WO2023011491A1 - 体外程控器及其控制电路、程控系统 - Google Patents

体外程控器及其控制电路、程控系统 Download PDF

Info

Publication number
WO2023011491A1
WO2023011491A1 PCT/CN2022/109771 CN2022109771W WO2023011491A1 WO 2023011491 A1 WO2023011491 A1 WO 2023011491A1 CN 2022109771 W CN2022109771 W CN 2022109771W WO 2023011491 A1 WO2023011491 A1 WO 2023011491A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
circuit
sub
chip
terminal
Prior art date
Application number
PCT/CN2022/109771
Other languages
English (en)
French (fr)
Inventor
刘彬
朱为然
Original Assignee
苏州景昱医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州景昱医疗器械有限公司 filed Critical 苏州景昱医疗器械有限公司
Publication of WO2023011491A1 publication Critical patent/WO2023011491A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36125Details of circuitry or electric components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • the present application relates to the technical field of implantable medical equipment, in particular to an in vitro program controller, its control circuit, and a program control system.
  • Implantable neurostimulation systems mainly include stimulators implanted in the body, electrodes and program-controlled equipment outside the body.
  • the existing neuromodulation technology mainly uses stereotaxic surgery to implant electrodes in specific structures (i.e., targets) in the body, and the stimulator implanted in the patient sends electrical pulses to the targets through the electrodes to regulate the corresponding neural structures and networks. Electrical activity and its function, thereby improving symptoms and relieving pain.
  • the purpose of this application is to provide an in vitro program controller and its control circuit, and a program control system.
  • the control circuit of the in vitro program controller Through the control circuit of the in vitro program controller, the data interaction between the program-controlled device and the stimulator can be realized, so that direct communication between the stimulator and the program-controlled device can be avoided, and the purpose of confidential communication can be achieved.
  • the present application provides a control circuit of an in vitro program controller, the control circuit includes a single-chip microcomputer, a wireless communication sub-circuit and a radio frequency sub-circuit;
  • the wireless communication sub-circuit is configured to receive a program-controlled signal sent by a program-controlled device, generating a communication signal and sending it to the single-chip microcomputer;
  • the single-chip microcomputer is configured to generate a stimulation control signal based on the communication signal and send it to the radio frequency sub-circuit;
  • the radio frequency sub-circuit is configured to, based on the stimulation control signal, Generate a stimulator signal and send it to the stimulator installed in the patient;
  • the wireless communication sub-circuit includes an input end and an output end,
  • the radio frequency sub-circuit includes a data input end and a data output end, and
  • the single-chip microcomputer includes a communication input end, Communication output end, radio frequency data input end and radio frequency data output end; The communication input end of the single-chip microcomputer is connected to the output
  • the wireless communication sub-circuit is used to receive the program-controlled signal sent by the program-controlled device, and the generated communication signal is sent to the single-chip microcomputer.
  • the signal is sent to the stimulator installed in the patient's body, so that the data interaction between the program-controlled device and the stimulator can be realized through the control circuit of the external program controller, avoiding direct communication between the stimulator and the program-controlled device, and achieving the purpose of confidential communication.
  • the radio frequency sub-circuit includes a radio frequency signal transceiver module, a radio frequency switch chip, and an antenna module;
  • the single-chip microcomputer also includes a radio frequency transceiver control terminal, and the radio frequency switch chip includes a first Input end, first transmission end and second transmission end, described radio frequency signal transceiver module comprises data input end, data output end and radio frequency signal transmission end, and described antenna module comprises antenna signal transmission end;
  • the data of described radio frequency subcircuit The output terminal is connected to the data output terminal of the radio frequency signal transceiver module, the data input terminal of the radio frequency sub-circuit is connected to the data input terminal of the radio frequency signal transceiver module;
  • the radio frequency transceiver control terminal of the single-chip microcomputer is respectively connected to the The first input terminal and the second input terminal of the radio frequency switch chip;
  • the first transmission terminal of the radio frequency switch chip is connected to the antenna signal transmission terminal of the antenna module;
  • the second transmission terminal of the radio frequency switch chip is connected to the The radio frequency signal
  • the radio frequency transceiver control end of the single-chip microcomputer is respectively connected to the first input end and the second input end of the radio frequency switch chip, and the radio frequency switch chip can be switched to receive based on the output signal of the radio frequency transceiver control end of the single chip microcomputer.
  • mode or transmission mode when the RF switch chip is in the transmission mode, the RF signal transmission end of the RF signal transceiver module sends the RF signal to the second transmission end of the RF switch chip, and the first transmission end of the RF switch chip passes the antenna signal of the antenna module The transmission end sends the stimulator signal to the stimulator installed in the patient.
  • the stimulator When the RF switch chip is in the receiving mode, the stimulator sends the stimulator signal to the first transmission end of the RF switch chip through the antenna signal transmission end of the antenna module.
  • the second transmission end of the switch chip sends the radio frequency signal to the radio frequency signal transmission end of the radio frequency signal transceiver module.
  • the radio frequency signal transceiving module includes a radio frequency transceiver chip, a filter, a first capacitor, and a first inductor;
  • the radio frequency transceiver chip includes a positive radio frequency signal transmission end and a negative radio frequency signal transmission end
  • the radio frequency signal transmission end of the radio frequency signal transceiver module is connected to the first end of the filter, and the second end of the filter is connected to the positive radio frequency signal transmission of the radio frequency transceiver chip through the first capacitor terminal, and the second terminal of the filter is also connected to the negative radio frequency signal transmission terminal of the radio frequency transceiver chip through the first inductor.
  • the beneficial effect of the technical solution is that the filter can filter out other useless signals and receive a specific radio frequency signal, and the filter cooperates with the first inductor and the first capacitor respectively to effectively filter out the clutter of the radio frequency signal transceiver module.
  • the antenna module includes a radio frequency connector, a tenth capacitor, and a connection terminal;
  • the connection terminal includes a first end, the radio frequency connector includes an inner core, and the inner core includes a first A data transmission end and a second data transmission end;
  • the first end of the connection terminal is connected to the first data transmission end of the inner core of the radio frequency connector through the tenth capacitor;
  • the inner core of the radio frequency connector The second data transmission end is connected to the antenna signal transmission end of the antenna module.
  • the radio frequency sub-circuit further includes an amplifier chip, an eleventh capacitor, and a twelfth capacitor, the amplifier chip includes a data input terminal and a data output end; the radio frequency switch chip includes a data input terminal terminal and data output terminal; the data output terminal of the radio frequency switch chip is connected to the data input terminal of the amplifier chip through the twelfth capacitor, and the data input terminal of the radio frequency switch chip is connected through the eleventh capacitor to the data output of the amplifier chip.
  • the beneficial effect of the technical solution is that the amplifier chip can amplify the electric signal to meet the requirement of the radio frequency sub-circuit on the signal amplitude.
  • the wireless communication sub-circuit includes a Bluetooth chip, a first magnetic bead, and a second magnetic bead
  • the Bluetooth chip includes a UART data input end, a UART data output end, and a Bluetooth antenna transmission end;
  • the input end of the wireless communication sub-circuit is connected to the UART data input end of the Bluetooth chip through the first magnetic bead, and the output end of the wireless communication sub-circuit is connected to the Bluetooth chip through the second magnetic bead.
  • UART data output terminal; the wireless communication sub-circuit is configured to receive the program control signal sent by the program control device through the Bluetooth antenna transmission terminal of the Bluetooth chip.
  • the beneficial effect of this technical solution is that the first magnetic bead and the second magnetic bead can suppress high-frequency noise and spike interference, and can also absorb static pulses, and the wireless communication sub-circuit is realized through the UART data input end and UART data output end of the Bluetooth chip.
  • the Bluetooth chip uses the bluetooth antenna transmission terminal to receive the program-controlled signal sent by the program-controlled device, generates a communication signal, and sends the communication signal to the single-chip microcomputer through the UART data output terminal.
  • the control circuit further includes a power supply circuit
  • the power supply circuit includes a first preset voltage output module, a second preset voltage output module, a wireless communication power supply module, a single-chip microcomputer power supply module and RF power supply module
  • the first preset voltage output module is configured to output a first preset voltage
  • the first preset voltage output module is configured to output a second preset voltage
  • the wireless communication power supply module is configured To supply power to the wireless communication sub-circuit
  • the single-chip power supply module is configured to supply power to the single-chip microcomputer
  • the radio frequency power supply module is configured to supply power to the radio frequency sub-circuit
  • the wireless communication power supply module includes an input terminal and Output terminal, the input terminal of the wireless communication power supply module inputs the first preset voltage, and the output terminal of the wireless communication power supply module outputs a wireless power supply voltage
  • the single-chip power supply module includes an input terminal and an output terminal, and the single-chip microcomputer The input end of the power supply module inputs the wireless power supply
  • the power supply circuit can output the wireless power supply voltage through the wireless communication power supply module to supply power to the wireless communication sub-circuit; output the power supply voltage of the single chip microcomputer through the single chip power supply module to supply power to the single chip microcomputer; output the radio frequency power supply voltage through the radio frequency power supply module , to supply power to the radio frequency sub-circuit, so that the power supplies of the wireless communication sub-circuit, the single-chip microcomputer and the radio frequency sub-circuit do not interfere with each other.
  • the control circuit further includes an emergency stop sub-circuit, the emergency stop sub-circuit includes a first resistor and an emergency stop button; the emergency stop sub-circuit includes an input terminal and an output terminal, and the emergency stop sub-circuit includes an input terminal and an output terminal.
  • the input terminal of the emergency stop sub-circuit inputs the first preset voltage, and the input terminal of the emergency stop sub-circuit is also grounded through the first resistor connected in sequence and the emergency stop button;
  • the single-chip microcomputer also includes a stop The signal input terminal, the stop signal input terminal of the single chip microcomputer is connected between the first resistor and the emergency stop button.
  • the beneficial effect of this technical solution is that when the emergency stop button is pressed, the stop signal input terminal of the single-chip microcomputer detects the pull-down signal, triggers the single-chip microcomputer to respond, and the single-chip microcomputer sends the stimulator signal to the stimulator arranged in the patient through the radio frequency sub-circuit, stimulating The device stops the electrical stimulation, so that the emergency stop button can be pressed immediately in case of an emergency, which can prevent the damage to the human body from expanding, improve the safety during use, and avoid bringing bad experience to the user.
  • the control circuit further includes a first light emitting diode control subcircuit and a second light emitting diode control subcircuit;
  • the first light emitting diode control subcircuit includes a second resistor, a first light emitting diode and The third magnetic bead
  • the second light emitting diode control subcircuit includes a third resistor, a second light emitting diode and a fourth magnetic bead
  • the wireless communication subcircuit also includes a first light emitting diode terminal and a second light emitting diode terminal;
  • the first light emitting diode control subcircuit also includes an input terminal and an output terminal, the input terminal of the first light emitting diode control subcircuit inputs a wireless power supply voltage, and the input terminal of the first light emitting diode control subcircuit also passes through the first light emitting diode control subcircuit
  • Two resistors are connected to the anode of the first light emitting diode, and the cathode of the first light
  • the wireless communication sub-circuit controls the power-on state of the first light-emitting diode through the first light-emitting diode terminal, thereby controlling the power of the first light-emitting diode or extinguishing it, and the wireless communication sub-circuit controls the second light-emitting diode through the second light-emitting diode terminal.
