WO2023151278A1 - 一种光电传感器的低成本制备方法及其结构 - Google Patents

一种光电传感器的低成本制备方法及其结构 Download PDF

Info

Publication number
WO2023151278A1
WO2023151278A1 PCT/CN2022/120400 CN2022120400W WO2023151278A1 WO 2023151278 A1 WO2023151278 A1 WO 2023151278A1 CN 2022120400 W CN2022120400 W CN 2022120400W WO 2023151278 A1 WO2023151278 A1 WO 2023151278A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric sensor
dopant
oxide layer
doped region
low
Prior art date
Application number
PCT/CN2022/120400
Other languages
English (en)
French (fr)
Inventor
陈慧蓉
陈全胜
张明
彭时秋
王涛
贺琪
Original Assignee
无锡中微晶园电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡中微晶园电子有限公司 filed Critical 无锡中微晶园电子有限公司
Publication of WO2023151278A1 publication Critical patent/WO2023151278A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of semiconductor technology, in particular to a low-cost preparation method of a photoelectric sensor and its structure.
  • a photoelectric sensor is a semiconductor device that converts light energy into electrical energy. It is widely used in various industries such as industrial sensing, smart home appliances, and industrial control, such as remote controls, optical switches, encoders, and photocells. Due to the wide range of uses of photoelectric sensors, there is a very high demand for low-cost photosensor chips in the market.
  • the object of the present invention is to provide a low-cost preparation method of a photoelectric sensor and its structure, so as to solve the problem of high cost of preparing a photoelectric sensor at present.
  • the invention provides a low-cost preparation method of a photoelectric sensor, comprising:
  • Step 1 providing a substrate, performing thin oxygen on its front surface to form a shielding layer, and lightly doping the surface with a first dopant to form a first doped region;
  • Step 2 preparing a field oxide layer on the surface of the doped substrate
  • Step 3 performing the first photolithography and etching out the second doped window region, and doping with the second dopant to form the second doped region;
  • Step 4 Oxidize an oxide layer on the surface of the second doped window region according to the photoresponse requirements
  • Step 5 performing a second photolithography on the oxide layer on the surface of the second doped window area to prepare a contact hole;
  • Step 6 depositing metal electrodes on the front side and performing photolithography for the third time to corrode the front metal electrodes;
  • Step 7 depositing a backside metal electrode on the backside of the substrate.
  • the doping type of the first dopant is the same as that of the substrate, and the doping type of the second dopant is different from that of the first dopant .
  • the implantation dose of the first dopant is 1 ⁇ 10 11 cm ⁇ 3 to 1 ⁇ 10 13 cm ⁇ 3 , and the implantation energy is 30keV ⁇ 100keV.
  • the implantation dose of the first dopant is 1 ⁇ 10 12 cm ⁇ 3 to 5 ⁇ 10 12 cm ⁇ 3 ; the implantation energy is 60keV ⁇ 80keV.
  • the implantation dose of the second dopant is 1 ⁇ 10 13 cm ⁇ 3 to 1 ⁇ 10 16 cm ⁇ 3 , and the implantation energy is 50keV ⁇ 120keV.
  • the implantation dose of the second dopant is 1 ⁇ 10 14 cm ⁇ 3 to 1 ⁇ 10 15 cm ⁇ 3 , and the implantation energy is 70keV ⁇ 100keV.
  • the thickness of the oxide layer in step 4 is 130-150 nm or 150-170 nm; when the thickness is 130-150 nm, the wavelength corresponding to the peak photoresponsivity is 800 nm, and when the thickness is 150-170 nm, it corresponds to the peak photo-responsivity The wavelength is 900nm.
  • a photoelectric sensor structure comprising a substrate, a backside metal electrode is deposited on the outer surface of the bottom, and an oxide layer is formed on the outer surface of the top; a first doped region and a second doped region are formed on the inner surface of the top of the substrate , the first doped region and the second doped region are located below the oxide layer, and the depth of the second doped region is greater than that of the first doped region; the first doped region The region is covered with a front metal electrode; the front metal electrode contacts the second doped region through the oxide layer.
  • the oxide layer includes a shielding layer and a prepared outgoing oxide layer, the total thickness of which is 600nm-1100nm.
  • a low-doped layer with the same doping type as the substrate is formed on the surface of the silicon wafer by using the general injection scheme to replace the original stop ring and play a role Reduce the effect of device dark current; the photosensitive surface adopts an oxidation scheme to prepare a silicon oxide dielectric layer, which replaces the original scheme of re-depositing a photosensitive dielectric layer after photolithography, and finally realizes that the photoelectric sensor is reduced from five times of photolithography to only three times of photolithography.
  • the preparation cost of the photoelectric sensor is reduced by 40%, and the production capacity of the photoelectric sensor is increased by 66.66%.
  • Fig. 1 is a schematic diagram of forming a thin oxygen layer on a silicon wafer substrate
  • FIG. 2 is a schematic diagram of lightly doping the surface of a silicon wafer substrate with a first dopant to form a first doped region
