WO2023151388A1 - Polymère isolant à entropie élevée pour réfrigération électrocalorique, et son procédé de préparation - Google Patents

Polymère isolant à entropie élevée pour réfrigération électrocalorique, et son procédé de préparation Download PDF

Info

Publication number
WO2023151388A1
WO2023151388A1 PCT/CN2022/139919 CN2022139919W WO2023151388A1 WO 2023151388 A1 WO2023151388 A1 WO 2023151388A1 CN 2022139919 W CN2022139919 W CN 2022139919W WO 2023151388 A1 WO2023151388 A1 WO 2023151388A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
entropy
reaction
preparation
electric card
Prior art date
Application number
PCT/CN2022/139919
Other languages
English (en)
Chinese (zh)
Inventor
黄兴溢
陈杰
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2023151388A1 publication Critical patent/WO2023151388A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the invention relates to a high-entropy polymer material for electric card refrigeration and a preparation method thereof, belonging to the technical field of preparation of dielectric materials and electric card refrigeration materials.
  • Refrigerant gas used in traditional cooling technologies based on the vapor compression cycle is one of the main causes of global warming, and cooling is an energy-intensive activity that consumes more than 20% of the world's electricity.
  • Thermal effect-based solid-state cooling technologies are an attractive alternative to vapor-compression cycles because they emit zero greenhouse gases and promise to be more efficient in operation.
  • the electric card effect is a phenomenon in which a material exhibits a reversible entropy change under an applied electric field and induces a temperature change.
  • the research on the electric card effect for more than ten years has led to the fact that the minimum electric card refrigeration temperature difference required by the solid electric card refrigeration material to meet the thermal heat pump is 5°C.
  • the invention provides a kind of high-entropy polymer material for electric card refrigeration and a preparation method thereof aiming at the present situation of low entropy change of polymers used for electric card refrigeration. Introduce benzene rings, bromine atoms or boron nitride quantum dots into P(VDF 65 -TrFE 35 -CFE 7 ) to provide nucleation sites, increase the interface area, reduce the energy barrier of the entropy transition state, and adjust the interaction between molecules and other methods to control the properties of materials.
  • the method can significantly increase the number of polarizable polar entities of P(VDF 65 -TrFE 35 -CFE 7 ), increase the polar-nonpolar interface area of the polymer, and enhance the entropy change under low electric field.
  • Using this type of polymer as a solid electric card refrigeration material has high electric card refrigeration performance (>12°C) at a relatively low electric field ( ⁇ 100MV/m).
  • the present invention is achieved through the following technical solutions:
  • one or more embodiments of the present invention provide a class of high-entropy polymers having one or more of the following general formulas:
  • one or more embodiments of the present invention provide a method for preparing a high-entropy polymer as described above, which includes the following steps:
  • the preparation of polymer (1) is as follows: P(VDF 65 -TrFE 35 -CFE 7 ) is placed in N,N-diformamide solution, and dehydrochlorination reaction is carried out under the catalysis of triethylamine to obtain Carbon-carbon double bond functionalized poly(vinylidene fluoride 65 -trifluoroethylene 35 -chlorofluoroethylene 7 -carbon-carbon double bond 0.6 ) polymer (1).
  • step S1 the temperature of the dehydrochlorination reaction is 45-55°C, the concentration of P(VDF 65 -TrFE 35 -CFE 7 ) is 80-120 mg/mL, and the reaction time is 50-70 minutes. In some embodiments, the temperature of the dehydrochlorination reaction is 50°C, the concentration of P(VDF 65 -TrFE 35 -CFE 7 ) is 100 mg/mL, and the reaction time is 1 hour.
  • the preparation reaction solvent of the polymer (2) is one or more of N,N-diformamide, acetone, and N-methylpyrrolidone
  • the catalyst used is the second-generation GRUBBS catalyst, 1, 3-Bis(2,4,6-trimethylphenyl)-2-(imidazolidinylidene)(dichlorobenzylidene)(tricyclohexylphosphine)ruthenium.
  • the temperature of the olefin metathesis reaction is 25-35°C
  • the catalyst is 0.08-0.12wt% of the mass of the input polymer
  • the reaction time is 5.5-6.5 hours.
  • the reaction temperature is 30°C
  • the amount of the second-generation Grubbs catalyst is 0.1 wt% of the polymer mass
  • the reaction time is 6 hours.
  • the concentration of the polymer (1) is 80-120 mg/mL, and the reaction terminator is vinyl ether. In some embodiments, the concentration of polymer (1 ) is 100 mg/mL.
  • the preparation reaction solvent of the polymer (3) and the polymer (4) is one or more of N,N-dimethylformamide, acetone, dimethyl sulfoxide, and N-methylpyrrolidone
  • the concentration of the polymer (1) is 80-120 mg/mL
  • the temperature of the addition reaction is 45-55° C.
  • the reaction time is 1-1.5 hours.
  • the polymer (1) has a reaction concentration of 100 mg/mL, a reaction temperature of 50° C., and a reaction time of 1 hour.
  • the bromine element is 1.2-2 times the molar amount of double bonds in the polymer (1). In some embodiments, bromine is twice the molar amount of double bonds in polymer (1).
  • the temperature of the click chemical reaction is 50-60°C
  • the concentration of the polymer (1) is 80-120mg/mL
  • the boron nitride quantum dots are 0.1wt% of the mass of the input polymer
  • the reaction time is 1- 1.5 hours.
  • the temperature of the click chemical reaction is 50° C.
  • the polymer concentration is 100 mg/mL
  • the boron nitride quantum dots are 0.1 wt % of the mass of the polymer
  • the reaction time is 1 hour.
  • one or more embodiments of the present invention provide a method for preparing a film from a high-entropy polymer as described above, which includes the following steps:
  • the organic solvent is selected from N, N-dimethylformamide, acetone, and dimethyl sulfoxide , one or more of N-methylpyrrolidone;
  • step (a) 500mg of high-entropy polymer is added to every 10mL of N,N-diformamide solution.
  • one or more embodiments of the present invention provide a use of the aforementioned high-entropy polymer in the preparation of solid electric card refrigeration products.
  • the present invention controls the properties of the material by rationally designing the molecular structure of the polymer, providing nucleation sites in the polymer, increasing the interface area, reducing the energy barrier of the transition state, and adjusting the interaction between molecules, which can significantly increase the polymerization rate.
  • the number of polar entities of the substance increases the polar-nonpolar interface area of the polymer to enhance the entropy change of the polymer. This similar polymer and technical scheme have not been reported.
  • Fig. 1 is the proton nuclear magnetic resonance spectrum of the high entropy polymer gained in the embodiment of the present invention 1;
  • Fig. 2 is the transmission electron microscope picture of the boron nitride quantum dot obtained in the embodiment of the present invention 1;
  • Fig. 3 is the change diagram of the electric card entropy change with the electric field of the high-entropy polymer obtained in the embodiment 1 of the present invention
  • Fig. 4 is the variation diagram of the electric card temperature of the high entropy polymer obtained in Example 1 of the present invention along with the electric field;
  • Fig. 5 is the heat flow diagram of the high-entropy polymer obtained in Example 1 of the present invention under a 50MV/m electric field of 550,000 times;
  • Fig. 6 is the heat absorption of the high-entropy polymer film obtained in Example 1 of the present invention after the first and millionth cycles.
  • the present embodiment relates to the synthesis in the above-mentioned high-entropy polymer, and its structure is as shown in formula I:
  • 100mg of polymer was dissolved in 5mL of N,N-diformamide solution, and evenly coated on quartz glass by a four-sided preparation device with a thickness of 400 ⁇ m. Put it into an oven, vacuum dry at 50°C for 5 hours, raise the temperature to 100°C, and continue drying for 24 hours to obtain a transparent flexible film.
  • the polymer can be continuously and stably charged and discharged for more than 550,000 times under an electric field of 50MV/m, and the performance remains above 95%.
  • Figure 6 shows the heat absorption of the high-entropy polymer film after the first and millionth cycles of the high-entropy polymer, and the performance remains above 90%.
  • the present invention has the following beneficial effects:
  • the polymer prepared by the present invention has a high entropy change. At 100MV/m, the entropy becomes 70-90J/(kg K), which is 100-300% higher than the entropy of commercial electric card polymers. The temperature change reaches 12-17°C;
  • This type of polymer can continuously perform more than one million charge-discharge cycles under an electric field of 50MV/m, and the performance of the electric card has not deteriorated significantly;
  • the cyclic heat loss of this type of polymer under the electric field of 50MV/m is 10% of that of P(VDF 65 -TrFE 35 -CFE 7 ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

La présente invention concerne un matériau polymère à entropie élevée pour réfrigération électrocalorique, et son procédé de préparation. Le polymère à entropie élevée a une formule développée générale correspondant aux polymères (1) à (4), le polymère (1) étant obtenu en soumettant du P(VDF65-TrFE35-CFE7) et de la triéthylamine à une réaction de déshydrochloration ; le polymère (2) étant obtenu par initiation d'une réaction de métathèse d'oléfines du polymère (1) et de 1,3-bis(1-méthylvinyl)benzène à l'aide d'un catalyseur de Grubbs ; le polymère (3) étant obtenu par soumission du polymère (1) et de brome élémentaire à une addition ; et le polymère (4) étant obtenu en soumettant le polymère (1) et des points quantiques de nitrure de bore à fonctionnalisation mercapto à une réaction de chimie clic. Le film mince en polymère préparé dans la présente invention présente des caractéristiques de transparence, de souplesse, de facilité de traitement, de résistance élevée à la rupture électrique, de changement d'entropie élevé, de faible perte de polarisation, etc ; et il présente des performances élevées de réfrigération électrocalorique (> 12 °C) dans un champ électrique relativement faible (environ 100 MV/m). Le film mince en polymère est un matériau fonctionnel de réfrigération électrocalorique solide ayant un potentiel de commercialisation.
PCT/CN2022/139919 2022-02-14 2022-12-19 Polymère isolant à entropie élevée pour réfrigération électrocalorique, et son procédé de préparation WO2023151388A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210133694.0A CN114621382B (zh) 2022-02-14 2022-02-14 电卡制冷用高熵绝缘聚合物及其制备方法
CN202210133694.0 2022-02-14

Publications (1)

Publication Number Publication Date
WO2023151388A1 true WO2023151388A1 (fr) 2023-08-17

Family

ID=81897798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139919 WO2023151388A1 (fr) 2022-02-14 2022-12-19 Polymère isolant à entropie élevée pour réfrigération électrocalorique, et son procédé de préparation

Country Status (2)

Country Link
CN (1) CN114621382B (fr)
WO (1) WO2023151388A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114621382B (zh) * 2022-02-14 2022-11-29 上海交通大学 电卡制冷用高熵绝缘聚合物及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3104583A1 (fr) * 2019-12-13 2021-06-18 Arkema France Polymère électrocalorique, encre et film en comprenant et utilisations associées
CN113214424A (zh) * 2021-06-09 2021-08-06 上海交通大学 改性聚偏氟乙烯基铁电聚合物低电场制冷性能的方法及其应用
CN113412545A (zh) * 2018-12-17 2021-09-17 阿科玛法国公司 包含可极化基团的电活性氟化聚合物
CN114621382A (zh) * 2022-02-14 2022-06-14 上海交通大学 电卡制冷用高熵绝缘聚合物及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102145304B (zh) * 2011-02-24 2012-08-08 华东师范大学 一种负载型格拉布斯催化剂的制备及其应用
CN103951917B (zh) * 2014-04-29 2016-03-02 上海交通大学 柔性高介电聚合物复合材料及其制备方法
CN110628152B (zh) * 2018-06-21 2021-05-11 清华大学 一种聚合物基复合电卡材料及其制备方法
CN110437808A (zh) * 2019-08-30 2019-11-12 深圳先进技术研究院 一种基于电卡效应的制冷材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113412545A (zh) * 2018-12-17 2021-09-17 阿科玛法国公司 包含可极化基团的电活性氟化聚合物
FR3104583A1 (fr) * 2019-12-13 2021-06-18 Arkema France Polymère électrocalorique, encre et film en comprenant et utilisations associées
CN113214424A (zh) * 2021-06-09 2021-08-06 上海交通大学 改性聚偏氟乙烯基铁电聚合物低电场制冷性能的方法及其应用
CN114621382A (zh) * 2022-02-14 2022-06-14 上海交通大学 电卡制冷用高熵绝缘聚合物及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIAN XIAOSHI; HAN DONGLIN; ZHENG LIRONG; CHEN JIE; TYAGI MADHUSUDAN; LI QIANG; DU FEIHONG; ZHENG SHANYU; HUANG XINGYI; ZHANG SHIHA: "High-entropy polymer produces a giant electrocaloric effect at low fields", NATURE, NATURE PUBLISHING GROUP UK, LONDON, vol. 600, no. 7890, 22 December 2021 (2021-12-22), London, pages 664 - 669, XP037648036, ISSN: 0028-0836, DOI: 10.1038/s41586-021-04189-5 *

Also Published As

Publication number Publication date
CN114621382A (zh) 2022-06-14
CN114621382B (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
CN105198909B (zh) 用于形成高分子化合物的化合物
US9660166B2 (en) Thermoelectric conversion material, thermoelectric conversion element, article for thermoelectric power generation and power supply for sensor
WO2023151388A1 (fr) Polymère isolant à entropie élevée pour réfrigération électrocalorique, et son procédé de préparation
CN102598338B (zh) 光电转换元件
WO2012068733A1 (fr) Polymère conjugué contenant des unités d'isoindigo, procédé de préparation et utilisation correspondants
WO2016119545A1 (fr) Matériau semi-conducteur organique et procédé de préparation et application associés
WO2015146055A1 (fr) Polymère et cellule solaire fabriquée à l'aide de celui-ci
JP2013189602A (ja) π電子共役重合体および光電変換素子
JP6687025B2 (ja) 光電変換素子
Jia et al. Microwave-assisted one-pot three-component polymerization of alkynes, aldehydes and amines toward amino-functionalized optoelectronic polymers
CN112608309A (zh) 一种含芴环基团的非稠环有机小分子材料及其制备方法和应用
JP6115885B2 (ja) 光電変換素子、太陽電池、及び太陽電池モジュール
KR101142206B1 (ko) 디티오펜-티아졸로티아졸기가 함유된 전도성 고분자, 그를 이용한 유기 광전자 소자 및 그를 채용한 유기 태양전지
JP6441196B2 (ja) ポリマーおよびそれを用いた太陽電池
JP2013055322A (ja) 光電変換素子、太陽電池及び太陽電池モジュール
JP2012186462A (ja) 有機光電変換素子の製造方法
CN117736218A (zh) 一种螺环羰基氮化合物、聚合物、混合物及其应用
EP2730633A1 (fr) Composé polymère et son utilisation dans des dispositifs photovoltaïques
JP5538630B2 (ja) シラフルオレン金属ポルフィリン−ベンゼン有機半導体材料及びその調製方法並びに応用
KR20090107316A (ko) C70 플러렌 유도체 및 그를 이용한 유기 광기전력 장치
CN110204545A (zh) 一种基于苝酰亚胺的有机光伏材料及其制备方法与应用
CN113087879B (zh) 高温静电储能双链结构聚合物电介质及制备方法
JP2014114265A (ja) ジチオフェン化合物及びそのジチオフェン基を有するπ電子共役重合体、並びにその重合体を用いた有機半導体デバイス
RU2640810C2 (ru) Полимерное соединение и его применение в фотовольтаических устройствах
JP7182606B2 (ja) 有機太陽光発電用の高性能ワイドバンドギャップポリマー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925738

Country of ref document: EP

Kind code of ref document: A1