  • the power-on state of the light-emitting diode so as to control the power of the second light-emitting diode or turn off.
  • the present application provides an in vitro programmer, which includes the control circuit of any one of the above in vitro programmers.
  • the beneficial effect of this technical solution is that the in vitro program controller can realize data interaction between the program-controlled device and the stimulator through the control circuit of the in-vitro program controller, avoiding direct communication between the stimulator and the program-controlled device, and achieving the purpose of confidential communication.
  • the present application provides a program-controlled device, and the program-controlled system includes a program-controlled device, a stimulator installed in a patient's body, and the above-mentioned in vitro program controller.
  • FIG. 1 is a schematic structural view of a first part of a single-chip microcomputer provided in an embodiment of the present application;
  • FIG. 2 is a schematic structural diagram of a second part of a single-chip microcomputer provided in an embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of a wireless communication sub-circuit provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a radio frequency signal transceiver module provided by an embodiment of the present application.
  • Fig. 5 is a partial structural schematic diagram of a radio frequency sub-circuit provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an antenna module provided by an embodiment of the present application.
  • Fig. 7 is a partial structural schematic diagram of another radio frequency sub-circuit provided by the embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of an emergency stop sub-circuit provided by an embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of a first light emitting diode control sub-circuit provided by an embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of a second light emitting diode control sub-circuit provided by an embodiment of the present application.
  • Fig. 11 is a partial structural schematic diagram of a power supply electronic circuit provided by an embodiment of the present application.
  • Fig. 12 is a schematic structural diagram of a first preset voltage output module provided by an embodiment of the present application.
  • Fig. 13 is a schematic structural diagram of a program control system provided by an embodiment of the present application.
  • U1A the first part of the MCU; U1B, the second part of the MCU; U2, the Bluetooth chip; U3, the RF transceiver chip; U4, the RF switch chip; U5, the amplifier chip; U6, the boost converter chip; R1 ⁇ R7, the first resistor to the seventh resistor; C1 ⁇ C21, the first capacitor to the twenty-first capacitor; FB1 ⁇ FB4, the first magnetic bead to the fourth magnetic bead; D1 ⁇ D6, the first diode to the second Six diodes; SAW1, filter; X1, crystal oscillator; L1 ⁇ L3, first inductor to third inductor; J1, radio frequency connector; J2, terminal block; LED1, first light-emitting diode; LED2, second Light-emitting diode; F1, fuse; Q1, MOS tube; SW1, emergency stop button; SW2, switch; 10, external program controller; 20, program-controlled equipment; 30, stimulator; 40, program-controlled system.
  • An implantable neurostimulation system (an implantable medical system) mainly includes a stimulator implanted in the patient's body and a program-controlled device installed outside the patient's body.
  • the existing neuromodulation technology mainly uses stereotaxic surgery to implant electrodes in specific structures (i.e., targets) in the body, and the stimulator implanted in the patient sends electrical pulses to the targets through the electrodes to regulate the corresponding neural structures and networks. Electrical activity and its function, thereby improving symptoms and relieving pain.
  • the stimulator can be an implantable electrical nerve stimulation device, an implantable cardiac electrical stimulation system (also known as a cardiac pacemaker), an implantable drug infusion device (Implantable Drug Delivery System, referred to as IDDS) and a wire switch.
  • Implantable electrical nerve stimulation devices are, for example, Deep Brain Stimulation (DBS), Implantable Cortical Nerve Stimulation (CNS), Implantable Spinal Cord Stimulation (Spinal Cord) Stimulation, referred to as SCS), implanted sacral nerve stimulation system (Sacral Nerve Stimulation, referred to as SNS), implanted vagus nerve stimulation system (Vagus Nerve Stimulation, referred to as VN S), etc.
  • DBS Deep Brain Stimulation
  • CNS Implantable Cortical Nerve Stimulation
  • Spinal Cord Stimulation Spinal Cord Stimulation
  • SNS implanted sacral nerve stimulation system
  • Vagus Nerve Stimulation referred to as VN S
  • the stimulator can include IPG, extension wires and electrode wires.
  • IPG implantable pulse generator, implantable pulse generator
  • IPG implantable pulse generator
  • the electrical stimulation energy through the implanted extension lead and electrode lead, delivers one or two controllable specific electrical stimulations to specific areas of tissues in the body.
  • the extension lead is used in conjunction with the IPG as a transmission medium for the electrical stimulation signal, and transmits the electrical stimulation signal generated by the IPG to the electrode lead.
  • Electrode leads deliver electrical stimulation to specific areas of tissue in the body through multiple electrode contacts.
  • the stimulator is provided with one or more electrode wires on one side or both sides, and a plurality of electrode contacts are arranged on the electrode wires, and the electrode contacts can be arranged uniformly or non-uniformly in the circumferential direction of the electrode wires.
  • the electrode contacts may be arranged in an array of 4 rows and 3 columns (a total of 12 electrode contacts) in the circumferential direction of the electrode wire.
  • Electrode contacts may include stimulation electrode contacts and/or collection electrode contacts.
  • the electrode contacts can be in the shape of, for example, a sheet, a ring, or a dot.
  • the stimulated body tissue may be the patient's brain tissue, and the stimulated site may be a specific part of the brain tissue.
  • the stimulated site is generally different, the number of stimulation contacts used (single source or multi-source), one or more channels (single-channel or multi-channel) specific electrical stimulation signals
  • the application and stimulus parameter data are also different.
  • the embodiment of the present application does not limit the applicable disease types, which may be the applicable disease types for deep brain stimulation (DBS), spinal cord stimulation (SCS), pelvic stimulation, gastric stimulation, peripheral nerve stimulation, and functional electrical stimulation.
  • DBS disorders that DBS can be used to treat or manage include, but are not limited to: spasticity disorders (e.g., epilepsy), pain, migraine, psychiatric disorders (e.g., major depressive disorder (MDD)), bipolar disorder, anxiety disorders, Post-traumatic stress disorder, hypodepression, obsessive-compulsive disorder (OCD), conduct disorder, mood disorder, memory disorder, mental status disorder, mobility disorder (eg, essential tremor or Parkinson's disease), Huntington's disease, Al Alzheimer's disease, drug addiction, autism, or other neurological or psychiatric conditions and impairments.
  • spasticity disorders e.g., epilepsy
  • pain migraine
  • psychiatric disorders e.g., major depressive disorder (MDD)
  • bipolar disorder e.g., anxiety disorders, Post-traumatic stress disorder, hypodepression, obsessive-compulsive disorder (OCD)
  • OCD obsessive-compulsive disorder
  • conduct disorder mood disorder
  • the program-controlled device when the program-controlled device and the stimulator establish a program-controlled connection, can be used to adjust the stimulation parameters of the stimulator (different stimulation parameters correspond to different electrical stimulation signals), and the stimulator can also be used to sense the deep brain of the patient.
  • the bioelectric activity of the stimulator can be used to collect the electrophysiological signal, and the stimulation parameters of the electrical stimulation signal of the stimulator can be adjusted continuously through the collected electrophysiological signal.
  • Stimulation parameters can include at least one of the following: frequency (for example, the number of electrical stimulation pulse signals per unit time 1s, the unit is Hz), pulse width (the duration of each pulse, the unit is ⁇ s), amplitude (generally used Voltage expression, that is, the intensity of each pulse, the unit is V), timing (for example, it can be continuous or triggered), stimulation mode (including one or more of current mode, voltage mode, timed stimulation mode and cycle stimulation mode) , The upper and lower limits of the doctor's control (the range that can be adjusted by the doctor) and the upper and lower limits of the patient's control (the range that can be adjusted by the patient).
  • frequency for example, the number of electrical stimulation pulse signals per unit time 1s, the unit is Hz
  • pulse width the duration of each pulse, the unit is ⁇ s
  • amplitude generally used Voltage expression, that is, the intensity of each pulse, the unit is V
  • timing for example, it can be continuous or triggered
  • stimulation mode including one or more of current mode, voltage mode, time
  • various stimulation parameters of the stimulator can be adjusted in current mode or voltage mode.
  • the program-controlled device may be a doctor-programmed device (ie, a program-controlled device used by a doctor) or a patient-programmed device (ie, a program-controlled device used by a patient).
  • the doctor's program-controlled device can be, for example, a tablet computer, a notebook computer, a desktop computer, a mobile phone and other smart terminal devices equipped with program-controlled software.
  • the patient program-controlled device can be, for example, smart terminal devices such as tablet computers, notebook computers, desktop computers, and mobile phones equipped with program-controlled software, and the patient program-controlled device can also be other electronic devices with program-controlled functions (such as chargers with program-controlled functions, data collection device).
  • the embodiment of the present application does not limit the data interaction between the doctor's program-controlled device and the stimulator.
  • the doctor's program-controlled device can perform data interaction with the stimulator through the server and the patient's program-controlled device.
  • the doctor performs program control with the patient face-to-face offline the doctor's program-controlled device can interact with the stimulator through the patient's program-controlled device, and the doctor's program-controlled device can also directly interact with the stimulator.
  • the patient programmable device may include a host (communicating with the server) and a slave (communicating with the stimulator), the host and slave being communicatively connected.
  • the doctor's program-controlled equipment can exchange data with the server through the 3G/4G/5G network
  • the server can exchange data with the host through the 3G/4G/5G network
  • the host can exchange data with the slave through the Bluetooth protocol/WIFI protocol/USB protocol.
  • the sub-machine can exchange data with the stimulator through the 401MHz-406MHz working frequency band/2.4GHz-2.48GHz working frequency band, and the doctor's program-controlled equipment can directly exchange data with the stimulator through the 401MHz-406MHz working frequency band/2.4GHz-2.48GHz working frequency band interact.
  • the embodiments of the present application can also be applied to the technical fields of other medical devices or even non-medical devices.
  • the instructions to the stimulator may not be limited to programmed instructions.
  • an embodiment of the present application provides a control circuit of an in vitro program controller, the control circuit includes a single-chip microcomputer, a wireless communication sub-circuit and a radio frequency sub-circuit; the wireless communication sub-circuit is configured to receive a program-controlled device The program control signal sent generates a communication signal and sends it to the single-chip microcomputer; the single-chip microcomputer is configured to generate a stimulus control signal based on the communication signal and send it to the radio frequency sub-circuit; the radio frequency sub-circuit is configured to The stimulation control signal is generated to generate a stimulator signal and sent to the stimulator installed in the patient; the wireless communication sub-circuit includes an input end and an output end, the radio frequency sub-circuit includes a data input end and a data output end, and the single-chip microcomputer It includes a communication input terminal, a communication output terminal, a radio frequency data input terminal and a radio frequency data output terminal; the communication input terminal of the single-chip microcomputer is connected to the output terminal of
  • the program-controlled device is, for example, a mobile phone, a tablet computer, a notebook computer, a desktop computer or a smart wearable device.
  • the stimulator can be an implantable electrical nerve stimulation device, an implantable cardiac electrical stimulation system (also known as a cardiac pacemaker), an implantable drug infusion device (Implantable Drug Delivery System, referred to as IDDS) and a lead transfer device any of the.
  • Implantable neural electrical stimulation devices are, for example, Deep Brain Stimulation (DBS), Implantable Cortical Nerve Stimulation (CNS), Implantable Spinal Cord Stimulation (Spinal Cord) Stimulation, referred to as SCS), implanted sacral nerve stimulation system (Sacral Nerve Stimulation, referred to as SNS), implanted vagus nerve stimulation system (Vagus Nerve Stimulation, referred to as VNS), etc.
  • DBS Deep Brain Stimulation
  • CNS Implantable Cortical Nerve Stimulation
  • Spinal Cord Stimulation Spinal Cord Stimulation
  • SNS implanted sacral nerve stimulation system
  • Vagus Nerve Stimulation implanted vagus nerve stimulation system
  • VNS vagus Nerve Stimulation
  • the single-chip microcomputer can be an MSP430 series single-chip microcomputer.
  • the wireless communication sub-circuit to receive the program-controlled signal sent by the program-controlled device, generate a communication signal and send it to the single-chip microcomputer, the single-chip microcomputer generates a stimulation control signal based on the communication signal and send it to the radio frequency sub-circuit, and use the radio frequency sub-circuit to send the stimulator signal to the
