WO2023151207A1 - 吸收剂性能检测装置 - Google Patents

吸收剂性能检测装置 Download PDF

Info

Publication number
WO2023151207A1
WO2023151207A1 PCT/CN2022/096566 CN2022096566W WO2023151207A1 WO 2023151207 A1 WO2023151207 A1 WO 2023151207A1 CN 2022096566 W CN2022096566 W CN 2022096566W WO 2023151207 A1 WO2023151207 A1 WO 2023151207A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
pipeline
inlet
detection device
Prior art date
Application number
PCT/CN2022/096566
Other languages
English (en)
French (fr)
Inventor
王焕君
靳归
刘蓉
李野
郑棹方
张元雪
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2023151207A1 publication Critical patent/WO2023151207A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N2033/0078Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00 testing material properties on manufactured objects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present application relates to the technical field of chemical absorbent experiments, in particular to an absorbent performance detection device.
  • Flue gas from coal-fired power plants is a concentrated and stable emission source of CO 2 .
  • chemical absorption is the most mature CO 2 capture and separation technology applied to coal-fired power plants.
  • chemical absorption has problems such as high operating costs and high energy consumption.
  • the development of high-performance absorbents is the key to break through the technical bottleneck of high CO2 capture cost.
  • the successful development of a high-performance absorbent is inseparable from previous experiments.
  • most of the existing CO2 capture experimental devices in the laboratory can only simulate the composition of dry flue gas, and there is a performance detection accuracy of the absorbent. lower issues.
  • This application aims to solve one of the technical problems in the related art at least to a certain extent.
  • an embodiment of the present application proposes an absorber performance detection device to improve the detection accuracy of the absorber performance.
  • the absorbent performance detection device in the embodiment of the present application includes a gas mixing device, a steam generator, a droplet generator, an absorption container, a first detection device and a second detection device.
  • the gas mixing device has a gas inlet, a steam inlet, a liquid droplet inlet and a mixed gas outlet, the gas inlet is used to connect with a gas source, the steam generator has a first liquid inlet and a steam outlet, and the first liquid The inlet is for the first liquid to enter, the steam outlet is connected to the steam inlet, the droplet generator has a second liquid inlet and a droplet outlet, the second liquid inlet is for the second liquid to enter, and the droplet The outlet is connected to the droplet inlet, the absorption container is used to contain absorbent, the absorption container has a container inlet and a container outlet, and the container inlet is connected to the mixed gas outlet through a first pipeline, so that the second A gas enters the absorption container, the outlet of the container is provided with a second pipeline to
  • the absorber performance detection device of the embodiment of the present application has the advantages of high detection accuracy of the absorber performance.
  • it also includes a first heating device adapted to heat the absorption vessel.
  • it further includes a first water bath, the absorption container is arranged in the first water bath, and the first heating device is adapted to heat the first water bath.
  • a weight sensor is further included, the weight sensor is placed on the first heating device, and the first water bath is placed on the weight sensor, so as to obtain the mass change of the absorbent in the absorption container.
  • it also includes a second water bath and a second heating device
  • the first pipeline includes a spiral pipe section
  • the spiral pipe section is arranged in the second water bath
  • the second heating device is suitable for The second water bath is heated.
  • a pH meter is also included, and the detection end of the pH meter is inserted into the absorption container so as to detect the pH value of the absorbent.
  • a viscometer is further included, and a detecting end of the viscometer is inserted into the absorption container so as to detect the viscosity of the absorbent.
  • it also includes a plurality of gas pipelines, a plurality of gas flow meters, and a plurality of gas one-way valves, each of the gas pipelines is connected to the gas inlet, and each of the gas pipelines is connected to the gas inlet.
  • a plurality of the gas flowmeters correspond to a plurality of the gas pipelines one by one, and each of the gas flowmeters is set on the corresponding gas pipeline so as to detect the corresponding gas flowmeters.
  • It also includes a first liquid pipeline, a second liquid pipeline, a first liquid flow meter, a second liquid flow meter, a first liquid one-way valve and a second liquid one-way valve, the first liquid pipeline and the The first liquid inlet is connected, the second liquid pipeline is connected with the second liquid inlet, and the first liquid flow meter is arranged on the first liquid pipeline so as to detect the flow rate of the first liquid, so The second liquid flowmeter is set on the second liquid pipeline to detect the flow of the second liquid, and the first liquid check valve is set on the first liquid pipeline to prevent the first The liquid returns, and the second liquid one-way valve is arranged on the second liquid pipeline so as to prevent the second liquid from flowing back.
  • a tail gas treatment device is also included, and the second pipeline is connected to the tail gas treatment device.
  • Fig. 1 is a diagram of the use state of the absorbent performance detection device of the embodiment of the present application.
  • Gas mixing device 1 gas inlet 101; steam inlet 102; liquid droplet inlet 103; mixed gas outlet 104;
  • droplet generator 3 second liquid inlet 301; droplet outlet 302;
  • Absorption container 4 container inlet 401; container outlet 402;
  • Gas tank 14 first gas tank 1401; second gas tank 1402; third gas tank 1403; fourth gas tank 1404; fifth gas tank 1405;
  • the absorbent performance detection device 100 of the embodiment of the present application includes a gas mixing device 1 , a steam generator 2 , a droplet generator 3 , an absorption container 4 , a first detection device 601 and a second detection device 602 .
  • the gas mixing device 1 has a gas inlet 101 , a steam inlet 102 , a liquid droplet inlet 103 and a mixed gas outlet 104 , and the gas inlet 101 is used to connect with a gas source.
  • the steam generator 2 has a first liquid inlet 201 and a steam outlet 202 , the first liquid inlet 201 is for the first liquid to enter, and the steam outlet 202 is connected with the steam inlet 102 .
  • the droplet generator 3 has a second liquid inlet 301 and a droplet outlet 302 , the second liquid inlet 301 is for the second liquid to enter, and the droplet outlet 302 is connected with the droplet inlet 103 .
  • the absorption container 4 is used to hold the absorbent.
  • the absorption container 4 has a container inlet 401 and a container outlet 402.
  • the container inlet 401 is connected to the mixed gas outlet 104 through a first pipeline 501 so that the first gas enters the absorption container 4.
  • the container outlet 402 A second pipeline 502 is provided to allow the second gas to flow out.
  • the first detection device 601 communicates with the first pipeline 501 for detecting the composition of the first gas, and the first detection device 601 communicates with the second pipeline 502 for detecting the composition of the second gas.
  • each of the first liquid and the second liquid is water
  • each of the first liquid inlet 201 and the second liquid inlet 301 communicates with the water source 13 .
  • the water vapor produced by the steam generator 2 flows out through the steam outlet 202, and flows into the gas mixing device 1 through the steam inlet 102
  • the water droplets generated by the droplet generator 3 flow out through the droplet outlet 302, and flow into the gas mixing device 1 through the droplet inlet 103.
