas cylinder 12 that is arranged in the ground space S2 and pumps the inert gas, and supplies the inert gas to the underground space S1. and a gas concentration measurement sensor 15 for measuring the concentration of gas in the underground space S1.
  • the vent system 1 can discharge the gas leaked from the gas transport pipeline 24 from the underground space S1.
  • the leaked gas reaches the other underground space S1 through the pipeline 27, it is possible to prevent the other underground space S1 from being filled with the gas. That is, even if the gas leaks from the gas transport pipe 24, it is not accumulated in the underground space S1, and the increase in gas concentration can be suppressed.
  • the concentration of the gas in the underground space S1 is measured, it is possible to reliably determine whether or not the worker can safely enter the underground space S1. Furthermore, the worker can enter the underground space S1 early by grasping the timing when the gas concentration has decreased to a safe level, and can perform the work in the underground space S1 without delay. .
  • the gas concentration measurement sensor 15 measures the concentration of the gas discharged from the underground space S1 to the surface space S2 through the discharge pipe 14. As a result, the operator can recognize the gas concentration in the above-ground space S2 without entering the underground space S1 that may be filled with gas. Therefore, the worker can be in a more secure and safe state.
  • the inert gas supply pipe 13 may be a flexible pipe arranged inside the lifting pipe 22 .
  • the pull-up pipe 22 may be a pipe already installed on a utility pole provided near the underground structure 21 such as a manhole. sometimes For this reason, when the up-pipe 22 in which no flexible pipe is arranged supplies the inert gas, the inactivation gas will flow outside the up-pipe 22 due to the damage of the up-pipe 22. It may leak.
  • the inert gas supply pipe 13 is a flexible pipe arranged inside the lifting pipe 22, it is possible to suppress the inert gas from leaking during air supply. can.
  • the pull-up pipe 22 may be a pipe installed on a utility pole already provided near the underground structure 21 such as a manhole. It may not have been formed in view of the influence of the accompanying increase in internal pressure. For this reason, when the up-pipe 22 in which the flexible pipe is not arranged is supplied with the inert gas, the up-pipe 22 may be damaged by the inert gas. On the other hand, since the inert gas supply pipe 13 is a flexible pipe arranged inside the lifting pipe 22, the influence of the supply of the inert gas on the lifting pipe 22 is suppressed. can do.
  • the flexible tube is made of a flexible material. Therefore, the flexible pipe can be arranged inside the up-pipe 22 even if the route to the underground space S1 in the up-pipe 22 is curved or sloped.
  • vent system 11 gas leakage detector 12 inert gas cylinder 13 inert gas supply pipe 14 discharge pipe 15 gas concentration measurement sensor 21 underground structures 22, 23 lift pipe 24 gas transport pipe 25 supply side Gas tank 26 Gas tank 27 on the consumption side Pipe line S1 Underground space S2 Above ground space A Underground

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

本開示に係るベントシステム(1)は、引上管(22,23)を介して地上空間(S2)と連通している地下空間(S1)内のガスを排出するベントシステム(1)であって、地上空間(S2)に配置され、不活性化ガスを発生させる不活性化ガスボンベ(12)と、不活性化ガスを地下空間(S1)に送気するための不活性化ガス送気用管(13)と、地下空間(S1)内のガスの濃度を測定するガス濃度測定センサ(14)と、を備える。