  • the stimulator in the patient's body can thus realize the data interaction between the program-controlled device and the stimulator through the control circuit of the external program controller, avoiding direct communication between the stimulator and the program-controlled device, and achieving the purpose of confidential communication.
  • FIG. 1 is a schematic structural diagram of a first part of a single-chip microcomputer provided by an embodiment of the present application.
  • the single-chip microcomputer may include a first part U1A and a second part U1B.
  • the first part U1A of the single-chip microcomputer may include a communication input end, a communication output end, a radio frequency data input end and a radio frequency data output end, and the first part U1A of the single-chip microcomputer may also include a stop signal input end, an interrupt signal input end, a first state indicating end, a second Two status indication terminals, a battery status indication terminal, a radio frequency transceiver control terminal, a clock signal output terminal and a chip selection control terminal.
  • the second part U1B of the single-chip microcomputer may include a first debugging terminal to a sixth debugging terminal, and the first testing terminal and the sixth testing terminal of the single-chip microcomputer may be respectively connected to different test points to provide programming and online debugging functions.
  • the network labels of the first debugging terminal to the sixth debugging terminal of the single-chip microcomputer can be RST, TCK, TMS, TDI, TDO and TEST in turn.
  • the network label of the stop signal input terminal of the single-chip microcomputer is, for example, SW_STOP
  • the network label of the interrupt signal input terminal is, for example, PIO7
  • the network label of the battery status indicator terminal is, for example, B AT_LOW.
  • a net label is an electrical connection point, generally composed of letters, symbols, numbers, etc.
  • the electrical connection lines, pins and networks with the same network label are connected together, and those with different network labels are not connected.
  • the wireless communication sub-circuit can also include an interrupt signal output terminal and a battery status signal terminal, the interrupt signal output terminal of the wireless communication sub-circuit is connected to the stop signal input terminal of the single-chip microcomputer, and the battery status signal terminal of the wireless communication sub-circuit is connected to the battery status of the single-chip microcomputer. indicating end.
  • the network label of the input terminal of the wireless communication sub-circuit is, for example, BT_UART_RXD
  • the network label of the output terminal of the wireless communication sub-circuit is, for example, BT_UART_TXD.
  • the radio frequency sub-circuit may also include a first state signal terminal, a second state signal terminal, a chip select terminal, and a clock signal input terminal.
  • the network label of the first state signal terminal of the radio frequency subcircuit is, for example, RF_GDO0
  • the network label of the second state signal terminal is, for example, RF_GDO2
  • the network label of the chip select terminal is, for example, RF_CS
  • the network label of the clock signal input terminal is, for example, RF_CLK
  • the data of the radio frequency subcircuit is, for example, RF_SI
  • the network label of the data output terminal of the radio frequency sub-circuit is, for example, RF_SO.
  • the first state signal end of the radio frequency sub-circuit is connected to the first state indication end of the single-chip microcomputer
  • the second state signal end of the radio frequency sub-circuit is connected to the second state indication end of the single-chip microcomputer
  • the chip selection end of the radio frequency sub-circuit is connected to the chip of the single-chip microcomputer
  • the control terminal is selected, and the clock signal input terminal of the radio frequency sub-circuit is connected to the clock signal output terminal of the single-chip microcomputer.
  • the radio frequency sub-circuit may include a radio frequency signal transceiving module, a radio frequency switch chip U4 (broadband analog switch) and an antenna module; the single-chip microcomputer may also include a radio frequency transceiving control terminal,
  • the radio frequency switch chip U4 may include a first input terminal, a second input terminal, a first transmission terminal and a second transmission terminal, and the radio frequency signal transceiver module may include a data input terminal, a data output terminal and a radio frequency signal transmission terminal, so
  • the antenna module can include an antenna signal transmission end; the data output end of the radio frequency subcircuit can be connected to the data output end of the radio frequency signal transceiver module, and the data input end of the radio frequency subcircuit can be connected to the radio frequency signal transceiver
  • the data input terminal of the module; the radio frequency transceiver control terminal of the single-chip microcomputer can be respectively connected to the first input terminal and the second input terminal of the radio frequency switch chip U4
  • the radio frequency switch chip U4 may further include a first control terminal and a second control terminal.
  • the network label of the RF signal transmission end of the RF signal transceiver module is, for example, RF_SIGNAL
  • the network label of the antenna signal transmission terminal of the antenna module is, for example, RF_ANT
  • the network label of the RF transceiver control terminal of the single-chip microcomputer is, for example, RF_CTRL.
  • the radio frequency transceiver control end of the single-chip microcomputer is respectively connected to the first input end and the second input end of the radio frequency switch chip U4, and the output signal of the radio frequency transceiver control end of the single-chip microcomputer can determine that the radio frequency switch chip U4 is switched to a receiving mode or a transmitting mode.
  • the RF signal transmission end of the RF signal transceiver module sends the RF signal to the second transmission end of the RF switch chip U4, and the first transmission end of the RF switch chip U4 passes the antenna signal of the antenna module The transmission end sends the stimulator signal to the stimulator installed in the patient.
  • the stimulator When the RF switch chip U4 is in the receiving mode, the stimulator sends the stimulator signal to the first transmission end of the RF switch chip U4 through the antenna signal transmission end of the antenna module. , the second transmission end of the radio frequency switch chip U4 sends the radio frequency signal to the radio frequency signal transmission end of the radio frequency signal transceiver module.
  • FIG. 4 is a schematic structural diagram of a radio frequency signal transceiving module provided by an embodiment of the present application.
  • the radio frequency sub-circuit may also include a sixth capacitor C6 and a seventh capacitor C7, and the first end of the sixth capacitor C6 may be connected to the radio frequency transceiver control terminal of the microcontroller and the first terminal of the radio frequency switch chip U4. Between the input ends, the second end of the sixth capacitor C6 can be grounded; the first end of the seventh capacitor C7 can be respectively connected to the first input end and the second input end of the radio frequency switch chip U4, and the second end of the seventh capacitor C7 terminal can be grounded.
  • the radio frequency signal transceiving module may include a radio frequency transceiver chip U3 (RF Transceiver chip), a filter SAW1, a first capacitor C1 and a first inductor L1; the radio frequency transceiver chip U3 can include a positive radio frequency signal transmission end and a negative radio frequency signal transmission end; the radio frequency signal transmission end of the radio frequency signal transceiver module can be connected to the first end of the filter SAW1, and the second end of the filter SAW1 can pass The first capacitor C1 is connected to the positive RF signal transmission end of the RF transceiver chip U3, and the second end of the filter SAW1 can also be connected to the RF transceiver chip U3 through the first inductor L1. Negative RF signal transmission terminal.
  • RF Transceiver chip RF Transceiver chip
  • the filter SAW1 can filter out other useless signals and receive a specific radio frequency signal.
  • the filter SAW1 cooperates with the first inductor L1 and the first capacitor C1 respectively to effectively filter out the clutter of the radio frequency signal transceiver module.
  • the radio frequency signal transceiving module may further include a crystal oscillator X1, a second inductor L2, and second to fifth capacitors C2 to C5.
  • the radio frequency transceiver chip U3 may further include a first crystal oscillator terminal and a second crystal oscillator terminal.
  • the crystal oscillator X1 can include pins 1 to 4, the first pin of the crystal oscillator X1 can be connected to the second crystal oscillator terminal of the radio frequency transceiver chip U3, and the first pin of the crystal oscillator X1 can also be
  • the fifth capacitor C5 is grounded; the second pin of the crystal oscillator X1 can be grounded; the third pin of the crystal oscillator X1 can be connected to the first crystal oscillator terminal of the radio frequency transceiver chip U3, and the first crystal oscillator terminal of the crystal oscillator X1
  • the pin 3 can also be grounded through the fourth capacitor C4; the fourth pin of the crystal oscillator X1 can be grounded, and the fourth pin of the crystal oscillator X1 can also be connected to the first pin of the radio frequency transceiver chip U3 through the fourth capacitor C4 Crystal Oscillator Terminal.
  • a first end of the second capacitor C2 may be connected between the negative RF signal transmission end of the RF transceiver chip U3 and the first inductor L1, and a second end of the second capacitor C2 may be grounded.
  • the first end of the second inductor L2 can be connected between the positive RF signal transmission end of the RF transceiver chip U3 and the first capacitor C1, and the second end of the second inductor L2 can be grounded through the third capacitor C3.
  • FIG. 6 is a schematic structural diagram of an antenna module provided by an embodiment of the present application.
  • the antenna module may include a radio frequency connector J1, a tenth capacitor C10, and a connection terminal J2; the connection terminal J2 may include a first end, and the radio frequency connector J1 may include an inner core, so The inner core may include a first data transmission end and a second data transmission end; the first end of the connection terminal J2 may be connected to the first data of the inner core of the radio frequency connector J1 through the tenth capacitor C10 Transmission end: the second data transmission end of the inner core of the radio frequency connector J1 can be connected to the antenna signal transmission end of the antenna module.
  • the tenth capacitor C10 can filter out clutter, and the antenna module can use the radio frequency connector J1 and the connection terminal J2 to send the stimulator signal to the stimulator installed in the patient.
  • the radio frequency connector J1 may further include a shell, the inner core of the radio frequency connector J1 is insulated from the shell, and the shell of the radio frequency connector J1 may be grounded.
  • the antenna module can also include an eighth capacitor C8 and a ninth capacitor C9, and the first end of the eighth capacitor C8 can be connected to the first data transmission end of the inner core of the radio frequency connector J1 and the tenth capacitor Between C10, the second end of the eighth capacitor C8 can be grounded; the first end of the ninth capacitor C9 can be connected between the first end of the connection terminal J2 and the tenth capacitor C10, and the second end of the ninth capacitor C9 can be grounded.
  • FIG. 7 is a partial structural schematic diagram of another radio frequency sub-circuit provided by an embodiment of the present application.
  • the radio frequency sub-circuit may also include an amplifier chip U5, an eleventh capacitor C11, and a twelfth capacitor C12, and the amplifier chip U5 may include a data input terminal and a data output terminal; the radio frequency switch The chip U4 can include a data input terminal and a data output terminal; the data output terminal of the radio frequency switch chip U4 can be connected to the data input terminal of the amplifier chip U5 through the twelfth capacitor C12, the radio frequency switch chip U4 The data input end may be connected to the data output end of the amplifier chip U5 through the eleventh capacitor C11.
  • the embodiment of the present application does not limit the selection of the amplifier chip U5, and the amplifier chip U5 is, for example, a radio frequency amplifier chip.
  • the network label of the data input terminal of the amplifier chip U5 is, for example, RX_IN, and the network label of the data output terminal of the amplifier chip U5 is, for example, RX_OUT.
  • the amplifier chip U5 can amplify the electrical signal to meet the signal amplitude requirement of the radio frequency sub-circuit.
  • the radio frequency subcircuit may further include a first diode D1 and a thirteenth capacitor C13, and the first diode D1 may be a Zener diode.
  • the amplifier chip U5 may also include a voltage input terminal.
  • the anode of the first diode D1 can be connected to the radio frequency power supply voltage
  • the cathode of the first diode D1 can be connected to the voltage input terminal of the amplifier chip U5
  • the first end of the thirteenth capacitor C13 can be connected to the first diode
  • the second end of the thirteenth capacitor C13 can be grounded.
  • the network designation of the RF supply voltage is, for example, VCC_RF.
  • FIG. 3 is a schematic structural diagram of a wireless communication sub-circuit provided in an embodiment of the present application.
  • the wireless communication sub-circuit may include a Bluetooth chip U2, a first magnetic bead FB1 and a second magnetic bead FB2, and the Bluetooth chip U2 may include a UART data input terminal, a UART data output terminal and a Bluetooth antenna Transmission end; the input end of the wireless communication sub-circuit can be connected to the UART data input end of the bluetooth chip U2 through the first magnetic bead FB1, and the output end of the wireless communication sub-circuit can be connected to the wireless communication sub-circuit through the second magnetic bead FB2
  • the UART data output terminal of the Bluetooth chip U2; the wireless communication sub-circuit may be configured to receive the program control signal sent by the program control device through the Bluetooth antenna transmission terminal of the Bluetooth chip U2.
  • the first magnetic bead FB1 and the second magnetic bead FB2 can suppress high-frequency noise and spike interference, eliminate EMI (Electromagnetic Interference, electromagnetic interference) radiation, and can also absorb static pulses.
  • the wireless communication sub-circuit passes through the UART of the Bluetooth chip U2
  • the data input terminal and the UART data output terminal realize the data interaction with the single-chip microcomputer.
  • the Bluetooth chip U2 uses the Bluetooth antenna transmission terminal to receive the program-controlled signal sent by the program-controlled device, generates a communication signal, and sends the communication signal to the single-chip microcomputer through the UART data output terminal.
  • the first magnetic bead FB1 can be replaced by the eighth resistor, and the second magnetic bead FB2 can be replaced by the ninth resistor (not shown).
  • the input end of the wireless communication sub-circuit can be connected to the UART data input end of the bluetooth chip U2 by the eighth resistance, and the output end of the wireless communication sub-circuit can be connected to the UART data output end of the bluetooth chip U2 by the ninth resistance .
  • control circuit may also include a power supply circuit
  • the power supply circuit may include a first preset voltage output module, a second preset voltage output module, a wireless communication power supply module, a single-chip microcomputer power supply module and RF power supply module
  • the first preset voltage output module may be configured to output a first preset voltage
  • the first preset voltage output module may be configured to output a second preset voltage
  • the wireless communication power supply module Can be configured to supply power to the wireless communication sub-circuit
  • the single-chip microcomputer power supply module can be configured to supply power to the single-chip microcomputer
  • the radio frequency power supply module can be configured to supply power to the radio frequency sub-circuit
  • the wireless communication power supply The module may include an input terminal and an output terminal, the input terminal of the wireless communication power supply module may input the first preset voltage, and the output terminal of the wireless communication power supply module may output a wireless power supply voltage
  • the single-chip power supply module may include Input end and output end, the input end of described single-chip microcomputer power supply
  • the power supply circuit can output the wireless power supply voltage through the wireless communication power supply module to supply power to the wireless communication sub-circuit; output the single-chip power supply voltage through the single-chip power supply module to supply power to the single-chip microcomputer; power supply, so that the power supply of the wireless communication sub-circuit, the single-chip microcomputer and the radio frequency sub-circuit do not interfere with each other.
  • FIG. 11 is a partial structural schematic diagram of a power supply electronic circuit provided by an embodiment of the present application.
  • the power supply sub-circuit may further include a fifth diode D5, a sixth diode D6, a fuse F1, a MOS transistor Q1, a fourth resistor R4, a fifth resistor R5 and a switch SW2.
  • the fifth diode D5 and the sixth diode D6 may be bidirectional voltage regulator diodes.
  • Switch SW2 may be a single pole double throw switch.
  • the positive electrode of the battery can be connected to the source of the MOS transistor Q1 through the fuse F1, the drain of the MOS transistor Q1 can output the working voltage, the gate of the MOS transistor Q1 can be connected to the first end of the switch SW2, and the second end of the switch SW2 can be connected to To the first terminal of the fourth resistor R4, the second terminal of the fourth resistor R4 can be connected between the battery voltage and the first terminal of the sixth diode D6, and the third terminal of the switch SW2 can be connected to the fifth resistor R5 The first terminal of the fifth resistor R5 can be connected between the second terminal of the sixth diode D6 and the ground terminal. The negative terminal of the battery can be grounded.
  • the network label of the battery positive pole is, for example, BAT+
  • the network label of the battery negative pole is, for example, BAT-
  • the network label of the battery voltage is, for example, VBAT
  • the network label of the working voltage is, for example, VDD.
  • FIG. 12 is a schematic structural diagram of a first preset voltage output module provided by an embodiment of the present application.
  • the first preset voltage output module may include a boost converter chip U6 (DC/DC boost converter), a third inductor L3, a sixth resistor R6, a seventh resistor R7, a sixteenth resistor The capacitor C16 to the twenty-first capacitor C21.
  • the boost converter chip U6 may include a voltage input terminal, an enable terminal, a ground terminal, an inductor terminal, a voltage output terminal and a voltage feedback terminal.
  • the working voltage can be respectively connected to the voltage input end and the enabling end of the boost converter chip U6, the first end of the third inductor L3 can be connected between the working voltage and the voltage input end of the boost converter chip U6, and the third The second end of the inductance L3 can be connected to the inductance end of the boost converter chip U6, the first end of the sixteenth capacitor C16 can be connected between the working voltage and the voltage input end of the boost converter chip U6, the sixteenth The second terminal of the capacitor C16 can be grounded, and the ground terminal of the boost converter chip U6 can be grounded.
  • the voltage input terminal of the boost converter chip U6 can output a first preset voltage, and the voltage output terminal of the boost converter chip U6 can also be connected to the voltage feedback terminal of the boost converter chip U6 through the seventh resistor R7.
  • the first terminal of the sixth resistor R6 can be connected between the voltage feedback terminal of the voltage converter chip and the seventh resistor R7, and the second terminal of the sixth resistor R6 can be grounded.
  • a first end of the seventeenth capacitor C17 may be connected between the voltage output end of the voltage converter chip and the first preset voltage, and a second end of the seventeenth capacitor C17 may be grounded.
  • the first end of the nineteenth capacitor C19 can be connected between the voltage output end of the voltage converter chip and the first preset voltage, the second end of the nineteenth capacitor C19 can be grounded, and the eighteenth capacitor C18 can be connected to the tenth capacitor C18.
  • Nine capacitors C19 are connected in parallel.
  • the first end of the twenty-first capacitor C21 can be connected between the voltage output end of the voltage converter chip and the first preset voltage, the second end of the twenty-first capacitor C21 can be grounded, and the twentieth capacitor C20 can be connected with The twenty-first capacitor C21 is connected in parallel.
  • the network label of the first preset voltage is, for example, VCC.
  • the second preset voltage output module may include a first linear voltage regulator, the input terminal of the first linear voltage regulator may be connected to the first preset voltage, and the output terminal of the first linear voltage regulator
  • a second preset voltage can be output, and the magnitude of the second preset voltage is, for example, 1.0V, 3.3V, 12.8V and so on.
  • the embodiment of the present application does not limit the magnitude of the first preset voltage, which may be the same as or different from the magnitude of the second preset voltage.
  • the wireless communication power supply module may include a second linear voltage regulator, the input terminal of the second linear voltage regulator may be connected to the first preset voltage, and the output terminal of the second linear voltage regulator may output the wireless supply voltage.
  • FIG. 8 is a schematic structural diagram of an emergency stop sub-circuit provided by an embodiment of the present application.
  • the control circuit may also include an emergency stop sub-circuit, the emergency stop sub-circuit may include a first resistor R1 and an emergency stop button SW1; the emergency stop sub-circuit may include an input terminal and an output terminal , the input terminal of the emergency stop sub-circuit can input the first preset voltage, and the input terminal of the emergency stop sub-circuit can also be connected to the ground through the first resistor R1 and the emergency stop button SW1 connected in sequence
  • the single-chip microcomputer may also include a stop signal input terminal, and the stop signal input terminal of the single-chip microcomputer may be connected between the first resistor R1 and the emergency stop button SW1.
  • the stop signal input terminal of the single-chip microcomputer detects a pull-down signal, triggers the single-chip microcomputer to respond, and the single-chip microcomputer sends the stimulator signal to the stimulator installed in the patient's body through the radio frequency sub-circuit, and the stimulator stops electrical stimulation Therefore, when an emergency occurs, the emergency stop button SW1 can be pressed immediately, which can prevent the damage to the human body from expanding, improve the safety during use, and avoid bringing bad experience to the user.
  • the emergency stop sub-circuit may further include a second diode D2 and a fourteenth capacitor C14.
  • the second diode D2 may be a bidirectional voltage regulator diode.
  • the first end of the fourteenth capacitor C14 can be connected between the stop signal input end of the microcontroller and the emergency stop button SW1, and the second diode D2 can be connected in parallel with the fourteenth capacitor C14.
  • Fig. 9 is a schematic structural diagram of a first light-emitting diode control sub-circuit provided in an embodiment of the present application
  • Fig. 10 is a structural schematic diagram of a second light-emitting diode control sub-circuit provided in an embodiment of the present application .
  • the control circuit may also include a first light emitting diode control subcircuit and a second light emitting diode control subcircuit;
  • the first light emitting diode control subcircuit may include a second resistor R2, a first light emitting diode LED1 and the third magnetic bead FB3, the second light emitting diode control subcircuit may include a third resistor R3, a second light emitting diode LED2 and a fourth magnetic bead FB4;
  • the wireless communication subcircuit may also include a first light emitting diode terminal and the second light-emitting diode LED2 end;
  • the first light-emitting diode control sub-circuit can also include an input terminal and an output terminal, and the input terminal of the first light-emitting diode control sub-circuit can input a wireless power supply voltage, and the first light-emitting diode
  • the input end of the control sub-circuit can also be connected to the anode of the first light emitting di
  • An output end of the light emitting diode control subcircuit, the output end of the first light emitting diode control subcircuit can also be connected to the first light emitting diode end of the wireless communication subcircuit; the second light emitting diode control subcircuit can also be Including an input terminal and an output terminal, the input terminal of the second LED control subcircuit can input a wireless power supply voltage, and the input terminal of the second LED control subcircuit can also be connected to the The anode of the second light-emitting diode LED2, the cathode of the second light-emitting diode LED2 can be connected to the output end of the second light-emitting diode control sub-circuit through the fourth magnetic bead FB4, and the second light-emitting diode control sub-circuit The output end of the circuit can also be connected to the second light emitting diode end of the wireless communication sub-circuit.
  • the network label of the wireless power supply voltage is, for example, VCC_BT
  • the network label of the first light-emitting diode terminal of the wireless communication sub-circuit is, for example, LED_BLUE
  • the network label of the second light-emitting diode terminal of the wireless communication sub-circuit is, for example, LED_GREEN.
  • the wireless communication sub-circuit controls the power-on state of the first light-emitting diode LED1 through the first light-emitting diode terminal, thereby controlling the power of the first light-emitting diode LED1 or extinguishing it, and the wireless communication sub-circuit controls the second light-emitting diode LED2 through the second light-emitting diode terminal The power-on state of the second light-emitting diode LED2 is controlled or extinguished.
  • the light emitted by the first light emitting diode LED1 may be blue when turned on, and the light emitted by the second light emitting diode LED2 may be green when turned on.
  • Red is a more eye-catching color for human eyes, and green and blue are less irritating to the eyes than common red-emitting LEDs.
  • the first LED control sub-circuit may further include a third diode D3 and a fifteenth capacitor C15.
  • the third diode D3 may be a bidirectional voltage regulator diode.
  • a first end of the fifteenth capacitor C15 may be connected between the second resistor R2 and the anode of the first light emitting diode LED1, and a second end of the fifteenth capacitor C15 may be grounded.
  • the third diode D3 may be connected in parallel with the fifteenth capacitor C15.
  • the second LED control sub-circuit may further include a fourth diode D4 and a sixteenth capacitor C16.
  • the fourth diode D4 may be a bidirectional voltage regulator diode.
  • a first end of the sixteenth capacitor C16 may be connected between the third resistor R3 and the anode of the second light emitting diode LED2, and a second end of the sixteenth capacitor C16 may be grounded.
  • the fourth diode D4 may be connected in parallel with the sixteenth capacitor C16.
  • the embodiment of the present application also provides an in vitro program controller, which includes the control circuit of any one of the above in vitro program controllers.
  • the in vitro program controller can realize data interaction between the program-controlled device and the stimulator through the control circuit of the in-vitro program controller, avoiding direct communication between the stimulator and the program-controlled device, and achieving the purpose of confidential communication.
  • FIG. 13 is a schematic structural diagram of a program control system provided by an embodiment of the present application.
  • the embodiment of the present application also provides a program control system 40 , which includes a program control device 20 , a stimulator 30 installed in the patient's body, and the above-mentioned in vitro program controller 10 .