  • gas enters the gas mixing device 1 through the gas inlet 101 .
  • the gas, water droplets, and water vapor in the gas mixing device 1 are mixed to form a mixed gas.
  • the mixed gas before flowing into the container inlet 401 is called the first gas, and the first gas may be simulated flue gas, and the composition and concentration of the first gas are detected by the first detection device 601 .
  • the mixed gas flowing out of the container outlet 402 is called the second gas, and the composition and concentration of the second gas are detected by the second detection device 602 .
  • the usage process of the absorbent performance detection device 100 according to the embodiment of the present application will be further described in detail.
  • the absorbent performance detection device 100 of the embodiment of the present application can also be used for performance testing of other gas absorbents.
  • the absorbent performance detection device 100 of the embodiment of the present application simulates the power plant flue gas with water droplets and water vapor through the gas mixing device 1, so that The simulated flue gas in the laboratory is more in line with the actual situation of the flue gas in the power plant.
  • the first detection device 601 and the second detection device 602 are used to compare and analyze the gas components before and after passing through the absorbent, so that the detection accuracy of the absorption performance of the absorbent is relatively high.
  • the absorber performance detection device 100 of the embodiment of the present application has the advantages of high detection accuracy of the absorber performance.
  • each of the first detection device 601 and the second detection device 602 is an electrochemical gas analysis instrument.
  • the first detection device 601 and the second detection device 602 may also be gas analyzers such as infrared absorption analyzers.
  • the absorbent performance detection device 100 of the embodiment of the present application further includes a tail gas treatment device 12 , and the second pipeline 502 is connected to the tail gas treatment device 12 .
  • the tail gas treatment device 12 includes a tail gas treatment tank and activated carbon or molecular sieve placed in the tail gas treatment tank, the second gas flows into the tail gas treatment device 12 through the second pipeline 502, the activated carbon or molecular sieve in the tail gas treatment tank Gas is adsorbed.
  • the absorbent performance detection device 100 of the embodiment of the present application is environmentally friendly.
  • the absorbent performance detection device 100 of the present application further includes a first heating device 701 , and the first heating device 701 is suitable for heating the absorption container 4 .
  • the first heating device 701 heats the absorption container 4 to heat the absorbent in the absorption container 4 to 20°C-50°C, so as to investigate the influence of different absorption temperatures on the absorption performance of the absorbent ;
  • the value change of the weight sensor 801 the quality change during the absorption process of the absorbent is judged.
  • the absorbent performance detection device 100 can also be used to detect the desorption performance of the absorbent. For example, disconnect the communication between the mixed gas outlet 104 and the container inlet 401, and heat the absorption container 4, for example, heat the absorbent in the absorption container 4 to 70°C-100°C, and desorb the absorbent for absorbing carbon dioxide to form the first Second gas, the second gas flows into the second pipeline 502 through the container outlet 402 and is discharged. The composition of the second gas is detected by the second detection device 602, so as to judge the desorption performance of the CO 2 absorbent.
  • the detection of the absorption performance of the absorbent on mixed gases at different temperatures can be realized, and the detection of the desorption performance of the absorbent at different temperatures can also be realized.
  • the absorbent performance detection device 100 of the embodiment of the present application further includes a first water bath 703, the absorption container 4 is arranged in the first water bath 703, and the first heating device 701 is suitable for heating the first water bath 703 for heating.
  • the first heating device 701 is placed under the first water bath 703 and heats the water in the first water bath 703, and at least a part of the absorption vessel 4 is placed in the water of the first water bath 703 , so as to achieve indirect heating of the absorption vessel 4 .
  • the first water bath 703 to realize the water-bath heating of the absorption container 4, it is beneficial to improve the heating uniformity of the heating device to the absorption container 4, and to further improve the detection accuracy of the absorbent performance.
  • the absorbent performance detection device 100 of the embodiment of the present application further includes a second water bath 704 and a second heating device 702 .
  • the first pipeline 501 includes a helical pipe section 5011 , and the helical pipe section 5011 is arranged in the second water bath 704 , and the second heating device 702 is suitable for heating the second water bath 704 .
  • the spiral pipe section 5011 of the first pipeline 501 is set in the second water bath 704 , and the second heating device 702 heats the second water bath 704 to achieve the purpose of heating the spiral pipe section 5011 .
  • the first gas enters the helical tube section 5011 , because the helical tube section 5011 has a long path, it is beneficial to fully heat the first gas.
  • the second heating device 702 to heat the first pipeline 501, the temperature of the first gas entering the absorption vessel 4 is more in line with the actual temperature of the flue gas of the power plant, thereby further improving the performance of the absorbent. Detection accuracy.
  • a part of the first pipeline 501 is set as a spiral pipe section 5011, which not only ensures the heating effect on the first gas, but also improves the space utilization rate of the first pipeline 501, which is beneficial to reduce the absorbent performance detection device 100. footprint.
  • each of the first heating device 701 and the second heating device 702 is a magnetic heating stirrer.
  • the absorbent performance detection device 100 of the embodiment of the present application further includes a weight sensor 801, the weight sensor 801 is placed on the first heating device 701, and the first water bath 703 is placed on the weight sensor 801, in order to detect the mass change of the absorbent in the absorption container 4.
  • the weight sensor 801 is connected to the terminal device 16 (such as a computer), and the real-time weight change value of the absorbent detected by the weight sensor 801 is transmitted to the computer, and the detection data is drawn into a graph by the computer, so that the experimenter can monitor and analyze the absorption in real time.
  • the absorbent performance detection device 100 of the embodiment of the present application measures the performance detection accuracy of the absorbent.
  • the absorbent performance detection device 100 of the embodiment of the present application further includes a pH meter 802, and the detection end of the pH meter 802 is inserted into the absorption container 4, so as to detect the pH value of the absorbent.
  • the absorbent performance detection device 100 of the embodiment of the present application is provided with a pH meter 802 to monitor the change of the pH value of the absorbent during the experiment, and then combine The quality change value of the absorbent further analyzes the influence of the pH value change on the performance of the absorbent, which is further beneficial to improving the performance detection accuracy of the absorbent in the absorbent performance detection device 100 of the embodiment of the present application.
  • the absorbent performance detection device 100 of the embodiment of the present application further includes a viscometer 803, and the detection end of the viscometer 803 is inserted into the absorption container 4, so as to detect the viscosity of the absorbent.
  • the absorbent performance detection device 100 of the embodiment of the present application is provided with a viscometer 803 to monitor the change of the viscosity value of the absorbent during the experiment, and then combine The mass change value of the absorbent further analyzes the performance of the absorbent, which is further conducive to improving the performance detection accuracy of the absorbent in the absorbent performance detection device 100 of the embodiment of the present application.
  • the pH meter 802 can be a laboratory pH meter 802, and the viscometer 803 is a portable viscometer 803, and each of the pH meter 802 and the viscometer 803 is connected to the terminal device 16 (such as a computer), and the detection is performed by the computer.
  • the data are plotted as a graph.
  • the pH value detected by the pH meter 802 and the viscosity value detected by the viscometer 803 are plotted into a graph by the computer, so that the experimenter can accurately analyze the data, which is further conducive to improving the performance of the absorbent performance detection device 100 of the embodiment of the present application. Absorbent performance detection accuracy.
  • the absorbent performance detection device 100 of the embodiment of the present application further includes a plurality of gas pipelines 901 , a plurality of gas flow meters 902 and a plurality of gas one-way valves 903 .
  • Each gas pipeline 901 is connected with the gas inlet 101 so that different gases enter the gas mixing device 1 .
  • a plurality of gas flowmeters 902 corresponds to a plurality of gas pipelines 901 one by one, and each gas flowmeter 902 is installed on a corresponding gas pipeline 901 so as to detect the flow rate of gas in the corresponding gas pipeline 901 .
  • a plurality of gas one-way valves 903 correspond to a plurality of gas pipelines 901 one by one, and each gas one-way valve 903 is set on a corresponding gas pipeline 901 so as to control the flow of gas in the corresponding gas pipeline 901 .
  • the five gas inlets 101 are evenly spaced along the length direction of the gas mixing device 1, and the five gas inlets 101 are respectively the first gas inlet, the second gas inlet The second gas inlet, the third gas inlet, the fourth gas inlet and the fifth gas inlet.
  • the five gas storage tanks 14 are respectively the first gas storage tank 1401, the second gas storage tank 1402, the third gas storage tank 1403, the fourth gas storage tank 1404 and the fifth gas storage tank 1405.
  • the first gas storage tank 1401 communicates with the first gas inlet through the first gas pipeline
  • the second gas storage tank 1402 communicates with the second gas inlet through the second gas pipeline
  • the third gas storage tank 1403 communicates with the third gas inlet through
  • the third gas pipeline is connected
  • the fourth gas storage tank 1404 is connected with the fourth gas inlet through the fourth gas pipeline
  • the fifth gas storage tank 1405 is connected with the fifth gas inlet through the fifth gas pipeline.
  • each of the first gas pipeline, the second gas pipeline, the third gas pipeline, the fourth gas pipeline and the fifth gas pipeline is provided with a gas check valve 903 and a gas flow meter 902 .
  • the ratio of each component of the simulated flue gas by observing the flow meter on the gas pipeline 901, adjust the opening and closing of the valve on the gas storage tank 14, and adjust the amount of gas entering the gas mixing device 1 in each gas pipeline 901. Traffic size.
  • Each of the first gas pipeline, the second gas pipeline, the third gas pipeline, the fourth gas pipeline and the fifth gas pipeline is provided with a pressure reducing valve 15, which is controlled by adjusting the pressure reducing valve 15 The gas pressure in the gas line.
  • the absorbent performance detection device 100 of the embodiment of the present application is provided with multiple gas pipelines 901, multiple gas flow meters 902 and multiple pressure reducing valves 15, which facilitates the mixing of different gases into the gas mixing device, It is easy to operate and is conducive to the preparation of simulated flue gas.
  • a gas one-way valve 903 on each gas pipeline 901, it can effectively prevent the mixed gas in the gas mixing device 1 from flowing back into the gas storage tank 14 and contaminate the gas in the gas storage tank 14, thereby improving the performance of this application.
  • the reliability of the absorbent performance detection device 100 of the embodiment is provided with multiple gas pipelines 901, multiple gas flow meters 902 and multiple pressure reducing valves 15, which facilitates the mixing of different gases into the gas mixing device, It is easy to operate and is conducive to the preparation of simulated flue gas.
  • a gas one-way valve 903 on each gas pipeline 901, it can effectively prevent the mixed gas in the gas mixing device 1 from flowing back into the gas storage tank 14 and contaminate the gas in the gas storage tank 14, thereby
  • the absorbent performance detection device 100 of the embodiment of the present application further includes a first liquid pipeline 1001, a second liquid pipeline 1101, a first liquid flowmeter 1002, a second liquid flowmeter 1102, a first liquid One-way valve 1003 and second liquid one-way valve 1103 .
  • the first liquid pipeline 1001 is set at the first liquid inlet 201
  • the second liquid pipeline 1101 is set at the second liquid inlet 301 .
  • the first liquid flowmeter 1002 is arranged on the first liquid pipeline 1001 so as to detect the flow rate of the corresponding first liquid
  • the second liquid flowmeter 1102 is arranged on the second liquid pipeline 1101 so as to detect the flow rate of the corresponding second liquid flow.
  • the first liquid one-way valve 1003 is set on the first liquid pipeline 1001 to prevent the first liquid from flowing back
  • the second liquid one-way valve 1103 is set on the second liquid pipeline 1101 to prevent the second liquid from flowing back.
  • the first liquid flows into the first liquid inlet 201 through the first liquid pipeline 1001
  • the second liquid flows into the second liquid inlet 301 through the second liquid pipeline 1101
  • the first liquid pipeline 1001 Liquid flowmeters are arranged on the upper and second liquid pipelines 1101 to facilitate detection of the amount of water droplets and water vapor entering the gas mixing device 1, thereby facilitating the preparation of simulated flue gas.
  • the backflow of the first liquid and the second liquid can be effectively avoided, making the absorbent performance detection device 100 of the embodiment of the present application more reliable. high.
  • the composition and temperature of the simulated flue gas in the laboratory are more in line with the actual situation of the flue gas in the power plant. It is beneficial to improve the detection accuracy of the absorbent performance.
  • the experimental device of the present application can be completed in the laboratory while the performance experiment of the absorbent pair is close to that of the actual power plant flue gas, and it is easy to build.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a first feature being "on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • the terms “one embodiment,” “some embodiments,” “example,” “specific examples,” or “some examples” mean specific features, structures, materials, or features described in connection with the embodiment or examples. Features are included in at least one embodiment or example of the present application. In this specification, the schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples. In addition, those skilled in the art can combine and combine different embodiments or examples and features of different embodiments or examples described in this specification without conflicting with each other.

Abstract

一种吸收剂性能检测装置(100),包括气体混合装置(1)、蒸汽发生器(2)、液滴发生器(3)、吸收容器(4)、第一检测装置(601)和第二检测装置(602),气体混合装置(1)具有气体进口(101)、蒸汽进口(102)、液滴进口(103)和混合气体出口(104),蒸汽发生器(2)具有第一液体进口(201)和蒸汽出口(202),蒸汽出口(202)与蒸汽进口(102)相连,液滴发生器(3)具有第二液体进口(301)和液滴出口(302),吸收容器(4)具有容器进口(401)和容器出口(402),容器进口(401)通过第一管路(501)与混合气体出口(104)相连,以便第一气体进入吸收容器(4),容器出口(402)设有第二管路(502),以便第二气体流出,第一检测装置(601)与第一管路(501)连通,以便检测第一气体的成分,第二检测装置(602)与第二管路(502)连通,以便检测第二气体的成分。

Description

吸收剂性能检测装置
相关申请的交叉引用
本申请要求在2022年2月10日提交中国专利局、申请号为202210126347.5、发明名称为“吸收剂性能检测装置”的中国专利申请的优先权,其全部内容通过引用的方式并入本文中。
技术领域
本申请涉及化学吸收剂实验技术领域,具体涉及一种吸收剂性能检测装置。
背景技术
燃煤电厂烟气是CO 2的集中稳定排放源,目前,化学吸收法是应用于燃煤电厂最成熟的CO 2捕集分离技术,但化学吸收法存在运行成本高和能耗高等问题,针对上述问题,开发高性能吸收剂是突破CO 2捕集成本高这一技术瓶颈的关键。一种高性能吸收剂的成功研发离不开前期的实验,在相关技术中,实验室现有的CO 2捕集实验装置大多数仅能模拟干烟气的成分,存在吸收剂的性能检测精度较低等问题。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请的实施例提出一种吸收剂性能检测装置,以提高吸收剂的性能检测精度。
本申请实施例的吸收剂性能检测装置包括气体混合装置、蒸汽发生器、液滴发生器、吸收容器、第一检测装置和第二检测装置。所述气体混合装置具有气体进口、蒸汽进口、液滴进口和混合气体出口,所述气体进口用于与气源相连,所述蒸汽发生器具有第一液体进口和蒸汽出口,所述第一液体进口供第一液体进入,所述蒸汽出口与所述蒸汽进口相连,所述液滴发生器具有第二液体进口和液滴出口,所述第二液体进口供第二液体进入,所述液滴出口与所述液滴进口相连,所述吸收容器用于盛放吸收剂,所述吸收容器具有容器进口和容器出口,所述容器进口通过第一管路与所述混合气体出口相连,以便第一气体进入所述吸收容器,所述容器出口设有第二管路,以便第二气体流出,所述第一检测装置与所述第一管路连通,以便检测所述第一气体的成分,所述第一检测装置与所述第二管路连通,以便检测所述第二气体的成分。
本申请实施例的吸收剂性能检测装置具有吸收剂的性能检测精度高等优点。
在一些实施例中,还包括第一加热装置,所述第一加热装置适于对所述吸收容器进行加热。
在一些实施例中,还包括第一水浴槽,所述吸收容器设在所述第一水浴槽内,所述第一加热装置适于对所述第一水浴槽进行加热。
在一些实施例中,还包括重量传感器,所述重量传感器放置在所述第一加热装置上,所述第一水浴槽放置在重量传感器上,以便得到所述吸收容器内吸收剂的质量变化。
在一些实施例中,还包括第二水浴槽和第二加热装置,所述第一管路包括螺旋管段,所述螺旋管段设在所述第二水浴槽内,所述第二加热装置适于对所述第二水浴槽进行加热。
在一些实施例中,还包括pH计,所述pH计的检测端插装在所述吸收容器内,以便检测所述吸收剂的pH值。
在一些实施例中,还包括粘度计,所述粘度计的检测端插装在所述吸收容器内,以便检测所述吸收剂的粘度。
在一些实施例中,还包括多个气体管路、多个气体流量计、多个气体单向阀,每个所述气体管路均与所述气体进口相连,每个所述气体管路用于与不同的气源相连,多个所述气体流量计与多个所述气体管路一一对应,每个所述气体流量计设在对应的所述气体管路上,以便检测对应的所述气体管路内气体的流量,多个所述气体单向阀与多个所述气体管路一一对应,每个所述气体单向阀设在对应的所述气体管路上,以便防止对应的所述气体管路内的气体回流。
在一些实施例中。还包括第一液体管路、第二液体管路、第一液体流量计、第二液体流量计、第一液体单向阀和第二液体单向阀,所述第一液体管路与所述第一液体进口相连,所述第二液体管路与所述第二液体进口相连,所述第一液体流量计设在所述第一液体管路上,以便检测所述第一液体的流量,所述第二液体流量计设在所述第二液体管路上,以便检测所述第二液体的流量,所述第一液体单向阀设在所述第一液体管路上,以便防止所述第一液体回流,所述第二液体单向阀设在所述第二液体管路上,以便防止所述第二液体回流。
在一些实施例中,还包括尾气处理装置,所述第二管路与所述尾气处理装置相连。
附图说明
图1是本申请实施例的吸收剂性能检测装置的使用状态图。
附图标记:
吸收剂性能检测装置100;
气体混合装置1;气体进口101;蒸汽进口102;液滴进口103;混合气体出口104;
蒸汽发生器2;第一液体进口201;蒸汽出口202;
液滴发生器3;第二液体进口301;液滴出口302;
吸收容器4;容器进口401;容器出口402;
第一管路501;螺旋管段5011;第二管路502;
第一检测装置601;第二检测装置602;
第一加热装置701;第二加热装置702;第一水浴槽703;第二水浴槽704
重量传感器801;pH计802;粘度计803;
气体管路901;气体流量计902;气体单向阀903;
第一液体管路1001;第一液体流量计1002;第一液体单向阀1003;
第二液体管路1101;第二液体流量计1102;第二液体单向阀1103;
尾气处理装置12;
水源13;
储气罐14;第一储气罐1401;第二储气罐1402;第三储气罐1403;第四储气罐1404;第五储气罐1405;
减压阀15;
终端设备16。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参照附图来详细描述本申请的技术方案。
如图1所述,本申请实施例的吸收剂性能检测装置100包括气体混合装置1、蒸汽发生器2、液滴发生器3、吸收容器4、第一检测装置601和第二检测装置602。气体混合装置1具有气体进口101、蒸汽进口102、液滴进口103和混合气体出口104,气体进口101用于与气源相连。蒸汽发生器2具有第一液体进口201和蒸汽出口202,第一液体进口201供第一液体进入,蒸汽出口202与蒸汽进口102相连。液滴发生器3具有第二液体进口301和液滴出口302,第二液体进口301供第二液体进入,液滴出口302与液滴进口103相连。
吸收容器4用于盛放吸收剂,吸收容器4具有容器进口401和容器出口402,容器进口401通过第一管路501与混合气体出口104相连,以便第一气体进入吸收容器4,容器出口402设有第二管路502,以便第二气体流出。第一检测装置601与第一管路501连通,以便检测第一气体的成分,第一检测装置601与第二管路502连通,以便检测第二气体的成分。
例如,如图1所示,第一液体和第二液体中的每一者为水,第一液体进口201和第二液体进口301中的每一者与水源13连通。蒸汽发生器2产生的水蒸气通过蒸汽出口202流出,并通过蒸汽进口102流入至气体混合装置1内,液滴发生器3产生的水滴通过液滴出 口302流出,并通过液滴进口103流入至气体混合装置1内,气体通过气体进口101进入气体混合装置1内。气体混合装置1内的气体、水滴和水蒸气混合而形成混合气体。
流入容器进口401前的混合气体称为第一气体,第一气体可以为模拟烟气,第一气体的成分和浓度通过第一检测装置601检测。容器出口402流出的混合气体称为第二气体,第二气体的成分和浓度通过第二检测装置602检测。
下面以CO 2吸收剂为例,进一步详细说明本申请实施例的吸收剂性能检测装置100的使用过程。当然,本申请实施例的吸收剂性能检测装置100还可以用于其他气体吸收剂的性能测试。
在进行吸收实验时,将CO 2吸收剂放入吸收容器4内。为了模拟电厂实际烟气成分,多种气体(例如:N 2、O 2、CO 2、SO 2、NO)通过气体进口101进入气体混合装置1内,并与进入气体混合装置1内的水蒸气和水滴进行混合得到第一气体,第一气体通过混合气体出口104流出,并通过第一管路501流入至吸收容器4内。第一气体中的部分组分被CO 2吸收剂吸收后形成第二气体,第二气体通过容器出口402流入至第二管路502排出。通过对比第一检测装置601和第二检测装置602检测到的第一气体和第二气体的成分变化,进行判断CO 2吸收剂的吸收速率和吸收容量,从而来判断CO 2吸收剂的吸收性能。
由此,与相关技术中实验室仅能模拟干烟气的成分相比,本申请实施例的吸收剂性能检测装置100通过气体混合装置1,模拟带有水滴和水蒸气的电厂烟气,使得实验室的模拟烟气更符合电厂烟气的实际情况。又通过第一检测装置601和第二检测装置602对经过吸收剂前后的气体成分进行对比分析,从而使得对吸收剂的吸收性能检测精度较高。
因此,本申请实施例的吸收剂性能检测装置100具有吸收剂的性能检测精度高等优点。
可选地,第一检测装置601和第二检测装置602中的每一者为电化学式气体分析仪器。当然,在另一些实施例中,第一检测装置601和第二检测装置602还可以为红外线吸收式分析仪等气体分析仪。
在一些实施例中,本申请实施例的吸收剂性能检测装置100还包括尾气处理装置12,第二管路502与尾气处理装置12相连。
例如,尾气处理装置12包括尾气处理罐和放置在尾气处理罐内的活性炭或者分子筛,第二气体通过第二管路502流入至尾气处理装置12内,尾气处理罐内的活性炭或者分子筛对第二气体进行吸附。
由此,通过设置尾气处理装置12,有效防止实验尾气污染环境,使得本申请实施例的吸收剂性能检测装置100环保性好。
在一些实施例中,本申请的吸收剂性能检测装置100还包括第一加热装置701,第一加热装置701适于对吸收容器4进行加热。
例如,在进行吸收实验时,第一加热装置701通过对吸收容器4进行加热,将吸收容器4内的吸收剂加热至20℃-50℃,从而来考察不同吸收温度对吸收剂吸收性能的影响;通过观察重量传感器801的数值变化,从而来判断吸收剂吸收过程中质量的变化。
也可以利用吸收剂性能检测装置100进行吸收剂的解吸性能检测。例如,断开混合气体出口104和容器进口401的连通,对吸收容器4进行加热,例如,将吸收容器4内的吸收剂加热至70℃-100℃,对吸收二氧化碳的吸收剂进行解吸形成第二气体,第二气体通过容器出口402流入第二管路502排出。通过第二检测装置602对第二气体的成分进行检测,从而来判断CO 2吸收剂的解吸性能。
由此,通过设置第一加热装置701,可以实现吸收剂对不同温度混合气体的吸收性能检测,还可以实现吸收剂在不同温度时的解吸性能检测。
在一些实施例中,本申请实施例的吸收剂性能检测装置100还包括第一水浴槽703,吸收容器4设在第一水浴槽703内,第一加热装置701适于对第一水浴槽703进行加热。
例如,如图1所示,第一加热装置701置于第一水浴槽703的下方并对第一水浴槽703内的水进行加热,吸收容器4的至少一部分置于第一水浴槽703的水中,从而实现对吸收容器4的间接加热。
由此,通过设置第一水浴槽703实现对吸收容器4的水浴加热,有利于提高加热装置对吸收容器4的加热均匀性,有利于进一步提高吸收剂性能的检测精度。
在一些实施例中,本申请实施例的吸收剂性能检测装置100还包括第二水浴槽704和第二加热装置702。第一管路501包括螺旋管段5011,螺旋管段5011设在第二水浴槽704内,第二加热装置702适于对第二水浴槽704进行加热。
如图1所示,第一管路501的螺旋管段5011设在第二水浴槽704内,第二加热装置702通过对第二水浴槽704进行加热,来实现对螺旋管段5011加热的目的。当第一气体进入螺旋管段5011内时,由于螺旋管段5011路径较长,有利于对第一气体进行充分加热。
由此,通过设置第二加热装置702对第一管路501进行加热,使进入吸收容器4内的第一气体的温度更贴合电厂烟气的实际温度,从而进一步有利于提高吸收剂性能的检测精度。此外,将第一管路501的一部分设置成螺旋管段5011,在保证对第一气体加热效果的同时,还提高了第一管路501的空间利用率,有利于减少吸收剂性能检测装置100的占地面积。
可选地,第一加热装置701和第二加热装置702中的每一者为磁力加热搅拌器。
在一些实施例中,如图1所示,本申请实施例的吸收剂性能检测装置100还包括重量传感器801,重量传感器801放置在第一加热装置701上,第一水浴槽703放置在重量传感器801上,以便检测吸收容器4内吸收剂的质量变化。
例如,重量传感器801与终端设备16(例如电脑)相连,重量传感器801检测到的吸收剂的实时重量变化值传输给电脑,通过电脑将检测数据绘制成曲线图,以便实验者实时监测并分析吸收容器4内吸收剂的质量变化。
由此,通过设置重量传感器801用于检测吸收剂吸收、解吸过程中吸收剂的质量变化,再结合第一检测装置601和第二检测装置602的检测的气体成分数据进行分析,进一步有利于提高本申请实施例的吸收剂性能检测装置100吸收剂的性能检测精度。
在一些实施例中,本申请实施例的吸收剂性能检测装置100还包括pH计802,pH计802的检测端插装在吸收容器4内,以便检测吸收剂的pH值。
由于吸收剂的pH对吸收剂的性能也具有一定的影响,本申请实施例的吸收剂性能检测装置100通过设置pH计802,进行监控吸收剂在实验过程中的pH值的变化,然后再结合吸收剂的质量变化值进一步分析pH值变化对吸收剂的性能影响,进一步有利于提高本申请实施例的吸收剂性能检测装置100吸收剂的性能检测精度。
在一些实施例中,本申请实施例的吸收剂性能检测装置100还包括粘度计803,粘度计803的检测端插装在吸收容器4内,以便检测吸收剂的粘度。
由于吸收剂的粘度对吸收剂的性能也具有一定的影响,本申请实施例的吸收剂性能检测装置100通过设置粘度计803,进行监控吸收剂在实验过程中的粘度值的变化,然后再结合吸收剂的质量变化值进一步分析吸收剂的性能,进一步有利于提高本申请实施例的吸收剂性能检测装置100吸收剂的性能检测精度。
可选地,pH计802可以为实验室pH计802,粘度计803为便携式粘度计803,pH计802和粘度计803中的每一者与终端设备16(例如电脑)相连,通过电脑将检测数据绘制成曲线图。
由此,通过电脑将pH计802检测的pH值和粘度计803检测的粘度值绘制成曲线图,以便实验者能够准确分析数据,进一步有利于提高本申请实施例的吸收剂性能检测装置100的吸收剂的性能检测精度。
在一些实施例中,本申请实施例的吸收剂性能检测装置100还包括多个气体管路901、多个气体流量计902和多个气体单向阀903。每个气体管路901均与气体进口101相连,以便不同的气体进入气体混合装置1内。多个气体流量计902与多个气体管路901一一对应,每个气体流量计902设在对应的气体管路901上,以便检测对应的气体管路901内气体的流量。多个气体单向阀903与多个气体管路901一一对应,每个气体单向阀903设在对应的气体管路901上,以便控制对应的气体管路901内气体的流量。
如图1所示,气体混合装置1上的气体进口101设有五个,五个气体进口101沿气体混合装置1的长度方向均匀间隔设置,五个气体进口101分别为第一气体进口、第二气体 进口、第三气体进口、第四气体进口和第五气体进口。
储气罐14设有五个,五个储气罐14分别为第一储气罐1401,第二储气罐1402,第三储气罐1403、第四储气罐1404和第五储气罐1405。气体管路901设有五条,依次为第一气体管路、第二气体管路、第三气体管路、第四气体管路和第五气体管路。第一储气罐1401与第一气体进口通过第一气体管路连通,第二储气罐1402与第二气体进口通过第二气体管路连通,第三储气罐1403与第三气体进口通过第三气体管路连通,第四储气罐1404与第四气体进口通过第四气体管路连通,第五储气罐1405与第五气体进口通过第五气体管路连通。
其中,第一气体管路、第二气体管路、第三气体管路、第四气体管路和第五气体管路中的每一者上均设有气体单向阀903和气体流量计902。
例如,第一储气罐1401,第二储气罐1402,第三储气罐1403、第四储气罐1404和第五储气罐1405中储存的依次为N 2、O 2、CO 2、SO 2、NO。在吸收实验时,打开第一储气罐1401、第二储气罐1402、第三储气罐1403、第四储气罐1404和第五储气罐1405上的阀门,使得储气罐内的气体通过气体管路901流入至气体混合装置1内。根据模拟烟气的各个成分的占比,通过观察气体管路901上的流量计,调整储气罐14上的阀门开合大小,进行调节每个气体管路901中进入气体混合装置1内的流量大小。
第一气体管路、第二气体管路、第三气体管路、第四气体管路和第五气体管路中的每一者上设有减压阀15,通过调节减压阀15来控制气体管路中的气体压强。
由此,本申请实施例的吸收剂性能检测装置100通过设置多个气体管路901、多个气体流量计902和多个减压阀15,有利于不同的气体进入气体混合装置内进行混合,操作方便,有利于模拟烟气的配制。此外,通过在每个气体管路901上设置气体单向阀903,可以有效避免气体混合装置1内的混合气体回流至储气罐14内,污染储气罐14内的气体,从而提高本申请实施例的吸收剂性能检测装置100可靠性。
在一些实施例中,本申请实施例的吸收剂性能检测装置100还包括第一液体管路1001、第二液体管路1101、第一液体流量计1002、第二液体流量计1102、第一液体单向阀1003和第二液体单向阀1103。第一液体管路1001设在第一液体进口201,第二液体管路1101设在第二液体进口301。第一液体流量计1002设在第一液体管路1001上,以便检测对应的第一液体的流量,第二液体流量计1102设在第二液体管路1101上,以便检测对应的第二液体的流量。第一液体单向阀1003设在第一液体管路1001上,以便防止第一液体回流,第二液体单向阀1103设在第二液体管路1101上,以便防止第二液体回流。
如图1所示,第一液体通过第一液体管路1001流入至第一液体进口201,第二液体通过第二液体管路1101流入至第二液体进口301,通过在第一液体管路1001上和第二液体 管路1101上设置液体流量计,以便于检测进入气体混合装置内1的水滴量和水蒸气量,从而方便模拟烟气的配制。另外,通过在第一液体管路1001和第二液体管路上1101上设置单向阀,可以有效避免第一液体和第二液体回流,使得本申请实施例的吸收剂性能检测装置100可靠性较高。
本申请实施例的吸收剂性能检测装置具有以下有益效果:
1、通过利用多种气体、水滴和水蒸汽配气的方法,并采用水浴槽对混合气体进行加热,从而使实验室模拟烟气的组成成分和温度更贴合电厂烟气的实际情况,有利于提高吸收剂性能的检测精度。
2、在吸收剂吸收、解吸的实验过程中,能够实时监测吸收剂的质量、粘度和pH的变化值,并通过气体分析仪实时监测模拟烟气吸收前后的成分和浓度变化值,通过对多种数据的分析,进一步有利于提高吸收剂性能的检测精度。
3、本申请的实验装置可以在实验室内完成吸收剂对接近于实际电厂烟气性能实验的同时,且易于搭建。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、 “下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本申请中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种吸收剂性能检测装置,其特征在于,包括:
    气体混合装置,所述气体混合装置具有气体进口、蒸汽进口、液滴进口和混合气体出口,所述气体进口用于与气源相连;
    蒸汽发生器,所述蒸汽发生器具有第一液体进口和蒸汽出口,所述第一液体进口供第一液体进入,所述蒸汽出口与所述蒸汽进口相连;
    液滴发生器,所述液滴发生器具有第二液体进口和液滴出口,所述第二液体进口供第二液体进入,所述液滴出口与所述液滴进口相连;
    吸收容器,所述吸收容器用于盛放吸收剂,所述吸收容器具有容器进口和容器出口,所述容器进口通过第一管路与所述混合气体出口相连,以便第一气体进入所述吸收容器,所述容器出口设有第二管路,以便第二气体流出;
    第一检测装置,所述第一检测装置与所述第一管路连通,以便检测所述第一气体的成分;和
    第二检测装置,所述第一检测装置与所述第二管路连通,以便检测所述第二气体的成分。
  2. 根据权利要求1所述的吸收剂性能检测装置,其特征在于,还包括第一加热装置,所述第一加热装置适于对所述吸收容器进行加热。
  3. 根据权利要求2所述的吸收剂性能检测装置,其特征在于,还包括第一水浴槽,所述吸收容器设在所述第一水浴槽内,所述第一加热装置适于对所述第一水浴槽进行加热。
  4. 根据权利要求3所述的吸收剂性能检测装置,其特征在于,还包括重量传感器,所述重量传感器放置在所述第一加热装置上,所述第一水浴槽放置在所述重量传感器上,以便得到所述吸收容器内吸收剂的质量变化。
  5. 根据权利要求3所述的吸收剂性能检测装置,其特征在于,还包括:
    第二水浴槽,所述第一管路包括螺旋管段,所述螺旋管段设在所述第二水浴槽内;和
    第二加热装置,所述第二加热装置适于对所述第二水浴槽进行加热。
  6. 根据权利要求1-5中任一项所述的吸收剂性能检测装置,其特征在于,还包括pH 计,所述pH计的检测端插装在所述吸收容器内,以便检测所述吸收剂的pH值。
  7. 根据权利要求1-5中任一项所述的吸收剂性能检测装置,其特征在于,还包括粘度计,所述粘度计的检测端插装在所述吸收容器内,以便检测所述吸收剂的粘度。
  8. 根据权利要求1-5中任一项所述的吸收剂性能检测装置,其特征在于,还包括:
    多个气体管路,每个所述气体管路均与所述气体进口相连,每个所述气体管路用于与不同的气源相连;
    多个气体流量计,多个所述气体流量计与多个所述气体管路一一对应,每个所述气体流量计设在对应的所述气体管路上,以便检测对应的所述气体管路内气体的流量;和
    多个气体单向阀,多个所述气体单向阀与多个所述气体管路一一对应,每个所述气体单向阀设在对应的所述气体管路上,以便防止对应的所述气体管路内的气体回流。
  9. 根据权利要求1-4中任一项所述的吸收剂性能检测装置,其特征在于,还包括:
    第一液体管路和第二液体管路,所述第一液体管路与所述第一液体进口相连,所述第二液体管路与所述第二液体进口相连;
    第一液体流量计和第二液体流量计,所述第一液体流量计设在所述第一液体管路上,以便检测所述第一液体的流量,所述第二液体流量计设在所述第二液体管路上,以便检测所述第二液体的流量;以及
    第一液体单向阀和第二液体单向阀,所述第一液体单向阀设在所述第一液体管路上,以便防止所述第一液体回流,所述第二液体单向阀设在所述第二液体管路上,以便防止所述第二液体回流。
  10. 根据权利要求1-4中任一项所述的吸收剂性能检测装置,其特征在于,还包括尾气处理装置,所述第二管路与所述尾气处理装置相连。
PCT/CN2022/096566 2022-02-10 2022-06-01 吸收剂性能检测装置 WO2023151207A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210126347.5A CN114544870A (zh) 2022-02-10 2022-02-10 吸收剂性能检测装置
CN202210126347.5 2022-02-10

Publications (1)

Publication Number Publication Date
WO2023151207A1 true WO2023151207A1 (zh) 2023-08-17

Family

ID=81673179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096566 WO2023151207A1 (zh) 2022-02-10 2022-06-01 吸收剂性能检测装置

Country Status (2)

Country Link
CN (1) CN114544870A (zh)
WO (1) WO2023151207A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114544870A (zh) * 2022-02-10 2022-05-27 中国华能集团清洁能源技术研究院有限公司 吸收剂性能检测装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150192553A1 (en) * 2014-01-09 2015-07-09 Korea Testing Laboratory (Ktl) Apparatus for testing performance of carbon dioxide sorbent
CN105241998A (zh) * 2015-09-07 2016-01-13 内蒙古科技大学 一种检测高温热解废气吸收装置吸收效果的试验系统
CN109324157A (zh) * 2018-11-15 2019-02-12 华电电力科学研究院有限公司 一种模拟烟气制备方法及模拟烟气试验用加水装置
CN209014554U (zh) * 2018-11-15 2019-06-21 华电电力科学研究院有限公司 一种模拟烟气试验用加水装置
CN110333326A (zh) * 2019-08-07 2019-10-15 马鞍山钢铁股份有限公司 一种烧结循环烟气模拟系统及实验方法
CN111189970A (zh) * 2018-11-14 2020-05-22 中国石油化工股份有限公司 一种检测硫化氢吸消液性能的方法
CN210665651U (zh) * 2019-06-05 2020-06-02 上海盛剑环境系统科技股份有限公司 一种吸脱附检测平台
CN215727480U (zh) * 2021-09-16 2022-02-01 中国华能集团清洁能源技术研究院有限公司 一种模拟烟气吸收实验平台
CN114544870A (zh) * 2022-02-10 2022-05-27 中国华能集团清洁能源技术研究院有限公司 吸收剂性能检测装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216816567U (zh) * 2022-02-10 2022-06-24 中国华能集团清洁能源技术研究院有限公司 吸收剂性能检测装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150192553A1 (en) * 2014-01-09 2015-07-09 Korea Testing Laboratory (Ktl) Apparatus for testing performance of carbon dioxide sorbent
CN105241998A (zh) * 2015-09-07 2016-01-13 内蒙古科技大学 一种检测高温热解废气吸收装置吸收效果的试验系统
CN111189970A (zh) * 2018-11-14 2020-05-22 中国石油化工股份有限公司 一种检测硫化氢吸消液性能的方法
CN109324157A (zh) * 2018-11-15 2019-02-12 华电电力科学研究院有限公司 一种模拟烟气制备方法及模拟烟气试验用加水装置
CN209014554U (zh) * 2018-11-15 2019-06-21 华电电力科学研究院有限公司 一种模拟烟气试验用加水装置
CN210665651U (zh) * 2019-06-05 2020-06-02 上海盛剑环境系统科技股份有限公司 一种吸脱附检测平台
CN110333326A (zh) * 2019-08-07 2019-10-15 马鞍山钢铁股份有限公司 一种烧结循环烟气模拟系统及实验方法
CN215727480U (zh) * 2021-09-16 2022-02-01 中国华能集团清洁能源技术研究院有限公司 一种模拟烟气吸收实验平台
CN114544870A (zh) * 2022-02-10 2022-05-27 中国华能集团清洁能源技术研究院有限公司 吸收剂性能检测装置

Also Published As

Publication number Publication date
CN114544870A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
CN107389272B (zh) 一种so3标准气体发生装置及标定方法
CN1926423B (zh) 用于对包含具有很高的易吸附性的气体组分的烟道气体进行取样以便分析的方法
WO2023151207A1 (zh) 吸收剂性能检测装置
CN105004761A (zh) 一种脱硝系统逃逸氨在线连续监测的装置及方法
CN201314906Y (zh) 有机气体透过率测试装置
CN104965021A (zh) 一种燃煤烟气脱硝催化剂性能评价装置及方法
CN202676680U (zh) 一种检测海水中低浓度氟利昂装置
CN105223295A (zh) 可再生吸附剂吸/脱附性能检测方法
CN211627359U (zh) 一种烟气中三氧化硫含量的检测系统
CN216816567U (zh) 吸收剂性能检测装置
CN104316657B (zh) 一种用于湿法洗涤的模拟船舶废气系统
CN203365369U (zh) 一种用于监测快堆清洗过程中产生的氢气的系统
CN113959792A (zh) 一种基于低温等离子体热解的烟气中汞测量装置及方法
CN108896474B (zh) 一种高温实时监测溶解氧浓度的腐蚀评价装置及方法
CN211825963U (zh) 一种so3标准物质发生及在线分析仪的标定系统
CN204649661U (zh) 一种碳质热源燃烧热测试装置
CN210123399U (zh) 三氧化硫在线分析系统
CN112229946A (zh) 一种智能化so3标准气体制备方法及系统
CN111282403A (zh) 一种三塔吸收与解吸实验装置及其工艺
CN110687062A (zh) 一种烟气中三氧化硫含量的检测系统及检测方法
CN103336087B (zh) 一种脱硫效率测试装置及其测试方法
CN109342171A (zh) 煤氧复合反应气态产物组分及煤重动态测定装置及方法
CN203287361U (zh) 一种脱硫效率测试装置
CN105548305A (zh) 一种连续法测定活性焦二氧化硫容量的自动化装置
CN108387667B (zh) 一种液氨作为溶剂的气液平衡测定系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925566

Country of ref document: EP

Kind code of ref document: A1