Description

ベントシステム及びベント方法
 本開示は、ベントシステム及びベント方法に関する。
 近年、脱炭素化を目指し、カーボンニュートラルの実現に向けて、水素ガスを活用するために、水素ガスを供給する方法、及び水素ガスの供給における安全性が検討されている。例えば、非特許文献1には、水素を輸送するための水素パイプラインを供給し、漏洩した水素を検知器で検知することが記載されている。
森田哲司、「都市ガス業界における水素パイプライン供給に関する取組み」、一般社団法人電気設備学会、電気設備学会誌 36 (4)、242-245、2016
 しかしながら、従来技術では、図4に示すような、地下空間S1において、供給側の水素タンク91から消費側の水素タンク92まで水素を供給する水素パイプライン93から水素が漏洩することがある。地下空間S1は、地下Aに設けられたマンホール94等によって画定されている空間である。また、地下空間S1どうしを連通させる配管95において、水素パイプライン93から水素が漏洩することもある。このような場合、漏洩した水素は、自然拡散により、地下空間S1の外部に拡散されていた。また、地下空間S1に漏洩した水素に起因して、該地下空間S1内で爆発が発生する危険性があった。そのため、地下空間S1内において設備を補修する等の作業を行うにあたって、作業者は、自身の安全を確保するために、地下空間S1における水素が、地下空間S1の外部に拡散されてから作業を開始しなければならなかった。したがって、作業者は、水素パイプライン93等のガス搬送路が設けられている地下空間S1において漏れた水素等のガスが外部に自然拡散により拡散されるのを待たなければならず、作業を迅速に開始することが困難であることがあった。
 かかる事情に鑑みてなされた本開示の目的は、地下空間内においてガス搬送路から漏洩したガスを迅速に排出するベントシステム及びベント方法を提供することにある。
 上記課題を解決するため、本開示に係るベントシステムは、引上管を介して地上空間と連通している地下空間内のガスを排出するベントシステムであって、前記地上空間に配置され、不活性化ガスを発生させる不活性化ガスボンベと、前記不活性化ガスを前記地下空間に送気するための不活性化ガス送気用管と、前記地下空間内の前記ガスの濃度を測定するガス濃度測定センサと、を備える。
 また、上記課題を解決するため、本開示に係るベント方法は、引上管を介して地上空間と連通している地下空間内のガスを排出するベントシステムが実行するベント方法であって、前記地上空間で不活性化ガスを発生させるステップと、前記不活性化ガスを前記地下空間に送気するステップと、前記地下空間内の前記ガスの濃度を測定する測定するステップと、を含む。
 本開示に係るベントシステム及びベント方法によれば、地下空間内においてガス搬送路から漏洩したガスを迅速に排出することができる。
本開示の本実施形態に係るベントシステムの概略図である。 図1に示すベントシステムを構築する処理の一例を示すシーケンス図である。 図2に示すベントシステムの動作の一例を示すシーケンス図である。 従来の、ガス搬送路が設けられている地下空間を説明するための概略図である。
 図1を参照して本実施形態の全体構成について説明する。図1は、本実施形態に係るベントシステム1の概略図である。
 図1に示されるように、本実施形態に係るベントシステム1は、引上管22及び引上管23を介して地上空間S2と連通している地下空間S1内のガスを排出するシステムである。地下空間S1は、地下Aに設けられている、マンホール、トンネル、ハンドホール等の地下構造物21によって画定されている空間である。地下構造物21には、引上管22及び引上管23が取り付けられており、引上管22及び引上管23により、地下空間S1は、地上空間S2と連通されている。
 ベントシステム1は、ガス漏洩検出器11と、不活性化ガスボンベ12と、不活性化ガス送気用管13と、排出用配管14と、ガス濃度測定センサ15とを備える。
 ガス漏洩検出器11は、地下空間S1における、ガス輸送管路24からのガスの漏洩を検出する。ガス輸送管路24は、地上空間S2に配設されている供給側のガスタンク25から消費側のガスタンク26にまでガスを輸送するための管路である。本実施形態において、ガスは水素であり、ガス輸送管路24は水素パイプラインであるが、これに限定されるものではない。
 ガス輸送管路24の一部は、地下空間S1に配設されている。具体的には、ガス輸送管路24における一方の端部は、供給側のガスタンク25の供給口に連接されており、供給側のガスタンク25から供給されたガスが該一方の端部からガス輸送管路24に受け入れられるように設けられている。また、ガス輸送管路24における他方の端部は、消費側のガスタンク26の受入口に連接されており、供給側のガスタンク25から供給され、ガス輸送管路24を通って輸送されたガスを、受入口を介して消費側のガスタンク26に流入させるように設けられている。また、ガス輸送管路24の一部は、地下空間S1、及び地下空間S1同士を連通させる管路27の内部に配設されている。
 第1例として、ガス漏洩検出器11は、地下空間S1に設置されたガス濃度測定センサを含んでいてもよい。ガス濃度測定センサは、地下空間S1におけるガス濃度を測定する。ガス漏洩検出器11は、ガス濃度が漏洩閾値以上であるか否かを判定するコントローラをさらに含んでいてもよい。このような構成において、コントローラは、ガス濃度が漏洩閾値以上であると判定した場合にガスが漏洩していると判定し、ガス濃度が漏洩閾値未満であると判定した場合に、ガスが漏洩していないと判定する。また、コントローラは、ガスが漏洩していると判定されたか否かを示す情報を任意の出力インターフェースに出力させてもよい。コントローラは、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)等の専用のハードウェアによって構成されてもよいし、プロセッサによって構成されてもよいし、双方を含んで構成されてもよい。
 第2例として、ガス漏洩検出器11は、供給側のガスタンク25の内圧と、消費側のガスタンク26の内圧とに基づいて、ガスが漏洩しているか否かを判定するコントローラによって構成されてもよい。このような構成において、コントローラは、供給側のガスタンク25の内圧の、消費側のガスタンク26の内圧に対する差分が差分閾値以上であるか否かを判定する。そして、コントローラは、差分が差分閾値以上であると判定した場合に、ガスが漏洩していると判定し、差分が差分閾値未満であると判定した場合に、ガスが漏洩していないと判定する。また、コントローラは、ガスが漏洩していると判定されたか否かを示す情報を任意の出力インターフェースに出力させてもよい。
 不活性化ガスボンベ12は、地上空間S2に配置され、不活性化ガスを発生させる。不活性化ガスは、化学的に安定している、他の元素あるいは化合物と容易に反応しないガスである。不活性化ガスは、例えば、ヘリウム,ネオン,アルゴン,クリプトン,キセノン,ラドン、窒素ガス、二酸化炭素等とすることができる。不活性化ガスボンベ12は、地上空間S2に配置されていてもよい。また、不活性化ガスボンベ12は、持ち運び可能であり、ガスの漏洩が検出された地下空間S1の上の地上空間S2に移動されてもよい。
 不活性化ガス送気用管13は、不活性化ガスを地下空間S1に送気するための管である。不活性化ガス送気用管13は、一方側(地下空間S1側)の端部が地下空間S1に配置され、他方側の端部(地上空間S2側)が地上空間S2に配置されている。不活性化ガス送気用管13の地上空間S2側の端部には不活性化ガスボンベ12が接続され、これにより、不活性化ガス送気用管13は、不活性化ガスボンベ12によって発生された不活性化ガスを地上空間S2側の端部から受け入れて不活性化ガスを圧送することができる。
 不活性化ガス送気用管13は、引上管22の内部に配設されているフレキシブル管であってもよい。引上管22は、例えば、マンホール等の地下構造物21の近傍に既に設けられている電柱に、既に設置されている配管であってもよい。また、フレキシブル管は、ガスの圧送力(例えば、0.95Mpa)に耐え得る材料によって形成されており、該材料は、例えば、ステンレス鋼材(SUS:Steel Use Stainless)とすることができる。また、フレキシブル管は、引上管22に挿入可能である径を有している。一般的な電柱に用いられている引上管22の径の一例は75mmである。
 排出用配管14は、地下空間S1内のガスを地上空間S2に排出するための管である。排出用配管14は、地下空間S1側の端部が地下空間S1に配置され、地上空間S2側の端部が地上空間S2に配置されている。排出用配管14は、不活性化ガスが地下空間S1に送気されたのに伴って地下空間S1内から流出するガスを、地下空間S1側の端部から受け入れる。そして、地下空間S1側の端部から受け入れられたガスは、排出用配管14を通って地上空間S2側の端部に到達し、地上空間S2に排出される。
 排出用配管14は、引上管23内に配設されているフレキシブル管であってもよい。引上管23は、例えば、マンホール等の地下構造物21の近傍に既に設けられている電柱に、既に設置されている配管であってもよい。また、フレキシブル管は、ガスの圧送力に耐え得る材料によって形成されており、該材料は、例えば、ステンレス鋼材とすることができる。また、また、フレキシブル管は、引上管23に挿入可能である径を有している。一般的な電柱に用いられている引上管23の径の一例は75mmである。
 ガス濃度測定センサ15は、地下空間S1内のガスの濃度を測定する。一例では、ガス濃度測定センサ15は、地上空間S2に排出された、地下空間S1のガスの濃度を測定してもよい。他の例では、ガス濃度測定センサ15は、ガス漏洩検出器11を構成するガス濃度測定センサであってもよく、このような構成において、ガス濃度測定センサ15は、地下空間S1内のガスの濃度を測定してもよい。
 <ベントシステムの構築>
 ここで、本実施形態に係るベントシステム1を構築する処理について、図2を参照して説明する。図2は、本実施形態に係るベントシステム1を構築する処理の一例を示すシーケンス図である。
 ステップS11において、供給側のガスタンク25から消費側のガスタンク26にガスを圧送する。
 ステップS12において、ガス漏洩検出器11が、地下空間S1内において、ガス輸送管路24からガスが漏洩しているか否かを検出する。ここで、ガス漏洩検出器11は、上述したように、ガス濃度に基づいてガスが漏洩しているか否かを検出してもよいし、供給側のガスタンク25の内圧と、消費側のガスタンク26の内圧とに基づいてガスが漏洩しているか否かを検出してもよい。
 ステップS13で、ガスが漏洩していると検出されると、ベントシステム1を構築する。具体的には、不活性化ガスボンベ12によって発生された不活性化ガスが不活性化ガス送気用管13の地上空間S2側の端部に受け入れられるように、不活性化ガスボンベ12を配置する。ここで、フレキシブル管が、引上管22内に配設されてもよい。また、フレキシブル管が、引上管23内に配設されてもよい。
