WO2023149085A1 - 熱風供給装置および熱風供給方法ならびに鋼の製造方法 - Google Patents

熱風供給装置および熱風供給方法ならびに鋼の製造方法 Download PDF

Info

Publication number
WO2023149085A1
WO2023149085A1 PCT/JP2022/045658 JP2022045658W WO2023149085A1 WO 2023149085 A1 WO2023149085 A1 WO 2023149085A1 JP 2022045658 W JP2022045658 W JP 2022045658W WO 2023149085 A1 WO2023149085 A1 WO 2023149085A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot air
temperature
heat
heat pump
drying
Prior art date
Application number
PCT/JP2022/045658
Other languages
English (en)
French (fr)
Inventor
高志 黒木
亮 吉田
秀夫 木島
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023512777A priority Critical patent/JPWO2023149085A1/ja
Publication of WO2023149085A1 publication Critical patent/WO2023149085A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases

Definitions

  • the present invention provides a hot air supply apparatus and hot air supply method for heating gases such as air with improved energy efficiency when cooling and drying steel materials and steel sheets, and steel using such a hot air supply method. It relates to a manufacturing method.
  • hot air means heated gas such as air, and is not distinguished by its temperature.
  • the supply of hot air to equipment that dries steel materials and steel plates has generally used well-known hot-air-generating heaters that heat electrically or those that indirectly heat gas such as air with steam.
  • the hot air heater consumes a large amount of power because it is used to directly heat a room temperature gas by resistance or induction to raise the temperature to a desired temperature.
  • the amount of steam used is also large. From the viewpoint of energy saving, reduction of power consumption and steam consumption is required.
  • Patent Literature 1 discloses a technique for supplying hot air with less energy loss, low cost, and high temperature accuracy using a heat pump.
  • Patent Document 1 It is conceivable to apply the technology disclosed in Patent Document 1 and utilize a heat pump in a drying apparatus for steel materials and steel plates.
  • the heat pump has a small heat capacity and is not easy to control the temperature stably when it is used as a hot air supply device used in a steelworks. Therefore, it is difficult to directly use it as a hot air supply device for drying steel materials and steel sheets, which require strict temperature setting.
  • the performance of the heat pump depends on factors such as temperature changes in the heat source on the low temperature side of the heat pump, the stability at startup cannot be improved.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a hot air supply apparatus and method capable of supplying hot air with high energy efficiency, low cost, and high temperature accuracy. In addition, it is an object of the present invention to provide a method for manufacturing steel using such a method for supplying hot air.
  • a hot air supply device for solving the above-described problems and achieving the object includes a heat pump that preheats a gas having a temperature lower than a set temperature required for drying a steel material or a steel plate to generate hot air; A heating means for heating a drying gas containing hot air generated by the heat pump, and a temperature adjusting means for adjusting the temperature of the drying gas, wherein the heat source on the low temperature side of the heat pump is directly or indirectly , a coolant that absorbs heat by cooling the steel material or the steel plate.
  • the hot air supply device is (a) From the hot air supply temperature and air volume required for the drying process, the temperature flow rate of the hot air preheated by the heat pump and the energy amount of the heating means for heating the drying process gas to the required hot air supply temperature, Considering the energy loss from the energy source of the business site to the supply destination, having a first control unit that controls to reduce the net energy consumption, (b)
  • the heat source on the low temperature side of the heat pump is a refrigerant that indirectly absorbs heat by cooling the steel material or the steel plate through a heat exchanger, and the heat medium flow path between the heat exchanger and the heat pump.
  • a flow path changing unit for changing the heat medium flow path in the heat medium flow path, a measuring unit for measuring the inlet heat medium temperature TCi entering the heat pump through the heat medium flow path, and setting the upper limit of the inlet heat medium temperature to TC
  • a second control unit that performs feedback control or feedforward control of the flow rate of the flow path changing unit so that T Ci ⁇ T C based on T Ci measured by the measurement unit;
  • the heating means is a heat exchanger with steam, and the temperature adjusting means controls the flow rate of the steam, the operating power of the heat pump, and the temperature lower than the set temperature mixed with the drying gas. Adjusting by one selected from the flow rate of the gas, or by combining two or more, etc. is considered to be a more preferable solution.
  • a method for supplying hot air according to the present invention for solving the above-mentioned problems and achieving the object preheats a gas having a temperature lower than a set temperature required for drying steel materials or steel sheets by means of a heat pump to generate hot air.
  • the method for supplying hot air includes: (d) Further, from the hot air supply temperature and air volume necessary for the drying process, the temperature flow rate of the hot air preheated by the heat pump and the energy amount in the second step of heating the drying process gas to the required hot air supply temperature to reduce the net energy consumption in consideration of the energy loss from the energy source of the business site to the supply destination, (e) In the first step, a refrigerant that has absorbed heat by cooling the steel material or the steel plate is indirectly used as a low temperature side heat source of the heat pump via a heat exchanger, and the heat pump is provided between the heat exchanger and the heat pump.
  • the method for manufacturing steel according to the present invention is characterized by having a step of generating hot air for drying treatment using the hot air supply method described above and applying a drying treatment to the steel material or steel plate.
  • the hot-air supply device and hot-air supply method of the present invention it is possible to provide a hot-air supply device and method using a heat pump and heating means that can supply hot air with high energy efficiency, low cost, and high temperature accuracy.
  • a heat pump and heating means that can supply hot air with high energy efficiency, low cost, and high temperature accuracy.
  • the net energy consumption is reduced, it is possible to contribute to energy conservation in the entire workplace such as a steelworks.
  • FIG. 1A is a block diagram showing an outline of a hot air supply device according to an embodiment of the present invention
  • FIG. 1B is a block diagram showing an outline of a hot air supply device according to another embodiment
  • FIG. FIG. 5 is a facility configuration diagram showing an outline of a hot air supply device according to another embodiment of the present invention
  • FIG. 11 is a block diagram showing an outline of a conventional hot air supply device.
  • FIG. 1 schematically shows a block diagram of the outline of the hot air supply device according to the embodiment of the present invention.
  • FIGS. 1(a) and 1(b) in the manufacturing process of the steel sheet S, when a water cooling process 100 for water-cooling the high-temperature steel sheet S and a drying process 200 for drying the wet steel sheet are continuously performed.
  • FIG. 1(a) shows an overview of a hot air supply device according to an embodiment of the present invention.
  • the hot air supply device of the present embodiment includes, for example, a heat pump 1 that preheats air 2 as a gas having a temperature lower than the set temperature of hot air 201 required for drying the steel sheet S, and generates preheated hot air 3.
  • the temperature of the heat exchanger 5 with steam 4 as heating means for heating the drying processing gas 202 containing the generated preheated hot air 3 and the temperature of the hot air 201 generated by heating the drying processing gas 202 is adjusted to the set temperature.
  • a temperature adjusting means 6 is provided.
  • the preheated hot air 3 is heated to raise the temperature, and the temperature adjustment means 6 is used to heat the steel sheet S to the required temperature for the drying process. Adjust to the set temperature of the hot air 201 . Electricity, steam, or the like can be used as the heating means. Since the heating means only raises the temperature of the preheated hot air 3 to the set temperature, energy consumption can be suppressed. The temperature rise width of the heating means is also small, and the temperature control to the set temperature can be performed more accurately than in the case of the heat pump 1 alone.
  • the temperature of the preheated hot air 3 generated by the heat pump 1 is preferable to set within a range in which quick and accurate responsiveness can be exhibited according to the capacity of the heating means. Further, when the temperature of the preheated hot air 3 generated by the heat pump 1 is higher than the set temperature for the drying process, the air 2 for cooling may be mixed and used as the drying process gas 202 . When the air volume of the preheated hot air 3 generated by the heat pump 1 is insufficient for the air volume required for the drying process 200 , the air 2 may be additionally mixed to form the drying process gas 202 . In the above description, air is used as the drying processing gas 202, but nitrogen or an inert gas may be used.
  • the temperature adjusting means 6 may be feedback-controlled based on the temperature of the hot air 201 heated by the heating means, or the heating means may be controlled based on the temperature of the preheated hot air 3 generated by the heat pump 1 and the temperature of the drying process gas 202. Alternatively, the control may be based on the temperature of the air 2 or the like at the inlet of the high temperature side 16 of the heat pump 1 . Control may be performed based on a plurality of these.
  • the low-temperature side heat source 15 of the heat pump 1 is a coolant that directly or indirectly absorbs heat generated in the process of using hot air (for example, drying) and the cooling process 100 of steel materials and steel plates in the same factory.
  • a gas or a liquid can be used as this coolant. It is preferably a liquid whose temperature has been raised by being used in the cooling treatment. Water is particularly preferred.
  • the low-temperature side heat source 15 entering the heat pump 1 is the cooling liquid 101 (cooling water) after cooling the steel plate S, and the cooling liquid 101 that has absorbed heat from the steel plate S. It is preferable to utilize heat.
  • the size of the heat pump 1 can be reduced compared to a gas heat source.
  • the heat load of the conventional cooling water cooling device (cooling tower 103) can also be reduced.
  • the water on the surface of the steel sheet S is dried in the drying process 200 provided after the water cooling process 100 .
  • hot air 201 is supplied to dry the steel sheet S.
  • the air 2 sucked by the blower 8 is sent to the heat pump 1 , and the preheated hot air 3 heated by the heat pump 1 is heated to the set temperature hot air 201 by the indirect heating device 5 (heat exchanger) using the steam 4 .
  • It has temperature adjustment means 6 for controlling the amount of steam and adjusting the temperature of the generated hot air 201 to the set temperature.
  • the hot air 201 supplied in the drying process 200 is blown to the wet steel sheet S after the water cooling process 100, and the steel sheet S is dried.
  • the hot air 201 supplied in the drying process 200 is blown to the wet steel sheet S after the water cooling process 100, and the steel sheet S is dried.
  • the heat pump 1 includes a general evaporator 11 (heat absorber), compressor 12, condenser 13 (radiator), and expansion valve 14.
  • the waste water 101 whose temperature has increased after cooling the steel plate S in the water cooling process 100 is directly used as the low-temperature side heat source 15 (cold water).
  • a part of the circulating cooling water 101 is used as the low-temperature side heat source 15 (cold water), and the cooling water that has lost heat by the evaporator 11 (heat absorber) returns to the original circulating cooling water 101 . Since the temperature of the cooling water drops, the load on the cooling tower can be reduced.
  • FIG. 1 heat absorber
  • heat is exchanged between the waste water 101 after cooling used in the water cooling process 100 and the circulating water as the low-temperature side heat source 15 of the heat pump 1 in the heat exchanger 102, and the waste water 101 is indirectly heat can also be used. It is used indirectly because the cooling water quality in the steel plate cooling process is unsuitable (dirty) when directly used in the heat pump 1, and adversely affects the evaporator 11 such as corrosion and clogging.
  • a flow path changing portion (a three-way valve 104 or a bypass valve) is provided in the heat medium flow path between the heat exchanger 102 and the heat pump 1. , fluid temperature control may be performed.
  • a measuring unit such as a thermocouple 106 is provided for measuring the heat medium temperature T Ci at the inlet to the heat pump through the heat medium flow path.
  • T C as the upper limit of the heat medium temperature at the inlet
  • the second control unit performs feedback control or feedforward control of the flow rate of the flow path changing unit so that T Ci ⁇ T C based on T Ci measured by the measurement unit. do.
  • the flow path changing unit changes the flow path of the heat medium in the heat medium flow path between the heat exchanger 102 and the heat pump 1 .
  • the temperature of the fluid can be accurately controlled by the second control unit adjusting the flow rate of the flow path changing unit based on the measured value.
  • the flow control valve 105 may be provided so that the flow rates of both paths are constant.
  • the valve opening degree of the flow control valve may be set in advance, or may be feedback-controlled or feedforward-controlled by the second control section.
  • first control unit and the second control unit may be physically different, or may be physically the same.
  • the first control section and the second control section can be configured by a computer or the like.
  • An inlet temperature sensor for measuring the temperature of the cold water 15 and a flow meter for measuring the flow rate of the cold water 15 are provided in the supply pipe of the low temperature side heat source 15 of the heat pump 1 .
  • the flow rate may be calculated from the differential pressure and the structure of the evaporator 11 by measuring the pressure at the entrance and exit of the evaporator 11 (heat absorber).
  • the condenser 13 (radiator) is connected to an intake port for sending the air 2 in the factory with a blower 8, and the preheated hot air is heated by heat energy obtained by heat exchange in the condenser 13 (radiator).
  • 3 is connected to a preheated hot air supply port.
  • the intake port is equipped with a temperature sensor for measuring the temperature of the air 2
  • the preheated hot air supply port is equipped with a temperature sensor for measuring the temperature of the preheated hot air 3 . It is preferable to connect each temperature sensor for measuring the temperature of the air 2 and the preheated hot air 3 to the temperature adjusting means 6 .
  • the position of the blower 8 may be such that the air 2 is sent into the heat pump 1, or it may be installed between the heat pump 1 and the heating means as shown in FIG. 1(a), as shown in FIG. may be placed after the heating means.
  • the data obtained by each sensor that measures the temperature and flow rate is used by the temperature adjustment means 6 to adjust the heating amount of the heating means, for example, to adjust the steam flow rate, control the drive of the heat pump 1, and control the air flow to the drying process gas 202. It is used to control the mixing amount of 2.
  • Feedback control and feedforward control may be used alone or in combination.
  • the temperature gap is calculated from the measured temperature of the preheated hot air 3 and the set temperature of the preheated hot air 3, and using this result, the power consumption of the heat pump 1 is calculated and output.
  • Feedforward control may be performed to calculate the power consumption of the heat pump 1 from the inlet temperature and flow rate of the low temperature side heat source 15 (cold water) and the intake air temperature.
  • General PID control, inverter control, or the like may be used for these controls.
  • the drive control of the heat pump 1 may be controlled by either one or both of the compressor 12 and the expansion valve 14. It is preferable to set the temperature of the preheated hot air 3 generated by the heat pump 1 based on the air volume and the output of the indirect heating device 5, taking into consideration the overall energy efficiency.
  • total energy efficiency is high means reducing and minimizing the net energy consumption used for the drying process, for example, the energy consumption converted to city gas or the like.
  • an indirect heating device 5 using steam 4 for heating the preheated hot air 3 to a set temperature Downstream of the preheated hot air supply port, an indirect heating device 5 using steam 4 for heating the preheated hot air 3 to a set temperature is provided. Hot air 201 is supplied for drying. It is preferable to provide means for measuring the temperature and flow rate of the inlet and outlet sides of the indirect heating device 5 and control the amount of steam supply based on the measurement results. As for the control method, feedback control and feedforward control may be used alone or in combination.
  • the hot air 201 is obtained by heating the drying processing gas 202 including the preheated hot air 3, the amount of steam used can be reduced compared to the case of heating the normal temperature air 2 to the set temperature with the steam 4, thereby saving energy. I can plan. Moreover, even if the set temperature of the hot air 201 required for the drying process is a high temperature that cannot be obtained with the heat pump 1, the hot air 201 with the required set temperature can be obtained at low cost. By heating the preheated hot air 3 by the heat pump 1 together with the indirect heating device 5 by the steam 4, the hot air 201 at the set temperature can be generated, so that the controllability at the time of start-up is also improved.
  • Fig. 2 shows an overview of the equipment configuration of a hot air supply device according to another embodiment of the present invention.
  • the number of heat pumps 1 for generating the preheated hot air 3 may be determined according to the capacity of the heat pumps 1 and the required flow rate and temperature required for the hot air supply device.
  • air 2 is drawn into each heat pump 1 via a filter 7 .
  • the preheated hot air 3 heated using the liquid heat of the low-temperature side heat source 15 of the heat pump 1 is collected by the blower 8 and sent to the heat exchanger 5 as the drying processing gas 202 .
  • a drying process 200 is performed by a drying apparatus installed in the pass line of the steel sheet S with hot air 201 heated to a set temperature by the steam 4 in the heat exchanger 5 .
  • the steam 4 used as a heating means is transported from a steam generating source in a work place, for example, a steel mill, to a hot-air supply device for drying the steel plate S, which is the supply destination.
  • a steam generating source for example, a steel mill
  • a hot-air supply device for drying the steel plate S which is the supply destination.
  • Long transport distances result in energy loss, ie steam loss.
  • the heating means is electricity or the electricity used for heat pumps, transmission loss can be considered depending on the distance from the power plant.
  • the temperature flow rate of the hot air collected by the heat pump 1, the energy of the heating means, such as the amount of steam, and the generation of energy are controlled by the separately prepared first control unit so that the hot air supply temperature and air volume necessary for the drying process can be obtained.
  • the operating conditions of the heat pump 1 and the steam to the heat exchanger that is the heating means are determined so as to reduce the overall net energy consumption. It is preferable to set the amount and the amount of the air 2 mixed with the drying processing gas 202 alone or in combination.
  • the heat of the refrigerant after the cooling treatment of the steel material or steel plate is recovered, the drying treatment gas is heated, hot air is obtained, and the heating means using steam or the like is set.
  • the method of manufacturing steel which includes the process of heating hot air to a temperature to generate a drying gas and drying steel materials and steel sheets, makes efficient use of energy and can manufacture environment-friendly steel materials and steel sheets.
  • the hot air supply device of the embodiment shown in FIG. 1(b) was configured and applied to a process of water cooling a steel plate S in a steelworks and then drying it.
  • the set temperature of the hot air 201 in the drying process 200 of the steel sheet S was 85 to 95° C., and the air volume was 4.3 to 5.0 Nm 3 /h.
  • the heat pump 1 used had a power consumption of 15 to 24 kW and an energy consumption efficiency (COP) of about 4 on the high temperature side 16.
  • the temperature of the air 2 sucked into the high temperature side 16 of the heat pump 1 was 10 to 40°C.
  • the temperature of the cooling water 101 after the water-cooling process of the steel plate S used for the low-temperature side heat source 15 of the heat pump 1 was 15 to 35°C.
  • the energy and energy gain required for the operation of the heat pump 1, the steam 4 supplied to the heat exchanger 5, and the steam loss accompanying the transportation of the steam are defined as net energy.
  • the required amount of city gas was evaluated, and the operation conditions of the heat pump 1 and the steam 4 were controlled so as to minimize the net energy consumption, and the operation was carried out for one month.
  • the device configuration shown in FIG. 3 was used, and the hot air required for the drying treatment was all supplied by steam heating, and operation was carried out for one month.
  • energy can be used more efficiently than before, and environment-friendly steel sheets and steel materials can be manufactured, which is industrially useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

エネルギー効率よく低コストで温度精度の高い熱風を供給できる熱風供給技術を提供する。鋼材または鋼板の乾燥処理に必要な設定温度より低い温度の気体を予熱し、熱風を生成するヒートポンプと、前記ヒートポンプで生成した熱風を含む乾燥処理用気体を加熱する加熱手段と、前記乾燥処理用気体の温度を調整する温度調整手段と、を備え、前記ヒートポンプの低温側熱源は、直接または間接的に、前記鋼材または前記鋼板の冷却により熱を吸収した冷媒である、装置である。さらに、前記乾燥処理に必要な熱風供給温度および風量から、前記ヒートポンプで予熱する熱風の温度流量と、前記乾燥処理用気体を必要な熱風供給温度まで加熱する加熱手段のエネルギー量と、を、事業場のエネルギー発生元から供給先までのエネルギー損失を鑑み、正味消費エネルギーが低減するよう制御する制御部を備えることが好ましい。

Description

熱風供給装置および熱風供給方法ならびに鋼の製造方法
 本発明は、鋼材や鋼板の冷却処理と乾燥処理とを行うに際し、エネルギー効率を向上させて空気等の気体を加熱する熱風供給装置および熱風供給方法ならびにそのような熱風供給方法を用いた鋼の製造方法に関する。なお、この発明において「熱風」とは、空気等の気体を加熱したもので、その温度によって区別されるものではない。
 従来から、鋼材や鋼板を乾燥処理する装置に対する熱風の供給は、一般に、電気で加熱する周知の熱風発生ヒーターや空気等の気体を蒸気で間接的に加熱するものが用いられている。熱風発生ヒーターは常温の気体を直接、抵抗または誘導加熱して所望の温度まで昇温させるように使用されるため、熱風発生ヒーターの消費電力は大きい。蒸気を用いて間接加熱し、所望の温度まで昇温させるように使用する場合もその蒸気使用量は大きい。省エネルギーの観点から消費電力や蒸気使用量の低減が求められている。
 これらの問題に対しては省エネルギー機器であるヒートポンプを用いる技術が開示されている。たとえば、特許文献1には、ヒートポンプを用いてエネルギーロスが少なく低コストで温度精度の高い熱風供給技術が開示されている。
特開2010-185649号公報
 上記従来技術には以下の問題があった。
 特許文献1に開示の技術を応用し、鋼材や鋼板の乾燥装置にヒートポンプを活用することが考えられる。しかしながら、製鉄所で使用する熱風供給装置に用いるには、ヒートポンプは熱容量が小さく、安定した温度制御が容易ではない。従って、温度設定に厳格さが要求される鋼材や鋼板の乾燥処理のための熱風供給装置として直接用いることは困難である。また、ヒートポンプは、ヒートポンプの低温側熱源の温度変化等の要因で、その能力が左右されるため、起動時の安定性は改善されない。
 また、製鉄所のように蒸気の発生源である工場と、蒸気の供給先である工場とが遠隔である場合には輸送中のエネルギー損失(蒸気損失)を考慮する必要がある。正味の消費エネルギーの低減が求められる。
 本発明は、上記の事情に鑑みてなされたものであって、エネルギー効率よく低コストで温度精度の高い熱風を供給できる熱風供給装置および方法を提供することを目的とする。加えて、そのような熱風供給方法を用いた鋼の製造方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するための、本発明にかかる熱風供給装置は、鋼材または鋼板の乾燥処理に必要な設定温度より低い温度の気体を予熱し、熱風を生成するヒートポンプと、前記ヒートポンプで生成した熱風を含む乾燥処理用気体を加熱する加熱手段と、前記乾燥処理用気体の温度を調整する温度調整手段と、を備え、前記ヒートポンプの低温側熱源は、直接または間接的に、前記鋼材または前記鋼板の冷却により熱を吸収した冷媒であることを特徴とする。
 また、本発明にかかる熱風供給装置は、
(a)前記乾燥処理に必要な熱風供給温度および風量から、前記ヒートポンプで予熱する熱風の温度流量と、前記乾燥処理用気体を必要な熱風供給温度まで加熱する加熱手段のエネルギー量と、を、事業場のエネルギー発生元から供給先までのエネルギー損失を鑑み、正味消費エネルギーが低減するよう制御する第1制御部を備えること、
(b)前記ヒートポンプの低温側熱源は、熱交換器を介して間接的に前記鋼材または前記鋼板の冷却により熱を吸収した冷媒であり、前記熱交換器と前記ヒートポンプの間の熱媒流路における熱媒の流路を変更する流路変更部と、前記熱媒流路を通って前記ヒートポンプに入る入口熱媒温度TCiを測定する測定部と、当該入口熱媒温度の上限をTとして、前記測定部で測定したTCiに基づいて、TCi≦Tとなるよう前記流路変更部の流量をフィードバック制御又はフィードフォワード制御する第2制御部と、を備えること、
(c)前記加熱手段が蒸気との熱交換器であり、前記温度調整手段は、前記蒸気の流量、前記ヒートポンプの運転電力、および、前記乾燥処理用気体に混合する前記設定温度より低い温度の気体の流量から選ばれた1により、または、2以上を組み合わせて調整すること、
などがより好ましい解決手段になり得るものと考えられる。
 上述した課題を解決し、目的を達成するための、本発明にかかる熱風供給方法は、鋼材または鋼板の乾燥処理に必要な設定温度より低い温度の気体をヒートポンプによって予熱し、熱風を生成する第1工程と、前記第1工程で生成した熱風を含む乾燥処理用気体に対し、熱風温度を調整しながら加熱する第2工程と、を含み、前記第1工程では、ヒートポンプの低温側熱源に前記鋼材または前記鋼板の冷却により熱を吸収した冷媒を直接または間接的に用いることを特徴とする。
 また、本発明にかかる熱風供給方法は、
(d)さらに、前記乾燥処理に必要な熱風供給温度および風量から、前記ヒートポンプで予熱する熱風の温度流量と、前記乾燥処理用気体を必要な熱風供給温度まで加熱する前記第2工程のエネルギー量とを、事業場のエネルギー発生元から供給先までのエネルギー損失を鑑み正味消費エネルギーが低減するよう、制御すること、
(e)前記第1工程では、ヒートポンプの低温側熱源に前記鋼材または前記鋼板の冷却により熱を吸収した冷媒を、熱交換器を介して間接的に用い、前記熱交換器と前記ヒートポンプの間の熱媒流路における熱媒の流路を変更する流路変更部を備え、前記熱媒流路を通って前記ヒートポンプに入る入口熱媒温度TCiを測定し、当該入口熱媒温度の上限をTとして、TCi≦Tとなるよう前記流路変更部の流量をフィードバック制御又はフィードフォワード制御すること、
(f)前記第2工程では、加熱手段に蒸気を用い、前記蒸気の流量、前記ヒートポンプの運転電力、および、前記乾燥処理用気体に混合する前記設定温度より低い温度の気体の流量から選ばれた1により、または、2以上を組み合わせて前記熱風温度を調整すること、
などがより好ましい解決手段になり得るものと考えられる。
 また、本発明にかかる鋼の製造方法は、上記熱風供給方法を用いて乾燥処理用熱風を生成し鋼材または鋼板の乾燥処理を施す工程を有することを特徴とする。
 本発明にかかる熱風供給装置および熱風供給方法によれば、エネルギー効率よく低コストで温度精度の高い熱風を供給できる、ヒートポンプと加熱手段を用いた熱風供給装置および方法を提供できる。また、正味の消費エネルギーを低減するようにすれば、製鉄所など事業場全体の省エネルギーに貢献することができる。
 また、本発明にかかる鋼の製造方法によれば、省エネルギーで環境にやさしい鋼材や鋼板を製造することが可能となる。
(a)は本発明の一実施形態にかかる熱風供給装置の概要を示すブロック図であり、(b)は他の実施形態にかかる熱風供給装置の概要を示すブロック図である。 本発明の別の実施形態にかかる熱風供給装置の概要を示す設備構成図である。 従来の熱風供給装置の概要を示すブロック図である。
 以下、本発明の実施の形態について具体的に説明する。なお、各図面は模式的なものであって、現実のものとは異なる場合がある。また、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。
 図1には、本発明の実施形態にかかる熱風供給装置の概要を模式的にブロック図で示す。図1(a)や(b)に示すように、鋼板Sの製造工程では、高温の鋼板Sを水冷する水冷工程100と水に濡れた鋼板を乾燥する乾燥工程200を連続して処理する場合がある。図1(a)に本発明の一実施形態にかかる熱風供給装置の概要を示す。本実施形態の熱風供給装置は、たとえば、鋼板Sの乾燥処理に必要な熱風201の設定温度よりも低い温度の気体として空気2を予熱し、予熱熱風3を生成するヒートポンプ1と、ヒートポンプ1で生成した予熱熱風3を含む乾燥処理用気体202を加熱する加熱手段としての蒸気4との熱交換器5と、乾燥処理用気体202を加熱して生成される熱風201の温度を設定温度に調整する温度調整手段6を備える。
 たとえば、ヒートポンプ1を用いて所望の熱風設定温度よりも低い温度の予熱熱風3を生成した後、この予熱熱風3を加熱して昇温し、温度調整手段6で鋼板Sの乾燥処理に必要な熱風201の設定温度に調整する。加熱手段には電気や蒸気などが使用できる。加熱手段は予熱熱風3の温度を設定温度まで上げるだけとなるので、消費エネルギーを抑えることができる。加熱手段の温度上昇幅も小さく、ヒートポンプ1単体の場合より精度よく設定温度への温度制御が行える。
 ヒートポンプ1で生成する予熱熱風3の温度は、加熱手段の能力に応じて迅速正確な応答性を発揮できる範囲で設定することが好ましい。また、ヒートポンプ1で生成する予熱熱風3の温度が乾燥処理の設定温度より高い場合には、冷却用に空気2を混合し、乾燥処理用気体202としてもよい。ヒートポンプ1で生成する予熱熱風3の風量が乾燥処理200に必要な風量に足りない場合には、追加で空気2を混合し、乾燥処理用気体202としてもよい。上記では、乾燥処理用気体202は空気を例に説明したが、窒素や不活性ガスであってもよい。
 温度調整手段6は加熱手段で加熱された熱風201の温度に基づきフィードバック制御してもよいし、ヒートポンプ1で生成された予熱熱風3の温度や乾燥処理用気体202の温度に基づいて加熱手段を制御してもよいし、ヒートポンプ1の高温側16の入口の空気2等の温度に基づいて制御してもよい。これらの複数に基づき制御してもよい。
 ヒートポンプ1の低温側熱源15は、直接または間接的に、熱風使用プロセス(たとえば、乾燥処理)と同一工場の鋼材や鋼板の冷却処理100で生じた、熱を吸収した冷媒である。この冷媒には気体や液体を用いることができる。冷却処理に用いて温度が上昇した液体であることが好ましい。特に水が好ましい。たとえば、図1(a)に示すように、ヒートポンプ1に入る低温側熱源15は、鋼板Sを冷却したのちの冷却液101(冷却水)であり、鋼板Sから熱を吸収した冷却液101の熱を活用したものであると好ましい。ヒートポンプ1の低温側熱源15を熱容量と伝熱性能に優れた液体、たとえば水とすることで、気体熱源に比べヒートポンプ1の小型化を図ることができる。そのうえ、鋼板Sから熱を吸収した冷却液101を冷却する効果もあるため、従来の冷却水クーリング装置(冷却塔103)の熱負荷を下げることもできる。
 ヒートポンプ1の高温側16の入口の気体の温度を計測するセンサと、ヒートポンプ1の高温側16の出口の気体の温度を計測するセンサと、ヒートポンプ1の低温側熱源15(冷水)の入口の温度を計測するセンサと、これらのセンサの温度測定結果に基づき、ヒートポンプ1の運転電力の制御を行う第1制御部を用いてもよい。ヒートポンプ1の低温側熱源15(冷水)やヒートポンプ1の高温側16の入口の気体に温度変化があっても、ヒートポンプ1で安定した温度の予熱熱風3を生成できるので、後工程の蒸気などの加熱手段によって生成する熱風201の温度を設定温度に、より安定させられる。
 図1(a)の例にかかる熱風供給方法では、鋼板Sは水冷工程100の後に設けられた乾燥工程200で表面の水分を乾燥する。乾燥工程200では鋼板Sを乾燥するために熱風201が供給される。ブロワ8で吸い込まれた空気2はヒートポンプ1に送り込まれ、ヒートポンプ1で加熱された予熱熱風3は蒸気4による間接加熱装置5(熱交換器)で設定温度の熱風201まで加熱される。蒸気量を制御して、生成される熱風201の温度を設定温度に調整する温度調整手段6を有する。乾燥工程200内に供給された熱風201は水冷工程100後の濡れた鋼板Sに吹き付けられ、鋼板Sの乾燥処理を行う。乾燥処理を適切に行うことで乾燥工程200より下工程での、乾燥不良起因の不良発生もなくすることができる。
 ヒートポンプ1は一般的な蒸発器11(吸熱器)、圧縮機12、凝縮器13(放熱器)、膨張弁14を備える。図1(a)の例では、排熱を活用するため、水冷工程100による鋼板Sの冷却後で温度が上昇した排水101を低温側熱源15(冷水)として、直接用いる。循環冷却水101の一部を低温側熱源15(冷水)用として活用し、蒸発器11(吸熱器)により熱を奪われた冷却水は元の循環冷却水101に戻す。冷却水は温度が低下するため、冷却塔の負荷を下げることができる。一方、図1(b)に示すように、水冷工程100で用いた冷却後の排水101とヒートポンプ1の低温側熱源15としての循環水とを熱交換器102で熱交換し間接的に排水101の熱を利用することもできる。間接的に用いているのは鋼板冷却プロセスの冷却水性状がヒートポンプ1で直接利用するに際し、不適(汚れ有り)の場合に、蒸発器11に腐食や詰まりなどの悪影響を及ぼすためである。
 熱交換器102を設置する場合、ヒートポンプ1の性能を最大限に発揮させるため、熱交換器102とヒートポンプ1の間の熱媒流路に流路変更部(三方弁104又はバイパス弁)を設け、流体の温度制御を行ってもよい。
 たとえば、熱媒流路を通ってヒートポンプに入る入口の熱媒温度TCiを測定する熱電対106等の測定部を設ける。入口の熱媒温度の上限をTとして、測定部で測定したTCiに基づいて、TCi≦Tとなるよう、第2制御部が流路変更部の流量をフィードバック制御又はフィードフォワード制御する。第2制御部の制御を受けて、流路変更部は、熱交換器102とヒートポンプ1の間の熱媒流路における熱媒の流路を変更する。実測値に基づき第2制御部が流路変更部の流量を調整することで、精度よく流体の温度制御を行うことができる。
 なお、流路変更部により熱交換器102を介さないようバイパスさせた場合、バイパス経路の圧損は、熱交換器経路の圧損より小さいため、必ずしも両経路で流量が一定とならない。そのため、両経路の流量が一定になるように流量調節用弁105を設けても良い。流量調節用弁の弁開度は、あらかじめ設定されていても良いし、第2制御部によりフィードバック制御又はフィードフォワード制御されても良い。これにより流路変更部により流路・流量をどちらに調整した際にも流量変動がおさえられ、さらに精度よく流体の温度制御を行うことができる。
 なお、第1制御部及び第2制御部は、それぞれ物理的に異なるもので構成されても良いし、物理的に同じもので構成されてもよい。第1制御部や第2制御部は、コンピューターなどにより構成することができる。
 ヒートポンプ1の低温側熱源15の供給配管内には冷水15の温度を計測する入側温度センサと冷水15の流量を計測する流量計を備える。蒸発器11(吸熱器)入出の圧力を計測することにより差圧と蒸発器11の構造から流量を算出してもよい。
 凝縮器13(放熱器)には工場内の空気2をブロワ8で送り込む吸気口が接続されるとともに、凝縮器13(放熱器)で熱交換して得られた熱エネルギーで加熱された予熱熱風3を供給する予熱熱風供給口が接続されている。吸気口には空気2の温度を計測する温度センサを具備しており、予熱熱風供給口には予熱熱風3の温度を計測する温度センサを具備している。空気2や予熱熱風3の温度を測定する各温度センサを温度調整手段6に接続することが好ましい。また、ブロワ8の位置は、ヒートポンプ1に空気2を送り込むようにしてもよいし、図1(a)のようにヒートポンプ1と加熱手段の間に設置しても、図1(b)のように加熱手段の後に設置してもよい。
 温度や流量を測定する各センサで得られたデータは、温度調整手段6により、加熱手段の加熱量の調節、たとえば、蒸気流量の調節やヒートポンプ1の駆動制御、乾燥処理用気体202への空気2の混合量の制御に用いられる。フィードバック制御、フィードフォワード制御を単独で、または併用すればよい。たとえば、ヒートポンプ1の駆動制御では、予熱熱風3の実測温度と予熱熱風3の設定温度から温度ギャップを演算し、この結果を用いて、ヒートポンプ1の電力量を演算して出力するフィードバック制御や、低温側熱源15(冷水)の入側温度と流量、吸気温度からヒートポンプ1の電力量を演算するフィードフォワード制御を行ってもよい。これらの制御は一般的なPID制御やインバータ制御などを用いればよい。
 ヒートポンプ1の駆動制御では圧縮機12および膨張弁14のいずれか一方または両方で制御してもよい。ヒートポンプ1で生成させる予熱熱風3の温度は風量と間接加熱装置5の出力に基づき、全体でエネルギー効率が高くなるよう考慮し、設定することが好ましい。ここで、「全体でエネルギー効率が高い」とは、乾燥処理に用いる正味の消費エネルギー、たとえば、都市ガス等に換算した消費エネルギーを低減し、最小化することを意味する。
 予熱熱風供給口の下流には、予熱熱風3を設定温度に加熱するための蒸気4を用いた間接加熱装置5が具備されており、間接加熱装置5を介して、水冷工程100後の鋼板を乾燥させるための熱風201を供給する。間接加熱装置5の入側、出側の温度、流量を計測する手段を備え、計測結果から蒸気供給量を制御することが好ましい。制御方法はフィードバック制御、フィードフォワード制御を単独で、または併用して用いればよい。
 熱風201は予熱熱風3を含む乾燥処理用気体202を加熱して得られるため、常温の空気2を設定温度まで蒸気4で加熱する場合に比べ、蒸気使用量を抑えることができ、省エネルギー化が図れる。また、乾燥処理に必要な熱風201の設定温度がヒートポンプ1では得られない高温であっても、必要な設定温度の熱風201を低コストで得ることができる。ヒートポンプ1による予熱熱風3を、蒸気4による間接加熱装置5を併用して加熱することにより、設定温度の熱風201を生成できるため、スタートアップ時の制御性も良好となる。
 図2に本発明の別の実施形態にかかる熱風供給装置の設備構成の概要を示す。図2に示すように、予熱熱風3を生成するヒートポンプ1の台数は、ヒートポンプ1の容量と、熱風供給装置として求められる必要流量、温度に応じて決定すればよい。図2の例では、個々のヒートポンプ1にフィルタ7を介して空気2を吸気する。ヒートポンプ1の低温側熱源15の液体の熱を用いて加熱された予熱熱風3はブロワ8に集められて、乾燥処理用気体202として、熱交換器5に送られる。熱交換器5で蒸気4により設定温度まで加熱された熱風201により鋼板Sのパスラインに設置された乾燥装置により乾燥工程200が施される。
 加熱手段に用いられる蒸気4は、事業場、たとえば、製鉄所内の蒸気発生元から供給先である鋼板Sの乾燥処理のための熱風供給装置に輸送される。この輸送距離が長いとエネルギー損失、つまり蒸気損失を生じる。加熱手段が電気である場合やヒートポンプに用いる電気も発電所からの距離によって送電損失が考えられる。別途用意した第1制御部により、乾燥処理に必要な熱風供給温度および風量を得られるように、ヒートポンプ1で回収する熱風の温度流量、加熱手段のエネルギーとしての、たとえば、蒸気量、エネルギーの発生元から供給先までのエネルギー損失、ならびに、上記各センサからの情報も考慮し、総合的に正味の消費エネルギーを低減するように、ヒートポンプ1の運転条件、加熱手段である熱交換器への蒸気量および乾燥処理用気体202に混合する空気2の量などを単独でまたは組み合わせて設定することが好ましい。
 本実施形態の熱風供給方法を用いて、鋼材や鋼板の冷却処理後の冷媒が有する熱を回収し、乾燥処理用気体を加熱し、熱風を得て、さらに蒸気などを用いた加熱手段により設定温度まで熱風を加熱して乾燥処理用気体を生成し、鋼材や鋼板の乾燥処理を施す工程を有する鋼の製造方法は、エネルギーの効率的使用が図れ、環境にやさしい鋼材や鋼板が製造できる。
 図1(b)に示す実施形態の熱風供給装置を構成し、製鉄所の鋼板Sを水冷処理し、その後、乾燥処理するプロセスに適用した。鋼板Sの乾燥工程200の熱風201の設定温度を85~95℃とし、風量を4.3~5.0Nm/hとした。ヒートポンプ1として、15~24kWの消費電力で、高温側16のエネルギー消費効率(COP)が約4のものを用い、ヒートポンプ1の高温側16に吸気する空気2は10~40℃であった。ヒートポンプ1の低温側熱源15に用いる鋼板Sの水冷工程後の冷却水101の温度は15~35℃であった。上記温度条件と乾燥処理に必要な風量とから、ヒートポンプ1の運転に必要なエネルギーおよびエネルギー利得と、熱交換器5に供給する蒸気4および蒸気の輸送に伴う蒸気損失と、を、正味エネルギーとしてたとえば必要な都市ガスの量で評価し、正味の消費エネルギーが最も小さくなるようにヒートポンプ1の運転条件と蒸気4を制御して、1か月操業した。比較例として、図3に示す装置構成を用い、乾燥処理に必要な熱風をすべて蒸気の加熱でまかなって、1か月操業した。
 本実施形態の適用により、正味の消費エネルギーで比較例の約6割を低減することができ、熱利用効率が向上した。くわえて、図3の比較例では、鋼板Sの水冷工程後の冷却水を冷却塔で冷却するのにさらなる電力の使用を必要とした。
 本発明によれば、従来に比べ、エネルギーの効率的使用が図れ、環境にやさしい鋼板や鋼材が製造できるので、産業上有用である。
 1 ヒートポンプ
 2 空気
 3 予熱熱風
 4 蒸気
 5 間接加熱装置(熱交換器)
 6 温度調整手段
 7 フィルタ
 8 ブロワ
11 蒸発器(吸熱器)
12 圧縮機
13 凝縮器(放熱器)
14 膨張弁
15 低温側熱源(冷水)
16 高温側
100 水冷工程(冷却処理)
101 冷却水(冷却液)(排水)
102 熱交換器
103 冷却塔
104 三方弁
105 流量調節用弁
106 熱電対
200 乾燥工程(乾燥処理)
201 熱風
202 乾燥処理用気体
 S 鋼板

Claims (9)

  1. 鋼材または鋼板の乾燥処理に必要な設定温度より低い温度の気体を予熱し、熱風を生成するヒートポンプと、
    前記ヒートポンプで生成した熱風を含む乾燥処理用気体を加熱する加熱手段と、
    前記乾燥処理用気体の温度を調整する温度調整手段と、
    を備え、
    前記ヒートポンプの低温側熱源は、直接または間接的に、前記鋼材または前記鋼板の冷却により熱を吸収した冷媒である、熱風供給装置。
  2. 前記乾燥処理に必要な熱風供給温度および風量から、前記ヒートポンプで予熱する熱風の温度流量と、前記乾燥処理用気体を必要な熱風供給温度まで加熱する加熱手段のエネルギー量と、を、事業場のエネルギー発生元から供給先までのエネルギー損失を鑑み、正味消費エネルギーが低減するよう制御する第1制御部を備える、請求項1に記載の熱風供給装置。
  3. 前記ヒートポンプの低温側熱源は、熱交換器を介して間接的に前記鋼材または前記鋼板の冷却により熱を吸収した冷媒であり、
    前記熱交換器と前記ヒートポンプの間の熱媒流路における熱媒の流路を変更する流路変更部と、
    前記熱媒流路を通って前記ヒートポンプに入る入口熱媒温度TCiを測定する測定部と、
    当該入口熱媒温度の上限をTとして、前記測定部で測定したTCiに基づいて、TCi≦Tとなるよう前記流路変更部の流量をフィードバック制御又はフィードフォワード制御する第2制御部と、
    を備える、請求項1または2に記載の熱風供給装置。
  4. 前記加熱手段が蒸気との熱交換器であり、
    前記温度調整手段は、前記蒸気の流量、前記ヒートポンプの運転電力、および、前記乾燥処理用気体に混合する前記設定温度より低い温度の気体の流量から選ばれた1により、または、2以上を組み合わせて調整する、請求項1または2に記載の熱風供給装置。
  5. 鋼材または鋼板の乾燥処理に必要な設定温度より低い温度の気体をヒートポンプによって予熱し、熱風を生成する第1工程と、
    前記第1工程で生成した熱風を含む乾燥処理用気体に対し、熱風温度を調整しながら加熱する第2工程と、
    を含み、
    前記第1工程では、ヒートポンプの低温側熱源に前記鋼材または前記鋼板の冷却により熱を吸収した冷媒を直接または間接的に用いる、熱風供給方法。
  6. 前記乾燥処理に必要な熱風供給温度および風量から、前記ヒートポンプで予熱する熱風の温度流量と、前記乾燥処理用気体を必要な熱風供給温度まで加熱する前記第2工程のエネルギー量とを、事業場のエネルギー発生元から供給先までのエネルギー損失を鑑み正味消費エネルギーが低減するよう、制御する、請求項5に記載の熱風供給方法。
  7. 前記第1工程では、ヒートポンプの低温側熱源に前記鋼材または前記鋼板の冷却により熱を吸収した冷媒を、熱交換器を介して間接的に用い、
    前記熱交換器と前記ヒートポンプの間の熱媒流路における熱媒の流路を変更する流路変更部を備え、
    前記熱媒流路を通って前記ヒートポンプに入る入口熱媒温度TCiを測定し、当該入口熱媒温度の上限をTとして、TCi≦Tとなるよう前記流路変更部の流量をフィードバック制御又はフィードフォワード制御する、
    請求項5に記載の熱風供給方法。
  8. 前記第2工程では、加熱手段に蒸気を用い、
    前記蒸気の流量、前記ヒートポンプの運転電力、および、前記乾燥処理用気体に混合する前記設定温度より低い温度の気体の流量から選ばれた1により、または、2以上を組み合わせて前記熱風温度を調整する、請求項5に記載の熱風供給方法。
  9. 請求項5ないし8のいずれか1項に記載の熱風供給方法を用いて乾燥処理用熱風を生成し鋼材または鋼板の乾燥処理を施す工程を有する、鋼の製造方法。
PCT/JP2022/045658 2022-02-03 2022-12-12 熱風供給装置および熱風供給方法ならびに鋼の製造方法 WO2023149085A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023512777A JPWO2023149085A1 (ja) 2022-02-03 2022-12-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-015467 2022-02-03
JP2022015467 2022-02-03

Publications (1)

Publication Number Publication Date
WO2023149085A1 true WO2023149085A1 (ja) 2023-08-10

Family

ID=87552071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045658 WO2023149085A1 (ja) 2022-02-03 2022-12-12 熱風供給装置および熱風供給方法ならびに鋼の製造方法

Country Status (2)

Country Link
JP (1) JPWO2023149085A1 (ja)
WO (1) WO2023149085A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302392A (ja) * 2007-06-08 2008-12-18 Panasonic Corp 順送加工用金型装置
JP2010185649A (ja) 2009-01-15 2010-08-26 Omron Corp 熱風供給装置および熱風供給方法
JP2011145041A (ja) * 2010-01-18 2011-07-28 Tokyo Electric Power Co Inc:The 産業用加熱システム及びその制御方法
JP2015189998A (ja) * 2014-03-28 2015-11-02 Jfeスチール株式会社 冷延鋼板の冷却方法および冷却設備ならびに冷延鋼板の製造方法
JP2018043190A (ja) * 2016-09-14 2018-03-22 栗田工業株式会社 超純水製造装置
JP2021035242A (ja) * 2019-08-28 2021-03-01 株式会社タカモリ 金属個片積層体の製造装置及び金属個片積層体の製造方法
CN214307950U (zh) * 2021-02-25 2021-09-28 浙江航峰铁塔有限公司 一种钢构件热镀锌生产用烘干装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302392A (ja) * 2007-06-08 2008-12-18 Panasonic Corp 順送加工用金型装置
JP2010185649A (ja) 2009-01-15 2010-08-26 Omron Corp 熱風供給装置および熱風供給方法
JP2011145041A (ja) * 2010-01-18 2011-07-28 Tokyo Electric Power Co Inc:The 産業用加熱システム及びその制御方法
JP2015189998A (ja) * 2014-03-28 2015-11-02 Jfeスチール株式会社 冷延鋼板の冷却方法および冷却設備ならびに冷延鋼板の製造方法
JP2018043190A (ja) * 2016-09-14 2018-03-22 栗田工業株式会社 超純水製造装置
JP2021035242A (ja) * 2019-08-28 2021-03-01 株式会社タカモリ 金属個片積層体の製造装置及び金属個片積層体の製造方法
CN214307950U (zh) * 2021-02-25 2021-09-28 浙江航峰铁塔有限公司 一种钢构件热镀锌生产用烘干装置

Also Published As

Publication number Publication date
JPWO2023149085A1 (ja) 2023-08-10

Similar Documents

Publication Publication Date Title
JP2012073013A5 (ja)
KR101850002B1 (ko) 지역난방열 구동 히트펌프가 융합된 지역난방 생산 시스템 및 그 제어방법
JP2010185649A (ja) 熱風供給装置および熱風供給方法
CN202769891U (zh) 一种风冷空压机余热回收加热新风系统
CN112066596A (zh) 高温热泵废气余热回收节能系统
WO2023149085A1 (ja) 熱風供給装置および熱風供給方法ならびに鋼の製造方法
JP2006200888A (ja) ヒートポンプ給湯装置
JP2008147184A (ja) 燃料電池システム用カソード入口空気流の温度制御
CN212770412U (zh) 一种热泵干燥机组
US20120111039A1 (en) Heat transfer processes and equipment for industrial applications
KR100821960B1 (ko) 난방용 회수온수를 이용한 에너지 절감 지역난방 방법
JPH05222906A (ja) 排熱利用発電プラントの制御装置
WO2020177302A1 (zh) 利用高炉轴流鼓风机冷风热量的方法以及热风炉系统
TWI675263B (zh) 液體溫控裝置和方法
JP2004257707A (ja) 熱源機器の適正容量制御方法及び装置
KR20240097886A (ko) 열풍 공급 장치 및 열풍 공급 방법 그리고 강의 제조 방법
CN213747100U (zh) 一种高精度恒温恒湿空调
JP5184980B2 (ja) 塗装装置
WO2023149086A1 (ja) 熱回収装置、熱回収方法及び鋼板の製造方法
WO2020114147A1 (zh) 一种浴室用多级热利用热泵控制系统及控制方法
KR20170106709A (ko) 반도체 제조 공정용 초절전 항온습 및 항온수 제어 장치
JP3815341B2 (ja) ヒートポンプ給湯装置
KR20240100443A (ko) 열 회수 장치, 열 회수 방법 및 강판의 제조 방법
WO2024119455A1 (zh) 空气冷却装置的控制方法、空气冷却装置和压缩机组
CN212362181U (zh) 一种发酵热回收供暖装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023512777

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22924989

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022924989

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022924989

Country of ref document: EP

Effective date: 20240604