  • Fig. 3 is a schematic diagram of preparing a field oxide layer on the doped surface
  • FIG. 4 is a schematic diagram of forming a second doped region at a second doped window
  • Fig. 5 is a schematic diagram of preparing a contact hole by performing a second photolithography on the oxide layer on the surface of the second doped window region;
  • Fig. 6 is a schematic diagram of depositing metal on the front surface
  • FIG. 7 is a schematic diagram of forming a front metal electrode by performing the third photolithographic corrosion of the metal on the surface
  • FIG. 8 is a schematic diagram of depositing a metal electrode on the back surface to form a back metal electrode.
  • the invention provides a low-cost preparation method of a photoelectric sensor.
  • a low-doped layer of the same doping type as the substrate is formed on the surface of a silicon wafer by using a general injection scheme to replace the original cut-off ring, thereby reducing the dark area of the device.
  • the implant dose and energy of general injection have a great influence on the performance of the photoelectric device, especially the impact on the breakdown voltage.
  • the photosensitive surface is oxidized to prepare a silicon oxide dielectric layer, which replaces the original photolithography and redeposition of the photosensitive dielectric layer, and finally realizes that the photoelectric sensor is reduced from five lithography to only three lithography, and finally realizes the production of photoelectric sensors Substantial reduction in cost.
  • the low-cost preparation method of the photoelectric sensor provided by the invention the specific technological process of its technique is as follows:
  • Step 1 As shown in Figure 1, perform thin oxygen on the silicon wafer substrate 1 once to form a thin oxygen layer below 100nm, which is used as a shielding layer 2 to prevent surface damage in the subsequent implantation process.
  • Step 2 use the first dopant to lightly dope the surface of the silicon wafer substrate 1 to form the first doped region 3, the doping type of the first dopant is the same as the doping type of the substrate same type.
  • the implantation dose of the first dopant is 1 ⁇ 10 11 cm -3 to 1 ⁇ 10 13 cm -3 , preferably the implantation dose is 1 ⁇ 10 12 cm -3 to 5 ⁇ 10 12 cm -3 ; the implantation energy is 30keV ⁇ 100keV, the preferred implantation energy is 60keV ⁇ 80keV.
  • Step 3 As shown in FIG. 3 , continue to oxidize the doped surface to prepare an outgoing field oxide layer, the total thickness of which includes the masking layer 2 and the newly prepared outgoing field oxide layer is 600nm-1100nm.
  • the fourth step perform the first photolithography to form the second doped window, and use the second dopant to dope the second doped window to form the second doped region 4, and the second
  • the implantation dose of the dopant is 1 ⁇ 10 13 cm -3 to 1 ⁇ 10 16 cm -3
  • the preferred implantation dose is 1 ⁇ 10 14 cm -3 to 1 ⁇ 10 15 cm -3
  • the implantation energy is 50keV to 120keV
  • the preferred implantation energy is 70keV ⁇ 100keV
  • the doping type of the second dopant is different from that of the first dopant.
  • an oxide layer with a corresponding thickness is oxidized in the second doped window region according to the photoresponse requirement.
  • the thickness of the oxide layer is 130-150nm, which corresponds to a peak wavelength of photoresponsivity of 800nm.
  • the thickness of the oxide layer is 150-170nm, which corresponds to a peak wavelength of photoresponsivity of 900nm.
  • Step 5 As shown in FIG. 5 , a second photolithography is performed on the oxide layer on the surface of the second doped window region to prepare a contact hole 5 .
  • Step 6 As shown in Figure 6, deposit metal on the front surface
  • Step 7 As shown in FIG. 7 , a third photolithography is performed to corrode the metal on the surface to form the front metal electrode 6 .
  • Step 8 As shown in FIG. 8 , deposit a metal electrode on the back surface to form the back metal electrode 7 .
  • the process steps of the present invention are simple, only three lithography is required, the scheme of general injection is used to replace the scheme of stop ring on the entire surface of the substrate, the scheme of direct oxidation is used to replace the scheme of photosensitive surface preparation, and the number of lithography of the photoelectric sensor is reduced from five The number of times is reduced to three times, reducing the preparation cost by 40%. Increased production efficiency by 66.67%.
  • the photosensor structure prepared by the above method is shown in Figure 8, including a substrate 1, a back metal electrode 7 is deposited outside the bottom, an oxide layer and a first doped region 3 are formed on the top outer surface, and a top inner surface is formed. There is a second doped region 4; the first doped region 3 is covered with a front metal electrode 6.
  • the oxide layer includes the shielding layer 2 and the prepared out-field oxide layer, and its total thickness is 600nm-1100nm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开一种光电传感器的低成本制备方法,属于半导体工艺领域。本发明采用普注的方案在硅片表面形成一个与衬底相同掺杂类型的低掺杂层,替代原有的截止环,起到降低器件暗电流的作用。同时普注的注入剂量和能量对于光电器件的性能影响较大,尤其是对于击穿电压的影响。光敏面采用氧化的方案制备出氧化硅介质层,替代原有光刻后重新淀积光敏介质层的方案,最终实现将光电传感器五次光刻降低为只需要三次光刻,最终实现光电传感器制作成本的大幅度降低。