 ステップS14で、ベントシステム1を動作させる。
 <ベントシステムの動作>
 ここで、ステップS14における、引上管22及び引上管23を介して地上空間S2と連通している地下空間S1内のガスを排出するベントシステム1の動作について、図3を参照して説明する。図3は、本実施形態に係るベントシステム1における動作の一例を示すシーケンス図である。図3を参照して説明するベントシステム1における動作は本実施形態に係るベントシステム1が実行するベント方法に相当する。
 ステップS141において、不活性化ガスボンベ12が、地上空間S2で不活性化ガスを発生させる。
 ステップS142において、不活性化ガス送気用管13が、ステップS141で発生された不活性化ガスを地下空間S1に送気する。
 ステップS143において、ガス濃度測定センサ15が、ガスの濃度を測定する。
 ステップS143で測定されたガスの濃度が所定値以上であると判定されると、ステップS141に戻って、動作が繰り返される。ステップS143で測定されたガスの濃度が所定値未満であると判定されると、ベントシステム1は動作を終了する。
 ガスの濃度が所定値未満であると判定されて、ベントシステム1が動作を終了すると、作業者は、地下空間S1に入構して、該地下空間S1に配設されている設備等の修繕を開始することができる。作業者が修繕する設備は、例えば、ガス輸送管路24である。
 上述したように、本実施形態によれば、ベントシステム1は、地上空間S2に配置され、不活性化ガスを圧送する不活性化ガスボンベ12と、不活性化ガスを地下空間S1に送気するための不活性化ガス送気用管13と、地下空間S1内のガスの濃度を測定するガス濃度測定センサ15と、を備える。これにより、ベントシステム1は、ガス輸送管路24から漏洩したガスを地下空間S1から排出することができる。さらに、漏洩したガスが管路27を通って他の地下空間S1に到達することによって、該他の地下空間S1にガスが充満することを抑制することができる。すなわち、ガス輸送管路24からガスが漏洩しても、地下空間S1内に蓄積されず、ガスの濃度が高くなるのを抑制することができる。また、地下空間S1内のガスの濃度が測定されるため、作業者が地下空間S1内に安全に入構することができるか否かを確実に判断することができる。さらに、作業者は、ガスの濃度が安全である程度にまで低下したタイミングを把握することによって、地下空間S1内に早期に入構することができ、地下空間S1内における作業を遅延なく行うことができる。
 また、本実施形態によれば、ガス濃度測定センサ15は、地下空間S1から排出用配管14を通って地上空間S2に排出されたガスの濃度を測定する。これにより、作業者は、ガスが充満している可能性のある地下空間S1に入構することなく、地上空間S2でガスの濃度を認識することができる。このため、作業者は、より確実に安全な状態でいることができる。
 また、本実施形態によれば、不活性化ガス送気用管13は、引上管22の内部に配置されているフレキシブル管であってよい。上述したように、引上管22は、マンホール等の地下構造物21の近傍に設けられている電柱に、既に設置されている配管であってもよいため、経年等の事情により損傷が発生していることがある。このため、フレキシブル管が内部に配置されていない引上管22が不活性化ガスを送気する場合、引上管22の損傷に起因して当該引上管22の外部に不活性化ガスが漏れてしまうことがある。これに対して、不活性化ガス送気用管13が、引上管22の内部に配置されているフレキシブル管であることによって、不活性化ガスが送気中に漏れることを抑制することができる。
 また、引上管22は、上述したように、マンホール等の地下構造物21の近傍に既に設けられている電柱に設置されている配管であってもよいため、不活性化ガスの送気に伴う内圧の上昇による影響を鑑みて形成されたものではないことがある。このため、フレキシブル管が内部に配置されていない引上管22が不活性化ガスを送気する場合、引上管22が当該不活性化ガスにより損傷する等の影響をうけることがある。これに対して、不活性化ガス送気用管13が引上管22の内部に配置されているフレキシブル管であることによって、不活性化ガスの送気による引上管22への影響を抑制することができる。
 さらに、フレキシブル管は可撓性を有する材料によって形成されている。このため、引上管22における、地下空間S1に至るまでの経路が曲がっていたり、勾配していたりしても、フレキシブル管を引上管22の内部へ配置することができる。
 本明細書に記載された全ての文献、特許出願および技術は、個々の文献、特許出願、および技術が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書中に参照により取り込まれる。
 上述の実施形態は代表的な例として説明したが、本開示の趣旨及び範囲内で、多くの変更及び置換ができることは当業者に明らかである。したがって、本発明は、上述の実施形態によって制限するものと解するべきではなく、請求の範囲から逸脱することなく、種々の変形又は変更が可能である。
1 ベントシステム
11 ガス漏洩検出器
12 不活性化ガスボンベ
13 不活性化ガス送気用管
14 排出用配管
15 ガス濃度測定センサ
21 地下構造物
22、23 引上管
24 ガス輸送管路
25 供給側のガスタンク
26 消費側のガスタンク
27 管路
S1 地下空間
S2 地上空間
A 地下

Claims (4)

  1.  引上管を介して地上空間と連通している地下空間内のガスを排出するベントシステムであって、
     前記地上空間に配置され、不活性化ガスを発生させる不活性化ガスボンベと、
     前記不活性化ガスを前記地下空間に送気するための不活性化ガス送気用管と、
     前記地下空間内の前記ガスの濃度を測定するガス濃度測定センサと、
    を備えるベントシステム。
  2.  前記ガス濃度測定センサは、前記地上空間に排出された、前記地下空間内の前記ガスの濃度を測定する、請求項1に記載のベントシステム。
  3.  前記不活性化ガス送気用管は、前記引上管の内部に配置されているフレキシブル管である、請求項1又は2に記載のベントシステム。
  4.  引上管を介して地上空間と連通している地下空間内のガスを排出するベントシステムが実行するベント方法であって、
     前記地上空間で不活性化ガスを発生させるステップと、
     前記不活性化ガスを前記地下空間に送気するステップと、
     前記地下空間内の前記ガスの濃度を測定する測定するステップと、
    を含むベント方法。
PCT/JP2022/004975 2022-02-08 2022-02-08 ベントシステム及びベント方法 WO2023152808A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/004975 WO2023152808A1 (ja) 2022-02-08 2022-02-08 ベントシステム及びベント方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/004975 WO2023152808A1 (ja) 2022-02-08 2022-02-08 ベントシステム及びベント方法

Publications (1)

Publication Number Publication Date
WO2023152808A1 true WO2023152808A1 (ja) 2023-08-17

Family

ID=87563846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004975 WO2023152808A1 (ja) 2022-02-08 2022-02-08 ベントシステム及びベント方法

Country Status (1)

Country Link
WO (1) WO2023152808A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11301786A (ja) * 1998-04-20 1999-11-02 Ishikawajima Harima Heavy Ind Co Ltd 地下式貯槽の空気パージ方法
JP2003003499A (ja) * 2001-06-27 2003-01-08 Mitsubishi Heavy Ind Ltd 燃料タンク内の局所作業室
JP2009014057A (ja) * 2007-07-03 2009-01-22 Ihi Corp 低温液化ガスタンクの窒素ガスパージ方法及び装置
JP2011137652A (ja) * 2009-12-25 2011-07-14 Enviro Tech International Inc 地中埋設物の破損検査法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11301786A (ja) * 1998-04-20 1999-11-02 Ishikawajima Harima Heavy Ind Co Ltd 地下式貯槽の空気パージ方法
JP2003003499A (ja) * 2001-06-27 2003-01-08 Mitsubishi Heavy Ind Ltd 燃料タンク内の局所作業室
JP2009014057A (ja) * 2007-07-03 2009-01-22 Ihi Corp 低温液化ガスタンクの窒素ガスパージ方法及び装置
JP2011137652A (ja) * 2009-12-25 2011-07-14 Enviro Tech International Inc 地中埋設物の破損検査法

Similar Documents

Publication Publication Date Title
US9671307B2 (en) Leak location detection system
US4704897A (en) Locating method of and the locating unit for leaks on piping
US7461541B2 (en) Leak detection method for a primary containment system
US6658920B2 (en) Leak detector pump
WO2023152808A1 (ja) ベントシステム及びベント方法
US6886389B1 (en) Systems and methods for detecting and locating leaks in internal pressure vessels
KR100817223B1 (ko) 다면체 멤브레인을 이용한 고감도 온라인 유중가스검출장치
CN207610827U (zh) 一种高危介质管道敏感性泄漏性试验检测系统
CN205748803U (zh) 一种单晶硅炉用分段检测漏气装置
CN211013418U (zh) 一种识别管道堵塞的气密检测装置
CN114018492B (zh) 一种船用双燃料主机燃气内管的泄漏排查方法
WO2023157311A1 (ja) ベントシステム及びベント方法
CN206580740U (zh) 气浮基台
CN213180560U (zh) 一种市政管道无损内壁检测装置
KR102316383B1 (ko) 배관 기밀 시험 장치 및 배관 기밀 시험 방법
CN206127343U (zh) 一种快速检测高炉冷却壁的装置
JP2004271408A (ja) 差水処理装置及び差水処理方法
CN211697282U (zh) 一种管道试压装置
JP4346245B2 (ja) 既設ガス管のガス漏洩検査方法及びガス吸引装置
TWM614733U (zh) 地下油管警示監控裝置
JP2005315784A (ja) リーク検出方法及びその検出装置
KR101258794B1 (ko) 다공성 코어의 회수율 측정 장치
JP3997333B2 (ja) 漏洩位置検知方法
JPH10227712A (ja) 管の漏洩箇所を探知する方法及び真空装置
CN219433096U (zh) 一种船用低闪点、有毒燃料输送管道

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925830

Country of ref document: EP

Kind code of ref document: A1