WO2020177302A1 - 利用高炉轴流鼓风机冷风热量的方法以及热风炉系统 - Google Patents

利用高炉轴流鼓风机冷风热量的方法以及热风炉系统 Download PDF

Info

Publication number
WO2020177302A1
WO2020177302A1 PCT/CN2019/107503 CN2019107503W WO2020177302A1 WO 2020177302 A1 WO2020177302 A1 WO 2020177302A1 CN 2019107503 W CN2019107503 W CN 2019107503W WO 2020177302 A1 WO2020177302 A1 WO 2020177302A1
Authority
WO
WIPO (PCT)
Prior art keywords
blower
hot blast
heat
hot
blast stove
Prior art date
Application number
PCT/CN2019/107503
Other languages
English (en)
French (fr)
Inventor
代黎
阮祥志
平凤齐
Original Assignee
中冶南方工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中冶南方工程技术有限公司 filed Critical 中冶南方工程技术有限公司
Publication of WO2020177302A1 publication Critical patent/WO2020177302A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B9/00Stoves for heating the blast in blast furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B9/00Stoves for heating the blast in blast furnaces
    • C21B9/10Other details, e.g. blast mains

Definitions

  • the invention belongs to the technical field of blast furnace production, and in particular relates to a method for utilizing cold air heat of a blast furnace axial flow blower and a hot air stove system.
  • the function of the blast furnace hot blast stove is to heat the blast to the required temperature to improve the benefit and efficiency of the blast furnace, which can reduce the coke ratio, increase steel output, and save energy.
  • the hot blast stove works according to the principle of heat storage: the gas is burned in the combustion chamber, and the high-temperature exhaust gas passes through the checker bricks to store heat. When the checker bricks are fully heated, the blower blows air into the hot blast stove, and the cold air is heated by the checker bricks And send it out.
  • Blast furnaces are generally equipped with two or more hot blast stoves, and alternate air supply is adopted, that is, when one of the hot blast stoves supplies air, the other hot blast stoves burn to ensure continuous air supply to the blast furnace.
  • the commonly used method is to co-fire high-calorific value gas, or increase the heat exchange area of the checker brick of the hot blast stove, or change the material and density of the checker brick, or change the heat storage
  • the shape of the body, and the preheating of gas and combustion air will increase production costs accordingly.
  • the embodiment of the present invention relates to a method for utilizing cold air heat of a blast furnace axial blower and a hot blast stove system, which can at least solve some of the defects of the prior art.
  • the embodiment of the present invention relates to a method for utilizing the cold air heat of a blast furnace axial blower.
  • a heat exchange device is provided on the hot blast pipeline , While using the heat of the cold air of the blower, the inlet air temperature of the hot blast stove in the blowing state is reduced to extend the burning time of the hot blast stove in the burning state.
  • the boiler feed water and the blower are used to exchange heat to reduce the inlet air temperature of the hot blast stove.
  • the blower is a pneumatic blower driven by a blower steam turbine, and the blower steam turbine is supplied with steam by a blower boiler, and the feed water of the blower boiler is used to exchange heat with the blower.
  • the heat medium return water of the lithium bromide unit used in the blower dehumidification and blast is used to exchange heat with the blower blast to reduce the inlet air temperature of the hot blast stove.
  • the embodiment of the present invention relates to a hot blast stove system, including a hot blast stove and a blower group, the hot blast stove and the blower group are connected by a hot blast pipeline, and a heat exchange device is provided on the hot blast pipeline for communicating with The blower blows the air for heat exchange, and reduces the inlet air temperature of the hot blast stove while using the heat of the cold air of the blower.
  • the heat exchange device is a front heat exchanger
  • the front heat exchanger is an indirect heat exchanger
  • the cooling medium used is a hot water type used for boiler feed water or blower dehumidification and blowing
  • the heat medium of the lithium bromide unit returns to the water.
  • the boiler used is a blast furnace gas boiler.
  • a rear heat exchanger is also provided on the hot air pipeline, and the rear heat exchanger is located on the hot air outlet side of the front heat exchanger to prevent the front heat exchanger from The outlet wind temperature is too high.
  • the heat exchange device is a waste heat boiler, and the steam produced by the waste heat boiler is sent to a steam-type lithium bromide unit for blasting and dehumidification, or for power generation.
  • the method for utilizing the cold air heat of the blast furnace axial blower and the hot blast stove system provided by the present invention not only use the cold air heat of the blast furnace axial blower by reducing the inlet air temperature of the hot blast stove in the air supply state, but also extend the heat of the blast furnace axial flow blower.
  • the burning time of the hot blast stove achieves the purpose of increasing the outlet air temperature of the hot blast stove, which is more advantageous for reducing the coke ratio and increasing the steel output.
  • Figure 1 is a schematic diagram of an implementation of the hot stove system provided in the second embodiment of the utility model
  • Figure 2 is a schematic diagram of another implementation of the hot stove system provided by the second embodiment of the utility model
  • Figure 3 is a schematic diagram of the structure of the hot blast stove system provided in the third embodiment of the utility model
  • Figure 4 is a schematic diagram of the structure of the hot blast stove system provided by the fourth embodiment of the utility model.
  • the outlet air temperature of the blower is beneficial to increase the outlet air temperature of the hot blast stove.
  • appropriately reducing the outlet air temperature of the blower can increase the outlet air temperature of the hot blast stove. This is because the lowering of the outlet air temperature of the blower increases the heating time required to reach the preset temperature, which corresponds to This greatly extends the burning time of the hot blast stove in the burning state, and the hot blast stove stores more heat, and the hot blast temperature at the outlet of the hot blast stove can be increased accordingly. Therefore, the reduction of the outlet air temperature of the blower can reduce the amount of checker bricks in the hot blast stove, reduce the initial investment of the hot blast stove system, and also reduce the initial investment of the cold air duct system.
  • a method for utilizing the cold air heat of the blast furnace axial blower is provided.
  • the hot blast pipe is installed
  • the heat exchange device reduces the inlet air temperature of the hot blast stove in the blowing state while using the heat of the cold air of the blower, so as to extend the burning time of the hot blast stove in the burning state and achieve the purpose of increasing the outlet air temperature of the hot blast stove.
  • reducing the air temperature of the blower that is, the inlet air temperature of the hot blast stove
  • reducing the air temperature of the blower that is, the inlet air temperature of the hot blast stove
  • Etc. are more favorable.
  • the boiler feed water and the blower blast heat can be used to reduce the inlet air temperature of the hot blast stove; or the heat medium return water of the lithium bromide unit used for the blower dehumidification blast can be used to exchange heat with the blower blast to reduce the hot blast stove The entrance wind temperature.
  • This embodiment can supplement the first embodiment described above.
  • This embodiment provides a hot blast stove system, which includes a hot blast stove 104 and a blower unit.
  • the blower group includes a blower 101, a blast turbine 102 and a blast boiler 105.
  • the blower 101 is connected with a hot blast pipe extending to the hot blast stove 104
  • the output shaft of the blower steam turbine 102 is connected with the rotating shaft of the blower 101, and the blower steam turbine 102 is connected with the steam outlet of the blower boiler 105 through a steam pipeline.
  • a heat exchange mechanism for reducing the temperature of the blower is arranged on the hot air pipeline.
  • each blower 101 is equipped with a blower steam turbine 102, and the blower 101 is driven to work by the blower steam turbine 102.
  • One hot blast stove 104 can be equipped with one blower 101, or two or more blowers 101 can be configured to supply air for it.
  • the blast main pipe is connected with multiple blast branch pipes, that is, each blower 101 is connected to the blast main pipe through the blast branch pipe, and the blast main pipe is connected to the hot blast stove 104.
  • the above heat exchange mechanism is preferably arranged in the blast main pipe on.
  • the above-mentioned blast turbine 102 is equipped with a blast boiler 105 to supply steam to it to drive the blast turbine 102 to work.
  • the exhaust steam of the blast turbine 102 can be refluxed to the blast boiler 105 for recycling after being condensed. That is, the blast boiler 105 is connected with a water supply pipe, and the water supply pipe is connected with the exhaust steam outlet of the blast turbine 102.
  • a condenser 1061, a condensate pump 1062, and a deaerator 1063 are sequentially arranged on the water supply pipeline along the water supply direction.
  • the heat exchange mechanism includes a front heat exchanger 1031.
  • the heat medium inlet and outlet of the front heat exchanger 1031 are respectively connected with hot air pipes, and the cold medium inlet of the front heat exchanger 1031 is connected with the condenser water outlet.
  • the cold medium outlet of the front heat exchanger 1031 is connected to the water inlet of the deaerator.
  • the above-mentioned front heat exchanger 1031 is arranged between the deaerator 1063 and the blast boiler 105, that is, heat exchange is performed on the deoxidized condensate.
  • the above-mentioned front heat exchanger 1031 can be a conventional heat exchanger. It is understood that it is preferably an indirect heat exchanger to realize the heat exchange between the hot air at the outlet of the blower 101 and the condensed water; in one of the embodiments, In the front heat exchanger 1031, the hot air from the outlet of the blower 101 goes through the shell side, and the condensed water goes through the tube side.
  • the hot air waste heat from the outlet of the blower 101 is used to heat the condensed water of the blower steam turbine 102 group, which can save the steam consumption required to heat the outlet water of the deaerator, realize the self-heating operation of the blast furnace pneumatic blower unit, and effectively improve the The overall thermal efficiency of the blast furnace pneumatic blower unit reduces production costs.
  • the residual heat of the hot air from the outlet of the blower 101 is used to heat the supplemental water of the blower boiler 105, specifically:
  • the water supply pipeline is connected with a water supply pipeline and the bypass point is located at the water inlet side of the deaerator 1063.
  • the water supply pipeline is connected with a water supply tank 1071 and a water supply pump 1072 is arranged on the water supply pipeline.
  • the heat exchange mechanism includes a water supplement heat exchanger 1033, the heat medium inlet and outlet of the water supplement heat exchanger 1033 are respectively connected with the hot air pipeline, and the cold medium inlet and outlet of the water supplement heat exchanger 1033 are respectively connected with the water supplement pipeline.
  • the above-mentioned water supplement heat exchanger 1033 can be a conventional heat exchanger. It is understandable that it is preferably an indirect heat exchanger to realize the heat exchange between the hot air at the outlet of the blower 101 and the make-up water of the blower boiler; In an embodiment, in the water supplement heat exchanger 1033, the hot air at the outlet of the blower 101 goes through the shell side, and the blast boiler supplement water goes through the tube side.
  • the use of hot air waste heat from the outlet of the blower 101 to heat the water supply of the blower steam turbine 102 group can save the steam consumption required to heat the outlet water of the deaerator, realize the self-heating operation of the blast furnace pneumatic blower group, and effectively improve the blast furnace pneumatic blower
  • the overall thermal efficiency of the group reduces production costs.
  • make-up water and condensed water can also share a set of heat exchangers.
  • the above-mentioned front heat exchanger 1031 is arranged between the deaerator 1063 and the blast boiler 105; or, the bypass point of the above-mentioned make-up pipeline It is located at the inlet side of the front heat exchanger 1031 (that is, the side of the front heat exchanger 1031 away from the deaerator 1063). Then, the above-mentioned supplemental water heat exchanger 1033 can be omitted.
  • the heat exchange mechanism further includes a rear heat exchanger 1032, which is arranged on the hot blast pipeline and located between the front heat exchanger 1031 and the hot blast stove 104,
  • the rear heat exchanger 1032 is connected with a cooling medium pipeline.
  • the rear heat exchanger 1032 can be used as an emergency backup device to prevent the air temperature at the outlet of the front heat exchanger 1031 / make-up heat exchanger 1033 from being too high.
  • the rear heat exchanger 1032 can use conventional cooling media such as circulating cooling water, for example,
  • the cooling water medium pipeline is connected with the circulating cooling water source.
  • a control valve can be set on the above-mentioned cooling medium pipeline to control whether the post heat exchanger 1032 is put into operation; it can be on the hot blast pipe between the post heat exchanger 1032 and the hot blast stove 104 or in the hot blast stove 104
  • a temperature measuring device is provided at the air inlet to detect the inlet air temperature of the hot blast stove 104, so as to guide whether the above-mentioned post heat exchanger 1032 is put into operation, and the circulating cooling water flow rate required by the post heat exchanger 1032.
  • the blast boiler 105 is a blast furnace gas blast boiler 105, which makes full use of the by-products of the blast furnace itself to reduce the energy consumption of blast furnace production and operation.
  • the blast boiler 105 is a waste heat blast boiler 105, which is heated by the flue gas generated by the hot blast stove 104 to produce steam, that is, the flue gas inlet of the blast boiler 105 and the flue gas outlet of the hot blast stove 104 Connected.
  • This embodiment can supplement the first embodiment described above.
  • this embodiment provides a hot blast stove system, which includes a hot blast stove 204 and a blower unit.
  • the hot blast stove 204 and the blower unit are connected by a hot blast pipeline, and further includes a dehumidifier 206 arranged on the suction pipe of the blower 201
  • the hot water type lithium bromide unit 207 connected to the dehumidifier 206 through the cold water pipe, the hot air pipe is arranged with the first heat exchanger 202, the cold medium outlet of the first heat exchanger 202 and the hot water type lithium bromide unit 207
  • the medium water inlet pipe is connected, and the cold medium inlet of the first heat exchanger 202 is connected with the hot medium water outlet pipe of the hot water type lithium bromide unit 207.
  • dehumidifier 206 and hot water type lithium bromide unit 207 are conventional equipment in the field, and the specific structure is not described here.
  • the above-mentioned first heat exchanger 202 can be a conventional heat exchanger. It is understood that it is preferably an indirect heat exchanger to realize the heat exchange between the hot air at the outlet of the blower 201 and the heat medium water of the lithium bromide unit 207; In an embodiment, in the first heat exchanger 202, the hot air from the outlet of the blower 201 travels through the shell side, and the lithium bromide unit 207 heats the medium water through the tube side.
  • the low-temperature heat medium water return water is heated by the first heat exchanger 202 and becomes high-temperature heat medium water and enters the hot water type lithium bromide unit 207, and the refrigerant water produced by the lithium bromide unit 207 enters the dehumidifier 206 to cool the high-temperature humid air , The high-temperature humid air is cooled to remove moisture, and the heat-absorbed refrigerant water is returned to the lithium bromide unit 207, and so on.
  • the hot water type lithium bromide unit 207 is equipped with a cooling tower 208, and the cooling water of the hot water type lithium bromide unit 207 is circulated through the cooling tower 208.
  • This is a conventional configuration in the field, and the specific structure is not described here.
  • an air filter 205 is provided on the air inlet side of the dehumidifier 206 to improve the cleanliness of the high temperature and humid air, and increase the service life and use effect of the dehumidifier 206, the blower 201, etc.
  • the outlet air temperature of the hot blast stove 204 can be increased, thereby reducing the fuel consumption of the blast furnace.
  • Increasing the output of steel and at the same time solves the problem that the blast furnace blast dehumidification in the prior art requires a large amount of power or steam resources, which effectively saves energy and significantly reduces the production cost of the blast furnace.
  • a second heat exchanger 203 is also arranged on the hot air pipeline.
  • the second heat exchanger 203 is located between the first heat exchanger 202 and the hot blast stove 204.
  • the heat exchanger 203 is connected with a cooling medium pipeline.
  • the second heat exchanger 203 can be used as emergency backup equipment to prevent the air temperature at the outlet of the first heat exchanger 202 from being too high.
  • the second heat exchanger 203 can use conventional cooling media such as circulating cooling water, for example, a cooling water medium pipe
  • the road is connected with the circulating cooling water source.
  • a control valve can be set on the cooling medium pipeline to control whether the second heat exchanger 203 is put into operation; it can be on the blast pipeline between the second heat exchanger 203 and the hot stove 204 or on the hot stove
  • a temperature measuring device is provided at the air inlet of 204 to detect the inlet air temperature of the hot blast stove 204, so as to guide whether the second heat exchanger 203 is put into operation, and the circulating cooling water flow rate required by the second heat exchanger 203.
  • the heat medium water inlet pipe and the heat medium water outlet pipe are equipped with a first control valve 209, which can control the circulating flow of the heat medium water and control the lithium bromide unit 207 and dehumidification Whether the device 206 is running, etc.
  • the heating water inlet pipe is connected to the heating water inlet pipe
  • the heating water return pipe is connected to the heating water outlet pipe
  • the heating water inlet pipe side joints and the heating water outlet pipe side joints are respectively Located between the first heat exchanger 202 and the first control valve 209 on the corresponding pipeline, the heating water inlet pipe and the heating water outlet pipe are both connected to the heating user 211 and both are provided with a second control valve 210.
  • the hot water/steam produced by the first heat exchanger 202 can be partly used for heating, for example, sent to the heating user 211 in the plant or the heating user 211 in the nearby living area; or, the heat medium water return water of the lithium bromide unit 207 and The heating return water is switched into the first heat exchanger 202, specifically: the first control valve 209 is cut off, the second control valve 210 is opened, the heating return water can enter the first heat exchanger 202 for heat exchange; the second control valve 210 is cut off , The first control valve 209 is opened, and the heat medium water returns to the first heat exchanger 202 for heat exchange.
  • This embodiment can supplement the first embodiment described above.
  • this embodiment provides a hot blast stove system, which includes a hot blast stove 303 and a blower unit.
  • the hot blast stove 303 and the blower unit are connected by a hot blast pipeline, and also includes a dehumidifier 306 arranged on the suction pipe of the blower 301
  • the lithium bromide unit 307 connected to the dehumidifier 306 through the cold water pipeline, the lithium bromide unit 307 is a steam type lithium bromide unit 307;
  • the hot air pipeline is arranged with a waste heat boiler 302, the boiler steam pipe of the waste heat boiler 302 and the thermal medium steam inlet of the lithium bromide unit 307 Pipe connection.
  • dehumidifier 306 and steam-type lithium bromide unit 307 are conventional equipment in the field, and the specific structure is not repeated here.
  • the above-mentioned waste heat boiler 302 is an existing equipment, and its specific structure is omitted here; hot air from the outlet of the blower 301 enters the waste heat boiler 302 and exchanges heat with the feed water in the waste heat boiler 302 to produce steam, and the produced steam enters Steam-type lithium bromide unit 307, the refrigerant water produced by the lithium bromide unit 307 enters the dehumidifier 306 to cool the high-temperature humid air, so that the high-temperature humid air is cooled to remove moisture, and the heat-absorbed refrigerant water is returned to the lithium bromide unit 307, and so on.
  • the steam produced by the waste heat boiler 302 works in the lithium bromide unit 307, and then becomes the heat medium water backwater and then enters the waste heat boiler 302, that is, the heat medium water outlet pipe of the lithium bromide unit 307 is connected to the water supply port of the waste heat boiler 302, The heat medium circulation of the lithium bromide unit 307 is realized.
  • the waste heat boiler 302 is connected with a water supply pipe, and the heat medium water outlet pipe is connected to the water supply pipe.
  • the water supply pipeline can be connected to water supply sources such as the make-up tank 304. It is further preferred to install a deaerator on the water supply pipeline, and the deaerator is located between the side junction of the heat medium water outlet pipe and the waste heat boiler 302 to ensure the effective operation of the waste heat boiler 302.
  • both the water supply pipeline and the heat medium water outlet pipe are provided with a water supply control valve (shown and not marked), and the water supply control valve on the water supply pipe is located beside the water supply equipment and the heat medium water outlet pipe Between the contacts, the circulating flow of the heat medium of the steam-type lithium bromide unit 307 can be controlled, and sufficient water supply of the waste heat boiler 302 can be ensured.
  • a heater is further provided on the feedwater pipeline to preheat the feedwater of the waste heat boiler 302.
  • the heater can be arranged between the side junction of the heat medium water outlet pipe and the deaerator, or Between the deaerator and the waste heat boiler 302; in this embodiment, the operation of the blast furnace blower unit is still realized by self-heating.
  • the heater is an indirect heat exchanger, the indirect heat exchanger
  • the heat medium tube is connected to the exhaust port of the hot blast stove 303, that is, the by-product of the hot blast stove 303 (about 200-300°C flue gas) is used to preheat the feed water of the waste heat boiler 302, and no additional heat source is required; in other embodiments
  • the above heater is an indirect heat exchanger and uses the waste heat of the blower 301 as the heat medium source.
  • the self-heating operation of the blast furnace blower unit is also realized.
  • the hot air branch pipe is connected to the heat medium inlet pipe of the indirect heat exchanger, and the heat medium outlet pipe of the indirect heat exchanger is connected to the hot blast stove 303.
  • the steam-type lithium bromide unit 307 is equipped with a cooling tower 308, and the cooling water of the steam-type lithium bromide unit 307 is circulated through the cooling tower 308.
  • This is a conventional configuration in the art, and the specific structure is not described here.
  • an air filter 305 is provided on the air inlet side of the dehumidifier 306 to improve the cleanliness of the high temperature and humid air, and increase the service life and use effect of the dehumidifier 306, the blower 301, etc.
  • a steam bypass pipe is connected to the boiler steam pipe, and the steam bypass pipe is connected to a steam user 309, which can be a steam turbine or a steam heating user Wait.
  • a steam user 309 which can be a steam turbine or a steam heating user Wait.
  • the dehumidification unit dehumidifier 306, steam-type lithium bromide unit 307
  • the steam generated by the waste heat boiler 302 can be sent to the steam user 309 to ensure full utilization of the blast waste heat; or, when the steam generated by the waste heat boiler 302 When the amount is greater than the amount of steam required by the steam-type lithium bromide unit 307, the excess steam can be sent to the steam user 309.
  • a steam control valve (shown and not marked) on both the boiler steam pipe and the steam bypass pipe, and the steam control valve on the boiler steam pipe is located between the heat medium steam inlet pipe and the steam bypass pipe. In between, by controlling the steam control valve on the corresponding pipeline, the steam flow direction and flow rate can be controlled.

Abstract

提供一种利用高炉轴流鼓风机冷风热量的方法,配置两座或两座以上的热风炉(104,204,303)并采用交替送风的方式为高炉送风时,在热风管路上设置换热装置(1031,1032,302),在利用鼓风机(101,201,301)冷风热量的同时,降低处于送风状态的热风炉的入口风温,以延长处于烧炉状态的热风炉的烧炉时间。另外还提供一种热风炉系统,包括热风炉(104,204,303)和鼓风机组,热风炉(104,204,303)与鼓风机组通过热风管路连接,于热风管路上设有换热装置(1031,1032,302),用于与鼓风机(101,201,301)鼓风进行换热,以降低热风炉(104,204,303)的入口风温。通过降低处于送风状态的热风炉的入口风温,不仅利用了高炉轴流鼓风机的冷风热量,同时延长处于烧炉状态的热风炉的烧炉时间,达到提高热风炉出口风温的目的,对于降低焦比、增加钢铁产量等较为有利。

Description

利用高炉轴流鼓风机冷风热量的方法以及热风炉系统 技术领域
本发明属于高炉生产技术领域,具体涉及一种利用高炉轴流鼓风机冷风热量的方法及一种热风炉系统。
背景技术
高炉热风炉作用是把鼓风加热到要求的温度,用以提高高炉的效益和效率,可以降低焦比、增加钢铁产量,节约能源。热风炉是按蓄热原理工作的:在燃烧室里燃烧煤气,高温废气通过格子砖并使之蓄热,当格子砖充分加热后,鼓风机向热风炉内送风,冷风经格子砖而被加热并送出。高炉一般配置有两座或两座以上的热风炉,采用交替送风的方式,即其中一座热风炉送风时,其它热风炉进行烧炉,保证对高炉持续送风。
如何提高热风炉出口热风风温是热风炉主要的研究方向,常用的办法是混烧高热值燃气,或增加热风炉格子砖的换热面积,或改变格子砖的材质、密度,或改变蓄热体的形状,以及将煤气和助燃空气预热等。这些方法都会相应增加生产成本。
发明内容
本发明实施例涉及一种利用高炉轴流鼓风机冷风热量的方法及一种热风炉系统,至少可解决现有技术的部分缺陷。
本发明实施例涉及一种利用高炉轴流鼓风机冷风热量的方法,配置两座或两座以上的热风炉并采用交替送风的方式为高炉送风时,通过在热风管路上设置换热装置,在利用鼓风机冷风热量的同时,降低处于送风状态的热风炉的入口风温,以延长处于烧炉状态的热风炉的烧炉时间。
作为实施例之一,采用锅炉给水与鼓风机鼓风换热以降低热风炉的入口风温。
作为实施例之一,鼓风机为由鼓风汽轮机驱动的气动鼓风机,所述鼓风汽轮机由鼓风锅炉供应蒸汽,采用所述鼓风锅炉的给水与鼓风机鼓风换热。
作为实施例之一,采用鼓风机脱湿鼓风所用溴化锂机组的热媒回水与鼓风机鼓风换热以降低热风炉的入口风温。
本发明实施例涉及一种热风炉系统,包括热风炉和鼓风机组,所述热风炉与所述鼓风机组通过热风管路连接,于所述热风管路上设有换热装置,用于与鼓风机鼓风进行换热,在利用鼓风机冷风热量的同时,降低热风炉的入口风温。
作为实施例之一,所述换热装置为前置换热器,所述前置换热器为间接式换热器,所采用的冷介质为锅炉给水或鼓风机脱湿鼓风所用热水型溴化锂机组的热媒回水。
作为实施例之一,所采用的冷介质为锅炉给水时,所用锅炉为高炉煤气锅炉。
作为实施例之一,于所述热风管路上还设有后置换热器,所述后置换热器位于所述前置换热器的热风出口侧,用于防止所述前置换热器的出口风温过高。
作为实施例之一,所述换热装置为余热锅炉,所述余热锅炉所产蒸汽送入蒸汽型溴化锂机组用于鼓风脱湿,或者用于发电。
本发明实施例至少具有如下有益效果:
本发明提供的利用高炉轴流鼓风机冷风热量的方法及热风炉系统,通过降低处于送风状态的热风炉的入口风温,不仅利用了高炉轴流鼓风机的冷风热量,同时延长处于烧炉状态的热风炉的烧炉时间,达到提高热风炉出口风温的目的,对于降低焦比、增加钢铁产量等较为有利。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本实用新型实施例二提供的热风炉系统的一种实施方式示意图;
图2为本实用新型实施例二提供的热风炉系统的另一种实施方式示意图;
图3为本实用新型实施例三提供的热风炉系统的结构示意图;
图4为本实用新型实施例四提供的热风炉系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例一
一般而言,提高鼓风机出口风温有利于热风炉出口风温的提高。但申请人发现:在实际生产中,适当降低鼓风机出口风温能够提高热风炉出口风温,这是因为,鼓风机出口风温降低,其达到预设温度所需的加热时间则延长,这就相应地延长了处于烧炉状态的热风炉的烧炉时间,热风炉蓄热量更多,则热风炉出口热风风温可相应提高。因而,鼓风机出口风温的降低,可使热风炉格子砖量减少,降低热风炉系统初投资,另外还能使冷风管道系统的初投资降低。
因此,本实施例中,提供一种利用高炉轴流鼓风机冷风热量的方法,配置两座或两座以上的热风炉并采用交替送风的方式为高炉送风时,通过在热风管 路上设置换热装置,在利用鼓风机冷风热量的同时,降低处于送风状态的热风炉的入口风温,以延长处于烧炉状态的热风炉的烧炉时间,达到提高热风炉出口风温的目的。
在其中一个实施例中,对于出口风温在200℃以上的轴流鼓风机,将该鼓风机的鼓风温度(即热风炉的入口风温)降低至150℃以下,对于降低焦比、增加钢铁产量等较为有利。
在上述方法中,可采用锅炉给水与鼓风机鼓风换热以降低热风炉的入口风温;或者,采用鼓风机脱湿鼓风所用溴化锂机组的热媒回水与鼓风机鼓风换热以降低热风炉的入口风温。
实施例二
本实施例可对上述实施例一进行补充。
本实施例提供一种热风炉系统,包括热风炉104和鼓风机组,该鼓风机组包括鼓风机101、鼓风汽轮机102和鼓风锅炉105,鼓风机101连接有用于延伸至热风炉104的热风管路,鼓风汽轮机102的输出轴与鼓风机101的转轴连接,鼓风汽轮机102通过蒸汽管路与鼓风锅炉105的蒸汽出口连接,热风管路上布置有用于降低鼓风温度的换热机构。
易于理解地,一般每台鼓风机101配置一台鼓风汽轮机102,通过鼓风汽轮机102驱使鼓风机101工作。一台热风炉104可以配置一台鼓风机101,也可配置两台或两台以上的鼓风机101为其供风,对于两台或两台以上的鼓风机101与同一台热风炉104连接的结构,可采用鼓风总管与多条鼓风支管连接的方式,即每台鼓风机101通过鼓风支管与鼓风总管连接,该鼓风总管与热风炉104连接,上述换热机构优选为设置于鼓风总管上。
如图1和图2,上述鼓风汽轮机102配置有鼓风锅炉105为其供应蒸汽,以 驱使该鼓风汽轮机102工作。一般地,鼓风汽轮机102的乏汽经冷凝后可回流至鼓风锅炉105中进行循环利用,即鼓风锅炉105连接有给水管路,给水管路与鼓风汽轮机102的乏汽出口连接,沿给水方向于给水管路上依次布置有凝汽器1061、凝结水泵1062和除氧器1063。传统的高炉气动鼓风机组中,需要大量蒸汽将除氧器出口水加热至一定温度,运行成本较高,热效率较低。因此,本实施例中,优选为采用鼓风机101出口热风余热对上述给水管路中的凝结水进行加热,具体地:
如图1,换热机构包括前置换热器1031,前置换热器1031的热介质出入口分别与热风管路连接,前置换热器1031的冷介质入口与凝汽器出水口连通,前置换热器1031的冷介质出口与除氧器入水口连通。
在另外的实施例中,上述前置换热器1031布置于除氧器1063与鼓风锅炉105之间,即对除氧后的凝结水进行换热。
上述前置换热器1031可采用常规的换热器,可以理解地,其优选为是间接式换热器,实现鼓风机101出口热风与凝结水之间的换热;在其中一个实施方式中,在该前置换热器1031中,鼓风机101出口热风走壳程,凝结水走管程。
本实施例中,采用鼓风机101出口热风余热加热鼓风汽轮机102组的凝结水,可以节省加热除氧器出口水所需蒸汽耗量,实现该高炉气动鼓风机组自供热运行,有效地提高该高炉气动鼓风机组的整体热效率,降低生产成本。
在另外的实施方式中,采用鼓风机101出口热风余热对上述鼓风锅炉105的补水进行加热,具体地:
如图2,给水管路上旁接有补水管路且旁接点位于除氧器1063的入水口侧,补水管路连接有补水池1071并于补水管路上布置有补水泵1072。换热机构包括补水换热器1033,补水换热器1033的热介质出入口分别与热风管路连接,补水 换热器1033的冷介质出入口分别与补水管路连接。
同样地,上述补水换热器1033可采用常规的换热器,可以理解地,其优选为是间接式换热器,实现鼓风机101出口热风与鼓风锅炉补水之间的换热;在其中一个实施方式中,在该补水换热器1033中,鼓风机101出口热风走壳程,鼓风锅炉补水走管程。
同样地,采用鼓风机101出口热风余热加热鼓风汽轮机102组的补水,可以节省加热除氧器出口水所需蒸汽耗量,实现该高炉气动鼓风机组自供热运行,有效地提高该高炉气动鼓风机组的整体热效率,降低生产成本。
另外,补水与凝结水也可共用一套换热器,例如,采用上述前置换热器1031布置于除氧器1063与鼓风锅炉105之间的结构;或者,上述补水管路的旁接点位于前置换热器1031的入口侧(即前置换热器1031的远离除氧器1063的一侧)。则,可省去上述的补水换热器1033。
进一步优化上述实施方式,如图1和图2,换热机构还包括后置换热器1032,后置换热器1032布置于热风管路上且位于前置换热器1031与热风炉104之间,后置换热器1032连接有冷却介质管路。该后置换热器1032可作为应急备用设备,防止上述前置换热器1031/补水换热器1033出口风温过高,该后置换热器1032可采用循环冷却水等常规冷却介质,例如,冷却水介质管路与循环冷却水源连接。进一步地,可在上述冷却介质管路上设置控制阀,以控制该后置换热器1032是否投入工作;可在后置换热器1032与热风炉104之间的热风管路上或在热风炉104的入风口处设置测温设备,以检测热风炉104的入口风温,从而指导上述后置换热器1032是否投入工作,以及该后置换热器1032所需的循环冷却水流速等。
进一步地,鼓风锅炉105为高炉煤气鼓风锅炉105,充分运用高炉自身副产 品,降低高炉生产运行能耗。在另外的实施例中,该鼓风锅炉105为余热鼓风锅炉105,采用热风炉104产生的烟气加热以生产蒸汽,即该鼓风锅炉105的烟气入口与热风炉104的排烟口连通。
实施例三
本实施例可对上述实施例一进行补充。
如图3,本实施例提供一种热风炉系统,包括热风炉204和鼓风机组,热风炉204与鼓风机组通过热风管路连接,还包括布置于鼓风机201吸风管道上的脱湿器206以及通过冷水管道与脱湿器206连接的热水型溴化锂机组207,热风管路上布置有第一换热器202,第一换热器202的冷介质出口与热水型溴化锂机组207的热媒水入口管连通,第一换热器202的冷介质入口与热水型溴化锂机组207的热媒水出口管连通。
上述脱湿器206和热水型溴化锂机组207是本领域常规设备,具体结构此处不作赘述。
上述第一换热器202可采用常规的换热器,可以理解地,其优选为是间接式换热器,实现鼓风机201出口热风与溴化锂机组207热媒水之间的换热;在其中一个实施方式中,在该第一换热器202中,鼓风机201出口热风走壳程,溴化锂机组207热媒水走管程。低温的热媒水回水经过第一换热器202加热后变成高温的热媒水并进入热水型溴化锂机组207,溴化锂机组207制取的冷媒水进入脱湿器206以冷却高温湿空气,使高温湿空气降温从而脱出水分,吸热后的冷媒水回流至溴化锂机组207,如此循环。
进一步地,如图3,热水型溴化锂机组207配置有冷却塔208,该热水型溴化锂机组207的冷却水循环通过冷却塔208实现,这是本领域的常规配置,具体结构此处不作赘述。
进一步地,如图3,脱湿器206的进风侧设有空气过滤器205,改善高温湿空气的洁净度,提高脱湿器206、鼓风机201等的使用寿命和使用效果。
本实施例中,通过在热风管路上布置第一换热器202以回收鼓风机201鼓风余热并加热溴化锂机组207热媒水,可以提高热风炉204的出口风温,从而降低高炉燃料消耗、增加钢铁产量,同时解决了现有技术中高炉鼓风脱湿需要消耗大量电力或蒸汽资源的问题,有效地节约能源,显著地降低高炉生产成本。
进一步优化上述供风系统的结构,如图3,热风管路上还布置有第二换热器203,第二换热器203位于第一换热器202与热风炉204之间,第二换热器203连接有冷却介质管路。该第二换热器203可作为应急备用设备,防止上述第一换热器202出口风温过高,该第二换热器203可采用循环冷却水等常规冷却介质,例如,冷却水介质管路与循环冷却水源连接。进一步地,可在上述冷却介质管路上设置控制阀,以控制该第二换热器203是否投入工作;可在第二换热器203与热风炉204之间的鼓风管路上或在热风炉204的入风口处设置测温设备,以检测热风炉204的入口风温,从而指导上述第二换热器203是否投入工作,以及该第二换热器203所需的循环冷却水流速等。
进一步优化上述供风系统的结构,如图3,热媒水入口管及热媒水出口管上均设有第一控制阀209,可以控制热媒水的循环流量以及控制溴化锂机组207和脱湿器206是否运行等。进一步优选地,如图3,热媒水入口管上旁接有采暖水入口管,热媒水出口管上旁接有采暖水回水管,采暖水入口管旁接点及采暖水出口管旁接点分别位于第一换热器202与相应管道上的第一控制阀209之间,采暖水入口管及采暖水出口管均与采暖用户211连接且均设有第二控制阀210。即由第一换热器202制取的热水/蒸汽可部分用于采暖,例如送入厂区采暖用户211或附近生活区采暖用户211等;或者,上述溴化锂机组207的热媒水回水与 采暖回水切换进入第一换热器202,具体地:切断第一控制阀209,开启第二控制阀210,采暖回水可进入第一换热器202进行换热;切断第二控制阀210,开启第一控制阀209,热媒水回水进入第一换热器202进行换热。
实施例四
本实施例可对上述实施例一进行补充。
如图4,本实施例提供一种热风炉系统,包括热风炉303和鼓风机组,热风炉303与鼓风机组通过热风管路连接,还包括布置于鼓风机301吸风管道上的脱湿器306以及通过冷水管道与脱湿器306连接的溴化锂机组307,溴化锂机组307为蒸汽型溴化锂机组307;热风管道上布置有余热锅炉302,余热锅炉302的锅炉蒸汽管道与溴化锂机组307的热媒蒸汽入口管连接。
上述脱湿器306和蒸汽型溴化锂机组307是本领域常规设备,具体结构此处不作赘述。
上述余热锅炉302是现有设备,其具体结构此处从略;鼓风机301出口热风进入该余热锅炉302内,与该余热锅炉302内的给水进行换热,以制取蒸汽,制取的蒸汽进入蒸汽型溴化锂机组307,溴化锂机组307制取的冷媒水进入脱湿器306以冷却高温湿空气,使高温湿空气降温从而脱出水分,吸热后的冷媒水回流至溴化锂机组307,如此循环。进一步地,余热锅炉302制取的蒸汽在溴化锂机组307内工作后变为热媒水回水再进入余热锅炉302内,即溴化锂机组307的热媒水出口管与余热锅炉302的给水口连通,实现溴化锂机组307的热媒循环。
进一步地,如图4,余热锅炉302连接有给水管道,热媒水出口管旁接于给水管道上。该给水管道可连接补水池304等给水水源。进一步优选为在该给水管道上设置除氧器,该除氧器位于热媒水出口管旁接点与余热锅炉302之间, 保证余热锅炉302的有效运行。
进一步优选地,如图4,给水管道与热媒水出口管上均设有给水控制阀(已图示,未标注),且给水管道上的给水控制阀位于给水设备与热媒水出口管旁接点之间,可以控制蒸汽型溴化锂机组307的热媒的循环流量,以及保证余热锅炉302的充足给水。
在其中一个实施例中,在该给水管道上进一步设置加热器,以对余热锅炉302的给水进行预热,该加热器可布置于热媒水出口管旁接点与除氧器之间,或者布置于除氧器与余热锅炉302之间;本实施例中,仍采用自供热的方式实现该高炉鼓风机组的运行,优选地,该加热器为间接式换热器,该间接式换热器的热介质管与热风炉303的排烟口连接,即采用热风炉303自身副产品(约200~300℃的排烟)预热余热锅炉302的给水,不需要另外配置热源;在另外的实施例中,上述加热器为间接式换热器且采用鼓风机301鼓风余热作为热介质源,同样实现该高炉鼓风机组自供热运行,即热风管道上设有热风支管,该热风支管旁接点位于鼓风机301与余热锅炉302之间,该热风支管与间接式换热器的热介质入口管连接,该间接式换热器的热介质出口管连接至热风炉303。
进一步地,如图4,蒸汽型溴化锂机组307配置有冷却塔308,该蒸汽型溴化锂机组307的冷却水循环通过冷却塔308实现,这是本领域的常规配置,具体结构此处不作赘述。
进一步地,如图4,脱湿器306的进风侧设有空气过滤器305,改善高温湿空气的洁净度,提高脱湿器306、鼓风机301等的使用寿命和使用效果。
本实施例中,通过在热风管道上设置余热锅炉302以制取蒸汽并作为蒸汽型溴化锂机组307的蒸汽热媒,实现高炉鼓风机组的自供热脱湿操作,解决了现有技术中高炉鼓风脱湿需要消耗大量电力或蒸汽资源的问题,有效地节约能 源,显著地降低高炉生产成本;同时可以降低鼓风机301组的鼓风风温,可以提高热风炉303的出口风温,从而降低高炉燃料消耗、增加钢铁产量。
进一步优化上述自供热脱湿的高炉鼓风机组的结构,如图4,锅炉蒸汽管道上旁接有蒸汽旁管,蒸汽旁管连接至蒸汽用户309,该蒸汽用户309可以是汽轮机或蒸汽采暖用户等。当脱湿单元(脱湿器306、蒸汽型溴化锂机组307)无需运行时,余热锅炉302产生的蒸汽可送至蒸汽用户309,保证鼓风余热的充分利用;或者,当余热锅炉302产生的蒸汽量大于蒸汽型溴化锂机组307所需蒸汽量时,多余的蒸汽可送至蒸汽用户309。相应地,优选为在锅炉蒸汽管道及蒸汽旁管上均设置蒸汽控制阀(已图示,未标注),且锅炉蒸汽管道上的蒸汽控制阀位于热媒蒸汽入口管与蒸汽旁管旁接点之间,通过控制相应管路上的蒸汽控制阀,可以控制蒸汽流通方向及流通量。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种利用高炉轴流鼓风机冷风热量的方法,其特征在于:配置两座或两座以上的热风炉并采用交替送风的方式为高炉送风时,通过在热风管路上设置换热装置,在利用鼓风机冷风热量的同时,降低处于送风状态的热风炉的入口风温,以延长处于烧炉状态的热风炉的烧炉时间。
  2. 如权利要求1所述的利用高炉轴流鼓风机冷风热量的方法,其特征在于:采用锅炉给水与鼓风机鼓风换热以降低热风炉的入口风温。
  3. 如权利要求2所述的利用高炉轴流鼓风机冷风热量的方法,其特征在于:鼓风机为由鼓风汽轮机驱动的气动鼓风机,所述鼓风汽轮机由鼓风锅炉供应蒸汽,采用所述鼓风锅炉的给水与鼓风机鼓风换热。
  4. 如权利要求1所述的利用高炉轴流鼓风机冷风热量的方法,其特征在于:采用鼓风机脱湿鼓风所用溴化锂机组的热媒回水与鼓风机鼓风换热以降低热风炉的入口风温。
  5. 一种热风炉系统,包括热风炉和鼓风机组,所述热风炉与所述鼓风机组通过热风管路连接,其特征在于:于所述热风管路上设有换热装置,用于与鼓风机鼓风进行换热,在利用鼓风机冷风热量的同时,降低热风炉的入口风温。
  6. 如权利要求5所述的热风炉系统,其特征在于:所述换热装置为前置换热器,所述前置换热器为间接式换热器,所采用的冷介质为锅炉给水或鼓风机脱湿鼓风所用热水型溴化锂机组的热媒回水。
  7. 如权利要求6所述的热风炉系统,其特征在于:所采用的冷介质为锅炉给水时,所用锅炉为高炉煤气锅炉。
  8. 如权利要求6所述的热风炉系统,其特征在于:于所述热风管路上还设有后置换热器,所述后置换热器位于所述前置换热器的热风出口侧,用于防止所述前置换热器的出口风温过高。
  9. 如权利要求5所述的热风炉系统,其特征在于:所述换热装置为余热锅炉,所述余热锅炉所产蒸汽送入蒸汽型溴化锂机组用于鼓风脱湿,或者用于发电。
PCT/CN2019/107503 2019-03-04 2019-09-24 利用高炉轴流鼓风机冷风热量的方法以及热风炉系统 WO2020177302A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910160344.1A CN109706282A (zh) 2019-03-04 2019-03-04 提高热风炉出口风温的方法以及热风炉系统
CN201910160344.1 2019-03-04

Publications (1)

Publication Number Publication Date
WO2020177302A1 true WO2020177302A1 (zh) 2020-09-10

Family

ID=66265583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107503 WO2020177302A1 (zh) 2019-03-04 2019-09-24 利用高炉轴流鼓风机冷风热量的方法以及热风炉系统

Country Status (2)

Country Link
CN (1) CN109706282A (zh)
WO (1) WO2020177302A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114610093A (zh) * 2022-03-09 2022-06-10 科大智能物联技术股份有限公司 一种基于热风炉可变周期预测的烧炉送风控制方法
CN116972652A (zh) * 2023-07-28 2023-10-31 昊姆(上海)节能科技有限公司 高炉冲渣水和冲渣乏汽的余热回收系统及其运行方式

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200955057Y (zh) * 2006-09-13 2007-10-03 童裳慧 新型高炉鼓风除湿装置
CN101487065A (zh) * 2009-02-24 2009-07-22 首钢总公司 高炉热风炉高风温系统
CN101514378A (zh) * 2009-02-26 2009-08-26 中冶赛迪工程技术股份有限公司 一种高炉鼓风机机后脱湿装置
CN201713535U (zh) * 2010-04-08 2011-01-19 中冶赛迪工程技术股份有限公司 一种高炉鼓风脱湿装置
CN102925609A (zh) * 2011-08-12 2013-02-13 同方节能工程技术有限公司 一种用于高炉的余热型鼓风脱湿系统及其脱湿方法
CN103361458A (zh) * 2013-08-06 2013-10-23 张家港山河水节能环保科技有限公司 高炉鼓风系统湿度调节装置
EP2719779A1 (en) * 2012-10-12 2014-04-16 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Blast-furnace process with recycle of a CO-fraction of the blast furnace gas and production plant for same
CN108458486A (zh) * 2018-04-13 2018-08-28 安徽工业大学 一种热风炉燃烧自动控制系统及其控制方法
JP2018168416A (ja) * 2017-03-29 2018-11-01 新日鐵住金株式会社 高炉の操業方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547305A (en) * 1978-09-30 1980-04-03 Nippon Steel Corp Repairing method for partition wall or refractory wall of air heating furnace
CN1912147A (zh) * 2006-06-20 2007-02-14 湖南华菱湘潭钢铁有限公司 一种用于炼铁高炉鼓风脱湿的工艺及其设备
CN101598334B (zh) * 2009-06-30 2010-12-08 上海锅炉厂有限公司 循环流化床底渣冷却方法
JP6244875B2 (ja) * 2013-12-16 2017-12-13 新日鐵住金株式会社 熱風炉制御計算装置、熱風炉操業指標導出方法及びコンピュータプログラム
CN104263868A (zh) * 2014-10-23 2015-01-07 马钢(集团)控股有限公司 用于多座高炉的鼓风脱湿系统及其控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200955057Y (zh) * 2006-09-13 2007-10-03 童裳慧 新型高炉鼓风除湿装置
CN101487065A (zh) * 2009-02-24 2009-07-22 首钢总公司 高炉热风炉高风温系统
CN101514378A (zh) * 2009-02-26 2009-08-26 中冶赛迪工程技术股份有限公司 一种高炉鼓风机机后脱湿装置
CN201713535U (zh) * 2010-04-08 2011-01-19 中冶赛迪工程技术股份有限公司 一种高炉鼓风脱湿装置
CN102925609A (zh) * 2011-08-12 2013-02-13 同方节能工程技术有限公司 一种用于高炉的余热型鼓风脱湿系统及其脱湿方法
EP2719779A1 (en) * 2012-10-12 2014-04-16 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Blast-furnace process with recycle of a CO-fraction of the blast furnace gas and production plant for same
CN103361458A (zh) * 2013-08-06 2013-10-23 张家港山河水节能环保科技有限公司 高炉鼓风系统湿度调节装置
JP2018168416A (ja) * 2017-03-29 2018-11-01 新日鐵住金株式会社 高炉の操業方法
CN108458486A (zh) * 2018-04-13 2018-08-28 安徽工业大学 一种热风炉燃烧自动控制系统及其控制方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114610093A (zh) * 2022-03-09 2022-06-10 科大智能物联技术股份有限公司 一种基于热风炉可变周期预测的烧炉送风控制方法
CN114610093B (zh) * 2022-03-09 2023-03-03 科大智能物联技术股份有限公司 一种基于热风炉可变周期预测的烧炉送风控制方法
CN116972652A (zh) * 2023-07-28 2023-10-31 昊姆(上海)节能科技有限公司 高炉冲渣水和冲渣乏汽的余热回收系统及其运行方式
CN116972652B (zh) * 2023-07-28 2024-03-22 昊姆(上海)节能科技有限公司 高炉冲渣水和冲渣乏汽的余热回收系统及其运行方式

Also Published As

Publication number Publication date
CN109706282A (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
CN108826418A (zh) 一种基于燃气机热泵的锅炉烟气余热回收系统及工作方法
CN109798534A (zh) 一种锅炉烟气余热利用与脱白一体化系统
WO2020177302A1 (zh) 利用高炉轴流鼓风机冷风热量的方法以及热风炉系统
CN205316352U (zh) 具有尾气余热回收功能的rto系统
CN102697160B (zh) 一种能够有效回收排湿热能并回输利用的节能烤烟房
CN110860378A (zh) 一种电除尘器用热风吹扫系统
CN106196125B (zh) 一种应用于焚烧装置的废气处理结构
CN202881065U (zh) 太阳能污泥干化燃烧发电节能装置
CN204630042U (zh) 一种具有自动清洗功能的热风炉
CN108413416A (zh) 具有换热效率高的五室rto陶瓷蓄热燃烧炉
CN209689457U (zh) 一种分布式能源站余热利用系统
CN106847427A (zh) 烤漆炉热风交换式自动降温系统
RU2793306C1 (ru) Способ использования тепла холодного воздуха от осевой воздуходувки доменной печи и система воздухонагревателей
CN210068575U (zh) 高炉气动鼓风机组
CN110017694B (zh) 一种窑炉余热梯级利用装置及方法
CN209759487U (zh) 采用高炉鼓风机热风脱湿的供风系统
CN206018671U (zh) 一种应用于焚烧装置的废气处理结构
CN209759486U (zh) 自供热脱湿的高炉鼓风机组
CN209926342U (zh) 高炉鼓风机热风利用系统
CN204648668U (zh) 一种琉璃瓦加工用热风炉
CN114593612B (zh) 一种炉窑低温余热高效回收系统
CN207035185U (zh) 锅炉烟气余热回收装置
CN108800534A (zh) 一种调温加热炉
CN216205370U (zh) 用于水泥熟料生产线窑头废气余热利用的闭式循环系统
CN219829530U (zh) 一种水泥窑头锅炉废气余热利用与备用降温系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2021126962

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 19918276

Country of ref document: EP

Kind code of ref document: A1