Description

一种光电传感器的低成本制备方法及其结构 技术领域
本发明涉及半导体工艺技术领域,特别涉及一种光电传感器的低成本制备方法及其结构。
背景技术
光电传感器是一种将光能转化为电能的半导体器件,普遍应用在工业传感、智能家电、工业控制等各行各业中,如遥控器、光控开关、编码器、光电池等等。由于光电传感器的用途非常之广泛,因此市场上对于低成本光电传感器芯片的要求非常高。
常规的光电传感器需要有截止环、PN结、光敏面、接触孔和电极这五个不同的功能区域,因此常规的光电传感器芯片需要进行五次光刻才能够制备获得,每次光刻后腐蚀和注入也同样需要,因此光电传感器的成本一直无法进一步降低。
发明内容
本发明的目的在于提供一种光电传感器的低成本制备方法及其结构,以解决目前制备光电传感器的成本较高的问题。
为解决上述技术问题,本发明提供了一种光电传感器的低成本制备方法,包括:
步骤1、提供衬底,对其正表面进行一次薄氧形成遮蔽层,使用第一掺杂剂对表面轻掺杂形成第一掺杂区域;
步骤2、在掺杂后的衬底表面制备出场氧化层;
步骤3、进行第一次光刻并腐蚀出第二掺杂窗口区域,使用第二掺杂剂进行掺杂形成第二掺杂区域;
步骤4、根据光响应要求在第二掺杂窗口区域表面氧化出氧化层;
步骤5、对第二掺杂窗口区域表面的氧化层进行第二次光刻,制备出接触孔;
步骤6、在正面淀积金属电极并进行第三次光刻,腐蚀出正面金属电极;
步骤7、在衬底背面淀积背面金属电极。
可选的,所述第一掺杂剂的掺杂类型与所述衬底的掺杂类型相同,所述第二掺杂剂的掺杂类型与所述第一掺杂剂的掺杂类型不同。
可选的,所述第一掺杂剂的注入剂量为1×10 11cm -3~1×10 13cm -3,注入能量为30keV~100keV。
可选的,所述第一掺杂剂的注入剂量为1×10 12cm -3~5×10 12cm -3;注入能量为60keV~80keV。
可选的,所述第二掺杂剂的注入剂量为1×10 13cm -3~1×10 16cm -3,注入能量为50keV~120keV。
可选的,所述第二掺杂剂的注入剂量为1×10 14cm -3~1×10 15cm -3,注入能量为70keV~100keV。
可选的,所述步骤4中氧化层的厚度为130~150nm或150~170nm;厚度为130~ 150nm时对应于光响应度峰值波长为800nm,厚度为150~170nm时对应于光响应度峰值波长为900nm。
一种光电传感器结构,包括衬底,其底部外表面淀积有背面金属电极,顶部外表面形成有氧化层;所述衬底的顶部内表面形成有第一掺杂区域和第二掺杂区域,所述第一掺杂区域和所述第二掺杂区域位于所述氧化层的下方,且所述第二掺杂区域的深度比所述第一掺杂区域大;所述第一掺杂区域上覆盖有正面金属电极;所述正面金属电极穿过所述氧化层与所述第二掺杂区域接触。
可选的,所述氧化层包括遮蔽层和制备的出场氧化层,其总厚度为600nm~1100nm。
在本发明提供的光电传感器的低成本制备方法及其结构中,采用普注的方案在硅片表面形成一个与衬底相同掺杂类型的低掺杂层,替代原有的截止环,起到降低器件暗电流的作用;光敏面采用氧化的方案制备出氧化硅介质层,替代原有光刻后重新淀积光敏介质层的方案,最终实现将光电传感器五次光刻降低为只需要三次光刻,将光电传感器的制备成本降低了40%,提高了66.66%光电传感器的生产产能。
附图说明
图1是在硅片衬底形成薄氧层示意图;
图2是使用第一掺杂剂对硅片衬底的表面轻掺杂形成第一掺杂区域的示意图;
图3是在掺杂后的表面制备出场氧化层的示意图;
图4是在第二掺杂窗口处形成第二掺杂区域的示意图;
图5是对第二掺杂窗口区域表面的氧化层进行第二次光刻制备出接触孔的示意图;
图6是在正表面淀积金属的示意图;
图7是进行第三次光刻腐蚀表面的金属形成正面金属电极的示意图;
图8是在背表面淀积金属电极形成背面金属电极的示意图。
具体实施方式
以下结合附图和具体实施例对本发明提出的一种光电传感器的低成本制备方法及其结构作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
本发明提供了一种光电传感器的低成本制备方法,采用普注的方案在硅片表面形成一个与衬底相同掺杂类型的低掺杂层,替代原有的截止环,起到降低器件暗电流的作用。同时普注的注入剂量和能量对于光电器件的性能影响较大,尤其是对于击穿电压的影响。光敏面采用氧化的方案制备出氧化硅介质层,替代原有光刻后重新淀积光敏介质层的方案,最终实现将光电传感器五次光刻降低为只需要三次光刻,最终实现光电传感器制作成本的大幅度降低。
本发明提供的光电传感器的低成本制备方法,其工艺的具体工艺流程如下:
第一步:如图1所示,对硅片衬底1进行一次薄氧,形成100nm以下的薄氧层,用作后 续注入工艺中防止表面产生损伤的遮蔽层2。
第二步:如图2所示,使用第一掺杂剂对硅片衬底1的表面轻掺杂,形成第一掺杂区域3,第一掺杂剂的掺杂类型与衬底掺杂类型相同。第一掺杂剂的注入剂量为1×10 11cm -3~1×10 13cm -3,优选的注入剂量为1×10 12cm -3~5×10 12cm -3;注入能量为30keV~100keV,优选的注入能量为60keV~80keV。注入剂量越高,导致器件的击穿电压越低,因此需要根据实际的击穿电压的需求进行注入剂量和注入能量的调节。
第三步:如图3所示,在掺杂后的表面继续进行氧化,制备出场氧化层,包含遮蔽层2和刚制备的出场氧化层的总厚度为600nm~1100nm。
第四步:如图4所示,进行第一次光刻形成第二掺杂窗口,对第二掺杂窗口处使用第二掺杂剂进行掺杂,形成第二掺杂区域4,第二掺杂剂的注入剂量为1×10 13cm -3~1×10 16cm -3,优选的注入剂量为1×10 14cm -3~1×10 15cm -3;注入能量为50keV~120keV,优选的注入能量为70keV~100keV,第二掺杂剂的掺杂类型与第一掺杂剂的掺杂类型不同。然后根据光响应要求在第二掺杂窗口区域氧化出对应厚度的氧化层。氧化层厚度为130~150nm,对应于光响应度峰值波长为800nm。氧化层厚度为150~170nm,对应于光响应度峰值波长为900nm。
第五步:如图5所示,对第二掺杂窗口区域表面的氧化层进行第二次光刻,制备出接触孔5。
第六步:如图6所示,在正表面淀积金属,
第七步:如图7所示,进行第三次光刻,腐蚀表面的金属形成正面金属电极6。
第八步:如图8所示,在背表面淀积金属电极,形成背面金属电极7。
本发明工艺步骤简单,仅需要三次光刻,在衬底整个表面采用普注的方案替代了截止环的方案,采用直接氧化方案替代了光敏面制备的方案,将光电传感器的光刻次数从五次降低至三次,降低了40%的制备成本。提高了66.67%的生产效率。
通过如上方法制备出的光电传感器结构如图8所示,包括衬底1,其底部外面淀积有背面金属电极7,顶部外表面形成有氧化层和第一掺杂区域3,顶部内表面形成有第二掺杂区域4;所述第一掺杂区域3上覆盖有正面金属电极6。所述氧化层包括遮蔽层2和制备的出场氧化层,其总厚度为600nm~1100nm。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (9)

  1. 一种光电传感器的低成本制备方法,其特征在于,包括:
    步骤1、提供衬底,对其正表面进行一次薄氧形成遮蔽层,使用第一掺杂剂对表面轻掺杂形成第一掺杂区域;
    步骤2、在掺杂后的衬底表面制备出场氧化层;
    步骤3、进行第一次光刻并腐蚀出第二掺杂窗口区域,使用第二掺杂剂进行掺杂形成第二掺杂区域;
    步骤4、根据光响应要求在第二掺杂窗口区域表面氧化出氧化层;
    步骤5、对第二掺杂窗口区域表面的氧化层进行第二次光刻,制备出接触孔;
    步骤6、在正面淀积金属电极并进行第三次光刻,腐蚀出正面金属电极;
    步骤7、在衬底背面淀积背面金属电极。
  2. 如权利要求1所述的光电传感器的低成本制备方法,其特征在于,所述第一掺杂剂的掺杂类型与所述衬底的掺杂类型相同,所述第二掺杂剂的掺杂类型与所述第一掺杂剂的掺杂类型不同。
  3. 如权利要求1所述的光电传感器的低成本制备方法,其特征在于,所述第一掺杂剂的注入剂量为1×10 11cm -3~1×10 13cm -3,注入能量为30keV~100keV。
  4. 如权利要求3所述的光电传感器的低成本制备方法,其特征在于,所述第一掺杂剂的注入剂量为1×10 12cm -3~5×10 12cm -3;注入能量为60keV~80keV。
  5. 如权利要求1所述的光电传感器的低成本制备方法,其特征在于,所述第二掺杂剂的注入剂量为1×10 13cm -3~1×10 16cm -3,注入能量为50keV~120keV。
  6. 如权利要求1所述的光电传感器的低成本制备方法,其特征在于,所述第二掺杂剂的注入剂量为1×10 14cm -3~1×10 15cm -3,注入能量为70keV~100keV。
  7. 如权利要求1所述的光电传感器的低成本制备方法,其特征在于,所述步骤4中氧化层的厚度为130~150nm或150~170nm;厚度为130~150nm时对应于光响应度峰值波长为800nm,厚度为150~170nm时对应于光响应度峰值波长为900nm。
  8. 一种光电传感器结构,其特征在于,包括衬底,其底部外表面淀积有背面金属电极,顶部外表面形成有氧化层;所述衬底的顶部内表面形成有第一掺杂区域和第二掺杂区域,所述第一掺杂区域和所述第二掺杂区域位于所述氧化层的下方,且所述第二掺杂区域的深度比所述第一掺杂区域大;所述第一掺杂区域上覆盖有正面金属电极;所述正面金属电极穿过所述氧化层与所述第二掺杂区域接触。
  9. 如权利要求8所述的光电传感器结构,其特征在于,所述氧化层包括遮蔽层和制备的出场氧化层,其总厚度为600nm~1100nm。
PCT/CN2022/120400 2022-02-11 2022-09-22 一种光电传感器的低成本制备方法及其结构 WO2023151278A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210128404.3 2022-02-11
CN202210128404.3A CN114300557A (zh) 2022-02-11 2022-02-11 一种光电传感器的低成本制备方法及其结构

Publications (1)

Publication Number Publication Date
WO2023151278A1 true WO2023151278A1 (zh) 2023-08-17

Family

ID=80977774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120400 WO2023151278A1 (zh) 2022-02-11 2022-09-22 一种光电传感器的低成本制备方法及其结构

Country Status (2)

Country Link
CN (1) CN114300557A (zh)
WO (1) WO2023151278A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114300557A (zh) * 2022-02-11 2022-04-08 无锡中微晶园电子有限公司 一种光电传感器的低成本制备方法及其结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198148B1 (en) * 1998-12-08 2001-03-06 United Microelectronics Corp. Photodiode
CN1431720A (zh) * 2002-01-10 2003-07-23 三星电子株式会社 硅光电器件以及利用这种器件的发光设备
CN110676333A (zh) * 2019-10-10 2020-01-10 中国电子科技集团公司第四十四研究所 一种单光子Si-APD探测器及其制造方法
CN113506836A (zh) * 2021-07-23 2021-10-15 中国电子科技集团公司第四十四研究所 一种近红外响应增强型硅雪崩探测器模块及其制造方法
CN114300557A (zh) * 2022-02-11 2022-04-08 无锡中微晶园电子有限公司 一种光电传感器的低成本制备方法及其结构
CN217114410U (zh) * 2022-02-11 2022-08-02 无锡中微晶园电子有限公司 一种光电传感器结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198148B1 (en) * 1998-12-08 2001-03-06 United Microelectronics Corp. Photodiode
CN1431720A (zh) * 2002-01-10 2003-07-23 三星电子株式会社 硅光电器件以及利用这种器件的发光设备
CN110676333A (zh) * 2019-10-10 2020-01-10 中国电子科技集团公司第四十四研究所 一种单光子Si-APD探测器及其制造方法
CN113506836A (zh) * 2021-07-23 2021-10-15 中国电子科技集团公司第四十四研究所 一种近红外响应增强型硅雪崩探测器模块及其制造方法
CN114300557A (zh) * 2022-02-11 2022-04-08 无锡中微晶园电子有限公司 一种光电传感器的低成本制备方法及其结构
CN217114410U (zh) * 2022-02-11 2022-08-02 无锡中微晶园电子有限公司 一种光电传感器结构

Also Published As

Publication number Publication date
CN114300557A (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
CN100369260C (zh) 高量子效率的影像传感器及其制造方法
WO2021196605A1 (zh) 集成启动管、采样管和电阻的高压超结dmos结构及其制备方法
EP1648031A1 (en) Image sensor pixel having a non-convex photodiode
WO2023151278A1 (zh) 一种光电传感器的低成本制备方法及其结构
TWI220317B (en) Surface passivation to reduce dark current in a CMOS image sensor
CN107170828B (zh) 一种铁电场效应晶体管及其制备方法
EP1681721B1 (en) Image sensor pixel having a lateral doping profile formed with indium doping
CN217114410U (zh) 一种光电传感器结构
WO2010084534A1 (ja) 薄膜ダイオード及びその製造方法
KR20070075160A (ko) 이미지 센서 제조 방법 및 이에 따라 제조된 이미지 센서
CN103474442A (zh) Coms图像传感器及其制作方法
CN103839957A (zh) Coms图像传感器及其制作方法
US20110186118A1 (en) Method of doping impurities, method of manufacturing a solar cell using the method and solar cell manufactured by using the method
US20240038793A1 (en) Array substrate and manufacturing method thereof
KR100625945B1 (ko) 씨모스 이미지 센서의 포토다이오드 제조 방법
EP1746656A2 (en) Pixel sensor with raised silicon photodiode
WO2009020316A2 (en) Unit pixel improving image sensitivity and dynamic range
CN203774332U (zh) 一种igbt芯片
CN111584532B (zh) 转移管的垂直栅及cmos传感器的形成方法
CN100536112C (zh) 互补式金属氧化物半导体图像传感器及其制造方法
CN108878459B (zh) Soi基单片横向集成hbt和cmos的外延结构及制备方法
CN2906930Y (zh) 光电二极管结构
CN210110785U (zh) 一种肖特基器件结构
KR20150077528A (ko) 트랜지스터 및 그의 제조 방법과 이를 포함하는 이미지센서
CN100466303C (zh) 光电二极管结构及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925636

Country of ref document: EP

Kind code of ref document: A1