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electrotherapy Devices (AREA)
  • Transceivers (AREA)

Abstract

一种体外程控器(10)及其控制电路、程控系统(40),控制电路包括单片机、无线通信子电路和射频子电路;无线通信子电路被配置为接收程控设备(20)发送的程控信号,生成通信信号并发送至单片机;单片机被配置为基于通信信号,生成刺激控制信号并发送至射频子电路;射频子电路被配置为基于刺激控制信号,生成刺激器信号并发送至设置于患者体内的刺激器(30)。可以避免刺激器(30)与程控设备(20)直接通信,达到保密通信的目的。

Description

体外程控器及其控制电路、程控系统
本申请要求于2021年8月3日提交的申请号为202110885823.7的中国专利的优先权,上述中国专利通过全文引用的形式并入。
技术领域
本申请涉及植入式医疗设备技术领域,尤其涉及体外程控器及其控制电路、程控系统。
背景技术
植入式神经刺激系统主要包括植入体内的刺激器、电极以及体外的程控设备。现有的神经调控技术主要是通过立体定向手术在体内特定结构(即靶点)植入电极,并由植入患者体内的刺激器经电极向靶点发放电脉冲,调控相应神经结构和网络的电活动及其功能,从而改善症状、缓解病痛。
然而,现有的植入式神经刺激器与外部程控设备之间大多采用直接通信,不足是保密性差,容易被外部信号干扰。
发明内容
本申请的目的在于提供体外程控器及其控制电路、程控系统,通过体外程控器的控制电路实现程控设备和刺激器的数据交互,避免刺激器与程控设备进行直接通信,达到保密通信的目的。
本申请的目的采用以下技术方案实现:
第一方面,本申请提供了一种体外程控器的控制电路,所述控制电路包括单片机、无线通信子电路和射频子电路;所述无线通信子电路被配置为接收程控设备发送的程控信号,生成通信信号并发送至所述单片机;所述单片机被配置为基于所述通信信号,生成刺激控制信号并发送至所述射频子电路;所述射频子电路被配置为基于所述刺激控制信号,生成刺激器信号并发送至设置于患者体内的刺激器;所述无线通信子电路包括输入端和输出端,所述射频子电路包括数据输入端和数据输出端,所述单片机包括通信输入端、通信输出端、射频数据输入端和射频数据输出端;所述单片机的通信输入端连接至所述无线通信子电路的输出端, 所述单片机的通信输出端连接至所述无线通信子电路的输入端,所述单片机的射频数据输入端连接至所述射频子电路的数据输出端,所述单片机的射频数据输出端连接至所述射频子电路的数据输入端。该技术方案的有益效果在于,利用无线通信子电路接收程控设备发送的程控信号,生成通信信号发送至单片机,单片机基于通信信号生成刺激控制信号并发送至射频子电路,利用射频子电路将刺激器信号发送至设置于患者体内的刺激器,由此可以通过体外程控器的控制电路实现程控设备和刺激器的数据交互,避免刺激器与程控设备进行直接通信,达到保密通信的目的。
在一种可能的实现方式中,所述射频子电路包括射频信号收发模块、射频开关芯片和天线模块;所述单片机还包括射频收发控制端,所述射频开关芯片包括第一输入端、第二输入端、第一传输端和第二传输端,所述射频信号收发模块包括数据输入端、数据输出端和射频信号传输端,所述天线模块包括天线信号传输端;所述射频子电路的数据输出端连接至所述射频信号收发模块的数据输出端,所述射频子电路的数据输入端连接至所述射频信号收发模块的数据输入端;所述单片机的射频收发控制端分别连接至所述射频开关芯片的第一输入端和第二输入端;所述射频开关芯片的第一传输端连接至所述天线模块的天线信号传输端;所述射频开关芯片的第二传输端连接至所述射频信号收发模块的射频信号传输端;所述射频子电路被配置为通过所述天线模块的天线信号传输端将所述刺激器信号发送至设置于患者体内的刺激器。该技术方案的有益效果在于,单片机的射频收发控制端的分别连接至所述射频开关芯片的第一输入端和第二输入端,可以基于单片机的射频收发控制端的输出信号决定射频开关芯片切换成接收模式或者发射模式,射频开关芯片处于发射模式时,射频信号收发模块的射频信号传输端将射频信号发送至射频开关芯片的第二传输端,射频开关芯片的第一传输端通过天线模块的天线信号传输端将刺激器信号发送至设置于患者体内的刺激器,射频开关芯片处于接收模式时,刺激器通过天线模块的天线信号传输端将刺激器信号发送至射频开关芯片的第一传输端,射频开关芯片的第二传输端将射频信号发送至射频信号收发模块的射频信号传输端。
在一种可能的实现方式中,所述射频信号收发模块包括射频收发器芯片、滤波器、第一电容和第一电感;所述射频收发器芯片包括正射频信号传输端和负射 频信号传输端;所述射频信号收发模块的射频信号传输端连接至所述滤波器的第一端,所述滤波器的第二端通过所述第一电容连接至所述射频收发器芯片的正射频信号传输端,所述滤波器的第二端还通过所述第一电感连接至所述射频收发器芯片的负射频信号传输端。该技术方案的有益效果在于,滤波器可以滤除其他无用信号,接收特定射频信号,滤波器分别与第一电感和第一电容配合,可以有效滤除射频信号收发模块的杂波。
在一种可能的实现方式中,所述天线模块包括射频连接器、第十电容和接线端子;所述接线端子包括第一端,所述射频连接器包括内芯,所述内芯包括第一数据传输端和第二数据传输端;所述接线端子的第一端通过所述第十电容连接至所述射频连接器的内芯的第一数据传输端;所述射频连接器的内芯的第二数据传输端连接至所述天线模块的天线信号传输端。该技术方案的有益效果在于,第十电容可以起到滤除杂波的作用,天线模块可以利用射频连接器和接线端子将刺激器信号发送至设置于患者体内的刺激器。
在一种可能的实现方式中,所述射频子电路还包括放大器芯片、第十一电容和第十二电容,所述放大器芯片包括数据输入端和数据输出端;所述射频开关芯片包括数据输入端和数据输出端;所述射频开关芯片的数据输出端通过所述第十二电容连接至所述放大器芯片的数据输入端,所述射频开关芯片的数据输入端通过所述第十一电容连接至所述放大器芯片的数据输出端。该技术方案的有益效果在于,放大器芯片可以对电信号进行放大,满足射频子电路对信号幅度的要求。
在一种可能的实现方式中,所述无线通信子电路包括蓝牙芯片、第一磁珠和第二磁珠,所述蓝牙芯片包括UART数据输入端、UART数据输出端和蓝牙天线传输端;所述无线通信子电路的输入端通过所述第一磁珠连接至所述蓝牙芯片的UART数据输入端,所述无线通信子电路的输出端通过所述第二磁珠连接至所述蓝牙芯片的UART数据输出端;所述无线通信子电路被配置为通过所述蓝牙芯片的蓝牙天线传输端接收所述程控设备发送的程控信号。该技术方案的有益效果在于,第一磁珠和第二磁珠可以抑制高频噪声和尖峰干扰,还可以吸收静电脉冲,无线通信子电路通过蓝牙芯片的UART数据输入端和UART数据输出端实现和单片机的数据交互,蓝牙芯片利用蓝牙天线传输端接收程控设备发送的程控信号,生成通信信号,通过UART数据输出端将通信信号发送至单片机。
在一种可能的实现方式中,所述控制电路还包括供电子电路,所述供电子电路包括第一预设电压输出模块、第二预设电压输出模块、无线通信供电模块、单片机供电模块和射频供电模块;所述第一预设电压输出模块被配置为输出第一预设电压,所述第一预设电压输出模块被配置为输出第二预设电压,所述无线通信供电模块被配置为向所述无线通信子电路供电,所述单片机供电模块被配置为向所述单片机供电,所述射频供电模块被配置为向所述射频子电路供电;所述无线通信供电模块包括输入端和输出端,所述无线通信供电模块的输入端输入所述第一预设电压,所述无线通信供电模块的输出端输出无线供电电压;所述单片机供电模块包括输入端和输出端,所述单片机供电模块的输入端输入所述无线供电电压,所述单片机供电模块的输出端输出单片机供电电压;所述射频供电模块包括输入端和输出端,所述射频供电模块的输入端输入所述第二预设电压,所述射频供电模块的输出端输出射频供电电压。该技术方案的有益效果在于,供电子电路可以通过无线通信供电模块输出无线供电电压,向无线通信子电路供电;通过单片机供电模块输出单片机供电电压,向单片机供电;通过射频供电模块输出射频供电电压,向射频子电路供电,由此无线通信子电路、单片机和射频子电路的供电互不干扰。
在一种可能的实现方式中,所述控制电路还包括急停子电路,所述急停子电路包括第一电阻和急停按钮;所述急停子电路包括输入端和输出端,所述急停子电路的输入端输入所述第一预设电压,所述急停子电路的输入端还通过顺次连接的所述第一电阻和所述急停按钮接地;所述单片机还包括停止信号输入端,所述单片机的停止信号输入端连接至所述第一电阻和急停按钮之间。该技术方案的有益效果在于,按下急停按钮时,单片机的停止信号输入端检测到下拉信号,触发单片机响应,单片机通过射频子电路将刺激器信号发送至设置于患者体内的刺激器,刺激器停止电刺激,由此在发生突发情况时可以立即按下急停按钮,能够防止对人体的伤害扩大,提高使用时的安全性,避免给使用者带来糟糕的使用体验。
在一种可能的实现方式中,所述控制电路还包括第一发光二极管控制子电路和第二发光二极管控制子电路;所述第一发光二极管控制子电路包括第二电阻、第一发光二极管和第三磁珠,所述第二发光二极管控制子电路包括第三电阻、第二发光二极管和第四磁珠;所述无线通信子电路还包括第一发光二极管端和第二 发光二极管端;所述第一发光二极管控制子电路还包括输入端和输出端,所述第一发光二极管控制子电路的输入端输入无线供电电压,所述第一发光二极管控制子电路的输入端还通过所述第二电阻连接至所述第一发光二极管的阳极,所述第一发光二极管的阴极通过所述第三磁珠连接至所述第一发光二极管控制子电路的输出端,所述第一发光二极管控制子电路的输出端还连接至所述无线通信子电路的第一发光二极管端;所述第二发光二极管控制子电路还包括输入端和输出端,所述第二发光二极管控制子电路的输入端输入无线供电电压,所述第二发光二极管控制子电路的输入端还通过所述第三电阻连接至所述第二发光二极管的阳极,所述第二发光二极管的阴极通过所述第四磁珠连接至所述第二发光二极管控制子电路的输出端,所述第二发光二极管控制子电路的输出端还连接至所述无线通信子电路的第二发光二极管端。该技术方案的有益效果在于,无线通信子电路通过第一发光二极管端控制第一发光二极管的通电状态,从而控制第一发光二极管电量或者熄灭,无线通信子电路通过第二发光二极管端控制第二发光二极管的通电状态,从而控制第二发光二极管电量或者熄灭。
第二方面,本申请提供了一种体外程控器,所述体外程控器包括上述任一项体外程控器的控制电路。该技术方案的有益效果在于,体外程控器可以通过体外程控器的控制电路实现程控设备和刺激器的数据交互,避免刺激器与程控设备进行直接通信,达到保密通信的目的。
第三方面,本申请提供了一种程控设备,所述程控系统包括程控设备、设置于患者体内的刺激器和上述体外程控器。
附图说明
下面结合附图和实施例对本申请进一步说明。
图1是本申请实施例提供的一种单片机的第一部分的结构示意图;
图2是本申请实施例提供的一种单片机的第二部分的结构示意图;
图3是本申请实施例提供的一种无线通信子电路的结构示意图;
图4是本申请实施例提供的一种射频信号收发模块的结构示意图;
图5是本申请实施例提供的一种射频子电路的部分结构示意图;
图6是本申请实施例提供的一种天线模块的结构示意图;
图7是本申请实施例提供的另一种射频子电路的部分结构示意图;
图8是本申请实施例提供的一种急停子电路的结构示意图;
图9是本申请实施例提供的一种第一发光二极管控制子电路的结构示意图;
图10是本申请实施例提供的一种第二发光二极管控制子电路的结构示意图;
图11是本申请实施例提供的一种供电子电路的部分结构示意图;
图12是本申请实施例提供的一种第一预设电压输出模块的结构示意图;
图13是本申请实施例提供的一种程控系统的结构示意图。
图中:U1A、单片机的第一部分;U1B、单片机的第二部分;U2、蓝牙芯片;U3、射频收发器芯片;U4、射频开关芯片;U5、放大器芯片;U6、升压转换器芯片;R1~R7、第一电阻至第七电阻;C1~C21、第一电容至第二十一电容;FB1~FB4、第一磁珠至第四磁珠;D1~D6、第一二极管至第六二极管;SAW1、滤波器;X1、晶体振荡器;L1~L3、第一电感至第三电感;J1、射频连接器;J2、接线端子;LED1、第一发光二极管;LED2、第二发光二极管;F1、保险丝;Q1、MOS管;SW1、急停按钮;SW2、开关;10、体外程控器;20、程控设备;30、刺激器;40、程控系统。
具体实施方式
下面,结合附图以及具体实施方式,对本申请做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
下面,首先对本申请实施例的其中一个应用领域(即植入式器械)进行简单说明。
植入式神经刺激系统(一种植入式医疗系统)主要包括植入患者体内的刺激器以及设置于患者体外的程控设备。现有的神经调控技术主要是通过立体定向手术在体内特定结构(即靶点)植入电极,并由植入患者体内的刺激器经电极向靶点发放电脉冲,调控相应神经结构和网络的电活动及其功能,从而改善症状、缓解病痛。其中,刺激器可以是植入式神经电刺激装置、植入式心脏电刺激系统(又称心脏起搏器)、植入式药物输注装置(Implantable Drug Delivery System,简称I DDS)和导线转接装置中的任意一种。植入式神经电刺激装置例如是脑深部电刺激系统(Deep Brain Stimulation,简称DBS)、植入式脑皮层刺激系统(Cor tical Nerve Stimulation,简称CNS)、植入式脊髓电刺激系统(Spinal Cord Sti  mulation,简称SCS)、植入式骶神经电刺激系统(Sacral Nerve Stimulation,简称SNS)、植入式迷走神经电刺激系统(Vagus Nerve Stimulation,简称VN S)等。
刺激器可以包括IPG、延伸导线和电极导线,IPG(implantable pulse gener ator,植入式脉冲发生器)设置于患者体内,接收程控设备发送的程控指令,依靠密封电池和电路向体内组织提供可控制的电刺激能量,通过植入的延伸导线和电极导线,为体内组织的特定区域递送一路或两路可控制的特定电刺激。延伸导线配合IPG使用,作为电刺激信号的传递媒体,将IPG产生的电刺激信号,传递给电极导线。电极导线通过多个电极触点,向体内组织的特定区域递送电刺激。刺激器设置有单侧或双侧的一路或多路电极导线,电极导线上设置有多个电极触点,电极触点可以均匀排列或者非均匀排列在电极导线的周向上。作为一个示例,电极触点可以以4行3列的阵列(共计12个电极触点)排列在电极导线的周向上。电极触点可以包括刺激电极触点和/或采集电极触点。电极触点例如可以采用片状、环状、点状等形状。
在一些可能的实施方式中,受刺激的体内组织可以是患者的脑组织,受刺激的部位可以是脑组织的特定部位。当患者的疾病类型不同时,受刺激的部位一般来说是不同的,所使用的刺激触点(单源或多源)的数量、一路或多路(单通道或多通道)特定电刺激信号的运用以及刺激参数数据也是不同的。本申请实施例对适用的疾病类型不做限定,其可以是脑深部刺激(DBS)、脊髓刺激(SCS)、骨盆刺激、胃刺激、外周神经刺激、功能性电刺激所适用的疾病类型。其中,DBS可以用于治疗或管理的疾病类型包括但不限于:痉挛疾病(例如,癫痫)、疼痛、偏头痛、精神疾病(例如,重度抑郁症(MDD))、躁郁症、焦虑症、创伤后压力心理障碍症、轻郁症、强迫症(OCD)、行为障碍、情绪障碍、记忆障碍、心理状态障碍、移动障碍(例如,特发性震颤或帕金森氏病)、亨廷顿病、阿尔茨海默症、药物成瘾症、孤独症或其他神经学或精神科疾病和损害。
本申请实施例中,程控设备和刺激器建立程控连接时,可以利用程控设备调整刺激器的刺激参数(不同的刺激参数所对应的电刺激信号不同),也可以通过刺激器感测患者脑深部的生物电活动以采集得到电生理信号,并可以通过所采集到的电生理信号来继续调节刺激器的电刺激信号的刺激参数。
刺激参数可以包括以下至少一种:频率(例如是单位时间1s内的电刺激脉冲信号个数,单位为Hz)、脉宽(每个脉冲的持续时间,单位为μs)、幅值(一般用电压表述,即每个脉冲的强度,单位为V)、时序(例如可以是连续或者触发)、刺激模式(包括电流模式、电压模式、定时刺激模式和循环刺激模式中的一种或多种)、医生控制上限及下限(医生可调节的范围)和患者控制上限及下限(患者可自主调节的范围)。
在一个具体应用场景中,可以在电流模式或者电压模式下对刺激器的各刺激参数进行调节。
程控设备可以是医生程控设备(即医生使用的程控设备)或者患者程控设备(即患者使用的程控设备)。医生程控设备例如可以是搭载有程控软件的平板电脑、笔记本电脑、台式计算机、手机等智能终端设备。患者程控设备例如可以是搭载有程控软件的平板电脑、笔记本电脑、台式计算机、手机等智能终端设备,患者程控设备还可以是其他具有程控功能的电子设备(例如是具有程控功能的充电器、数据采集设备)。
本申请实施例对医生程控设备和刺激器的数据交互不进行限制,当医生远程程控时,医生程控设备可以通过服务器、患者程控设备与刺激器进行数据交互。当医生线下和患者面对面进行程控时,医生程控设备可以通过患者程控设备与刺激器进行数据交互,医生程控设备还可以直接与刺激器进行数据交互。
在一些可选的实施方式中,患者程控设备可以包括(与服务器通信的)主机和(与刺激器通信的)子机,主机和子机可通信的连接。其中,医生程控设备可以通过3G/4G/5G网络与服务器进行数据交互,服务器可以通过3G/4G/5G网络与主机进行数据交互,主机可以通过蓝牙协议/WIFI协议/USB协议与子机进行数据交互,子机可以通过401MHz-406MHz工作频段/2.4GHz-2.48GHz工作频段与刺激器进行数据交互,医生程控设备可以通过401MHz-406MHz工作频段/2.4GHz-2.48GHz工作频段与刺激器直接进行数据交互。
除了上述植入式器械的应用领域,本申请实施例还可以应用于其他医疗器械甚至非医疗器械的技术领域,本申请实施例不对此设限,只要涉及程控的场合均可应用,程控设备发送至刺激器的指令可以不局限于程控指令。
参见图1至图7,本申请实施例提供了一种体外程控器的控制电路,所述控制电路包括单片机、无线通信子电路和射频子电路;所述无线通信子电路被配置为接收程控设备发送的程控信号,生成通信信号并发送至所述单片机;所述单片机被配置为基于所述通信信号,生成刺激控制信号并发送至所述射频子电路;所述射频子电路被配置为基于所述刺激控制信号,生成刺激器信号并发送至设置于患者体内的刺激器;所述无线通信子电路包括输入端和输出端,所述射频子电路包括数据输入端和数据输出端,所述单片机包括通信输入端、通信输出端、射频数据输入端和射频数据输出端;所述单片机的通信输入端连接至所述无线通信子电路的输出端,所述单片机的通信输出端连接至所述无线通信子电路的输入端,所述单片机的射频数据输入端连接至所述射频子电路的数据输出端,所述单片机的射频数据输出端连接至所述射频子电路的数据输入端。
程控设备例如是手机、平板电脑、笔记本电脑、台式计算机或者智能穿戴设备。刺激器可以是植入式神经电刺激装置、植入式心脏电刺激系统(又称心脏起搏器)、植入式药物输注装置(Implantable Drug Delivery System,简称I DDS)和导线转接装置中的任意一种。植入式神经电刺激装置例如是脑深部电刺激系统(Deep Brain Stimulation,简称DBS),植入式脑皮层刺激系统(Cortical Ner ve Stimulation,简称CNS),植入式脊髓电刺激系统(Spinal Cord Stimulation,简称SCS),植入式骶神经电刺激系统(Sacral Nerve Stimulation,简称SNS),植入式迷走神经电刺激系统(Vagus Nerve Stimulation,简称VNS)等。
本申请实施例对单片机的选用不做限定,单片机例如可以采用MSP430系列单片机。
由此,利用无线通信子电路接收程控设备发送的程控信号,生成通信信号发送至单片机,单片机基于通信信号生成刺激控制信号并发送至射频子电路,利用射频子电路将刺激器信号发送至设置于患者体内的刺激器,由此可以通过体外程控器的控制电路实现程控设备和刺激器的数据交互,避免刺激器与程控设备进行直接通信,达到保密通信的目的。
参见图1,图1是本申请实施例提供的一种单片机的第一部分的结构示意图。
在一些可能的方式中,单片机可以包括第一部分U1A和第二部分U1B。
单片机的第一部分U1A可以包括通信输入端、通信输出端、射频数据输入 端和射频数据输出端,单片机的第一部分U1A还可以包括停止信号输入端、中断信号输入端、第一状态指示端、第二状态指示端、电池状态指示端、射频收发控制端、时钟信号输出端和芯片选择控制端。
单片机的第二部分U1B可以包括第一调试端至第六调试端,单片机的第一测试端和第六测试端可以分别连接至不同的测试点,提供烧录和在线调试功能。
单片机的第一调试端至第六调试端的网络标号依次可以是RST、TCK、TM S、TDI、TDO和TEST。单片机的停止信号输入端的网络标号例如是SW_STOP,中断信号输入端的网络标号例如是PIO7,电池状态指示端的网络标号例如是B AT_LOW。
网络标号(net label)是一个电气连接点,一般由字母、符号、数字等组成,具有相同网络标号的电气连接线、引脚及网络是连接在一起的,网络标号不同的是不连接的。
无线通信子电路还可以包括中断信号输出端和电池状态信号端,无线通信子电路的中断信号输出端连接至单片机的停止信号输入端,无线通信子电路的电池状态信号端连接至单片机的电池状态指示端。
无线通信子电路的输入端的网络标号例如是BT_UART_RXD,无线通信子电路的输出端的网络标号例如是BT_UART_TXD。
射频子电路还可以包括第一状态信号端、第二状态信号端、芯片选择端、时钟信号输入端。
射频子电路的第一状态信号端的网络标号例如是RF_GDO0、第二状态信号端的网络标号例如是RF_GDO2、芯片选择端网络标号例如是RF_CS、时钟信号输入端的网络标号例如是RF_CLK,射频子电路的数据输入端的网络标号例如是RF_SI、射频子电路的数据输出端的网络标号例如是RF_SO。
射频子电路的第一状态信号端连接至单片机的第一状态指示端,射频子电路的第二状态信号端连接至单片机的第二状态指示端,射频子电路的芯片选择端连接至单片机的芯片选择控制端,射频子电路的时钟信号输入端连接至单片机的时钟信号输出端。
参见图4至图6,在一些可能的方式中,所述射频子电路可以包括射频信号收发模块、射频开关芯片U4(宽带模拟开关)和天线模块;所述单片机还可以 包括射频收发控制端,所述射频开关芯片U4可以包括第一输入端、第二输入端、第一传输端和第二传输端,所述射频信号收发模块可以包括数据输入端、数据输出端和射频信号传输端,所述天线模块可以包括天线信号传输端;所述射频子电路的数据输出端可以连接至所述射频信号收发模块的数据输出端,所述射频子电路的数据输入端可以连接至所述射频信号收发模块的数据输入端;所述单片机的射频收发控制端可以分别连接至所述射频开关芯片U4的第一输入端和第二输入端;所述射频开关芯片U4的第一传输端可以连接至所述天线模块的天线信号传输端;所述射频开关芯片U4的第二传输端可以连接至所述射频信号收发模块的射频信号传输端;所述射频子电路可以被配置为通过所述天线模块的天线信号传输端将所述刺激器信号发送至设置于患者体内的刺激器。
在一些可能的方式中,射频开关芯片U4还可以包括第一控制端和第二控制端。
射频信号收发模块的射频信号传输端的网络标号例如是RF_SIGNAL,天线模块的天线信号传输端的网络标号例如是RF_ANT,单片机的射频收发控制端的网络标号例如是RF_CTRL。
由此,单片机的射频收发控制端的分别连接至所述射频开关芯片U4的第一输入端和第二输入端,可以基于单片机的射频收发控制端的输出信号决定射频开关芯片U4切换成接收模式或者发射模式,射频开关芯片U4处于发射模式时,射频信号收发模块的射频信号传输端将射频信号发送至射频开关芯片U4的第二传输端,射频开关芯片U4的第一传输端通过天线模块的天线信号传输端将刺激器信号发送至设置于患者体内的刺激器,射频开关芯片U4处于接收模式时,刺激器通过天线模块的天线信号传输端将刺激器信号发送至射频开关芯片U4的第一传输端,射频开关芯片U4的第二传输端将射频信号发送至射频信号收发模块的射频信号传输端。
参见图4,图4是本申请实施例提供的一种射频信号收发模块的结构示意图。
在一些可能的方式中,所述射频子电路还可以包括第六电容C6和第七电容C7,第六电容C6的第一端可以连接于单片机的射频收发控制端和射频开关芯片U4的第一输入端之间,第六电容C6的第二端可以接地;第七电容C7的第一端可以分别连接至射频开关芯片U4的第一输入端和第二输入端,第七电容C7的 第二端可以接地。
参见图4,在一些可能的方式中,所述射频信号收发模块可以包括射频收发器芯片U3(RF Transceiver芯片)、滤波器SAW1、第一电容C1和第一电感L1;所述射频收发器芯片U3可以包括正射频信号传输端和负射频信号传输端;所述射频信号收发模块的射频信号传输端可以连接至所述滤波器SAW1的第一端,所述滤波器SAW1的第二端可以通过所述第一电容C1连接至所述射频收发器芯片U3的正射频信号传输端,所述滤波器SAW1的第二端还可以通过所述第一电感L1连接至所述射频收发器芯片U3的负射频信号传输端。
由此,滤波器SAW1可以滤除其他无用信号,接收特定射频信号,滤波器S AW1分别与第一电感L1和第一电容C1配合,可以有效滤除射频信号收发模块的杂波。
在一些可能的方式中,射频信号收发模块还可以包括晶体振荡器X1、第二电感L2以及第二电容C2至第五电容C5。射频收发器芯片U3还可以包括第一晶体振荡器端和第二晶体振荡器端。
晶体振荡器X1可以包括第1至第4引脚,晶体振荡器X1的第1引脚可以连接至射频收发器芯片U3的第二晶体振荡器端,晶体振荡器X1的第1引脚还可以通过第五电容C5接地;晶体振荡器X1的第2引脚可以接地;晶体振荡器X1的第3引脚可以连接至射频收发器芯片U3的第一晶体振荡器端,晶体振荡器X1的第3引脚还可以通过第四电容C4接地;晶体振荡器X1的第4引脚可以接地,晶体振荡器X1的第4引脚还可以通过第四电容C4连接至射频收发器芯片U3的第一晶体振荡器端。
第二电容C2的第一端可以连接于射频收发器芯片U3的负射频信号传输端和第一电感L1之间,第二电容C2的第二端可以接地。
第二电感L2的第一端可以连接于射频收发器芯片U3的正射频信号传输端和第一电容C1之间,第二电感L2的第二端可以通过第三电容C3接地。
参见图6,图6是本申请实施例提供的一种天线模块的结构示意图。
在一些可能的方式中,所述天线模块可以包括射频连接器J1、第十电容C10和接线端子J2;所述接线端子J2可以包括第一端,所述射频连接器J1可以包括内芯,所述内芯可以包括第一数据传输端和第二数据传输端;所述接线端子J 2的第一端可以通过所述第十电容C10连接至所述射频连接器J1的内芯的第一数据传输端;所述射频连接器J1的内芯的第二数据传输端可以连接至所述天线模块的天线信号传输端。
由此,第十电容C10可以起到滤除杂波的作用,天线模块可以利用射频连接器J1和接线端子J2将刺激器信号发送至设置于患者体内的刺激器。
在一些可能的方式中,射频连接器J1还可以包括外壳,射频连接器J1的内芯和外壳绝缘,射频连接器J1的外壳可以接地。
在一些可能的方式中,天线模块还可以包括第八电容C8和第九电容C9,第八电容C8的第一端可以连接于射频连接器J1的内芯的第一数据传输端和第十电容C10之间,第八电容C8的第二端可以接地;第九电容C9的第一端可以连接于接线端子J2的第一端和第十电容C10之间,第九电容C9的第二端可以接地。
参见图7,图7是本申请实施例提供的另一种射频子电路的部分结构示意图。
在一些可能的方式中,所述射频子电路还可以包括放大器芯片U5、第十一电容C11和第十二电容C12,所述放大器芯片U5可以包括数据输入端和数据输出端;所述射频开关芯片U4可以包括数据输入端和数据输出端;所述射频开关芯片U4的数据输出端可以通过所述第十二电容C12连接至所述放大器芯片U5的数据输入端,所述射频开关芯片U4的数据输入端可以通过所述第十一电容C11连接至所述放大器芯片U5的数据输出端。
本申请实施例对放大器芯片U5的选用不做限定,放大器芯片U5例如是射频放大器芯片。
放大器芯片U5的数据输入端的网络标号例如是RX_IN,放大器芯片U5的数据输出端的网络标号例如是RX_OUT。
由此,放大器芯片U5可以对电信号进行放大,满足射频子电路对信号幅度的要求。
在一些可能的方式中,射频子电路还可以包括第一二极管D1以及第十三电容C13,第一二极管D1可以是稳压二极管。放大器芯片U5还可以包括电压输入端。
第一二极管D1的阳极可以连接至射频供电电压,第一二极管D1的阴极可以连接至放大器芯片U5的电压输入端,第十三电容C13的第一端可以连接于第 一二极管D1的阴极和放大器芯片U5的电压输入端之间,第十三电容C13的第二端可以接地。射频供电电压的网络标号例如是VCC_RF。
参见图3,图3是本申请实施例提供的一种无线通信子电路的结构示意图。
在一些可能的方式中,所述无线通信子电路可以包括蓝牙芯片U2、第一磁珠FB1和第二磁珠FB2,所述蓝牙芯片U2可以包括UART数据输入端、UART数据输出端和蓝牙天线传输端;所述无线通信子电路的输入端可以通过第一磁珠FB1连接至所述蓝牙芯片U2的UART数据输入端,所述无线通信子电路的输出端可以通过第二磁珠FB2连接至所述蓝牙芯片U2的UART数据输出端;所述无线通信子电路可以被配置为通过所述蓝牙芯片U2的蓝牙天线传输端接收所述程控设备发送的程控信号。
由此,第一磁珠FB1和第二磁珠FB2可以抑制高频噪声和尖峰干扰,消除EMI(Electromagnetic Interference,电磁干扰)辐射,还可以吸收静电脉冲,无线通信子电路通过蓝牙芯片U2的UART数据输入端和UART数据输出端实现和单片机的数据交互,蓝牙芯片U2利用蓝牙天线传输端接收程控设备发送的程控信号,生成通信信号,通过UART数据输出端将通信信号发送至单片机。
在一些可能的方式中,第一磁珠FB1可以替换为第八电阻,第二磁珠FB2可以替换为第九电阻(未示出)。
无线通信子电路的输入端可以通过第八电阻连接至所述蓝牙芯片U2的UA RT数据输入端,无线通信子电路的输出端可以通过第九电阻连接至所述蓝牙芯片U2的UART数据输出端。
在一些可能的方式中,所述控制电路还可以包括供电子电路,所述供电子电路可以包括第一预设电压输出模块、第二预设电压输出模块、无线通信供电模块、单片机供电模块和射频供电模块;所述第一预设电压输出模块可以被配置为输出第一预设电压,所述第一预设电压输出模块可以被配置为输出第二预设电压,所述无线通信供电模块可以被配置为向所述无线通信子电路供电,所述单片机供电模块可以被配置为向所述单片机供电,所述射频供电模块可以被配置为向所述射频子电路供电;所述无线通信供电模块可以包括输入端和输出端,所述无线通信供电模块的输入端可以输入所述第一预设电压,所述无线通信供电模块的输出端可以输出无线供电电压;所述单片机供电模块可以包括输入端和输出端,所述单 片机供电模块的输入端可以输入所述无线供电电压,所述单片机供电模块的输出端可以输出单片机供电电压;所述射频供电模块可以包括输入端和输出端,所述射频供电模块的输入端可以输入所述第二预设电压,所述射频供电模块的输出端可以输出射频供电电压。
由此,供电子电路可以通过无线通信供电模块输出无线供电电压,向无线通信子电路供电;通过单片机供电模块输出单片机供电电压,向单片机供电;通过射频供电模块输出射频供电电压,向射频子电路供电,由此无线通信子电路、单片机和射频子电路的供电互不干扰。
参见图11,图11是本申请实施例提供的一种供电子电路的部分结构示意图。
在一些可能的方式中,所述供电子电路还可以包括第五二极管D5、第六二极管D6、保险丝F1、MOS管Q1、第四电阻R4、第五电阻R5和开关SW2。第五二极管D5和第六二极管D6可以是双向稳压二极管。开关SW2可以是单刀双掷开关。
电池正极可以通过保险丝F1连接至MOS管Q1的源极,MOS管Q1的漏极可以输出工作电压,MOS管Q1的栅极可以连接至开关SW2的第一端,开关SW2的第二端可以连接至第四电阻R4的第一端,第四电阻R4的第二端可以连接于电池电压和第六二极管D6的第一端之间,开关SW2的第三端可以连接至第五电阻R5的第一端,第五电阻R5的第二端可以连接于第六二极管D6的第二端和接地端之间。电池负极可以接地。
电池正极的网络标号例如是BAT+,电池负极的网络标号例如是BAT-,电池电压的网络标号例如是VBAT,工作电压的网络标号例如是VDD。
参见图12,图12是本申请实施例提供的一种第一预设电压输出模块的结构示意图。
在一些可能的方式中,第一预设电压输出模块可以包括升压转换器芯片U6(DC/DC升压转换器)、第三电感L3、第六电阻R6、第七电阻R7、第十六电容C16至第二十一电容C21。
升压转换器芯片U6可以包括电压输入端、使能端、接地端、电感端、电压输出端和电压反馈端。
工作电压可以分别连接至升压转换器芯片U6的电压输入端和使能端,第三 电感L3的第一端可以连接于工作电压和升压转换器芯片U6的电压输入端之间,第三电感L3的第二端可以连接至升压转换器芯片U6的电感端,第十六电容C16的第一端可以连接于工作电压和升压转换器芯片U6的电压输入端之间,第十六电容C16的第二端可以接地,升压转换器芯片U6的接地端可以接地。
升压转换器芯片U6的电压输入端可以输出第一预设电压,升压转换器芯片U6的电压输出端还可以通过第七电阻R7连接至升压转换器芯片U6的电压反馈端。
第六电阻R6的第一端可以连接于压转换器芯片的电压反馈端和第七电阻R7之间,第六电阻R6的第二端可以接地。
第十七电容C17的第一端可以连接于压转换器芯片的电压输出端和第一预设电压之间,第十七电容C17的第二端可以接地。
第十九电容C19的第一端可以连接于压转换器芯片的电压输出端和第一预设电压之间,第十九电容C19的第二端可以接地,第十八电容C18可以与第十九电容C19并联。
第二十一电容C21的第一端可以连接于压转换器芯片的电压输出端和第一预设电压之间,第二十一电容C21的第二端可以接地,第二十电容C20可以与第二十一电容C21并联。
第一预设电压的网络标号例如是VCC。
在一些可能的方式中,第二预设电压输出模块可以包括第一线性稳压器,第一线性稳压器的输入端可以接入第一预设电压,第一线性稳压器的输出端可以输出第二预设电压,第二预设电压的大小例如是1.0V、3.3V、12.8V等。本申请实施例对第一预设电压的幅值不做限定,其可以与第二预设电压的幅值相同,也可以与第二预设电压的幅值不同。
在一些可能的方式中,无线通信供电模块可以包括第二线性稳压器,第二线性稳压器的输入端可以接入第一预设电压,第二线性稳压器的输出端可以输出无线供电电压。
参见图8,图8是本申请实施例提供的一种急停子电路的结构示意图。
在一些可能的方式中,所述控制电路还可以包括急停子电路,所述急停子电路可以包括第一电阻R1和急停按钮SW1;所述急停子电路可以包括输入端和输 出端,所述急停子电路的输入端可以输入所述第一预设电压,所述急停子电路的输入端还可以通过顺次连接的所述第一电阻R1和所述急停按钮SW1接地;所述单片机还可以包括停止信号输入端,所述单片机的停止信号输入端可以连接至所述第一电阻R1和急停按钮SW1之间。
由此,按下急停按钮SW1时,单片机的停止信号输入端检测到下拉信号,触发单片机响应,单片机通过射频子电路将刺激器信号发送至设置于患者体内的刺激器,刺激器停止电刺激,由此在发生突发情况时可以立即按下急停按钮SW1,能够防止对人体的伤害扩大,提高使用时的安全性,避免给使用者带来糟糕的使用体验。
在一些可能的方式中,所述急停子电路还可以包括第二二极管D2和第十四电容C14。第二二极管D2可以是双向稳压二极管。
第十四电容C14的第一端可以连接于单片机的停止信号输入端和急停按钮SW1之间,第二二极管D2可以与第十四电容C14并联。
参见图9和图10,图9是本申请实施例提供的一种第一发光二极管控制子电路的结构示意图,图10是本申请实施例提供的一种第二发光二极管控制子电路的结构示意图。
在一些可能的方式中,所述控制电路还可以包括第一发光二极管控制子电路和第二发光二极管控制子电路;所述第一发光二极管控制子电路可以包括第二电阻R2、第一发光二极管LED1和第三磁珠FB3,所述第二发光二极管控制子电路可以包括第三电阻R3、第二发光二极管LED2和第四磁珠FB4;所述无线通信子电路还可以包括第一发光二极管端和第二发光二极管LED2端;所述第一发光二极管控制子电路还可以包括输入端和输出端,所述第一发光二极管控制子电路的输入端可以输入无线供电电压,所述第一发光二极管控制子电路的输入端还可以通过所述第二电阻R2连接至所述第一发光二极管LED1的阳极,所述第一发光二极管LED1的阴极可以通过所述第三磁珠FB3连接至所述第一发光二极管控制子电路的输出端,所述第一发光二极管控制子电路的输出端还可以连接至所述无线通信子电路的第一发光二极管端;所述第二发光二极管控制子电路还可以包括输入端和输出端,所述第二发光二极管控制子电路的输入端可以输入无线供电电压,所述第二发光二极管控制子电路的输入端还可以通过所述第三电阻R 3连接至所述第二发光二极管LED2的阳极,所述第二发光二极管LED2的阴极可以通过所述第四磁珠FB4连接至所述第二发光二极管控制子电路的输出端,所述第二发光二极管控制子电路的输出端还可以连接至所述无线通信子电路的第二发光二极管端。
无线供电电压的网络标号例如是VCC_BT,无线通信子电路的第一发光二极管端的网络标号例如是LED_BLUE,无线通信子电路的第二发光二极管端的网络标号例如是LED_GREEN。
由此,无线通信子电路通过第一发光二极管端控制第一发光二极管LED1的通电状态,从而控制第一发光二极管LED1电量或者熄灭,无线通信子电路通过第二发光二极管端控制第二发光二极管LED2的通电状态,从而控制第二发光二极管LED2电量或者熄灭。
在一些可能的方式中,第一发光二极管LED1点亮时发出的光可以是蓝色,第二发光二极管LED2点亮时发出的光可以是绿色。对人类眼睛来说红色是较为醒目的颜色,相比于常见的发红光的发光二极管,绿色和蓝色对眼睛的刺激较为柔和。
在一些可能的方式中,第一发光二极管控制子电路还可以包括第三二极管D3和第十五电容C15。第三二极管D3可以是双向稳压二极管。
第十五电容C15的第一端可以连接于第二电阻R2与第一发光二极管LED1的阳极之间,第十五电容C15的第二端可以接地。第三二极管D3可以与第十五电容C15并联。
第二发光二极管控制子电路还可以包括第四二极管D4和第十六电容C16。第四二极管D4可以是双向稳压二极管。
第十六电容C16的第一端可以连接于第三电阻R3与第二发光二极管LED2的阳极之间,第十六电容C16的第二端可以接地。第四二极管D4可以与第十六电容C16并联。
本申请实施例还提供了一种体外程控器,所述体外程控器包括上述任一项体外程控器的控制电路。
由此,体外程控器可以通过体外程控器的控制电路实现程控设备和刺激器的数据交互,避免刺激器与程控设备进行直接通信,达到保密通信的目的。
参见图13,图13是本申请实施例提供的一种程控系统的结构示意图。
本申请实施例还提供了一种程控系统40,所述程控系统40包括程控设备20、设置于患者体内的刺激器30和上述体外程控器10。
本申请从使用目的上,效能上,进步及新颖性等观点进行阐述,本申请以上的说明书及说明书附图,仅为本申请的较佳实施例而已,并非以此局限本申请,因此,凡一切与本申请构造,装置,特征等近似、雷同的,即凡依本申请专利申请范围所作的等同替换或修饰等,皆应属本申请的专利申请保护的范围之内。

Claims (11)

  1. 一种体外程控器的控制电路,所述控制电路包括单片机、无线通信子电路和射频子电路;
    所述无线通信子电路被配置为接收程控设备发送的程控信号,生成通信信号并发送至所述单片机;
    所述单片机被配置为基于所述通信信号,生成刺激控制信号并发送至所述射频子电路;
    所述射频子电路被配置为基于所述刺激控制信号,生成刺激器信号并发送至设置于患者体内的刺激器;
    所述无线通信子电路包括输入端和输出端,所述射频子电路包括数据输入端和数据输出端,所述单片机包括通信输入端、通信输出端、射频数据输入端和射频数据输出端;
    所述单片机的通信输入端连接至所述无线通信子电路的输出端,所述单片机的通信输出端连接至所述无线通信子电路的输入端,所述单片机的射频数据输入端连接至所述射频子电路的数据输出端,所述单片机的射频数据输出端连接至所述射频子电路的数据输入端。
  2. 根据权利要求1所述的控制电路,其中,所述射频子电路包括射频信号收发模块、射频开关芯片和天线模块;
    所述单片机还包括射频收发控制端,所述射频开关芯片包括第一输入端、第二输入端、第一传输端和第二传输端,所述射频信号收发模块包括数据输入端、数据输出端和射频信号传输端,所述天线模块包括天线信号传输端;
    所述射频子电路的数据输出端连接至所述射频信号收发模块的数据输出端,所述射频子电路的数据输入端连接至所述射频信号收发模块的数据输入端;
    所述单片机的射频收发控制端分别连接至所述射频开关芯片的第一输入端和第二输入端;
    所述射频开关芯片的第一传输端连接至所述天线模块的天线信号传输端;
    所述射频开关芯片的第二传输端连接至所述射频信号收发模块的射频信号传输端;
    所述射频子电路被配置为通过所述天线模块的天线信号传输端将所述刺激器信号发送至设置于患者体内的刺激器。
  3. 根据权利要求2所述的控制电路,其中,所述射频信号收发模块包括射频收发器芯片、滤波器、第一电容和第一电感;
    所述射频收发器芯片包括正射频信号传输端和负射频信号传输端;
    所述射频信号收发模块的射频信号传输端连接至所述滤波器的第一端,所述滤波器的第二端通过所述第一电容连接至所述射频收发器芯片的正射频信号传输端,所述滤波器的第二端还通过所述第一电感连接至所述射频收发器芯片的负射频信号传输端。
  4. 根据权利要求2所述的控制电路,其中,所述天线模块包括射频连接器、第十电容和接线端子;
    所述接线端子包括第一端,所述射频连接器包括内芯,所述内芯包括第一数据传输端和第二数据传输端;
    所述接线端子的第一端通过所述第十电容连接至所述射频连接器的内芯的第一数据传输端;
    所述射频连接器的内芯的第二数据传输端连接至所述天线模块的天线信号传输端。
  5. 根据权利要求2所述的控制电路,其中,所述射频子电路还包括放大器芯片、第十一电容和第十二电容,所述放大器芯片包括数据输入端和数据输出端;
    所述射频开关芯片包括数据输入端和数据输出端;
    所述射频开关芯片的数据输出端通过所述第十二电容连接至所述放大器芯片的数据输入端,所述射频开关芯片的数据输入端通过所述第十一电容连接至所述放大器芯片的数据输出端。
  6. 根据权利要求1所述的控制电路,其中,所述无线通信子电路包括蓝牙芯片、第一磁珠和第二磁珠,所述蓝牙芯片包括UART数据输入端、UART数据输出端和蓝牙天线传输端;
    所述无线通信子电路的输入端通过所述第一磁珠连接至所述蓝牙芯片的UART数据输入端,所述无线通信子电路的输出端通过所述第二磁珠连接至所述蓝牙芯片的UART数据输出端;
    所述无线通信子电路被配置为通过所述蓝牙芯片的蓝牙天线传输端接收所述程控设备发送的程控信号。
  7. 根据权利要求1所述的控制电路,其中,所述控制电路还包括供电子电路,所述供电子电路包括第一预设电压输出模块、第二预设电压输出模块、无线通信供电模块、单片机供电模块和射频供电模块;
    所述第一预设电压输出模块被配置为输出第一预设电压,所述第一预设电压输出模块被配置为输出第二预设电压,所述无线通信供电模块被配置为向所述无线通信子电路供电,所述单片机供电模块被配置为向所述单片机供电,所述射频供电模块被配置为向所述射频子电路供电;
    所述无线通信供电模块包括输入端和输出端,所述无线通信供电模块的输入端输入所述第一预设电压,所述无线通信供电模块的输出端输出无线供电电压;
    所述单片机供电模块包括输入端和输出端,所述单片机供电模块的输入端输入所述无线供电电压,所述单片机供电模块的输出端输出单片机供电电压;
    所述射频供电模块包括输入端和输出端,所述射频供电模块的输入端输入所述第二预设电压,所述射频供电模块的输出端输出射频供电电压。
  8. 根据权利要求7所述的控制电路,其中,所述控制电路还包括急停子电路,所述急停子电路包括第一电阻和急停按钮;
    所述急停子电路包括输入端和输出端,所述急停子电路的输入端输入所述第一预设电压,所述急停子电路的输入端还通过顺次连接的所述第一电阻和所述急停按钮接地;
    所述单片机还包括停止信号输入端,所述单片机的停止信号输入端连接至所述第一电阻和急停按钮之间。
  9. 根据权利要求7所述的控制电路,其中,所述控制电路还包括第一发光二极管控制子电路和第二发光二极管控制子电路;
    所述第一发光二极管控制子电路包括第二电阻、第一发光二极管和第三磁珠, 所述第二发光二极管控制子电路包括第三电阻、第二发光二极管和第四磁珠;
    所述无线通信子电路还包括第一发光二极管端和第二发光二极管端;
    所述第一发光二极管控制子电路还包括输入端和输出端,所述第一发光二极管控制子电路的输入端输入无线供电电压,所述第一发光二极管控制子电路的输入端还通过所述第二电阻连接至所述第一发光二极管的阳极,所述第一发光二极管的阴极通过所述第三磁珠连接至所述第一发光二极管控制子电路的输出端,所述第一发光二极管控制子电路的输出端还连接至所述无线通信子电路的第一发光二极管端;
    所述第二发光二极管控制子电路还包括输入端和输出端,所述第二发光二极管控制子电路的输入端输入无线供电电压,所述第二发光二极管控制子电路的输入端还通过所述第三电阻连接至所述第二发光二极管的阳极,所述第二发光二极管的阴极通过所述第四磁珠连接至所述第二发光二极管控制子电路的输出端,所述第二发光二极管控制子电路的输出端还连接至所述无线通信子电路的第二发光二极管端。
  10. 一种体外程控器,所述体外程控器包括权利要求1-9任一项所述的体外程控器的控制电路。
  11. 一种程控系统,所述程控系统包括程控设备、设置于患者体内的刺激器和权利要求10所述的体外程控器。
PCT/CN2022/109771 2021-08-03 2022-08-02 体外程控器及其控制电路、程控系统 WO2023011491A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110885823.7A CN113457014A (zh) 2021-08-03 2021-08-03 体外程控器及其控制电路、程控系统
CN202110885823.7 2021-08-03

Publications (1)

Publication Number Publication Date
WO2023011491A1 true WO2023011491A1 (zh) 2023-02-09

Family

ID=77883938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109771 WO2023011491A1 (zh) 2021-08-03 2022-08-02 体外程控器及其控制电路、程控系统

Country Status (2)

Country Link
CN (1) CN113457014A (zh)
WO (1) WO2023011491A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116936562A (zh) * 2023-09-14 2023-10-24 成都爱旗科技有限公司 一种芯片封装结构、WiFi6芯片以及物联网设备
CN117482398A (zh) * 2023-12-30 2024-02-02 科斗(苏州)脑机科技有限公司 一种可调节发射频率的无线电刺激设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113457014A (zh) * 2021-08-03 2021-10-01 苏州景昱医疗器械有限公司 体外程控器及其控制电路、程控系统
CN114569888A (zh) * 2022-03-02 2022-06-03 苏州景昱医疗器械有限公司 体外程控器的控制电路、体外程控器及程控系统
CN114849063B (zh) * 2022-07-05 2022-09-16 苏州景昱医疗器械有限公司 体外充电器、程控系统和计算机可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130345777A1 (en) * 2012-06-25 2013-12-26 Boston Scientific Neuromodulation Corporation Neurostimulation system for enabling magnetic field sensing with a shut-down hall sensor
CN105311750A (zh) * 2015-11-09 2016-02-10 杭州承诺医疗科技有限公司 一种骶神经刺激系统
CN107362447A (zh) * 2017-08-17 2017-11-21 杭州承诺医疗科技有限公司 一种胫神经刺激器及系统
US20200222703A1 (en) * 2019-01-10 2020-07-16 Stimwave Technologies Incorporated Wireless implantable pulse generators
CN112972895A (zh) * 2021-04-16 2021-06-18 北京领创医谷科技发展有限责任公司 植入式神经刺激器
CN113457014A (zh) * 2021-08-03 2021-10-01 苏州景昱医疗器械有限公司 体外程控器及其控制电路、程控系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105641808B (zh) * 2015-12-31 2018-04-13 苏州景昱医疗器械有限公司 可在充电同时进行程控的无线充电器及植入式神经刺激器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130345777A1 (en) * 2012-06-25 2013-12-26 Boston Scientific Neuromodulation Corporation Neurostimulation system for enabling magnetic field sensing with a shut-down hall sensor
CN105311750A (zh) * 2015-11-09 2016-02-10 杭州承诺医疗科技有限公司 一种骶神经刺激系统
CN107362447A (zh) * 2017-08-17 2017-11-21 杭州承诺医疗科技有限公司 一种胫神经刺激器及系统
US20200222703A1 (en) * 2019-01-10 2020-07-16 Stimwave Technologies Incorporated Wireless implantable pulse generators
CN112972895A (zh) * 2021-04-16 2021-06-18 北京领创医谷科技发展有限责任公司 植入式神经刺激器
CN113457014A (zh) * 2021-08-03 2021-10-01 苏州景昱医疗器械有限公司 体外程控器及其控制电路、程控系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116936562A (zh) * 2023-09-14 2023-10-24 成都爱旗科技有限公司 一种芯片封装结构、WiFi6芯片以及物联网设备
CN116936562B (zh) * 2023-09-14 2023-12-05 成都爱旗科技有限公司 一种芯片封装结构、WiFi6芯片以及物联网设备
CN117482398A (zh) * 2023-12-30 2024-02-02 科斗(苏州)脑机科技有限公司 一种可调节发射频率的无线电刺激设备
CN117482398B (zh) * 2023-12-30 2024-03-19 科斗(苏州)脑机科技有限公司 一种可调节发射频率的无线电刺激设备

Also Published As

Publication number Publication date
CN113457014A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
WO2023011491A1 (zh) 体外程控器及其控制电路、程控系统
US10518093B2 (en) Method and apparatus for programming neuromodulation devices
JP5875706B2 (ja) 短絡電極出力を備えた複数の電極ドライバ集積回路を有する埋込み可能刺激器デバイスのためのアーキテクチャ
CN105025984A (zh) 用于将可植入装置连接至无线能量的装置和方法
WO2023011492A1 (zh) 植入式刺激器及刺激系统
CN103768712A (zh) 一种在头部植入的脑深部电刺激系统
WO2023061233A1 (zh) 体外充电器的充电控制方法及相关装置
CN109718470A (zh) 一种入耳式无创耳迷走神经刺激仪及其脉冲输出方法
WO2023071378A1 (zh) 植入式神经刺激器和植入式神经刺激系统
CN104334232A (zh) 具有默认mri模式的神经刺激系统
WO2023124616A1 (zh) 无线通讯系统、方法、计算机设备及存储介质
CN105288849A (zh) 一种具有调制模式的植入式神经电刺激系统
US20150165206A1 (en) Apparatus, Method and System for Closed-Loop Neurostimulation
WO2023151539A1 (zh) 脑部医疗分析装置以及控制单元
WO2023124617A1 (zh) 植入式刺激系统
WO2024032814A1 (zh) 一种带感知功能的脑部神经电刺激系统
WO2023138117A1 (zh) 一种基于植入设备的远程诊疗系统及方法
WO2023151538A1 (zh) 神经刺激器及神经刺激系统
CN205516003U (zh) 治疗癫痫的装置
CN202933392U (zh) 一种具有无线通信功能的植入式医疗设备及系统
US10188865B2 (en) Systems and methods of combined tonic DBS and random DBS
KR20180134514A (ko) 파동제공기능을 구비한 스마트기기
CN103845805B (zh) 一种植入式医疗系统的医生程控仪演示功能实现方法
EP3691743B1 (en) System for electrical stimulation during functional mri
CN208770681U (zh) 植入式医疗设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE