WO2023151539A1 - 脑部医疗分析装置以及控制单元 - Google Patents

脑部医疗分析装置以及控制单元 Download PDF

Info

Publication number
WO2023151539A1
WO2023151539A1 PCT/CN2023/074655 CN2023074655W WO2023151539A1 WO 2023151539 A1 WO2023151539 A1 WO 2023151539A1 CN 2023074655 W CN2023074655 W CN 2023074655W WO 2023151539 A1 WO2023151539 A1 WO 2023151539A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection
control
selection
electrode
state
Prior art date
Application number
PCT/CN2023/074655
Other languages
English (en)
French (fr)
Inventor
阚增辉
焦亚伟
常月妍
朱为然
Original Assignee
苏州景昱医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州景昱医疗器械有限公司 filed Critical 苏州景昱医疗器械有限公司
Publication of WO2023151539A1 publication Critical patent/WO2023151539A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/37Intracranial electroencephalography [IC-EEG], e.g. electrocorticography [ECoG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/372Analysis of electroencephalograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/377Electroencephalography [EEG] using evoked responses
    • A61B5/383Somatosensory stimuli, e.g. electric stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/386Accessories or supplementary instruments therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4848Monitoring or testing the effects of treatment, e.g. of medication
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6867Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
    • A61B5/6868Brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36064Epilepsy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36067Movement disorders, e.g. tremor or Parkinson disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36135Control systems using physiological parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36135Control systems using physiological parameters
    • A61N1/36139Control systems using physiological parameters with automatic adjustment

Definitions

  • This application relates to the technical field of implantable medical equipment, for example, it relates to a brain medical analysis device and control unit capable of realizing deep brain stimulation and brain electrical signal acquisition.
  • Deep brain stimulation therapy which electrically stimulates the patient's brain, has a good effect in the treatment of neurological diseases such as Parkinson's disease and epilepsy.
  • the doctor can conveniently perform deep brain electrical stimulation and adjust the stimulation parameters.
  • how to choose the appropriate stimulation points and how to choose the appropriate stimulation parameters there is currently a lack of effective determination methods.
  • EEG signals can not only be used to extract characteristic abnormal potentials to better characterize the electrophysiological changes of patients' diseases, but also play a very important role in adjusting the deep brain parameters of patients and improving the therapeutic effect.
  • the relevant EEG signal acquisition equipment is relatively simple, and can only support its own products for EEG signal acquisition, which is not conducive to later data analysis.
  • the relevant medical equipment cannot conveniently collect the patient's EEG signal, let alone perform electrical stimulation and signal collection at the same time.
  • the purpose of this application is to provide a brain medical analysis device and a control unit that can conveniently collect patients' EEG signals, and can perform electrical stimulation and signal collection at the same time.
  • the present application provides a brain medical analysis device, including:
  • control unit having a first selection connection, a second selection connection, an electrode connection and a control connection
  • a deep brain electrode the deep brain electrode is connected to the electrode connection end via an extension wire;
  • the processor is connected to the control connection end and outputs a control signal to the control unit;
  • the stimulation signal generation unit is connected to the first selection connection end, and outputs an electrical stimulation signal to stimulate the brain via the deep brain electrode;
  • a signal acquisition unit the signal acquisition unit is connected to the second selection connection end, and collects EEG signals through the deep brain electrodes,
  • the control unit controls the connection state of the first selection connection terminal and the electrode connection terminal and the connection state of the second selection connection terminal and the electrode connection terminal according to the control signal.
  • control unit includes a plurality of switch circuits, each of which has a connection channel for the first selection connection end, a connection channel for the second selection connection end, and a connection channel for the second selection connection end. a connection channel of the electrode connection and a connection channel of the control connection,
  • the plurality of switch circuits respectively control the connection states of the connection channels of the first selection connection end and the connection channels of the electrode connection end and the second selection according to the multiple control signals from the processor.
  • the multiple switch circuits are respectively switched to the first state or the second state according to the multiple control signals
  • the switch circuit connects the connection channel of the first selection connection terminal with the connection channel of the electrode connection terminal, and connects the connection channel of the second selection connection terminal with the connection channel of the electrode connection terminal.
  • the connection channel is disconnected
  • the switch circuit connects the connection channel of the second selection connection terminal with the connection channel of the electrode connection terminal, and connects the connection channel of the first selection connection terminal with the connection channel of the electrode connection terminal. The connection channel is disconnected.
  • the switch circuit includes two transistors and two optocoupler components
  • the first connection terminals of the two transistors respectively become a connection channel of the first selection connection terminal and a connection channel of the second selection connection terminal, and the second connection terminals of the two transistors are connected to each other to form the connection channel of the second selection connection terminal.
  • a connection channel of the electrode connection terminal, the control terminals of the two transistors are respectively connected to the output terminals of the two optocoupler components,
  • the input ends of the two optocoupler components become a connection channel of the control connection end
  • the control signal makes the two optocoupler components in the on state and the off state respectively, so that the switch circuit switches the first state and the second state.
  • the input ends of the two optocoupler components are directly connected to the processor, and the control signal makes the two optocoupler components in the on and off states respectively , so that the switch circuit is switched to the first state or the second state.
  • the input terminals of the two optocoupler components are connected to the processor via a backdriver, and the control signal of the processor is generated via the backdriver to match the control signal a first signal of the same level and a second signal of an opposite level to the control signal,
  • the first signal and the second signal make the two optocoupler components respectively in the on state and the off state, so that the switch circuit is switched to the first state or the second state.
  • the processor can work in the first control mode and the second control mode
  • the processor When working in the first control mode, the processor sends multiple control signals to control a part of the switch circuits in the plurality of switch circuits to switch to the first state, and control a plurality of the switch circuits another part of the switching circuit switches into the second state,
  • the processor When working in the second control mode, the processor sends multiple control signals to control all the switch circuits to switch to the second state.
  • the processor performs loop control with a predetermined cycle
  • the predetermined cycle includes a first control manner with a first duration and a second control manner with a second duration.
  • the first duration is 60 seconds
  • the second duration is 30 seconds.
  • the present application provides a control unit, wherein the control unit has a first selection connection terminal, a second selection connection terminal, an electrode connection terminal and a control connection terminal, and the control unit according to the control signal to control the connection state of the first selection connection terminal and the electrode connection terminal and the connection state of the second selection connection terminal and the electrode connection terminal.
  • control unit includes a plurality of switch circuits, each of which has a connection channel for the first selection connection end, a connection channel for the second selection connection end, and a connection channel for the second selection connection end. a connection channel of the electrode connection and a connection channel of the control connection,
  • the plurality of switch circuits respectively control the connection states of the connection channels of the first selection connection end and the connection channels of the electrode connection end and the second selection according to the multiple control signals from the processor.
  • the plurality of switch circuits are respectively switched according to the plurality of control signals. Change to the first state or the second state,
  • the switch circuit connects the connection channel of the first selection connection terminal with the connection channel of the electrode connection terminal, and connects the connection channel of the second selection connection terminal with the connection channel of the electrode connection terminal.
  • the connection channel is disconnected
  • the switch circuit connects the connection channel of the second selection connection terminal with the connection channel of the electrode connection terminal, and connects the connection channel of the first selection connection terminal with the connection channel of the electrode connection terminal. The connection channel is disconnected.
  • the switch circuit includes two transistors and two optocoupler components
  • the first connection terminals of the two transistors respectively become a connection channel of the first selection connection terminal and a connection channel of the second selection connection terminal, and the second connection terminals of the two transistors are connected to each other to form the connection channel of the second selection connection terminal.
  • a connection channel of the electrode connection terminal, the control terminals of the two transistors are respectively connected to the output terminals of the two optocoupler components,
  • the input ends of the two optocoupler components become a connection channel of the control connection end
  • the control signal makes the two optocoupler components in the on state and the off state respectively, so that the switch circuit switches the first state and the second state.
  • the input ends of the two optocoupler components are directly connected to the processor, and the control signal makes the two optocoupler components in the on and off states respectively , so that the switch circuit is switched to the first state or the second state.
  • the input terminals of the two optocoupler components are connected to the processor via a backdriver, and the control signal of the processor is generated via the backdriver to match the control signal a first signal of the same level and a second signal of an opposite level to the control signal,
  • the first signal and the second signal make the two optocoupler components respectively in the on state and the off state, so that the switch circuit is switched to the first state or the second state.
  • the processor can work in the first control mode and the second control mode
  • the processor When working in the first control mode, the processor sends multiple control signals to control a part of the switch circuits in the plurality of switch circuits to switch to the first state, and control a plurality of the switch circuits another part of the switching circuit switches into the second state,
  • the processor may perform loop control with a predetermined cycle, and the predetermined cycle includes a first control manner with a first duration and a second control manner with a second duration.
  • the first duration is 60 seconds
  • the second duration is 30 seconds.
  • connection state of the first selection connection end and the electrode connection end and the connection state of the second selection connection end and the electrode connection end can be easily changed, so that the connection state of the deep brain electrode and the stimulation signal generating unit can be easily changed
  • the electrical stimulation and signal acquisition can be conveniently performed on the brain, and the electrical stimulation and signal acquisition can be performed simultaneously.
  • the control unit can control the connection state of the first selection connection terminal and the electrode connection terminal and the connection state of the second selection connection terminal and the electrode connection terminal, so that the stimulation signal generation unit can be switched
  • the state of being connected to the deep brain electrode and the state of the signal acquisition unit being connected to the deep brain electrode so that one electrode can be used to realize the two functions of deep brain electrical stimulation and EEG signal acquisition, which can avoid too many implants in the human body
  • the signal acquisition and electrical stimulation are realized by using one device, it is beneficial to the later data analysis, and it is convenient to compare the changes of electrical signals in the deep brain during electrical stimulation, so as to explore different diseases and brain diseases.
  • the electrophysiological signal characteristics of the structure are of great significance to the selection of stimulation contacts, the reasonable setting of electrical stimulation parameters, closed-loop stimulation, and evaluation of therapeutic effects.
  • Fig. 1 is a schematic structural diagram of a brain medical analysis device provided by an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of a control unit provided by an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of the brain medical analysis device and the switch circuit in the control unit provided by the embodiment of the present application;
  • Fig. 4 is another structural schematic diagram of the brain medical analysis device and the switch circuit in the control unit provided by the embodiment of the present application;
  • Fig. 5 is a schematic diagram of the application of the brain medical analysis device provided by the embodiment of the present application.
  • An implantable neurostimulator system mainly includes a stimulator implanted in a patient (ie, an implanted neurostimulator, an implanted medical device) and a program-controlled device placed outside the patient's body.
  • the related neuromodulation technology mainly uses stereotaxic surgery to implant electrodes in specific parts of the organism's tissues (ie, targets), and the stimulator implanted in the patient's body sends electrical pulses to the targets through the electrodes to regulate the corresponding neural structures. And network electrical activity and its function, thereby improving symptoms and relieving pain.
  • the stimulator can be an implantable electrical nerve stimulation device, an implantable cardiac electrical stimulation system (also known as a cardiac pacemaker), an implantable drug infusion device (Implantable Drug Delivery System, referred to as IDDS) and a wire switch. Any one of the connected devices.
  • Implantable electrical nerve stimulation devices are, for example, Deep Brain Stimulation (DBS), Implantable Cortical Nerve Stimulation (CNS), Implantable Spinal Cord Stimulation , referred to as SCS), implanted sacral nerve stimulation system (Sacral Nerve Stimulation, referred to as SNS), implanted vagus nerve stimulation system (Vagus Nerve Stimulation, referred to as VNS), etc.
  • the stimulator may include IPG and electrode leads, and may also include extension leads.
  • IPG implantable pulse generator, implantable pulse generator
  • IPG is set in the patient's body, and the IPG can include a control module to receive the program-controlled instructions sent by the program-controlled equipment.
  • IPG relies on sealed batteries and circuits to provide controllable electrical stimulation energy to tissues in the body, and delivers one or two channels of controllable specific electrical stimulation to specific areas of tissues in the body through implanted electrode leads.
  • the electrode lead may be a deep brain electrode.
  • the extension wire is used in conjunction with the IPG as a transmission medium for the electrical stimulation signal, and transmits the electrical stimulation signal generated by the IPG to the electrode wire.
  • Electrode leads deliver electrical stimulation to specific areas of tissue in the body through multiple electrode contacts.
  • the stimulator is provided with one or more electrode wires on one side or both sides, and a plurality of electrode contacts are arranged on the electrode wires, and the electrode contacts can be arranged uniformly or non-uniformly in the circumferential direction of the electrode wires.
  • the electrode contacts may be arranged in an array of 4 rows and 3 columns (a total of 12 electrode contacts) in the circumferential direction of the electrode wire.
  • Electrode contacts may include stimulation contacts and/or collection contacts.
  • the electrode contacts can be in the shape of, for example, a sheet, a ring, or a dot.
  • the stimulated part is generally different, and the stimulation used
  • the number of contacts (single or multi-source), the application of one or more (single or multi-channel) specific electrical stimulation signals, and the stimulation parameter data also differ.
  • the embodiment of the present application does not limit the applicable disease types, which may be the applicable disease types for deep brain stimulation (DBS), spinal cord stimulation (SCS), pelvic stimulation, gastric stimulation, peripheral nerve stimulation, and functional electrical stimulation.
  • DBS disorders that DBS can be used to treat or manage include, but are not limited to: spasticity disorders (e.g., epilepsy), pain, migraine, psychiatric disorders (e.g., major depressive disorder (MDD)), bipolar disorder, anxiety disorders, Post-traumatic stress disorder, hypodepression, obsessive-compulsive disorder (OCD), conduct disorder, mood disorder, memory disorder, mental status disorder, mobility disorder (eg, essential tremor or Parkinson's disease), Huntington's disease, Al Alzheimer's disease, drug addiction, autism, or other neurological or psychiatric conditions and impairments.
  • spasticity disorders e.g., epilepsy
  • pain migraine
  • psychiatric disorders e.g., major depressive disorder (MDD)
  • bipolar disorder e.g., anxiety disorders, Post-traumatic stress disorder, hypodepression, obsessive-compulsive disorder (OCD)
  • OCD obsessive-compulsive disorder
  • conduct disorder mood disorder
  • the program-controlled device when the program-controlled device and the stimulator establish a program-controlled connection, can be used to adjust the stimulation parameters of the stimulator (different stimulation parameters correspond to different electrical stimulation signals), and the stimulator can also be used to sense the deep brain of the patient.
  • the bioelectric activity of the stimulator can be used to collect the electrophysiological signal, and the stimulation parameters of the electrical stimulation signal of the stimulator can be adjusted continuously through the collected electrophysiological signal.
  • Stimulation parameters can include: frequency (for example, the number of electrical stimulation pulse signals per unit time 1s, unit is Hz), pulse width (duration of each pulse, unit is ⁇ s), amplitude (generally expressed by voltage, that is, The intensity of each pulse, the unit is V), timing (for example, it can be continuous or triggered), stimulation mode (including one or more of current mode, voltage mode, timed stimulation mode and cycle stimulation mode), doctor's control upper limit One or more of upper and lower limits (range adjustable by doctors) and upper and lower limits of patient control (range adjustable by patients).
  • frequency for example, the number of electrical stimulation pulse signals per unit time 1s, unit is Hz
  • pulse width duration of each pulse, unit is ⁇ s
  • amplitude generally expressed by voltage, that is, The intensity of each pulse, the unit is V
  • timing for example, it can be continuous or triggered
  • stimulation mode including one or more of current mode, voltage mode, timed stimulation mode and cycle stimulation mode
  • doctor's control upper limit One or more of upper and lower limits (range adjustable
  • various stimulation parameters of the stimulator can be adjusted in current mode or voltage mode.
  • the program-controlled device may be a doctor-programmed device (ie, a program-controlled device used by a doctor) or a patient-programmed device (ie, a program-controlled device used by a patient).
  • the doctor's program-controlled device can be, for example, a tablet computer, a notebook computer, a desktop computer, a mobile phone and other smart terminal devices equipped with program-controlled software.
  • the patient program-controlled device can be, for example, smart terminal devices such as tablet computers, notebook computers, desktop computers, and mobile phones equipped with program-controlled software, and the patient program-controlled device can also be other electronic devices with program-controlled functions (such as chargers with program-controlled functions, data collection device).
  • the embodiment of the present application does not limit the data interaction between the doctor's program-controlled device and the stimulator.
  • the doctor's program-controlled device can perform data interaction with the stimulator through the server and the patient's program-controlled device.
  • the doctor’s program-controlled device can interact with the stimulator through the patient’s program-controlled device, and the doctor’s program-controlled device can also directly interact with the stimulator.
  • the patient programmable device may include a host (communicating with the server) and a slave (communicating with the stimulator), the host and slave being communicatively connected.
  • the doctor's program-controlled equipment can exchange data with the server through the 3G/4G/5G network
  • the server can exchange data with the host through the 3G/4G/5G network
  • the host can exchange data with the slave through the Bluetooth protocol/WIFI protocol/USB protocol.
  • the sub-machine can exchange data with the stimulator through the 401MHz-406MHz working frequency band/2.4GHz-2.48GHz working frequency band, and the doctor's program-controlled equipment can directly exchange data with the stimulator through the 401MHz-406MHz working frequency band/2.4GHz-2.48GHz working frequency band interact.
  • FIG. 1 is a schematic structural diagram of a brain medical analysis device (implantable neurostimulator) provided by an embodiment of the present application.
  • An embodiment of the present application provides a brain medical analysis device, including: a control unit 1, which has a first selection connection end, a second selection connection end, an electrode connection end and a control connection end;
  • the extension wire 7 (see Fig. 5) is connected to the electrode connection end of the control unit 1, the processor 3 is connected to the control connection end of the control unit 1, and outputs a control signal to the control unit 1, and the stimulation signal generating unit 4 is connected to the control unit 1.
  • control unit 1 controls the connection state of the first selection connection terminal and the electrode connection terminal and the connection state of the second selection connection terminal and the electrode connection terminal according to the control signal received from the processor.
  • the EEG signal may include one or more of brain-depth single-cell electrical signals (also known as brain-depth single-neuron electrical signals), and brain-depth local field potential signals (abbreviated as LFP signals). That is to say, the EEG signals collected in this application may be at the single cell level or at the nuclei level.
  • brain-depth single-cell electrical signals also known as brain-depth single-neuron electrical signals
  • LFP signals brain-depth local field potential signals
  • connection state of the first selection connection end and the electrode connection end and the connection state of the second selection connection end and the electrode connection end can be controlled by the control unit 1, so that the stimulation signal generation unit 4 and the deep brain electrode can be switched. 2 and the state that the signal acquisition unit 5 is connected to the deep brain electrode 2, so that one electrode can be used to realize the two functions of deep brain electrical stimulation and EEG signal acquisition, and it is possible to avoid implanting too many electrodes in the human body. Electrodes, reducing trauma, and, because the use of a device to achieve signal acquisition and electrical stimulation, it is beneficial to later data analysis, and can easily compare the changes of brain (deep) electrical signals during electrical stimulation, so as to explore different diseases and brain diseases.
  • the electrophysiological signal characteristics of the internal structure, the stimulus The selection of contacts, reasonable setting of electrical stimulation parameters, closed-loop stimulation, and evaluation of therapeutic effects are of great significance.
  • the stimulation signal generating unit 4 is a component for generating electrical stimulation signals to stimulate the patient's brain
  • the signal acquisition unit 5 is a component for collecting the patient's EEG signals.
  • the deep brain electrode 2 is deeply implanted in the patient's brain, and the electrical stimulation signal generated by the stimulation signal generation unit 4 can be used to electrically stimulate the patient's brain, or the patient's EEG signal can be collected and transmitted to the signal acquisition unit 5 .
  • the processor 3 may choose equipment such as a computer, as long as it can generate a control signal that meets requirements. That is to say, the processor 3 can be set outside the patient's body, or inside the patient's body.
  • the control unit 1 of the embodiment of the present application has a first selection connection terminal, a second selection connection terminal, an electrode connection terminal and a control connection terminal, which are respectively connected to the above components in a wired or wireless manner.
  • the first selection connection end is connected to the stimulation signal generation unit 4 through a wire
  • the second selection connection end is connected to the signal acquisition unit 5 through a wire
  • the electrode connection end is connected to the deep part of the brain through an extension wire.
  • the electrode 2 and the control connection end are connected to the processor 3 (that is, equipment such as a computer) in a wired form.
  • the control connection end can also be connected to the processor 3 in a wireless manner and receive control signals.
  • the control unit 1 utilizes the control connection end connected to the processor 3 to receive the control signal, thereby controlling the on state of the first selection connection end and the electrode connection end (that is, the on or off state of the stimulation signal generating unit 4 and the deep brain electrode 2 ) and the connection state of the second selection connection terminal and the electrode connection terminal (that is, the connection or disconnection state of the signal acquisition unit 5 and the deep brain electrode 2).
  • the control unit 1 includes a plurality of switch circuits 6 .
  • FIG. 2 is a schematic structural diagram of a control unit provided by an embodiment of the present application.
  • the control unit 1 includes four switch circuits 6a, 6b, 6c, and 6d.
  • the four switch circuits 6a-6d each have a connection channel for the first selection connection terminal (a connection channel connected to the stimulation signal generating unit 4.
  • 4a-4d a connection channel for the second selection connection terminal (connected to the signal generator unit 4).
  • 5a-5d a connection channel of the electrode connection end
  • 2a-2d a connection channel connected with the deep brain electrode 2.
  • a connection of the control connection end Channel one connection channel connected to the processor 3.
  • 3a to 3d it will be referred to as 3a to 3d.
  • a plurality of switch circuits 6 respectively control the on-state of each connection channel 4a-4d of the first selection connection end and each connection channel 2a-2d of the electrode connection end and the connection state of the second selection connection channel according to the multiple control signals from the processor 3. Select the connected state of each connection channel 5a-5d of the connection end and each connection channel 2a-2d of the electrode connection end.
  • the plurality of switch circuits 6 are respectively switched to the first state or the second state according to multiple control signals from the processor 3 .
  • the switch circuits 6a-6d connect the connection channels 4a-4d of the first selection connection terminals with the connection channels 2a-2d of the electrode connection terminals, and connect the connection channels 5a-5d of the second selection connection terminals with the connection channels 5a-5d of the electrode connection terminals.
  • the connecting channels 2a-2d are disconnected.
  • the switch circuit 6a connects the connection channel 4a of the first selection connection end with the connection channel 2a of the electrode connection end, and disconnects the connection channel 5a of the second selection connection end with the connection channel 2a of the electrode connection end.
  • the switch circuit 6b makes the connection channel 4b of the first selection connection end connected to the connection channel 2b of the electrode connection end, and the connection channel 5b of the second selection connection end is disconnected from the connection channel 2b of the electrode connection end;
  • the switch circuit 6c makes the first selection The connection channel 4c of the connection end is connected to the connection channel 2c of the electrode connection end, and the connection channel 5c of the second selection connection end is disconnected from the connection channel 2c of the electrode connection end;
  • the switch circuit 6d makes the connection channel 4d of the first selection connection end connected to the electrode The connection channel 2d of the terminal is connected, and the connection channel 5d of the second selection connection terminal is disconnected from the connection channel 2d of the electrode connection terminal.
  • the switch circuits 6a-6d connect the connection channels 5a-5d of the second selection connection terminals with the connection channels 2a-2d of the electrode connection terminals, and connect the connection channels 4a-4d of the first selection connection terminals with the connection channels 4a-4d of the electrode connection terminals.
  • the connecting channels 2a-2d are disconnected.
  • the switch circuit 6a connects the connection channel 5a of the second selection connection end with the connection channel 2a of the electrode connection end, and disconnects the connection channel 4a of the first selection connection end with the connection channel 2a of the electrode connection end.
  • the switch circuit 6b makes the connection channel 5b of the second selection connection end connected to the connection channel 2b of the electrode connection end, and the connection channel 4b of the first selection connection end is disconnected from the connection channel 2b of the electrode connection end;
  • the switch circuit 6c makes the second selection The connection channel 5c of the connection end is connected to the connection channel 2c of the electrode connection end, and the connection channel 4c of the first selection connection end is disconnected from the connection channel 2c of the electrode connection end;
  • the switch circuit 6d makes the connection channel 5d of the second selection connection end connected to the electrode The connection channel 2d of the terminal is connected, and the connection channel 4d of the first selection connection terminal is disconnected from the connection channel 2d of the electrode connection terminal.
  • connection channels 4a, 4b of the first selection connection terminals and the connection channels of the electrode connection terminals 2a, 2b become vias
  • connection channels 5c, 5d of the second selection connection end and the connection channels 2c, 2d of the electrode connection end become vias. Therefore, the deep brain electrodes 2 connected to the connection channels 2a and 2b of the electrode connection ends can be used to electrically stimulate the patient's brain, and the brain electrical signals of the patient can be collected by the deep brain electrodes 2 connected to the connection channels 2c and 2d of the electrode connection ends.
  • each connection channel of the electrode connection end is respectively connected to a deep brain electrode 2 through an extension wire.
  • multiple switch circuits 6a-6d can be used to respectively control the connection objects of multiple deep brain electrodes 2, so that electrical stimulation and EEG signal acquisition can be realized by using the same electrode. And because the same electrode is used to realize electrical stimulation and EEG signal acquisition, it can realize electrical stimulation and signal acquisition to the same point (brain position), which is beneficial to later data analysis and research.
  • Figure 3 is a schematic structural diagram of the brain medical analysis device and the control unit provided by the embodiment of the application
  • Figure 4 is the brain medical analysis device and control unit provided by the embodiment of the application
  • the switching circuits 6 ( 6 a - 6 d ) of the present application respectively include two transistors and two optocoupler components.
  • a ⁇ d (2a ⁇ 2d, 3a ⁇ 3d, 4a ⁇ 4d, 5a ⁇ 5d, 6a ⁇ 6d) are marked to represent a plurality of components, in the relevant description of this specification, only Take one of these components as an example.
  • the switch circuits 6a to 6d only one switch circuit 6a will be described as an example, and other members will be described in the same manner.
  • the switch circuit 6a includes two transistors and two optocoupler components.
  • the first connection terminal of one of the two transistors becomes a connection channel 4a of the first selection connection terminal, and the first connection terminal of the other transistor becomes the second selection connection terminal.
  • the second connection terminals of the two transistors are connected to each other, and the connection point thereof becomes a connection channel 2a of the electrode connection terminals.
  • the control terminals of the two transistors are respectively connected to the output terminals of the two optocoupler components, and the input terminals of the two optocoupler components become a connection channel 3a of the control connection terminals.
  • the transistor of the present application is, for example, a field effect transistor (such as MOSFET, metal oxide semiconductor field effect transistor), and the output of the second connection terminal can be controlled by controlling the voltage of the control terminal.
  • a field effect transistor such as MOSFET, metal oxide semiconductor field effect transistor
  • the first connection terminal of the transistor that is, MOSFET
  • the second connection terminal is the drain
  • the control terminal is the gate.
  • the transistor of the present application is, for example, a triode, and the output of the second connection terminal can be controlled by controlling the voltage of the control terminal.
  • the first connection terminal of the transistor that is, the triode
  • the second connection terminal is the collector
  • the control terminal is the base.
  • Optocoupler components are devices that transmit electrical signals through light as a medium.
  • the optocoupler components of this application package the light emitter (such as infrared light-emitting diode LED) and light receiver (photosensitive semiconductor, photoresistor) in the same package made device.
  • the light emitter such as infrared light-emitting diode LED
  • light receiver photosensitive semiconductor, photoresistor
  • the input end of the optocoupler component becomes a connection channel 3a of the control connection end, when the control signal (including high level and low level) is received from the connection channel 3a of the control connection end , the light emitter of one of the two optocoupler components will emit light, so that the transistor corresponding to the optocoupler component is turned on, while the light emitter of the other optocoupler component does not emit light, and the light emitter of the optocoupler component The transistor corresponding to the component is not turned on, so that one of the connection channel 4a of the first selection connection terminal and the connection channel 5a of the second selection connection terminal is connected to the connection channel 2a of the electrode connection terminal, while the other is connected to the electrode connection channel 5a.
  • connection channel 2a of the connection end is disconnected. That is, the on and off states of the optocoupler components can be changed by changing the control signal (one of the two optocoupler components is always on and the other is off), and the switch circuit 6a can be switched between the first state and the off state. second state.
  • switch circuits 6a-6d there are two implementations shown in Fig. 3 and Fig. 4 . Two implementations of the switch circuits 6 a - 6 d are described below respectively.
  • the two optocoupler components respectively include a first light-emitting element and a second light-emitting element, the anode of the first light-emitting element is connected to the cathode of the second light-emitting element, and the anode of the first light-emitting element and the second light-emitting element
  • the connection point of the cathode of the element becomes a connection channel 3a of the control connection.
  • the cathode of the first light-emitting element is grounded, and the anode of the second light-emitting element is connected to the working voltage (Vcc).
  • connection channel 4a of the first selection connection end is connected with the connection channel 2a of the electrode connection end, while the connection channel 5a of the second selection connection end is disconnected from the connection channel 2a of the electrode connection end.
  • connection channel 3a of the control connection end When a low-level control voltage is received from a connection channel 3a of the control connection end, the second light-emitting element emits light, and the first light-emitting element does not emit light, so that the control end of the transistor corresponding to the second light-emitting element has an input, which is connected to the first light-emitting element.
  • the control terminal of the transistor corresponding to the light emitting element has no input.
  • the input terminals of the two optocoupler components are directly connected to the processor, and by changing the control signal, the two optocoupler components can be respectively in the on and off states, thereby enabling the switch circuit 6a (switch circuit 6b-6d) Switching between the first state and the second state.
  • the input end of the optocoupler component is connected to the processor 3 via a reverse driver.
  • the reverse driver can selectively invert the phase of the input signal by 180 degrees for output.
  • the reverse driver can be one or more of a TTL (Transistor Transistor Logic) inverter and a CMOS (Complementary Metal-Oxide-Semiconductor) inverter.
  • TTL Transistor Transistor Logic
  • CMOS Complementary Metal-Oxide-Semiconductor
  • the cathodes of the light-emitting elements of the first optocoupler component and the second optocoupler component are grounded (GND), and the anodes are respectively connected to two output terminals of the reverse driver.
  • One end of the backdriver is connected to the operating voltage (V CC ), the other end is connected to the processor 3 and receives the control signal, and the backdriver can generate the same level as the control signal based on the received control signal (that is, the same high voltage) level or both are low) and the opposite level of the control signal (when the control signal is high, the opposite level is low; when the control signal is low, the opposite level is high level) of the second signal.
  • the reverse driver is used to generate a low-level first signal and a high-level second signal respectively.
  • the low-level first signal is applied to the anode of the light-emitting element of the first optocoupler component
  • the high-level second signal is applied to the anode of the light-emitting element of the second optocoupler component, thus, the first light
  • the light-emitting element of the coupling component does not emit light, and does not generate output at the control terminal of the corresponding transistor.
  • the light-emitting element of the second optocoupler component emits light, and generates output at the control terminal of the corresponding transistor, so that the switch circuit 6a becomes the second state (That is, the connection channel 5a of the second selection connection end is connected to the connection channel 2a of the electrode connection end, and the connection channel 4a of the first selection connection end is disconnected from the connection channel 2a of the electrode connection end).
  • the reverse driver when a high-level control voltage is received from a connection channel 3a of the control connection end, the reverse driver is used to generate the high-level first signal and low level of the second signal.
  • the high-level first signal is applied to the anode of the light-emitting element of the first optocoupler component
  • the low-level second signal is applied to the anode of the light-emitting element of the second optocoupler component, so that the first light
  • the light-emitting element of the coupling component emits light, and an output is generated at the control terminal of the corresponding transistor, and the second optocoupler
  • the light-emitting element of the component does not emit light, and will not produce an output at the control end of the corresponding transistor, so that the switch circuit 6a becomes the first state (that is, the connection channel 4a of the first selection connection end is connected to the connection channel 2a of the electrode connection end, and The connection channel 5a of the second selection connection end is disconnected from the connection channel
  • the control unit 1 can control the connected state of the first selection connection terminal and the electrode connection terminal according to the control signal. Since the control unit 1 has a plurality of switch circuits 6a-6d (the number of switch circuits is not limited), it can control the on-off conditions of each connection channel separately, and can make each connection channel be in a different state, so that for example, Realize the function of simultaneous electrical stimulation and LFP signal collection.
  • the processor 3 can work in the first control mode and the second control mode.
  • the processor 3 sends out multiple control signals to control the multiple switch circuits 6a-6d A part of the switch circuits in the switch are switched to the first state, and another part of the switch circuits are controlled to switch to the second state.
  • the processor 3 works in the second control mode, the processor 3 sends a multi-channel control signal to control all the switch circuits 6a- 6d switches to the second state.
  • the processor 3 switches the switch circuits 6a, 6b into the first state, and switches the switch circuits 6c, 6d into the second state.
  • the processor 3 outputs a high-level control signal to the connection channels 3a, 3b of the control connection end, and outputs a low-level control signal to the connection channels 3c, 3d of the control connection end, thereby, the connection of the first selection connection end
  • the channels 4a, 4b are connected to the connection channels 2a, 2b of the electrode connection end
  • the connection channels 5a, 5b of the second selection connection end are disconnected from the connection channels 2a, 2b of the electrode connection end
  • the connection channels 4c, 4d of the first selection connection end are connected to the electrode connection end.
  • the connection channels 2c, 2d of the connection end are disconnected, and the connection channels 5c, 5d of the second selection connection end are connected with the connection channels 2c, 2d of the electrode connection end.
  • the stimulation signal generation unit 4 can use the deep brain electrodes 2 to send stimulation signals through the connection channels 4a, 4b of the first selection connection end and the connection channels 2a, 2b of the electrode connection end to perform electrical stimulation on the deep part of the brain.
  • the signal acquisition unit 5 Through the connection channels 5c and 5d of the second selection connection end and the connection channels 2c and 2d of the electrode connection end, the deep brain electrodes can be used to collect EEG signals.
  • the processor 3 outputs a low-level signal to the connection channels 3a-3d of the control connection end, so that the connection channels 4a-4d of the first selection connection end and the connection channels 2a-2d of the electrode connection end Disconnect, the connection between the connection channels 5a-5d of the second selection connection end and the electrode connection end Channels 2a-2d are connected.
  • the signal acquisition unit 5 can collect EEG signals by using the deep brain electrodes through the connection channels 5 a - 5 d of the second selection connection end and the connection channels 2 a - 2 d of the electrode connection end.
  • connection channels 5a-5d of the second selection connection end and the connection channels 2a-2d of the electrode connection end will not be disturbed by the electrical stimulation signal, and clean (not stimulated) signals can be collected. signal interference) EEG signal.
  • the processor 3 performs loop control with a specified cycle, for example, the specified cycle includes the first control mode of the first duration and the second control mode of the second duration, and the processor 3 performs the cycle control of the first duration. After the first control mode, perform the second control mode for the second duration.
  • the first duration is 60s
  • the second duration is 30s.
  • the application provides a brain medical analysis device, including:
  • Control unit 1 which has a first selection connection end, a second selection connection end, an electrode connection end and a control connection end; the deep brain electrode 2, which is connected to the electrode connection end via an extension wire 7; a processor 3, which is connected to the control Connecting end, and output control signal to control unit 1; Stimulation signal generating unit 4, it is connected to the first selection connecting end, and outputs the electrical stimulation signal that stimulates brain via deep brain electrode 2; And signal acquisition unit 5, It is connected to the second selection connection end, and collects EEG signals through the deep brain electrode 2.
  • the control unit 1 controls the connection state of the first selection connection end and the electrode connection end and the connection state between the second selection connection end and the electrode connection end according to the control signal. connected state.
  • control unit 1 for a brain medical analysis device
  • the control unit 1 has a first selection connection terminal, a second selection connection terminal, an electrode connection terminal and a control connection terminal, and the control unit 1 according to The control signal is used to control the connection state of the first selection connection terminal and the electrode connection terminal and the connection state of the second selection connection terminal and the electrode connection terminal.
  • the connected state of the first selection connection terminal and the electrode connection terminal and the connection state of the second selection connection terminal and the electrode connection terminal can be controlled by the control unit 1, so that the stimulation can be switched.
  • the state in which the signal generation unit 4 is connected to the deep brain electrode 2 and the state in which the signal acquisition unit 5 is connected to the deep brain electrode 2 can utilize one electrode to realize the two functions of deep brain electrical stimulation and EEG signal acquisition, which can avoid Too many electrodes are implanted in the human body to reduce trauma, and because one device is used to realize signal acquisition and electrical stimulation, it is conducive to later data analysis, and it is convenient to compare the changes of brain (deep) electrical signals during electrical stimulation , so as to explore the electrophysiological signal characteristics of different diseases and brain structures, the selection of stimulation contacts, the reasonable setting of electrical stimulation parameters, closed-loop stimulation, The evaluation of treatment effect is of great significance.
  • the brain medical analysis device and the control unit of the present application will be described below with reference to a specific working process.
  • FIG. 5 is an application schematic diagram of a brain medical analysis device provided by an embodiment of the present application.
  • the stimulation signal generation unit 4 deep brain stimulator
  • the extension wire 7 is connected to the control unit 1
  • the deep brain electrode 2 connected to the extension wire 7 is deeply implanted in the patient's brain.
  • the processor 3 (PC) is connected to the control unit 1 through a port (such as a DB25 interface), and sends a program control signal to the control unit 1 .
  • the control unit 1 includes a signal acquisition unit 5 (here, an LFP acquisition terminal 51 ), and is connected to an LFP recording and analysis device 52 via the LFP acquisition terminal 51 .
  • the signal acquisition unit 5 includes the LFP acquisition terminal 51 and the LFP recording and analysis device 52, which does not affect the substantive content of this application.
  • the LFP collection terminal 51 can be a cylindrical terminal, used to connect products such as EEG recorder equipment such as Brain Products, and can also be a collection card terminal, connected to a PC equipped with a collection card from NI, and used in conjunction with a virtual instrument such as labview Perform LFP acquisition and analyze data.
  • the control unit 1 receives control signals from the processor 3 (PC), thereby controlling the path between the stimulation signal generating unit 4 and the extension wire 7 , that is, selecting which electrical stimulation signals can be transmitted to the extension wire 7 .
  • a connection channel a here with a represents the connection channel 4a of the first selection connection end, the connection channel 5a of the second selection connection end, the connection channel 2a of the electrode connection end, a connection channel 3a of the control connection end and the connection channels with these connection channels
  • mark 7a indicates that the programming signal (control signal) of the extension wire 7 corresponding to the connection channel 2a of the electrode connection end is low level, then disconnect the stimulation signal a and the extension wire 7a, and turn on the LFP Acquisition terminal 51a and extension wire 7a, now connecting channel a can be used as LFP signal acquisition channel; Open the acquisition terminal 51a and the extension wire 7a, and at this time, channel a can be used as a channel for deep brain electrical stimulation.
  • the brain medical analysis device and the control unit 1 of this embodiment have two usage modes.
  • Use method 1 program control signals a and b are at high level, program control signals c and d are at low level, that is, connect stimulation channels a and b, and use LFP acquisition terminals 51c and 51d to connect suitable signal recorders (which can be compatible Any recording device (such as BP device) of the LFP acquisition terminal 51 records the LFP signal. At this time, the LFP acquisition terminals 51c and 51d may be partially disturbed by the stimulation channels a and b.
  • Use method 2 set all program control signals to low level every time you use method 1 for one minute and last for 30 seconds. At this time, during the 30 seconds when the program control signal is at a low level, the used collection terminal 51 can collect a clean (not disturbed by the stimulus signal) LFP signal.
  • the brain medical analysis device and control unit of the present application can compare the changes of LFP signals in the deep brain with or without electrical stimulation by combining the use mode 1 and the use mode 2, so as to study the electrophysiological signal characteristics of different diseases and brain structures.
  • the selection of stimulation contacts, the reasonable setting of electrical stimulation parameters, closed-loop stimulation, and evaluation of therapeutic effects are all of great significance.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Biophysics (AREA)
  • Neurology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Physiology (AREA)
  • Hospice & Palliative Care (AREA)
  • Electrotherapy Devices (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本申请公开了一种脑部医疗分析装置以及控制单元,脑部医疗分析装置包括:控制单元,其具有第一选择连接端、第二选择连接端、电极连接端和控制连接端;脑深部电极,其经由延伸导线连接于电极连接端;处理器,其连接于控制连接端,并向控制单元输出控制信号;刺激信号发生单元,其连接于第一选择连接端,并经由脑深部电极输出对脑部进行刺激的电刺激信号;以及信号采集单元,其连接于第二选择连接端,并经由脑深部电极采集脑电信号,控制单元根据控制信号来控制第一选择连接端与电极连接端的接通状态以及第二选择连接端与电极连接端的接通状态。本申请能够方便地对脑部进行电刺激和信号采集,且能够同时进行电刺激和信号采集。

Description

脑部医疗分析装置以及控制单元
本申请要求于2022年2月10日提交的申请号为202210124535.4的中国专利的优先权,上述中国专利通过全文引用的形式并入。
技术领域
本申请涉及植入式医疗设备的技术领域,例如涉及一种能够实现脑深部电刺激和脑电信号采集的脑部医疗分析装置和控制单元。
背景技术
对患者脑部进行电刺激的脑深部电刺激疗法在治疗帕金森病、癫痫等神经系统疾病方面有很好的效果。患者在植入脑深部电极后,医生可以方便的进行脑深部电刺激,并调整刺激参数。然而,如何选择合适的刺激点以及如何选择合适的刺激参数,目前缺乏有效的确定方法。
脑电信号不仅可以用于提取特征异常电位以更好表征患者疾病的电生理改变,而且在调节患者脑深部参数,改善治疗效果也有十分重要的意义。然而,相关的脑电信号采集设备比较单一,只可以支持自身产品进行脑电信号采集,这不利于后期的数据分析。
即,相关的医疗设备无法方便的采集患者脑电信号,更无法做到同时进行电刺激和信号采集。
发明内容
本申请的目的在于提供一种能够方便地采集患者脑电信号,且能够同时进行电刺激和信号采集的脑部医疗分析装置和控制单元。
本申请的目的采用以下技术方案实现:
第一方面,本申请提供了一种脑部医疗分析装置,包括:
控制单元,所述控制单元具有第一选择连接端、第二选择连接端、电极连接端和控制连接端;
脑深部电极,所述脑深部电极经由延伸导线连接于所述电极连接端;
处理器,所述处理器连接于所述控制连接端,并向所述控制单元输出控制信号;
刺激信号发生单元,所述刺激信号发生单元连接于所述第一选择连接端,并经由所述脑深部电极输出对脑部进行刺激的电刺激信号;以及
信号采集单元,所述信号采集单元连接于所述第二选择连接端,并经由所述脑深部电极采集脑电信号,
所述控制单元根据所述控制信号来控制所述第一选择连接端与所述电极连接端的接通状态以及所述第二选择连接端与所述电极连接端的接通状态。
在一种可能的实现方式中,所述控制单元包括多个开关电路,各所述开关电路分别具有所述第一选择连接端的一个连接通道、所述第二选择连接端的一个连接通道、所述电极连接端的一个连接通道以及所述控制连接端的一个连接通道,
多个所述开关电路根据来自所述处理器的多路所述控制信号分别控制所述第一选择连接端的各连接通道与所述电极连接端的各连接通道的接通状态以及所述第二选择连接端的各连接通道与所述电极连接端的各连接通道的接通状态。
在一种可能的实现方式中,多个所述开关电路根据多路所述控制信号分别切换为第一状态或第二状态,
在所述第一状态中,所述开关电路使得所述第一选择连接端的连接通道与所述电极连接端的连接通道接通,且使得所述第二选择连接端的连接通道与所述电极连接端的连接通道断开,
在所述第二状态中,所述开关电路使得所述第二选择连接端的连接通道与所述电极连接端的连接通道接通,且使得所述第一选择连接端的连接通道与所述电极连接端的连接通道断开。
在一种可能的实现方式中,所述开关电路包含两个晶体管以及两个光耦元器件,
两个所述晶体管的第一连接端分别成为所述第一选择连接端的一个连接通道和所述第二选择连接端的一个连接通道,两个所述晶体管的第二连接端彼此连接而成为所述电极连接端的一个连接通道,两个所述晶体管的控制端分别与两个所述光耦元器件的输出端相连,
两个所述光耦元器件的输入端成为所述控制连接端的一个连接通道,
所述控制信号使得两个所述光耦元器件分别处于接通和断开的状态,从而使所述开关电路切换所述第一状态和所述第二状态。
在一种可能的实现方式中,两个所述光耦元器件的输入端直接与所述处理器连接,所述控制信号使得两个所述光耦元器件分别处于接通和断开的状态,从而使所述开关电路切换为所述第一状态或所述第二状态。
在一种可能的实现方式中,两个所述光耦元器件的输入端经由反向驱动器与所述处理器连接,所述处理器的控制信号经由所述反向驱动器产生与所述控制信号相同电平的第一信号和与所述控制信号相反电平的第二信号,
所述第一信号和所述第二信号使得两个所述光耦元器件分别处于接通和断开的状态,从而使所述开关电路切换为所述第一状态或所述第二状态。
在一种可能的实现方式中,所述处理器能够以第一控制方式和第二控制方式工作,
在以所述第一控制方式工作时,所述处理器发出多路控制信号,以控制多个所述开关电路中的一部分所述开关电路切换成第一状态,且控制多个所述开关电路中的另一部分所述开关电路切换成所述第二状态,
在以所述第二控制方式工作时,所述处理器发出多路控制信号控制所有的所述开关电路切换成所述第二状态。
在一种可能的实现方式中,所述处理器以规定周期进行循环控制,所述规定周期包括第一时长的第一控制方式和第二时长的第二控制方式。
在一种可能的实现方式中,所述第一时长为60秒,所述第二时长为30秒。
第二方面,本申请提供了一种控制单元,其中,所述控制单元具有第一选择连接端、第二选择连接端、电极连接端和控制连接端,且所述控制单元根据所述控制信号来控制所述第一选择连接端与所述电极连接端的接通状态以及所述第二选择连接端与所述电极连接端的接通状态。
在一种可能的实现方式中,所述控制单元包括多个开关电路,各所述开关电路分别具有所述第一选择连接端的一个连接通道、所述第二选择连接端的一个连接通道、所述电极连接端的一个连接通道以及所述控制连接端的一个连接通道,
多个所述开关电路根据来自所述处理器的多路所述控制信号分别控制所述第一选择连接端的各连接通道与所述电极连接端的各连接通道的接通状态以及所述第二选择连接端的各连接通道与所述电极连接端的各连接通道的接通状态。
在一种可能的实现方式中,多个所述开关电路根据多路所述控制信号分别切 换为第一状态或第二状态,
在所述第一状态中,所述开关电路使得所述第一选择连接端的连接通道与所述电极连接端的连接通道接通,且使得所述第二选择连接端的连接通道与所述电极连接端的连接通道断开,
在所述第二状态中,所述开关电路使得所述第二选择连接端的连接通道与所述电极连接端的连接通道接通,且使得所述第一选择连接端的连接通道与所述电极连接端的连接通道断开。
在一种可能的实现方式中,所述开关电路包含两个晶体管以及两个光耦元器件,
两个所述晶体管的第一连接端分别成为所述第一选择连接端的一个连接通道和所述第二选择连接端的一个连接通道,两个所述晶体管的第二连接端彼此连接而成为所述电极连接端的一个连接通道,两个所述晶体管的控制端分别与两个所述光耦元器件的输出端相连,
两个所述光耦元器件的输入端成为所述控制连接端的一个连接通道,
所述控制信号使得两个所述光耦元器件分别处于接通和断开的状态,从而使所述开关电路切换所述第一状态和所述第二状态。
在一种可能的实现方式中,两个所述光耦元器件的输入端直接与所述处理器连接,所述控制信号使得两个所述光耦元器件分别处于接通和断开的状态,从而使所述开关电路切换为所述第一状态或所述第二状态。
在一种可能的实现方式中,两个所述光耦元器件的输入端经由反向驱动器与所述处理器连接,所述处理器的控制信号经由所述反向驱动器产生与所述控制信号相同电平的第一信号和与所述控制信号相反电平的第二信号,
所述第一信号和所述第二信号使得两个所述光耦元器件分别处于接通和断开的状态,从而使所述开关电路切换为所述第一状态或所述第二状态。
在一种可能的实现方式中,所述处理器能够以第一控制方式和第二控制方式工作,
在以所述第一控制方式工作时,所述处理器发出多路控制信号,以控制多个所述开关电路中的一部分所述开关电路切换成第一状态,且控制多个所述开关电路中的另一部分所述开关电路切换成所述第二状态,
在一种可能的实现方式中,可以是,所述处理器以规定周期进行循环控制,所述规定周期包括第一时长的第一控制方式和第二时长的第二控制方式。
在一种可能的实现方式中,所述第一时长为60秒,所述第二时长为30秒。
采用本申请提供的脑部医疗分析装置以及控制单元,至少具有以下优点:
利用控制单元,能够方便地改变第一选择连接端与电极连接端的接通状态以及第二选择连接端与电极连接端的接通状态,从而能够方便地改变脑深部电极与刺激信号发生单元的连接状态以及脑深部电极与信号采集单元的连接状态,能够方便地对脑部进行电刺激和信号采集,且能够同时进行电刺激和信号采集。
通过上述脑部医疗分析装置和控制单元,能够通过控制单元来控制第一选择连接端与电极连接端的接通状态以及第二选择连接端与电极连接端的接通状态,从而能够切换刺激信号发生单元与脑深部电极接通的状态以及信号采集单元与脑深部电极接通的状态,从而能够利用一个电极实现脑深部电刺激和脑电信号采集这两种功能,能够避免在人体内植入过多的电极,减小创伤,而且,由于利用一个装置实现信号采集和电刺激,因此有利于后期的数据分析,能够方便地对比电刺激时脑深部电信号的改变,从而探索出不同疾病和脑部结构的电生理信号特征,对刺激触点的选择、电刺激参数的合理设置、闭环刺激、治疗效果评价等都有重大意义。
附图说明
下面结合附图和实施例对本申请进一步说明。
图1是本申请实施例提供的一种脑部医疗分析装置的结构示意图;
图2是本申请实施例提供的一种控制单元的结构示意图;
图3是本申请实施例提供的脑部医疗分析装置和控制单元中的开关电路的结构示意图;
图4是本申请实施例提供的脑部医疗分析装置和控制单元中的开关电路的另一种结构示意图;
图5是本申请实施例提供脑部医疗分析装置的应用示意图。
具体实施方式
下面,结合附图以及具体实施方式,对本申请做进一步描述,需要说明的是, 在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
下面,首先对本申请实施例的其中一个应用领域(即植入式神经刺激器)进行简单说明。
植入式神经刺激系统(一种神经刺激系统)主要包括植入患者体内的刺激器(即植入式神经刺激器,一种植入式医疗设备)以及设置于患者体外的程控设备。相关的神经调控技术主要是通过立体定向手术在生物体的组织的特定部位(即靶点)植入电极,并由植入患者体内的刺激器经电极向靶点发放电脉冲,调控相应神经结构和网络的电活动及其功能,从而改善症状、缓解病痛。其中,刺激器可以是植入式神经电刺激装置、植入式心脏电刺激系统(又称心脏起搏器)、植入式药物输注装置(Implantable Drug Delivery System,简称I DDS)和导线转接装置中的任意一种。植入式神经电刺激装置例如是脑深部电刺激系统(Deep Brain Stimulation,简称DBS)、植入式脑皮层刺激系统(Cortical Nerve Stimulation,简称CNS)、植入式脊髓电刺激系统(Spinal Cord Stimulation,简称SCS)、植入式骶神经电刺激系统(Sacral Nerve Stimulation,简称SNS)、植入式迷走神经电刺激系统(Vagus Nerve Stimulation,简称VNS)等。
刺激器可以包括IPG和电极导线,还可以包括延伸导线。IPG(implantable pulse generator,植入式脉冲发生器)设置于患者体内,IPG可以包括控制模块,接收程控设备发送的程控指令。IPG依靠密封电池和电路向体内组织提供可控制的电刺激能量,通过植入的电极导线,为体内组织的特定区域递送一路或两路可控制的特定电刺激。当体内组织的特定区域在脑深部区域时,电极导线可以是脑深部电极。延伸导线配合IPG使用,作为电刺激信号的传递媒体,将IPG产生的电刺激信号,传递给电极导线。电极导线通过多个电极触点,向体内组织的特定区域递送电刺激。可以理解为,刺激器设置有单侧或双侧的一路或多路电极导线,电极导线上设置有多个电极触点,电极触点可以均匀排列或者非均匀排列在电极导线的周向上。作为一个示例,电极触点可以以4行3列的阵列(共计12个电极触点)排列在电极导线的周向上。电极触点可以包括刺激触点和/或采集触点。电极触点例如可以采用片状、环状、点状等形状。
当患者的疾病类型不同时,受刺激的部位一般来说是不同的,所使用的刺激 触点(单源或多源)的数量、一路或多路(单通道或多通道)特定电刺激信号的运用以及刺激参数数据也是不同的。本申请实施例对适用的疾病类型不做限定,其可以是脑深部刺激(DBS)、脊髓刺激(SCS)、骨盆刺激、胃刺激、外周神经刺激、功能性电刺激所适用的疾病类型。其中,DBS可以用于治疗或管理的疾病类型包括但不限于:痉挛疾病(例如,癫痫)、疼痛、偏头痛、精神疾病(例如,重度抑郁症(MDD))、躁郁症、焦虑症、创伤后压力心理障碍症、轻郁症、强迫症(OCD)、行为障碍、情绪障碍、记忆障碍、心理状态障碍、移动障碍(例如,特发性震颤或帕金森氏病)、亨廷顿病、阿尔茨海默症、药物成瘾症、孤独症或其他神经学或精神科疾病和损害。
本申请实施例中,程控设备和刺激器建立程控连接时,可以利用程控设备调整刺激器的刺激参数(不同的刺激参数所对应的电刺激信号不同),也可以通过刺激器感测患者脑深部的生物电活动以采集得到电生理信号,并可以通过所采集到的电生理信号来继续调节刺激器的电刺激信号的刺激参数。
刺激参数可以包括:频率(例如是单位时间1s内的电刺激脉冲信号个数,单位为Hz)、脉宽(每个脉冲的持续时间,单位为μs)、幅值(一般用电压表述,即每个脉冲的强度,单位为V)、时序(例如可以是连续或者触发)、刺激模式(包括电流模式、电压模式、定时刺激模式和循环刺激模式中的一种或多种)、医生控制上限及下限(医生可调节的范围)和患者控制上限及下限(患者可自主调节的范围)中的一种或多种。
在一个具体应用场景中,可以在电流模式或者电压模式下对刺激器的各刺激参数进行调节。
程控设备可以是医生程控设备(即医生使用的程控设备)或者患者程控设备(即患者使用的程控设备)。医生程控设备例如可以是搭载有程控软件的平板电脑、笔记本电脑、台式计算机、手机等智能终端设备。患者程控设备例如可以是搭载有程控软件的平板电脑、笔记本电脑、台式计算机、手机等智能终端设备,患者程控设备还可以是其他具有程控功能的电子设备(例如是具有程控功能的充电器、数据采集设备)。
本申请实施例对医生程控设备和刺激器的数据交互不进行限制,当医生远程程控时,医生程控设备可以通过服务器、患者程控设备与刺激器进行数据交互。 当医生线下和患者面对面进行程控时,医生程控设备可以通过患者程控设备与刺激器进行数据交互,医生程控设备还可以直接与刺激器进行数据交互。
在一些可能的方式中,患者程控设备可以包括(与服务器通信的)主机和(与刺激器通信的)子机,主机和子机可通信的连接。其中,医生程控设备可以通过3G/4G/5G网络与服务器进行数据交互,服务器可以通过3G/4G/5G网络与主机进行数据交互,主机可以通过蓝牙协议/WIFI协议/USB协议与子机进行数据交互,子机可以通过401MHz-406MHz工作频段/2.4GHz-2.48GHz工作频段与刺激器进行数据交互,医生程控设备可以通过401MHz-406MHz工作频段/2.4GHz-2.48GHz工作频段与刺激器直接进行数据交互。
如图1所示,图1是本申请实施例提供的一种脑部医疗分析装置(植入式神经刺激器)的结构示意图。本申请的一实施例提供一种脑部医疗分析装置,包括:控制单元1,其具有第一选择连接端、第二选择连接端、电极连接端和控制连接端;脑深部电极2,其经由延伸导线7(参见图5)连接于控制单元1的电极连接端,处理器3,其连接于控制单元1的控制连接端,并向控制单元1输出控制信号,刺激信号发生单元4,其连接于控制单元1的第一选择连接端,并经由脑深部电极2输出对脑部进行刺激的电刺激信号;以及信号采集单元5,其连接于控制单元1的第二选择连接端,并经由脑深部电极2采集脑电信号,控制单元1根据从处理器接收的控制信号来控制第一选择连接端与电极连接端的接通状态以及第二选择连接端与电极连接端的接通状态。
脑电信号可以包括脑深度单细胞电信号(又称为脑深度单神经元电信号)、脑深度局部场电位信号(简称为LFP信号)中的一种或多种。也就是说,本申请所采集的脑电信号可以是单细胞级的,也可以是核团级的。
根据以上的方案,能够通过控制单元1来控制第一选择连接端与电极连接端的接通状态以及第二选择连接端与电极连接端的接通状态,从而能够切换刺激信号发生单元4与脑深部电极2接通的状态以及信号采集单元5与脑深部电极2接通的状态,从而能够利用一个电极实现脑深部电刺激和脑电信号采集这两种功能,能够避免在人体内植入过多的电极,减小创伤,而且,由于利用一个装置实现信号采集和电刺激,因此有利于后期的数据分析,能够方便地对比电刺激时脑(深部)电信号的改变,从而探索出不同疾病和脑部结构的电生理信号特征,对刺激 触点的选择、电刺激参数的合理设置、闭环刺激、治疗效果评价等都有重大意义。
下面,对本申请的脑部医疗分析装置的各组成部件进行详细说明。
刺激信号发生单元4为产生对患者脑部进行刺激的电刺激信号的部件,信号采集单元5为采集患者脑电信号的部件。脑深部电极2被深植在患者的脑部,既可以利用刺激信号发生单元产生4的电刺激信号对患者的脑部进行电刺激,也可以采集患者的脑电信号并传递到信号采集单元5。
在本申请的实施例中,处理器3可以选择电脑等设备,只要能够产生符合需要的控制信号即可。也就是说,处理器3可以设置于患者体外,也可以设置于患者体内。
本申请实施例的控制单元1具有第一选择连接端、第二选择连接端、电极连接端和控制连接端,分别通过有线或无线形式与以上部件连接。在一个实际应用中,具体地,第一选择连接端通过有线形式连接于刺激信号发生单元4、第二选择连接端通过有线形式连接于信号采集单元5、电极连接端通过延伸导线连接于脑深部电极2,控制连接端通过有线形式连接于处理器3(即电脑等设备)。控制连接端也可以通过无线形式与处理器3相连并接收控制信号。
控制单元1利用与处理器3连接的控制连接端接收控制信号,从而控制第一选择连接端与电极连接端的接通状态(即刺激信号发生单元4与脑深部电极2的接通或断开状态)以及第二选择连接端与电极连接端的接通状态(即信号采集单元5与脑深部电极2的接通或断开状态)。
在本实施例中,控制单元1包含多个开关电路6。例如在图2中,图2是本申请实施例提供的一种控制单元的结构示意图,作为一个例子,示出控制单元1包括四个开关电路6a、6b、6c、6d。四个开关电路6a~6d分别具有第一选择连接端的一个连接通道(与刺激信号发生单元4连接的一个连接通道。以下,记为4a~4d)、第二选择连接端的一个连接通道(与信号采集单元5连接的一个连接通道。以下,记为5a~5d)、电极连接端的一个连接通道(与脑深部电极2连接的一个连接通道。以下,记为2a~2d)以及控制连接端的一个连接通道(与处理器3连接的一个连接通道。以下,记为3a~3d)。
多个开关电路6根据来自处理器3的多路控制信号分别控制第一选择连接端的各连接通道4a~4d与电极连接端的各连接通道2a~2d的接通状态以及第二选 择连接端的各连接通道5a~5d与电极连接端的各连接通道2a~2d的接通状态。例如多个开关电路6根据来自处理器3的多路控制信号来分别切换为第一状态或第二状态。
在第一状态中,开关电路6a~6d使得第一选择连接端的连接通道4a~4d与电极连接端的连接通道2a~2d接通,且使第二选择连接端的连接通道5a~5d与电极连接端的连接通道2a~2d断开。具体地,在第一状态中,开关电路6a使得第一选择连接端的连接通道4a与电极连接端的连接通道2a接通,且使第二选择连接端的连接通道5a与电极连接端的连接通道2a断开;开关电路6b使得第一选择连接端的连接通道4b与电极连接端的连接通道2b接通,且使第二选择连接端的连接通道5b与电极连接端的连接通道2b断开;开关电路6c使得第一选择连接端的连接通道4c与电极连接端的连接通道2c接通,且使第二选择连接端的连接通道5c与电极连接端的连接通道2c断开;开关电路6d使得第一选择连接端的连接通道4d与电极连接端的连接通道2d接通,且使第二选择连接端的连接通道5d与电极连接端的连接通道2d断开。
在第二状态中,开关电路6a~6d使得第二选择连接端的连接通道5a~5d与电极连接端的连接通道2a~2d接通,且使第一选择连接端的连接通道4a~4d与电极连接端的连接通道2a~2d断开。具体地,在第二状态中,开关电路6a使得第二选择连接端的连接通道5a与电极连接端的连接通道2a接通,且使第一选择连接端的连接通道4a与电极连接端的连接通道2a断开;开关电路6b使得第二选择连接端的连接通道5b与电极连接端的连接通道2b接通,且使第一选择连接端的连接通道4b与电极连接端的连接通道2b断开;开关电路6c使得第二选择连接端的连接通道5c与电极连接端的连接通道2c接通,且使第一选择连接端的连接通道4c与电极连接端的连接通道2c断开;开关电路6d使得第二选择连接端的连接通道5d与电极连接端的连接通道2d接通,且使第一选择连接端的连接通道4d与电极连接端的连接通道2d断开。
由此,利用控制单元1的各开关电路6a~6d,能够实现刺激信号发生单元4到脑深部电极2的通路以及信号采集单元5到脑深部电极2的通路。
例如,作为一个例子,当开关电路6a、6b处于第一状态且开关电路6c、6d处于第二状态时,第一选择连接端的连接通道4a、4b与电极连接端的连接通道 2a、2b成为通路,而第二选择连接端的连接通道5c、5d与电极连接端的连接通道2c、2d成为通路。从而能够利用与电极连接端的连接通道2a、2b连接的脑深部电极2对患者脑部进行电刺激,而利用与电极连接端的连接通道2c、2d连接的脑深部电极2收集患者的脑电信号。在本实施例中,例如电极连接端的各连接通道分别通过延伸导线连接有一个脑深部电极2。
根据以上方案,能够利用多个开关电路6a~6d分别控制多个脑深部电极2的连接对象,从而能够利用同一个电极实现电刺激和脑电信号采集。且由于是利用同一个电极实现电刺激和脑电信号采集,因此能够实现对同一个点位(脑部位置)的电刺激和信号采集,有利于后期的数据分析和研究。
下面,对本申请的控制单元1中的开关电路6的具体结构进行说明。
如图3和图4所示,图3是本申请实施例提供的脑部医疗分析装置和控制单元中的开关电路的结构示意图,图4是本申请实施例提供的脑部医疗分析装置和控制单元中的开关电路的另一种结构示意图。本申请的开关电路6(6a~6d)分别包含两个晶体管和两个光耦元器件。在图3和图4中,虽然标记a~d(2a~2d、3a~3d、4a~4d、5a~5d、6a~6d)来表征多个部件,但在本说明书的相关说明中,仅以其中的一个部件作为例子进行说明。例如,对于开关电路6a~6d,仅以一个开关电路6a为例进行说明,对其他部件也以相同的方式进行说明。
开关电路6a包含两个晶体管和两个光耦元器件,两个晶体管中的一个晶体管的第一连接端成为第一选择连接端的一个连接通道4a,另一个晶体管的第一连接端成为第二选择连接端的一个连接通道5a。两个晶体管的第二连接端彼此连接,其连接点成为电极连接端的一个连接通道2a。此外,两个晶体管的控制端分别与两个光耦元器件的输出端相连,两个光耦元器件的输入端成为控制连接端的一个连接通道3a。
本申请的晶体管例如是场效应管(例如是MOSFET,金属氧化物半导体场效应管),可以通过对控制端电压的控制来控制第二连接端输出。此时,晶体管(即MOSFET)的第一连接端是源极,第二连接端是漏极,控制端是栅极。
或者,本申请的晶体管例如是三极管,可以通过对控制端电压的控制来控制第二连接端输出。此时,晶体管(即三极管)的第一连接端是发射极,第二连接端是集电极,控制端是基极。
光耦元器件是以光为媒介来传输电信号的器件,本申请的光耦元器件是将发光器(例如红外发光二极管LED)与受光器(光敏半导体、光敏电阻)封装在同一管壳内而成的器件。当光耦元器件的输入端被施加电信号时,发光器发出光线、受光器接收光线后会产生电流,并从输出端输出。
如图3和图4所示,光耦元器件的输入端成为控制连接端的一个连接通道3a,当从控制连接端的连接通道3a接收到控制信号(包括高电平和低电平两种情况)时,两个光耦元器件中的一个光耦元器件的发光器会发光,从而与该光耦元器件对应的晶体管导通,而另一个光耦元器件的发光器不发光,与该光耦元器件对应的晶体管不导通,从而第一选择连接端的一个连接通道4a和第二选择连接端的一个连接通道5a中的一者与电极连接端的一个连接通道2a接通,而另一者与电极连接端的一个连接通道2a断开。即,通过改变控制信号能够改变光耦元器件的接通和断开状态(两个光耦元器件中总是一者接通另一者断开),能够使开关电路6a切换第一状态和第二状态。
在本申请中,作为开关电路6a~6d的具体结构可以有图3和图4两种实现方式。下面分别说明开关电路6a~6d的两种实现方式。
(实现方式一)
如图3所示,两个光耦元器件分别包含第一发光元件和第二发光元件,第一发光元件的阳极与第二发光元件的阴极相连,且第一发光元件的阳极和第二发光元件的阴极的连接点成为控制连接端的一个连接通道3a。第一发光元件的阴极接地,第二发光元件的阳极接工作电压(Vcc)。
此时,当从控制连接端的一个连接通道3a接收到高电平的控制电压时,第一发光元件发光,第二发光元件不发光,从而与第一发光元件对应的晶体管的控制端有输入,与第二发光元件对应的晶体管的控制端无输入。从而第一选择连接端的连接通道4a与电极连接端的连接通道2a接通,而第二选择连接端的连接通道5a与电极连接端的连接通道2a断开。
当从控制连接端的一个连接通道3a接收到低电平的控制电压时,第二发光元件发光,第一发光元件不发光,从而与第二发光元件对应的晶体管的控制端有输入,与第一发光元件对应的晶体管的控制端无输入。从而第二选择连接端的连接通道5a与电极连接端的连接通道2a接通,而第二选择连接端的连接通道4a 与电极连接端的连接通道2a断开。
由此,两个光耦元器件的输入端直接与处理器连接,通过改变控制信号,能够使得两个光耦元器件分别处于接通和断开的状态,从而能够使开关电路6a(开关电路6b~6d)切换第一状态和第二状态。
(实现方式二)
如图4所示,相比于实现方式一中光耦元器件的输入端直接与处理器连接的结构,实现方式二中,光耦元器件的输入端经由反向驱动器与处理器3连接。
其中,反向驱动器可以选择性地将输入信号的相位反转180度以输出。反向驱动器可以是TTL(Transistor Transistor Logic)反相器、CMOS(Complementar y Metal-Oxide-Semiconductor)反相器中的一种或多种。
具体地,第一光耦元器件和第二光耦元器件的发光元件的阴极接地(GND),且阳极分别与反向驱动器的两个输出端相连。反向驱动器的一端接工作电压(V CC),另一端连接处理器3并接收控制信号,且该反向驱动器可以基于接收到的控制信号产生与该控制信号相同电平(即同为高电平或同为低电平)的第一信号和与该控制信号相反电平(当控制信号为高电平时,相反电平为低电平;当控制信号为低电平时,相反电平为高电平)的第二信号。
此时,如图4所示,当从控制连接端的一个连接通道3a接收到低电平的控制电压时,利用反向驱动器分别产生低电平的第一信号和高电平的第二信号。低电平的第一信号被施加到第一光耦元器件的发光元件的阳极,高电平的第二信号被施加到第二光耦元器件的发光元件的阳极,由此,第一光耦元器件的发光元件不发光,不会在相应的晶体管的控制端产生输出,第二光耦元器件的发光元件发光,在相应的晶体管的控制端产生输出,从而开关电路6a成为第二状态(即使得第二选择连接端的连接通道5a与电极连接端的连接通道2a接通,且使得第一选择连接端的连接通道4a与电极连接端的连接通道2a断开)。
另外,在图4所示的实现方式2的开关电路6中,当从控制连接端的一个连接通道3a接收到高电平的控制电压时,利用反向驱动器分别产生高电平的第一信号和低电平的第二信号。高电平的第一信号被施加到第一光耦元器件的发光元件的阳极,低电平的第二信号被施加到第二光耦元器件的发光元件的阳极,由此,第一光耦元器件的发光元件发光,在相应的晶体管的控制端产生输出,第二光耦 元器件的发光元件不发光,不会在相应的晶体管的控制端产生输出,从而开关电路6a成为第一状态(即使得第一选择连接端的连接通道4a与电极连接端的连接通道2a接通,且使得第二选择连接端的连接通道5a与电极连接端的连接通道2a断开)。
通过以上开关电路6a~6d,能够使得控制单元1能够根据控制信号来控制第一选择连接端与电极连接端的接通状态。由于控制单元1具有多个开关电路6a~6d(并不限定开关电路的数量),因此能够分别控制各个连接通道的接通断开情况,能够使各个连接通道分别处于不同的状态,从而例如能够实现同时进行电刺激和LFP信号收集的功能。
此外,在本申请中,处理器3能够以第一控制方式和第二控制方式工作,当以第一控制方式工作时,处理器3发出多路控制信号,以控制多个开关电路6a~6d中的一部分开关电路切换成第一状态,且控制另一部分开关电路切换成第二状态,在处理器3以第二控制方式工作时,处理器3发出多路控制信号控制所有的开关电路6a~6d切换成第二状态。
作为一个例子,在第一控制方式中,处理器3使得开关电路6a、6b切换成第一状态,并使得开关电路6c、6d切换成第二状态。
具体地,处理器3向控制连接端的连接通道3a、3b输出高电平的控制信号,并向控制连接端的连接通道3c、3d输出低电平的控制信号,由此,第一选择连接端的连接通道4a、4b与电极连接端的连接通道2a、2b接通,第二选择连接端的连接通道5a、5b与电极连接端的连接通道2a、2b断开,第一选择连接端的连接通道4c、4d与电极连接端的连接通道2c、2d断开,第二选择连接端的连接通道5c、5d与电极连接端的连接通道2c、2d接通。由此,刺激信号发生单元4能够通过第一选择连接端的连接通道4a、4b以及电极连接端的连接通道2a、2b,利用脑深部电极2发出刺激信号从而对脑深部进行电刺激,信号采集单元5能够通过第二选择连接端的连接通道5c、5d以及电极连接端的连接通道2c、2d,利用脑深部电极采集脑电信号。
作为一个例子,在第二控制方式中,处理器3向控制连接端的连接通道3a~3d输出低电平的信号,从而第一选择连接端的连接通道4a~4d与电极连接端的连接通道2a~2d断开,第二选择连接端的连接通道5a~5d与电极连接端的连接 通道2a~2d接通。由此,信号采集单元5能够通过第二选择连接端的连接通道5a~5d以及电极连接端的连接通道2a~2d,利用脑深部电极采集脑电信号。在处理器3进行第二控制方式时,所有的第二选择连接端的连接通道5a~5d以及电极连接端的连接通道2a~2d都不会受到电刺激信号的干扰,能够采集到干净(不受刺激信号干扰)的脑电信号。
此外,在本申请实施例中,处理器3以规定周期进行循环控制,例如,规定周期包括第一时长的第一控制方式和第二时长的第二控制方式,处理器3在进行第一时长的第一控制方式后进行第二时长的第二控制方式。
在本实施例中,第一时长为60s,第二时长为30s。
根据以上的说明,本申请提供了一种脑部医疗分析装置,包括:
控制单元1,其具有第一选择连接端、第二选择连接端、电极连接端和控制连接端;脑深部电极2,其经由延伸导线7连接于电极连接端;处理器3,其连接于控制连接端,并向控制单元1输出控制信号;刺激信号发生单元4,其连接于第一选择连接端,并经由脑深部电极2输出对脑部进行刺激的电刺激信号;以及信号采集单元5,其连接于第二选择连接端,并经由脑深部电极2采集脑电信号,控制单元1根据控制信号来控制第一选择连接端与电极连接端的接通状态以及第二选择连接端与电极连接端的接通状态。
此外,本申请还提供了一种用于脑部医疗分析装置的控制单元1,控制单元1具有第一选择连接端、第二选择连接端、电极连接端和控制连接端,且控制单元1根据控制信号来控制第一选择连接端与电极连接端的接通状态以及第二选择连接端与电极连接端的接通状态。
根据以上说明的脑部医疗分析装置和控制单元,能够通过控制单元1来控制第一选择连接端与电极连接端的接通状态以及第二选择连接端与电极连接端的接通状态,从而能够切换刺激信号发生单元4与脑深部电极2接通的状态以及信号采集单元5与脑深部电极2接通的状态,从而能够利用一个电极实现脑深部电刺激和脑电信号采集这两种功能,能够避免在人体内植入过多的电极,减小创伤,而且,由于利用一个装置实现信号采集和电刺激,因此有利于后期的数据分析,能够方便地对比电刺激时脑(深部)电信号的改变,从而探索出不同疾病和脑部结构的电生理信号特征,对刺激触点的选择、电刺激参数的合理设置、闭环刺激、 治疗效果评价等都有重大意义。
下面参照一具体的工作过程来说明本申请的脑部医疗分析装置以及控制单元。
如图5所示,图5是本申请实施例提供脑部医疗分析装置的应用示意图。刺激信号发生单元4(脑深部刺激器)连接控制单元1,延伸导线7连接控制单元1,且延伸导线7连接的脑深部电极2深植患者脑部。处理器3(PC)通过端口(如DB25接口)连接控制单元1,并向控制单元1发送程控信号。控制单元1包括信号采集单元5(在此为LFP采集端子51),并经由LFP采集端子51连接LFP记录分析设备52。当然,也可以理解为信号采集单元5包括LFP采集端子51和LFP记录分析设备52,这并不影响本申请的实质性内容。
LFP采集端子51可以是圆柱形端子,用于连接脑电记录仪设备如Brain Pr oducts等产品,也可以是采集卡端子,连接到装有NI公司采集卡的PC机上,配合使用虚拟仪器如labview进行LFP采集和分析数据。
控制单元1接收处理器3(PC)的控制信号,从而控制刺激信号发生单元4与延伸导线7的通路,即选择哪些电刺激信号可以传输到延伸导线7。例如,当一个连接通道a(此处用a表示第一选择连接端的连接通道4a、第二选择连接端的连接通道5a、电极连接端的连接通道2a、控制连接端的一个连接通道3a以及与这些连接通道相关的部件和信号,例如,标记7a表示与电极连接端的连接通道2a对应的延伸导线7)的程控信号(控制信号)为低电平,则断开刺激信号a和延伸导线7a,接通LFP采集端子51a和延伸导线7a,此时连接通道a可以作为LFP信号采集通道;当一个连接通道a的控制信号(程控信号0)为高电平,则接通刺激信号a和延伸导线7a,断开采集端子51a和延伸导线7a,此时a通道可以作为脑深部电刺激通道。
本实施例的脑部医疗分析装置以及控制单元1具有两种使用方式。
使用方式一:程控信号a和b为高电平,程控信号c和d为低电平,即接通刺激通道a和b,使用LFP采集端子51c和51d连接合适的信号记录仪(可以是兼容该LFP采集端子51的任何记录设备,例如BP设备)记录LFP信号。此时,LFP采集端子51c和51d可能会受到刺激通道a和b的部分干扰。
使用方式二:每以使用方式一使用一分钟,就将所有的程控信号设为低电平 并持续30秒。此时,在程控信号为低电平的30秒中,所用的采集端子51都可以采集到干净(不受刺激信号干扰)的LFP信号。
本申请的脑部医疗分析装置和控制单元通过结合使用方式一和使用方式二,可以对比有无电刺激时脑深部LFP信号的改变,从而研究不同疾病和脑部结构的电生理信号特征,对以后刺激触点的选择、电刺激参数的合理设置、闭环刺激、治疗效果评价等都有重大意义。

Claims (10)

  1. 一种脑部医疗分析装置,包括:
    控制单元,所述控制单元具有第一选择连接端、第二选择连接端、电极连接端和控制连接端;
    脑深部电极,所述脑深部电极经由延伸导线连接于所述电极连接端;
    处理器,所述处理器连接于所述控制连接端,并向所述控制单元输出控制信号;
    刺激信号发生单元,所述刺激信号发生单元连接于所述第一选择连接端,并经由所述脑深部电极输出对脑部进行刺激的电刺激信号;以及
    信号采集单元,所述信号采集单元连接于所述第二选择连接端,并经由所述脑深部电极采集脑电信号,
    所述控制单元根据所述控制信号来控制所述第一选择连接端与所述电极连接端的接通状态以及所述第二选择连接端与所述电极连接端的接通状态。
  2. 如权利要求1所述的脑部医疗分析装置,其中,
    所述控制单元包括多个开关电路,各所述开关电路分别具有所述第一选择连接端的一个连接通道、所述第二选择连接端的一个连接通道、所述电极连接端的一个连接通道以及所述控制连接端的一个连接通道,
    多个所述开关电路根据来自所述处理器的多路所述控制信号分别控制所述第一选择连接端的各连接通道与所述电极连接端的各连接通道的接通状态以及所述第二选择连接端的各连接通道与所述电极连接端的各连接通道的接通状态。
  3. 如权利要求2所述的脑部医疗分析装置,其中,
    多个所述开关电路根据多路所述控制信号分别切换为第一状态或第二状态,
    在所述第一状态中,所述开关电路使得所述第一选择连接端的连接通道与所述电极连接端的连接通道接通,且使得所述第二选择连接端的连接通道与所述电极连接端的连接通道断开,
    在所述第二状态中,所述开关电路使得所述第二选择连接端的连接通道与所述电极连接端的连接通道接通,且使得所述第一选择连接端的连接通道与所述电极连接端的连接通道断开。
  4. 如权利要求2所述的脑部医疗分析装置,其中,
    所述开关电路包含两个晶体管以及两个光耦元器件,
    两个所述晶体管的第一连接端分别成为所述第一选择连接端的一个连接通道和所述第二选择连接端的一个连接通道,两个所述晶体管的第二连接端彼此连接而成为所述电极连接端的一个连接通道,两个所述晶体管的控制端分别与两个所述光耦元器件的输出端相连,
    两个所述光耦元器件的输入端成为所述控制连接端的一个连接通道,
    所述控制信号使得两个所述光耦元器件分别处于接通和断开的状态,从而使所述开关电路切换所述第一状态和所述第二状态。
  5. 如权利要求4所述的脑部医疗分析装置,其中,
    两个所述光耦元器件的输入端直接与所述处理器连接,所述控制信号使得两个所述光耦元器件分别处于接通和断开的状态,从而使所述开关电路切换为所述第一状态或所述第二状态。
  6. 如权利要求4所述的脑部医疗分析装置,其中,
    两个所述光耦元器件的输入端经由反向驱动器与所述处理器连接,所述处理器的控制信号经由所述反向驱动器产生与所述控制信号相同电平的第一信号和与所述控制信号相反电平的第二信号,
    所述第一信号和所述第二信号使得两个所述光耦元器件分别处于接通和断开的状态,从而使所述开关电路切换为所述第一状态或所述第二状态。
  7. 如权利要求1-6中任一项所述的脑部医疗分析装置,其中,
    所述处理器能够以第一控制方式和第二控制方式工作,
    在以所述第一控制方式工作时,所述处理器发出多路控制信号,以控制多个所述开关电路中的一部分所述开关电路切换成第一状态,且控制多个所述开关电路中的另一部分所述开关电路切换成所述第二状态,
    在以所述第二控制方式工作时,所述处理器发出多路控制信号控制所有的所述开关电路切换成所述第二状态。
  8. 如权利要求7所述的脑部医疗分析装置,其中,
    所述处理器以规定周期进行循环控制,所述规定周期包括第一时长的第一控制方式和第二时长的第二控制方式。
  9. 如权利要求8所述脑部医疗分析装置,其中,
    所述第一时长为60秒,所述第二时长为30秒。
  10. 一种控制单元,所述控制单元具有第一选择连接端、第二选择连接端、 电极连接端和控制连接端,且所述控制单元根据所述控制信号来控制所述第一选择连接端与所述电极连接端的接通状态以及所述第二选择连接端与所述电极连接端的接通状态。
PCT/CN2023/074655 2022-02-10 2023-02-06 脑部医疗分析装置以及控制单元 WO2023151539A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210124535.4A CN114451901A (zh) 2022-02-10 2022-02-10 脑部医疗分析装置以及控制单元
CN202210124535.4 2022-02-10

Publications (1)

Publication Number Publication Date
WO2023151539A1 true WO2023151539A1 (zh) 2023-08-17

Family

ID=81413432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074655 WO2023151539A1 (zh) 2022-02-10 2023-02-06 脑部医疗分析装置以及控制单元

Country Status (2)

Country Link
CN (1) CN114451901A (zh)
WO (1) WO2023151539A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114451901A (zh) * 2022-02-10 2022-05-10 苏州景昱医疗器械有限公司 脑部医疗分析装置以及控制单元

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0966112A (ja) * 1995-09-01 1997-03-11 Ya Man Ltd パルス美容装置
CN102363062A (zh) * 2011-06-30 2012-02-29 江苏美德康信息科技有限公司 脉冲磁疗仪
CN205252313U (zh) * 2015-12-19 2016-05-25 中国人民解放军第四军医大学 一种脑深部刺激电极同步刺激和记录控制系统
CN111346297A (zh) * 2020-03-16 2020-06-30 首都医科大学宣武医院 多靶点电刺激电路、电刺激器及其信号输出方法
CN111727070A (zh) * 2017-11-17 2020-09-29 万能量子飞跃技术有限公司 用于电和磁组织刺激的设备
CN113117234A (zh) * 2021-03-30 2021-07-16 江苏云联智能医疗装备有限公司 智能理疗装置及其控制方法
CN113195046A (zh) * 2018-10-26 2021-07-30 美敦力公司 基于信号的自动化脑深部刺激编程
CN114451901A (zh) * 2022-02-10 2022-05-10 苏州景昱医疗器械有限公司 脑部医疗分析装置以及控制单元

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0966112A (ja) * 1995-09-01 1997-03-11 Ya Man Ltd パルス美容装置
CN102363062A (zh) * 2011-06-30 2012-02-29 江苏美德康信息科技有限公司 脉冲磁疗仪
CN205252313U (zh) * 2015-12-19 2016-05-25 中国人民解放军第四军医大学 一种脑深部刺激电极同步刺激和记录控制系统
CN111727070A (zh) * 2017-11-17 2020-09-29 万能量子飞跃技术有限公司 用于电和磁组织刺激的设备
CN113195046A (zh) * 2018-10-26 2021-07-30 美敦力公司 基于信号的自动化脑深部刺激编程
CN111346297A (zh) * 2020-03-16 2020-06-30 首都医科大学宣武医院 多靶点电刺激电路、电刺激器及其信号输出方法
CN113117234A (zh) * 2021-03-30 2021-07-16 江苏云联智能医疗装备有限公司 智能理疗装置及其控制方法
CN114451901A (zh) * 2022-02-10 2022-05-10 苏州景昱医疗器械有限公司 脑部医疗分析装置以及控制单元

Also Published As

Publication number Publication date
CN114451901A (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
JP5134682B2 (ja) 活性化組織の体積を小刻みに調節するインタフェースの使用
JP5432166B2 (ja) 組織内で刺激エネルギーを操作するための閉ループ型フィードバック
CN118022178A (zh) 无感觉异常的脊髓刺激系统
WO2023011491A1 (zh) 体外程控器及其控制电路、程控系统
CN107684664A (zh) 一种智能复合波形经颅电刺激系统
US20110196446A1 (en) Electrical brain stimulation in gamma band
JP2015507517A (ja) 短絡電極出力を備えた複数の電極ドライバ集積回路を有する埋込み可能刺激器デバイスのためのアーキテクチャ
WO2011115999A1 (en) Electrical stimulation based on phase response mapping
WO2023124616A1 (zh) 无线通讯系统、方法、计算机设备及存储介质
JP2016507336A (ja) 電力消費を最適化するために刺激パラメータを自動的に調節する神経変調システム及び方法
WO2023124390A1 (zh) 程控设备和植入式神经刺激系统
WO2023011492A1 (zh) 植入式刺激器及刺激系统
WO2023151539A1 (zh) 脑部医疗分析装置以及控制单元
WO2023061233A1 (zh) 体外充电器的充电控制方法及相关装置
CN109718470A (zh) 一种入耳式无创耳迷走神经刺激仪及其脉冲输出方法
WO2023071378A1 (zh) 植入式神经刺激器和植入式神经刺激系统
WO2023142534A1 (zh) 程控设备和植入式神经刺激系统
US20220104293A1 (en) Adjustment of Advertising Interval in Communications Between an Implantable Medical Device and an External Device
WO2023151538A1 (zh) 神经刺激器及神经刺激系统
WO2023124617A1 (zh) 植入式刺激系统
WO2023151496A1 (zh) 神经刺激电极、神经刺激装置和神经刺激系统
WO2023138117A1 (zh) 一种基于植入设备的远程诊疗系统及方法
WO2023138116A1 (zh) 一种医疗植入设备的数据处理方法、装置、介质及设备
CN218774182U (zh) 植入式脉冲发生器及其电路系统、刺激器以及医疗系统
CN2734251Y (zh) 一种治疗帕金森病的植入式脑起搏器用的脉冲发生器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE