WO2023148574A1 - 記憶装置 - Google Patents

記憶装置 Download PDF

Info

Publication number
WO2023148574A1
WO2023148574A1 PCT/IB2023/050529 IB2023050529W WO2023148574A1 WO 2023148574 A1 WO2023148574 A1 WO 2023148574A1 IB 2023050529 W IB2023050529 W IB 2023050529W WO 2023148574 A1 WO2023148574 A1 WO 2023148574A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
insulator
oxide
transistor
region
Prior art date
Application number
PCT/IB2023/050529
Other languages
English (en)
French (fr)
Inventor
山崎舜平
大貫達也
加藤清
國武寛司
方堂涼太
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Publication of WO2023148574A1 publication Critical patent/WO2023148574A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices

Definitions

  • One embodiment of the present invention relates to transistors, semiconductor devices, memory devices, and electronic devices. Alternatively, one embodiment of the present invention relates to a method for manufacturing a semiconductor device. Alternatively, one aspect of the present invention relates to semiconductor wafers and modules.
  • a semiconductor device refers to all devices that can function by utilizing semiconductor characteristics.
  • a semiconductor element such as a transistor, a semiconductor circuit, an arithmetic device, and a memory device are examples of semiconductor devices.
  • a display device (such as a liquid crystal display device or a light-emitting display device), a projection device, a lighting device, an electro-optical device, a power storage device, a memory device, a semiconductor circuit, an imaging device, an electronic device, or the like can be said to include a semiconductor device in some cases.
  • One aspect of the present invention is not limited to the above technical field.
  • One embodiment of the invention disclosed in this specification and the like relates to a product, a method, or a manufacturing method.
  • One aspect of the invention also relates to a process, machine, manufacture, or composition of matter.
  • a CPU is an assembly of semiconductor elements that are processed from a semiconductor wafer, have semiconductor integrated circuits (at least transistors and memories) that are chipped, and have electrodes that are connection terminals.
  • IC chips Semiconductor circuits (IC chips) such as LSIs, CPUs, and memories are mounted on circuit boards, such as printed wiring boards, and used as one of the components of various electronic devices.
  • transistor is widely applied to electronic devices such as integrated circuits (ICs) and image display devices (also simply referred to as display devices).
  • ICs integrated circuits
  • image display devices also simply referred to as display devices.
  • Silicon-based semiconductor materials are widely known as semiconductor thin films applicable to transistors, but oxide semiconductors are attracting attention as other materials.
  • Patent Document 1 discloses a low-power-consumption CPU and the like that utilize a characteristic that a transistor including an oxide semiconductor has a small leakage current.
  • Patent Document 2 discloses a memory device or the like that can retain stored data for a long period of time by utilizing the characteristic that a transistor including an oxide semiconductor has low leakage current.
  • Patent Document 3 discloses a technique for increasing the density of integrated circuits.
  • An object of one embodiment of the present invention is to provide a semiconductor device that can be miniaturized or highly integrated. Another object is to provide a semiconductor device that operates at high speed. Another object is to provide a semiconductor device with favorable electrical characteristics. Another object is to provide a semiconductor device with little variation in electrical characteristics of transistors. Another object is to provide a highly reliable semiconductor device. Another object is to provide a semiconductor device with high on-state current. Another object is to provide a semiconductor device with low power consumption. Another object is to provide a novel semiconductor device. Another object is to provide a method for manufacturing a semiconductor device in which the number of steps is reduced. Another object is to provide a memory device including a novel semiconductor device.
  • One embodiment of the present invention includes a memory cell having a first transistor and a first capacitor, a first insulator, and a second insulator over the first insulator.
  • the transistor includes a first oxide on insulator, a first conductor and a second conductor on oxide, a third insulator on oxide, and a third insulator a third conductor on the body, a second insulator disposed over the first conductor and the second conductor, the second insulator comprising oxide and a first opening having an overlapping area and a second opening having an overlapping area with the second conductor, wherein the third insulator and the third conductor are connected to the first opening; a fourth conductor in contact with a top surface of the second conductor; a fourth insulator on the fourth conductor; and a fifth insulator on the fourth insulator.
  • the fourth conductor, the fourth insulator, and the fifth conductor are disposed in the second opening, the first insulator, the second insulator, and the A third opening is formed in the first conductor, a sixth conductor is disposed in the third opening, and the sixth conductor is a part of the upper surface and side surfaces of the first conductor.
  • Another embodiment of the present invention includes a layer including a memory cell having a first transistor and a first capacitor, a first insulator, and a second insulator over the first insulator.
  • the first transistor comprises a first insulator overlying a first insulator, a first conductor overlying the oxide, and a second conductor overlying the oxide; a third insulator over the third insulator, the second insulator overlying the first conductor and the second conductor; a second insulator having a first opening having a region overlapping the oxide and a second opening having a region overlapping the second conductor; and a third insulator
  • the body and the third conductor are disposed in the first opening, the first capacitive element is the fourth conductor in contact with the upper surface of the second conductor, the fourth conductor on the fourth conductor, and the fourth conductor on the fourth conductor.
  • Each of the plurality of layers has a third opening having an overlapping region, and a sixth conductor disposed within the third opening, the sixth conductor having each of the plurality of layers. , a region in contact with part of the top surface and part of the side surface of the first conductor.
  • the plurality of layers further includes a second transistor and a second capacitor, the second transistor having a structure similar to that of the first transistor, and the first transistor , the second capacitive element is arranged at a line-symmetrical position with respect to the sixth conductor as an axis of symmetry, the second capacitive element has the same structure as the first capacitive element, and , and the sixth conductor as an axis of symmetry.
  • the above memory device includes a functional layer having a functional circuit and wiring, the functional layer is provided between a substrate provided with a driver circuit and a layer having memory cells, and the wiring includes: It has a function of electrically connecting the driving circuit and the functional circuit, and the functional circuit has a gate electrically connected to a sixth conductor electrically connected to the memory cell. It preferably has a transistor and a function of transmitting a signal according to the potential of the sixth conductor to the wiring.
  • the third insulator preferably has regions in contact with the top surface and side surfaces of the oxide and the sidewalls of the first opening of the second insulator.
  • the first conductor and the second conductor are preferably in contact with the top surface and the side surface of the oxide, respectively.
  • part of the fourth conductor, part of the fourth insulator, and part of the fifth conductor are located above the upper surface of the third conductor. is preferred.
  • the fourth conductor preferably has a region in contact with the sidewall of the second opening of the second insulator.
  • a third opening is formed in the first insulator, the second insulator, and the first conductor. It is preferable that it protrudes from the side surface of the first insulator and the side surface of the second insulator.
  • a seventh conductor is provided between the sixth conductor and the third opening, the sixth conductor includes tungsten, and the seventh conductor includes titanium. and nitrogen.
  • a fifth insulator is provided in contact with the top surface of the second insulator and the top surface of the third conductor, and the fifth insulator has the second opening. , a portion of the fourth conductor, and a portion of the fourth insulator are preferably in contact with the upper surface of the fifth insulator.
  • a semiconductor device that can be miniaturized or highly integrated can be provided.
  • a semiconductor device with high operating speed can be provided.
  • a highly reliable semiconductor device can be provided.
  • a semiconductor device with little variation in electrical characteristics of transistors can be provided.
  • a semiconductor device with favorable electrical characteristics can be provided.
  • a semiconductor device with large on-current can be provided.
  • a semiconductor device with low power consumption can be provided.
  • a novel semiconductor device can be provided.
  • a method for manufacturing a semiconductor device in which the number of steps is reduced can be provided.
  • a memory device having a novel semiconductor device can be provided.
  • FIG. 1A is a top view of a semiconductor device which is one embodiment of the present invention.
  • 1B to 1D are cross-sectional views of semiconductor devices that are embodiments of the present invention.
  • FIG. 2 is a circuit diagram illustrating a structure of a memory device according to one embodiment of the present invention.
  • 3A to 3C are cross-sectional views of semiconductor devices that are embodiments of the present invention.
  • 4A and 4B are cross-sectional views of a semiconductor device that is one embodiment of the present invention.
  • 5A and 5B are cross-sectional views of a semiconductor device that is one embodiment of the present invention.
  • 6A to 6C are cross-sectional views of semiconductor devices that are one embodiment of the present invention.
  • FIG. 1A is a top view of a semiconductor device which is one embodiment of the present invention.
  • 1B to 1D are cross-sectional views of semiconductor devices that are embodiments of the present invention.
  • FIG. 2 is a circuit diagram illustrating a structure of a memory device according to one
  • FIG. 7 is a cross-sectional view of a semiconductor device which is one embodiment of the present invention.
  • FIG. 8A is a top view illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • 8B to 8D are cross-sectional views illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • FIG. 9A is a top view illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • 9B to 9D are cross-sectional views illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • FIG. 10A is a top view illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • FIG. 10B to 10D are cross-sectional views illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • FIG. 11A is a top view illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • 11B to 11D are cross-sectional views illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • FIG. 12A is a top view illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • 12B to 12D are cross-sectional views illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • FIG. 13A is a top view illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • FIG. 13B to 13D are cross-sectional views illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • FIG. 14A is a top view illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • 14B to 14D are cross-sectional views illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • FIG. 15A is a top view illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • 15B to 15D are cross-sectional views illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • FIG. 16A is a top view illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • FIG. 16B to 16D are cross-sectional views illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • FIG. 17A is a top view illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • 17B to 17D are cross-sectional views illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • FIG. 18A is a top view illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • 18B to 18D are cross-sectional views illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • FIG. 19A is a top view illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • FIG. 19B to 19D are cross-sectional views illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • FIG. 20A is a top view illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • 20B to 20D are cross-sectional views illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • FIG. 21A is a top view illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • 21B to 21D are cross-sectional views illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • FIG. 22A is a top view illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • FIG. 22B to 22D are cross-sectional views illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • FIG. 23A is a top view illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • 23B to 23D are cross-sectional views illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • FIG. 24A is a top view illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • 24B to 24D are cross-sectional views illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • FIG. 25A is a top view illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • FIG. 25B to 25D are cross-sectional views illustrating a method for manufacturing a semiconductor device which is one embodiment of the present invention.
  • FIG. 26 is a top view illustrating a microwave processing apparatus according to one embodiment of the present invention.
  • FIG. 27 is a cross-sectional view illustrating a microwave processing device according to one aspect of the present invention.
  • FIG. 28 is a cross-sectional view illustrating a microwave processing device according to one embodiment of the present invention.
  • FIG. 29 is a cross-sectional view illustrating a microwave processing device according to one embodiment of the present invention.
  • FIG. 30A is a top view of a semiconductor device which is one embodiment of the present invention.
  • 30B to 30D are cross-sectional views of semiconductor devices that are embodiments of the present invention.
  • FIG. 31A and 31B are cross-sectional views of semiconductor devices according to one embodiment of the present invention.
  • FIG. 32 is a cross-sectional view of a semiconductor device according to one embodiment of the present invention.
  • FIG. 33 is a block diagram illustrating a configuration example of a storage device; 34A and 34B are a schematic diagram and a circuit diagram illustrating a configuration example of a memory device. 35A and 35B are schematic diagrams illustrating configuration examples of a storage device.
  • FIG. 36 is a circuit diagram illustrating a configuration example of a memory device.
  • 39A and 39B are circuit diagrams illustrating configuration examples of a memory device.
  • FIG. 40A and 40B are layout diagrams illustrating the structure of a memory device according to one embodiment of the present invention.
  • FIG. 41 is a cross-sectional view illustrating a structure of a memory device according to one embodiment of the present invention.
  • FIG. 42 is a cross-sectional view illustrating a structure of a memory device according to one embodiment of the present invention.
  • FIG. 43 is a layout diagram illustrating the structure of a memory device according to one embodiment of the present invention.
  • 44A and 44B are schematic diagrams of a semiconductor device according to one embodiment of the present invention.
  • 45A and 45B are diagrams illustrating an example of an electronic component.
  • 46A to 46E are schematic diagrams of a memory device according to one embodiment of the present invention.
  • 47A to 47H are diagrams illustrating electronic devices according to one embodiment of the present invention.
  • FIG. 48 is a diagram showing an example of space equipment.
  • top views also referred to as “plan views”
  • perspective views also referred to as “plan views”.
  • description of some hidden lines may be omitted.
  • the ordinal numbers such as first and second are used for convenience and do not indicate the order of steps or the order of stacking. Therefore, for example, “first” can be appropriately replaced with “second” or “third”. Also, the ordinal numbers described in this specification and the like may not match the ordinal numbers used to specify one aspect of the present invention.
  • X and Y are connected means that X and Y are electrically connected.
  • X and Y are electrically connected means an object (an element such as a switch, a transistor element, or a diode, or a circuit including the element and wiring) between X and Y. ) is present, the connection through which electrical signals can be transmitted between X and Y.
  • the case where X and Y are electrically connected includes the case where X and Y are directly connected.
  • the fact that X and Y are directly connected means that an electric signal is transmitted between X and Y via a wiring (or electrode) or the like between X and Y without passing through the object.
  • a direct connection means a connection that can be regarded as the same circuit diagram when represented by an equivalent circuit.
  • a transistor is an element having at least three terminals including a gate, a drain, and a source.
  • a region in which a channel is formed (hereinafter also referred to as a channel formation region) is provided between the drain (drain terminal, drain region, or drain electrode) and the source (source terminal, source region, or source electrode).
  • a current can flow between the source and the drain through the formation region.
  • a channel formation region means a region where current mainly flows.
  • the function of the source or drain may be switched when using transistors of different polarities or when the direction of current changes in circuit operation. Therefore, in this specification and the like, the terms “source” and “drain” can be used interchangeably in some cases.
  • the channel length is, for example, a region in which a semiconductor (or a portion of the semiconductor in which current flows when the transistor is on) overlaps with a gate electrode in a top view of a transistor, or the source length in a channel formation region.
  • channel lengths in one transistor do not always have the same value in all regions. That is, the channel length of one transistor may not be fixed to one value. Therefore, in this specification, the channel length is any one value, maximum value, minimum value, or average value in the channel forming region.
  • the channel width is, for example, a region in which a semiconductor (or a portion of the semiconductor in which current flows when the transistor is on) overlaps with a gate electrode in a top view of a transistor, or a channel formation region in the channel length direction.
  • a channel width in a region where a channel is actually formed (hereinafter also referred to as an “effective channel width”) and a channel width shown in a top view of a transistor ( hereinafter also referred to as “apparent channel width”) may be different.
  • the effective channel width becomes larger than the apparent channel width, and its influence cannot be ignored.
  • the proportion of the channel formation region formed on the side surface of the semiconductor may be large. In that case, the effective channel width is larger than the apparent channel width.
  • channel width may refer to the apparent channel width.
  • channel width may refer to the effective channel width.
  • the channel length, channel width, effective channel width, or apparent channel width can be determined by analyzing cross-sectional TEM images, for example.
  • impurities in a semiconductor refer to, for example, substances other than the main components that constitute the semiconductor.
  • an element whose concentration is less than 0.1 atomic percent can be said to be an impurity.
  • the inclusion of impurities may cause, for example, an increase in the defect level density of the semiconductor, a decrease in crystallinity, and the like.
  • impurities that change the characteristics of the semiconductor include, for example, group 1 elements, group 2 elements, group 13 elements, group 14 elements, group 15 elements, and oxide semiconductors.
  • transition metals other than the main component such as hydrogen, lithium, sodium, silicon, boron, phosphorus, carbon, and nitrogen.
  • water may also function as an impurity.
  • oxygen vacancies also referred to as V 2 O 3
  • silicon oxynitride contains more oxygen than nitrogen as its composition.
  • Silicon nitride oxide contains more nitrogen than oxygen in its composition.
  • aluminum oxynitride has a higher content of oxygen than nitrogen as its composition.
  • aluminum oxynitride has a composition in which the content of nitrogen is higher than that of oxygen.
  • hafnium oxynitride has a higher content of oxygen than nitrogen as its composition.
  • hafnium oxynitride has a composition in which the content of nitrogen is higher than that of oxygen.
  • insulator can be replaced with an insulating film or an insulating layer.
  • conductor can be replaced with a conductive film or a conductive layer.
  • semiconductor can be interchanged with a semiconductor film or a semiconductor layer.
  • parallel means a state in which two straight lines are arranged at an angle of -10 degrees or more and 10 degrees or less. Therefore, the case of ⁇ 5 degrees or more and 5 degrees or less is also included.
  • substantially parallel means a state in which two straight lines are arranged at an angle of -30 degrees or more and 30 degrees or less.
  • Perfect means that two straight lines are arranged at an angle of 80 degrees or more and 100 degrees or less. Therefore, the case of 85 degrees or more and 95 degrees or less is also included.
  • substantially perpendicular means a state in which two straight lines are arranged at an angle of 60 degrees or more and 120 degrees or less.
  • a metal oxide is a metal oxide in a broad sense.
  • Metal oxides are classified into oxide insulators, oxide conductors (including transparent oxide conductors), oxide semiconductors (also referred to as oxide semiconductors or simply OSs), and the like.
  • oxide semiconductors also referred to as oxide semiconductors or simply OSs
  • an OS transistor can be referred to as a transistor including a metal oxide or an oxide semiconductor.
  • the term “normally-off” means that the drain current per 1 ⁇ m of the channel width flowing through the transistor when no potential is applied to the gate or when a ground potential is applied to the gate is 1 ⁇ 10 ⁇ 1 at room temperature. 20 A or less, 1 ⁇ 10 ⁇ 18 A or less at 85° C., or 1 ⁇ 10 ⁇ 16 A or less at 125° C.
  • Voltage is a potential difference from a reference potential.
  • the reference potential is ground potential
  • “voltage” can be replaced with “potential”. Note that the ground potential does not necessarily mean 0V.
  • the potential is relative, and when the reference potential changes, the potential applied to the wiring, the potential applied to the circuit, etc., and the potential output from the circuit etc. also change.
  • the heights are the same or approximately the same” refers to a configuration in which the heights from a reference surface (for example, a flat surface such as a substrate surface) are equal in cross-sectional view.
  • planarization processing typically CMP processing
  • CMP processing may expose the surface of a single layer or multiple layers.
  • the surfaces to be CMP-processed have the same height from the reference surface.
  • the heights of the layers may differ depending on the processing equipment, processing method, or material of the surface to be processed during the CMP processing. In this specification and the like, this case is also treated as "the height matches or roughly matches".
  • the height of the top surface of the first layer and the height of the second layer A case where the height difference from the upper surface is 20 nm or less is also referred to as "matching or substantially matching heights".
  • the ends match or roughly match means that at least part of the outline overlaps between the laminated layers when viewed from the top.
  • the upper layer and the lower layer may be processed with the same mask pattern, or partially with the same mask pattern.
  • the contours do not overlap, and the upper contour may be positioned inside the lower contour, or the upper contour may be positioned outside the lower contour. “match or approximate match”.
  • a semiconductor device which is one embodiment of the present invention includes a transistor and a capacitor.
  • FIG. 1A to 1D are a top view and a cross-sectional view of a semiconductor device including a transistor 200a, a transistor 200b, a capacitor 100a, and a capacitor 100b.
  • FIG. 1A is a top view of the semiconductor device.
  • 1B to 1D are cross-sectional views of the semiconductor device.
  • FIG. 1B is a cross-sectional view of the portion indicated by the dashed-dotted line A1-A2 in FIG. 1A, and is also a cross-sectional view of the transistor 200a, the transistor 200b, the capacitor 100a, and the capacitor 100b in the channel length direction.
  • FIG. 1B is a cross-sectional view of the portion indicated by the dashed-dotted line A1-A2 in FIG. 1A, and is also a cross-sectional view of the transistor 200a, the transistor 200b, the capacitor 100a, and the capacitor 100b in the channel length direction.
  • FIG. 1C is a cross-sectional view of the portion indicated by the dashed-dotted line A3-A4 in FIG. 1A, and is also a cross-sectional view of the transistor 200a in the channel width direction.
  • FIG. 1D is sectional drawing of the site
  • the X direction is parallel to the channel length direction of the transistor 200a and the channel length direction of the transistor 200b
  • the Y direction is perpendicular to the X direction
  • the Z direction is perpendicular to the X and Y directions. be. Note that the X direction, Y direction, and Z direction shown in FIG. 1A are also shown in FIGS. 1B to 1D.
  • a semiconductor device of one embodiment of the present invention includes an insulator 214 over a substrate (not illustrated), a transistor 200a, a transistor 200b, a capacitor 100a, and a capacitor 100b over the insulator 214, and the transistors 200a and 200b.
  • the insulator 214, the insulator 280, the insulator 282, and the insulator 285 function as interlayer films. At least part of each of the transistor 200a, the transistor 200b, the capacitor 100a, and the capacitor 100b is embedded in the insulator 280 as illustrated in FIG. 1B.
  • the transistor 200a and the transistor 200b each have an oxide 230 functioning as a semiconductor layer, a conductor 260 functioning as a first gate (also referred to as a top gate) electrode, and a second gate (also referred to as a back gate). It has a conductor 205 functioning as an electrode, a conductor 242a functioning as one of a source electrode and a drain electrode, and a conductor 242b functioning as the other of the source electrode and the drain electrode. It also has an insulator 253 and an insulator 254 that function as a first gate insulator. It also has an insulator 222 and an insulator 224 that act as a second gate insulator. Note that the gate insulator is sometimes called a gate insulating layer or a gate insulating film.
  • the transistor 200a and the transistor 200b have the same structure, the transistor 200a and the transistor 200b are hereinafter referred to as the transistor 200 in the description of items common to the transistor 200a and the transistor 200b. sometimes.
  • the first gate electrode and the first gate insulating film are arranged in openings 258 formed in insulators 280 and 275 . That is, conductor 260 , insulator 254 , and insulator 253 are positioned within opening 258 .
  • Each of the capacitive elements 100a and 100b has a conductor 156 functioning as a lower electrode, an insulator 153 functioning as a dielectric, and a conductor 160 functioning as an upper electrode. That is, the capacitive element 100a and the capacitive element 100b each constitute an MIM (Metal-Insulator-Metal) capacitor.
  • MIM Metal-Insulator-Metal
  • the capacitive element 100a and the capacitive element 100b have the same configuration, hereinafter, when describing matters common to the capacitive element 100a and the capacitive element 100b, the symbols added to the reference numerals are omitted, and the capacitive element 100b may be described as
  • Parts of the upper electrode, dielectric, and lower electrode of the capacitive element 100 are arranged in the openings 158 formed in the insulators 282 , 280 , and 275 . That is, conductor 160 , insulator 153 , and conductor 156 are positioned within opening 158 .
  • the semiconductor device of one embodiment of the present invention includes conductors 240 (conductors 240a and 240b) that are electrically connected to the transistor 200 and function as plugs (which can also be referred to as connection electrodes).
  • Conductor 240 is disposed within opening 206 formed in insulator 280 or the like. The conductor 240 has regions in contact with part of the top surface and part of the side surface of the conductor 242a.
  • the semiconductor device of one embodiment of the present invention includes the insulator 210 and the conductor 209 between the substrate (not shown) and the insulator 214 .
  • the conductor 209 is arranged to be embedded in the insulator 210 .
  • Conductor 209 has a region in contact with conductor 240 .
  • the semiconductor device of one embodiment of the present invention may include an insulator 212 between the insulator 210 and the conductor 209 and the insulator 214 .
  • a semiconductor device including the transistor 200 and the capacitor 100 described in this embodiment can be used as a memory cell of a memory device.
  • the conductor 240 may be electrically connected to the sense amplifier, and the conductor 240 functions as a bit line.
  • the capacitor 100 overlaps with the conductor 242b included in the transistor 200 . Therefore, since the capacitive element 100 can be provided without greatly increasing the occupied area in plan view, the semiconductor device according to the present embodiment can be miniaturized or highly integrated.
  • the semiconductor device shown in the present embodiment has a line-symmetrical configuration with the dashed-dotted line A7-A8 shown in FIG. 1A as an axis of symmetry.
  • the transistor 200b is arranged at a line-symmetrical position with respect to the transistor 200a with the conductor 240 as an axis of symmetry.
  • the capacitive element 100b is arranged at a line-symmetrical position with respect to the capacitive element 100a with the conductor 240 as a symmetry axis.
  • the conductor 242a serves also as one of the source electrode and the drain electrode of the transistor 200a and one of the source electrode and the drain electrode of the transistor 200b.
  • the conductor 240 functions as a plug.
  • FIG. 1 A circuit diagram in the case of using the semiconductor device described in this embodiment as a memory device is shown in FIG.
  • a semiconductor device including the transistor 200a and the capacitor 100a can be used as a memory cell of a memory device. Further, a semiconductor device including the transistor 200b and the capacitor 100b can be used as a memory cell of a memory device.
  • the semiconductor device shown in FIGS. 1A to 1D can be rephrased as a memory device including two memory cells.
  • One memory cell has a transistor Tra and a capacitor Ca.
  • the other memory cell has a transistor Trb and a capacitive element Cb.
  • the transistor Tra, the transistor Trb, the capacitor Ca, and the capacitor Cb correspond to the transistor 200a, the transistor 200b, the capacitor 100a, and the capacitor 100b, respectively.
  • one of the source and drain of the transistor Tra is connected to the wiring BL.
  • the other of the source and drain of the transistor Tra is connected to one electrode of the capacitive element Ca.
  • a gate of the transistor Tra is connected to the wiring WL.
  • the other electrode of the capacitive element Ca is connected to the wiring PL.
  • one of the source and drain of the transistor Trb is connected to the wiring BL.
  • the other of the source and drain of the transistor Trb is connected to one electrode of the capacitive element Cb.
  • a gate of the transistor Trb is connected to the wiring WL.
  • the other electrode of the capacitive element Cb is connected to the wiring PL.
  • the transistor 200 includes an insulator 216 over an insulator 214, conductors 205 (a conductor 205a and a conductor 205b) embedded in the insulator 216, Insulator 222 over insulator 216 and over conductor 205, insulator 224 over insulator 222, oxide 230a over insulator 224, oxide 230b over oxide 230a, and oxide 230b
  • the conductor 242a (the conductor 242a1 and the conductor 242a2) and the conductor 242b (the conductor 242b1 and the conductor 242b2), the insulator 253 over the oxide 230b, the insulator 254 over the insulator 253, and the insulator 254
  • Conductor 260 (conductor 260a and conductor 260b) that overlies and overlaps part of oxide 230b, insulator 222, insulator 224, oxide 230a, oxide 230b, and conductors and an insulator
  • the oxide 230a and the oxide 230b are collectively referred to as the oxide 230 in some cases.
  • the conductor 242a and the conductor 242b are collectively referred to as the conductor 242 in some cases.
  • the insulator 280 and the insulator 275 are provided with openings 258 reaching the oxide 230b.
  • the opening 258 has a region that overlaps with the oxide 230b.
  • the insulator 275 has an opening that overlaps with the opening of the insulator 280 . That is, the opening 258 includes the opening of the insulator 280 and the opening of the insulator 275 .
  • an insulator 253 , an insulator 254 and a conductor 260 are arranged in the opening 258 . That is, the conductor 260 has a region overlapping with the oxide 230b with the insulators 253 and 254 interposed therebetween.
  • a conductor 260 , an insulator 253 , and an insulator 254 are provided between the conductor 242 a and the conductor 242 b in the channel length direction of the transistor 200 .
  • the insulator 254 has a region in contact with the side surface of the conductor 260 and a region in contact with the bottom surface of the conductor 260 . Note that opening 258 reaches insulator 222 in areas that do not overlap oxide 230, as shown in FIG. 1C.
  • the oxide 230 preferably has an oxide 230a overlying the insulator 224 and an oxide 230b overlying the oxide 230a.
  • the oxide 230a By having the oxide 230a under the oxide 230b, diffusion of impurities from a structure formed below the oxide 230a to the oxide 230b can be suppressed.
  • the oxide 230 has a structure in which two layers of the oxide 230a and the oxide 230b are stacked; however, the present invention is not limited to this.
  • the oxide 230b may have a single layer structure, or may have a stacked structure of three or more layers, and the oxides 230a and 230b each have a stacked structure. good too.
  • the conductor 260 functions as a first gate electrode, and the conductor 205 functions as a second gate electrode.
  • Insulators 253 and 254 function as first gate insulators, and insulators 222 and 224 function as second gate insulators.
  • the conductor 242a functions as one of the source electrode and the drain electrode, and the conductor 242b functions as the other of the source electrode and the drain electrode.
  • At least part of the region of the oxide 230 overlapping with the conductor 260 functions as a channel formation region.
  • FIG. 3A shows an enlarged view of the vicinity of the channel forming region in FIG. 1B.
  • a structure of insulator 224 and oxide 230 is placed in an opening with insulator 222 on the bottom and insulators 280 and 275 on the sides. It can also be regarded as a shape in which a part protrudes.
  • an insulator 253 is provided in contact with the bottom and inner walls (also referred to as sidewalls) of the opening 258 . Therefore, the insulator 253 has a top surface of the insulator 222, a side surface of the insulator 224, a side surface of the oxide 230a, a top surface and side surfaces of the oxide 230b, side surfaces of the conductors 242a and 242b, side surfaces of the insulator 275, and insulation. It contacts at least a portion of each of the side surfaces of body 280 and the bottom surface of insulator 254 .
  • the width of the opening 258 in the channel length direction approximately matches the distance between the conductors 242a and 242b. Therefore, a channel forming region is formed in a region of the oxide 230b that overlaps with the width of the opening 258 in the channel length direction.
  • the distance between the conductor 242a and the conductor 242b is, for example, 60 nm or less, 50 nm or less, 40 nm or less, 30 nm or less, 20 nm or less, or 10 nm or less, and can be 1 nm or more or 5 nm or more. preferable.
  • the channel formation region of the transistor 200 has a very fine structure in this manner, the on-state current of the transistor 200 is increased and the frequency characteristics can be improved.
  • the area can be reduced and the density can be increased.
  • the distance between the conductors 242a and 242b is not limited to the above, and the distance between the conductors 242a and 242b can be 60 nm or more.
  • miniaturization of the transistor 200 can improve high-frequency characteristics. Specifically, the cutoff frequency can be improved.
  • the cutoff frequency of the transistor can be, for example, 50 GHz or higher, or 100 GHz or higher in a room temperature environment.
  • FIG. 3A shows a configuration in which the side walls of the opening 258 are substantially perpendicular to the upper surface of the insulator 222
  • the present invention is not limited to this.
  • the sidewalls of opening 258 may be tapered. By tapering the side wall of the opening 258, coverage with the insulator 253 or the like is improved in subsequent steps, and defects such as voids can be reduced.
  • a tapered shape refers to a shape in which at least part of the side surface of the structure is inclined with respect to the substrate surface. For example, it is preferable to have a region where the angle formed by the inclined side surface and the substrate surface (hereinafter sometimes referred to as taper angle) is less than 90°. Note that the side surfaces of the structure and the substrate surface are not necessarily completely flat, and may be substantially planar with a fine curvature or substantially planar with fine unevenness.
  • the distance L2 between the conductors 242a and 242b may be smaller than the width of the opening 258 in the cross-sectional view of the transistor 200 in the channel length direction.
  • the width of the opening 258 is equal to the distance L1 between the interface of the insulator 280 and the insulator 253 on the conductor 242a side and the interface of the insulator 280 and the insulator 253 on the conductor 242b side shown in FIG. 3C. handle.
  • the distance L2 between the conductor 242a and the conductor 242b can be reduced to a very fine structure (for example, 60 nm or less, 50 nm or less, 40 nm or less, 30 nm or less, 20 nm or less, or 10 nm or less). 1 nm or more, or 5 nm or more).
  • a very fine structure for example, 60 nm or less, 50 nm or less, 40 nm or less, 30 nm or less, 20 nm or less, or 10 nm or less. 1 nm or more, or 5 nm or more).
  • the conductor 260 since the conductor 260 has a region with a distance L1 that is longer than the distance L2, an increase in resistance of the conductor 260 located in the region with the distance L1 can be suppressed, and the conductor 260 can function as a wiring. .
  • the width of the opening of the insulator 280 in the opening 258 is equal to the distance L1
  • the width of the opening of the insulator 275 in the opening 258 is equal to the distance L2.
  • the insulator 224, the oxide 230, the conductor 242, and the insulator 275 are placed into the opening with the insulator 222 as the bottom and the insulator 280 as the side. It can also be regarded as a shape in which a part of the structure protrudes. Further, in the structure including the insulator 224, the oxide 230, the conductor 242, and the insulator 275, it can be considered that the region of the oxide 230 between the conductors 242a and 242b is exposed.
  • an insulator 253 is provided in contact with the bottom and inner walls (also referred to as sidewalls) of the opening 258 . Therefore, the insulator 253 has a top surface of the insulator 222, a side surface of the insulator 224, a side surface of the oxide 230a, a top surface and side surfaces of the oxide 230b, side surfaces of the conductors 242a and 242b, side surfaces of the insulator 275, and insulation. It contacts at least a portion of each of the side surfaces of body 280 and the bottom surface of insulator 254 . An insulator 254 and a conductor 260 are stacked over the insulator 253 . Therefore, an insulator 253 , an insulator 254 , and a conductor 260 are provided to cover the conductor 242 and the insulator 275 partially protruding into the opening 258 .
  • a channel forming region is formed in the region of distance L2 in oxide 230b. Therefore, the channel formation region of the transistor 200 has a very fine structure. As a result, the ON current of the transistor 200 is increased, and the frequency characteristics can be improved.
  • the oxide 230b includes a region 230bc functioning as a channel formation region of the transistor 200, and regions 230ba and 230bb functioning as a source region or a drain region and provided to sandwich the region 230bc. have. At least a portion of the region 230bc overlaps the conductor 260 . In other words, the region 230bc is provided in a region between the conductors 242a and 242b. The region 230ba is provided so as to overlap with the conductor 242a, and the region 230bb is provided so as to overlap with the conductor 242b.
  • region 230bc functioning as a channel forming region is a high-resistance region with a lower carrier concentration because it has less oxygen vacancies or a lower impurity concentration than the regions 230ba and 230bb.
  • region 230bc can be said to be i-type (intrinsic) or substantially i-type.
  • the region 230ba and the region 230bb functioning as a source region or a drain region have many oxygen vacancies or have a high impurity concentration such as hydrogen, nitrogen, or a metal element, so that the carrier concentration is increased and the resistance is lowered.
  • the regions 230ba and 230bb are n-type regions having a higher carrier concentration and a lower resistance than the region 230bc.
  • the opposing sides of the conductors 242a and 242b are preferably substantially perpendicular to the top surface of the oxide 230b.
  • the side end portion of the region 230ba formed under the conductor 242a on the side of the region 230bc is prevented from excessively receding from the side end portion of the conductor 242a on the side of the region 230bc.
  • the side end portion of the region 230ba on the side of the region 230bc recedes means that the side end portion of the region 230ba is located closer to the conductor 240 than the side surface of the conductor 242a on the side of the region 230bc.
  • the fact that the side end portion of the region 230bb on the side of the region 230bc recedes means that the side end portion of the region 230bb is positioned closer to the conductor 160 than the side surface of the conductor 242b on the side of the region 230bc.
  • the frequency characteristics of the transistor 200 can be improved, and the operation speed of the semiconductor device according to one embodiment of the present invention can be improved.
  • the semiconductor device according to one embodiment of the present invention is used as a memory cell of a memory device, the writing speed and the reading speed can be improved.
  • the carrier concentration of the region 230bc functioning as a channel formation region is preferably 1 ⁇ 10 18 cm ⁇ 3 or less, more preferably less than 1 ⁇ 10 17 cm ⁇ 3 , and 1 ⁇ 10 16 cm ⁇ 3 . It is more preferably less than 3 , more preferably less than 1 ⁇ 10 13 cm ⁇ 3 , even more preferably less than 1 ⁇ 10 12 cm ⁇ 3 . Also, the lower limit of the carrier concentration of the region 230bc functioning as a channel formation region is not particularly limited, but can be set to 1 ⁇ 10 ⁇ 9 cm ⁇ 3 , for example.
  • the carrier concentration is equal to or lower than the carrier concentration of the region 230ba and the region 230bb, and equal to or higher than the carrier concentration of the region 230bc.
  • a region may be formed. That is, the region functions as a junction region between the region 230bc and the region 230ba or the region 230bb.
  • the bonding region may have a hydrogen concentration equal to or lower than that of the regions 230ba and 230bb and equal to or higher than that of the region 230bc.
  • the bonding region may have oxygen vacancies equal to or less than those of the regions 230ba and 230bb and equal to or greater than those of the region 230bc.
  • FIG. 3A shows an example in which the regions 230ba, 230bb, and 230bc are formed in the oxide 230b
  • the present invention is not limited to this.
  • each of the above regions may be formed up to oxide 230a as well as oxide 230b.
  • the concentrations of metal elements and impurity elements such as hydrogen and nitrogen detected in each region are not limited to stepwise changes for each region, and may change continuously within each region. In other words, the closer the region is to the channel formation region, the lower the concentrations of the metal elements and the impurity elements such as hydrogen and nitrogen.
  • metal oxides functioning as semiconductors are preferably used for the oxides 230 (the oxides 230a and 230b) including a channel formation region.
  • the bandgap of the metal oxide that functions as a semiconductor is preferably 2 eV or more, more preferably 2.5 eV or more.
  • the off-state current of the transistor can be reduced by using a metal oxide with a large bandgap.
  • oxide 230 it is preferable to use, for example, metal oxides such as indium oxide, gallium oxide, and zinc oxide. Moreover, as the oxide 230, it is preferable to use, for example, a metal oxide containing two or three elements selected from indium, the element M, and zinc.
  • Element M includes gallium, aluminum, silicon, boron, yttrium, tin, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, and magnesium.
  • the element M is preferably one or more selected from aluminum, gallium, yttrium, and tin.
  • a metal oxide containing indium, the element M, and zinc is sometimes referred to as an In-M-Zn oxide.
  • the oxide 230 preferably has a laminated structure of multiple oxide layers with different chemical compositions.
  • the atomic ratio of the element M to the main component metal element is the same as the atomic ratio of the element M to the main component metal element in the metal oxide used for the oxide 230b. Larger is preferable.
  • the atomic ratio of the element M to In is preferably higher than the atomic ratio of the element M to In in the metal oxide used for the oxide 230b. With this structure, diffusion of impurities and oxygen from structures formed below the oxide 230a to the oxide 230b can be suppressed.
  • the atomic ratio of In to the element M is preferably higher than the atomic ratio of In to the element M in the metal oxide used for the oxide 230a.
  • the transistor 200 can have high on-state current and high frequency characteristics.
  • the oxides 230a and 230b have a common element other than oxygen as a main component, the defect level density at the interface between the oxides 230a and 230b can be reduced. Therefore, the influence of interface scattering on carrier conduction is reduced, and the transistor 200 can obtain a large on-current and high frequency characteristics.
  • the neighboring composition includes a range of ⁇ 30% of the desired atomic number ratio.
  • the element M it is preferable to use gallium.
  • a metal oxide that can be used for the oxide 230a may be used as the oxide 230b.
  • the above atomic ratio is not limited to the atomic ratio of the deposited metal oxide, and the atomic ratio of the sputtering target used for the deposition of the metal oxide. may be
  • the oxide 230b preferably has crystallinity.
  • CAAC-OS c-axis aligned crystal oxide semiconductor
  • CAAC-OS is a metal oxide that has a dense structure with high crystallinity and few impurities and defects (such as oxygen vacancies).
  • heat treatment is performed at a temperature at which the metal oxide is not polycrystallized (for example, 400° C. or more and 600° C. or less), so that the CAAC-OS has a dense structure with higher crystallinity.
  • a temperature at which the metal oxide is not polycrystallized for example, 400° C. or more and 600° C. or less
  • the oxide 230b by using a crystalline oxide such as CAAC-OS as the oxide 230b, extraction of oxygen from the oxide 230b by the source electrode or the drain electrode can be suppressed. Accordingly, extraction of oxygen from the oxide 230b can be reduced even if heat treatment is performed, so that the transistor 200 is stable against high temperatures (so-called thermal budget) in the manufacturing process.
  • a crystalline oxide such as CAAC-OS
  • a transistor including an oxide semiconductor if impurities and oxygen vacancies are present in a region where a channel is formed in the oxide semiconductor, electrical characteristics are likely to vary, and reliability may be degraded.
  • hydrogen in the vicinity of oxygen vacancies may form defects in which hydrogen enters oxygen vacancies (hereinafter sometimes referred to as V OH ) to generate electrons serving as carriers. Therefore, if oxygen vacancies are included in the region where the channel is formed in the oxide semiconductor, the transistor has normally-on characteristics (a channel exists even if no voltage is applied to the gate electrode, and current flows through the transistor). flow characteristics). Therefore, impurities, oxygen vacancies, and VOH are preferably reduced as much as possible in a region where a channel is formed in the oxide semiconductor. In other words, the region in which the channel is formed in the oxide semiconductor preferably has a reduced carrier concentration and is i-type (intrinsic) or substantially i-type.
  • an insulator containing oxygen that is released by heating (hereinafter sometimes referred to as excess oxygen) is provided in the vicinity of the oxide semiconductor, and heat treatment is performed so that the oxide semiconductor is converted from the insulator.
  • Oxygen can be supplied and oxygen vacancies and VOH can be reduced.
  • the on-state current or the field-effect mobility of the transistor 200 might decrease.
  • variations in the amount of oxygen supplied to the source region or the drain region within the substrate surface cause variations in the characteristics of the semiconductor device having transistors.
  • oxygen supplied from the insulator to the oxide semiconductor diffuses into a conductor such as a gate electrode, a source electrode, or a drain electrode, the conductor is oxidized and the conductivity is impaired. It may adversely affect the electrical characteristics and reliability of the transistor.
  • the region 230bc functioning as a channel formation region preferably has a reduced carrier concentration and is i-type or substantially i-type.
  • Region 230bb has a high carrier concentration and is preferably n-type.
  • oxygen vacancies and V OH in the oxide semiconductor region 230bc are preferably reduced.
  • the semiconductor device is configured such that the hydrogen concentration in the region 230bc is reduced, the oxidation of the conductors 242a, 242b, and 260 is suppressed, and the regions 230ba and 230bb are The configuration is such that the decrease in the hydrogen concentration is suppressed.
  • the insulator 253 preferably has a function of trapping hydrogen and fixing hydrogen. As shown in FIG. 3A and the like, the insulator 253 has a region in contact with the region 230bc of the oxide 230b. With this structure, the concentration of hydrogen in the region 230bc of the oxide 230b can be reduced. Therefore, the VOH in the region 230bc can be reduced and the region 230bc can be i-type or substantially i-type.
  • a metal oxide with an amorphous structure is an example of an insulator that has the function of capturing and fixing hydrogen.
  • metal oxides such as magnesium oxide or oxides containing one or both of aluminum and hafnium. Oxygen atoms in metal oxides having such an amorphous structure have dangling bonds, and the dangling bonds sometimes have the property of capturing or fixing hydrogen. That is, it can be said that a metal oxide having an amorphous structure has a high ability to capture or fix hydrogen.
  • the insulator 253 an oxide containing one or both of aluminum and hafnium is preferably used, and an oxide having an amorphous structure and containing one or both of aluminum and hafnium is more preferably used. It is further preferred to use hafnium oxide having In this embodiment, hafnium oxide is used as the insulator 253 .
  • the insulator 253 is an insulator containing at least oxygen and hafnium.
  • the hafnium oxide has an amorphous structure. In this case, insulator 253 has an amorphous structure.
  • the insulator that can be used for the insulator 253 is not limited to the barrier insulator against hydrogen described above. It is also possible to use an insulator with a thermally stable structure, such as silicon oxide or silicon oxynitride.
  • a thermally stable structure such as silicon oxide or silicon oxynitride.
  • a stacked film including an aluminum oxide film and a silicon oxide film or a silicon oxynitride film over the aluminum oxide film may be used.
  • a stacked film including an aluminum oxide film, a silicon oxide film or a silicon oxynitride film over the aluminum oxide film, and a hafnium oxide film over the silicon oxide film or the silicon oxynitride film may be used as the insulator 253 . good.
  • barrier insulators against oxygen are preferably provided near the conductors 242a, 242b, and 260, respectively.
  • the insulators are the insulators 253, 254, and 275, for example.
  • a barrier insulator refers to an insulator having a barrier property.
  • the term "barrier property” refers to a function of suppressing diffusion of a corresponding substance (also referred to as low permeability).
  • the corresponding substance has the function of capturing and fixing (also called gettering).
  • Barrier insulators against oxygen include oxides containing one or both of aluminum and hafnium, magnesium oxide, gallium oxide, indium gallium zinc oxide, silicon nitride, and silicon nitride oxide.
  • oxides containing one or both of aluminum and hafnium include aluminum oxide, hafnium oxide, oxides containing aluminum and hafnium (hafnium aluminate), and oxides containing hafnium and silicon (hafnium silicate).
  • each of the insulator 253, the insulator 254, and the insulator 275 may be a single layer or a stacked layer of barrier insulators against oxygen.
  • the insulator 253 preferably has a barrier property against oxygen. Note that the insulator 253 should be at least less permeable to oxygen than the insulator 280 .
  • the insulator 253 has regions in contact with the side surface of the conductor 242a and the side surface of the conductor 242b. Since the insulator 253 has a barrier property against oxygen, the side surfaces of the conductors 242a and 242b are oxidized and formation of an oxide film on the side surfaces can be suppressed. Accordingly, a decrease in on-state current or a decrease in field-effect mobility of the transistor 200 can be suppressed.
  • the insulator 253 is provided in contact with the top surface and side surfaces of the oxide 230b, the side surface of the oxide 230a, the side surface of the insulator 224, and the top surface of the insulator 222. Since the insulator 253 has a barrier property against oxygen, oxygen can be suppressed from being released from the region 230bc of the oxide 230b when heat treatment or the like is performed. Therefore, formation of oxygen vacancies in the oxides 230a and 230b can be reduced.
  • the insulator 280 contains an excessive amount of oxygen, excessive supply of the oxygen to the oxides 230a and 230b can be suppressed. Therefore, it is possible to suppress excessive oxidation of the regions 230ba and 230bb to reduce the on current of the transistor 200 or reduce the field effect mobility.
  • An oxide containing one or both of aluminum and hafnium has a barrier property against oxygen and can be suitably used as the insulator 253 .
  • the insulator 254 preferably has a barrier property against oxygen. Insulator 254 is provided between region 230 bc of oxide 230 b and conductor 260 and between insulator 280 and conductor 260 . With this structure, diffusion of oxygen contained in the region 230bc of the oxide 230b into the conductor 260 and formation of oxygen vacancies in the region 230bc of the oxide 230b can be suppressed. In addition, oxygen contained in the oxide 230b and oxygen contained in the insulator 280 diffuse into the conductor 260, so that oxidation of the conductor 260 can be suppressed. Note that the insulator 254 should be at least less permeable to oxygen than the insulator 280 . For example, silicon nitride is preferably used as the insulator 254 . In this case, the insulator 254 is an insulator containing at least nitrogen and silicon.
  • the insulator 275 preferably has a barrier property against oxygen.
  • the insulator 275 is provided between the insulator 280 and the conductors 242a and 242b. With this structure, diffusion of oxygen contained in the insulator 280 to the conductors 242a and 242b can be suppressed. Therefore, the oxygen contained in the insulator 280 can prevent the conductors 242a and 242b from being oxidized to increase the resistivity and reduce the on-state current of the transistor 200.
  • the insulator 275 may be at least less permeable to oxygen than the insulator 280 .
  • silicon nitride is preferably used as the insulator 275 .
  • the insulator 275 is an insulator containing at least nitrogen and silicon.
  • the barrier insulator against hydrogen is the insulator 275, for example.
  • Barrier insulators against hydrogen include oxides such as aluminum oxide, hafnium oxide, and tantalum oxide, and nitrides such as silicon nitride.
  • the insulator 275 may be a single layer or a stacked layer of the above barrier insulators against hydrogen.
  • the insulator 275 preferably has a barrier property against hydrogen.
  • the insulator 275 is arranged in contact with the side surface of the region 230ba of the oxide 230b and the side surface of the region 230bb of the oxide 230b.
  • hydrogen in the regions 230ba and 230bb can be prevented from diffusing to the outside, so that reduction in hydrogen concentration in the regions 230ba and 230bb can be suppressed. . Therefore, the regions 230ba and 230bb can be n-type.
  • the region 230bc functioning as a channel forming region can be i-type or substantially i-type, and the regions 230ba and 230bb functioning as a source region or a drain region can be n-type.
  • a semiconductor device having electrical characteristics can be provided. Further, with the above structure, even if the semiconductor device is miniaturized or highly integrated, it can have good electrical characteristics.
  • the insulator 253 functions as part of the gate insulator. As shown in FIG. 1B, the insulator 253 is provided in contact with the side surface of the insulator 275 and the side surface of the insulator 280 .
  • the thickness of the insulator 253 is preferably thin.
  • the thickness of the insulator 253 is 0.1 nm or more and 5.0 nm or less, preferably 0.5 nm or more and 5.0 nm or less, more preferably 1.0 nm or more and less than 5.0 nm, further preferably 1.0 nm or more and 3.0 nm or less.
  • at least part of the insulator 253 may have a region with the thickness as described above.
  • the ALD method includes a thermal ALD (thermal ALD) method in which a precursor and a reactant react with only thermal energy, a PEALD (plasma enhanced ALD) method using a plasma-excited reactant, and the like.
  • thermal ALD thermal ALD
  • PEALD plasma enhanced ALD
  • film formation can be performed at a lower temperature by using plasma, which is preferable in some cases.
  • the ALD method can deposit atoms one layer at a time, it is possible to form extremely thin films, to form structures with a high aspect ratio, to form films with few defects such as pinholes, and to improve coverage. There are effects such as excellent film formation and low temperature film formation. Therefore, the insulator 253 can be formed with a thin film thickness as described above with good coverage over the side surfaces of the opening formed in the insulator 280 and the like, the side ends of the conductor 242, and the like.
  • a film formed by the ALD method may contain more impurities such as carbon than films formed by other film formation methods.
  • quantification of impurities secondary ion mass spectrometry (SIMS: Secondary Ion Mass Spectrometry), X-ray photoelectron spectroscopy (XPS: X-ray Photoelectron Spectroscopy), or Auger electron spectroscopy (AES: Auger Electron Spectroscopy) can be performed using
  • the film thickness of the insulator 253 is not limited to the above.
  • the thickness of the insulator 253 is 0.
  • the thickness may be appropriately set within a range of about 1 nm or more and 30 nm or less.
  • the insulator 254 functions as part of the gate insulator.
  • the insulator 254 preferably has a barrier property against hydrogen. Accordingly, impurities such as hydrogen contained in the conductor 260 can be prevented from diffusing into the oxide 230b.
  • the insulator 254 along with the insulator 253 and conductor 260, must be provided in an opening formed in the insulator 280 or the like.
  • the thickness of the insulator 254 is preferably thin.
  • the insulator 254 has a thickness of 0.1 nm to 5.0 nm, preferably 0.5 nm to 3.0 nm, more preferably 1.0 nm to 3.0 nm. In this case, at least part of the insulator 254 may have a region with the thickness as described above.
  • silicon nitride deposited by the PEALD method may be used as the insulator 254 .
  • the insulator 253 can also function as the insulator 254 .
  • the structure without the insulator 254 can simplify the manufacturing process of the semiconductor device and improve productivity.
  • the insulator 275 is provided so as to cover the insulator 222 , the insulator 224 , the oxides 230 a and 230 b , and the conductor 242 .
  • the insulator 275 is formed on top and side surfaces of the insulator 222, side surfaces of the insulator 224, side surfaces of the oxide 230a, side surfaces of the oxide 230b, top and side surfaces of the conductor 242a, and top and side surfaces of the conductor 242b. It has a region in contact with each.
  • the conductors 242a, 242b, and 260 it is preferable to use a conductive material that is difficult to oxidize, a conductive material that has a function of suppressing diffusion of oxygen, or the like.
  • the conductive material include a conductive material containing nitrogen and a conductive material containing oxygen. Accordingly, a decrease in the conductivity of the conductors 242a, 242b, and 260 can be suppressed.
  • the conductors 242a, 242b, and 260 are conductive materials containing at least metal and nitrogen. become a body.
  • One or both of the conductor 242 and the conductor 260 may have a laminated structure.
  • each of the conductors 242a and 242b may have a laminated structure of two layers.
  • a conductive material that is difficult to oxidize, a conductive material that has a function of suppressing diffusion of oxygen, or the like is preferably used for the layers (the conductors 242a1 and 242b1) in contact with the oxide 230b. Further, for example, as shown in FIG.
  • the conductor 260a when the conductor 260 has a laminated structure of a conductor 260a and a conductor 260b, the conductor 260a is made of a conductive material that is difficult to oxidize or has a function of suppressing the diffusion of oxygen. It is preferable to use a conductive material having
  • a crystalline oxide such as CAAC-OS as the oxide 230b in order to prevent the conductivity of the conductor 242 from decreasing.
  • a metal oxide that can be applied to the oxide 230 described above is preferably used.
  • CAAC-OS is an oxide having crystals, and the c-axis of the crystals is substantially perpendicular to the surface of the oxide or the formation surface. Accordingly, extraction of oxygen from the oxide 230b by the conductor 242a or the conductor 242b can be suppressed. In addition, it is possible to suppress the decrease in conductivity of the conductors 242a and 242b.
  • microwave treatment is performed in an atmosphere containing oxygen in a state where the conductors 242a and 242b are provided over the oxide 230b, so that oxygen vacancies in the region 230bc and VOH are reduced.
  • the microwave treatment refers to treatment using an apparatus having a power supply for generating high-density plasma using microwaves, for example.
  • oxygen gas By performing microwave treatment in an atmosphere containing oxygen, oxygen gas can be converted into plasma using microwaves or high frequencies such as RF, and the oxygen plasma can act. At this time, the region 230bc can also be irradiated with microwaves or high frequencies such as RF.
  • V OH in the region 230bc can be divided into oxygen vacancies and hydrogen, the hydrogen can be removed from the region 230bc, and the oxygen vacancies can be compensated with oxygen. Therefore, the hydrogen concentration, oxygen vacancies, and VOH in the region 230bc can be reduced, and the carrier concentration can be lowered.
  • the effects of microwaves, high frequencies such as RF, oxygen plasma, etc. are shielded by the conductors 242a and 242b and do not reach the regions 230ba and 230bb.
  • the effect of oxygen plasma can be reduced by insulators 275 and 280 provided over oxide 230b and conductor 242.
  • FIG. 1 V 2 O 4 is reduced and an excessive amount of oxygen is not supplied in the regions 230ba and 230bb during the microwave treatment, so that a decrease in carrier concentration can be prevented.
  • microwave treatment is preferably performed in an atmosphere containing oxygen.
  • the microwave treatment may be performed while part of the insulator 253 is formed.
  • the microwave treatment may be performed after the silicon oxide film or the silicon oxynitride film is formed.
  • the insulator 253 By performing microwave treatment in an oxygen-containing atmosphere through the insulator 253 in this way, oxygen can be efficiently injected into the region 230bc.
  • the insulator 253 By arranging the insulator 253 so as to be in contact with the side surface of the conductor 242 and the surface of the region 230bc, it is possible to suppress the injection of more than a necessary amount of oxygen into the region 230bc and suppress the oxidation of the side surface of the conductor 242. .
  • the oxygen injected into the region 230bc has various forms such as oxygen atoms, oxygen molecules, oxygen ions, and oxygen radicals (also called O radicals, atoms, molecules, or ions having unpaired electrons). Note that the oxygen injected into the region 230bc may be one or more of the forms described above, and oxygen radicals are particularly preferable. In addition, since the film quality of the insulator 253 can be improved, the reliability of the transistor 200 is improved.
  • oxygen vacancies and V OH can be selectively removed from the oxide semiconductor region 230bc to make the region 230bc i-type or substantially i-type. Furthermore, excessive supply of oxygen to the regions 230ba and 230bb functioning as the source region or the drain region can be suppressed, and the state of the n-type region before the microwave treatment can be maintained. As a result, variations in the electrical characteristics of the transistor 200 can be suppressed, and variation in the electrical characteristics of the transistor 200 within the substrate surface can be suppressed.
  • a semiconductor device with little variation in transistor characteristics can be provided by adopting the configuration described above.
  • a semiconductor device with favorable frequency characteristics can be provided.
  • a semiconductor device with high operating speed can be provided.
  • a highly reliable semiconductor device can be provided.
  • a semiconductor device having favorable electrical characteristics can be provided.
  • a semiconductor device that can be miniaturized or highly integrated can be provided.
  • a curved surface may be provided between the side surface of the oxide 230b and the top surface of the oxide 230b. That is, the end of the side surface and the end of the upper surface may be curved (hereinafter also referred to as round shape).
  • the radius of curvature of the curved surface is preferably larger than 0 nm and smaller than the film thickness of the oxide 230b in the region overlapping with the conductor 242, or smaller than half the length of the region without the curved surface.
  • the radius of curvature of the curved surface is greater than 0 nm and less than or equal to 20 nm, preferably greater than or equal to 1 nm and less than or equal to 15 nm, and more preferably greater than or equal to 2 nm and less than or equal to 10 nm.
  • the heat treatment may be performed at, for example, 100° C. to 600° C., more preferably 350° C. to 550° C.
  • the heat treatment is performed in a nitrogen gas atmosphere, an inert gas atmosphere, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas.
  • heat treatment is preferably performed in an oxygen atmosphere. Accordingly, oxygen can be supplied to the oxide 230 to reduce oxygen vacancies.
  • the heat treatment may be performed in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas in order to compensate for desorbed oxygen after the heat treatment is performed in a nitrogen gas or inert gas atmosphere. good.
  • heat treatment may be continuously performed in a nitrogen gas or inert gas atmosphere.
  • oxygen vacancies in the oxide 230 can be repaired with supplied oxygen. Furthermore, the supplied oxygen reacts with the hydrogen remaining in the oxide 230, so that the hydrogen can be removed as H 2 O (dehydrated). This can suppress recombination of hydrogen remaining in the oxide 230 with oxygen vacancies to form VOH .
  • the interface between the oxide 230 and the insulator 253 and the vicinity thereof are covered with indium contained in the oxide 230 .
  • the vicinity of the surface of the oxide 230 has an atomic ratio close to that of indium oxide or an atomic ratio close to that of In—Zn oxide.
  • the semiconductor device preferably has a structure in which entry of hydrogen into the transistor 200 is suppressed.
  • an insulator having a function of suppressing diffusion of hydrogen is preferably provided so as to cover the transistor 200 .
  • the insulator is the insulator 212, for example.
  • An insulator having a function of suppressing diffusion of hydrogen is preferably used as the insulator 212 . Accordingly, diffusion of hydrogen into the transistor 200 from below the insulator 212 can be suppressed. Note that an insulator that can be used for the insulator 275 described above may be used as the insulator 212 .
  • At least one of the insulator 212, the insulator 214, the insulator 282, and the insulator 285 is a barrier that prevents impurities such as water and hydrogen from diffusing from the substrate side or from above the transistor 200 into the transistor 200. It preferably functions as an insulating film. Therefore, at least one of the insulators 212, 214, 282, and 285 includes hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, and nitrogen oxide molecules (N 2 O, NO, NO 2 etc.), it is preferable to use an insulating material that has a function of suppressing the diffusion of impurities such as copper atoms (that is, the above-described impurities are less likely to permeate). Alternatively, it is preferable to use an insulating material that has a function of suppressing diffusion of oxygen (for example, at least one of oxygen atoms and oxygen molecules) (through which oxygen hardly permeates).
  • oxygen for example, at least one of oxygen atoms and oxygen molecules
  • an insulator having a function of suppressing diffusion of water, impurities such as hydrogen, and oxygen is preferably used; Magnesium, hafnium oxide, gallium oxide, indium gallium zinc oxide, silicon nitride, silicon nitride oxide, or the like can be used.
  • the insulator 212 is preferably made of silicon nitride or the like, which has a higher hydrogen barrier property.
  • the insulators 214, 282, and 285 are preferably made of aluminum oxide, magnesium oxide, or the like, which have high functions of capturing and fixing hydrogen.
  • impurities such as water and hydrogen can be prevented from diffusing from the substrate side to the transistor 200 side through the insulators 212 and 214 .
  • impurities such as water and hydrogen can be prevented from diffusing toward the transistor 200 from an interlayer insulating film or the like arranged outside the insulator 285 .
  • diffusion of oxygen contained in the insulator 224 or the like to the substrate side through the insulators 212 and 214 can be suppressed.
  • oxygen contained in the insulator 280 or the like can be prevented from diffusing upward from the transistor 200 through the insulator 282 or the like.
  • the transistor 200 is preferably surrounded by the insulators 212, 214, 282, and 285 which have a function of suppressing diffusion of water, impurities such as hydrogen, and oxygen.
  • an oxide having an amorphous structure is preferably used for the insulators 212, 214, 282, and 285.
  • metal oxides such as AlO x (x is any number greater than 0) or MgO y (y is any number greater than 0).
  • Oxygen atoms in metal oxides having such an amorphous structure have dangling bonds, and the dangling bonds sometimes have the property of capturing or fixing hydrogen.
  • hydrogen contained in the transistor 200 or hydrogen existing around the transistor 200 is captured or fixed. be able to.
  • the transistor 200 and the semiconductor device with favorable characteristics and high reliability can be manufactured.
  • the insulator 212, the insulator 214, the insulator 282, and the insulator 285 preferably have an amorphous structure, but may partially have a polycrystalline region.
  • the insulator 212, the insulator 214, the insulator 282, and the insulator 285 may have a multilayer structure in which an amorphous layer and a polycrystalline layer are stacked. For example, a laminated structure in which a layer of polycrystalline structure is formed on a layer of amorphous structure may be used.
  • the insulators 212, 214, 282, and 285 may be deposited by sputtering, for example. Since the sputtering method does not require molecules containing hydrogen in the deposition gas, the hydrogen concentrations of the insulators 212, 214, 282, and 285 can be reduced.
  • the film formation method is not limited to the sputtering method, chemical vapor deposition (CVD) method, molecular beam epitaxy (MBE) method, pulsed laser deposition (PLD) method. ) method, ALD method, or the like may be used as appropriate.
  • the resistivity of the insulator 212 it may be preferable to lower the resistivity of the insulator 212 .
  • the insulator 212 by setting the resistivity of the insulator 212 to approximately 1 ⁇ 10 13 ⁇ cm, the insulator 212 can be used as the conductor 205, the conductor 242, the conductor 260, or the Charge-up of the conductor 240 can be alleviated in some cases.
  • the insulator 212 preferably has a resistivity of 1 ⁇ 10 10 ⁇ cm or more and 1 ⁇ 10 15 ⁇ cm or less.
  • the insulator 216, the insulator 280, and the insulator 285 preferably have a lower dielectric constant than the insulator 214.
  • the parasitic capacitance generated between wirings can be reduced.
  • the insulator 216, the insulator 280, and the insulator 285 include silicon oxide, silicon oxynitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, and vacancies. Silicon oxide or the like may be used as appropriate.
  • the conductor 205 is arranged so as to overlap with the oxide 230 and the conductor 260 .
  • the conductor 205 is preferably embedded in an opening formed in the insulator 216 . Also, part of the conductor 205 is embedded in the insulator 214 in some cases.
  • the conductor 205 has a conductor 205a and a conductor 205b.
  • the conductor 205a is provided in contact with the bottom and side walls of the opening.
  • the conductor 205b is provided so as to be embedded in a recess formed in the conductor 205a.
  • the height of the top surface of the conductor 205 b matches or substantially matches the height of the top surface of the conductor 205 a and the height of the top surface of the insulator 216 .
  • the conductor 205a has a function of suppressing diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules (such as N 2 O, NO, NO 2 ), and copper atoms. It is preferable to use a conductive material having a Alternatively, a conductive material having a function of suppressing diffusion of oxygen (eg, at least one of oxygen atoms and oxygen molecules) is preferably used.
  • the conductor 205a When a conductive material having a function of reducing diffusion of hydrogen is used for the conductor 205a, impurities such as hydrogen contained in the conductor 205b enter the oxide 230 through the insulators 216, 224, and the like. You can prevent it from spreading.
  • a conductive material having a function of suppressing diffusion of oxygen for the conductor 205a, it is possible to suppress a decrease in conductivity due to oxidation of the conductor 205b.
  • the conductive material having a function of suppressing diffusion of oxygen titanium, titanium nitride, tantalum, tantalum nitride, ruthenium, ruthenium oxide, or the like is preferably used, for example. Therefore, the conductor 205a may be a single layer or a laminate of the above conductive materials.
  • the conductor 205a may be titanium nitride.
  • a conductive material containing tungsten, copper, or aluminum as its main component is preferably used for the conductor 205b.
  • tungsten may be used for the conductor 205b.
  • the conductor 205 may function as a second gate electrode.
  • the threshold voltage (Vth) of the transistor 200 can be controlled by changing the potential applied to the conductor 205 independently of the potential applied to the conductor 260 .
  • Vth of the transistor 200 can be increased and off-state current can be reduced. Therefore, applying a negative potential to the conductor 205 can make the drain current smaller when the potential applied to the conductor 260 is 0 V than when no potential is applied.
  • the electric resistivity of the conductor 205 is designed in consideration of the potential applied to the conductor 205, and the film thickness of the conductor 205 is set according to the electric resistivity.
  • the thickness of the insulator 216 is almost the same as the thickness of the conductor 205 .
  • the absolute amount of impurities such as hydrogen contained in the insulator 216 can be reduced, so that diffusion of the impurities into the oxide 230 can be reduced. .
  • the conductor 205 is preferably provided larger than a region of the oxide 230 that does not overlap with the conductors 242a and 242b, as shown in FIG. 1A.
  • the conductor 205 preferably extends also in regions outside the ends of the oxides 230a and 230b in the channel width direction.
  • the conductor 205 and the conductor 260 preferably overlap with each other with an insulator interposed therebetween on the outside of the side surface of the oxide 230 in the channel width direction.
  • a transistor structure in which a channel formation region is electrically surrounded by an electric field of at least a first gate electrode is called a surrounded channel (S-channel) structure.
  • the S-channel structure disclosed in this specification and the like has a structure different from the Fin type structure and the planar type structure.
  • the S-channel structure disclosed in this specification etc. can also be regarded as a type of Fin structure.
  • a Fin structure indicates a structure in which a gate electrode is arranged so as to cover at least two sides (specifically, two sides, three sides, four sides, etc.) of a channel.
  • the channel formation region can be electrically surrounded. Since the S-channel structure is a structure that electrically surrounds the channel forming region, it is substantially equivalent to a GAA (Gate All Around) structure or a LGAA (Lateral Gate All Around) structure. It can also be said.
  • the transistor 200 has an S-channel structure, a GAA structure, or an LGAA structure, a channel formation region formed at or near the interface between the oxide 230 and the gate insulator is the entire bulk of the oxide 230. can be done. Therefore, since the density of the current flowing through the transistor can be increased, it can be expected that the on-state current of the transistor or the field-effect mobility of the transistor can be increased.
  • transistor 200 in FIG. 1B is an S-channel transistor
  • the semiconductor device of one embodiment of the present invention is not limited thereto.
  • a transistor structure that can be used in one embodiment of the present invention may be one or more selected from a planar structure, a Fin structure, and a GAA structure.
  • the conductor 205 is extended to function as wiring.
  • a structure in which a conductor functioning as a wiring is provided under the conductor 205 may be employed.
  • one conductor 205 does not necessarily have to be provided for each transistor.
  • the conductor 205 may be shared by a plurality of transistors.
  • the conductor 205 has a structure in which the conductor 205a and the conductor 205b are stacked in the transistor 200, the present invention is not limited to this.
  • the conductor 205 may be provided as a single layer or a laminated structure of three or more layers.
  • the insulator 222 and the insulator 224 function as a second gate insulator.
  • the insulator 222 preferably has a function of suppressing diffusion of hydrogen (for example, at least one of hydrogen atoms and hydrogen molecules). Further, the insulator 222 preferably has a function of suppressing diffusion of oxygen (eg, at least one of oxygen atoms and oxygen molecules). For example, the insulator 222 preferably has a function of suppressing diffusion of one or both of hydrogen and oxygen more than the insulator 224 does.
  • hydrogen for example, at least one of hydrogen atoms and hydrogen molecules
  • oxygen eg, at least one of oxygen atoms and oxygen molecules
  • the insulator 222 preferably has a function of suppressing diffusion of one or both of hydrogen and oxygen more than the insulator 224 does.
  • the insulator 222 it is preferable to use an insulator containing oxides of one or both of aluminum and hafnium, which are insulating materials.
  • the insulator aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used.
  • the conductor 205 can be prevented from reacting with oxygen contained in the insulator 224 and the oxide 230 .
  • aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, or zirconium oxide may be added to the insulator.
  • these insulators may be nitrided.
  • the insulator 222 may be formed by stacking silicon oxide, silicon oxynitride, or silicon nitride on the above insulator.
  • the insulator 222 may be a single layer or a stack of insulators containing so-called high-k materials such as aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, and hafnium zirconium oxide.
  • high-k materials such as aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, and hafnium zirconium oxide.
  • thinning of gate insulators may cause problems such as leakage current.
  • a high-k material for an insulator that functions as a gate insulator it is possible to reduce the gate potential during transistor operation while maintaining the physical film thickness.
  • a substance with a high dielectric constant such as lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ), (Ba, Sr)TiO 3 (BST) may be used in some cases.
  • silicon oxide, silicon oxynitride, or the like may be used as appropriate.
  • the insulator 222 and the insulator 224 may have a laminated structure of two or more layers. In that case, it is not limited to a laminated structure made of the same material, and a laminated structure made of different materials may be used.
  • the insulator 224 may be formed in an island shape so as to overlap with the oxide 230a as shown in FIG. 1B and the like. In this case, the insulator 275 is in contact with the side surface of the insulator 224 and the top surface of the insulator 222 .
  • an island shape indicates a state in which two or more layers using the same material formed in the same step are physically separated.
  • the conductors 242a and 242b are provided in contact with the top surface and side surfaces of the oxide 230b, the side surfaces of the oxide 230a, and the side surfaces of the insulator 224.
  • the conductor 242a and the conductor 242b are in contact with side surfaces of the insulator 224, the oxides 230a, and 230b in the channel length direction, and side surfaces of the insulator 224, the oxides 230a, and the oxide 230b in the channel width direction. It is also possible to configure it so that it does not come in contact with the Part of the conductor 242 a and part of the conductor 242 b are provided in contact with the upper surface of the insulator 222 .
  • the conductors 242a and 242b function as the source and drain electrodes of the transistor 200, respectively.
  • Examples of the conductor 242 include nitride containing tantalum, nitride containing titanium, nitride containing molybdenum, nitride containing tungsten, nitride containing tantalum and aluminum, and titanium. and a nitride containing aluminum is preferably used.
  • nitrides containing tantalum are particularly preferred.
  • ruthenium oxide, ruthenium nitride, an oxide containing strontium and ruthenium, an oxide containing lanthanum and nickel, or the like may be used. These materials are preferable because they are conductive materials that are difficult to oxidize or materials that maintain conductivity even after absorbing oxygen.
  • hydrogen contained in the oxide 230b and the like might diffuse into the conductor 242a or the conductor 242b.
  • hydrogen contained in the oxide 230b or the like easily diffuses into the conductor 242a or the conductor 242b, and the diffused hydrogen 242a or the conductor 242b. That is, hydrogen contained in the oxide 230b or the like might be absorbed by the conductor 242a or the conductor 242b.
  • no curved surface is formed between the side surface of the conductor 242 and the upper surface of the conductor 242 .
  • the cross-sectional area of the conductor 242 in the cross section in the channel width direction as shown in FIG. 1D can be increased.
  • the resistance of the conductor 242 can be reduced and the on current of the transistor 200 can be increased.
  • the conductor 242a has an opening in the region between the transistor 200a and the transistor 200b.
  • a conductor 240 is arranged so as to overlap with the opening. Note that the size of the opening is preferably smaller than the size of the conductor 240 when the transistor 200 is viewed from above. With this structure, a region where the conductor 242a and the conductor 240 are in contact can be provided. Thereby, the conductor 242a and the conductor 240 are electrically connected.
  • the present invention is not limited to this.
  • the conductor 242a of the transistor 200a and the conductor 242a of the transistor 200b may be separated.
  • the Y-direction width of the conductor 242 can be set to the minimum line width, so that high integration of the semiconductor device can be achieved.
  • part of the top surface and part of the side surface of the conductor 242a of the transistor 200a are in contact with the conductor 240, and part of the top surface and part of the side surface of the conductor 242a of the transistor 200b are in contact with the conductor 240. come into contact with
  • the conductor 240 functioning as a plug is electrically connected to the transistor 200a and the transistor 200b.
  • the sheet resistance of the oxide 230b in a region overlapping with the conductor 242a (the conductor 242b) is reduced.
  • the carrier concentration may increase. Therefore, the resistance of the oxide 230b in the region overlapping with the conductor 242a (the conductor 242b) can be reduced in a self-aligning manner.
  • the conductors 242a and 242b are preferably formed using a conductive film having compressive stress.
  • a strain expanding in the direction of tension (hereinafter sometimes referred to as tensile strain) can be formed in the regions 230ba and 230bb.
  • the compressive stress of the conductor 242a is the stress that tends to relax the compressed shape of the conductor 242a, and is the stress that has a vector in the direction from the center to the end of the conductor 242a. The same applies to the compressive stress of the conductor 242b.
  • the magnitude of the compressive stress of the conductor 242a is, for example, 500 MPa or more, preferably 1000 MPa or more, more preferably 1500 MPa or more, and even more preferably 2000 MPa or more. Note that the magnitude of the stress of the conductor 242a may be determined by measuring the stress of a sample obtained by forming a conductive film used for the conductor 242a over a substrate. The same applies to the magnitude of the compressive stress that the conductor 242b has. Nitride containing tantalum is an example of a conductor having the magnitude of compressive stress described above.
  • Strains are formed in the regions 230ba and 230bb by the action of the compressive stresses of the conductors 242a and 242b.
  • the strain is a strain (tensile strain) expanded in the direction of tension by the action of the compressive stress of the conductors 242a and 242b.
  • the strain corresponds to stretching of the CAAC structure in a direction perpendicular to the c-axis.
  • oxygen vacancies are likely to be formed in the strain.
  • VOH since hydrogen is likely to be incorporated into the strain, VOH is likely to be formed. Therefore, in the strain, oxygen vacancies and VOH are likely to be formed, and these tend to have a stable structure.
  • the regions 230ba and 230bb become stable n-type regions with high carrier concentrations.
  • the present invention is not limited to this.
  • a similar strain may form in oxide 230a.
  • the conductor 242 has a laminated structure of two layers. Specifically, the conductor 242a has a conductor 242a1 and a conductor 242a2 on the conductor 242a1. Similarly, conductor 242b has conductor 242b1 and conductor 242b2 above conductor 242b1. At this time, the conductor 242a1 and the conductor 242b1 are arranged on the side in contact with the oxide 230b.
  • the conductors 242a1 and 242a2 can be formed using the same material and in the same steps as the conductors 242b1 and 242b2, respectively. Therefore, the conductor 242a1 preferably has the same conductive material as the conductor 242b1. Also, the conductor 242a2 preferably has the same conductive material as the conductor 242b2.
  • the conductor 242a1 and the conductor 242b1 may be collectively referred to as the lower layer of the conductor 242. Further, the conductor 242a2 and the conductor 242b2 may be collectively referred to as an upper layer of the conductor 242 in some cases.
  • the lower layers of the conductor 242 are preferably made of a conductive material that is resistant to oxidation. Accordingly, it is possible to prevent the lower layer of the conductor 242 from being oxidized and the conductivity of the conductor 242 from decreasing. Note that the lower layer of the conductor 242 may have a property of easily absorbing (releasing) hydrogen. As a result, hydrogen in the oxide 230 diffuses into the lower layer of the conductor 242, so that the hydrogen concentration in the oxide 230 can be reduced. Therefore, the transistor 200 can have stable electrical characteristics.
  • the lower layer of the conductor 242 preferably has a large compressive stress as described above, and preferably has a larger compressive stress than the upper layer of the conductor 242 .
  • the regions 230ba and 230bb in contact with the lower layer of the conductor 242 can be made stable n-type regions with high carrier concentration.
  • the upper layers of the conductor 242 (the conductor 242a2 and the conductor 242b2) preferably have higher conductivity than the lower layers of the conductor 242 (the conductor 242a1 and the conductor 242b1).
  • the thickness of the upper layer of the conductor 242 may be larger than the thickness of the lower layer of the conductor 242 .
  • at least part of the upper layer of the conductor 242 may have a region with higher conductivity than the lower layer of the conductor 242 .
  • the upper layer of the conductor 242 is preferably made of a conductive material with a lower resistivity than the lower layer of the conductor 242 . Thereby, a semiconductor device in which wiring delay is suppressed can be manufactured.
  • the upper layer of the conductor 242 may have the property of easily absorbing hydrogen. As a result, hydrogen absorbed in the lower layer of the conductor 242 diffuses into the upper layer of the conductor 242, so that the hydrogen concentration in the oxide 230 can be further reduced. Therefore, the transistor 200 can have stable electrical characteristics.
  • one or more selected from constituent elements, chemical compositions, and film formation conditions may be different for the lower layer of the conductor 242 and the upper layer of the conductor 242. .
  • tantalum nitride or titanium nitride can be used as the lower layers of the conductors 242 (the conductors 242a1 and 242b1), and tungsten can be used as the upper layers of the conductors 242 (the conductors 242a2 and 242b2).
  • the conductor 242a1 and the conductor 242b1 are conductors containing tantalum or titanium and nitrogen. With such a structure, oxidation of the lower layer of the conductor 242 and reduction in conductivity of the conductor 242 can be suppressed.
  • the conductor 242a2 is surrounded by the insulator 275 having a barrier property against oxygen and the conductor 242a1 having a property that is not easily oxidized, and the insulator 275 having a barrier property against oxygen surrounds the conductor 242b2. , and a conductor 242b1 that is resistant to oxidation. Therefore, a semiconductor device in which the conductor 242a2 and the conductor 242b2 are prevented from being oxidized and wiring delay is suppressed can be manufactured. By using tungsten for the upper layer of the conductor 242, the conductor 242 can function as a wiring.
  • a nitride containing tantalum eg, tantalum nitride
  • a nitride containing titanium eg, titanium nitride
  • titanium nitride titanium nitride
  • the top layer of conductor 242 can be more conductive than the bottom layer of conductor 242 . Therefore, since the contact resistance with the conductor 240 provided in contact with the top surface of the conductor 242 can be reduced, a semiconductor device in which wiring delay is suppressed can be manufactured.
  • the lower layer of the conductor 242 and the upper layer of the conductor 242 may use conductive materials having the same constituent elements and different chemical compositions. At this time, the lower layer of the conductor 242 and the upper layer of the conductor 242 can be continuously formed without being exposed to the atmospheric environment. By forming the film without exposure to the atmosphere, impurities or moisture from the atmospheric environment can be prevented from adhering to the surface of the lower layer of the conductor 242, and the vicinity of the interface between the lower layer and the upper layer of the conductor 242 can be prevented. can be kept clean.
  • a nitride containing tantalum with a high nitrogen to tantalum atomic ratio is used for the lower layer of the conductor 242
  • a tantalum containing nitride with a low nitrogen to tantalum atomic ratio is used for the upper layer of the conductor 242 .
  • the lower layer of the conductor 242 tantalum with an atomic ratio of nitrogen to tantalum of 1.0 to 2.0, preferably 1.1 to 1.8, more preferably 1.2 to 1.5
  • the upper layer of the conductor 242 has an atomic ratio of nitrogen to tantalum of 0.3 to 1.5, preferably 0.5 to 1.3, more preferably 0.6 to 1.0. of tantalum-containing nitride is used.
  • the oxidation of the nitride containing tantalum can be suppressed.
  • the oxidation resistance of the nitride containing tantalum can be enhanced.
  • diffusion of oxygen into the nitride containing tantalum can be suppressed. Therefore, it is preferable to use a nitride containing tantalum, which has a high atomic ratio of nitrogen to tantalum, for the lower layer of the conductor 242 . This can prevent the formation of an oxide layer between the lower layer of the conductor 242 and the oxide 230 or reduce the thickness of the oxide layer.
  • a nitride containing tantalum by lowering the atomic ratio of nitrogen to tantalum, the resistivity of the nitride can be lowered. Therefore, it is preferable to use a nitride containing tantalum, which has a low atomic ratio of nitrogen to tantalum, for the top layer of the conductor 242 . Accordingly, a semiconductor device in which wiring delay is suppressed can be manufactured.
  • the concentrations of tantalum and nitrogen detected in each layer are not limited to stepwise changes in each layer, but are continuously changed in the region between the upper layer and the lower layer ( (also called gradation). That is, the closer the region of the conductor 242 to the oxide 230, the higher the atomic ratio of nitrogen to tantalum. Therefore, the atomic ratio of nitrogen to tantalum in the region below conductor 242 is preferably higher than the atomic ratio of nitrogen to tantalum in the region above conductor 242 .
  • the transistor 200 shows a structure in which the conductor 242 has a two-layer stacked structure
  • the present invention is not limited to this.
  • the conductor 242 may be provided as a single layer or a laminated structure of three or more layers.
  • an ordinal number may be assigned in order of formation for distinction.
  • the conductor 260 is arranged so that its top surface is level with or substantially level with the top of the insulator 254 , the top of the insulator 253 , and the top of the insulator 280 .
  • a conductor 260 functions as a first gate electrode of the transistor 200 .
  • the conductor 260 preferably has a conductor 260a and a conductor 260b disposed over the conductor 260a.
  • conductor 260a is preferably arranged to wrap the bottom and side surfaces of conductor 260b.
  • the conductor 260 has a two-layer structure of conductors 260a and 260b, but may have a single-layer structure or a laminated structure of three or more layers.
  • the conductor 260a preferably uses a conductive material that has a function of suppressing the diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules, and copper atoms.
  • a conductive material having a function of suppressing diffusion of oxygen eg, at least one of oxygen atoms and oxygen molecules is preferably used.
  • the conductor 260a has a function of suppressing the diffusion of oxygen, it is possible to prevent the conductor 260b from being oxidized by oxygen contained in the insulator 280 or the like, thereby reducing the conductivity.
  • the conductive material having a function of suppressing diffusion of oxygen titanium, titanium nitride, tantalum, tantalum nitride, ruthenium, ruthenium oxide, or the like is preferably used, for example.
  • the conductor 260 is formed so as to fill the opening 258 provided extending in the channel width direction, and the conductor 260 is also provided extending in the channel width direction. Accordingly, when a plurality of transistors 200 are provided, the conductor 260 can also function as a wiring. In this case, the insulators 253 and 254 are also provided to extend along with the conductor 260 .
  • the conductor 260 since the conductor 260 also functions as wiring, it is preferable to use a conductor with high conductivity.
  • the conductor 260b can use a conductive material whose main component is tungsten, copper, or aluminum. Further, the conductor 260b may have a layered structure, for example, a layered structure of titanium or titanium nitride and any of the above conductive materials.
  • the conductor 260 is formed in a self-aligned manner so as to fill the opening 258 formed in the insulator 280 or the like. By forming the conductor 260 in this manner, the conductor 260 can be reliably placed in the region between the conductors 242a and 242b without being aligned.
  • the height of the bottom surface of the region of the conductor 260 where the conductor 260 and the oxide 230b do not overlap with each other is based on the bottom surface of the insulator 222 in the channel width direction of the transistor 200.
  • the height is preferably less than the height of the bottom surface of oxide 230b.
  • the conductor 260 functioning as a gate electrode covers the side surface and top surface of the channel formation region of the oxide 230b with the insulator 253 or the like interposed therebetween. Easier to work on the whole. Therefore, the on current of the transistor 200 can be increased and the frequency characteristics can be improved.
  • the height of the bottom surface of the conductor 260 and the height of the bottom surface of the oxide 230b in a region where the oxides 230a and 230b do not overlap with the conductor 260 is 0 nm or more and 100 nm or less, preferably 3 nm or more and 50 nm or less, more preferably 5 nm or more and 20 nm or less.
  • the insulator 280 is provided on the insulator 275, and an opening 258 is formed in the region where the insulator 253, the insulator 254, and the conductor 260 are provided. Also, the upper surface of the insulator 280 may be flattened.
  • the insulator 280 functioning as an interlayer film preferably has a low dielectric constant. By using a material with a low dielectric constant as the interlayer film, the parasitic capacitance generated between wirings can be reduced.
  • the insulator 280 is preferably provided using a material similar to that of the insulator 216, for example.
  • silicon oxide and silicon oxynitride are preferable because they are thermally stable.
  • a material such as silicon oxide, silicon oxynitride, or silicon oxide having vacancies is preferable because a region containing oxygen released by heating can be easily formed.
  • the concentration of impurities such as water and hydrogen in the insulator 280 is reduced.
  • an oxide containing silicon such as silicon oxide or silicon oxynitride may be used as appropriate for the insulator 280 .
  • the insulator 282 is arranged so as to be in contact with at least part of the top surface of each of the conductor 260 , the insulator 253 , the insulator 254 and the insulator 280 .
  • the insulator 282 preferably functions as a barrier insulating film that suppresses diffusion of impurities such as water and hydrogen into the insulator 280 from above, and preferably has a function of capturing impurities such as hydrogen. Further, the insulator 282 preferably functions as a barrier insulating film that suppresses permeation of oxygen.
  • an insulator such as a metal oxide having an amorphous structure such as aluminum oxide may be used. In this case, the insulator 282 is an insulator containing at least oxygen and aluminum.
  • the insulator 282 having a function of capturing impurities such as hydrogen in contact with the insulator 280, impurities such as hydrogen contained in the insulator 280 and the like can be captured.
  • impurities such as hydrogen contained in the insulator 280 and the like can be captured.
  • the insulator 282 it is preferable to form an aluminum oxide film by a sputtering method, and it is more preferable to form an aluminum oxide film by a pulse DC sputtering method using an aluminum target in an atmosphere containing oxygen gas.
  • a pulse DC sputtering method By using the pulse DC sputtering method, the film thickness distribution can be made more uniform, and the sputtering rate and film quality can be improved.
  • RF (Radio Frequency) power may be applied to the substrate.
  • the amount of oxygen injected into layers below the insulator 282 can be controlled by the amount of RF power applied to the substrate.
  • the smaller the RF power the smaller the amount of oxygen injected into a layer below the insulator 282, and the oxygen amount is likely to be saturated even if the thickness of the insulator 282 is thin. Also, the amount of oxygen injected into the layer below the insulator 282 increases as the RF power increases.
  • RF power is, for example, 0 W/cm 2 or more and 1.86 W/cm 2 or less.
  • the amount of oxygen suitable for the characteristics of the transistor can be changed and implanted depending on the RF power when the insulator 282 is formed. Therefore, the amount of oxygen suitable for improving the reliability of the transistor can be implanted.
  • the RF power of 0 W/cm 2 is synonymous with applying no RF power to the substrate.
  • the RF frequency is preferably 10 MHz or higher. It is typically 13.56 MHz. The higher the RF frequency, the smaller the damage to the substrate.
  • 1A to 1D and the like show a structure in which the insulator 282 is a single layer, but the present invention is not limited to this, and a laminated structure of two or more layers may be used.
  • the insulator 282 may have a laminated structure of two layers.
  • the upper and lower layers of insulator 282 may be formed of the same material by different methods.
  • the RF power applied to the substrate when forming the lower layer of the insulator 282 and the the RF power applied to the substrate when depositing the upper layer of the insulator 282 is preferably different, and the RF power applied to the substrate when depositing the lower layer of the insulator 282 is different from the RF power applied to the substrate when depositing the upper layer of the insulator 282. It is more preferably lower than the RF power applied to the substrate during film formation.
  • the lower layer of the insulator 282 is deposited with RF power applied to the substrate of 0 W/cm 2 or more and 0.62 W/cm 2 or less, and the RF power of the upper layer of the insulator 282 applied to the substrate is 1.0 W/cm 2 or more.
  • a film is formed at 86 W/cm 2 or less.
  • the lower layer of the insulator 282 is deposited with an RF power of 0 W/cm 2 applied to the substrate, and the upper layer of the insulator 282 is deposited with an RF power of 0.31 W/cm 2 applied to the substrate. do.
  • the insulator 282 can have an amorphous structure and the amount of oxygen supplied to the insulator 280 can be adjusted.
  • the RF power applied to the substrate when forming the lower layer of the insulator 282 may be higher than the RF power applied to the substrate when forming the upper layer of the insulator 282 .
  • the lower layer of the insulator 282 is deposited with RF power applied to the substrate of 1.86 W/cm 2 or less
  • the upper layer of the insulator 282 is deposited with the RF power applied to the substrate of 0 W/cm 2 or more.
  • a film is formed at 62 W/cm 2 or less.
  • the lower layer of the insulator 282 is deposited with an RF power of 1.86 W/cm 2 applied to the substrate, and the upper layer of the insulator 282 is deposited with an RF power of 0.62 W/cm 2 applied to the substrate. form a film.
  • the amount of oxygen supplied to the insulator 280 can be increased.
  • the thickness of the lower layer of the insulator 282 is 1 nm to 20 nm, preferably 1.5 nm to 15 nm, more preferably 2 nm to 10 nm, further preferably 3 nm to 8 nm.
  • the lower layer of the insulator 282 can have an amorphous structure regardless of RF power.
  • the upper layer of the insulator 282 tends to have an amorphous structure, and the insulator 282 can have an amorphous structure.
  • the lower layer of the insulator 282 and the upper layer of the insulator 282 have a laminated structure made of the same material, but the present invention is not limited to this.
  • the lower layer of the insulator 282 and the upper layer of the insulator 282 may be laminated structures made of different materials.
  • Capacitor 100 4A shows an enlarged view of the capacitor 100 and its vicinity in FIG. 1B, and FIG. 4B shows an enlarged view of the capacitor 100 and its vicinity in FIG. 1D.
  • the capacitive element 100 has a conductor 156, an insulator 153, and a conductor 160 (a conductor 160a and a conductor 160b).
  • the conductor 156 functions as one of a pair of electrodes (also referred to as a lower electrode) of the capacitor 100
  • the conductor 160 functions as the other of the pair of electrodes (also referred to as an upper electrode) of the capacitor 100
  • the insulator 153 It functions as a dielectric of the capacitive element 100 .
  • At least part of the conductor 156 , the insulator 153 , the conductor 160 a and the conductor 160 b are arranged in the openings 158 provided in the insulators 275 , 280 and 282 .
  • the conductor 156 is provided over the conductor 242b
  • the insulator 153 is provided over the conductor 156
  • the conductor 160a is provided over the insulator 153
  • the conductor 160b is provided over the conductor 160a.
  • Conductors 156 are arranged along openings 158 formed in insulators 275 , 280 and 282 .
  • the height of a portion of the upper surface of conductor 156 is preferably higher than the height of the upper surface of insulator 282 .
  • the lower surface of the conductor 156 is in contact with the upper surface of the conductor 242b.
  • the conductor 156 is preferably formed by a deposition method with good coverage, such as an ALD method or a CVD method. You can use it.
  • the contact resistance between the conductor 156 and the conductor 242b can be reduced.
  • titanium nitride or tantalum nitride deposited by an ALD method can be used as the conductor 156.
  • the insulator 153 is arranged so as to partially cover the conductor 156 and the insulator 282 .
  • a high dielectric constant (high-k) material (a material with a high relative dielectric constant) is preferably used for the insulator 153 .
  • the insulator 153 is preferably formed by a film formation method with good coverage, such as an ALD method or a CVD method.
  • the insulator of a high dielectric constant (high-k) material includes oxides, oxynitrides, nitride oxides, or nitrides containing one or more metal elements selected from aluminum, hafnium, zirconium, gallium, and the like. can use objects.
  • the oxide, oxynitride, nitride oxide, or nitride may contain silicon.
  • an insulating layer made of the above materials may be laminated and used.
  • insulators of high-k materials aluminum oxide, hafnium oxide, zirconium oxide, oxides with aluminum and hafnium, oxynitrides with aluminum and hafnium, oxides with silicon and hafnium, Oxynitrides with silicon and hafnium, oxides with silicon and zirconium, oxynitrides with silicon and zirconium, oxides with hafnium and zirconium, oxynitrides with hafnium and zirconium, and the like can be used.
  • the insulator 153 can be thick enough to suppress leakage current and the capacitance of the capacitor 100 can be sufficiently secured.
  • a laminated insulating layer made of the above materials and a laminated structure of a high dielectric constant (high-k) material and a material having a higher dielectric strength than the high dielectric constant (high-k) material is used.
  • high-k high dielectric constant
  • high-k high dielectric constant
  • an insulating film in which zirconium oxide, aluminum oxide, and zirconium oxide are stacked in this order can be used as the insulator 153 .
  • an insulating film in which zirconium oxide, aluminum oxide, zirconium oxide, and aluminum oxide are stacked in this order can be used.
  • an insulating film in which hafnium zirconium oxide, aluminum oxide, hafnium zirconium oxide, and aluminum oxide are stacked in this order can be used.
  • a stack of insulators having relatively high dielectric strength such as aluminum oxide dielectric strength is improved and electrostatic breakdown of the capacitor 100 can be suppressed.
  • the conductor 160 is arranged to fill the openings 158 formed in the insulators 275 , 280 and 282 .
  • the conductor 160 is preferably formed by an ALD method, a CVD method, or the like, and a conductor that can be used for the conductor 205 or the conductor 260 may be used.
  • a conductor that can be used for the conductor 205 or the conductor 260 may be used.
  • titanium nitride deposited by ALD can be used as the conductor 160a
  • tungsten deposited by CVD can be used as the conductor 160b. Note that when the adhesion of tungsten to the insulator 153 is sufficiently high, a single-layer tungsten film formed by a CVD method may be used as the conductor 160 .
  • the opening 158 is provided to reach the conductor 242b. That is, it can be said that the opening 158 has a region overlapping with the conductor 242b.
  • the conductor 242 b is the other of the source electrode and the drain electrode of the transistor 200 and can electrically connect the transistor 200 and the capacitor 100 by being in contact with the bottom surface of the conductor 156 provided in the opening 158 .
  • the distance between the opening 158 and the oxide 230 is short. With such a structure, the area occupied by the memory cell including the capacitor 100 and the transistor 200 can be reduced.
  • the shape of the opening 158 may be a quadrangle, a polygonal shape other than a quadrangle, a polygonal shape with curved corners, or a circular shape including an ellipse. good.
  • a conductor 156 is provided in contact with the bottom and inner walls of the opening 158 . Therefore, the conductor 156 is in contact with the side surfaces of the insulator 275 , the insulator 280 , and the insulator 282 , the side surface of the conductor 242 b 1 , the side surface and top surface of the conductor 242 b 2 , and the top surface of the insulator 222 .
  • An insulator 153 is provided in contact with the top surface of the conductor 156, a conductor 160a is provided in contact with the top surface of the insulator 153, and a conductor 160b is provided in contact with the top surface of the conductor 160a.
  • the conductor 156 and the conductor 160 face each other with the insulator 153 interposed on the bottom and side surfaces of the opening 158 as shown in FIGS. 4A and 4B.
  • An arranged capacitive element 100 can be formed. Therefore, by increasing the depth of the opening 158 (which can also be referred to as the film thickness of the insulator 280), the capacitance of the capacitor 100 can be increased. By increasing the capacitance per unit area of the capacitor 100 in this way, the read operation of the memory device can be stabilized.
  • a portion of the conductor 156, a portion of the insulator 153, and a portion of the conductor 160 are exposed from the opening 158 and provided.
  • a portion of conductor 156 , a portion of insulator 153 , and a portion of conductor 160 are formed above the top surface of conductor 260 or above the top surface of insulator 282 .
  • a portion of the conductor 156 and a portion of the insulator 153 are in contact with the top surface of the insulator 282 . That is, the side ends of the conductor 156 are covered with the insulator 153 . Furthermore, the conductor 160 preferably has a region that overlaps with the insulator 282 with the insulator 153 interposed therebetween. Here, as shown in FIG. 4A, the side ends of the conductor 160 and the side ends of the insulator 153 are substantially aligned. With such a structure, the conductor 160 and the conductor 156 can be separated by the insulator 153, so short-circuiting between the conductor 160 and the conductor 156 can be suppressed.
  • the portion of the conductor 160 above the insulator 282 may be routed to form a wiring.
  • a conductor 160 can be provided extending in the channel width direction of the transistor 200 as shown in FIG. 1D. Accordingly, when a plurality of transistors 200 and capacitors 100 are provided, the conductor 160 can also function as a wiring. Further, in this case, the insulator 153 can be extended along with the conductor 160 .
  • the capacitive element 100 may have a structure as shown in FIGS. 5A and 5B.
  • FIG. 5A is an enlarged view corresponding to the capacitive element 100 in FIG. 1B
  • FIG. 5B is an enlarged view corresponding to the capacitive element 100 in FIG. 1D.
  • the capacitive element 100 may be configured such that the top of the conductor 156 substantially coincides with the upper surface of the insulator 282, as shown in FIGS. 5A and 5B.
  • the capacitive element 100 may be configured such that a portion of the insulator 153 is exposed from the conductor 160 as shown in FIGS. 5A and 5B.
  • the capacitive element 100 may have a configuration in which a part of the conductor 242b is exposed from the conductor 156 in a cross-sectional view in the channel width direction.
  • the capacitive element 100 may have a structure as shown in FIGS. 6A and 6B.
  • FIG. 6A is an enlarged view corresponding to the capacitor 100 in FIG. 1B
  • FIG. 6B is an enlarged view corresponding to the capacitor 100 in FIG. 1D.
  • the capacitive element 100 may have an insulator 224, an oxide 230a, and an oxide 230b formed under the conductor 242b within the opening 158, as shown in FIG. 6A.
  • the conductor 156 is preferably provided in contact with a side surface of the insulator 224, a side surface of the oxide 230a, a side surface of the oxide 230b, and a side surface of the conductor 242, as shown in FIG. 6B. Accordingly, the capacitive element 100 is formed along the sides of the insulator 224, the oxide 230a, the oxide 230b, and the conductor 242, increasing the capacitance of the capacitive element 100. be able to.
  • the capacitive element 100 may have, for example, the shape shown in FIG. 6C. Specifically, a portion of opening 158 overlaps only conductor 242b, similar to the structure shown in FIG. Overlies oxide 230 b , oxide 230 a , and insulator 224 .
  • FIGS. 4A to 6C show a structure in which the side walls of the opening 158 are substantially perpendicular to the upper surface of the insulator 222, the present invention is not limited to this.
  • the sidewalls of opening 158 may be tapered. By tapering the side wall of the opening 158, coverage with the insulator 153 or the like is improved in the subsequent steps, and defects such as voids can be reduced.
  • the conductor 240 is formed on the inner wall of the opening 206 formed in the insulator 285, the insulator 282, the insulator 280, the insulator 275, the conductor 242a, the insulator 222, the insulator 216, the insulator 214, and the insulator 212. are placed adjacent to each other. In addition, the conductor 240 has a region in contact with the top surface of the conductor 209 .
  • the conductor 240 functions as a plug or wiring for electrically connecting the transistor 200 with circuit elements such as switches, transistors, capacitive elements, inductors, resistive elements, and diodes, wiring, electrodes, or terminals.
  • the conductor 240 preferably has a laminated structure of conductors 240a and 240b.
  • the conductor 240 can have a structure in which a conductor 240a is provided in contact with the inner wall of the opening, and a conductor 240b is provided inside. That is, the conductor 240 a is arranged near the insulator 285 , the insulator 282 , the insulator 280 , the insulator 275 , the conductor 242 a , the insulator 222 , the insulator 216 , the insulator 214 , and the insulator 212 .
  • the conductor 240a is preferably formed by a film formation method with good coverage, such as ALD. By forming the film in this manner, the general shape of the conductor 240a substantially matches the shape formed by the inner wall of the opening 206 . Note that although the conductor 240a is shown to have a uniform thickness in FIG. 1B and the like, there may be a thin portion or a non-film-formed portion in the shadow of the conductor 242a.
  • the conductor 240a it is preferable to use a conductive material having a function of suppressing permeation of impurities such as water and hydrogen.
  • a conductive material having a function of suppressing permeation of impurities such as water and hydrogen it is preferable to use tantalum, tantalum nitride, titanium, titanium nitride, ruthenium, ruthenium oxide, or the like.
  • the conductive material having a function of suppressing permeation of impurities such as water and hydrogen may be used in a single layer or stacked layers.
  • impurities such as water and hydrogen contained in layers above the insulator 282 can be prevented from entering the oxide 230 through the conductor 240 .
  • the conductor 240 since the conductor 240 also functions as wiring, it is preferable to use a conductor with high conductivity.
  • the conductor 240b can use a conductive material containing tungsten, copper, or aluminum as its main component.
  • the conductor 240a is a conductor containing titanium and nitrogen
  • the conductor 240b is a conductor containing tungsten.
  • the conductor 240 has a structure in which the conductor 240a and the conductor 240b are stacked; however, the present invention is not limited to this.
  • the conductor 240 may be provided as a single layer or a laminated structure of three or more layers. When the structure has a laminated structure, an ordinal number may be assigned in order of formation for distinction.
  • the height of the top surface of the conductor 240 may be higher than the height of the top surface of the insulator 285 .
  • FIG. 7 shows an enlarged view of the region where the conductor 240 and the conductor 242a are in contact and the vicinity thereof.
  • conductor 240 in the A1-A2 direction, has a region with width W1 and a region with width W2.
  • the width W1 corresponds to, for example, the distance between the interface between the insulator 280 and the conductor 240a on the transistor 200a side and the interface between the insulator 280 and the conductor 240a on the transistor 200b side.
  • the width W2 corresponds to the width of the opening of the conductor 242a.
  • the width W2 is the distance between the conductor 242a on the transistor 200a side and the conductor 242a on the transistor 200b side. handle.
  • the width W1 is preferably larger than the width W2.
  • the conductor 240 is in contact with at least part of the top surface and part of the side surface of the conductor 242a. Therefore, the area of the region where the conductor 240 and the conductor 242a are in contact can be increased.
  • the side surface of the conductor 242 a protrudes from the side surfaces of the insulators 280 and 275 in the opening 206 .
  • the contact between the conductor 240 and the conductor 242a is sometimes called a top side contact.
  • the conductor 240 may be in contact with part of the lower surface of the conductor 242a.
  • the area of the region where the conductor 240 and the conductor 242a are in contact can be further increased.
  • the side surface of the conductor 242 a protrudes from the side surfaces of the insulators 222 and 216 in the opening 206 .
  • the contact resistance can be reduced.
  • the operating speed of the storage device according to the present invention can be improved and power consumption can be reduced.
  • the conductor 209 functions as part of circuit elements such as switches, transistors, capacitive elements, inductors, resistive elements, and diodes, wiring, electrodes, or terminals.
  • the insulator 210 functions as an interlayer film.
  • an insulator that can be used for the insulators 214, 216, or the like may be used.
  • an insulator substrate, a semiconductor substrate, or a conductor substrate may be used, for example.
  • insulator substrates include glass substrates, quartz substrates, sapphire substrates, stabilized zirconia substrates (yttria stabilized zirconia substrates, etc.), and resin substrates.
  • Semiconductor substrates include, for example, semiconductor substrates made of silicon or germanium, or compound semiconductor substrates made of silicon carbide, silicon germanium, gallium arsenide, indium phosphide, zinc oxide, or gallium oxide. Further, there is a semiconductor substrate having an insulator region inside the semiconductor substrate, such as an SOI (Silicon On Insulator) substrate.
  • SOI Silicon On Insulator
  • Examples of conductive substrates include graphite substrates, metal substrates, alloy substrates, and conductive resin substrates. Alternatively, there are a substrate having a metal nitride, a substrate having a metal oxide, and the like. Furthermore, there are substrates in which an insulator substrate is provided with a conductor or a semiconductor, a substrate in which a semiconductor substrate is provided with a conductor or an insulator, a substrate in which a conductor substrate is provided with a semiconductor or an insulator, and the like. Alternatively, these substrates provided with elements may be used. Elements provided on the substrate include a capacitor element, a resistance element, a switch element, a light emitting element, a memory element, and the like.
  • Insulators with a high relative dielectric constant include gallium oxide, hafnium oxide, zirconium oxide, oxides containing aluminum and hafnium, oxynitrides containing aluminum and hafnium, oxides containing silicon and hafnium, and silicon and hafnium. oxynitrides with silicon, or nitrides with silicon and hafnium.
  • Insulators with a low relative dielectric constant include silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, and an empty silicon oxide. There are silicon oxide with pores, resin, and the like.
  • insulators having a function of suppressing permeation of impurities such as hydrogen and oxygen include boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, and zirconium. Insulators including lanthanum, neodymium, hafnium, or tantalum may be used in single layers or in stacks.
  • insulators having a function of suppressing permeation of impurities such as hydrogen and oxygen
  • Metal oxides such as tantalum oxide, and metal nitrides such as aluminum nitride, silicon nitride oxide, and silicon nitride can be used.
  • An insulator that functions as a gate insulator preferably has a region containing oxygen that is released by heating. For example, by forming a structure in which silicon oxide or silicon oxynitride having a region containing oxygen released by heating is in contact with the oxide 230, oxygen vacancies in the oxide 230 can be compensated.
  • Conductors include aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, strontium, and lanthanum. It is preferable to use a metal element selected from among the above, an alloy containing the above-described metal elements as a component, or an alloy or the like in which the above-described metal elements are combined.
  • tantalum nitride, titanium nitride, tungsten, nitride containing titanium and aluminum, nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxide containing strontium and ruthenium, oxide containing lanthanum and nickel, and the like are used. is preferred. Also, tantalum nitride, titanium nitride, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, and oxides containing lanthanum and nickel are difficult to oxidize.
  • a conductive material or a material that maintains conductivity even after absorbing oxygen.
  • a semiconductor with high electrical conductivity typified by polycrystalline silicon containing an impurity element such as phosphorus, or a silicide such as nickel silicide may be used.
  • a plurality of conductive layers formed of the above materials may be laminated and used.
  • a laminated structure in which the material containing the metal element described above and the conductive material containing oxygen are combined may be used.
  • a laminated structure may be employed in which the material containing the metal element described above and the conductive material containing nitrogen are combined.
  • a laminated structure may be employed in which the material containing the metal element described above, the conductive material containing oxygen, and the conductive material containing nitrogen are combined.
  • a stacked-layer structure in which the above-described material containing the metal element and a conductive material containing oxygen are combined is used for a conductor functioning as a gate electrode.
  • a conductive material containing oxygen is preferably provided on the channel formation region side.
  • a conductor functioning as a gate electrode it is preferable to use a conductive material containing oxygen and a metal element contained in a metal oxide in which a channel is formed.
  • a conductive material containing the metal element and nitrogen described above may be used.
  • a conductive material containing nitrogen such as titanium nitride or tantalum nitride may be used.
  • indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, and silicon were added.
  • Indium tin oxide may also be used.
  • indium gallium zinc oxide containing nitrogen may be used.
  • a metal oxide (oxide semiconductor) that functions as a semiconductor is preferably used as the oxide 230 .
  • Metal oxides applicable to the oxide 230 according to the present invention are described below.
  • the metal oxide preferably contains at least indium or zinc. In particular, it preferably contains indium and zinc. In addition to these, it is preferable that aluminum, gallium, yttrium, tin, and the like are contained. Further, one or more selected from boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, cobalt, etc. may be contained.
  • the metal oxide is an In-M-Zn oxide having indium, the element M and zinc.
  • the element M is aluminum, gallium, yttrium, or tin.
  • Other elements applicable to element M include boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, and cobalt.
  • the element M there are cases where a plurality of the above elements may be combined.
  • the element M is preferably one or more selected from gallium, aluminum, yttrium, and tin.
  • an oxide containing indium (In), gallium (Ga), and zinc (Zn) is preferably used for a semiconductor layer of a transistor.
  • an oxide containing indium (In), aluminum (Al), and zinc (Zn) also referred to as IAZO
  • IAZO indium (In), aluminum (Al), gallium (Ga), and zinc
  • IAGZO or IGAZO oxide containing indium (In), aluminum (Al), gallium (Ga), and zinc (Zn) may be used for the semiconductor layer.
  • nitrogen-containing metal oxides may also be collectively referred to as metal oxides.
  • a metal oxide containing nitrogen may also be referred to as a metal oxynitride.
  • oxides containing indium (In), gallium (Ga), and zinc (Zn) will be described as examples of metal oxides. Note that an oxide containing indium (In), gallium (Ga), and zinc (Zn) is sometimes called an In--Ga--Zn oxide.
  • Crystal structures of oxide semiconductors include amorphous (including completely amorphous), CAAC (c-axis-aligned crystalline), nc (nanocrystalline), CAC (cloud-aligned composite), single crystal, and polycrystal. (poly crystal) and the like.
  • the crystal structure of the film or substrate can be evaluated using an X-ray diffraction (XRD) spectrum.
  • XRD X-ray diffraction
  • it can be evaluated using an XRD spectrum obtained by GIXD (Grazing-Incidence XRD) measurement.
  • GIXD Gram-Incidence XRD
  • the GIXD method is also called a thin film method or a Seemann-Bohlin method.
  • the XRD spectrum obtained by the GIXD measurement may be simply referred to as the XRD spectrum.
  • the shape of the peak of the XRD spectrum is almost bilaterally symmetrical.
  • the shape of the peak of the XRD spectrum is left-right asymmetric.
  • the asymmetric shape of the peaks in the XRD spectra demonstrates the presence of crystals in the film or substrate. In other words, the film or substrate cannot be said to be in an amorphous state unless the shape of the peaks in the XRD spectrum is symmetrical.
  • the crystal structure of the film or substrate can be evaluated by a diffraction pattern (also referred to as a nano beam electron diffraction pattern) observed by nano beam electron diffraction (NBED).
  • a diffraction pattern also referred to as a nano beam electron diffraction pattern
  • NBED nano beam electron diffraction
  • a halo is observed in the diffraction pattern of a quartz glass substrate, and it can be confirmed that the quartz glass is in an amorphous state.
  • a spot-like pattern is observed instead of a halo. For this reason, it is presumed that it cannot be concluded that the In-Ga-Zn oxide deposited at room temperature is in an intermediate state, neither single crystal nor polycrystal, nor amorphous state, and is in an amorphous state. be done.
  • oxide semiconductors may be classified differently from the above when their structures are focused. For example, oxide semiconductors are classified into single-crystal oxide semiconductors and non-single-crystal oxide semiconductors. Examples of non-single-crystal oxide semiconductors include the above CAAC-OS and nc-OS. Non-single-crystal oxide semiconductors include polycrystalline oxide semiconductors, amorphous-like oxide semiconductors (a-like OS), amorphous oxide semiconductors, and the like.
  • CAAC-OS is an oxide semiconductor that includes a plurality of crystal regions, and the c-axes of the plurality of crystal regions are oriented in a specific direction. Note that the specific direction is the thickness direction of the CAAC-OS film, the normal direction to the formation surface of the CAAC-OS film, or the normal direction to the surface of the CAAC-OS film.
  • a crystalline region is a region having periodicity in atomic arrangement. If the atomic arrangement is regarded as a lattice arrangement, the crystalline region is also a region with a uniform lattice arrangement.
  • CAAC-OS has a region where a plurality of crystal regions are connected in the a-b plane direction, and the region may have strain.
  • the strain refers to a portion where the orientation of the lattice arrangement changes between a region with a uniform lattice arrangement and another region with a uniform lattice arrangement in a region where a plurality of crystal regions are connected. That is, CAAC-OS is an oxide semiconductor that is c-axis oriented and has no obvious orientation in the ab plane direction.
  • each of the plurality of crystal regions is composed of one or more minute crystals (crystals having a maximum diameter of less than 10 nm).
  • the maximum diameter of the crystalline region is less than 10 nm.
  • the maximum diameter of the crystal region may be about several tens of nanometers.
  • the CAAC-OS includes a layer containing indium (In) and oxygen (hereinafter referred to as an In layer) and a layer containing gallium (Ga), zinc (Zn), and oxygen (
  • In layer a layer containing indium (In) and oxygen
  • Ga gallium
  • Zn zinc
  • oxygen oxygen
  • it tends to have a layered crystal structure (also referred to as a layered structure) in which (Ga, Zn) layers are laminated.
  • the (Ga, Zn) layer may contain indium.
  • the In layer may contain gallium.
  • the In layer may contain zinc.
  • the layered structure is observed as a lattice image in, for example, a high-resolution TEM (Transmission Electron Microscope) image.
  • a plurality of bright points are observed in the electron beam diffraction pattern of the CAAC-OS film.
  • a certain spot and another spot are observed at point-symmetrical positions with respect to the spot of the incident electron beam that has passed through the sample (also referred to as a direct spot) as the center of symmetry.
  • the lattice arrangement in the crystal region is basically a hexagonal lattice, but the unit cell is not always a regular hexagon and may be a non-regular hexagon. Moreover, the distortion may have a lattice arrangement such as a pentagon or a heptagon. Note that in CAAC-OS, no clear crystal grain boundary can be observed even near the strain. That is, it can be seen that the distortion of the lattice arrangement suppresses the formation of grain boundaries. This is because the CAAC-OS can tolerate strain due to the fact that the arrangement of oxygen atoms is not dense in the ab plane direction and the bond distance between atoms changes due to the substitution of metal atoms. it is conceivable that.
  • a crystal structure in which clear grain boundaries are confirmed is called a polycrystal.
  • a grain boundary becomes a recombination center, traps carriers, and is highly likely to cause a decrease in on-current of a transistor, a decrease in field-effect mobility, and the like. Therefore, a CAAC-OS in which no clear grain boundaries are observed is one of crystalline oxides having a crystal structure suitable for a semiconductor layer of a transistor.
  • a structure containing Zn is preferable for forming a CAAC-OS.
  • In--Zn oxide and In--Ga--Zn oxide are preferable because they can suppress the generation of grain boundaries more than In oxide.
  • CAAC-OS is an oxide semiconductor with high crystallinity and no clear crystal grain boundaries. Therefore, it can be said that the decrease in electron mobility due to grain boundaries is less likely to occur in CAAC-OS.
  • CAAC-OS since the crystallinity of an oxide semiconductor may be deteriorated due to contamination of impurities, generation of defects, or the like, CAAC-OS can be said to be an oxide semiconductor with few impurities and defects (such as oxygen vacancies). Therefore, an oxide semiconductor including CAAC-OS has stable physical properties. Therefore, an oxide semiconductor including CAAC-OS is resistant to heat and has high reliability.
  • CAAC-OS is also stable against high temperatures (so-called thermal budget) in the manufacturing process. Therefore, when a CAAC-OS is used for a transistor including a metal oxide in a channel formation region (sometimes referred to as an OS transistor), the degree of freedom in the manufacturing process can be increased.
  • nc-OS has periodic atomic arrangement in a minute region (eg, a region of 1 nm to 10 nm, particularly a region of 1 nm to 3 nm).
  • the nc-OS has minute crystals.
  • the size of the minute crystal is, for example, 1 nm or more and 10 nm or less, particularly 1 nm or more and 3 nm or less, the minute crystal is also called a nanocrystal.
  • nc-OS does not show regularity in crystal orientation between different nanocrystals. Therefore, no orientation is observed in the entire film.
  • an nc-OS may be indistinguishable from an a-like OS or an amorphous oxide semiconductor depending on the analysis method.
  • an nc-OS film is subjected to structural analysis using an XRD apparatus, out-of-plane XRD measurement using ⁇ /2 ⁇ scanning does not detect a peak indicating crystallinity.
  • an nc-OS film is subjected to electron beam diffraction (also referred to as selected area electron beam diffraction) using an electron beam with a probe diameter larger than that of nanocrystals (for example, 50 nm or more), a diffraction pattern like a halo pattern is obtained. Observed.
  • an electron beam diffraction pattern is obtained in which a plurality of spots are observed within a ring-shaped area centered on the spot.
  • An a-like OS is an oxide semiconductor having a structure between an nc-OS and an amorphous oxide semiconductor.
  • An a-like OS has void or low density regions. That is, the a-like OS has lower crystallinity than the nc-OS and CAAC-OS. In addition, the a-like OS has a higher hydrogen concentration in the film than the nc-OS and the CAAC-OS.
  • CAC-OS relates to material composition.
  • CAC-OS is, for example, one structure of a material in which elements constituting a metal oxide are unevenly distributed with a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or in the vicinity thereof.
  • the metal oxide one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size in the vicinity thereof.
  • the mixed state is also called mosaic or patch.
  • CAC-OS is a structure in which the material is separated into a first region and a second region to form a mosaic shape, and the first region is distributed in the film (hereinafter, also referred to as a cloud shape). is called). That is, CAC-OS is a composite metal oxide in which the first region and the second region are mixed.
  • the atomic ratios of In, Ga, and Zn to the metal elements constituting the CAC-OS in the In--Ga--Zn oxide are denoted by [In], [Ga], and [Zn], respectively.
  • the first region is a region where [In] is larger than [In] in the composition of the CAC-OS film.
  • the second region is a region where [Ga] is greater than [Ga] in the composition of the CAC-OS film.
  • the first region is a region in which [In] is larger than [In] in the second region and [Ga] is smaller than [Ga] in the second region.
  • the second region is a region in which [Ga] is larger than [Ga] in the first region and [In] is smaller than [In] in the first region.
  • the first region is a region whose main component is indium oxide, indium zinc oxide, or the like.
  • the second region is a region containing gallium oxide, gallium zinc oxide, or the like as a main component. That is, the first region can be rephrased as a region containing In as a main component. Also, the second region can be rephrased as a region containing Ga as a main component.
  • a clear boundary between the first region and the second region may not be observed.
  • the CAC-OS in the In—Ga—Zn oxide means a region containing Ga as a main component and a region containing In as a main component in a material structure containing In, Ga, Zn, and O. Each region is a mosaic, and refers to a configuration in which these regions exist randomly. Therefore, CAC-OS is presumed to have a structure in which metal elements are unevenly distributed.
  • the CAC-OS can be formed, for example, by sputtering under the condition that the substrate is not heated.
  • one or more selected from an inert gas (typically argon), oxygen gas, and nitrogen gas may be used as the film formation gas. good.
  • the flow rate ratio of the oxygen gas to the total flow rate of the film forming gas during film formation is preferably as low as possible.
  • the flow ratio of the oxygen gas to the total flow rate of the film forming gas during film formation is 0% or more and less than 30%, preferably 0% or more and 10% or less.
  • an EDX mapping obtained using energy dispersive X-ray spectroscopy shows that a region containing In as a main component It can be confirmed that the (first region) and the region (second region) containing Ga as the main component are unevenly distributed and have a mixed structure.
  • the first region is a region with higher conductivity than the second region. That is, when carriers flow through the first region, conductivity as a metal oxide is developed. Therefore, by distributing the first region in the form of a cloud in the metal oxide, a high field effect mobility ( ⁇ ) can be realized.
  • the second region is a region with higher insulation than the first region.
  • the leakage current can be suppressed by distributing the second region in the metal oxide.
  • CAC-OS when used for a transistor, the conductivity caused by the first region and the insulation caused by the second region act complementarily to provide a switching function (on/off). functions) can be given to the CAC-OS.
  • a part of the material has a conductive function
  • a part of the material has an insulating function
  • the whole material has a semiconductor function.
  • CAC-OS is most suitable for various semiconductor devices including display devices.
  • Oxide semiconductors have a variety of structures, each with different characteristics.
  • An oxide semiconductor of one embodiment of the present invention includes two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, a CAC-OS, an nc-OS, and a CAAC-OS. may
  • an oxide semiconductor with low carrier concentration is preferably used for a transistor.
  • the carrier concentration of the oxide semiconductor is 1 ⁇ 10 17 cm ⁇ 3 or less, preferably 1 ⁇ 10 15 cm ⁇ 3 or less, more preferably 1 ⁇ 10 13 cm ⁇ 3 or less, more preferably 1 ⁇ 10 11 cm ⁇ 3 or less . 3 or less, more preferably less than 1 ⁇ 10 10 cm ⁇ 3 and 1 ⁇ 10 ⁇ 9 cm ⁇ 3 or more.
  • the impurity concentration in the oxide semiconductor film may be lowered to lower the defect level density.
  • a low impurity concentration and a low defect level density are referred to as high-purity intrinsic or substantially high-purity intrinsic.
  • an oxide semiconductor with a low carrier concentration is sometimes referred to as a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor.
  • the trap level density may also be low.
  • the charge trapped in the trap level of the oxide semiconductor takes a long time to disappear, and may behave as if it were a fixed charge. Therefore, a transistor whose channel formation region is formed in an oxide semiconductor with a high trap level density might have unstable electrical characteristics.
  • Impurities include hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, silicon, and the like.
  • the impurities in the oxide semiconductor refer to, for example, substances other than the main components of the oxide semiconductor. For example, an element whose concentration is less than 0.1 atomic percent can be said to be an impurity.
  • the concentration of silicon or carbon in the oxide semiconductor is 2 ⁇ 10 atoms/cm or less, preferably 2 ⁇ 10 17 atoms/cm 3 or less.
  • the concentration of alkali metal or alkaline earth metal in the oxide semiconductor obtained by SIMS is set to 1 ⁇ 10 18 atoms/cm 3 or less, preferably 2 ⁇ 10 16 atoms/cm 3 or less.
  • the nitrogen concentration in the oxide semiconductor obtained by SIMS is less than 5 ⁇ 10 19 atoms/cm 3 , preferably 5 ⁇ 10 18 atoms/cm 3 or less, more preferably 1 ⁇ 10 18 atoms/cm 3 or less. , more preferably 5 ⁇ 10 17 atoms/cm 3 or less.
  • the oxide semiconductor reacts with oxygen that bonds to a metal atom to form water, which may cause oxygen vacancies.
  • oxygen vacancies When hydrogen enters the oxygen vacancies, electrons, which are carriers, may be generated.
  • part of hydrogen may bond with oxygen that bonds with a metal atom to generate an electron, which is a carrier. Therefore, a transistor including an oxide semiconductor containing hydrogen is likely to have normally-on characteristics. Therefore, hydrogen in the oxide semiconductor is preferably reduced as much as possible.
  • the hydrogen concentration in the oxide semiconductor obtained by SIMS is less than 1 ⁇ 10 20 atoms/cm 3 , preferably less than 1 ⁇ 10 19 atoms/cm 3 , more preferably 5 ⁇ 10 18 atoms/cm. Less than 3 , more preferably less than 1 ⁇ 10 18 atoms/cm 3 .
  • Semiconductor materials that can be used for oxide 230 are not limited to the metal oxides described above.
  • a semiconductor material having a bandgap (a semiconductor material that is not a zero-gap semiconductor) may be used as the oxide 230 .
  • a layered substance that functions as a semiconductor as the semiconductor material it is preferable to use a layered substance that functions as a semiconductor as the semiconductor material.
  • a layered substance is a general term for a group of materials having a layered crystal structure.
  • a layered crystal structure is a structure in which layers formed by covalent or ionic bonds are stacked via bonds such as van der Waals forces that are weaker than covalent or ionic bonds.
  • a layered material has high electrical conductivity within a unit layer, that is, high two-dimensional electrical conductivity.
  • Layered substances include graphene, silicene, and chalcogenides.
  • Chalcogenides are compounds that contain chalcogens.
  • Chalcogen is a general term for elements belonging to Group 16, and includes oxygen, sulfur, selenium, tellurium, polonium, and livermorium.
  • Chalcogenides include transition metal chalcogenides and Group 13 chalcogenides.
  • the oxide 230 it is preferable to use, for example, a transition metal chalcogenide that functions as a semiconductor.
  • a transition metal chalcogenide that functions as a semiconductor.
  • Specific examples of transition metal chalcogenides applicable as the oxide 230 include molybdenum sulfide (typically MoS 2 ), molybdenum selenide (typically MoSe 2 ), and molybdenum tellurium (typically MoTe 2 ).
  • tungsten sulfide typically WS 2
  • tungsten selenide typically WSe 2
  • tungsten tellurium typically WTe 2
  • hafnium sulfide typically HfS 2
  • hafnium selenide typically typically HfSe 2
  • zirconium sulfide typically ZrS 2
  • zirconium selenide typically ZrSe 2
  • the transition metal chalcogenide described above By applying the transition metal chalcogenide described above to the oxide 230, a semiconductor device with a large on-current can be provided.
  • a in each figure shows a top view.
  • B in each figure is a cross-sectional view corresponding to a portion indicated by a dashed line A1-A2 in A in each figure, and is also a cross-sectional view of the transistor 200 in the channel length direction.
  • C in each figure is a cross-sectional view corresponding to the portion indicated by the dashed-dotted line A3-A4 in A in each figure, and is also a cross-sectional view of the transistor 200 in the channel width direction.
  • D in each figure is a cross-sectional view of a portion indicated by a dashed line A5-A6 in A in each figure.
  • some elements are omitted for clarity of the drawing.
  • an insulating material for forming an insulator, a conductive material for forming a conductor, or a semiconductor material for forming a semiconductor is a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method. etc. can be used as appropriate for film formation.
  • Sputtering methods include an RF sputtering method using a high-frequency power source as a power source for sputtering, a DC sputtering method using a DC power source, and a pulse DC sputtering method in which the voltage applied to the electrodes is changed in pulses.
  • the RF sputtering method is mainly used for forming an insulating film
  • the DC sputtering method is mainly used for forming a metal conductive film.
  • the pulse DC sputtering method is mainly used when forming a film of a compound such as an oxide, a nitride, or a carbide by a reactive sputtering method.
  • the CVD method can be classified into a plasma CVD (PECVD) method using plasma, a thermal CVD (TCVD) method using heat, a photo CVD (Photo CVD) method using light, and the like. Furthermore, it can be divided into a metal CVD (MCVD) method and an organic metal CVD (MOCVD) method depending on the raw material gas used.
  • PECVD plasma CVD
  • TCVD thermal CVD
  • Photo CVD photo CVD
  • MCVD metal CVD
  • MOCVD organic metal CVD
  • the plasma CVD method can obtain high-quality films at relatively low temperatures.
  • the thermal CVD method does not use plasma, it is a film formation method capable of reducing plasma damage to the object to be processed.
  • wiring, electrodes, elements (transistors, capacitive elements, etc.) included in a semiconductor device may be charged up by receiving charges from plasma. At this time, the accumulated charges may destroy wiring, electrodes, elements, and the like included in the semiconductor device.
  • a thermal CVD method that does not use plasma does not cause such plasma damage, so that the yield of semiconductor devices can be increased.
  • the thermal CVD method does not cause plasma damage during film formation, a film with few defects can be obtained.
  • the ALD method a thermal ALD method in which the precursor and the reactant react with only thermal energy, a PEALD method using a plasma-excited reactant, or the like can be used.
  • the CVD method and ALD method are different from the sputtering method, in which particles emitted from a target or the like are deposited. Therefore, it is a film forming method which is not easily affected by the shape of the object to be processed and which has good step coverage.
  • the ALD method has excellent step coverage and excellent thickness uniformity, and is therefore suitable for coating the surface of an opening with a high aspect ratio.
  • the ALD method since the ALD method has a relatively slow film formation rate, it may be preferable to use it in combination with another film formation method, such as the CVD method, which has a high film formation rate.
  • a film of any composition can be deposited depending on the flow rate ratio of the raw material gases.
  • the CVD method it is possible to form a film whose composition is continuously changed by changing the flow rate ratio of source gases while forming a film.
  • the time required for film formation is reduced compared to film formation using a plurality of film formation chambers, as the time required for transportation or pressure adjustment is not required. can do. Therefore, productivity of semiconductor devices can be improved in some cases.
  • a film of any composition can be formed by simultaneously introducing different types of precursors.
  • a film of any composition can be formed by controlling the number of cycles for each precursor.
  • a substrate (not shown) is prepared, and insulators 210 and conductors 209 are formed on the substrate (see FIGS. 8A to 8D).
  • an insulator 212 is formed over the insulator 210 and the conductor 209 (see FIGS. 8A to 8D).
  • the insulator 212 is preferably deposited by a sputtering method.
  • the hydrogen concentration in the insulator 212 can be reduced by using a sputtering method that does not require molecules containing hydrogen in the deposition gas.
  • the film formation of the insulator 212 is not limited to the sputtering method, and a CVD method, an MBE method, a PLD method, an ALD method, or the like may be used as appropriate.
  • silicon nitride is deposited as the insulator 212 by a pulse DC sputtering method using a silicon target in an atmosphere containing nitrogen gas.
  • a pulse DC sputtering method it is possible to suppress the generation of particles due to arcing on the target surface, so that the film thickness distribution can be made more uniform.
  • the rise and fall of the discharge can be steeper than the high-frequency voltage. As a result, power can be supplied to the electrodes more efficiently, and the sputtering rate and film quality can be improved.
  • an insulator such as silicon nitride
  • impurities such as water and hydrogen
  • diffusion of impurities such as water and hydrogen contained in layers below the insulator 212 can be suppressed.
  • an insulator such as silicon nitride through which copper is difficult to permeate as the insulator 212, even if a metal such as copper that is easily diffused is used as a conductor (not shown) below the insulator 212, the metal does not easily pass through. The upward diffusion through the insulator 212 can be suppressed.
  • an insulator 214 is deposited over the insulator 212 (see FIGS. 8A to 8D).
  • the insulator 214 is preferably deposited by a sputtering method.
  • the hydrogen concentration in the insulator 214 can be reduced by using a sputtering method that does not require molecules containing hydrogen in the deposition gas.
  • the film formation of the insulator 214 is not limited to the sputtering method, and a CVD method, an MBE method, a PLD method, an ALD method, or the like may be used as appropriate.
  • aluminum oxide is deposited as the insulator 214 by a pulse DC sputtering method using an aluminum target in an atmosphere containing an oxygen gas.
  • the pulse DC sputtering method By using the pulse DC sputtering method, the film thickness distribution can be made more uniform, and the sputtering rate and film quality can be improved.
  • RF power may now be applied to the substrate.
  • the amount of oxygen injected into layers below insulator 214 can be controlled by the amount of RF power applied to the substrate.
  • the RF power is 0 W/cm 2 or more and 1.86 W/cm 2 or less.
  • the amount of oxygen suitable for the characteristics of the transistor can be changed and implanted according to the RF power when the insulator 214 is formed. Therefore, the amount of oxygen suitable for improving the reliability of the transistor can be implanted.
  • the RF frequency is preferably 10 MHz or higher. It is typically 13.56 MHz. The higher the RF frequency, the smaller the damage to the substrate.
  • the insulator 214 it is preferable to use a metal oxide having an amorphous structure, such as aluminum oxide, which has a high function of trapping and fixing hydrogen. Accordingly, hydrogen contained in the insulator 216 or the like can be captured or fixed, and diffusion of the hydrogen to the oxide 230 can be prevented.
  • a metal oxide having an amorphous structure such as aluminum oxide
  • aluminum oxide having an amorphous structure aluminum oxide having an amorphous structure as the insulator 214 because hydrogen can be captured or fixed more effectively in some cases. Accordingly, the transistor 200 and the semiconductor device with favorable characteristics and high reliability can be manufactured.
  • an insulator 216 is deposited on the insulator 214 .
  • the insulator 216 is preferably deposited by a sputtering method.
  • the hydrogen concentration in the insulator 216 can be reduced by using a sputtering method that does not require molecules containing hydrogen in the deposition gas.
  • the film formation of the insulator 216 is not limited to the sputtering method, and a CVD method, an MBE method, a PLD method, an ALD method, or the like may be used as appropriate.
  • a silicon oxide film is formed as the insulator 216 by a pulse DC sputtering method using a silicon target in an atmosphere containing oxygen gas.
  • the pulse DC sputtering method the film thickness distribution can be made more uniform, and the sputtering rate and film quality can be improved.
  • the insulators 212, 214, and 216 are preferably formed continuously without being exposed to the atmosphere.
  • a multi-chamber film deposition apparatus may be used. Accordingly, the insulator 212, the insulator 214, and the insulator 216 can be formed by reducing hydrogen in the films, and furthermore, entry of hydrogen into the films between film formation steps can be reduced.
  • Openings include, for example, grooves and slits. Also, an area in which an opening is formed may be referred to as an opening. Wet etching may be used to form the openings, but dry etching is preferable for fine processing.
  • the insulator 214 it is preferable to select an insulator that functions as an etching stopper film when the insulator 216 is etched to form a groove. For example, when silicon oxide or silicon oxynitride is used for the insulator 216 forming the groove, silicon nitride, aluminum oxide, or hafnium oxide is preferably used for the insulator 214 .
  • a capacitively coupled plasma (CCP) etching apparatus having parallel plate electrodes can be used as a dry etching apparatus.
  • a capacitively coupled plasma etching apparatus having parallel plate electrodes may be configured to apply a high frequency voltage to one electrode of the parallel plate electrodes. Alternatively, a plurality of different high-frequency voltages may be applied to one of the parallel plate electrodes. Alternatively, a high-frequency voltage having the same frequency may be applied to each of the parallel plate electrodes. Alternatively, high-frequency voltages having different frequencies may be applied to parallel plate electrodes.
  • a dry etching apparatus having a high density plasma source can be used.
  • a dry etching apparatus having a high-density plasma source can be, for example, an inductively coupled plasma (ICP) etching apparatus.
  • ICP inductively coupled plasma
  • the conductive film to be the conductor 205a preferably contains a conductor having a function of suppressing permeation of oxygen.
  • a conductor having a function of suppressing permeation of oxygen for example, tantalum nitride, tungsten nitride, titanium nitride, or the like can be used.
  • a stacked film of a conductor having a function of suppressing permeation of oxygen and tantalum, tungsten, titanium, molybdenum, aluminum, copper, or a molybdenum-tungsten alloy can be used.
  • a conductive film to be the conductor 205a can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a titanium nitride film is formed as a conductive film to be the conductor 205a.
  • a metal nitride as a lower layer of the conductor 205b, oxidation of the conductor 205b by the insulator 216 or the like can be suppressed.
  • the metal can be prevented from diffusing out of the conductor 205a.
  • a conductive film to be the conductor 205b is formed.
  • a conductive film to be the conductor 205b tantalum, tungsten, titanium, molybdenum, aluminum, copper, a molybdenum-tungsten alloy, or the like can be used.
  • the conductive film can be formed by a plating method, a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. In this embodiment mode, tungsten is deposited as the conductive film to be the conductor 205b.
  • part of the conductive film to be the conductor 205a and the conductive film to be the conductor 205b are removed to expose the insulator 216 (see FIGS. 8A to 8D).
  • conductors 205a and 205b remain only in the openings. Note that part of the insulator 216 is removed by the CMP treatment in some cases.
  • an insulator 222 is formed over the insulator 216 and the conductor 205 (see FIGS. 8A to 8D).
  • an insulator containing an oxide of one or both of aluminum and hafnium is preferably deposited.
  • the insulator containing oxides of one or both of aluminum and hafnium aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used.
  • hafnium-zirconium oxide is preferably used.
  • Insulators containing oxides of one or both of aluminum and hafnium have barrier properties against oxygen, hydrogen, and water. Since the insulator 222 has barrier properties against hydrogen and water, diffusion of hydrogen and water contained in structures provided around the transistor 200 into the transistor 200 through the insulator 222 is suppressed. , the generation of oxygen vacancies in the oxide 230 can be suppressed.
  • the film formation of the insulator 222 can be performed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the insulator 222 is formed using hafnium oxide by an ALD method.
  • the heat treatment may be performed at 250° C. or higher and 650° C. or lower, preferably 300° C. or higher and 500° C. or lower, more preferably 320° C. or higher and 450° C. or lower.
  • the heat treatment is performed in a nitrogen gas atmosphere, an inert gas atmosphere, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas.
  • oxygen gas may be about 20%.
  • heat treatment is performed in an atmosphere of nitrogen gas or an inert gas, and then heat treatment is performed in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas in order to compensate for desorbed oxygen.
  • the gas used in the heat treatment is preferably highly purified.
  • the amount of water contained in the gas used in the heat treatment may be 1 ppb or less, preferably 0.1 ppb or less, more preferably 0.05 ppb or less.
  • the heat treatment after the insulator 222 is formed, treatment is performed at a temperature of 400° C. for 1 hour at a flow ratio of nitrogen gas to oxygen gas of 4:1. Impurities such as water and hydrogen contained in the insulator 222 can be removed by the heat treatment. In the case where an oxide containing hafnium is used as the insulator 222, the insulator 222 may be partly crystallized by the heat treatment. Further, the heat treatment can be performed at a timing such as after the insulator 224 is formed.
  • an insulating film 224Af is formed on the insulator 222 (see FIGS. 8A to 8D).
  • the insulating film 224Af can be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a silicon oxide film is formed as the insulating film 224Af by a sputtering method.
  • the hydrogen concentration in the insulating film 224Af can be reduced by using a sputtering method that does not require molecules containing hydrogen in the deposition gas. Since the insulating film 224Af will be in contact with the oxide 230a in a later step, it is preferable that the hydrogen concentration is reduced in this manner.
  • an oxide film 230Af and an oxide film 230Bf are formed in order on the insulating film 224Af (see FIGS. 8A to 8D).
  • the oxide film 230Af and the oxide film 230Bf are preferably formed continuously without being exposed to the atmospheric environment. By forming the oxide film 230Af and the oxide film 230Bf without being exposed to the atmosphere, it is possible to prevent impurities or moisture from the atmospheric environment from adhering to the oxide film 230Af and the oxide film 230Bf. can be kept clean.
  • the oxide film 230Af and the oxide film 230Bf can be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the sputtering method is used to form the oxide films 230Af and 230Bf.
  • the oxide film 230Af and the oxide film 230Bf are formed by sputtering
  • oxygen or a mixed gas of oxygen and noble gas is used as the sputtering gas.
  • the sputtering gas By increasing the proportion of oxygen contained in the sputtering gas, excess oxygen in the formed oxide film can be increased.
  • the above oxide film is formed by a sputtering method, the above In-M-Zn oxide target or the like can be used.
  • part of the oxygen contained in the sputtering gas may be supplied to the insulator 224 when forming the oxide film 230Af. Therefore, the percentage of oxygen contained in the sputtering gas should be 70% or more, preferably 80% or more, and more preferably 100%.
  • the oxide film 230Bf is formed by a sputtering method, if the ratio of oxygen contained in the sputtering gas is set to more than 30% and 100% or less, preferably 70% or more and 100% or less, the oxide film 230Bf is oxygen-excessive oxidation. A material semiconductor is formed. A transistor in which an oxygen-excess oxide semiconductor is used for a channel formation region has relatively high reliability. However, one embodiment of the present invention is not limited to this.
  • an oxygen-deficient oxide semiconductor is formed by setting the oxygen content in the sputtering gas to 1% or more and 30% or less, preferably 5% or more and 20% or less. be.
  • a transistor in which an oxygen-deficient oxide semiconductor is used for a channel formation region has relatively high field-effect mobility. In addition, the crystallinity of the oxide film can be improved by forming the film while heating the substrate.
  • the insulating film 224Af, the oxide film 230Af, and the oxide film 230Bf are preferably formed by a sputtering method without being exposed to the atmosphere.
  • a multi-chamber film deposition apparatus may be used.
  • the insulating film 224Af, the oxide film 230Af, and the oxide film 230Bf can be prevented from being mixed with hydrogen between the film formation steps.
  • the ALD method may be used to form the oxide films 230Af and 230Bf.
  • films having a uniform thickness can be formed even in trenches or openings with a large aspect ratio.
  • the oxide films 230Af and 230Bf can be formed at a lower temperature than the thermal ALD method.
  • the heat treatment may be performed within a temperature range in which the oxide films 230Af and 230Bf are not polycrystallized, and may be performed at 250° C. or higher and 650° C. or lower, preferably 400° C. or higher and 600° C. or lower.
  • the heat treatment is performed in a nitrogen gas atmosphere, an inert gas atmosphere, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas.
  • oxygen gas may be about 20%.
  • heat treatment is performed in an atmosphere of nitrogen gas or an inert gas, and then heat treatment is performed in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas in order to compensate for desorbed oxygen.
  • the gas used in the heat treatment is preferably highly purified.
  • the amount of water contained in the gas used in the heat treatment may be 1 ppb or less, preferably 0.1 ppb or less, more preferably 0.05 ppb or less.
  • the heat treatment is performed at a temperature of 400° C. for 1 hour with a flow rate ratio of nitrogen gas and oxygen gas of 4:1.
  • Such heat treatment including oxygen gas can reduce impurities such as carbon, water and hydrogen in the oxide films 230Af and 230Bf.
  • the crystallinity of the oxide film 230Bf can be improved, and the structure can be made denser with higher density.
  • the crystal regions in the oxide films 230Af and 230Bf can be increased, and the in-plane variation of the crystal regions in the oxide films 230Af and 230Bf can be reduced. Therefore, in-plane variations in electrical characteristics of the transistor 200 can be reduced.
  • hydrogen in the insulator 216, the insulating film 224Af, the oxide film 230Af, and the oxide film 230Bf moves to the insulator 222 and is absorbed into the insulator 222.
  • hydrogen in the insulator 216 , the insulating film 224Af, the oxide film 230Af, and the oxide film 230Bf diffuses into the insulator 222 . Therefore, although the hydrogen concentration in the insulator 222 increases, the hydrogen concentrations in the insulator 216, the insulating film 224Af, the oxide film 230Af and the oxide film 230Bf decrease.
  • the insulating film 224Af functions as a second gate insulator of the transistor 200, and the oxide films 230Af and 230Bf function as channel formation regions of the transistor 200. Therefore, the transistor 200 including the insulating film 224Af, the oxide film 230Af, and the oxide film 230Bf with reduced hydrogen concentration is preferable because it has high reliability.
  • the insulating film 224Af, the oxide film 230Af, and the oxide film 230Bf are processed into strips by a lithography method to form the insulating layer 224A, the oxide layer 230A, and the oxide layer 230B (FIGS. 9A to 9D). 9D).
  • the insulating layer 224A, the oxide layer 230A, and the oxide layer 230B extend in a direction parallel to the dashed-dotted line A3-A4 (the channel width direction of the transistor 200 or the Y direction shown in FIG. 1A).
  • the insulating layer 224A, the oxide layer 230A, and the oxide layer 230B are formed so as to overlap with the conductor 205 at least partially.
  • a dry etching method or a wet etching method can be used for the above processing. Processing by the dry etching method is suitable for fine processing. Also, the insulating film 224Af, the oxide film 230Af, and the oxide film 230Bf may be processed under different conditions.
  • the resist is first exposed through a mask.
  • the exposed regions are then removed or left behind using a developer to form a resist mask.
  • a conductor, a semiconductor, an insulator, or the like can be processed into a desired shape by etching treatment through the resist mask.
  • a resist mask may be formed by exposing a resist using KrF excimer laser light, ArF excimer laser light, EUV (Extreme Ultraviolet) light, or the like.
  • a liquid immersion technique may be used in which a liquid (for example, water) is filled between the substrate and the projection lens for exposure.
  • an electron beam or an ion beam may be used instead of the light described above.
  • the resist mask can be removed by dry etching treatment such as ashing, wet etching treatment, dry etching treatment followed by wet etching treatment, or wet etching treatment followed by dry etching treatment.
  • a hard mask made of an insulator or conductor may be used under the resist mask.
  • an insulating film or a conductive film serving as a hard mask material is formed on the oxide film 230Bf, a resist mask is formed thereon, and the hard mask material is etched to form a hard mask having a desired shape. can do.
  • the etching of the oxide film 230Bf or the like may be performed after removing the resist mask, or may be performed with the resist mask left. In the latter case, the resist mask may disappear during etching.
  • the hard mask may be removed by etching after etching the oxide film 230Bf.
  • the hard mask material does not affect the post-process, or if it can be used in the post-process, it is not always necessary to remove the hard mask.
  • a conductive film 242Af and a conductive film 242Bf are formed in this order over the insulator 222 and the oxide layer 230B (see FIGS. 10A to 10D).
  • the conductive films 242Af and 242Bf can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • tantalum nitride may be deposited by a sputtering method as the conductive film 242Af, and tungsten may be deposited as the conductive film 242Bf. Note that heat treatment may be performed before the conductive film 242Af is formed.
  • the heat treatment may be performed under reduced pressure to continuously form the conductive film 242Af without exposure to the air. By performing such treatment, moisture and hydrogen adsorbed on the surface of the oxide layer 230B can be removed, and the moisture concentration and hydrogen concentration in the oxide layers 230A and 230B can be reduced. can.
  • the temperature of the heat treatment is preferably 100° C. or higher and 400° C. or lower. In this embodiment mode, the temperature of the heat treatment is set to 200.degree.
  • the insulating layer 224A, the oxide layer 230A, the oxide layer 230B, the conductive film 242Af, and the conductive film 242Bf are processed by a lithography method to form an island-like insulator 224, oxide layer 230a, and oxide layer 230B.
  • An object 230b and island-shaped conductive layers 242A and 242B having openings are formed (see FIGS. 11A to 11D).
  • the insulating layer 224A, the oxide layer 230A, the oxide layer 230B, the conductive film 242Af, and the conductive film 242Bf are processed to form island-shaped insulators 224, oxides 230a, and 230b, and the dashed-dotted line A1.
  • the conductive layers 242A and 242B are formed.
  • an island-shaped conductive layer 242A and a conductive layer 242B having openings are formed.
  • the insulating layer 224A, the oxide layer 230A, the oxide layer 230B, the conductive film 242Af, and the conductive film 242Bf are processed into an island shape, and the insulator 224, the oxide 230a, the oxide 230b, the conductive layer 242A, After the conductive layers 242A and 242B are formed, openings may be formed in the conductive layers 242A and 242B.
  • the insulator 224, the oxide 230a, the oxide 230b, the conductive layer 242A, and the conductive layer 242B are formed so as to overlap with the conductor 205 at least partially.
  • the openings in the conductive layers 242A and 242B are formed so as not to overlap with the oxide 230b.
  • a dry etching method or a wet etching method can be used for the above processing. Processing by the dry etching method is suitable for fine processing.
  • the insulating layer 224A, the oxide layer 230A, the oxide layer 230B, the conductive film 242Af, and the conductive film 242Bf may be processed under different conditions.
  • side surfaces of the insulator 224, the oxide 230a, and the oxide 230b may be tapered.
  • the insulator 224, the oxide 230a, and the oxide 230b may have a taper angle of 60° or more and less than 90°, for example.
  • the structure is not limited to the above, and the side surfaces of the insulator 224 and the oxides 230 a and 230 b may be substantially perpendicular to the top surface of the insulator 222 .
  • the area can be reduced and the density can be increased.
  • by-products generated in the above etching step are formed in layers on side surfaces of the insulator 224, the oxides 230a and 230b, the conductive layers 242A, and the conductive layers 242B in some cases.
  • the layered byproduct is formed between the insulator 224 , the oxide 230 a , the oxide 230 b , the conductive layers 242 A and 242 B, and the insulator 275 . Therefore, the layered byproduct formed in contact with the top surface of the insulator 222 is preferably removed.
  • the conductive layer 242A and the conductive layer 242B may be separately provided on the transistor 200a side and the transistor 200b side.
  • an insulator 275 is formed to cover the insulator 224, the oxide 230a, the oxide 230b, the conductive layer 242A, and the conductive layer 242B (see FIGS. 12A to 12D).
  • insulator 275 preferably contacts the top surface of insulator 222 and the side surface of insulator 224 .
  • the insulator 275 can be deposited by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • An insulating film having a function of suppressing permeation of oxygen is preferably used as the insulator 275 .
  • silicon nitride may be deposited by ALD.
  • the insulator 275 aluminum oxide is deposited by a sputtering method, and silicon nitride is deposited thereover by a PEALD method.
  • the function of suppressing diffusion of water, impurities such as hydrogen, and oxygen may be improved.
  • the oxide 230a, the oxide 230b, the conductive layer 242A, and the conductive layer 242B can be covered with the insulator 275, which has a function of suppressing diffusion of oxygen. Accordingly, direct diffusion of oxygen from the insulator 280 or the like to the insulator 224, the oxide 230a, the oxide 230b, the conductive layer 242A, and the conductive layer 242B in a later step can be reduced.
  • an insulating film to be the insulator 280 is formed on the insulator 275 .
  • the insulating film can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a silicon oxide film may be formed by a sputtering method.
  • the insulator 280 containing excess oxygen can be formed.
  • the hydrogen concentration in the insulator 280 can be reduced by using a sputtering method that does not require molecules containing hydrogen in the deposition gas. Note that heat treatment may be performed before the insulating film is formed.
  • the heat treatment may be performed under reduced pressure, and the insulating film may be formed continuously without exposure to the air.
  • moisture and hydrogen adsorbed to the surface of the insulator 275 or the like can be removed, and the moisture and hydrogen concentrations in the oxides 230a and 230b and the insulator 224 can be reduced.
  • the heat treatment conditions described above can be used for the heat treatment.
  • the insulating film to be the insulator 280 is subjected to CMP treatment to form the insulator 280 with a flat upper surface (see FIGS. 12A to 12D).
  • CMP treatment to form the insulator 280 with a flat upper surface.
  • a silicon nitride film may be formed over the insulator 280 by a sputtering method, for example, and CMP treatment may be performed until the silicon nitride reaches the insulator 280 .
  • part of the insulator 280, part of the insulator 275, part of the conductive layer 242A, and part of the conductive layer 242B are processed to form an opening 258 reaching the oxide 230b.
  • the formation of openings 258 allows conductors 242a1 and 242b1 to be formed from conductive layer 242A and conductors 242a2 and 242b2 to be formed from conductive layer 242B (see FIGS. 13A-13D).
  • a dry etching method or a wet etching method can be used for processing part of the insulator 280, part of the insulator 275, part of the conductive layer 242A, and part of the conductive layer 242B. Processing by the dry etching method is suitable for fine processing. Further, the processing may be performed under different conditions. For example, part of the insulator 280 is processed by a dry etching method, part of the insulator 275 is processed by a wet etching method, and part of the conductive layers 242A and 242B is processed by a dry etching method. may
  • the opening 258 is preferably configured to extend in a direction parallel to the dashed-dotted line A3-A4 (the channel width direction of the transistor or the Y direction shown in FIG. 1A).
  • the conductor 260 which is formed later, can be provided to extend in the above direction and function as a wiring.
  • the opening 258 is preferably formed so as to overlap with the conductor 205 .
  • the width of the opening 258 in the X direction is reflected in the channel length of the transistor 200, so it is preferably fine.
  • the width of the opening 258 in the X direction is 60 nm or less, 50 nm or less, 40 nm or less, 30 nm or less, 20 nm or less, or 10 nm or less, and preferably 1 nm or more, or 5 nm or more.
  • part of the insulator 280, part of the insulator 275, part of the conductive layer 242B, and part of the conductive layer 242A are processed by anisotropic etching. is preferred. In particular, processing by dry etching is preferable because it is suitable for fine processing. Further, the processing may be performed under different conditions.
  • the side surfaces of the conductor 242a and the conductor 242b facing each other correspond to the top surface of the oxide 230b.
  • can be formed to be substantially perpendicular to the Such a configuration can reduce the formation of so-called Loff regions between the regions 230ba and 230bc and between the regions 230bb and 230bc. Therefore, the frequency characteristics of the transistor 200 can be improved, and the operation speed of the semiconductor device according to one embodiment of the present invention can be improved.
  • the side surfaces of the insulator 280, the insulator 275, and the conductor 242 may be tapered, as shown in FIG. 3B, without being limited to the above.
  • the taper angle of insulator 280 may be greater than the taper angle of conductor 242 .
  • the top of oxide 230b may be removed.
  • the etching treatment may cause the impurities to adhere to or diffuse into the side surfaces of the oxide 230a, the top and side surfaces of the oxide 230b, the side surfaces of the conductor 242, the side surfaces of the insulator 280, and the like. be.
  • a step of removing such impurities may be performed.
  • the dry etching may form a damaged region on the surface of the oxide 230b. Such damaged areas may be removed.
  • the impurities include components contained in the insulator 280, the insulator 275, the conductive layer 242B, and the conductive layer 242A, components contained in members used in an apparatus used for forming the opening, and substances used in etching. caused by the components contained in the gas or liquid to be discharged. Examples of such impurities include hafnium, aluminum, silicon, tantalum, fluorine, and chlorine.
  • impurities such as aluminum and silicon may reduce the crystallinity of the oxide 230b. Therefore, impurities such as aluminum and silicon are preferably removed from the surface of oxide 230b and its vicinity. Further, it is preferable that the concentration of the impurity is reduced.
  • the concentration of aluminum atoms on and near the surface of the oxide 230b may be 5.0 atomic % or less, preferably 2.0 atomic % or less, more preferably 1.5 atomic % or less, and 1.0 atomic % or less. Atom % or less is more preferable, and less than 0.3 atomic % is even more preferable.
  • the regions with low crystallinity of the oxide 230b are preferably reduced or removed.
  • the oxide 230b have a layered CAAC structure.
  • the conductor 242a or the conductor 242b and its vicinity function as a drain. That is, it is preferable that the oxide 230b near the lower end of the conductor 242a (conductor 242b) has a CAAC structure. In this manner, even at the drain end portion, which significantly affects the drain breakdown voltage, the region with low crystallinity of the oxide 230b is removed and the CAAC structure is provided. can. In addition, reliability of the transistor 200 can be improved.
  • a cleaning process is performed to remove impurities adhered to the surface of the oxide 230b in the etching process.
  • a cleaning method there are wet cleaning using a cleaning solution (also referred to as wet etching treatment), plasma treatment using plasma, cleaning by heat treatment, and the like, and the above cleaning may be performed in combination as appropriate. Note that the cleaning process may deepen the groove.
  • Wet cleaning may be performed using an aqueous solution obtained by diluting ammonia water, oxalic acid, phosphoric acid, hydrofluoric acid, or the like with carbonated water or pure water, pure water, carbonated water, or the like.
  • aqueous solution obtained by diluting ammonia water, oxalic acid, phosphoric acid, hydrofluoric acid, or the like with carbonated water or pure water, pure water, carbonated water, or the like.
  • ultrasonic cleaning may be performed using these aqueous solutions, pure water, or carbonated water.
  • these washings may be appropriately combined.
  • an aqueous solution obtained by diluting hydrofluoric acid with pure water is sometimes referred to as diluted hydrofluoric acid
  • an aqueous solution obtained by diluting ammonia water with pure water is sometimes referred to as diluted ammonia water.
  • concentration, temperature, and the like of the aqueous solution may be adjusted as appropriate depending on impurities to be removed, the configuration of the semiconductor device to be cleaned, and the like.
  • the ammonia concentration of the diluted ammonia water should be 0.01% or more and 5% or less, preferably 0.1% or more and 0.5% or less.
  • the concentration of hydrogen fluoride in the diluted hydrofluoric acid should be 0.01 ppm or more and 100 ppm or less, preferably 0.1 ppm or more and 10 ppm or less.
  • a frequency of 200 kHz or higher is preferably used for ultrasonic cleaning, and a frequency of 900 kHz or higher is more preferably used. By using the frequency, damage to the oxide 230b and the like can be reduced.
  • the above cleaning treatment may be performed multiple times, and the cleaning liquid may be changed for each cleaning treatment.
  • a treatment using diluted hydrofluoric acid or diluted ammonia water may be performed as the first cleaning treatment
  • a treatment using pure water or carbonated water may be performed as the second cleaning treatment.
  • wet cleaning is performed using diluted ammonia water.
  • impurities attached to the surfaces of the oxides 230a and 230b or diffused inside can be removed. Furthermore, the crystallinity of the oxide 230b can be improved.
  • a heat treatment may be performed after the above etching or after the above cleaning.
  • the heat treatment may be performed at 100° C. or higher and 450° C. or lower, preferably 350° C. or higher and 400° C. or lower.
  • the heat treatment is performed in a nitrogen gas atmosphere, an inert gas atmosphere, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas.
  • heat treatment is preferably performed in an oxygen atmosphere. Accordingly, oxygen can be supplied to the oxides 230a and 230b, and oxygen vacancies can be reduced. Further, by performing such heat treatment, the crystallinity of the oxide 230b can be improved.
  • after heat treatment in an oxygen atmosphere heat treatment may be continuously performed in a nitrogen atmosphere without exposure to the air.
  • the insulating film 253A is an insulating film that becomes the insulator 253 in a later step.
  • the insulating film 253A can be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the insulating film 253A is preferably formed using the ALD method.
  • the insulating film 253A is preferably formed with a thin film thickness, and it is necessary to reduce variations in film thickness.
  • the ALD method is a method of forming a film by alternately introducing a precursor and a reactant (for example, an oxidizing agent).
  • Film thickness can be adjusted.
  • the insulating film 253A needs to be deposited on the bottom and side surfaces of the opening 258 with good coverage.
  • the top and side surfaces of oxide 230 are preferably deposited with good coverage.
  • atomic layers can be deposited one by one on the bottom and side surfaces of the opening 258, so that the insulating film 253A can be formed with good coverage over the opening.
  • ozone (O 3 ), oxygen (O 2 ), water (H 2 O), or the like can be used as an oxidizing agent.
  • oxygen (O 2 ), or the like that does not contain hydrogen can be used as an oxidizing agent.
  • hafnium oxide is deposited by thermal ALD as the insulating film 253A.
  • the microwave treatment refers to treatment using an apparatus having a power supply for generating high-density plasma using microwaves, for example.
  • microwaves refer to electromagnetic waves having a frequency of 300 MHz or more and 300 GHz or less.
  • microwave treatment may be performed at the stage when part of the insulating film 253A is formed.
  • the microwave treatment may be performed after the silicon oxide film or the silicon oxynitride film is formed.
  • Dotted arrows shown in FIGS. 14B to 14D indicate microwaves, high frequencies such as RF, oxygen plasma, or oxygen radicals.
  • a microwave treatment apparatus having a power supply for generating high-density plasma using microwaves, for example.
  • the frequency of the microwave processing device may be 300 MHz or more and 300 GHz or less, preferably 2.4 GHz or more and 2.5 GHz or less, for example, 2.45 GHz.
  • High-density oxygen radicals can be generated by using high-density plasma.
  • the power of the power source for applying microwaves in the microwave processing apparatus may be 1000 W or more and 10000 W or less, preferably 2000 W or more and 5000 W or less.
  • the microwave processing apparatus may have a power supply for applying RF to the substrate side. Further, by applying RF to the substrate side, oxygen ions generated by high-density plasma can be efficiently guided into the oxide 230b.
  • the above microwave treatment is preferably performed under reduced pressure, and the pressure should be 10 Pa or more and 1000 Pa or less, preferably 300 Pa or more and 700 Pa or less.
  • the treatment temperature may be 750°C or lower, preferably 500°C or lower, for example, about 250°C.
  • heat treatment may be continuously performed without exposure to the outside air.
  • the temperature may be 100° C. or higher and 750° C. or lower, preferably 300° C. or higher and 500° C. or lower.
  • the microwave treatment may be performed using oxygen gas and argon gas.
  • the oxygen flow rate ratio (O 2 /(O 2 +Ar)) should be greater than 0% and 100% or less.
  • the oxygen flow ratio (O 2 /(O 2 +Ar)) should be greater than 0% and 50% or less.
  • the oxygen flow ratio (O 2 /(O 2 +Ar)) should be 10% or more and 40% or less.
  • the oxygen flow ratio (O 2 /(O 2 +Ar)) should be 10% or more and 30% or less.
  • microwave treatment is performed in an oxygen-containing atmosphere so that oxygen gas is plasmatized using microwaves or high frequencies such as RF, and the oxygen plasma is turned into a conductor of the oxide 230b. It can act on the region between 242a and conductor 242b.
  • the region 230bc can also be irradiated with microwaves or high frequencies such as RF. That is, microwaves, high frequencies such as RF, oxygen plasma, or the like can be applied to the region 230bc shown in FIG. 3A.
  • the V OH in region 230bc can be disrupted and hydrogen can be removed from region 230bc.
  • VOH contained in the region 230bc can be reduced. Therefore, oxygen vacancies and VOH in the region 230bc can be reduced, and the carrier concentration can be lowered.
  • the oxygen radicals generated by the oxygen plasma By supplying the oxygen radicals generated by the oxygen plasma to the oxygen vacancies formed in the region 230bc, the oxygen vacancies in the region 230bc can be further reduced and the carrier concentration can be lowered.
  • conductors 242a and 242b are provided on the regions 230ba and 230bb shown in FIG. 3A.
  • the conductor 242 preferably functions as a shielding film against the action of microwaves, high frequencies such as RF, oxygen plasma, and the like when microwave treatment is performed in an oxygen-containing atmosphere. Therefore, the conductor 242 preferably has a function of shielding electromagnetic waves of 300 MHz or more and 300 GHz or less, for example, 2.4 GHz or more and 2.5 GHz or less.
  • the conductors 242a and 242b block the effects of microwaves, high frequencies such as RF, and oxygen plasma, so that these effects do not reach the regions 230ba and 230bb. do not have.
  • reduction of V OH and supply of an excessive amount of oxygen do not occur in the regions 230ba and 230bb due to the microwave treatment, so that a decrease in carrier concentration can be prevented.
  • An insulating film 253A having a barrier property against oxygen is provided in contact with side surfaces of the conductors 242a and 242b. Accordingly, formation of an oxide film on the side surfaces of the conductors 242a and 242b due to microwave treatment can be suppressed.
  • the film quality of the insulating film 253A can be improved, the reliability of the transistor 200 is improved.
  • oxygen vacancies and V OH can be selectively removed from the oxide semiconductor region 230bc to make the region 230bc i-type or substantially i-type. Furthermore, excessive supply of oxygen to the regions 230ba and 230bb functioning as a source region or a drain region can be suppressed, and conductivity can be maintained. As a result, variations in the electrical characteristics of the transistor 200 can be suppressed, and variation in the electrical characteristics of the transistor 200 within the substrate surface can be suppressed.
  • heat energy may be directly transmitted to the oxide 230b due to the electromagnetic interaction between the microwave and the molecules in the oxide 230b. This thermal energy may heat the oxide 230b.
  • Such heat treatment is sometimes called microwave annealing. By performing the microwave treatment in an atmosphere containing oxygen, an effect equivalent to that of oxygen annealing may be obtained. Further, when hydrogen is contained in the oxide 230b, it is conceivable that this thermal energy is transmitted to hydrogen in the oxide 230b and thus activated hydrogen is released from the oxide 230b.
  • the microwave treatment may be performed before the insulating film 253A is formed without performing the microwave treatment after the insulating film 253A is formed.
  • the heat treatment may be performed while the reduced pressure state is maintained.
  • hydrogen in the insulating film 253A, the oxide 230b, and the oxide 230a can be removed efficiently.
  • part of the hydrogen may be gettered by the conductors 242 (the conductors 242a and 242b).
  • the step of performing the heat treatment may be repeated a plurality of times while the reduced pressure state is maintained. By repeating the heat treatment, hydrogen in the insulating film 253A, the oxide 230b, and the oxide 230a can be removed more efficiently.
  • the heat treatment temperature is preferably 300° C. or higher and 500° C. or lower.
  • the above-described microwave treatment that is, microwave annealing may serve as the heat treatment. When the oxide 230b and the like are sufficiently heated by microwave annealing, the heat treatment may not be performed.
  • the diffusion of hydrogen, water, impurities, etc. can be suppressed by modifying the film quality of the insulating film 253A by performing microwave processing. Therefore, in a post-process such as formation of a conductive film to be the conductor 260 or a post-treatment such as heat treatment, hydrogen, water, impurities, or the like are diffused into the oxide 230b, the oxide 230a, or the like through the insulator 253. can be suppressed.
  • an insulating film to be the insulator 254 is formed.
  • a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like can be used for forming the insulating film.
  • the insulating film is preferably formed using an ALD method similarly to the insulating film 253A.
  • the insulating film can be formed with a thin film thickness and good coverage.
  • silicon nitride is deposited as the insulating film by the PEALD method.
  • a conductive film to be the conductor 260a and a conductive film to be the conductor 260b are formed in this order.
  • the conductive film to be the conductor 260a and the conductive film to be the conductor 260b can be formed by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • titanium nitride is deposited as a conductive film to be the conductor 260a by an ALD method
  • tungsten is deposited as a conductive film to be the conductor 260b by a CVD method.
  • the insulating film 253A, the insulating film to be the insulator 254, the conductive film to be the conductor 260a, and the conductive film to be the conductor 260b are polished by CMP treatment until the insulator 280 is exposed. That is, portions of the insulating film 253A, the insulating film to be the insulator 254, the conductive film to be the conductor 260a, and the conductive film to be the conductor 260b exposed from the opening 258 are removed. Thus, insulators 253, 254, and conductors 260 (conductors 260a and 260b) are formed in the openings 258 (see FIGS. 15A to 15D).
  • the insulator 253 is provided in contact with the inner walls and side surfaces of the opening 258 overlapping the oxide 230b.
  • Conductor 260 is arranged to fill opening 258 with insulator 253 and insulator 254 interposed therebetween.
  • transistor 200 is formed.
  • heat treatment may be performed under the same conditions as the above heat treatment.
  • the treatment is performed at a temperature of 400° C. for one hour in a nitrogen atmosphere.
  • the concentration of moisture and the concentration of hydrogen in the insulator 280 can be reduced.
  • the insulator 282 may be formed continuously without exposure to the air.
  • an insulator 282 is formed over the insulator 253, the insulator 254, the conductor 260, and the insulator 280 (see FIGS. 16A to 16D).
  • the insulator 282 can be deposited by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the insulator 282 is preferably deposited by a sputtering method.
  • the concentration of hydrogen in the insulator 282 can be reduced by using a sputtering method that does not require molecules containing hydrogen in the deposition gas.
  • aluminum oxide is deposited as the insulator 282 by a pulse DC sputtering method using an aluminum target in an atmosphere containing an oxygen gas.
  • the pulse DC sputtering method By using the pulse DC sputtering method, the film thickness distribution can be made more uniform, and the sputtering rate and film quality can be improved.
  • the RF power applied to the substrate is 1.86 W/cm 2 or less. Preferably, it is 0 W/cm 2 or more and 0.62 W/cm 2 or less. By reducing the RF power, the amount of oxygen injected into the insulator 280 can be suppressed.
  • the insulator 282 may be formed to have a two-layer structure.
  • the lower layer of the insulator 282 is deposited with an RF power of 0 W/cm 2 applied to the substrate, and the upper layer of the insulator 282 is deposited with an RF power of 0.62 W/cm 2 applied to the substrate. .
  • the insulator 282 in an oxygen-containing atmosphere by a sputtering method, oxygen can be added to the insulator 280 while the insulator 280 is being formed.
  • the insulator 280 can contain excess oxygen.
  • the insulator 282 is preferably formed while heating the substrate.
  • part of the insulator 282, part of the insulator 280, and part of the insulator 275 are processed to form an opening 158 reaching the conductor 242b (see FIGS. 17A to 17D).
  • the formation of the opening 158 may be performed using a lithographic method.
  • the shape of the opening 158 in FIG. 17A is square when viewed from above, the shape is not limited to this.
  • the opening may have a circular shape, a substantially circular shape such as an ellipse, a polygonal shape such as a quadrangle, or a polygonal shape such as a quadrangle with rounded corners when viewed from above.
  • the width of the opening 158 in the X direction is preferably fine.
  • the width of the opening 158 in the X direction is 60 nm or less, 50 nm or less, 40 nm or less, 30 nm or less, 20 nm or less, or 10 nm or less, and preferably 1 nm or more, or 5 nm or more.
  • the opening 158 has a large aspect ratio, it is preferable to process part of the insulator 282, part of the insulator 280, and part of the insulator 275 using anisotropic etching.
  • processing by dry etching is preferable because it is suitable for fine processing. Further, the processing may be performed under different conditions.
  • a conductive film 156A is formed to cover the opening 158 and the insulator 282 (see FIGS. 18A to 18D).
  • the conductive film 156A is a conductive film that becomes the conductor 156 in a later step.
  • Conductive film 156A is preferably formed in contact with the side and bottom surfaces of opening 158 having a large aspect ratio. Therefore, the conductive film 156A is preferably formed using a film formation method with good coverage, such as an ALD method or a CVD method. For example, titanium nitride or tantalum nitride may be deposited using the ALD method.
  • the conductive film 156A is processed by lithography to form the conductor 156 (see FIGS. 19A to 19D). A portion of the conductor 156 is thereby formed over the opening 158 and contacts a portion of the upper surface of the insulator 282 .
  • the conductive film 156A may be processed using the CMP method.
  • the opening 158 may be filled with a filler, and CMP treatment may be performed on the filler and the conductive film 156A until the insulator 282 is exposed.
  • the top of the conductor 156 can be shaped to substantially match the top surface of the insulator 282.
  • FIG. The filler may be removed after conductor 156 is formed.
  • an insulating film 153A is formed on the conductor 156 (see FIGS. 20A to 20D).
  • the insulating film 153A is an insulating film that becomes the insulator 153 in a later step.
  • the insulating film 153A is preferably formed in contact with the conductor 156 provided inside the opening 158 having a large aspect ratio. Therefore, the insulating film 153A is preferably formed using a film formation method with good coverage, such as the ALD method or the CVD method.
  • the above-described High-k material can be used for the insulating film 153A.
  • a conductive film 160A to be the conductor 160a and a conductive film 160B to be the conductor 160b are formed in this order.
  • the conductive film 160A is a conductive film that becomes the conductor 160a in a later process
  • the conductive film 160B is a conductive film that becomes the conductor 160b in a later process.
  • Conductive film 160A is preferably formed in contact with insulating film 153A provided inside opening 158 with a large aspect ratio
  • conductive film 160B is preferably formed so as to fill opening 158 . Therefore, the conductive films 160A and 160B are preferably formed using a film formation method with good coverage, such as an ALD method or a CVD method.
  • a film formation method with good coverage such as an ALD method or a CVD method.
  • titanium nitride may be deposited as the conductive film 160A by an ALD method
  • tungsten may be deposited as the conductive film 160B by a CVD method.
  • the average surface roughness of the upper surface of the conductive film 160B may increase as shown in FIGS. 20B to 20D.
  • the conductive film 160B is preferably planarized by CMP (see FIGS. 21A to 21D).
  • CMP see FIGS. 21A to 21D.
  • a silicon oxide film or a silicon oxynitride film may be formed over the conductive film 160B, and the CMP treatment may be performed until the silicon oxide film or the silicon oxynitride film is removed.
  • the insulating film 153A, the conductive film 160A, and the conductive film 160B are processed by lithography to form the insulator 153, the conductor 160a, and the conductor 160b (see FIGS. 22A to 22D).
  • the insulator 153 , the conductor 160 a , and the conductor 160 b are preferably formed so as to cover the side end portions of the conductor 156 .
  • the conductor 160 and the conductor 156 can be separated by the insulator 153, so short-circuiting between the conductor 160 and the conductor 156 can be suppressed.
  • the conductor 160 extending in the A5-A6 direction.
  • the insulator 153 can be extended along with the conductor 160 .
  • the present invention is not limited to this.
  • a structure may be employed in which only the conductive films 160A and 160B are processed and the insulating film 153A is left. In this case, as shown in FIGS. 5A and 5B, a portion of insulator 153 is provided exposed from conductor 160 . Accordingly, since the insulator 153 does not need to be processed, the number of manufacturing steps of the memory device can be reduced and productivity can be improved.
  • the capacitor 100 in which at least part of the conductor 156, the insulator 153, and the conductor 160 are formed in the opening 158 can be formed.
  • an insulator 285 is formed over the insulator 282 and the conductor 160 (see FIGS. 23A to 23D).
  • the insulator 285 can be deposited by a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the insulator 285 is preferably deposited by a sputtering method.
  • the concentration of hydrogen in the insulator 285 can be reduced by using a sputtering method that does not require molecules containing hydrogen in the deposition gas.
  • silicon oxide is deposited as the insulator 285 by a sputtering method.
  • the insulator 212, the insulator 214, the insulator 216, the insulator 222, the insulator 275, the insulator 280, the insulator 282, and the insulator 285 are formed with openings 206 reaching the conductor 209 (FIG. 23A). and FIG. 23B).
  • the formation of the opening may be performed using a lithography method.
  • the shape of the opening is square when viewed from above, but the shape is not limited to this.
  • the opening may have a circular shape, a substantially circular shape such as an ellipse, a polygonal shape such as a quadrangle, or a polygonal shape such as a quadrangle with rounded corners when viewed from above.
  • the openings 206 are formed by, for example, anisotropic etching to expose the upper surface of the conductor 209, and then isotropic etching to form insulators 212, 214, 216, 222, and 275. , the insulator 280, the insulator 282, and the insulator 285 are recessed from the side surface of the conductor 242a.
  • isotropic etching conditions under which the conductor 242 is difficult to etch are used.
  • the anisotropic etching and the isotropic etching be performed continuously without exposure to the atmosphere by changing the conditions in the same etching apparatus.
  • the dry etching method is used for both anisotropic etching and isotropic etching, one or more of conditions such as power supply power, bias power, etching gas flow rate, etching gas type, or pressure is selected. It is possible to switch from anisotropic etching to isotropic etching by changing.
  • etching methods may be used for anisotropic etching and isotropic etching.
  • a dry etching method can be used for anisotropic etching
  • a wet etching method can be used for isotropic etching.
  • a conductive film to be the conductor 240a and a conductive film to be the conductor 240b are formed in this order.
  • These conductive films can be formed using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a conductive film that serves as the conductor 240a preferably has a function of suppressing permeation of impurities such as water and hydrogen. It is preferable to use a film formation method with good coverage, such as ALD, for forming the conductive film to be the conductor 240a.
  • a film formation method with good coverage such as ALD
  • tantalum nitride, titanium nitride, or the like can be used, for example.
  • a film formation method with good embedding properties such as a CVD method, for film formation of the conductive film that becomes the conductor 240b.
  • a film formation method with good embedding properties such as a CVD method
  • tungsten, molybdenum, copper, or the like can be used for the conductive film to be the conductor 240b.
  • part of the conductive film to be the conductor 240a and part of the conductive film to be the conductor 240b are removed, and the top surface of the insulator 285 is exposed.
  • these conductive films remain only in the openings 206, so that conductors 240 (conductors 240a and 240b) with flat top surfaces can be formed (see FIGS. 1A to 1D).
  • part of the top surface of the insulator 285 is removed by the CMP treatment in some cases.
  • a semiconductor device including the transistor 200 and the capacitor 100 illustrated in FIGS. 1A to 1D can be manufactured. 8A to 23D, by using the method for manufacturing a semiconductor device described in this embodiment, the number of steps for manufacturing a semiconductor device including the capacitor 100 and the transistor 200 can be reduced.
  • the method for forming the insulator 224, the oxide 230a, the oxide 230b, the conductive layer 242A, and the conductive layer 242B is not limited to the above. Alternative methods of forming insulator 224, oxide 230a, oxide 230b, conductive layer 242A, and conductive layer 242B are described below.
  • the steps up to forming the insulating film 224Af, the oxide film 230Af, and the oxide film 230Bf are the same as above.
  • the insulating film 224Af, the oxide film 230Af, and the oxide film 230Bf are processed into an island shape by a lithography method to form the insulator 224, the oxide 230a, and the oxide 230b (FIGS. 24A to 24D). reference).
  • the insulator 224, the oxide 230a, and the oxide 230b are formed so as to overlap with the conductor 205 at least partially.
  • a dry etching method or a wet etching method can be used for the above processing. Processing by the dry etching method is suitable for fine processing.
  • the insulating film 224Af, the oxide film 230Af, and the oxide film 230Bf may be processed under different conditions.
  • a conductive film 242Af and a conductive film 242Bf are formed in this order over the insulator 222 and the oxide 230b (see FIGS. 25A to 25D).
  • the description of FIGS. 10A to 10D can be referred to for the method for forming the conductive films 242Af and 242Bf.
  • the conductive films 242Af and 242Bf are processed by lithography to form island-shaped conductive layers 242A and 242B (see FIGS. 11A to 11D). Note that openings may be formed when the conductive films 242Af and 242Bf are processed into an island shape.
  • processing of the insulator 224, the oxides 230a, and 230b and processing of the conductive layers 242A and 242B can be performed independently.
  • ⁇ Microwave processing device> A microwave processing apparatus that can be used in the above method for manufacturing a semiconductor device is described below.
  • FIG. 26 the configuration of a manufacturing apparatus in which impurities are less mixed when manufacturing a semiconductor device or the like will be described with reference to FIGS. 26 to 29.
  • FIG. 26 the configuration of a manufacturing apparatus in which impurities are less mixed when manufacturing a semiconductor device or the like will be described with reference to FIGS. 26 to 29.
  • FIG. 26 schematically shows a top view of a single-wafer multi-chamber manufacturing apparatus 2700.
  • the manufacturing apparatus 2700 includes an atmosphere-side substrate supply chamber 2701 having a cassette port 2761 for accommodating substrates and an alignment port 2762 for aligning substrates, and an atmosphere-side substrate transfer chamber for transferring substrates from the atmosphere-side substrate supply chamber 2701 .
  • the atmospheric side substrate transfer chamber 2702 is connected to the load lock chamber 2703a and the unload lock chamber 2703b, the load lock chamber 2703a and the unload lock chamber 2703b are connected to the transfer chamber 2704, and the transfer chamber 2704 is connected to the chamber 2706a. , chamber 2706b, chamber 2706c and chamber 2706d.
  • a gate valve GV is provided at the connecting portion of each chamber, and each chamber can be independently held in a vacuum state except for the atmosphere-side substrate supply chamber 2701 and the atmosphere-side substrate transfer chamber 2702 .
  • the atmosphere-side substrate transfer chamber 2702 is provided with a transfer robot 2763a
  • the transfer chamber 2704 is provided with a transfer robot 2763b. The substrate can be transported within the manufacturing apparatus 2700 by the transport robot 2763a and the transport robot 2763b.
  • the back pressure (total pressure) of the transfer chamber 2704 and each chamber is, for example, 1 ⁇ 10 ⁇ 4 Pa or less, preferably 3 ⁇ 10 ⁇ 5 Pa or less, more preferably 1 ⁇ 10 ⁇ 5 Pa or less.
  • the partial pressure of gas molecules (atoms) having a mass-to-charge ratio (m/z) of 18 in the transfer chamber 2704 and each chamber is, for example, 3 ⁇ 10 ⁇ 5 Pa or less, preferably 1 ⁇ 10 ⁇ 5 Pa or less. and more preferably 3 ⁇ 10 ⁇ 6 Pa or less.
  • the partial pressure of gas molecules (atoms) having an m/z of 28 in the transfer chamber 2704 and each chamber is, for example, 3 ⁇ 10 ⁇ 5 Pa or less, preferably 1 ⁇ 10 ⁇ 5 Pa or less, more preferably 3 ⁇ 10 ⁇ 5 Pa or less. ⁇ 10 ⁇ 6 Pa or less.
  • the partial pressure of gas molecules (atoms) with m/z of 44 in the transfer chamber 2704 and each chamber is, for example, 3 ⁇ 10 ⁇ 5 Pa or less, preferably 1 ⁇ 10 ⁇ 5 Pa or less, more preferably 3 ⁇ 10 ⁇ 5 Pa or less. ⁇ 10 ⁇ 6 Pa or less.
  • the total pressure and partial pressure in the transfer chamber 2704 and each chamber can be measured using an ionization vacuum gauge, a mass spectrometer, or the like.
  • the transfer chamber 2704 and each chamber have a structure with little external or internal leakage.
  • the leak rate of the transfer chamber 2704 is 1 ⁇ 10 0 Pa/min or less, preferably 5 ⁇ 10 ⁇ 1 Pa/min or less.
  • the leak rate of each chamber is 1 ⁇ 10 ⁇ 1 Pa/min or less, preferably 5 ⁇ 10 ⁇ 2 Pa/min or less.
  • the leak rate can be derived from the total pressure and partial pressure measured using an ionization vacuum gauge, mass spectrometer, or the like. For example, it may be derived from the total pressure 10 minutes after the start of vacuuming with a vacuum pump such as a turbo-molecular pump and the total pressure 10 minutes after the valve is closed.
  • the total pressure after 10 minutes from the start of the evacuation may be an average value obtained by measuring the total pressure a plurality of times.
  • the leak rate depends on external and internal leaks.
  • An external leak is an inflow of gas from outside the vacuum system due to a minute hole, poor seal, or the like.
  • Internal leaks result from leaks from partitions such as valves in the vacuum system or from released gas from internal components. In order to keep the leak rate below the above numerical value, it is necessary to take measures against both external and internal leaks.
  • the transfer chamber 2704 and the opening/closing parts of each chamber may be sealed with metal gaskets.
  • Metal gaskets are preferably made of metal coated with iron fluoride, aluminum oxide, or chromium oxide. Metal gaskets have higher adhesion than O-rings and can reduce external leaks.
  • passivated metal coated with iron fluoride, aluminum oxide, chromium oxide, or the like it is possible to suppress released gas containing impurities released from the metal gasket, thereby reducing internal leaks.
  • aluminum, chromium, titanium, zirconium, nickel, or vanadium, which emits less gas containing impurities is used as a member constituting the manufacturing apparatus 2700 .
  • an alloy containing iron, chromium, nickel, or the like may be coated with the aforementioned metal containing impurities and emitting less gas. Alloys containing iron, chromium, nickel, and the like are rigid, heat resistant, and workable.
  • the surface unevenness of the member is reduced by polishing or the like in order to reduce the surface area, the emitted gas can be reduced.
  • the members of the manufacturing apparatus 2700 described above may be coated with iron fluoride, aluminum oxide, chromium oxide, or the like.
  • the members of the manufacturing apparatus 2700 are preferably made of metal as much as possible. It is advisable to thinly coat with chromium or the like.
  • the adsorbate existing in the transfer chamber 2704 and each chamber does not affect the pressure of the transfer chamber 2704 and each chamber because it is adsorbed on the inner wall or the like, but it is a cause of gas release when the transfer chamber 2704 and each chamber is evacuated. becomes. Therefore, although there is no correlation between the leak rate and the evacuation speed, it is important to use a pump with a high evacuation capacity to desorb as much as possible the adsorbate existing in the transfer chamber 2704 and each chamber and to evacuate them in advance.
  • the transfer chamber 2704 and each chamber may be baked in order to facilitate the desorption of the adsorbate. By baking, the desorption speed of the adsorbate can be increased by about ten times. Baking may be performed at 100° C.
  • the desorption speed of water and the like which is difficult to desorb only by exhausting, can be further increased.
  • the desorption speed of the adsorbate can be further increased.
  • an inert gas such as a heated noble gas, oxygen, or the like to increase the pressure in the transfer chamber 2704 and each chamber, and then evacuate the transfer chamber 2704 and each chamber again after a certain period of time.
  • an inert gas or oxygen having a temperature of 40° C. or more and 400° C. or less, preferably 50° C. or more and 200° C.
  • the pressure is preferably 1 Pa or more and 1 kPa or less, more preferably 5 Pa or more and 100 Pa or less, and the pressure is maintained for 1 minute or more and 300 minutes or less, preferably 5 minutes or more and 120 minutes or less.
  • the transfer chamber 2704 and each chamber are evacuated for a period of 5 to 300 minutes, preferably 10 to 120 minutes.
  • the chamber 2706b and the chamber 2706c are, for example, chambers capable of subjecting an object to be processed to microwave processing. Note that the chamber 2706b and the chamber 2706c are different only in the atmosphere when the microwave treatment is performed. Since other configurations are common, they will be collectively described below.
  • the chamber 2706b and the chamber 2706c have a slot antenna plate 2808, a dielectric plate 2809, a substrate holder 2812 and an exhaust port 2819. Further, outside the chambers 2706b and 2706c, etc., there are a gas supply source 2801, a valve 2802, a high frequency generator 2803, a waveguide 2804, a mode converter 2805, a gas pipe 2806, and a waveguide 2807. , a matching box 2815 , a high frequency power supply 2816 , a vacuum pump 2817 and a valve 2818 are provided.
  • a high frequency generator 2803 is connected to a mode converter 2805 via a waveguide 2804 .
  • Mode converter 2805 is connected to slot antenna plate 2808 via waveguide 2807 .
  • Slot antenna plate 2808 is placed in contact with dielectric plate 2809 .
  • gas supply source 2801 is connected to mode converter 2805 via valve 2802 .
  • Gas is sent to chambers 2706b and 2706c by gas pipe 2806 passing through mode converter 2805, waveguide 2807 and dielectric plate 2809.
  • the vacuum pump 2817 has a function of exhausting gas and the like from the chambers 2706b and 2706c through the valve 2818 and the exhaust port 2819 .
  • the high-frequency power supply 2816 is connected to the substrate holder 2812 through the matching box 2815 .
  • the substrate holder 2812 has a function of holding the substrate 2811. For example, it has a function of electrostatically chucking or mechanically chucking the substrate 2811 . It also functions as an electrode to which power is supplied from the high frequency power supply 2816 . It also has a heating mechanism 2813 inside and has a function of heating the substrate 2811 .
  • the vacuum pump 2817 for example, a dry pump, a mechanical booster pump, an ion pump, a titanium sublimation pump, a cryopump, a turbomolecular pump, or the like can be used. Also, in addition to the vacuum pump 2817, a cryotrap may be used. The use of a cryopump and a cryotrap is particularly preferable because water can be discharged efficiently.
  • the heating mechanism 2813 for example, a heating mechanism that heats using a resistance heating element or the like may be used.
  • a heating mechanism that heats by heat conduction or heat radiation from a medium such as heated gas may be used.
  • RTA Rapid Thermal Annealing
  • GRTA Gas Rapid Thermal Annealing
  • LRTA Low Rapid Thermal Annealing
  • GRTA performs heat treatment using high temperature gas.
  • An inert gas is used as the gas.
  • the gas supply source 2801 may be connected to the refiner via a mass flow controller. It is preferable to use a gas having a dew point of ⁇ 80° C. or lower, preferably ⁇ 100° C. or lower.
  • a gas having a dew point of ⁇ 80° C. or lower preferably ⁇ 100° C. or lower.
  • oxygen gas, nitrogen gas, and noble gas such as argon gas may be used.
  • dielectric plate 2809 for example, silicon oxide (quartz), aluminum oxide (alumina), yttrium oxide (yttria), or the like may be used. Further, another protective layer may be formed on the surface of dielectric plate 2809 . As the protective layer, magnesium oxide, titanium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, silicon oxide, aluminum oxide, yttrium oxide, or the like may be used. Since the dielectric plate 2809 will be exposed to a particularly high-density region of the high-density plasma 2810, which will be described later, damage can be mitigated by providing a protective layer. As a result, an increase in particles during processing can be suppressed.
  • the high-frequency generator 2803 has a function of generating microwaves of, for example, 0.3 GHz to 3.0 GHz, 0.7 GHz to 1.1 GHz, or 2.2 GHz to 2.8 GHz.
  • a microwave generated by the high frequency generator 2803 is transmitted to the mode converter 2805 via the waveguide 2804 .
  • the microwave transmitted as TE mode is converted into TEM mode.
  • the microwave is transmitted to slot antenna plate 2808 via waveguide 2807 .
  • Slot antenna plate 2808 is provided with a plurality of slot holes, and microwaves pass through the slot holes and dielectric plate 2809 .
  • an electric field can be generated below the dielectric plate 2809 to generate high density plasma 2810 .
  • Ions and radicals according to the gas species supplied from the gas supply source 2801 are present in the high-density plasma 2810 . For example, there are oxygen radicals.
  • the ions and radicals generated by the high-density plasma 2810 can modify the film on the substrate 2811 .
  • the high-frequency power supply 2816 for example, an RF (Radio Frequency) power supply with frequencies such as 13.56 MHz and 27.12 MHz may be used.
  • RF Radio Frequency
  • oxygen radical treatment using high-density plasma 2810 can be performed.
  • the chamber 2706a and the chamber 2706d are, for example, chambers capable of irradiating an object to be processed with electromagnetic waves.
  • the only difference between the chamber 2706a and the chamber 2706d is the type of electromagnetic waves. Since there are many common parts in other configurations, they will be collectively described below.
  • the chambers 2706 a and 2706 d have one or more lamps 2820 , substrate holders 2825 , gas inlets 2823 and exhaust ports 2830 . Also, a gas supply source 2821, a valve 2822, a vacuum pump 2828, and a valve 2829 are provided outside the chambers 2706a and 2706d.
  • a gas supply source 2821 is connected to a gas inlet 2823 via a valve 2822 .
  • Vacuum pump 2828 is connected to exhaust port 2830 through valve 2829 .
  • the lamp 2820 is arranged facing the substrate holder 2825 .
  • the substrate holder 2825 has the function of holding the substrate 2824 . Further, the substrate holder 2825 has a heating mechanism 2826 inside and has a function of heating the substrate 2824 .
  • a light source having a function of emitting electromagnetic waves such as visible light or ultraviolet light
  • a light source having a function of emitting an electromagnetic wave having a peak wavelength of 10 nm to 2500 nm, 500 nm to 2000 nm, or 40 nm to 340 nm may be used.
  • a light source such as a halogen lamp, a metal halide lamp, a xenon arc lamp, a carbon arc lamp, a high pressure sodium lamp, or a high pressure mercury lamp may be used.
  • the electromagnetic waves radiated from the lamp 2820 can be partially or wholly absorbed by the substrate 2824 to modify the film or the like on the substrate 2824 .
  • defects can be created or reduced, or impurities can be removed. Note that if the substrate 2824 is heated while the substrate 2824 is heated, defects can be efficiently generated or reduced, or impurities can be removed.
  • electromagnetic waves radiated from the lamps 2820 may cause the substrate holder 2825 to generate heat to heat the substrate 2824 .
  • the heating mechanism 2826 may not be provided inside the substrate holder 2825 .
  • the vacuum pump 2828 refers to the description of the vacuum pump 2817.
  • the heating mechanism 2826 the description of the heating mechanism 2813 is referred to.
  • the gas supply source 2821 the description of the gas supply source 2801 is referred to.
  • the microwave processing device that can be used in this embodiment is not limited to the above.
  • a microwave processing device 2900 shown in FIG. 29 can be used.
  • Microwave processing apparatus 2900 has quartz tube 2901 , exhaust port 2819 , gas supply source 2801 , valve 2802 , high frequency generator 2803 , waveguide 2804 , gas pipe 2806 , vacuum pump 2817 and valve 2818 .
  • the microwave processing apparatus 2900 also has a substrate holder 2902 that holds a plurality of substrates 2811 (2811_1 to 2811_n, where n is an integer of 2 or more) inside the quartz tube 2901 . Further, the microwave processing apparatus 2900 may have heating means 2903 outside the quartz tube 2901 .
  • the microwave generated by the high-frequency generator 2803 is applied to the substrate provided inside the quartz tube 2901 through the waveguide 2804 .
  • a vacuum pump 2817 is connected to an exhaust port 2819 via a valve 2818 and can adjust the pressure inside the quartz tube 2901 .
  • a gas supply source 2801 is also connected to a gas pipe 2806 via a valve 2802 so that a desired gas can be introduced into the quartz pipe 2901 .
  • the heating means 2903 can heat the substrate 2811 in the quartz tube 2901 to a desired temperature. Alternatively, the heating means 2903 may heat the gas supplied from the gas supply source 2801 .
  • the microwave treatment apparatus 2900 heat treatment and microwave treatment can be performed on the substrate 2811 at the same time. Further, microwave treatment can be performed after the substrate 2811 is heated. Further, heat treatment can be performed after microwave treatment is performed on the substrate 2811 .
  • All of the substrates 2811_1 to 2811_n may be processing substrates for forming semiconductor devices or memory devices, or some of the substrates may be dummy substrates.
  • the substrates 2811_1 and 2811_n may be dummy substrates, and the substrates 2811_2 to 2811_n ⁇ 1 may be processing substrates.
  • the substrates 2811_1, 2811_2, 2811_n ⁇ 1, and 2811_n may be dummy substrates, and the substrates 2811_3 to 2811_n ⁇ 2 may be processing substrates.
  • the use of a dummy substrate is preferable because a plurality of substrates to be processed can be uniformly processed during microwave treatment or heat treatment, and variations among the substrates to be processed can be reduced.
  • placing a dummy substrate on the processing substrate closest to the high-frequency generator 2803 and the waveguide 2804 is preferable because direct exposure of the processing substrate to microwaves can be suppressed.
  • FIG. 30A shows a top view of a semiconductor device.
  • FIG. 30B is a cross-sectional view corresponding to the portion indicated by the dashed-dotted line of A1-A2 shown in FIG. 30A.
  • FIG. 30C is a cross-sectional view corresponding to the portion indicated by the dashed-dotted line A3-A4 in FIG. 30A.
  • FIG. 30D is a cross-sectional view corresponding to the portion indicated by the dashed-dotted line A5-A6 in FIG. 30A.
  • the top view of FIG. 30A omits some elements for clarity of illustration.
  • the semiconductor device shown in FIGS. 30A to 30D is a modification of the semiconductor device shown in FIGS. 1A to 1D.
  • the semiconductor devices shown in FIGS. 30A to 30D are different from the semiconductor devices shown in FIGS. 1A to 1D in that insulators 283 and 221 are provided.
  • the insulator 283 is provided between the insulator 282 and the insulator 285 . In this case, part of the conductor 156 and part of the insulator 153 are in contact with the top surface of the insulator 283 .
  • An insulator having a function of suppressing diffusion of hydrogen is preferably used as the insulator 283 . Accordingly, diffusion of hydrogen into the transistor 200 from above the insulator 283 can be suppressed.
  • an insulator that can be used for the insulator 275 described above may be used as the insulator 283 .
  • silicon nitride deposited by a sputtering method may be used as the insulator 283 .
  • a silicon nitride film with high density can be formed.
  • silicon nitride deposited by a PEALD method or a CVD method may be stacked over silicon nitride deposited by a sputtering method.
  • the insulator 282 having a function of capturing impurities such as hydrogen in contact with the insulator 280 in a region sandwiched between the insulator 212 and the insulator 283, hydrogen and the like contained in the insulator 280 and the like can be removed. Impurities can be trapped and the amount of hydrogen in the region can be made constant.
  • the transistor 200 shown in FIGS. 30A to 30D shows a structure in which the insulator 283 is provided as a single layer, the present invention is not limited to this.
  • the insulator 283 may be provided as a stacked structure of two or more layers.
  • a silicon nitride film is formed as a lower layer of the insulator 283 by a sputtering method, and a silicon nitride film is formed as an upper layer of the insulator 283 by an ALD method.
  • the hydrogen concentration in the lower layer of the insulator 283 can be reduced by using a sputtering method that does not require molecules containing hydrogen in the deposition gas.
  • a film formed by an ALD method with good coverage is used to block the overlapping portion of the pinhole or discontinuity. be able to.
  • the insulator 283 has a two-layer laminated structure, part of the top surface of the upper layer of the insulator 283 may be removed. Also, it may be difficult to clearly detect the boundary between the upper layer and the lower layer of the insulator 283 .
  • the insulator 221 is provided between the insulator 216 and the conductor 205 and the insulator 222 .
  • the insulator 221 preferably has a function of suppressing diffusion of hydrogen. Accordingly, diffusion of hydrogen into the transistor 200 from below the insulator 221 can be suppressed.
  • the insulator 221 can also function as the insulator 212 . In such a case, the structure without the insulator 212 can simplify the manufacturing process of the semiconductor device and improve productivity.
  • an insulator that can be used for the insulator 275 described above may be used as the insulator 221 .
  • silicon nitride deposited by an ALD method especially a PEALD method
  • the insulator 221 can be deposited with good coverage even when unevenness is formed between the insulator 216 and the conductor 205.
  • FIG. Therefore, formation of a pinhole, a disconnection, or the like in the insulator 222 formed over the insulator 221 can be suppressed.
  • An insulator having a function of suppressing diffusion of hydrogen may be provided between the insulator 222 and the insulator 224 . Accordingly, diffusion of hydrogen into the transistor 200 from below the insulator can be suppressed.
  • the conductor 205 may have a three-layer laminated structure of a conductor 205a, a conductor 205b, and a conductor 205c.
  • the conductor 205c is provided in contact with the upper surface of the conductor 205b.
  • a structure in which the side surface of the conductor 205c is in contact with the conductor 205a may be employed.
  • the upper surface of the conductor 205c and the uppermost portion of the conductor 205a may be aligned or substantially aligned.
  • the conductor 205c preferably uses a conductive material that has a function of reducing the diffusion of hydrogen.
  • the conductor 205b can be wrapped with the conductor 205a and the conductor 205c, so that impurities such as hydrogen contained in the conductor 205b diffuse into the oxide 230 through the insulators 216, 224, and the like. can prevent you from doing it.
  • a conductive material having a function of suppressing diffusion of oxygen for the conductors 205a and 205c, it is possible to suppress oxidation of the conductor 205b and a decrease in conductivity.
  • OS transistor such as the transistor 200 has little change in electrical characteristics due to radiation irradiation, that is, it has high resistance to radiation, so it can be suitably used in an environment where radiation may be incident.
  • OS transistors can be suitably used when used in outer space.
  • the OS transistor can be used as a transistor included in a semiconductor device provided in a space shuttle, an artificial satellite, a space probe, or the like.
  • Radiation includes, for example, X-rays, neutron beams, and the like.
  • outer space refers to, for example, an altitude of 100 km or more, but the outer space described in this specification may include the thermosphere, the mesosphere, and the stratosphere.
  • the OS transistor can be used as a transistor that constitutes a semiconductor device provided in a nuclear power plant, a radioactive waste disposal site, or a working robot in a disposal site.
  • it can be suitably used for a transistor that constitutes a semiconductor device provided in a remote-controlled robot that is remotely controlled for dismantling nuclear reactor facilities, retrieving nuclear fuel or fuel debris, and conducting field surveys in spaces with a large amount of radioactive materials.
  • a novel transistor can be provided according to one embodiment of the present invention.
  • a semiconductor device that can be miniaturized or highly integrated can be provided.
  • a semiconductor device with favorable frequency characteristics can be provided.
  • a semiconductor device with high operating speed can be provided.
  • a semiconductor device with little variation in transistor characteristics can be provided.
  • a semiconductor device with favorable electrical characteristics can be provided.
  • a highly reliable semiconductor device can be provided.
  • a semiconductor device with large on-current can be provided.
  • a semiconductor device with high field effect mobility can be provided.
  • a semiconductor device with low power consumption can be provided.
  • a semiconductor device including the transistor 200 and the capacitor 100 described in this embodiment can be used as a memory cell of a memory device.
  • a transistor 200 is an OS transistor. Since the transistor 200 has a low off-state current, when it is used for a memory device, stored data can be retained for a long time. That is, since the refresh operation is not required or the frequency of the refresh operation is extremely low, the power consumption of the memory device can be sufficiently reduced. Further, since the transistor 200 has high frequency characteristics, reading and writing of the memory device can be performed at high speed.
  • a memory cell array can be formed by arranging semiconductor devices each including the transistor 200 and the capacitor 100, which can be used as memory cells, in a matrix.
  • FIG. 31A shows an example in which a plurality of memory cells are arranged in the A1-A2 direction.
  • FIG. 31A shows a configuration in which the conductor 160 of the adjacent capacitive element 100a and the conductor 160 of the capacitative element 100b are separated
  • the present invention is not limited to this.
  • the conductor 160 of the adjacent capacitor element 100a and the conductor 160 of the adjacent capacitor element 100b may be integrated.
  • the insulator 153 of the adjacent capacitor element 100a and the insulator 153 of the adjacent capacitor element 100b may be integrated.
  • FIG. 32 shows a cross-sectional view of a structure in which a plurality of layers having the above memory cells are stacked.
  • the memory device has a structure in which a plurality of layers including memory cells are included, each memory cell includes the transistor 200 and the capacitor 100, and the plurality of layers are stacked.
  • the memory device has a structure in which a plurality of layers each having at least two memory cells are included and the layers are stacked.
  • a memory cell including the transistor 200a and the capacitor 100a is sometimes referred to as a first memory cell
  • a memory cell including the transistor 200b and the capacitor 100b is sometimes referred to as a second memory cell.
  • FIG. 32 shows a structure in which a plurality of layers having memory cells are stacked
  • the structure is not limited to this.
  • a plurality of layers including the memory cell arrays shown in FIG. 31A or 31B may be stacked.
  • the memory device has a plurality of layers including memory cell arrays, the memory cell arrays are provided with memory cells each having the transistor 200 and the capacitor 100, and the plurality of layers are stacked.
  • each of the multiple layers of the storage device has openings 206 .
  • each of the multiple layers of the memory device has an opening 206 between the first memory cell and the second memory cell. More specifically, each of the multiple layers of the memory device has an opening 206 between transistor 200a and transistor 200b.
  • the openings 206 included in each of the multiple layers have overlapping regions. Note that since the openings 206 of the plurality of layers each have an overlapping region, the openings 206 of the plurality of layers can be formed collectively. Therefore, manufacturing steps of the memory device can be simplified and productivity can be improved.
  • conductors 240 are arranged in the openings 206 of each of the plurality of layers. At this time, the conductor 240 is electrically connected to the transistors 200a and 200b included in each of the layers. Note that in this embodiment, the transistor 200a and the transistor 200b share the conductor 242a. Therefore, it can be said that the conductor 240 is electrically connected to the conductor 242a included in each of the plurality of layers.
  • the contact resistance can be reduced. As a result, the operating speed of the storage device according to the present invention can be improved and power consumption can be reduced.
  • an insulator is preferably provided on the conductor 240 in the uppermost layer of the plurality of layers.
  • an insulator that can be used for the insulator 285, the insulator 282, or the like may be provided.
  • the cells can be integrated and arranged without increasing the area occupied by the memory cell array. That is, a 3D memory cell array can be configured.
  • a memory device having a memory cell array will be described in detail in later embodiments.
  • Embodiment 2 In this embodiment, a structure example of a memory device using the semiconductor device described in the above embodiment as a memory cell will be described. In this embodiment, a configuration example of a memory device in which a layer having a functional circuit having a function of amplifying and outputting a data potential held in a memory cell is provided between stacked layers having memory cells. explain.
  • FIG. 33 is a block diagram illustrating a configuration example of a storage device 300 according to one embodiment of the present invention.
  • a memory device 300 shown in FIG. 33 has a drive circuit 21 and a memory array 20 .
  • Memory array 20 has a functional layer 50 having a plurality of memory cells 10 and a plurality of functional circuits 51 .
  • FIG. 33 shows an example in which the memory array 20 has a plurality of memory cells 10 arranged in a matrix of m rows and n columns (m and n are integers equal to or greater than 2). Further, the functional circuit 51 is provided for each wiring BL functioning as a bit line, for example. FIG. 33 shows an example having a plurality of functional circuits 51 provided corresponding to n wirings BL.
  • the memory cell 10 on the 1st row and 1st column is indicated as memory cell 10[1,1] and the memory cell 10 on the mth row and nth column is indicated as memory cell 10[m,n].
  • an arbitrary row may be referred to as i row.
  • j column when indicating an arbitrary column, it may be described as j column. Therefore, i is an integer of 1 or more and m or less, and j is an integer of 1 or more and n or less.
  • the memory cell 10 in the i-th row and the j-th column is indicated as the memory cell 10[i,j].
  • the memory array 20 also includes m wirings WL extending in the row direction, m wirings PL extending in the row direction, and n wirings BL extending in the column direction.
  • the wiring WL provided in the first line (first row) is indicated as the wiring WL[1]
  • the wiring WL provided in the m-th line (m-th row) is indicated as the wiring WL[m].
  • the wiring PL provided in the first line (first row) is indicated as a wiring PL[1]
  • the wiring PL provided in the m-th line (m-th row) is indicated as a wiring PL[m].
  • the wiring BL provided in the first line (first column) is referred to as the wiring BL[1]
  • the wiring BL provided in the nth line (nth column) is referred to as the wiring BL[n].
  • a plurality of memory cells 10 provided in the i-th row are electrically connected to the i-th wiring WL (wiring WL[i]) and the i-th wiring PL (wiring PL[i]).
  • a plurality of memory cells 10 provided in the j-th column are electrically connected to a wiring BL in the j-th column (wiring BL[j]).
  • DOSRAM (registered trademark) (Dynamic Oxide Semiconductor Random Access Memory) can be applied to the memory array 20 .
  • a DOSRAM is a RAM having 1T (transistor) and 1C (capacitor) type memory cells, and is a memory in which an access transistor is an OS transistor. The current flowing between the source and the drain of the OS transistor in the off state, that is, the leak current is extremely small.
  • a DOSRAM can hold electric charge corresponding to data held in a capacitive element (capacitor) for a long time by turning off (non-conducting) an access transistor. Therefore, a DOSRAM can reduce the frequency of refresh operations compared to a DRAM composed of transistors having silicon in the channel formation region (hereinafter also referred to as "Si transistors"). As a result, low power consumption can be achieved.
  • the memory cells 10 can be stacked by arranging the OS transistors in a stacked manner as described in Embodiment 1 and the like.
  • a plurality of memory arrays 20[1] to 20[m] can be stacked.
  • the memory array 20[1] to 20[m] included in the memory array 20 in the direction perpendicular to the surface of the substrate on which the driver circuit 21 is provided, the memory density of the memory cells 10 can be improved.
  • the memory array 20 can be fabricated using the same manufacturing process repeatedly in the vertical direction.
  • the storage device 300 can reduce the manufacturing cost of the memory array 20 .
  • the wiring BL functions as a bit line for writing and reading data.
  • the wiring WL functions as a word line for controlling on/off (conducting state or non-conducting state) of an access transistor functioning as a switch.
  • the wiring PL has a function of transmitting a backgate potential to the backgate of the OS transistor, which is an access transistor, in addition to functioning as a constant potential line connected to the capacitor. Note that a wiring CL (not shown) can be separately provided as a wiring for transmitting the back gate potential.
  • the memory cells 10 included in each of the memory arrays 20[1] to 20[m] are connected to the functional circuit 51 via the wiring BL.
  • the wiring BL can be arranged in a direction perpendicular to the surface of the substrate on which the drive circuit 21 is provided.
  • the functional circuit 51 has a function of amplifying the data potential held in the memory cell 10 and outputting it to the sense amplifier 46 of the driving circuit 21 via the wiring GBL (not shown) described later. With this structure, a slight potential difference of the wiring BL can be amplified when data is read.
  • the wiring GBL can be arranged in the direction perpendicular to the surface of the substrate on which the driver circuit 21 is provided, like the wiring BL.
  • the wiring BL is provided in contact with the semiconductor layer of the transistor included in the memory cell 10 .
  • the wiring BL is provided in contact with a region functioning as a source or a drain of the semiconductor layer of the transistor included in the memory cell 10 .
  • the wiring BL is provided in contact with a conductor provided in contact with a region functioning as a source or a drain of the semiconductor layer of the transistor included in the memory cell 10 . That is, the wiring BL can be said to be a wiring for electrically connecting one of the source or the drain of the transistor of the memory cell 10 in each layer of the memory array 20 and the functional circuit 51 in the vertical direction.
  • the memory array 20 can be provided over the driving circuit 21 .
  • the signal propagation distance between the drive circuit 21 and the memory array 20 can be shortened. Therefore, the resistance and parasitic capacitance between the drive circuit 21 and the memory array 20 are reduced, and power consumption and signal delay can be reduced.
  • miniaturization of the storage device 300 can be realized.
  • the functional circuit 51 is composed of OS transistors in the same way as the transistors of the memory cells 10 of the DOSRAM, so that it can be freely placed on circuits using Si transistors like the memory arrays 20[1] to 20[m]. Since they can be arranged, they can be easily integrated. Since the function circuit 51 is configured to amplify the signal, circuits such as the sense amplifier 46 in the subsequent stage can be miniaturized, so that the memory device 300 can be miniaturized.
  • the drive circuit 21 has a PSW 22 (power switch), a PSW 23, and a peripheral circuit 31.
  • the peripheral circuit 31 has a peripheral circuit 41 , a control circuit 32 and a voltage generation circuit 33 .
  • each circuit, each signal and each voltage can be appropriately discarded as needed. Alternatively, other circuits or other signals may be added.
  • Signal BW, signal CE, signal GW, signal CLK, signal WAKE, signal ADDR, signal WDA, signal PON1, and signal PON2 are input signals from the outside, and signal RDA is an output signal to the outside.
  • Signal CLK is a clock signal.
  • the signal BW, the signal CE, and the signal GW are control signals.
  • Signal CE is a chip enable signal
  • signal GW is a global write enable signal
  • signal BW is a byte write enable signal.
  • Signal ADDR is an address signal.
  • the signal WDA is write data and the signal RDA is read data.
  • a signal PON1 and a signal PON2 are power gating control signals. The signal PON1 and the signal PON2 may be generated by the control circuit 32.
  • the control circuit 32 is a logic circuit having a function of controlling the overall operation of the storage device 300.
  • the control circuit logically operates the signal CE, the signal GW and the signal BW to determine the operation mode (for example, write operation, read operation) of the memory device 300 .
  • control circuit 32 generates a control signal for peripheral circuit 41 so that this operation mode is executed.
  • the voltage generation circuit 33 has a function of generating a negative voltage.
  • the signal WAKE has a function of controlling the input of the signal CLK to the voltage generation circuit 33 . For example, when an H level signal is applied to signal WAKE, signal CLK is input to voltage generation circuit 33, and voltage generation circuit 33 generates a negative voltage.
  • the peripheral circuit 41 is a circuit for writing data to and reading data from the memory cell 10 .
  • the peripheral circuit 41 is a circuit that outputs various signals for controlling the functional circuit 51 .
  • the peripheral circuit 41 includes a row decoder 42 (Row Decoder), a column decoder 44 (Column Decoder), a row driver 43 (Row Driver), a column driver 45 (Column Driver), an input circuit 47 (Input Circuit), an output circuit 48 ( Output Circuit) and a sense amplifier 46 (Sense Amplifier).
  • the row decoder 42 and column decoder 44 have the function of decoding the signal ADDR.
  • Row decoder 42 is a circuit for specifying a row to be accessed
  • column decoder 44 is a circuit for specifying a column to be accessed.
  • Row driver 43 has a function of selecting line WL designated by row decoder 42 .
  • the column driver 45 has a function of writing data to the memory cells 10, a function of reading data from the memory cells 10, a function of holding the read data, and the like.
  • the input circuit 47 has a function of holding the signal WDA. Data held by the input circuit 47 is output to the column driver 45 . Output data of the input circuit 47 is data (Din) to be written to the memory cell 10 . Data (Dout) read from the memory cells 10 by the column driver 45 is output to the output circuit 48 .
  • the output circuit 48 has a function of holding Dout. The output circuit 48 also has a function of outputting Dout to the outside of the storage device 300 . Data output from the output circuit 48 is the signal RDA.
  • the PSW 22 has the function of controlling the supply of VDD to the peripheral circuit 31.
  • PSW 23 has the function of controlling the supply of VHM to row driver 43 .
  • the high power supply voltage of the memory device 300 is VDD
  • the low power supply voltage is GND (ground potential).
  • VHM is a high power supply voltage used to drive word lines to a high level and is higher than VDD.
  • the signal PON1 controls ON/OFF of the PSW22
  • the signal PON2 controls ON/OFF of the PSW23.
  • the number of power supply domains to which VDD is supplied is set to one, but may be set to a plurality. In this case, a power switch may be provided for each power domain.
  • a memory array 20 having memory arrays 20[1] to 20[m] (m is an integer equal to or greater than 2) and a functional layer 50 can be provided by stacking a plurality of layers of memory arrays 20 on the drive circuit 21 . By stacking multiple layers of memory arrays 20, the memory density of the memory cells 10 can be increased.
  • FIG. 34A the memory array 20 provided in the first layer is indicated as memory array 20[1], the memory array 20 provided in the second layer is indicated as memory array 20[2], and the memory array 20 provided in the fifth layer is indicated as memory array 20[1].
  • the memory array 20 is shown as memory array 20[5].
  • FIG. 34A also shows the wiring WL, the wiring PL, and the wiring CL extending in the X direction, and the wiring BL extending in the Z direction (the direction perpendicular to the substrate surface on which the driver circuit is provided). there is Note that the wiring WL and the wiring PL included in each memory array 20 are partially omitted in order to make the drawing easier to see.
  • FIG. 34B is a schematic diagram illustrating a configuration example of the functional circuit 51 connected to the wiring BL illustrated in FIG. 34A and the memory cells 10 included in the memory arrays 20[1] to 20[5] connected to the wiring BL. indicates FIG. 34B also illustrates the wiring GBL provided between the functional circuit 51 and the driver circuit 21 . Note that a structure in which a plurality of memory cells (memory cells 10) are electrically connected to one wiring BL is also called a “memory string”. Note that in the drawings, the wiring GBL may be illustrated with a thick line in order to improve visibility.
  • FIG. 34B illustrates an example of the circuit configuration of the memory cell 10 connected to the wiring BL.
  • a memory cell 10 has a transistor 11 and a capacitor 12 .
  • the transistor 11, the capacitor 12, and each wiring (BL, WL, and the like) the wiring BL[1] and the wiring WL[1] may also be referred to as the wiring BL and the wiring WL, for example.
  • one of the source and the drain of the transistor 11 is connected to the wiring BL.
  • the other of the source and drain of the transistor 11 is connected to one electrode of the capacitor 12 .
  • the other electrode of the capacitive element 12 is connected to the wiring PL.
  • a gate of the transistor 11 is connected to the wiring WL.
  • a back gate of the transistor 11 is connected to the wiring CL.
  • the wiring PL is a wiring that gives a constant potential for holding the potential of the capacitive element 12 .
  • a line CL is a constant potential for controlling the threshold voltage of the transistor 11 .
  • the wiring PL and the wiring CL may have the same potential. In this case, by connecting two wirings, the number of wirings connected to the memory cell 10 can be reduced.
  • FIG. 34B The wiring GBL illustrated in FIG. 34B is provided so as to electrically connect between the drive circuit 21 and the functional layer 50 .
  • FIG. 35A shows a schematic diagram of the memory device 300 in which the functional circuit 51 and the memory arrays 20[1] to 20[m] are the repeating units 70.
  • FIG. 35A shows one wiring GBL as illustrated in FIG. 35A , the wiring GBL may be provided as appropriate according to the number of functional circuits 51 provided in the functional layer 50 .
  • the wiring GBL is provided in contact with the semiconductor layer of the transistor included in the functional circuit 51 .
  • the wiring GBL is provided in contact with a region functioning as a source or a drain of the semiconductor layer of the transistor included in the functional circuit 51 .
  • the wiring GBL is provided in contact with a conductor provided in contact with a region functioning as a source or a drain of the semiconductor layer of the transistor included in the functional circuit 51 .
  • the wiring GBL can be said to be a wiring for electrically connecting one of the source or drain of the transistor included in the functional circuit 51 in the functional layer 50 and the driving circuit 21 in the vertical direction.
  • repeating unit 70 having the functional circuit 51 and the memory arrays 20[1] to 20[m] may be stacked.
  • a storage device 300A of one embodiment of the present invention can have repeating units 70[1] to 70[p] (p is an integer of 2 or more) as illustrated in FIG. 35B.
  • the wiring GBL is connected to the functional layer 50 included in the repeating unit 70 .
  • the wiring GBL may be provided as appropriate according to the number of functional circuits 51 .
  • the OS transistors are stacked, and the wiring that functions as the bit line is arranged in the direction perpendicular to the surface of the substrate on which the driver circuit 21 is provided.
  • the length of the wiring between the memory array 20 and the drive circuit 21 can be shortened. Therefore, the parasitic capacitance of the bit line can be greatly reduced.
  • the layer provided with the memory array 20 includes a functional layer 50 having a functional circuit 51 having a function of amplifying and outputting the data potential held in the memory cell 10 .
  • the sense amplifier 46 included in the driver circuit 21 can be driven by amplifying a slight potential difference of the wiring BL functioning as a bit line when data is read. Since a circuit such as a sense amplifier can be miniaturized, miniaturization of the memory device 300 can be achieved. In addition, the memory cell 10 can be operated even if the capacitance of the capacitor 12 included in the memory cell 10 is reduced.
  • FIG. 36 A configuration example of the functional circuit 51 described in FIGS. 33 to 35 and a configuration example of the sense amplifier 46 included in the memory array 20 and the drive circuit 21 will be described with reference to FIG.
  • wirings GBL GBL (GBL_A, GBL_B) connected to functional circuits 51 (51_A, 51_B) connected to memory cells 10 (10_A, 10_B) connected to different wirings BL (BL_A, BL_B).
  • a drive circuit 21 is shown.
  • a precharge circuit 71_A, a precharge circuit 71_B, a switch circuit 72_A, a switch circuit 72_B, and a write/read circuit 73 are shown in addition to the sense amplifier 46 .
  • Transistors 52_a, 52_b, 53_a, 53_b, 54_a, 54_b, 55_a and 55_b are illustrated as functional circuits 51_A and 51_B.
  • Transistors 52_a, 52_b, 53_a, 53_b, 54_a, 54_b, 55_a, and 55_b illustrated in FIG. 36 are OS transistors like the transistor 11 included in the memory cell 10 .
  • the functional layer 50 having the functional circuit 51 can be stacked in the same manner as the memory arrays 20[1] to 20[m].
  • the wirings BL_A and BL_B are connected to the gates of the transistors 52_a and 52_b.
  • the wirings GBL_A and GBL_B are connected to either the sources or the drains of the transistors 53_a, 53_b, 54_a, and 54_b.
  • the wirings GBL_A and GBL_B are provided in the vertical direction similarly to the wirings BL_A and BL_B, and are connected to transistors included in the driver circuit 21 .
  • Control signals WE, RE and MUX are applied to gates of transistors 53_a, 53_b, 54_a, 54_b, 55_a and 55_b as shown in FIG.
  • the transistors 81_1 to 81_6 and 82_1 to 82_4 forming the sense amplifier 46, the precharge circuit 71_A, and the precharge circuit 71_B shown in FIG. 36 are composed of Si transistors.
  • the switches 83_A to 83_D that constitute the switch circuit 72_A and the switch circuit 72_B can also be composed of Si transistors.
  • One of the source or the drain of the transistors 53_a, 53_b, 54_a, and 54_b is connected to transistors or switches forming the precharge circuit 71_A, the precharge circuit 71_B, the sense amplifier 46, and the switch circuit 72_A.
  • the precharge circuit 71_A includes n-channel transistors 81_1 to 81_3.
  • the precharge circuit 71_A is a circuit for precharging the lines BL_A and BL_B to an intermediate potential VPC corresponding to a potential VDD/2 between VDD and VSS in accordance with a precharge signal applied to the precharge line PCL1. .
  • the precharge circuit 71_B includes n-channel transistors 81_4 to 81_6.
  • the precharge circuit 71_B is a circuit for precharging the wiring GBL_A and the wiring GBL_B to the intermediate potential VPC corresponding to the potential VDD/2 between VDD and VSS in accordance with the precharge signal applied to the precharge line PCL2. be.
  • the sense amplifier 46 has p-channel transistors 82_1 and 82_2 and n-channel transistors 82_3 and 82_4 connected to the wiring VHH or the wiring VLL.
  • the wiring VHH or the wiring VLL is a wiring having a function of supplying VDD or VSS.
  • the transistors 82_1 to 82_4 are transistors forming an inverter loop.
  • the potentials of the wirings GBL_A and GBL_B can be output to the outside through the switches 83_C and 83_D and the writing/reading circuit 73 .
  • a wiring BL_A and a wiring BL_B, and a wiring GBL_A and a wiring GBL_B correspond to a bit line pair.
  • the write/read circuit 73 is controlled to write the data signal according to the signal EN_data.
  • the switch circuit 72_A is a circuit for controlling the conduction state between the sense amplifier 46 and the wirings GBL_A and GBL_B.
  • the switch circuit 72_A is switched on or off by control of the switching signal CSEL1.
  • the switches 83_A and 83_B are n-channel transistors, the switching signal CSEL1 is turned on when it is at a high level and turned off when it is at a low level.
  • the switch circuit 72_B is a circuit for controlling the conduction state between the write/read circuit 73 and the bit line pair connected to the sense amplifier 46 .
  • the switch circuit 72_B is switched on or off by control of the switching signal CSEL2.
  • Switches 83_C and 83_D may be similar to switches 83_A and 83_B.
  • the memory device 300 has a configuration in which the memory cell 10, the functional circuit 51, and the sense amplifier 46 are connected via the wiring BL and the wiring GBL provided in the vertical direction which is the shortest distance. be able to. Although the number of functional layers 50 including transistors forming the functional circuit 51 is increased, the load on the wiring BL is reduced, so that the write time can be shortened and the data can be read easily.
  • each transistor included in the functional circuits 51_A and 51_B is controlled according to the control signals WE and RE and the selection signal MUX.
  • Each transistor can output the potential of the wiring BL to the driver circuit 21 through the wiring GBL in accordance with the control signal and the selection signal.
  • the functional circuits 51_A and 51_B can function as sense amplifiers including OS transistors. With this structure, a slight potential difference in the wiring BL can be amplified during reading to drive the sense amplifier 46 using a Si transistor.
  • FIG. 37 shows a timing chart for explaining the operation of the circuit diagram shown in FIG.
  • a period T11 is a write operation
  • a period T12 is a precharge operation of the wiring BL
  • a period T13 is a precharge operation of the wiring GBL
  • a period T14 is a charge sharing operation
  • a period T15 is a read standby operation.
  • the operation, period T16 corresponds to the period for explaining the read operation.
  • the potential of the wiring WL connected to the gate of the transistor 11 included in the memory cell 10 to which the data signal is to be written is set to a high level.
  • the control signal WE and the signal EN_data are set to high level, and the data signal is written to the memory cell through the wiring GBL and the wiring BL.
  • the precharge line PCL1 is set to high level while the control signal WE is set to high level.
  • the wiring BL is precharged to the precharge potential.
  • both the wiring VHH and the wiring VLL that supply the power supply voltage to the sense amplifier 46 are set to VDD/2 to suppress the power consumption due to the through current.
  • the precharge line PCL2 is set to high level in order to precharge the wiring GBL.
  • the wiring GBL is precharged to the precharge potential.
  • the potentials of the wiring VHH and the wiring VLL are both set to VDD, so that the wiring GBL with a large load can be precharged in a short time.
  • the potential of the wiring WL is set to a high level for charge sharing to balance the charge held in the memory cell 10 and the charge precharged in the wiring BL.
  • the potentials of the wiring VHH and the wiring VLL that supply the power supply voltage to the sense amplifier 46 are both preferably set to VDD/2 to suppress power consumption due to through current.
  • the control signal RE and the control signal MUX are at high level. Current flows through the transistor 52 according to the potential of the wiring BL, and the potential of the wiring GBL changes according to the amount of current.
  • the switching signal CSEL1 is set to low level to prevent the potential fluctuation of the wiring GBL from being affected by the sense amplifier 46.
  • FIG. The wiring VHH or the wiring VLL is the same as in the period T14.
  • the switching signal CSEL1 is set to a high level, and the data signal written in the memory cell is read by amplifying the potential fluctuation of the wiring GBL with the bit line pair connected to the sense amplifier 46 .
  • FIG. 38A shows a functional circuit 51A corresponding to the functional circuit 51_A or 51_B shown in FIG.
  • a functional circuit 51A shown in FIG. 38A has transistors 52-55.
  • the transistors 52 to 55 can each be an OS transistor and are illustrated as n-channel transistors.
  • the transistor 52 is a source follower transistor for amplifying the potential of the wiring GBL to a potential corresponding to the potential of the wiring BL in a period in which a data signal is read from the memory cell 10 .
  • the transistor 53 is a transistor that receives a selection signal MUX at its gate and functions as a switch whose ON or OFF state between the source and the drain is controlled according to the selection signal MUX.
  • the transistor 54 is a transistor that receives a write control signal WE at its gate and functions as a switch whose ON or OFF state between the source and the drain is controlled according to the write control signal WE.
  • the transistor 55 is a transistor that receives a read control signal RE at its gate and functions as a switch whose on or off state between the source and the drain is controlled according to the read control signal RE.
  • a ground potential GND which is a fixed potential, is applied to the source side of the transistor 55, for example.
  • the configuration of the functional circuit 51A shown in FIG. 38A is applicable to the modifications shown in FIGS. 38B, 39A, and 39B.
  • the functional circuit 51B in FIG. 38B has a configuration in which the connection of one of the source and drain of the transistor 54 is switched from the wiring GBL to one of the source and drain of the transistor 52 .
  • a functional circuit 51C in FIG. 39A corresponds to a configuration in which the transistor 53 is omitted by performing the function of the transistor 53 in the drive circuit 21.
  • the functional circuit 51D in FIG. 39B corresponds to a configuration in which the transistor 55 is omitted.
  • a semiconductor device of one embodiment of the present invention uses an OS transistor with extremely low off-state current as a transistor provided in the memory array 20 .
  • the OS transistor can be stacked over the substrate provided with the driver circuit 21 provided with the Si transistor. Therefore, the same manufacturing process can be repeated in the vertical direction, and the manufacturing cost can be reduced.
  • the memory density can be improved by arranging the transistors included in the memory cell 10 not in the horizontal direction but in the vertical direction, so that the size of the memory device can be reduced.
  • one form of the present invention comprises a functional layer 50 having a functional circuit 51 . Since the functional circuit connects the wiring BL to the gate of the transistor 52, the transistor 52 can function as an amplifier. With this structure, a slight potential difference in the wiring BL can be amplified during reading to drive the sense amplifier 46 using a Si transistor. Since circuits such as the sense amplifier 46 using Si transistors can be miniaturized, miniaturization of the memory device can be achieved. In addition, the memory cell 10 can be operated even if the capacitance of the capacitor 12 included in the memory cell 10 is reduced.
  • FIG. 40A is a layout diagram for explaining an arrangement example of each wiring and semiconductor layer in the memory cell 10 explained above.
  • wiring WL and wiring PL provided extending in the X direction
  • semiconductor layers 11a and 11b conductive layers 13, conductive layers 14a and 14b, conductive layers 15a and 15b, and a wiring BL provided extending in the Z direction.
  • Each of the semiconductor layers 11a and 11b shown in FIG. 40A is provided to cross one wiring WL, and each of the conductive layers 14a and 14b is provided to overlap with one wiring PL.
  • the semiconductor layer 11a and the semiconductor layer 11b are connected to one wiring BL through the conductive layer 13, so that two memory cells 10 are arranged.
  • the semiconductor layer 11a is electrically connected to the conductive layer 14a through the conductive layer 15a.
  • the semiconductor layer 11b is electrically connected to the conductive layer 14b through the conductive layer 15b.
  • the memory cell 10 having the semiconductor layer 11a is denoted as the memory cell 10a
  • the memory cell 10 having the semiconductor layer 11b is denoted as the memory cell 10b. can be distinguished.
  • the wiring WL and the conductive layer 13 are provided to overlap on the semiconductor layer 11a, and the wiring PL is provided to overlap on the conductive layer 14a electrically connected to the semiconductor layer 11a.
  • a transistor Tra is provided in a region where the wiring WL and the semiconductor layer 11a overlap.
  • a capacitive element Ca is provided in a region where the wiring PL and the conductive layer 14a overlap.
  • the conductive layer 13 is a conductive layer for connecting the transistor Tra to the wiring BL.
  • wiring WL and conductive layer 13 are provided to overlap semiconductor layer 11b, and wiring PL is provided to overlap conductive layer 14b electrically connected to semiconductor layer 11b. .
  • a transistor Trb is provided in a region where the wiring WL and the semiconductor layer 11b overlap.
  • a capacitive element Cb is provided in a region where the wiring PL and the conductive layer 14b overlap.
  • the conductive layer 13 is a conductive layer for connecting the transistor Trb to the wiring BL.
  • the transistor Tra, the transistor Trb, the capacitor Ca, and the capacitor Cb correspond to the transistor 200a, the transistor 200b, the capacitor 100a, and the capacitor 100b described in Embodiment 1, respectively.
  • Semiconductor layers 11a and 11b correspond to oxide 230 described in the first embodiment.
  • the conductive layer 13 corresponds to the conductor 242a described in the first embodiment.
  • Conductive layers 15a and 15b correspond to conductor 242b described in the first embodiment.
  • Conductive layers 14a and 14b correspond to conductor 156 described in the first embodiment.
  • the wiring WL and the wiring PL correspond to the conductor 260 and the conductor 160 described in Embodiment 1, respectively. Therefore, in the memory cell 10, the detailed description of the cross-sectional view is the same as the description in the first embodiment, and therefore the above description is incorporated.
  • an upper layer wiring PL and a lower layer wiring PL are provided so as to overlap each other, and an upper layer wiring WL and a lower layer wiring WL are provided so as to overlap each other. configuration.
  • the layout diagrams of the two layers of memory arrays 20 provided to overlap each other have an overlapping configuration.
  • the semiconductor layers 11a and 11b, the conductive layer 13, and the conductive layers 15a and 15b extending in the Y direction are provided so as to intersect the wiring WL and the wiring PL at right angles.
  • the present invention is not limited to this.
  • one end of the semiconductor layer 11a and one end of the semiconductor layer 11b extending in the Y direction are arranged to be inclined in the X direction, and the semiconductor layer 11a and the semiconductor layer 11b, the conductive layer 13, and the conductive layers 15a and 15b may be provided so as to cross the wiring WL and the wiring PL.
  • the memory density of the memory cell 10 can be further increased.
  • FIG. 40A A cross-sectional view with device 100 is shown in FIG.
  • the combination of the transistor 200a and the capacitor 100a corresponds to the memory cell 10a
  • the combination of the transistor 200b and the capacitor 100b corresponds to the memory cell 10b
  • the conductor 260 corresponds to the wiring WL
  • the conductor 160 corresponds to the wiring PL
  • the oxide 230 corresponds to the semiconductor layers 11a and 11b.
  • the conductor 160 of the upper capacitor element 100a is provided so as to overlap the conductor 160 of the lower layer capacitor 100a, and the conductor 160 of the lower layer transistor 200a is overlapped with the conductor 160 of the upper layer.
  • a conductor 260 of transistor 200a is provided.
  • a transistor 310 can be provided in the driver circuit 21 provided under the memory array 20[1].
  • Transistor 310 is provided on substrate 311 and includes a conductor 316 functioning as a gate, an insulator 315 functioning as a gate insulator, a semiconductor region 313 consisting of part of substrate 311, and a low region functioning as a source or drain region. It has a resistance region 314a and a low resistance region 314b. Transistor 310 can be either p-channel or n-channel.
  • the semiconductor region 313 (part of the substrate 311) in which the channel is formed has a convex shape.
  • a conductor 316 is provided to cover the side and top surfaces of the semiconductor region 313 with an insulator 315 interposed therebetween.
  • the conductor 316 may be made of a material that adjusts the work function.
  • Such a transistor 310 is also called a FIN transistor because it utilizes the projections of the semiconductor substrate.
  • an insulator that functions as a mask for forming the protrusion may be provided in contact with the upper portion of the protrusion.
  • a semiconductor film having a convex shape may be formed by processing an SOI substrate.
  • transistor 310 illustrated in FIG. 42 is an example, and the structure thereof is not limited, and an appropriate transistor may be used according to the circuit configuration or driving method.
  • a wiring layer provided with an interlayer film, a wiring, a plug, etc. may be provided between each structure.
  • the wiring layer can be provided in a plurality of layers depending on the design.
  • conductors that function as plugs or wiring a plurality of structures may be grouped together and given the same reference numerals.
  • the wiring and the plug electrically connected to the wiring may be integrated. That is, there are cases where a part of the conductor functions as a wiring and a part of the conductor functions as a plug.
  • an insulator 320, an insulator 322, an insulator 324, and an insulator 326 are stacked in this order over the transistor 310 as interlayer films.
  • conductors 328, 330, and the like electrically connected to the capacitor 100, the transistor 200, or the conductor 240 are embedded in the insulators 320, 322, 324, and 326.
  • the conductors 328 and 330 function as plugs or wirings.
  • the insulator functioning as an interlayer film may function as a planarization film covering the uneven shape thereunder.
  • the top surface of the insulator 322 may be planarized by a chemical mechanical polishing (CMP) method or the like to improve planarity.
  • CMP chemical mechanical polishing
  • Insulators that can be used as interlayer films include insulating oxides, nitrides, oxynitrides, nitride oxides, metal oxides, metal oxynitrides, and metal nitride oxides.
  • the material should be selected according to the function of the insulator.
  • the insulator 320, the insulator 322, the insulator 326, and the like preferably have an insulator with a low dielectric constant.
  • the insulator preferably contains silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, silicon oxide having holes, resin, or the like.
  • the insulator is silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, or silicon oxide having vacancies. and resin.
  • silicon oxide and silicon oxynitride are thermally stable, by combining them with a resin, a laminated structure that is thermally stable and has a low dielectric constant can be obtained.
  • resin include polyester, polyolefin, polyamide (nylon, aramid, etc.), polyimide, polycarbonate, acrylic, and the like.
  • an insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen may be used for the insulators 324, 212, 214, and the like.
  • Examples of insulators having a function of suppressing permeation of impurities such as hydrogen and oxygen include boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, and zirconium. Insulators including lanthanum, neodymium, hafnium, or tantalum may be used in single layers or stacks.
  • an insulator having a function of suppressing permeation of impurities such as hydrogen and oxygen
  • a metal oxide such as tantalum oxide, silicon nitride oxide, silicon nitride, or the like can be used.
  • Conductors that can be used for wiring and plugs include aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, and indium. , ruthenium and the like can be used.
  • a semiconductor with high electrical conductivity typified by polycrystalline silicon containing an impurity element such as phosphorus, or a silicide such as nickel silicide may be used.
  • the conductors 328, 330, 209, and the like are formed of a single layer of a conductive material such as a metal material, an alloy material, a metal nitride material, or a metal oxide material formed of any of the above materials.
  • a conductive material such as a metal material, an alloy material, a metal nitride material, or a metal oxide material formed of any of the above materials.
  • it can be used by laminating.
  • a high-melting-point material such as tungsten or molybdenum that has both heat resistance and conductivity, and it is preferable to use tungsten.
  • it is preferably formed using a low-resistance conductive material such as aluminum or copper. Wiring resistance can be reduced by using a low-resistance conductive material.
  • a functional layer 50 is provided below the plurality of memory arrays 20.
  • a functional layer 50 is provided between the memory array 20[1] and the driver circuit 21.
  • FIG. 42 shows transistors 200c, 200d, and 200e that are provided in the functional layer 50 and constitute a plurality of functional circuits 51.
  • transistors 200c, 200d, and 200e have a structure similar to that of transistor 200 described in the above embodiment.
  • Transistors 200c, 200d and 200e correspond to transistors 52, 53 and 55 shown in FIG. 38A and the like.
  • the transistors 200c, 200d and 200e have their sources and drains connected in series, similar to the transistors 52, 53 and 55. Note that the transistor 54 shown in FIG. 38A and the like is not shown.
  • the insulator 208 is provided on the insulator 280 of the functional layer 50, and the conductor 207 is provided in the opening formed in the insulator 208.
  • the insulator 208 can be provided with an insulator similar to the insulator 210 , and the conductor 207 can be provided with a conductor similar to the conductor 209 .
  • the lower surface of the conductor 207 is provided in contact with the upper surface of the conductor 160 of the transistor 200c. Also, the upper surface of the conductor 207 is provided in contact with the lower surface of the conductor 209 . With such a structure, the conductor 240 corresponding to the wiring BL functioning as a bit line and the gate of the transistor 200c corresponding to the transistor 52 can be electrically connected.
  • FIG. 43 shows an example of a layout in which memory cells 10 are arranged in a matrix to form a memory array 20. As shown in FIG. The symbols in FIG. 43 correspond to the symbols shown in FIG. 1B and the like. If the minimum feature size is 20 nm, the size of the memory cell 10 in FIG. 43 can be 45 nm ⁇ 125 nm. Since the area occupied by the memory cells 10 is 0.0054 ⁇ m 2 , the density of the memory cells 10 of the memory device according to this embodiment can be 185 cells/ ⁇ m 2 .
  • FIGS. 44A and 44B An example of a chip 1200 on which the semiconductor device of the present invention is mounted is shown with reference to FIGS. 44A and 44B.
  • a plurality of circuits (systems) are mounted on the chip 1200 .
  • SoC System on Chip
  • the chip 1200 has a CPU 1211, a GPU 1212, one or more analog operation units 1213, one or more memory controllers 1214, one or more interfaces 1215, one or more network circuits 1216, and the like.
  • the chip 1200 is provided with bumps (not shown) to connect with the first surface of the package substrate 1201 as shown in FIG. 44B.
  • a plurality of bumps 1202 are provided on the rear surface of the first surface of the package substrate 1201 and connected to the motherboard 1203 .
  • the mother board 1203 may be provided with storage devices such as a DRAM 1221 and a flash memory 1222 .
  • storage devices such as a DRAM 1221 and a flash memory 1222 .
  • the DOSRAM shown in the previous embodiment can be used for the DRAM 1221 .
  • the DRAM 1221 can be reduced in power consumption, increased in speed, and increased in capacity.
  • the CPU 1211 preferably has multiple CPU cores.
  • the GPU 1212 preferably has multiple GPU cores.
  • the CPU 1211 and GPU 1212 may each have a memory for temporarily storing data.
  • a memory common to the CPU 1211 and the GPU 1212 may be provided in the chip 1200 .
  • the aforementioned DOSRAM can be used for the memory.
  • the GPU 1212 is suitable for parallel computation of a large amount of data, and can be used for image processing or sum-of-products operations. By providing the image processing circuit or the product-sum operation circuit using the oxide semiconductor of the present invention in the GPU 1212, image processing and product-sum operation can be performed with low power consumption.
  • the CPU 1211 and the GPU 1212 are provided on the same chip, the wiring between the CPU 1211 and the GPU 1212 can be shortened. And, after the calculation by the GPU 1212, transfer of the calculation result from the GPU 1212 to the CPU 1211 can be performed at high speed.
  • the analog computation unit 1213 has one or both of an A/D (analog/digital) conversion circuit and a D/A (digital/analog) conversion circuit. Further, the analog calculation unit 1213 may be provided with the sum-of-products calculation circuit.
  • the memory controller 1214 has a circuit functioning as a controller for the DRAM 1221 and a circuit functioning as an interface for the flash memory 1222 .
  • the interface 1215 has an interface circuit with externally connected devices such as display devices, speakers, microphones, cameras, and controllers. Controllers include mice, keyboards, game controllers, and the like. USB (Universal Serial Bus), HDMI (registered trademark) (High-Definition Multimedia Interface), etc. can be used as such an interface.
  • USB Universal Serial Bus
  • HDMI registered trademark
  • the network circuit 1216 has a network circuit such as a LAN (Local Area Network). It may also have circuitry for network security.
  • LAN Local Area Network
  • the above circuit (system) can be formed on the chip 1200 by the same manufacturing process. Therefore, even if the number of circuits required for the chip 1200 increases, there is no need to increase the number of manufacturing processes, and the chip 1200 can be manufactured at low cost.
  • a package substrate 1201 provided with a chip 1200 having a GPU 1212 , a motherboard 1203 provided with a DRAM 1221 and a flash memory 1222 can be called a GPU module 1204 .
  • the GPU module 1204 Since the GPU module 1204 has a chip 1200 using SoC technology, its size can be reduced. In addition, since it excels in image processing, it is suitable for use in portable electronic devices such as smartphones, tablet terminals, laptop PCs, and portable (portable) game machines.
  • a product-sum operation circuit using the GPU 1212 enables a deep neural network (DNN), a convolutional neural network (CNN), a recurrent neural network (RNN), an autoencoder, a deep Boltzmann machine (DBM), a deep belief network ( DBN), the chip 1200 can be used as an AI chip, or the GPU module 1204 can be used as an AI system module.
  • DNN deep neural network
  • CNN convolutional neural network
  • RNN recurrent neural network
  • DBM deep Boltzmann machine
  • DBN deep belief network
  • This embodiment mode shows an example of an electronic component and an electronic device in which the storage device or the like described in the above embodiment mode is incorporated.
  • the electronic components and electronic devices can be reduced in power consumption and increased in speed.
  • FIG. 45A shows a perspective view of an electronic component 700 and a board (mounting board 704) on which the electronic component 700 is mounted.
  • Electronic component 700 shown in FIG. 45A has storage device 720 in mold 711 .
  • FIG. 45A is partially omitted to show the inside of electronic component 700 .
  • Electronic component 700 has lands 712 outside mold 711 . Land 712 is electrically connected to electrode pad 713 , and electrode pad 713 is electrically connected to storage device 720 by wire 714 .
  • the electronic component 700 is mounted on a printed circuit board 702, for example.
  • a mounting board 704 is completed by combining a plurality of such electronic components and electrically connecting them on the printed board 702 .
  • the memory device 720 has a drive circuit layer 721 and a memory circuit layer 722 .
  • FIG. 45B A perspective view of the electronic component 730 is shown in FIG. 45B.
  • Electronic component 730 is an example of SiP (System in package) or MCM (Multi Chip Module).
  • An electronic component 730 has an interposer 731 provided on a package substrate 732 (printed circuit board), and a semiconductor device 735 and a plurality of storage devices 720 provided on the interposer 731 .
  • the electronic component 730 shows an example of using the storage device 720 as a high bandwidth memory (HBM).
  • HBM high bandwidth memory
  • an integrated circuit semiconductor device
  • a CPU, GPU, or FPGA can be used.
  • a ceramic substrate, a plastic substrate, a glass epoxy substrate, or the like can be used for the package substrate 732 .
  • a silicon interposer, a resin interposer, or the like can be used as the interposer 731 .
  • the interposer 731 has a plurality of wirings and has a function of electrically connecting a plurality of integrated circuits with different terminal pitches. A plurality of wirings are provided in a single layer or multiple layers.
  • the interposer 731 also has a function of electrically connecting the integrated circuit provided over the interposer 731 to electrodes provided over the package substrate 732 . For these reasons, the interposer is sometimes called a "rewiring board" or an "intermediate board".
  • through electrodes are provided in the interposer 731 and the integrated circuit and the package substrate 732 are electrically connected using the through electrodes.
  • a TSV Through Silicon Via
  • a silicon interposer is preferably used as the interposer 731 . Since silicon interposers do not require active elements, they can be manufactured at a lower cost than integrated circuits. On the other hand, since the wiring of the silicon interposer can be formed by a semiconductor process, it is easy to form fine wiring, which is difficult with the resin interposer.
  • HBM In HBM, it is necessary to connect many wires in order to achieve a wide memory bandwidth. Therefore, an interposer for mounting an HBM is required to form fine and high-density wiring. Therefore, it is preferable to use a silicon interposer for the interposer that mounts the HBM.
  • the reliability is less likely to deteriorate due to the difference in expansion coefficient between the integrated circuit and the interposer.
  • the silicon interposer has a highly flat surface, poor connection between the integrated circuit provided on the silicon interposer and the silicon interposer is less likely to occur.
  • a 2.5D package 2.5-dimensional packaging in which a plurality of integrated circuits are arranged side by side on an interposer, it is preferable to use a silicon interposer.
  • a heat sink may be provided overlapping the electronic component 730 .
  • a heat sink it is preferable that the heights of the integrated circuits provided over the interposer 731 be uniform.
  • the memory device 720 and the semiconductor device 735 have the same height.
  • An electrode 733 may be provided on the bottom of the package substrate 732 in order to mount the electronic component 730 on another substrate.
  • FIG. 45B shows an example in which the electrodes 733 are formed from solder balls.
  • BGA All Grid Array
  • the electrodes 733 may be formed of conductive pins.
  • PGA Peripheral Component Interconnect
  • the electronic component 730 can be mounted on other boards using various mounting methods, not limited to BGA and PGA.
  • SPGA Sttaggered Pin Grid Array
  • LGA Land Grid Array
  • QFP Quad Flat Package
  • QFJ Quad Flat J-leaded package
  • QFN Quad Flat Non-leaded package
  • the storage devices described in the above embodiments are, for example, storage devices of various electronic devices (for example, information terminals, computers, smartphones, electronic book terminals, digital cameras (including video cameras), recording/playback devices, navigation systems, etc.) can be applied to By using the memory device described in any of the above embodiments as the memory device of the electronic device, the electronic device consumes less power and operates faster.
  • the computer includes a tablet computer, a notebook computer, a desktop computer, and a large computer such as a server system.
  • the storage devices described in the previous embodiments are applied to various removable storage devices such as memory cards (for example, SD cards), USB memories, and SSDs (solid state drives).
  • 46A to 46E schematically show some configuration examples of the removable storage device.
  • the storage devices described in the previous embodiments are processed into packaged memory chips and used for various storage devices and removable memories.
  • FIG. 46A is a schematic diagram of a USB memory.
  • USB memory 1100 has housing 1101 , cap 1102 , USB connector 1103 and substrate 1104 .
  • a substrate 1104 is housed in a housing 1101 .
  • a memory chip 1105 and a controller chip 1106 are attached to the substrate 1104 .
  • the memory device described in any of the above embodiments can be incorporated in the memory chip 1105 or the like.
  • FIG. 46B is a schematic diagram of the appearance of the SD card
  • FIG. 46C is a schematic diagram of the internal structure of the SD card.
  • SD card 1110 has housing 1111 , connector 1112 and substrate 1113 .
  • a substrate 1113 is housed in a housing 1111 .
  • a memory chip 1114 and a controller chip 1115 are attached to the substrate 1113 .
  • a wireless chip having a wireless communication function may be provided on the substrate 1113 .
  • data can be read from and written to the memory chip 1114 by wireless communication between the host device and the SD card 1110 .
  • the memory device described in any of the above embodiments can be incorporated in the memory chip 1114 or the like.
  • FIG. 46D is a schematic diagram of the appearance of the SSD
  • FIG. 46E is a schematic diagram of the internal structure of the SSD.
  • SSD 1150 has housing 1151 , connector 1152 and substrate 1153 .
  • a substrate 1153 is housed in a housing 1151 .
  • substrate 1153 has memory chip 1154 , memory chip 1155 and controller chip 1156 attached thereto.
  • a memory chip 1155 is a work memory for the controller chip 1156, and may be a DOSRAM chip, for example.
  • the capacity of the SSD 1150 can be increased.
  • the memory device described in any of the above embodiments can be incorporated in the memory chip 1154 or the like.
  • a storage device can be used for processors such as CPUs and GPUs, or chips.
  • processors such as CPUs and GPUs, or chips.
  • the electronic device can be made to have low power consumption and high speed.
  • 47A to 47H show specific examples of electronic devices including processors such as CPUs and GPUs using the storage device, or chips.
  • a GPU or chip according to one aspect of the present invention can be mounted on various electronic devices.
  • electronic devices include relatively large screens such as televisions, monitors for desktop or notebook information terminals, digital signage (digital signage), large game machines such as pachinko machines, etc. , digital cameras, digital video cameras, digital photo frames, electronic book readers, mobile phones, portable game machines, personal digital assistants, sound reproduction devices, and the like.
  • the electronic device can be equipped with artificial intelligence.
  • the electronic device of one embodiment of the present invention may have an antenna.
  • An image, information, or the like can be displayed on the display portion by receiving a signal with the antenna.
  • the antenna may be used for contactless power transmission.
  • the electronic device of one embodiment of the present invention includes sensors (force, displacement, position, speed, acceleration, angular velocity, number of rotations, distance, light, liquid, magnetism, temperature, chemical substances, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, odor or infrared).
  • An electronic device of one embodiment of the present invention can have various functions. For example, functions to display various information (still images, moving images, text images, etc.) on the display unit, touch panel functions, calendars, functions to display the date or time, functions to execute various software (programs), wireless communication function, a function of reading a program or data recorded on a recording medium, and the like.
  • functions to display various information still images, moving images, text images, etc.
  • touch panel functions calendars
  • functions to display the date or time functions to execute various software (programs), wireless communication function, a function of reading a program or data recorded on a recording medium, and the like.
  • 47A to 47H show examples of electronic devices.
  • FIG. 47A illustrates a mobile phone (smartphone), which is a type of information terminal.
  • the information terminal 5100 includes a housing 5101 and a display unit 5102. As an input interface, the display unit 5102 is provided with a touch panel, and the housing 5101 is provided with buttons.
  • the information terminal 5100 can execute an application using artificial intelligence.
  • Applications using artificial intelligence include, for example, an application that recognizes a conversation and displays the content of the conversation on the display unit 5102.
  • An application displayed on the display portion 5102, an application for performing biometric authentication such as a fingerprint or a voiceprint, and the like can be given.
  • a notebook information terminal 5200 is illustrated in FIG. 47B.
  • the notebook information terminal 5200 has an information terminal main body 5201 , a display section 5202 , and a keyboard 5203 .
  • the notebook information terminal 5200 can execute an application using artificial intelligence by applying the chip of one embodiment of the present invention.
  • applications using artificial intelligence include design support software, text correction software, and automatic menu generation software. Also, by using the notebook information terminal 5200, it is possible to develop new artificial intelligence.
  • a smartphone and a notebook information terminal are shown as examples of electronic devices in FIGS. 47A and 47B, respectively, but information terminals other than smartphones and notebook information terminals can be applied.
  • Examples of information terminals other than smartphones and notebook information terminals include PDAs (Personal Digital Assistants), desktop information terminals, and workstations.
  • FIG. 47C shows a portable game machine 5300, which is an example of a game machine.
  • a portable game machine 5300 includes a housing 5301, a housing 5302, a housing 5303, a display portion 5304, a connection portion 5305, operation keys 5306, and the like.
  • Housing 5302 and housing 5303 can be removed from housing 5301 .
  • the connection portion 5305 provided in the housing 5301 to another housing (not shown)
  • the video output to the display portion 5304 can be output to another video device (not shown). can.
  • the housing 5302 and the housing 5303 can each function as an operation unit. This allows multiple players to play the game at the same time.
  • the chips described in the above embodiments can be incorporated into the chips or the like provided in the substrates of the housings 5301, 5302, and 5303.
  • FIG. 47D shows a stationary game machine 5400, which is an example of a game machine.
  • a controller 5402 is wirelessly or wiredly connected to the stationary game machine 5400 .
  • a low power consumption game machine By applying the GPU or chip of one embodiment of the present invention to a game machine such as the portable game machine 5300 and the stationary game machine 5400, a low power consumption game machine can be realized.
  • the low power consumption can reduce the heat generated from the circuit, thereby reducing the influence of the heat on the circuit itself, the peripheral circuits, and the module.
  • the portable game machine 5300 having artificial intelligence can be realized.
  • the progress of the game, the speech and behavior of creatures appearing in the game, and the expressions that occur in the game are determined by the program of the game. , which enables expressions not limited to game programs. For example, it is possible to express changes in the content of questions asked by the player, the progress of the game, the time, and the speech and behavior of characters appearing in the game.
  • the game players can be anthropomorphically configured by artificial intelligence. can play games.
  • FIGS. 47C and 47D illustrate a portable game machine and a stationary game machine as examples of game machines
  • game machines to which the GPU or chip of one embodiment of the present invention is applied are not limited to these.
  • Examples of game machines to which the GPU or chip of one embodiment of the present invention is applied include arcade game machines installed in amusement facilities (game arcades, amusement parks, etc.), pitching machines for batting practice installed in sports facilities, and the like. is mentioned.
  • a GPU or chip of one aspect of the present invention can be applied to large-scale computers.
  • FIG. 47E is a diagram showing a supercomputer 5500, which is an example of a large computer.
  • FIG. 47F is a diagram showing a rack-mounted computer 5502 that the supercomputer 5500 has.
  • a supercomputer 5500 has a rack 5501 and a plurality of rack-mount computers 5502 .
  • a plurality of computers 5502 are stored in the rack 5501 .
  • the computer 5502 is provided with a plurality of substrates 5504, and the GPUs or chips described in the above embodiments can be mounted over the substrates.
  • the supercomputer 5500 is a large computer mainly used for scientific and technical calculations. Scientific and technical calculations require high-speed processing of enormous amounts of computation, resulting in high power consumption and high chip heat generation.
  • a low power consumption supercomputer can be realized.
  • the low power consumption can reduce the heat generated from the circuit, thereby reducing the influence of the heat on the circuit itself, the peripheral circuits, and the module.
  • FIG. 47E and 47F illustrate a supercomputer as an example of a large computer, but the large computer to which the GPU or chip of one aspect of the present invention is applied is not limited to this.
  • Large computers to which the GPU or chip of one aspect of the present invention is applied include, for example, computers that provide services (servers), large general-purpose computers (mainframes), and the like.
  • a GPU or chip of one embodiment of the present invention can be applied to automobiles, which are mobile objects, and to the vicinity of the driver's seat of automobiles.
  • FIG. 47G is a diagram showing the vicinity of the windshield in the interior of an automobile, which is an example of a mobile object.
  • FIG. 47G shows display panel 5701, display panel 5702, and display panel 5703 attached to the dashboard, as well as display panel 5704 attached to the pillar.
  • the display panels 5701 to 5703 can provide various information by displaying the speedometer, tachometer, mileage, fuel gauge, gear status, air conditioner settings, and the like. In addition, the display items and layout displayed on the display panel can be appropriately changed according to the user's preference, and the design can be improved.
  • the display panels 5701 to 5703 can also be used as lighting devices.
  • the display panel 5704 can complement the field of view (blind spot) blocked by the pillars by displaying an image from an imaging device (not shown) provided in the automobile. That is, by displaying an image from an imaging device provided outside the automobile, blind spots can be compensated for and safety can be enhanced. In addition, by projecting an image that supplements the invisible part, safety confirmation can be performed more naturally and without discomfort.
  • the display panel 5704 can also be used as a lighting device.
  • the GPU or chip of one aspect of the present invention can be applied as a component of artificial intelligence
  • the chip can be used, for example, in an automatic driving system for automobiles.
  • the chip can be used in a system for road guidance, danger prediction, and the like.
  • the display panels 5701 to 5704 may be configured to display information such as road guidance and danger prediction.
  • moving objects include trains, monorails, ships, flying objects (helicopters, unmanned aerial vehicles (drones), airplanes, rockets), and the like, and the chip of one embodiment of the present invention can be applied to these moving objects. It is possible to give a system using artificial intelligence.
  • FIG. 47H shows an electric refrigerator-freezer 5800, which is an example of an appliance.
  • the electric freezer-refrigerator 5800 has a housing 5801, a refrigerator compartment door 5802, a freezer compartment door 5803, and the like.
  • the electric refrigerator-freezer 5800 having artificial intelligence can be realized.
  • the electric freezer-refrigerator 5800 has a function of automatically generating a menu based on the ingredients stored in the electric freezer-refrigerator 5800, the expiration date of the ingredients, etc. It can have a function of automatically adjusting the temperature according to the temperature.
  • Electric refrigerators and freezers have been described as an example of electrical appliances, but other electrical appliances include, for example, vacuum cleaners, microwave ovens, electric ovens, rice cookers, water heaters, IH cookers, water servers, and air conditioners. Examples include washing machines, dryers, and audiovisual equipment.
  • the electronic devices, the functions of the electronic devices, the application examples of artificial intelligence, the effects thereof, and the like described in the present embodiment can be appropriately combined with the descriptions of other electronic devices.
  • a semiconductor device of one embodiment of the present invention includes an OS transistor.
  • the OS transistor has little change in electrical characteristics due to irradiation with radiation. In other words, since it has high resistance to radiation, it can be suitably used in an environment where radiation may be incident. For example, OS transistors can be suitably used when used in outer space.
  • FIGS. 1-10 a specific example of applying a semiconductor device of one embodiment of the present invention to space equipment will be described with reference to FIGS.
  • FIG. 48 shows a satellite 6800 as an example of space equipment.
  • Artificial satellite 6800 has fuselage 6801 , solar panel 6802 , antenna 6803 , secondary battery 6805 , and controller 6807 .
  • FIG. 48 illustrates a planet 6804 in outer space.
  • Outer space refers to, for example, an altitude of 100 km or more, but outer space described in this specification may include the thermosphere, the mesosphere, and the stratosphere.
  • outer space is an environment with a high radiation dose, more than 100 times higher than on the ground.
  • radiation include electromagnetic radiation (electromagnetic radiation) typified by X-rays and gamma rays, and particle radiation typified by alpha rays, beta rays, neutron rays, proton rays, heavy ion rays, and meson rays. be done.
  • the power required for the satellite 6800 to operate is generated. However, less power is generated, for example, in situations where the solar panel is not illuminated by sunlight, or where the amount of sunlight illuminated by the solar panel is low. Thus, the power required for satellite 6800 to operate may not be generated.
  • a secondary battery 6805 may be provided in the satellite 6800 so that the satellite 6800 can operate even when the generated power is low. Note that the solar panel is sometimes called a solar cell module.
  • the artificial satellite 6800 can generate a signal.
  • the signal is transmitted via antenna 6803 and can be received by, for example, a receiver located on the ground or other satellite. By receiving the signal transmitted by satellite 6800, the position of the receiver that received the signal can be determined.
  • artificial satellite 6800 can constitute a satellite positioning system.
  • control device 6807 has a function of controlling the artificial satellite 6800.
  • the control device 6807 is configured using, for example, one or more selected from a CPU, a GPU, and a storage device.
  • a semiconductor device including an OS transistor that is one embodiment of the present invention is preferably used for the control device 6807 .
  • An OS transistor has less variation in electrical characteristics due to radiation irradiation than a Si transistor. In other words, it has high reliability and can be suitably used even in an environment where radiation may be incident.
  • the artificial satellite 6800 can be configured to have a sensor.
  • artificial satellite 6800 can have a function of detecting sunlight that hits and is reflected by an object provided on the ground.
  • the artificial satellite 6800 can have a function of detecting thermal infrared rays emitted from the earth's surface by adopting a configuration having a thermal infrared sensor.
  • artificial satellite 6800 can function as an earth observation satellite, for example.
  • an artificial satellite is illustrated as an example of space equipment, but the present invention is not limited to this.
  • a semiconductor device of one embodiment of the present invention can be suitably used for space equipment such as a spacecraft, a space capsule, and a space probe.
  • ADDR signal, BL[1]: wiring, BL[j]: wiring, BL[n]: wiring, BL_A: wiring, BL_B: wiring, BL: wiring, BW: signal, Ca: capacitive element, Cb: capacitive element , CE: signal, CL: wiring, CLK: signal, EN_data: signal, GBL_A: wiring, GBL_B: wiring, GBL: wiring, GND: ground potential, GV: gate valve, GW: signal, MUX: selection signal, PL[ 1]: wiring, PL[m]: wiring, PL: wiring, RDA: signal, RE: control signal, T11: period, T12: period, T13: period, T14: period, T15: period, T16: period, Tra : transistor, Trb: transistor, VDD: high power supply potential, VHH: wiring, VLL: wiring, VPC: intermediate potential, WAKE: signal, WDA: signal, WE: control signal, WL[1]: wiring, WL[m]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)

Abstract

微細化または高集積化が可能な半導体装置を提供する。 トランジスタ及び容量素子を有するメモリセルと、第1の絶縁体と、第1の絶縁体上の第2の絶縁体と、を有し、トランジスタは、第1の絶縁体上の酸化物と、酸化物上の第1の導電体、及び第2の導電体と、酸化物上の第3の絶縁体と、第3の絶縁体上の第3の導電体と、を有し、第3の絶縁体、及び第3の導電体は、第2の絶縁体が有する第1の開口内に配置され、容量素子は、第2の導電体の上面に接する第4の導電体、第4の導電体上の第4の絶縁体、及び第4の絶縁体上の第5の導電体を有し、第4の導電体、第4の絶縁体、及び第5の導電体は、第2の絶縁体が有する第2の開口内に配置され、前記第1の絶縁体、前記第2の絶縁体、及び前記第1の導電体に、第3の開口が形成され、第3の開口内に、第6の導電体が配置され、第6の導電体は、複数の層のそれぞれが有する、第1の導電体の上面の一部、及び側面の一部と接する領域を有する、半導体装置。

Description

記憶装置
 本発明の一態様は、トランジスタ、半導体装置、記憶装置、および電子機器に関する。または、本発明の一態様は、半導体装置の作製方法に関する。または、本発明の一態様は、半導体ウエハ、およびモジュールに関する。
 なお、本明細書等において半導体装置とは、半導体特性を利用することで機能し得る装置全般を指す。トランジスタなどの半導体素子をはじめ、半導体回路、演算装置、記憶装置は、半導体装置の一態様である。表示装置(液晶表示装置、発光表示装置など)、投影装置、照明装置、電気光学装置、蓄電装置、記憶装置、半導体回路、撮像装置、電子機器などは、半導体装置を有すると言える場合がある。
 なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様は、物、方法、または、製造方法に関するものである。また、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。
 近年、半導体装置の開発が進められ、LSI、CPU、メモリなどが主に半導体装置に用いられている。CPUは、半導体ウエハを加工し、チップ化された半導体集積回路(少なくともトランジスタ及びメモリ)を有し、接続端子である電極が形成された半導体素子の集合体である。
 LSI、CPU、メモリなどの半導体回路(ICチップ)は、回路基板、例えばプリント配線基板に実装され、様々な電子機器の部品の一つとして用いられる。
 また、絶縁表面を有する基板上に形成された半導体薄膜を用いてトランジスタを構成する技術が注目されている。該トランジスタは集積回路(IC)、画像表示装置(単に表示装置とも表記する)のような電子デバイスに広く応用されている。トランジスタに適用可能な半導体薄膜としてシリコン系半導体材料が広く知られているが、その他の材料として酸化物半導体が注目されている。
 また、酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さいことが知られている。例えば、特許文献1には、酸化物半導体を用いたトランジスタのリーク電流が小さいという特性を応用した低消費電力のCPUなどが開示されている。また、例えば、特許文献2には、酸化物半導体を用いたトランジスタのリーク電流が小さいという特性を応用して、長期にわたり記憶内容を保持することができる記憶装置などが、開示されている。
 また、近年では電子機器の小型化、軽量化に伴い、集積回路のさらなる高密度化への要求が高まっている。また、集積回路を含む半導体装置の生産性の向上が求められている。例えば、特許文献3及び非特許文献1では、酸化物半導体膜を用いる第1のトランジスタと、酸化物半導体膜を用いる第2のトランジスタとを積層させることで、メモリセルを複数重畳して設けることにより、集積回路の高密度化を図る技術が開示されている。
特開2012−257187号公報 特開2011−151383号公報 国際公開第2021/053473号
M.Oota et.al,"3D−Stacked CAAC−In−Ga−Zn Oxide FETs with Gate Length of 72nm",IEDM Tech.Dig.,2019,pp.50−53
 本発明の一態様は、微細化または高集積化が可能な半導体装置を提供することを課題の一つとする。または、動作速度が速い半導体装置を提供することを課題の一つとする。または、良好な電気特性を有する半導体装置を提供することを課題の一つとする。または、トランジスタの電気特性のばらつきが少ない半導体装置を提供することを課題の一つとする。または、信頼性が良好な半導体装置を提供することを課題の一つとする。または、オン電流が大きい半導体装置を提供することを課題の一つとする。または、低消費電力の半導体装置を提供することを課題の一つとする。または、新規の半導体装置を提供することを課題の一つとする。または、工程数が低減された半導体装置の作製方法を提供することを課題の一つとする。または、新規の半導体装置を有する記憶装置を提供することを課題の一つとする。
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
 本発明の一態様は、第1のトランジスタ及び第1の容量素子を有するメモリセルと、第1の絶縁体と、第1の絶縁体上の第2の絶縁体と、を有し、第1のトランジスタは、第1の絶縁体上の酸化物と、酸化物上の、第1の導電体、及び第2の導電体と、酸化物上の、第3の絶縁体と、第3の絶縁体上の、第3の導電体と、を有し、第2の絶縁体は、第1の導電体、及び第2の導電体の上に配置され、第2の絶縁体は、酸化物と重なる領域を有する、第1の開口と、第2の導電体と重なる領域を有する、第2の開口と、を有し、第3の絶縁体、及び第3の導電体は、第1の開口内に配置され、第1の容量素子は、第2の導電体の上面に接する第4の導電体、第4の導電体上の第4の絶縁体、及び第4の絶縁体上の第5の導電体を有し、第4の導電体、第4の絶縁体、及び第5の導電体は、第2の開口内に配置され、第1の絶縁体、第2の絶縁体、及び第1の導電体に、第3の開口が形成され、第3の開口内に、第6の導電体が配置され、第6の導電体は、第1の導電体の上面の一部、及び側面の一部と接する領域を有する、記憶装置である。
 本発明の他の一態様は、第1のトランジスタ及び第1の容量素子を有するメモリセルと、第1の絶縁体と、第1の絶縁体上の第2の絶縁体と、を含む層を複数有し、複数の層は、積層され、第1のトランジスタは、第1の絶縁体上の酸化物と、酸化物上の、第1の導電体、及び第2の導電体と、酸化物上の、第3の絶縁体と、第3の絶縁体上の、第3の導電体と、を有し、第2の絶縁体は、第1の導電体、及び第2の導電体の上に配置され、第2の絶縁体は、酸化物と重なる領域を有する、第1の開口と、第2の導電体と重なる領域を有する、第2の開口と、を有し、第3の絶縁体、及び第3の導電体は、第1の開口内に配置され、第1の容量素子は、第2の導電体の上面に接する第4の導電体、第4の導電体上の第4の絶縁体、及び第4の絶縁体上の第5の導電体を有し、第4の導電体、第4の絶縁体、及び第5の導電体は、第2の開口内に配置され、複数の層のそれぞれが有する、第3の開口は互いに重なる領域を有し、第3の開口内に、第6の導電体が配置され、第6の導電体は、複数の層のそれぞれが有する、第1の導電体の上面の一部、及び側面の一部と接する領域を有する、記憶装置である。
 上記記憶装置において、複数の層は、さらに、第2のトランジスタ及び第2の容量素子と、を有し、第2のトランジスタは、第1のトランジスタと同様の構造を有し、第1のトランジスタに対して、第6の導電体を対称軸として、線対称の位置に配置され、第2の容量素子は、第1の容量素子と同様の構造を有し、第1の容量素子に対して、第6の導電体を対称軸として、線対称の位置に配置される、ことが好ましい。
 また、上記記憶装置において、駆動回路を有し、複数の層は、駆動回路上に重ねて設けられる、ことが好ましい。また、上記記憶装置において、機能回路を有する機能層と、配線と、を有し、機能層は、駆動回路が設けられる基板と、メモリセルを有する層と、の間に設けられ、配線は、駆動回路と、機能回路と、を電気的に接続する機能を有し、機能回路は、ゲートが、メモリセルに電気的に接続された第6の導電体に電気的に接続された第3のトランジスタを有し、第6の導電体の電位に応じた信号を配線に伝える機能を有する、ことが好ましい。
 また、上記記憶装置において、第3の絶縁体は、酸化物の上面及び側面、並びに第2の絶縁体が有する第1の開口の側壁とそれぞれ接する領域を有する、ことが好ましい。
 また、上記記憶装置において、第1の導電体、及び第2の導電体は、それぞれ酸化物の上面及び側面に接する、ことが好ましい。
 また、上記記憶装置において、第4の導電体の一部、第4の絶縁体の一部、及び第5の導電体の一部は、第3の導電体の上面より上に位置する、ことが好ましい。
 また、上記記憶装置において、第4の導電体は、第2の絶縁体が有する第2の開口の側壁に接する領域を有する、ことが好ましい。
 また、上記記憶装置において、第1の絶縁体、第2の絶縁体、及び第1の導電体に、第3の開口が形成され、第3の開口において、第1の導電体の側面は、第1の絶縁体の側面及び第2の絶縁体の側面より突出している、ことが好ましい。
 また、上記記憶装置において、第6の導電体と第3の開口の間に、第7の導電体を有し、第6の導電体は、タングステンを有し、第7の導電体は、チタンと、窒素と、を有する、ことが好ましい。
 また、上記記憶装置において、第2の絶縁体の上面、及び第3の導電体の上面に接して、第5の絶縁体を有し、第5の絶縁体は、第2の開口が形成され、第4の導電体の一部、及び第4の絶縁体の一部が、第5の絶縁体の上面に接する、ことが好ましい。
 本発明の一態様により、微細化または高集積化が可能な半導体装置を提供できる。または、動作速度が速い半導体装置を提供できる。または、信頼性が良好な半導体装置を提供できる。または、トランジスタの電気特性のばらつきが少ない半導体装置を提供できる。または、良好な電気特性を有する半導体装置を提供できる。または、オン電流が大きい半導体装置を提供できる。または、低消費電力の半導体装置を提供できる。または、新規の半導体装置を提供できる。または、工程数が低減された半導体装置の作製方法を提供できる。または、新規の半導体装置を有する記憶装置を提供できる。
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
図1Aは本発明の一態様である半導体装置の上面図である。図1B乃至図1Dは本発明の一態様である半導体装置の断面図である。
図2は本発明の一態様に係る記憶装置の構成を説明するための回路図である。
図3A乃至図3Cは本発明の一態様である半導体装置の断面図である。
図4Aおよび図4Bは本発明の一態様である半導体装置の断面図である。
図5Aおよび図5Bは本発明の一態様である半導体装置の断面図である。
図6A乃至図6Cは本発明の一態様である半導体装置の断面図である。
図7は本発明の一態様である半導体装置の断面図である。
図8Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図8B乃至図8Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図9Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図9B乃至図9Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図10Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図10B乃至図10Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図11Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図11B乃至図11Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図12Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図12B乃至図12Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図13Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図13B乃至図13Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図14Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図14B乃至図14Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図15Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図15B乃至図15Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図16Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図16B乃至図16Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図17Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図17B乃至図17Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図18Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図18B乃至図18Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図19Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図19B乃至図19Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図20Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図20B乃至図20Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図21Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図21B乃至図21Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図22Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図22B乃至図22Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図23Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図23B乃至図23Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図24Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図24B乃至図24Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図25Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図25B乃至図25Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図26は本発明の一態様に係るマイクロ波処理装置を説明する上面図である。
図27は本発明の一態様に係るマイクロ波処理装置を説明する断面図である。
図28は本発明の一態様に係るマイクロ波処理装置を説明する断面図である。
図29は本発明の一態様に係るマイクロ波処理装置を説明する断面図である。
図30Aは本発明の一態様である半導体装置の上面図である。図30B乃至図30Dは本発明の一態様である半導体装置の断面図である。
図31Aおよび図31Bは本発明の一態様に係る半導体装置の断面図である。
図32は本発明の一態様に係る半導体装置の断面図である。
図33は、記憶装置の構成例を説明するブロック図である。
図34Aおよび図34Bは、記憶装置の構成例を説明する模式図および回路図である。
図35Aおよび図35Bは、記憶装置の構成例を説明する模式図である。
図36は、記憶装置の構成例を説明する回路図である。
図37は、記憶装置の構成例を説明するタイミングチャートである。
図38Aおよび図38Bは、記憶装置の構成例を説明する回路図である。
図39Aおよび図39Bは、記憶装置の構成例を説明する回路図である。
図40Aおよび図40Bは本発明の一態様に係る記憶装置の構成を説明するためのレイアウト図である。
図41は本発明の一態様に係る記憶装置の構成を示す断面図である。
図42は本発明の一態様に係る記憶装置の構成を示す断面図である。
図43は本発明の一態様に係る記憶装置の構成を説明するためのレイアウト図である。
図44Aおよび図44Bは本発明の一態様に係る半導体装置の模式図である。
図45Aおよび図45Bは電子部品の一例を説明する図である。
図46A乃至図46Eは本発明の一態様に係る記憶装置の模式図である。
図47A乃至図47Hは本発明の一態様に係る電子機器を示す図である。
図48は、宇宙用機器の一例を示す図である。
 以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの異なる態様で実施することが可能であり、趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。したがって、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
 また、図面において、大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお、図面は、理想的な例を模式的に示したものであり、図面に示す形状または値などに限定されない。例えば、実際の製造工程において、エッチングなどの処理により層、またはレジストマスクなどが意図せずに目減りすることがあるが、理解を容易とするため、図に反映しないことがある。また、図面において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する場合がある。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
 また、特に上面図(「平面図」ともいう)、または斜視図などにおいて、発明の理解を容易とするため、一部の構成要素の記載を省略する場合がある。また、一部の隠れ線の記載を省略する場合がある。
 また、本明細書等において、第1、第2等として付される序数詞は便宜上用いるものであり、工程順または積層順を示すものではない。そのため、例えば、「第1の」を「第2の」または「第3の」などと適宜置き換えて説明することができる。また、本明細書等に記載されている序数詞と、本発明の一態様を特定するために用いられる序数詞は一致しない場合がある。
 また、本明細書等において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。したがって、明細書で説明した語句に限定されず、状況に応じて適切に言い換えることができる。
 例えば、本明細書等において、XとYとが接続されている、とは、XとYとが電気的に接続されているものをいう。ここで、XとYとが電気的に接続されているとは、XとYとの間で対象物(スイッチ、トランジスタ素子、またはダイオード等の素子、あるいは当該素子および配線を含む回路等を指す)が存在する場合にXとYとの電気信号の伝達が可能である接続をいう。なおXとYとが電気的に接続されている場合には、XとYとが直接接続されている場合を含む。ここで、XとYとが直接接続されているとは、上記対象物を介することなく、XとYとの間で配線(または電極)等を介してXとYとの電気信号の伝達が可能である接続をいう。換言すれば、直接接続とは、等価回路で表した際に同じ回路図として見なせる接続をいう。
 また、本明細書等において、トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの端子を有する素子である。そして、ドレイン(ドレイン端子、ドレイン領域またはドレイン電極)とソース(ソース端子、ソース領域またはソース電極)の間にチャネルが形成される領域(以下、チャネル形成領域ともいう)を有しており、チャネル形成領域を介して、ソースとドレインとの間に電流を流すことができるものである。なお、本明細書等において、チャネル形成領域とは、電流が主として流れる領域をいう。
 また、ソース、またはドレインの機能は、異なる極性のトランジスタを採用する場合、または回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書等においては、ソース、またはドレインの用語は、入れ替えて用いることができる場合がある。
 なお、チャネル長とは、例えば、トランジスタの上面図において、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが互いに重なる領域、またはチャネル形成領域における、ソース(ソース領域またはソース電極)とドレイン(ドレイン領域またはドレイン電極)との間の距離をいう。なお、一つのトランジスタにおいて、チャネル長が全ての領域で同じ値をとるとは限らない。すなわち、一つのトランジスタのチャネル長は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル長は、チャネル形成領域における、いずれか一の値、最大値、最小値または平均値とする。
 チャネル幅とは、例えば、トランジスタの上面図において、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが互いに重なる領域、またはチャネル形成領域における、チャネル長方向を基準として垂直方向のチャネル形成領域の長さをいう。なお、一つのトランジスタにおいて、チャネル幅がすべての領域で同じ値をとるとは限らない。すなわち、一つのトランジスタのチャネル幅は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル幅は、チャネル形成領域における、いずれか一の値、最大値、最小値または平均値とする。
 なお、本明細書等において、トランジスタの構造によっては、実際にチャネルの形成される領域におけるチャネル幅(以下、「実効的なチャネル幅」ともいう)と、トランジスタの上面図において示されるチャネル幅(以下、「見かけ上のチャネル幅」ともいう)と、が異なる場合がある。例えば、ゲート電極が半導体の側面を覆う場合、実効的なチャネル幅が、見かけ上のチャネル幅よりも大きくなり、その影響が無視できなくなる場合がある。例えば、微細かつゲート電極が半導体の側面を覆うトランジスタでは、半導体の側面に形成されるチャネル形成領域の割合が大きくなる場合がある。その場合は、見かけ上のチャネル幅よりも、実効的なチャネル幅の方が大きくなる。
 このような場合、実効的なチャネル幅の、実測による見積もりが困難となる場合がある。例えば、設計値から実効的なチャネル幅を見積もるためには、半導体の形状が既知という仮定が必要である。したがって、半導体の形状が正確にわからない場合には、実効的なチャネル幅を正確に測定することは困難である。
 本明細書では、単にチャネル幅と記載した場合には、見かけ上のチャネル幅を指す場合がある。または、本明細書では、単にチャネル幅と記載した場合には、実効的なチャネル幅を指す場合がある。なお、チャネル長、チャネル幅、実効的なチャネル幅、または見かけ上のチャネル幅などは、例えば断面TEM像を解析することによって、値を決定することができる。
 なお、半導体の不純物とは、例えば、半導体を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物と言える。不純物が含まれることにより、例えば、半導体の欠陥準位密度が高くなること、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導体である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第13族元素、第14族元素、第15族元素、酸化物半導体の主成分以外の遷移金属などがあり、例えば、水素、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、窒素などがある。なお、水も不純物として機能する場合がある。また、例えば不純物の混入によって、酸化物半導体に酸素欠損(V:oxygen vacancyともいう)が形成される場合がある。
 なお、本明細書等において、酸化窒化シリコンとは、その組成として、窒素よりも酸素の含有量が多いものである。また、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多いものである。また、酸化窒化アルミニウムとは、その組成として、窒素よりも酸素の含有量が多いものである。また、窒化酸化アルミニウムとは、その組成として、酸素よりも窒素の含有量が多いものである。また、酸化窒化ハフニウムとは、その組成として、窒素よりも酸素の含有量が多いものである。また、窒化酸化ハフニウムとは、その組成として、酸素よりも窒素の含有量が多いものである。
 また、本明細書等において、「絶縁体」という用語を、絶縁膜または絶縁層と言い換えることができる。また、「導電体」という用語を、導電膜または導電層と言い換えることができる。また、「半導体」という用語を、半導体膜または半導体層と言い換えることができる。
 また、本明細書等において、「平行」とは、二つの直線が−10度以上10度以下の角度で配置されている状態をいう。したがって、−5度以上5度以下の場合も含まれる。また、「概略平行」とは、二つの直線が−30度以上30度以下の角度で配置されている状態をいう。また、「垂直」とは、二つの直線が80度以上100度以下の角度で配置されている状態をいう。したがって、85度以上95度以下の場合も含まれる。また、「概略垂直」とは、二つの直線が60度以上120度以下の角度で配置されている状態をいう。
 本明細書等において、金属酸化物(metal oxide)とは、広い意味での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む)、酸化物半導体(Oxide Semiconductorまたは単にOSともいう)などに分類される。例えば、トランジスタの半導体層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、OSトランジスタと記載する場合においては、金属酸化物または酸化物半導体を有するトランジスタと換言することができる。
 また、本明細書等において、ノーマリーオフとは、ゲートに電位を印加しない、またはゲートに接地電位を与えたときに、トランジスタに流れるチャネル幅1μmあたりのドレイン電流が、室温において1×10−20A以下、85℃において1×10−18A以下、または125℃において1×10−16A以下であることをいう。
 また、本明細書等において、「電圧」と「電位」は、適宜言い換えることができる。「電圧」は、基準となる電位からの電位差のことであり、例えば基準となる電位をグラウンド電位(接地電位)とすると、「電圧」を「電位」に言い換えることができる。なお、グラウンド電位は必ずしも0Vを意味するとは限らない。また、電位は相対的なものであり、基準となる電位が変わることによって、配線に与えられる電位、回路などに印加される電位、回路などから出力される電位なども変化する。
 本明細書等において、複数の要素に同じ符号を用いる場合、特に、それらを区別する必要があるときには、符号に“_1”、“[n]”、または“[m,n]”等の識別用の符号を付記して記載する場合がある。
 なお、本明細書等において、「高さが一致または概略一致」とは、断面視において、基準となる面(例えば、基板表面などの平坦な面)からの高さが等しい構成を示す。例えば、半導体装置の製造プロセスにおいて、平坦化処理(代表的にはCMP処理)を行うことで、単層または複数の層の表面を露出する場合がある。この場合、CMP処理の被処理面は、基準となる面からの高さが等しい構成となる。ただし、CMP処理の際の処理装置、処理方法、または被処理面の材料によって、複数の層の高さが異なる場合がある。本明細書等においては、この場合も「高さが一致または概略一致」として扱う。例えば、基準面に対して、2つの高さを有する層(ここでは第1の層と、第2の層とする)を有する場合、第1の層の上面の高さと、第2の層の上面の高さとの差が、20nm以下である場合も、「高さが一致または概略一致」という。
 なお、本明細書等において、「端部が一致または概略一致」とは、上面視において、積層した層と層との間で少なくとも輪郭の一部が重なることをいう。例えば、上層と下層とが、同一のマスクパターン、または一部が同一のマスクパターンにより加工された場合を含む。ただし、厳密には輪郭が重ならず、上層の輪郭が下層の輪郭より内側に位置すること、または、上層の輪郭が下層の輪郭より外側に位置することもあり、この場合も「端部が一致または概略一致」という。
(実施の形態1)
 本実施の形態では、図1A乃至図32を用いて、本発明の一態様である半導体装置の一例、およびその作製方法について説明する。本発明の一態様である半導体装置は、トランジスタ及び容量素子を有する。
<半導体装置の構成例>
 図1を用いて、トランジスタ及び容量素子を有する半導体装置の構成を説明する。図1A乃至図1Dは、トランジスタ200a、トランジスタ200b、容量素子100a、及び容量素子100bを有する半導体装置の上面図および断面図である。図1Aは、当該半導体装置の上面図である。また、図1B乃至図1Dは、当該半導体装置の断面図である。ここで、図1Bは、図1AにA1−A2の一点鎖線で示す部位の断面図であり、トランジスタ200a、トランジスタ200b、容量素子100a、及び容量素子100bのチャネル長方向の断面図でもある。また、図1Cは、図1AにA3−A4の一点鎖線で示す部位の断面図であり、トランジスタ200aのチャネル幅方向の断面図でもある。また、図1Dは、図1AにA5−A6の一点鎖線で示す部位の断面図である。なお、図1Aの上面図では、図の明瞭化のために一部の要素を省いている。
 また、図1Aに示すX方向は、トランジスタ200aのチャネル長方向及びトランジスタ200bのチャネル長方向と平行であり、Y方向はX方向に垂直であり、Z方向は、X方向及びY方向に垂直である。なお、図1Aに示すX方向、Y方向、及びZ方向を、図1B乃至図1Dにも図示している。
 本発明の一態様の半導体装置は、基板(図示せず)上の絶縁体214と、絶縁体214上のトランジスタ200a、トランジスタ200b、容量素子100a、及び容量素子100bと、トランジスタ200a及びトランジスタ200bに設けられた絶縁体275上の絶縁体280と、絶縁体280上の絶縁体282と、容量素子100a上、容量素子100b上、及び絶縁体282上の絶縁体285と、導電体240(導電体240a及び導電体240b)を有する。絶縁体214、絶縁体280、絶縁体282、及び絶縁体285は層間膜として機能する。図1Bに示すように、トランジスタ200a、トランジスタ200b、容量素子100a、及び容量素子100bのそれぞれは、少なくとも一部が、絶縁体280に埋め込まれて配置される。
 ここで、トランジスタ200a及びトランジスタ200bはそれぞれ、半導体層として機能する酸化物230と、第1のゲート(トップゲートともいう)電極として機能する導電体260と、第2のゲート(バックゲートともいう)電極として機能する導電体205と、ソース電極またはドレイン電極の一方として機能する導電体242aと、ソース電極またはドレイン電極の他方として機能する導電体242bと、を有する。また、第1のゲート絶縁体として機能する、絶縁体253及び絶縁体254を有する。また、第2のゲート絶縁体として機能する、絶縁体222及び絶縁体224を有する。なお、ゲート絶縁体は、ゲート絶縁層、またはゲート絶縁膜と呼ぶ場合もある。
 なお、トランジスタ200aとトランジスタ200bとは同じ構成を有するため、以下では、トランジスタ200a及びトランジスタ200bに共通の事項を説明する場合には、符号に付加する記号を省略し、トランジスタ200と表記して説明する場合がある。
 第1のゲート電極及び第1のゲート絶縁膜は、絶縁体280及び絶縁体275に形成された開口258内に配置される。すなわち、導電体260、絶縁体254、及び絶縁体253は、開口258内に配置される。
 容量素子100a及び容量素子100bはそれぞれ、下部電極として機能する導電体156と、誘電体として機能する絶縁体153と、上部電極として機能する導電体160と、を有する。すなわち、容量素子100a及び容量素子100bはそれぞれ、MIM(Metal−Insulator−Metal)容量を構成している。
 なお、容量素子100aと容量素子100bとは同じ構成を有するため、以下では、容量素子100a及び容量素子100bに共通の事項を説明する場合には、符号に付加する記号を省略し、容量素子100と表記して説明する場合がある。
 容量素子100の上部電極、誘電体、及び下部電極の一部は、絶縁体282、絶縁体280、及び絶縁体275に形成された開口158内に配置される。すなわち、導電体160、絶縁体153、及び導電体156は、開口158内に配置される。
 また、本発明の一態様の半導体装置は、トランジスタ200と電気的に接続してプラグ(接続電極とよぶこともできる。)として機能する、導電体240(導電体240a及び導電体240b)を有する。導電体240は、絶縁体280などに形成された開口206内に配置される。導電体240は、導電体242aの上面の一部、及び側面の一部と接する領域を有する。
 また、本発明の一態様の半導体装置は、基板(図示せず)と絶縁体214の間に、絶縁体210と、導電体209とを有する。導電体209は、絶縁体210に埋め込まれるように配置される。導電体209は、導電体240と接する領域を有する。
 また、本発明の一態様の半導体装置は、絶縁体210及び導電体209と絶縁体214の間に、絶縁体212を有してもよい。
 本実施の形態に示す、トランジスタ200及び容量素子100を有する半導体装置は、記憶装置のメモリセルとして用いることができる。このとき、導電体240はセンスアンプに電気的に接続される場合があり、導電体240はビット線として機能する。ここで、図1Aに示すように、容量素子100は、少なくともその一部が、トランジスタ200が有する導電体242bと重なるように設けられる。よって、平面視において、占有面積を大きく増加させることなく容量素子100を設けることができるため、本実施の形態に係る半導体装置を微細化または高集積化させることができる。
 また、本実施の形態に示す半導体装置は、図1Aに示すA7−A8の一点鎖線を対称軸とした線対称の構成となっている。つまり、トランジスタ200bは、トランジスタ200aに対して、導電体240を対称軸として、線対称の位置に配置される、ということができる。また、容量素子100bは、容量素子100aに対して、導電体240を対称軸として、線対称の位置に配置される、ということができる。ここで、トランジスタ200aのソース電極またはドレイン電極の一方と、トランジスタ200bのソース電極またはドレイン電極の一方は、導電体242aが兼ねる構成となっている。また、トランジスタ200aとトランジスタ200bのそれぞれにおいて、導電体240がプラグとして機能する構成となっている。このように、2つのトランジスタと、2つの容量素子と、プラグとの接続を上述の構成とすることで、微細化または高集積化が可能な半導体装置を提供できる。
 本実施の形態に示す半導体装置を記憶装置に用いる場合の回路図を図2に示す。トランジスタ200a及び容量素子100aを有する半導体装置を記憶装置のメモリセルとして用いることができる。また、トランジスタ200b及び容量素子100bを有する半導体装置を記憶装置のメモリセルとして用いることができる。
 図2に示すように、図1A乃至図1Dに示す半導体装置は、2つのメモリセルで構成されている記憶装置と言い換えることができる。一方のメモリセルは、トランジスタTraと容量素子Caとを有する。また、他方のメモリセルは、トランジスタTrbと容量素子Cbとを有する。
 ここで、トランジスタTra、トランジスタTrb、容量素子Ca、及び容量素子Cbはそれぞれ、トランジスタ200a、トランジスタ200b、容量素子100a、及び容量素子100bに対応する。
 一方のメモリセルにおいて、トランジスタTraのソースまたはドレインの一方は配線BLに接続される。トランジスタTraのソースまたはドレインの他方は容量素子Caの一方の電極に接続される。トランジスタTraのゲートは、配線WLに接続される。容量素子Caの他方の電極は、配線PLに接続される。
 他方のメモリセルにおいて、トランジスタTrbのソースまたはドレインの一方は配線BLに接続される。トランジスタTrbのソースまたはドレインの他方は容量素子Cbの一方の電極に接続される。トランジスタTrbのゲートは、配線WLに接続される。容量素子Cbの他方の電極は、配線PLに接続される。
 なお、メモリセルについては、後の実施の形態で詳細に説明する。
[トランジスタ200]
 図1A乃至図1Dに示すように、トランジスタ200は、絶縁体214上の絶縁体216と、絶縁体216に埋め込まれるように配置された導電体205(導電体205a、および導電体205b)と、絶縁体216上および導電体205上の絶縁体222と、絶縁体222上の絶縁体224と、絶縁体224上の酸化物230aと、酸化物230a上の酸化物230bと、酸化物230b上の導電体242a(導電体242a1及び導電体242a2)および導電体242b(導電体242b1及び導電体242b2)と、酸化物230b上の絶縁体253と、絶縁体253上の絶縁体254と、絶縁体254上に位置し、酸化物230bの一部と重なる導電体260(導電体260a、および導電体260b)と、絶縁体222上、絶縁体224上、酸化物230a上、酸化物230b上、導電体242a上、及び導電体242b上に配置される絶縁体275と、を有する。
 なお、本明細書等において、酸化物230aと酸化物230bをまとめて酸化物230と呼ぶ場合がある。また、導電体242aと導電体242bをまとめて導電体242と呼ぶ場合がある。
 絶縁体280及び絶縁体275には、酸化物230bに達する開口258が設けられる。つまり、開口258は、酸化物230bと重なる領域を有するといえる。また、絶縁体275は、絶縁体280が有する開口と重畳する開口を有するといえる。つまり、開口258は、絶縁体280が有する開口と、絶縁体275が有する開口とを含む。また、開口258内に、絶縁体253、絶縁体254、および導電体260が配置されている。つまり、導電体260は、絶縁体253および絶縁体254を介して、酸化物230bと重畳する領域を有する。また、トランジスタ200のチャネル長方向において、導電体242aと導電体242bの間に導電体260、絶縁体253、および絶縁体254が設けられている。絶縁体254は、導電体260の側面と接する領域と、導電体260の底面と接する領域と、を有する。なお、図1Cに示すように、開口258は、酸化物230と重畳しない領域では、絶縁体222に達する。
 酸化物230は、絶縁体224の上に配置された酸化物230aと、酸化物230aの上に配置された酸化物230bと、を有することが好ましい。酸化物230bの下に酸化物230aを有することで、酸化物230aよりも下方に形成された構造物から、酸化物230bへの不純物の拡散を抑制することができる。
 なお、トランジスタ200では、酸化物230が、酸化物230a、および酸化物230bの2層を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、酸化物230bの単層の構成にしてもよいし、または3層以上の積層構造を設ける構成にしてもよいし、酸化物230a、および酸化物230bのそれぞれが積層構造を有していてもよい。
 導電体260は、第1のゲート電極として機能し、導電体205は、第2のゲート電極として機能する。また、絶縁体253、および絶縁体254は、第1のゲート絶縁体として機能し、絶縁体222、および絶縁体224は、第2のゲート絶縁体として機能する。また、導電体242aは、ソース電極またはドレイン電極の一方として機能し、導電体242bは、ソース電極またはドレイン電極の他方として機能する。また、酸化物230の導電体260と重畳する領域の少なくとも一部はチャネル形成領域として機能する。
 ここで、図1Bにおけるチャネル形成領域近傍の拡大図を図3Aに示す。開口258は、図3A及び図1Cに示すように、絶縁体222を底面とし、絶縁体280及び絶縁体275を側面とする開口の中に、絶縁体224、及び酸化物230からなる構造体の一部が突出している形状とみなすこともできる。
 図3A及び図1Cに示すように、開口258の底面及び内壁(側壁ともいう)に接して、絶縁体253が設けられる。よって、絶縁体253は、絶縁体222の上面、絶縁体224の側面、酸化物230aの側面、酸化物230bの上面及び側面、導電体242a及び導電体242bの側面、絶縁体275の側面、絶縁体280の側面、ならびに絶縁体254の下面のそれぞれの少なくとも一部と接する。
 図3Aに示すように、開口258のチャネル長方向の幅は、導電体242aと導電体242bの間の距離と概略一致する。よって、酸化物230bの、開口258のチャネル長方向の幅と重なる領域にチャネル形成領域が形成される。ここで、導電体242aと導電体242bの間の距離は、例えば、60nm以下、50nm以下、40nm以下、30nm以下、20nm以下、または10nm以下であって、1nm以上、または5nm以上にすることが好ましい。このように、トランジスタ200のチャネル形成領域を、非常に微細な構造にすることで、トランジスタ200のオン電流が大きくなり、周波数特性の向上を図ることができる。また、複数のトランジスタ200を設ける際に、小面積化、高密度化が可能となる。ただし、上記に限られず、導電体242aと導電体242bの間の距離を60nm以上にすることもできる。
 また、トランジスタ200を微細化することで高周波特性を向上することができる。具体的には、遮断周波数を向上することができる。ゲート長が上記範囲のいずれかである場合、トランジスタの遮断周波数を、例えば室温環境下で、50GHz以上、または100GHz以上とすることができる。
 なお、図3Aには、開口258の側壁が絶縁体222の上面に対し、概略垂直になる構成を示しているが、本発明はこれに限られない。図3Bに示すように、開口258の側壁はテーパー形状になっていてもよい。開口258の側壁をテーパー形状にすることで、これより後の工程において、絶縁体253などの被覆性が向上し、鬆などの欠陥を低減できる。
 なお、本明細書等において、テーパー形状とは、構造の側面の少なくとも一部が、基板面に対して傾斜して設けられている形状のことを指す。例えば、傾斜した側面と基板面とがなす角(以下、テーパー角と呼ぶ場合がある)が90°未満である領域を有すると好ましい。なお、構造の側面及び基板面は、必ずしも完全に平坦である必要はなく、微細な曲率を有する略平面状、または微細な凹凸を有する略平面状であってもよい。
 また、図3Cに示すように、トランジスタ200のチャネル長方向の断面視において、導電体242aと導電体242bの間の距離L2が、開口258の幅より、小さくなる構成にしてもよい。ここで、開口258の幅は、図3Cに示す、絶縁体280と絶縁体253の導電体242a側の界面と、絶縁体280と絶縁体253の導電体242b側の界面の間の距離L1に対応する。このような構成にすることで、導電体242aと導電体242bの間の距離L2を、非常に微細な構造(例えば、60nm以下、50nm以下、40nm以下、30nm以下、20nm以下、または10nm以下であって、1nm以上、または5nm以上)にすることができる。また、導電体260は距離L2よりも大きい距離L1の領域を有するため、距離L1の領域に位置する導電体260の抵抗が増大するのを抑制し、導電体260を配線として機能させることができる。
 また、図3Cに示すように、トランジスタ200のチャネル長方向の断面視において、開口258における絶縁体280が有する開口の幅は、距離L1と等しく、開口258における絶縁体275が有する開口の幅は距離L2と等しい。
 開口258は、図3C及び図1Cに示すように、絶縁体222を底面とし、絶縁体280を側面とする開口の中に、絶縁体224、酸化物230、導電体242、及び絶縁体275からなる構造体の一部が突出している形状とみなすこともできる。さらに、絶縁体224、酸化物230、導電体242、及び絶縁体275からなる構造体において、導電体242aと導電体242bに挟まれる酸化物230の領域が露出しているとみなすことができる。
 図3C及び図1Cに示すように、開口258の底面及び内壁(側壁ともいう)に接して、絶縁体253が設けられる。よって、絶縁体253は、絶縁体222の上面、絶縁体224の側面、酸化物230aの側面、酸化物230bの上面及び側面、導電体242a及び導電体242bの側面、絶縁体275の側面、絶縁体280の側面、ならびに絶縁体254の下面のそれぞれの少なくとも一部と接する。また、絶縁体253上には、絶縁体254及び導電体260が積層されている。このため、開口258中に一部突出した導電体242及び絶縁体275を覆って、絶縁体253、絶縁体254、及び導電体260が設けられている。
 酸化物230bの、距離L2の領域にチャネル形成領域が形成される。よって、トランジスタ200のチャネル形成領域は、非常に微細な構造になる。これにより、トランジスタ200のオン電流が大きくなり、周波数特性の向上を図ることができる。
 図3Aに示すように、酸化物230bは、トランジスタ200のチャネル形成領域として機能する領域230bcと、領域230bcを挟むように設けられ、ソース領域またはドレイン領域として機能する領域230baおよび領域230bbと、を有する。領域230bcは、少なくとも一部が導電体260と重畳している。言い換えると、領域230bcは、導電体242aと導電体242bの間の領域に設けられている。領域230baは、導電体242aに重畳して設けられており、領域230bbは、導電体242bに重畳して設けられている。
 チャネル形成領域として機能する領域230bcは、領域230baおよび領域230bbよりも、酸素欠損が少なく、または不純物濃度が低いため、キャリア濃度が低い高抵抗領域である。よって領域230bcは、i型(真性)または実質的にi型であるということができる。
 また、ソース領域またはドレイン領域として機能する領域230baおよび領域230bbは、酸素欠損が多く、または水素、窒素、金属元素などの不純物濃度が高い、ことでキャリア濃度が増加し、低抵抗化した領域である。すなわち、領域230baおよび領域230bbは、領域230bcと比較して、キャリア濃度が高く、低抵抗なn型の領域である。
 ここで、図3Aに示すように、導電体242a及び導電体242bの互いに対向する側面は、酸化物230bの上面に対して概略垂直であることが好ましい。このような構成にすることで、導電体242aの下に形成される領域230baの領域230bc側の側端部が、導電体242aの領域230bc側の側端部より、過剰に後退するのを抑制できる。同様に、導電体242bの下に形成される領域230bbの領域230bc側の側端部が、導電体242bの領域230bc側の側端部より、過剰に後退するのを抑制できる。これにより、領域230baと領域230bcの間、及び領域230bbと領域230bcの間、に所謂Loff領域が形成されるのを低減することができる。ここで、領域230baの領域230bc側の側端部が後退するとは、領域230baの側端部が、導電体242aの領域230bc側の側面よりも、導電体240側に位置することを指す。また、領域230bbの領域230bc側の側端部が後退するとは、領域230bbの側端部が、導電体242bの領域230bc側の側面よりも、導電体160側に位置することを指す。
 以上により、トランジスタ200の周波数特性を向上させ、本発明の一態様に係る半導体装置の動作速度の向上を図ることができる。例えば、本発明の一態様に係る半導体装置を、記憶装置のメモリセルとして用いる場合、書き込み速度、及び読み出し速度の向上を図ることができる。
 なお、チャネル形成領域として機能する領域230bcのキャリア濃度は、1×1018cm−3以下であることが好ましく、1×1017cm−3未満であることがより好ましく、1×1016cm−3未満であることがさらに好ましく、1×1013cm−3未満であることがさらに好ましく、1×1012cm−3未満であることがさらに好ましい。また、チャネル形成領域として機能する領域230bcのキャリア濃度の下限値については、特に限定は無いが、例えば、1×10−9cm−3とすることができる。
 また、領域230bcと領域230baまたは領域230bbとの間に、キャリア濃度が、領域230baおよび領域230bbのキャリア濃度と同等、またはそれよりも低く、領域230bcのキャリア濃度と同等、またはそれよりも高い、領域が形成されていてもよい。つまり、当該領域は、領域230bcと領域230baまたは領域230bbとの接合領域として機能する。当該接合領域は、水素濃度が、領域230baおよび領域230bbの水素濃度と同等、またはそれよりも低く、領域230bcの水素濃度と同等、またはそれよりも高くなる場合がある。また、当該接合領域は、酸素欠損が、領域230baおよび領域230bbの酸素欠損と同等、またはそれよりも少なく、領域230bcの酸素欠損と同等、またはそれよりも多くなる場合がある。
 なお、図3Aでは、領域230ba、領域230bb、および領域230bcが酸化物230bに形成される例について示しているが、本発明はこれに限られるものではない。例えば、上記の各領域が酸化物230bだけでなく、酸化物230aまで形成されてもよい。
 また、酸化物230において、各領域の境界を明確に検出することが困難な場合がある。各領域内で検出される金属元素、ならびに水素、および窒素などの不純物元素の濃度は、領域ごとの段階的な変化に限らず、各領域内でも連続的に変化していてもよい。つまり、チャネル形成領域に近い領域であるほど、金属元素、ならびに水素、および窒素などの不純物元素の濃度が減少していればよい。
 トランジスタ200は、チャネル形成領域を含む酸化物230(酸化物230a、および酸化物230b)に、半導体として機能する金属酸化物(以下、酸化物半導体ともいう)を用いることが好ましい。
 また、半導体として機能する金属酸化物のバンドギャップは、2eV以上が好ましく、2.5eV以上がより好ましい。バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減できる。
 酸化物230として、例えば、インジウム酸化物、ガリウム酸化物、及び亜鉛酸化物などの金属酸化物を用いることが好ましい。また、酸化物230として、例えば、インジウムと、元素Mと、亜鉛と、の中から選ばれる二または三を有する金属酸化物を用いることが好ましい。なお、元素Mは、ガリウム、アルミニウム、シリコン、ホウ素、イットリウム、錫、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、及びマグネシウムから選ばれた一種または複数種である。特に、元素Mは、アルミニウム、ガリウム、イットリウム、及び錫から選ばれた一種または複数種であることが好ましい。なお、インジウム、元素Mおよび亜鉛を有する金属酸化物を、In−M−Zn酸化物と表記することがある。
 酸化物230は、化学組成が異なる複数の酸化物層の積層構造を有することが好ましい。例えば、酸化物230aに用いる金属酸化物において、主成分である金属元素に対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、主成分である金属元素に対する元素Mの原子数比より、大きいことが好ましい。また、酸化物230aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。当該構成にすることで、酸化物230aよりも下方に形成された構造物からの、酸化物230bに対する、不純物および酸素の拡散を抑制できる。
 また、酸化物230bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物230aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。当該構成とすることで、トランジスタ200は大きいオン電流、および高い周波数特性を得ることができる。
 また、酸化物230aおよび酸化物230bが、酸素以外に共通の元素を主成分として有することで、酸化物230aおよび酸化物230bの界面における欠陥準位密度を低減できる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ200は大きいオン電流、および高い周波数特性を得ることができる。
 具体的には、酸化物230aとして、In:M:Zn=1:3:4[原子数比]もしくはその近傍の組成、In:M:Zn=1:3:2[原子数比]もしくはその近傍の組成、またはIn:M:Zn=1:1:0.5[原子数比]もしくはその近傍の組成の金属酸化物を用いればよい。また、酸化物230bとして、In:M:Zn=1:1:1[原子数比]もしくはその近傍の組成、In:M:Zn=1:1:1.2[原子数比]もしくはその近傍の組成、In:M:Zn=1:1:2[原子数比]もしくはその近傍の組成、またはIn:M:Zn=4:2:3[原子数比]もしくはその近傍の組成の金属酸化物を用いればよい。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。また、元素Mとして、ガリウムを用いることが好ましい。また、酸化物230として酸化物230bの単層を設ける場合、酸化物230bとして、酸化物230aに用いることができる金属酸化物を適用してもよい。
 なお、金属酸化物をスパッタリング法により成膜する場合、上記の原子数比は、成膜された金属酸化物の原子数比に限られず、金属酸化物の成膜に用いるスパッタリングターゲットの原子数比であってもよい。
 酸化物230bは、結晶性を有することが好ましい。特に、酸化物230bとして、CAAC−OS(c−axis aligned crystalline oxide semiconductor)を用いることが好ましい。
 CAAC−OSは、結晶性の高い、緻密な構造を有しており、不純物および欠陥(例えば、酸素欠損など)が少ない金属酸化物である。特に、金属酸化物の形成後に、金属酸化物が多結晶化しない程度の温度(例えば、400℃以上600℃以下)で加熱処理することで、CAAC−OSをより結晶性の高い、緻密な構造にすることができる。このようにして、CAAC−OSの密度をより高めることで、当該CAAC−OS中の不純物または酸素の拡散をより低減することができる。
 また、CAAC−OSは、明確な結晶粒界を確認することが難しいため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。したがって、CAAC−OSを有する金属酸化物は、物理的性質が安定する。そのため、CAAC−OSを有する金属酸化物は熱に強く、信頼性が高い。
 また、酸化物230bとしてCAAC−OSなどの結晶性を有する酸化物を用いることで、ソース電極またはドレイン電極による、酸化物230bからの酸素の引き抜きを抑制することができる。これにより、熱処理を行っても、酸化物230bから酸素が引き抜かれることを低減できるため、トランジスタ200は、製造工程における高い温度(所謂サーマルバジェット)に対して安定である。
 酸化物半導体を用いたトランジスタは、酸化物半導体中のチャネルが形成される領域に不純物および酸素欠損が存在すると、電気特性が変動しやすく、信頼性が悪くなる場合がある。また、酸素欠損近傍の水素が、酸素欠損に水素が入った欠陥(以下、VHと呼ぶ場合がある)を形成し、キャリアとなる電子を生成する場合がある。このため、酸化物半導体中のチャネルが形成される領域に酸素欠損が含まれていると、トランジスタはノーマリーオン特性(ゲート電極に電圧を印加しなくてもチャネルが存在し、トランジスタに電流が流れる特性)となりやすい。したがって、酸化物半導体中のチャネルが形成される領域では、不純物、酸素欠損、およびVHはできる限り低減されていることが好ましい。言い換えると、酸化物半導体中のチャネルが形成される領域は、キャリア濃度が低減され、i型(真性化)または実質的にi型であることが好ましい。
 これに対して、酸化物半導体の近傍に、加熱により脱離する酸素(以下、過剰酸素と呼ぶ場合がある)を含む絶縁体を設け、熱処理を行うことで、当該絶縁体から酸化物半導体に酸素を供給し、酸素欠損、およびVHを低減することができる。ただし、ソース領域またはドレイン領域に過剰な量の酸素が供給されると、トランジスタ200のオン電流の低下、または電界効果移動度の低下を引き起こすおそれがある。さらに、ソース領域またはドレイン領域に供給される酸素の量が基板面内でばらつくことで、トランジスタを有する半導体装置の特性にばらつきが出ることになる。また、当該絶縁体から酸化物半導体に供給する酸素が、ゲート電極、ソース電極、及びドレイン電極などの導電体に拡散すると、当該導電体が酸化してしまい、導電性が損なわれることなどにより、トランジスタの電気特性および信頼性に悪影響を及ぼす場合がある。
 よって、酸化物半導体中において、チャネル形成領域として機能する領域230bcは、キャリア濃度が低減され、i型または実質的にi型であることが好ましいが、ソース領域またはドレイン領域として機能する領域230baおよび領域230bbは、キャリア濃度が高く、n型であることが好ましい。つまり、酸化物半導体の領域230bcの酸素欠損、およびVHを低減することが好ましい。また、領域230baおよび領域230bbには過剰な量の酸素が供給されないようにすること、及び領域230ba及び領域230bbのVHの量が過剰に低減しないようにすることが好ましい。また、導電体260、導電体242a、及び導電体242bなどの導電率が低下するのを抑制する構成にすることが好ましい。例えば、導電体260、導電体242a、及び導電体242bなどの酸化を抑制する構成にすることが好ましい。なお、酸化物半導体中の水素はVHを形成しうるため、VHの量を低減するには、水素濃度を低減する必要がある。
 そこで、本実施の形態では、半導体装置を、領域230bcの水素濃度を低減し、かつ、導電体242a、導電体242b、および導電体260の酸化を抑制し、かつ、領域230ba及び領域230bb中の水素濃度が低減するのを抑制する構成とする。
 領域230bcの水素濃度を低減するために、絶縁体253として、水素を捕獲および水素を固着する機能を有することが好ましい。図3(A)などに示すように、絶縁体253は、酸化物230bの領域230bcと接する領域を有する。当該構成とすることで、酸化物230bの領域230bc中の水素濃度を低減できる。よって、領域230bc中のVHを低減し、領域230bcをi型または実質的にi型とすることができる。
 水素を捕獲および水素を固着する機能を有する絶縁体として、アモルファス構造を有する金属酸化物が挙げられる。例えば、酸化マグネシウム、またはアルミニウム及びハフニウムの一方又は双方を含む酸化物などの金属酸化物を用いることが好ましい。このようなアモルファス構造を有する金属酸化物では、酸素原子がダングリングボンドを有しており、当該ダングリングボンドで水素を捕獲または固着する性質を有する場合がある。つまり、アモルファス構造を有する金属酸化物は、水素を捕獲または固着する能力が高いと言える。
 特に、絶縁体253として、アルミニウム及びハフニウムの一方又は双方を含む酸化物を用いることが好ましく、アモルファス構造を有し、アルミニウム及びハフニウムの一方又は双方を含む酸化物を用いることがより好ましく、アモルファス構造を有する酸化ハフニウムを用いることがさらに好ましい。本実施の形態では、絶縁体253として、酸化ハフニウムを用いる。この場合、絶縁体253は、少なくとも酸素と、ハフニウムと、を有する絶縁体となる。また、当該酸化ハフニウムは、アモルファス構造を有する。この場合、絶縁体253は、アモルファス構造を有する。
 ただし、絶縁体253に用いることができる絶縁体は、上述の水素に対するバリア絶縁体に限られるものではない。酸化シリコンまたは酸化窒化シリコンなどの、熱に対し安定な構造の絶縁体を用いる構成にすることもできる。例えば、絶縁体253として、酸化アルミニウム膜と、酸化アルミニウム膜上の酸化シリコン膜または酸化窒化シリコン膜を有する積層膜を用いてもよい。また、例えば、絶縁体253として、酸化アルミニウム膜と、酸化アルミニウム膜上の酸化シリコン膜または酸化窒化シリコン膜と、酸化シリコン膜または酸化窒化シリコン膜上の酸化ハフニウム膜を有する積層膜を用いてもよい。
 導電体242a、導電体242b、および導電体260の酸化を抑制するために、導電体242a、導電体242b、および導電体260それぞれの近傍に酸素に対するバリア絶縁体を設けることが好ましい。本実施の形態で説明する半導体装置において、当該絶縁体は、例えば、絶縁体253、絶縁体254、および絶縁体275である。
 なお、本明細書等において、バリア絶縁体とは、バリア性を有する絶縁体のことを指す。本明細書等において、バリア性とは、対応する物質の拡散を抑制する機能(透過性が低いともいう)とする。または、対応する物質を、捕獲、および固着する(ゲッタリングともいう)機能とする。
 酸素に対するバリア絶縁体として、アルミニウムおよびハフニウムの一方または双方を含む酸化物、酸化マグネシウム、酸化ガリウム、インジウムガリウム亜鉛酸化物、窒化シリコン、及び窒化酸化シリコンなどが挙げられる。また、アルミニウムおよびハフニウムの一方または双方を含む酸化物として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)、ハフニウムおよびシリコンを含む酸化物(ハフニウムシリケート)などが挙げられる。例えば、絶縁体253、絶縁体254、及び絶縁体275はそれぞれ、上記酸素に対するバリア絶縁体を単層または積層とすればよい。
 絶縁体253として、酸素に対するバリア性を有することが好ましい。なお、絶縁体253は、少なくとも絶縁体280よりも酸素を透過しにくければよい。絶縁体253は、導電体242aの側面、及び導電体242bの側面と接する領域を有する。絶縁体253が酸素に対するバリア性を有することで、導電体242aおよび導電体242bの側面が酸化され、当該側面に酸化膜が形成されるのを抑制できる。これにより、トランジスタ200のオン電流の低下、または電界効果移動度の低下を起こすのを抑制できる。
 また、絶縁体253は、酸化物230bの上面および側面、酸化物230aの側面、絶縁体224の側面、および絶縁体222の上面に接して設けられる。絶縁体253が酸素に対するバリア性を有することで、熱処理などを行った際に、酸化物230bの領域230bcから酸素が脱離するのを抑制できる。よって、酸化物230aおよび酸化物230bに酸素欠損が形成されるのを低減できる。
 また、絶縁体280に過剰な量の酸素が含まれていても、当該酸素が酸化物230aおよび酸化物230bに過剰に供給されるのを抑制できる。よって、領域230baおよび領域230bbが過剰に酸化され、トランジスタ200のオン電流の低下、または電界効果移動度の低下を起こすのを抑制できる。
 アルミニウム及びハフニウムの一方又は双方を含む酸化物は酸素に対するバリア性を有するため、絶縁体253として好適に用いることができる。
 絶縁体254として、酸素に対するバリア性を有することが好ましい。絶縁体254は酸化物230bの領域230bcと導電体260との間、及び絶縁体280と導電体260との間に設けられている。当該構成にすることで、酸化物230bの領域230bcに含まれる酸素が導電体260へ拡散し、酸化物230bの領域230bcに酸素欠損が形成されるのを抑制できる。また、酸化物230bに含まれる酸素及び絶縁体280に含まれる酸素が導電体260へ拡散し、導電体260が酸化するのを抑制できる。なお、絶縁体254は、少なくとも絶縁体280よりも酸素を透過しにくければよい。例えば、絶縁体254として、窒化シリコンを用いることが好ましい。この場合、絶縁体254は、少なくとも窒素と、シリコンと、を有する絶縁体となる。
 絶縁体275として、酸素に対するバリア性を有することが好ましい。絶縁体275は、絶縁体280と、導電体242a及び導電体242bとの間に設けられている。当該構成にすることで、絶縁体280に含まれる酸素が導電体242aおよび導電体242bに拡散するのを抑制できる。したがって、絶縁体280に含まれる酸素によって、導電体242aおよび導電体242bが酸化されて抵抗率が増大し、トランジスタ200のオン電流が低減するのを抑制できる。なお、絶縁体275は、少なくとも絶縁体280よりも酸素を透過しにくければよい。例えば、絶縁体275として、窒化シリコンを用いることが好ましい。この場合、絶縁体275は、少なくとも窒素と、シリコンと、を有する絶縁体となる。
 領域230ba及び領域230bb中の水素濃度が低減するのを抑制するために、領域230ba及び領域230bbそれぞれの近傍に水素に対するバリア絶縁体を設けることが好ましい。本実施の形態で説明する半導体装置において、当該水素に対するバリア絶縁体は、例えば、絶縁体275である。
 水素に対するバリア絶縁体として、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの酸化物、及び窒化シリコンなどの窒化物が挙げられる。例えば、絶縁体275は、上記水素に対するバリア絶縁体を単層または積層とすればよい。
 絶縁体275として、水素に対するバリア性を有することが好ましい。絶縁体275は、酸化物230bの領域230baの側面、及び酸化物230bの領域230bbの側面のそれぞれに接して配置されている。このような絶縁体275を設けることで、領域230ba及び領域230bbの水素が外部に拡散するのを低減することができるので、領域230ba及び領域230bbの水素濃度が低減するのを抑制することができる。したがって、領域230ba及び領域230bbをn型とすることができる。
 上記構成にすることで、チャネル形成領域として機能する領域230bcをi型または実質的にi型とし、ソース領域またはドレイン領域として機能する領域230baおよび領域230bbをn型とすることができ、良好な電気特性を有する半導体装置を提供できる。また、上記構成にすることで、半導体装置を微細化または高集積化しても良好な電気特性を有することができる。
 絶縁体253は、ゲート絶縁体の一部として機能する。図1Bに示すように、絶縁体253は、絶縁体275の側面、及び絶縁体280の側面に接して設けられる。
 絶縁体253は、絶縁体254及び導電体260と、ともに、絶縁体280などに形成された開口に設ける必要がある。トランジスタ200の微細化を図るにあたって、絶縁体253の膜厚は薄いことが好ましい。絶縁体253の膜厚は、0.1nm以上5.0nm以下、好ましくは0.5nm以上5.0nm以下、より好ましくは1.0nm以上5.0nm未満、さらに好ましくは1.0nm以上3.0nm以下とする。この場合、絶縁体253は、少なくとも一部において、上記のような膜厚の領域を有していればよい。
 絶縁体253の膜厚を上記のように薄くするには、原子層堆積(ALD:Atomic Layer Deposition)法を用いて成膜することが好ましい。ALD法は、プリカーサ及びリアクタントの反応を熱エネルギーのみで行う熱ALD(Thermal ALD)法、プラズマ励起されたリアクタントを用いるPEALD(Plasma Enhanced ALD)法などがある。PEALD法では、プラズマを利用することで、より低温での成膜が可能となり好ましい場合がある。
 ALD法は、一層ずつ原子を堆積することができるため、極薄の成膜が可能、アスペクト比の高い構造への成膜が可能、ピンホールなどの欠陥の少ない成膜が可能、被覆性に優れた成膜が可能、低温での成膜が可能、などの効果がある。よって、絶縁体253を、絶縁体280などに形成された開口の側面、及び導電体242の側端部などに被覆性良く、上記のような薄い膜厚で成膜することができる。
 なお、ALD法で用いるプリカーサには炭素などを含むものがある。このため、ALD法により設けられた膜は、他の成膜法により設けられた膜と比較して、炭素などの不純物を多く含む場合がある。なお、不純物の定量は、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)、X線光電子分光法(XPS:X−ray Photoelectron Spectroscopy)、またはオージェ電子分光法(AES:Auger Electron Spectroscopy)を用いて行うことができる。
 ただし、絶縁体253の膜厚は、上記に限られるものではない。例えば、絶縁体253を、酸化アルミニウム膜と、酸化アルミニウム膜上の酸化シリコン膜と、酸化シリコン膜上の酸化ハフニウム膜の積層構造にする場合なども含めると、絶縁体253の膜厚は、0.1nm以上30nm以下程度の範囲で適宜設定すればよい。
 絶縁体254は、ゲート絶縁体の一部として機能する。絶縁体254としては、水素に対するバリア性を有することが好ましい。これにより、導電体260に含まれる水素などの不純物が、酸化物230bに拡散するのを防ぐことができる。
 また、絶縁体254は、絶縁体253および導電体260と、ともに、絶縁体280などに形成された開口に設ける必要がある。トランジスタ200の微細化を図るにあたって、絶縁体254の膜厚は薄いことが好ましい。絶縁体254の膜厚は、0.1nm以上5.0nm以下、好ましくは0.5nm以上3.0nm以下、より好ましくは1.0nm以上3.0nm以下とする。この場合、絶縁体254は、少なくとも一部において、上記のような膜厚の領域を有していればよい。
 例えば、絶縁体254としてPEALD法で成膜した窒化シリコンを用いればよい。
 なお、絶縁体253として、酸化ハフニウムなどの水素などの不純物および酸素の透過を抑制する機能を有する絶縁体を用いることで、絶縁体253は、絶縁体254が有する機能を兼ねることができる。このような場合、絶縁体254を設けない構成にすることで、半導体装置の作製工程を簡略化し、生産性の向上を図ることができる。
 絶縁体275は、絶縁体222、絶縁体224、酸化物230a、酸化物230b、及び導電体242を覆うように設けられる。具体的には、絶縁体275は、絶縁体222の上面、絶縁体224の側面、酸化物230aの側面、酸化物230bの側面、導電体242aの上面及び側面、導電体242bの上面及び側面のそれぞれと接する領域を有する。
 導電体242a、導電体242b、及び導電体260として、酸化しにくい導電性材料、または、酸素の拡散を抑制する機能を有する導電性材料などを用いることが好ましい。当該導電性材料として、例えば、窒素を含む導電性材料、および酸素を含む導電性材料などが挙げられる。これにより、導電体242a、導電体242b、及び導電体260の導電率が低下するのを抑制できる。導電体242a、導電体242b、及び導電体260として、金属および窒素を含む導電性材料を用いる場合、導電体242a、導電体242b、及び導電体260は、少なくとも金属と、窒素と、を有する導電体となる。
 導電体242及び導電体260の一方または双方は積層構造を有してもよい。例えば、図1Bに示すように、導電体242a及び導電体242bのそれぞれを2層の積層構造としてもよい。この場合、酸化物230bに接する層(導電体242a1及び導電体242b1)として、酸化しにくい導電性材料、または、酸素の拡散を抑制する機能を有する導電性材料などを用いるとよい。また、例えば、図1Bに示すように、導電体260を導電体260aと導電体260bの積層構造とする場合、導電体260aとして、酸化しにくい導電性材料、または、酸素の拡散を抑制する機能を有する導電性材料などを用いるとよい。
 また、導電体242の導電率が低下するのを抑制するために、酸化物230bとして、CAAC−OSなどの結晶性を有する酸化物を用いることが好ましい。当該酸化物として、上述した酸化物230に適用可能な金属酸化物を用いることが好ましい。特に、インジウムと、亜鉛と、ガリウム、アルミニウム、及び錫から選ばれる一または複数と、を有する金属酸化物を用いることが好ましい。また、CAAC−OSは、結晶を有する酸化物であり、当該結晶のc軸は、当該酸化物の表面または被形成面に概略垂直である。これにより、導電体242aまたは導電体242bによる、酸化物230bからの酸素の引き抜きを抑制できる。また、導電体242aおよび導電体242bの導電率が低下するのを抑制できる。
 また、本実施の形態では、酸化物230b上に導電体242aおよび導電体242bを設けた状態で、酸素を含む雰囲気でマイクロ波処理を行い、領域230bcの酸素欠損、およびVHの低減を図る。ここで、マイクロ波処理とは、例えばマイクロ波を用いて高密度プラズマを発生させる電源を有する装置を用いた処理のことを指す。
 酸素を含む雰囲気でマイクロ波処理を行うことで、マイクロ波、またはRF等の高周波を用いて酸素ガスをプラズマ化し、当該酸素プラズマを作用させることができる。このとき、マイクロ波、またはRF等の高周波を領域230bcに照射することもできる。プラズマ、マイクロ波などの作用により、領域230bcのVHを酸素欠損と水素とに分断し、当該水素を領域230bcから除去し、当該酸素欠損を酸素で補償することができる。よって、領域230bc中の水素濃度、酸素欠損、およびVHを低減し、キャリア濃度を低下させることができる。
 また、酸素を含む雰囲気でマイクロ波処理を行う際、マイクロ波、またはRF等の高周波、酸素プラズマなどの作用は、導電体242aおよび導電体242bに遮蔽され、領域230baおよび領域230bbには及ばない。さらに、酸素プラズマの作用は、酸化物230b及び導電体242を覆って設けられている、絶縁体275及び絶縁体280によって低減できる。これにより、マイクロ波処理の際に、領域230baおよび領域230bbで、VHの低減、および過剰な量の酸素供給が発生しないため、キャリア濃度の低下を防ぐことができる。
 また、絶縁体253となる絶縁膜の成膜後に、酸素を含む雰囲気でマイクロ波処理を行うことが好ましい。また、絶縁体253を積層構造にする場合は、絶縁体253の一部を成膜した状態で、当該マイクロ波処理を行ってもよい。例えば、絶縁体253が酸化シリコン膜または酸化窒化シリコン膜を含む場合、酸化シリコン膜または酸化窒化シリコン膜を成膜した段階で当該マイクロ波処理を行ってもよい。
 このように絶縁体253を介して、酸素を含む雰囲気でマイクロ波処理を行うことで、効率よく領域230bc中へ酸素を注入できる。また、絶縁体253を導電体242の側面、および領域230bcの表面と接するように配置することで、領域230bcへ必要量以上の酸素の注入を抑制し、導電体242の側面の酸化を抑制できる。
 また、領域230bc中に注入される酸素は、酸素原子、酸素分子、酸素イオン、及び酸素ラジカル(Oラジカルともいう、不対電子をもつ原子、分子、またはイオン)など様々な形態がある。なお、領域230bc中に注入される酸素は、上述の形態のいずれか一または複数であればよく、特に酸素ラジカルであると好適である。また、絶縁体253の膜質を向上させることができるため、トランジスタ200の信頼性が向上する。
 このようにして、酸化物半導体の領域230bcで選択的に酸素欠損、およびVHを除去して、領域230bcをi型または実質的にi型とすることができる。さらに、ソース領域またはドレイン領域として機能する領域230baおよび領域230bbに過剰な酸素が供給されるのを抑制し、マイクロ波処理を行う前のn型の領域の状態を維持できる。これにより、トランジスタ200の電気特性の変動を抑制し、基板面内でトランジスタ200の電気特性がばらつくのを抑制できる。
 以上のような構成にすることで、トランジスタ特性のばらつきが少ない半導体装置を提供できる。また、周波数特性が良好な半導体装置を提供できる。また、動作速度が速い半導体装置を提供できる。また、信頼性が良好な半導体装置を提供できる。また、良好な電気特性を有する半導体装置を提供できる。また、微細化または高集積化が可能な半導体装置を提供できる。
 図1Cに示すように、トランジスタ200のチャネル幅方向の断面視において、酸化物230bの側面と酸化物230bの上面との間に、湾曲面を有してもよい。つまり、当該側面の端部と当該上面の端部は、湾曲してもよい(以下、ラウンド状ともいう)。
 上記湾曲面での曲率半径は、0nmより大きく、導電体242と重なる領域の酸化物230bの膜厚より小さい、または、上記湾曲面を有さない領域の長さの半分より小さいことが好ましい。上記湾曲面での曲率半径は、具体的には、0nmより大きく20nm以下、好ましくは1nm以上15nm以下、さらに好ましくは2nm以上10nm以下とする。このような形状にすることで、絶縁体253、絶縁体254、および導電体260の、酸化物230bへの被覆性を高めることができる。
 また、トランジスタ200の作製工程中において、酸化物230の表面が露出した状態で、加熱処理を行うと好適である。当該加熱処理は、例えば、100℃以上600℃以下、より好ましくは350℃以上550℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、加熱処理は酸素雰囲気で行うことが好ましい。これにより、酸化物230に酸素を供給して、酸素欠損の低減を図ることができる。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で行ってもよい。または、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理した後に、連続して窒素ガスもしくは不活性ガスの雰囲気で加熱処理を行っても良い。
 なお、酸化物230に加酸素化処理を行うことで、酸化物230中の酸素欠損を、供給された酸素により修復することができる。さらに、酸化物230中に残存した水素に供給された酸素が反応することで、当該水素をHOとして除去する(脱水化する)ことができる。これにより、酸化物230中に残存していた水素が酸素欠損に再結合してVHが形成されるのを抑制できる。
 また、図1Cなどに示すように、酸化物230の上面および側面に接して、絶縁体253を設けることにより、酸化物230と絶縁体253の界面およびその近傍に、酸化物230に含まれるインジウムが偏在する場合がある。これにより、酸化物230の表面近傍が、インジウム酸化物に近い原子数比、またはIn−Zn酸化物に近い原子数比になる。このように酸化物230、特に酸化物230bの表面近傍のインジウムの原子数比が大きくなることで、トランジスタ200の電界効果移動度を向上させることができる。
 また、本実施の形態では、半導体装置を、上記構成に加えて、水素がトランジスタ200に混入するのを抑制する構成とすることが好ましい。例えば、水素の拡散を抑制する機能を有する絶縁体を、トランジスタ200を覆うように設けることが好ましい。本実施の形態で説明する半導体装置において、当該絶縁体は、例えば、絶縁体212である。
 絶縁体212として、水素の拡散を抑制する機能を有する絶縁体を用いることが好ましい。これにより、絶縁体212の下方からトランジスタ200に水素が拡散するのを抑制できる。なお、絶縁体212としては、上述の絶縁体275に用いることができる絶縁体を用いればよい。
 絶縁体212、絶縁体214、絶縁体282、および絶縁体285の少なくとも一は、水、水素などの不純物が、基板側から、または、トランジスタ200の上方からトランジスタ200に拡散するのを抑制するバリア絶縁膜として機能することが好ましい。したがって、絶縁体212、絶縁体214、絶縁体282、および絶縁体285の少なくとも一は、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい)絶縁性材料を用いることが好ましい。または、酸素(例えば、酸素原子、および酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料を用いることが好ましい。
 絶縁体212、絶縁体214、絶縁体282、および絶縁体285としては、水、水素などの不純物、および酸素の拡散を抑制する機能を有する絶縁体を用いることが好ましく、例えば、酸化アルミニウム、酸化マグネシウム、酸化ハフニウム、酸化ガリウム、インジウムガリウム亜鉛酸化物、窒化シリコン、または窒化酸化シリコンなどを用いることができる。例えば、絶縁体212として、より水素バリア性が高い、窒化シリコンなどを用いることが好ましい。また、例えば、絶縁体214、絶縁体282、および絶縁体285として、水素を捕獲および水素を固着する機能が高い、酸化アルミニウムまたは酸化マグネシウムなどを用いることが好ましい。これにより、水、水素などの不純物が絶縁体212及び絶縁体214を介して、基板側からトランジスタ200側に拡散するのを抑制できる。または、水、水素などの不純物が絶縁体285よりも外側に配置されている層間絶縁膜などから、トランジスタ200側に拡散するのを抑制できる。または、絶縁体224などに含まれる酸素が、絶縁体212及び絶縁体214を介して基板側に拡散するのを抑制できる。または、絶縁体280などに含まれる酸素が、絶縁体282などを介してトランジスタ200より上方に拡散するのを抑制できる。この様に、トランジスタ200を、水、水素などの不純物、および酸素の拡散を抑制する機能を有する絶縁体212、絶縁体214、絶縁体282、および絶縁体285で取り囲む構造とすることが好ましい。
 ここで、絶縁体212、絶縁体214、絶縁体282、および絶縁体285として、アモルファス構造を有する酸化物を用いることが好ましい。例えば、AlO(xは0より大きい任意数)、またはMgO(yは0より大きい任意数)などの金属酸化物を用いることが好ましい。このようなアモルファス構造を有する金属酸化物では、酸素原子がダングリングボンドを有しており、当該ダングリングボンドで水素を捕獲または固着する性質を有する場合がある。このようなアモルファス構造を有する金属酸化物をトランジスタ200の構成要素として用いる、またはトランジスタ200の周囲に設けることで、トランジスタ200に含まれる水素、またはトランジスタ200の周囲に存在する水素を捕獲または固着することができる。特にトランジスタ200のチャネル形成領域に含まれる水素を捕獲または固着することが好ましい。アモルファス構造を有する金属酸化物をトランジスタ200の構成要素として用いる、またはトランジスタ200の周囲に設けることで、良好な特性を有し、信頼性の高いトランジスタ200、および半導体装置を作製できる。
 また、絶縁体212、絶縁体214、絶縁体282、および絶縁体285は、アモルファス構造であることが好ましいが、一部に多結晶構造の領域が形成されていてもよい。また、絶縁体212、絶縁体214、絶縁体282、および絶縁体285は、アモルファス構造の層と、多結晶構造の層と、が積層された多層構造であってもよい。例えば、アモルファス構造の層の上に多結晶構造の層が形成された積層構造でもよい。
 絶縁体212、絶縁体214、絶縁体282、および絶縁体285の成膜は、例えば、スパッタリング法を用いて行えばよい。スパッタリング法は、成膜ガスに水素を含む分子を用いなくてよいため、絶縁体212、絶縁体214、絶縁体282、および絶縁体285の水素濃度を低減できる。なお、成膜方法は、スパッタリング法に限られるものではなく、化学気相成長(CVD:Chemical Vapor Deposition)法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法、パルスレーザ堆積(PLD:Pulsed Laser Deposition)法、ALD法などを適宜用いてもよい。
 また、絶縁体212の抵抗率を低くすることが好ましい場合がある。例えば、絶縁体212の抵抗率を概略1×1013Ωcmとすることで、半導体装置作製工程のプラズマ等を用いる処理において、絶縁体212が、導電体205、導電体242、導電体260、または導電体240のチャージアップを緩和することができる場合がある。絶縁体212の抵抗率は、好ましくは、1×1010Ωcm以上1×1015Ωcm以下とする。
 また、絶縁体216、絶縁体280、および絶縁体285は、絶縁体214よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減できる。例えば、絶縁体216、絶縁体280、および絶縁体285として、酸化シリコン、酸化窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンなどを適宜用いればよい。
 導電体205は、酸化物230および導電体260と重なるように配置する。ここで、導電体205は、絶縁体216に形成された開口に埋め込まれて設けることが好ましい。また、導電体205の一部が絶縁体214に埋め込まれる場合がある。
 導電体205は、導電体205aおよび導電体205bを有する。導電体205aは、当該開口の底面および側壁に接して設けられる。導電体205bは、導電体205aに形成された凹部に埋め込まれるように設けられる。ここで、導電体205bの上面の高さは、導電体205aの上面の高さおよび絶縁体216の上面の高さと一致または概略一致する。
 ここで、導電体205aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、および酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
 導電体205aに、水素の拡散を低減する機能を有する導電性材料を用いることにより、導電体205bに含まれる水素などの不純物が、絶縁体216および絶縁体224等を介して、酸化物230に拡散するのを防ぐことができる。また、導電体205aに、酸素の拡散を抑制する機能を有する導電性材料を用いることにより、導電体205bが酸化して導電率が低下することを抑制できる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、チタン、窒化チタン、タンタル、窒化タンタル、ルテニウム、酸化ルテニウムなどを用いることが好ましい。したがって、導電体205aとしては、上記導電性材料を単層または積層とすればよい。例えば、導電体205aは、窒化チタンを用いればよい。
 また、導電体205bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。例えば、導電体205bは、タングステンを用いればよい。
 導電体205は、第2のゲート電極として機能する場合がある。その場合、導電体205に印加する電位を、導電体260に印加する電位と、連動させず、独立して変化させることで、トランジスタ200のしきい値電圧(Vth)を制御することができる。特に、導電体205に負の電位を印加することにより、トランジスタ200のVthをより大きくし、オフ電流を低減することが可能となる。したがって、導電体205に負の電位を印加したほうが、印加しない場合よりも、導電体260に印加する電位が0Vのときのドレイン電流を小さくすることができる。
 また、導電体205の電気抵抗率は、上記の導電体205に印加する電位を考慮して設計され、導電体205の膜厚は当該電気抵抗率に合わせて設定される。また、絶縁体216の膜厚は、導電体205の膜厚とほぼ同じになる。ここで、導電体205の設計が許す範囲で導電体205および絶縁体216の膜厚を薄くすることが好ましい。絶縁体216の膜厚を薄くすることで、絶縁体216中に含まれる水素などの不純物の絶対量を低減することができるので、当該不純物が酸化物230に拡散するのを低減することができる。
 なお、導電体205は、図1Aに示すように、酸化物230の導電体242aおよび導電体242bと重ならない領域の大きさよりも、大きく設けるとよい。特に、図1Cに示すように、導電体205は、酸化物230aおよび酸化物230bのチャネル幅方向の端部よりも外側の領域においても、延在していることが好ましい。つまり、酸化物230のチャネル幅方向における側面の外側において、導電体205と、導電体260とは、絶縁体を介して重畳していることが好ましい。当該構成を有することで、第1のゲート電極として機能する導電体260の電界と、第2のゲート電極として機能する導電体205の電界によって、酸化物230のチャネル形成領域を電気的に取り囲むことができる。
 本明細書等において、少なくとも第1のゲート電極の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S−channel)構造とよぶ。また、本明細書等で開示するS−channel構造は、Fin型構造およびプレーナ型構造とは異なる構造を有する。一方で、本明細書等で開示するS−channel構造は、Fin型構造の一種として捉えることも可能である。なお、本明細書等において、Fin型構造とは、ゲート電極が少なくともチャネルの2面以上(具体的には、2面、3面、または4面等)を包むように配置される構造を示す。Fin型構造、およびS−channel構造を採用することで、短チャネル効果に対する耐性を高める、別言すると短チャネル効果が発生し難いトランジスタとすることができる。
 トランジスタ200を、上記のS−channel構造とすることで、チャネル形成領域を電気的に取り囲むことができる。なお、S−channel構造は、チャネル形成領域を電気的に取り囲んでいる構造であるため、実質的にGAA(Gate All Around)構造、またはLGAA(Lateral Gate All Around)構造と、同等の構造であるともいえる。トランジスタ200をS−channel構造、GAA構造、又はLGAA構造とすることで、酸化物230とゲート絶縁体との界面又は界面近傍に形成されるチャネル形成領域を、酸化物230のバルク全体とすることができる。したがって、トランジスタに流れる電流密度を向上させることが可能となるため、トランジスタのオン電流の向上、またはトランジスタの電界効果移動度を高めることが期待できる。
 なお、図1Bに示すトランジスタ200については、S−channel構造のトランジスタを例示したが、本発明の一態様の半導体装置はこれに限定されない。例えば、本発明の一態様に用いることができるトランジスタ構造としては、プレーナ型構造、Fin型構造、およびGAA構造の中から選ばれるいずれか一または複数としてもよい。
 また、図1Cに示すように、導電体205は延在させて、配線としても機能させている。ただし、これに限られることなく、導電体205の下に、配線として機能する導電体を設ける構成にしてもよい。また、導電体205は、必ずしも各トランジスタに一個ずつ設ける必要はない。例えば、導電体205を複数のトランジスタで共有する構成にしてもよい。
 なお、トランジスタ200では、導電体205は、導電体205aおよび導電体205bを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体205は、単層、または3層以上の積層構造として設ける構成にしてもよい。
 絶縁体222および絶縁体224は、第2のゲート絶縁体として機能する。
 絶縁体222は、水素(例えば、水素原子、および水素分子などの少なくとも一)の拡散を抑制する機能を有することが好ましい。また、絶縁体222は、酸素(例えば、酸素原子、および酸素分子などの少なくとも一)の拡散を抑制する機能を有することが好ましい。例えば、絶縁体222は、絶縁体224よりも水素および酸素の一方または双方の拡散を抑制する機能を有することが好ましい。
 絶縁体222は、絶縁性材料であるアルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を用いるとよい。当該絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。または、ハフニウムおよびジルコニウムを含む酸化物、例えばハフニウムジルコニウム酸化物を用いることが好ましい。このような材料を用いて絶縁体222を形成した場合、絶縁体222は、酸化物230から基板側への酸素の放出および、トランジスタ200の周辺部から酸化物230への水素等の不純物の拡散を抑制する層として機能する。よって、絶縁体222を設けることで、水素等の不純物が、トランジスタ200の内側へ拡散することを抑制し、酸化物230中の酸素欠損の生成を抑制できる。また、導電体205が、絶縁体224および、酸化物230が有する酸素と反応することを抑制できる。
 または、上記絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、または酸化ジルコニウムを添加してもよい。または、これらの絶縁体を窒化処理してもよい。また、絶縁体222は、上記絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
 また、絶縁体222は、例えば、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、ハフニウムジルコニウム酸化物などの、いわゆるhigh−k材料を含む絶縁体を単層または積層で用いてもよい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体にhigh−k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。また、絶縁体222として、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)、(Ba,Sr)TiO(BST)などの誘電率が高い物質を用いることができる場合もある。
 酸化物230と接する絶縁体224は、例えば、酸化シリコン、酸化窒化シリコンなどを適宜用いればよい。
 なお、絶縁体222および絶縁体224が、2層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。また、絶縁体224は、図1Bなどに示すように、酸化物230aと重畳して島状に形成してもよい。この場合、絶縁体275が、絶縁体224の側面および絶縁体222の上面に接する構成になる。なお、本明細書等において、島状とは、同一工程で形成された同一材料を用いた2以上の層が、物理的に分離されている状態であることを示す。
 導電体242aおよび導電体242bは、酸化物230bの上面及び側面、酸化物230aの側面、及び絶縁体224の側面に接して設けられる。ここで、導電体242aおよび導電体242bは、絶縁体224、酸化物230a、酸化物230bのチャネル長方向の側面に接し、且つ絶縁体224、酸化物230a、酸化物230bのチャネル幅方向の側面に接しない構成にすることもできる。また、導電体242aの一部、および導電体242bの一部は、絶縁体222の上面に接して設けられる。導電体242aおよび導電体242bは、それぞれトランジスタ200のソース電極またはドレイン電極として機能する。
 導電体242(導電体242aおよび導電体242b)としては、例えば、タンタルを含む窒化物、チタンを含む窒化物、モリブデンを含む窒化物、タングステンを含む窒化物、タンタルおよびアルミニウムを含む窒化物、チタンおよびアルミニウムを含む窒化物などを用いることが好ましい。本発明の一態様においては、タンタルを含む窒化物が特に好ましい。また、例えば、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いてもよい。これらの材料は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。
 なお、酸化物230bなどに含まれる水素が、導電体242aまたは導電体242bに拡散する場合がある。特に、導電体242aおよび導電体242bに、タンタルを含む窒化物を用いることで、酸化物230bなどに含まれる水素は、導電体242aまたは導電体242bに拡散しやすく、拡散した水素は、導電体242aまたは導電体242bが有する窒素と結合することがある。つまり、酸化物230bなどに含まれる水素は、導電体242aまたは導電体242bに吸い取られる場合がある。
 また、導電体242の側面と導電体242の上面との間に、湾曲面が形成されないことが好ましい。当該湾曲面が形成されない導電体242とすることで、図1Dに示すような、チャネル幅方向の断面における、導電体242の断面積を大きくすることができる。導電体242の断面積を大きくすることで、導電体242の抵抗を低減し、トランジスタ200のオン電流を大きくすることができる。
 また、図1Aに示すように、導電体242aは、トランジスタ200aとトランジスタ200bの間の領域において、開口を有する。また、当該開口と重なるように導電体240が配置されている。なお、トランジスタ200の上面視において、当該開口の大きさは、導電体240の大きさよりも小さいことが好ましい。当該構成にすることで、導電体242aと導電体240とが接する領域を有することができる。これにより、導電体242aと導電体240とが電気的に接続される。
 なお、図1Aに示すメモリセルでは、トランジスタ200aとトランジスタ200bの導電体242aが一体になっている構成について示したが、本発明はこれに限られるものではない。例えば、トランジスタ200aの導電体242aと、トランジスタ200bの導電体242aが分離されている構成にしてもよい。このような構成にすることで、導電体242のY方向の幅を、最小線幅に設定することができるので、半導体装置の高集積化を図ることができる。上記の場合、トランジスタ200aの導電体242aの上面の一部、及び側面の一部が導電体240に接し、且つトランジスタ200bの導電体242aの上面の一部、及び側面の一部が導電体240に接する。このような構造にすることで、プラグとして機能する導電体240と、トランジスタ200a、及びトランジスタ200bが電気的に接続される。
 また、導電体242a(導電体242b)と、酸化物230bとが接した状態で加熱処理を行う場合、導電体242a(導電体242b)と重畳する領域の酸化物230bは、シート抵抗が低下することがある。また、キャリア濃度が増加することがある。したがって、導電体242a(導電体242b)と重畳する領域の酸化物230bを、自己整合的に低抵抗化することができる。
 導電体242aおよび導電体242bは、圧縮応力を有する導電膜を用いて形成されることが好ましい。これにより、領域230baおよび領域230bbに引っ張り方向に拡張される歪(以下、引っ張り歪と呼ぶ場合がある)を形成することができる。引っ張り歪によってVHを安定に形成することで、領域230baおよび領域230bbを安定なn型領域にすることができる。なお、導電体242aが有する圧縮応力とは、導電体242aの圧縮形状を緩和しようとする応力であり、導電体242aの中央部から端部の方向のベクトルを有する応力である。導電体242bが有する圧縮応力についても同様である。
 導電体242aが有する圧縮応力の大きさは、例えば、500MPa以上、好ましくは1000MPa以上、より好ましくは1500MPa以上、さらに好ましくは2000MPa以上にするとよい。なお、導電体242aが有する応力の大きさは、導電体242aに用いる導電膜を基板上に成膜したサンプルを作製し、当該サンプルの応力の測定値で規定してもよい。導電体242bが有する圧縮応力の大きさについても同様である。上述の圧縮応力の大きさを有する導電体として、タンタルを含む窒化物が挙げられる。
 導電体242aおよび導電体242bが有する圧縮応力の作用によって、領域230ba及び領域230bbのそれぞれに歪が形成される。当該歪は、導電体242aおよび導電体242bが有する圧縮応力の作用によって、それぞれ引っ張り方向に拡張された歪(引っ張り歪)である。領域230ba及び領域230bbがCAAC構造を有する場合、当該歪みは、CAAC構造のc軸に垂直な方向への伸長に相当する。CAAC構造が、当該CAAC構造のc軸に垂直な方向に伸長することで、当該歪では、酸素欠損が形成されやすい。また、当該歪には水素が取り込まれやすいため、VHが形成されやすい。したがって、当該歪では、酸素欠損、およびVHが形成されやすく、これらが安定な構造をとりやすい。これにより、領域230baおよび領域230bbでは、キャリア濃度が高い、安定なn型の領域になる。
 なお、上記において、酸化物230bに形成される歪について説明したが、本発明はこれに限られるものではない。酸化物230aに同様の歪が形成される場合がある。
 図1A乃至図1Dに示す半導体装置では、導電体242は2層の積層構造を有する。具体的には、導電体242aは、導電体242a1と、導電体242a1上の導電体242a2とを有する。同様に、導電体242bは、導電体242b1と、導電体242b1上の導電体242b2とを有する。このとき、導電体242a1、および導電体242b1は、酸化物230bと接する側に配置される。
 詳細は後述するが、導電体242a1、及び導電体242a2はそれぞれ、導電体242b1、及び導電体242b2と同じ材料、及び同じ工程で形成することができる。よって、導電体242a1は、導電体242b1と同じ導電性材料を有することが好ましい。また、導電体242a2は、導電体242b2と同じ導電性材料を有することが好ましい。
 なお、以下において、導電体242a1と導電体242b1をまとめて導電体242の下層と呼ぶ場合がある。また、導電体242a2と導電体242b2をまとめて導電体242の上層と呼ぶ場合がある。
 導電体242の下層(導電体242a1、および導電体242b1)は、酸化しにくい特性を有する導電性材料で構成されることが好ましい。これにより、導電体242の下層が酸化し、導電体242の導電率が低下するのを抑制できる。なお、導電体242の下層は、水素を吸い取りやすい(抜き取りやすい)特性を有してもよい。これにより、酸化物230の水素が導電体242の下層へ拡散し、酸化物230の水素濃度を低減できる。よって、トランジスタ200に安定した電気特性を付与することができる。また、導電体242の下層は、上記のように圧縮応力が大きいことが好ましく、導電体242の上層より大きい圧縮応力を有することが好ましい。これにより、上記のように、導電体242の下層に接する、領域230baおよび領域230bbを、キャリア濃度が高い、安定なn型の領域にすることができる。
 また、導電体242の上層(導電体242a2、および導電体242b2)は、導電体242の下層(導電体242a1、および導電体242b1)よりも、導電性が高いことが好ましい。例えば、導電体242の上層の膜厚を、導電体242の下層の膜厚より大きくすればよい。なお、導電体242の上層は、少なくとも一部において、導電体242の下層よりも導電性が高い領域を有していればよい。または、導電体242の上層は、導電体242の下層よりも、抵抗率が低い導電性材料で構成されることが好ましい。これにより、配線遅延を抑制した半導体装置を作製できる。
 なお、導電体242の上層は、水素を吸い取りやすい、特性を有してもよい。これにより、導電体242の下層に吸い取られた水素が、導電体242の上層にも拡散し、酸化物230中の水素濃度をより低減できる。よって、トランジスタ200に安定した電気特性を付与することができる。
 導電体242を2層の積層構造とする場合、導電体242の下層及び導電体242の上層の、構成元素、化学組成、および成膜条件の中から選ばれる一または複数を異ならせてもよい。
 例えば、導電体242の下層(導電体242a1及び導電体242b1)として、窒化タンタル又は窒化チタンを用い、導電体242の上層(導電体242a2及び導電体242b2)として、タングステンを用いることができる。この場合、導電体242a1および導電体242b1は、タンタルまたはチタンと、窒素とを有する導電体となる。当該構成にすることで、導電体242の下層が酸化し、導電体242の導電率が低下するのを抑制できる。また、当該構成にすることで、導電体242a2を酸素に対するバリア性を有する絶縁体275と、酸化しにくい特性を有する導電体242a1とで取り囲み、導電体242b2を酸素に対するバリア性を有する絶縁体275と、酸化しにくい特性を有する導電体242b1とで取り囲むことができる。したがって、導電体242a2及び導電体242b2が酸化するのを抑制し、配線遅延を抑制した半導体装置を作製できる。また、導電体242の上層にタングステンを用いることで、導電体242は配線として機能することができる。
 または、例えば、導電体242の下層としてタンタルを含む窒化物(例えば窒化タンタル)を用い、導電体242の上層としてチタンを含む窒化物(例えば窒化チタン)を用いてもよい。窒化チタンは、窒化タンタルより導電性を高くすることができるため、導電体242の上層の導電性を、導電体242の下層より高くすることができる。よって、導電体242の上面に接して設けられる導電体240とのコンタクト抵抗の低減を図ることができるため、配線遅延を抑制した半導体装置を作製できる。
 導電体242の下層と、及び導電体242の上層が、異なる導電性材料を用いる例について示したが、本発明はこれに限られない。
 導電体242の下層、及び導電体242の上層は、構成する元素が同じで、かつ、化学組成の異なる導電性材料を用いてもよい。このとき、導電体242の下層と導電体242の上層とを、大気環境にさらさずに連続して成膜することができる。大気開放せずに成膜することで、導電体242の下層表面に大気環境からの不純物または水分が付着することを防ぐことができ、導電体242の下層と導電体242の上層との界面近傍を清浄に保つことができる。
 また、導電体242の下層に、タンタルに対する窒素の原子数比が高い、タンタルを含む窒化物を用い、導電体242の上層に、タンタルに対する窒素の原子数比が低い、タンタルを含む窒化物を用いることが好ましい。例えば、導電体242の下層として、タンタルに対する窒素の原子数比が1.0以上2.0以下、好ましくは1.1以上1.8以下、より好ましくは1.2以上1.5以下のタンタルを含む窒化物を用いる。また、例えば、導電体242の上層として、タンタルに対する窒素の原子数比が0.3以上1.5以下、好ましくは0.5以上1.3以下、より好ましくは0.6以上1.0以下のタンタルを含む窒化物を用いる。
 タンタルを含む窒化物において、タンタルに対する窒素の原子数比を高くすることで、タンタルを含む窒化物の酸化を抑制することができる。また、タンタルを含む窒化物の耐酸化性を高めることができる。また、タンタルを含む窒化物中への酸素の拡散を抑制することができる。よって、タンタルに対する窒素の原子数比が高い、タンタルを含む窒化物を導電体242の下層に用いることが好ましい。これにより、導電体242の下層と酸化物230との間に酸化層が形成されるのを防ぐ、または酸化層の膜厚を薄くすることができる。
 また、タンタルを含む窒化物において、タンタルに対する窒素の原子数比を低くすることで、当該窒化物の抵抗率を下げることができる。よって、タンタルに対する窒素の原子数比が低い、タンタルを含む窒化物を導電体242の上層に用いることが好ましい。これにより、配線遅延を抑制した半導体装置を作製することができる。
 なお、導電体242において、上層と下層の境界は明確に検出することが困難な場合がある。タンタルを含む窒化物を導電体242に用いる場合、各層内で検出されるタンタル、および窒素濃度は、各層の段階的な変化に限らず、上層と下層との間の領域で連続的に変化(グラデーションともいう)していてもよい。つまり、導電体242の、酸化物230に近い領域であるほど、タンタルに対する窒素の原子数比が高ければよい。よって、導電体242の下方に位置する領域における、タンタルに対する窒素の原子数比は、導電体242の上方に位置する領域における、タンタルに対する窒素の原子数比よりも高いことが好ましい。
 なお、トランジスタ200では、導電体242を、2層の積層構造にする構成について示しているが、本発明はこれに限られるものではない。例えば、導電体242を単層、または3層以上の積層構造として設ける構成にしてもよい。構造体が積層構造を有する場合、形成順に序数を付与し、区別する場合がある。
 導電体260は、その上面が、絶縁体254の最上部、絶縁体253の最上部、および絶縁体280の上面と高さが一致または概略一致するように配置される。
 導電体260は、トランジスタ200の第1のゲート電極として機能する。導電体260は、導電体260aと、導電体260aの上に配置された導電体260bと、を有することが好ましい。例えば、導電体260aは、導電体260bの底面および側面を包むように配置されることが好ましい。なお、図1Bおよび図1Cでは、導電体260は、導電体260aと導電体260bの2層構造として示しているが、単層構造でもよいし、3層以上の積層構造であってもよい。
 導電体260aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、および酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
 また、導電体260aが酸素の拡散を抑制する機能を有することにより、絶縁体280などに含まれる酸素により、導電体260bが酸化して導電率が低下することを抑制できる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、チタン、窒化チタン、タンタル、窒化タンタル、ルテニウム、酸化ルテニウムなどを用いることが好ましい。
 また、導電体260は、チャネル幅方向に延在して設けられた開口258を埋めるように形成されており、導電体260もチャネル幅方向に延在して設けられている。これにより、複数のトランジスタ200を設ける場合、導電体260を配線として機能させることもできる。また、この場合、導電体260とともに、絶縁体253及び絶縁体254も延在して設けられる。
 また、導電体260は、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、導電体260bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体260bは積層構造としてもよく、例えば、チタン、または窒化チタンと上記導電性材料との積層構造としてもよい。
 また、トランジスタ200では、導電体260は、絶縁体280などに形成されている開口258を埋めるように自己整合的に形成される。導電体260をこのように形成することにより、導電体242aと導電体242bとの間の領域に、導電体260を位置合わせすることなく確実に配置することができる。
 また、図1Cに示すように、トランジスタ200のチャネル幅方向において、絶縁体222の底面を基準としたときの、導電体260の、導電体260と酸化物230bとが重ならない領域の底面の高さは、酸化物230bの底面の高さより低いことが好ましい。ゲート電極として機能する導電体260が、絶縁体253などを介して、酸化物230bのチャネル形成領域の側面および上面を覆う構成とすることで、導電体260の電界を酸化物230bのチャネル形成領域全体に作用させやすくなる。よって、トランジスタ200のオン電流を増大させ、周波数特性を向上させることができる。絶縁体222の底面を基準としたときの、酸化物230aおよび酸化物230bと、導電体260とが、重ならない領域における導電体260の底面の高さと、酸化物230bの底面の高さと、の差は、0nm以上100nm以下、好ましくは、3nm以上50nm以下、より好ましくは、5nm以上20nm以下とする。
 絶縁体280は、絶縁体275上に設けられ、絶縁体253、絶縁体254、および導電体260が設けられる領域に開口258が形成されている。また、絶縁体280の上面は、平坦化されていてもよい。
 層間膜として機能する絶縁体280は、誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。絶縁体280は、例えば、絶縁体216と同様の材料を用いて設けることが好ましい。特に、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、酸化窒化シリコン、空孔を有する酸化シリコンなどの材料は、加熱により脱離する酸素を含む領域を容易に形成することができるため好ましい。
 絶縁体280中の水、水素などの不純物濃度は低減されていることが好ましい。例えば、絶縁体280は、酸化シリコン、酸化窒化シリコンなどのシリコンを含む酸化物を適宜用いればよい。
 絶縁体282は、導電体260、絶縁体253、絶縁体254、および絶縁体280のそれぞれの上面の少なくとも一部と接するように配置される。
 絶縁体282は、水、水素などの不純物が、上方から絶縁体280に拡散するのを抑制するバリア絶縁膜として機能することが好ましく、水素などの不純物を捕獲する機能を有することが好ましい。また、絶縁体282は、酸素の透過を抑制するバリア絶縁膜として機能することが好ましい。絶縁体282としては、アモルファス構造を有する金属酸化物、例えば、酸化アルミニウムなどの絶縁体を用いればよい。この場合、絶縁体282は、少なくとも酸素と、アルミニウムと、を有する絶縁体となる。絶縁体280に接して、水素などの不純物を捕獲する機能を有する絶縁体282を設けることで、絶縁体280などに含まれる水素などの不純物を捕獲できる。特に、絶縁体282として、アモルファス構造を有する酸化アルミニウムを用いることで、より効果的に水素を捕獲または固着できる場合があるため好ましい。これにより、良好な特性を有し、信頼性の高いトランジスタ200、および半導体装置を作製できる。
 絶縁体282として、スパッタリング法で酸化アルミニウムを成膜することが好ましく、酸素ガスを含む雰囲気でアルミニウムターゲットを用いて、パルスDCスパッタリング法で酸化アルミニウムを成膜することがより好ましい。パルスDCスパッタリング法を用いることで、膜厚分布をより均一にし、スパッタレート、および膜質を向上することができる。ここで、基板にRF(Radio Frequency)電力を印加してもよい。基板に印加するRF電力の大きさによって、絶縁体282より下層へ注入する酸素量を制御することができる。例えば、RF電力が小さいほど絶縁体282より下層へ注入する酸素量が減り、絶縁体282の膜厚が薄くても当該酸素量は飽和しやすくなる。また、RF電力が大きいほど絶縁体282より下層へ注入する酸素量が増える。
 RF電力としては、例えば、0W/cm以上1.86W/cm以下とする。つまり、絶縁体282の形成の際のRF電力によって、トランジスタの特性に適する酸素量を変化させて注入することができる。従って、トランジスタの信頼性向上に適する酸素量を注入することができる。なお、RF電力が0W/cmとは、基板にRF電力を印加しないことと同義である。
 また、RFの周波数は、10MHz以上が好ましい。代表的には、13.56MHzである。RFの周波数が高いほど基板へ与えるダメージを小さくすることができる。
 図1A乃至図1Dなどでは、絶縁体282を単層とする構成について示したが、本発明はこれに限られず、2層以上の積層構造としてもよい。例えば、絶縁体282を、2層の積層構造にしてもよい。
 絶縁体282の上層と下層は、同じ材料を異なる方法で形成するとよい。例えば、絶縁体282として、酸素ガスを含む雰囲気でアルミニウムターゲットを用いて、パルスDCスパッタリング法で酸化アルミニウムを成膜する場合、絶縁体282の下層を成膜する際の基板に印加するRF電力と、絶縁体282の上層を成膜する際の基板に印加するRF電力は異なることが好ましく、絶縁体282の下層を成膜する際の基板に印加するRF電力は、絶縁体282の上層を成膜する際の基板に印加するRF電力よりも低いことがより好ましい。具体的には、絶縁体282の下層を基板に印加するRF電力を0W/cm以上0.62W/cm以下として成膜し、絶縁体282の上層を基板に印加するRF電力を1.86W/cm以下として成膜する。より具体的には、絶縁体282の下層を基板に印加するRF電力を0W/cmとして成膜し、絶縁体282の上層を基板に印加するRF電力を0.31W/cmとして成膜する。当該構成にすることで、絶縁体282をアモルファス構造にし、かつ、絶縁体280に供給する酸素量を調整することができる。
 なお、絶縁体282の下層を成膜する際の基板に印加するRF電力は、絶縁体282の上層を成膜する際の基板に印加するRF電力よりも高くてもよい。具体的には、絶縁体282の下層を基板に印加するRF電力を1.86W/cm以下として成膜し、絶縁体282の上層を基板に印加するRF電力を0W/cm以上0.62W/cm以下として成膜する。より具体的には、絶縁体282の下層を基板に印加するRF電力を1.86W/cmとして成膜し、絶縁体282の上層を基板に印加するRF電力を0.62W/cmとして成膜する。当該構成にすることで、絶縁体280に供給する酸素量を増やすことができる。
 また、絶縁体282の下層の膜厚は、1nm以上20nm以下、好ましくは1.5nm以上15nm以下、より好ましくは2nm以上10nm以下、さらに好ましくは3nm以上8nm以下とする。当該構成にすることで、RF電力によらず、絶縁体282の下層をアモルファス構造にすることができる。また、絶縁体282の下層をアモルファス構造とすることで、絶縁体282の上層がアモルファス構造になりやすく、絶縁体282をアモルファス構造にすることができる。
 上記の絶縁体282の下層、および絶縁体282の上層は、同じ材料からなる積層構造であるが、本発明はこれに限られない。絶縁体282の下層、および絶縁体282の上層は、異なる材料からなる積層構造でもよい。
 以上が、トランジスタ200についての説明である。
[容量素子100]
 図4Aに、図1Bにおける容量素子100及びその近傍の拡大図を示し、図4Bに、図1Dにおける容量素子100及びその近傍の拡大図を示す。
 容量素子100は、導電体156と、絶縁体153と、導電体160(導電体160a及び導電体160b)と、を有する。導電体156は容量素子100の一対の電極の一方(下部電極ともいう)として機能し、導電体160は容量素子100の一対の電極の他方(上部電極ともいう)として機能し、絶縁体153は容量素子100の誘電体として機能する。
 導電体156、絶縁体153、導電体160a、及び導電体160bの少なくとも一部は、絶縁体275、絶縁体280、及び絶縁体282に設けられた開口158内に配置されている。導電体156は導電体242b上に設けられ、絶縁体153は導電体156上に設けられ、導電体160aは絶縁体153上に設けられ、導電体160bは導電体160a上に設けられる。
 導電体156は、絶縁体275、絶縁体280、及び絶縁体282に形成された開口158に沿って配置される。導電体156の上面の一部の高さは、絶縁体282の上面の高さより高いことが好ましい。また、導電体156の下面には、導電体242bの上面が接する。導電体156は、ALD法またはCVD法などの被覆性の良好な成膜法を用いて成膜することが好ましく、導電体205、導電体260、または導電体242に用いることができる導電体を用いればよい。例えば、導電体156として、導電体242bと同じ導電性材料を用いることで、導電体156と導電体242bの接触抵抗を低減することができる。例えば、導電体156として、ALD法を用いて成膜した窒化チタンまたは窒化タンタルを用いることができる。
 絶縁体153は、導電体156、および絶縁体282の一部を覆うように配置される。絶縁体153には、高誘電率(high−k)材料(高い比誘電率の材料)を用いることが好ましい。絶縁体153は、ALD法またはCVD法などの被覆性の良好な成膜法を用いて成膜することが好ましい。
 なお、高誘電率(high−k)材料の絶縁体としては、アルミニウム、ハフニウム、ジルコニウム、及びガリウムなどから選ばれた金属元素を一種以上含む、酸化物、酸化窒化物、窒化酸化物、または窒化物を用いることができる。また、上記酸化物、酸化窒化物、窒化酸化物、または窒化物に、シリコンを含有させてもよい。また、上記の材料からなる絶縁層を積層して用いることもできる。
 例えば、高誘電率(high−k)材料の絶縁体として、酸化アルミニウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物、シリコンおよびジルコニウムを有する酸化物、シリコンおよびジルコニウムを有する酸化窒化物、ハフニウムおよびジルコニウムを有する酸化物、ハフニウムおよびジルコニウムを有する酸化窒化物、などを用いることができる。このようなhigh−k材料を用いることで、リーク電流を抑制できる程度に絶縁体153を厚くし、且つ容量素子100の静電容量を十分確保することができる。
 また、上記の材料からなる絶縁層を積層して用いることが好ましく、高誘電率(high−k)材料と、当該高誘電率(high−k)材料より絶縁耐力が大きい材料との積層構造を用いることが好ましい。例えば、絶縁体153として、酸化ジルコニウム、酸化アルミニウム、酸化ジルコニウムの順番で積層された絶縁膜を用いることができる。また、例えば、酸化ジルコニウム、酸化アルミニウム、酸化ジルコニウム、酸化アルミニウムの順番で積層された絶縁膜を用いることができる。また、例えば、ハフニウムジルコニウム酸化物、酸化アルミニウム、ハフニウムジルコニウム酸化物、酸化アルミニウムの順番で積層された絶縁膜を用いることができる。酸化アルミニウムのような、比較的絶縁耐力が大きい絶縁体を積層して用いることで、絶縁耐力が向上し、容量素子100の静電破壊を抑制することができる。
 導電体160は、絶縁体275、絶縁体280、及び絶縁体282に形成された開口158を埋めるように配置される。導電体160は、ALD法またはCVD法などを用いて成膜することが好ましく、導電体205、または導電体260に用いることができる導電体を用いればよい。例えば、導電体160aとして、ALD法を用いて成膜した窒化チタンを用い、導電体160bとして、CVD法を用いて成膜したタングステンを用いることができる。なお、絶縁体153に対するタングステンの密着性が十分高い場合は、導電体160として、CVD法を用いて成膜したタングステンの単層膜を用いてもよい。
 開口158は、導電体242bに達するように設けられている。つまり、開口158は、導電体242bと重畳する領域を有するといえる。導電体242bは、トランジスタ200のソース電極及びドレイン電極の他方であり、開口158に設けられた導電体156の下面に接することで、トランジスタ200と容量素子100を電気的に接続することができる。
 平面視において、開口158と酸化物230の距離が近いことが好ましい。このような構造にすることにより、容量素子100とトランジスタ200を有するメモリセルの占有面積を低減することができる。なお、平面視において、開口158の形状は、四角形としてもよいし、四角形以外の多角形状としてもよいし、多角形状において角部を湾曲させた形状としてもよいし、楕円を含む円形状としてもよい。
 図4A及び図4Bに示すように、開口158の底面及び内壁に接して、導電体156が設けられる。よって、導電体156は、絶縁体275、絶縁体280、及び絶縁体282の側面、導電体242b1の側面、導電体242b2の側面及び上面、並びに絶縁体222の上面に接する。また、導電体156の上面に接して絶縁体153が設けられ、絶縁体153の上面に接して導電体160aが設けられ、導電体160aの上面に接して導電体160bが設けられている。
 容量素子100が上記のような構造をとることで、図4A及び図4Bに示すように、開口158の底面、及び側面において、絶縁体153を介して導電体156と導電体160が対向して配置される容量素子100を形成することができる。よって、開口158の深さ(絶縁体280の膜厚ということもできる。)を深くすることで、容量素子100の静電容量を大きくすることができる。このように、容量素子100の単位面積当たりの静電容量を大きくすることにより、記憶装置の読み出し動作を安定にすることができる。
 また、図4Aに示すように、導電体156の一部、絶縁体153の一部、及び導電体160の一部は、開口158から露出して設けられる。言い換えると、導電体156の一部、絶縁体153の一部、及び導電体160の一部は、導電体260の上面より上、または絶縁体282の上面より上に形成される。
 導電体156の一部、及び絶縁体153の一部は、絶縁体282の上面に接する。つまり、導電体156の側端部は、絶縁体153に覆われている。さらに、導電体160は、絶縁体153を介して絶縁体282と重なる領域を有することが好ましい。ここで、図4Aに示すように、導電体160の側端部と、絶縁体153の側端部が概略一致する。このような構成にすることで、導電体160と導電体156を絶縁体153で分離させることができるので、導電体160と導電体156のショートを抑制することができる。
 また、導電体160の絶縁体282より上の部分は、引き回して配線状に形成してもよい。例えば、図1Dに示すように、導電体160を、トランジスタ200のチャネル幅方向に延在して設けることができる。これにより、複数のトランジスタ200及び容量素子100を設ける場合、導電体160を配線として機能させることもできる。また、この場合、導電体160とともに、絶縁体153も延在して設けることができる。
 また、容量素子100は、図5A及び図5Bに示すような構造にしてもよい。ここで、図5Aは、図1Bにおける容量素子100に対応する拡大図であり、図5Bは、図1Dにおける容量素子100に対応する拡大図である。
 容量素子100は、図5A及び図5Bに示すように、導電体156の最上部が絶縁体282の上面と概略一致する構成にしてもよい。
 また、容量素子100は、図5A及び図5Bに示すように、絶縁体153の一部が導電体160から露出する構成にしてもよい。
 また、容量素子100は、図5Bに示すように、チャネル幅方向の断面視において、導電体242bの一部が、導電体156から露出する構成にしてもよい。
 また、容量素子100は、図6A及び図6Bに示すような構造にしてもよい。ここで、図6Aは、図1Bにおける容量素子100に対応する拡大図であり、図6Bは、図1Dにおける容量素子100に対応する拡大図である。
 容量素子100は、図6Aに示すように、開口158内において、導電体242bの下に、絶縁体224、酸化物230a、及び酸化物230bが形成されていてもよい。この場合、図6Bに示すように、導電体156が、絶縁体224の側面、酸化物230aの側面、酸化物230bの側面、及び導電体242の側面に接して設けられることが好ましい。これにより、容量素子100が、絶縁体224の側面、酸化物230aの側面、酸化物230bの側面、及び導電体242の側面に沿って形成されるので、容量素子100の静電容量を大きくすることができる。
 または、容量素子100は、例えば、図6Cに示す形状を有してもよい。具体的には、開口158の一部は、図5Aに示す構造と同様に、導電体242bだけと重なり、開口158の他の一部は、図6Aに示す構造と同様に、導電体242b、酸化物230b、酸化物230a、及び絶縁体224と重なる。
 なお、図4A乃至図6Cには、開口158の側壁が絶縁体222の上面に対し、概略垂直になる構成を示しているが、本発明はこれに限られない。開口158の側壁はテーパー形状になっていてもよい。開口158の側壁をテーパー形状にすることで、後の工程において、絶縁体153などの被覆性が向上し、鬆などの欠陥を低減できる。
 以上が、容量素子100についての説明である。
 導電体240は、絶縁体285、絶縁体282、絶縁体280、絶縁体275、導電体242a、絶縁体222、絶縁体216、絶縁体214、及び絶縁体212に形成された開口206の内壁に接して設けられている。また、導電体240は、導電体209の上面と接する領域を有する。
 導電体240は、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、およびダイオードなどの回路素子、配線、電極、または、端子と、トランジスタ200を電気的に接続するためのプラグまたは配線として機能する。
 導電体240は、導電体240aと導電体240bの積層構造とすることが好ましい。例えば、図1Bに示すように、導電体240は、導電体240aが上記開口の内壁に接して設けられ、さらに内側に導電体240bが設けられる構造にすることができる。つまり、導電体240aは、絶縁体285、絶縁体282、絶縁体280、絶縁体275、導電体242a、絶縁体222、絶縁体216、絶縁体214、及び絶縁体212の近傍に配置される。
 ここで、導電体240aは、ALD法などの被覆性の良好な成膜法で成膜されることが好ましい。このように成膜されることで、導電体240aの概形は、開口206の内壁がなす形状と概ね一致する。なお、図1B等では導電体240aが均一な厚さで示されているが、導電体242aの陰になる部分などでは、厚さの薄い部分、または成膜されない部分を有する場合もある。
 導電体240aとしては、水、水素などの不純物の透過を抑制する機能を有する導電性材料を用いることが好ましい。例えば、タンタル、窒化タンタル、チタン、窒化チタン、ルテニウム、酸化ルテニウムなどを用いることが好ましい。また、水、水素などの不純物の透過を抑制する機能を有する導電性材料は、単層または積層で用いてもよい。また、絶縁体282より上層に含まれる水、水素などの不純物が、導電体240を通じて酸化物230に混入するのを抑制できる。
 また、導電体240は、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、導電体240bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。
 例えば、導電体240aとして窒化チタンを用い、導電体240bとしてタングステンを用いることが好ましい。この場合、導電体240aは、チタンと、窒素とを有する導電体となり、導電体240bは、タングステンを有する導電体となる。
 なお、トランジスタ200では、導電体240を、導電体240aおよび導電体240bを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体240を単層、または3層以上の積層構造として設ける構成にしてもよい。構造体が積層構造を有する場合、形成順に序数を付与し、区別する場合がある。また、図1Bでは、図示していないが、導電体240の上面の高さが、絶縁体285の上面の高さより高くなる場合がある。
 図7に、導電体240及び導電体242aが接する領域及びその近傍の拡大図を示す。図7に示すように、A1−A2方向において、導電体240は、幅W1を有する領域と、幅W2を有する領域とを有する。幅W1は、例えば、絶縁体280と導電体240aのトランジスタ200a側の界面と、絶縁体280と導電体240aのトランジスタ200b側の界面の間の距離に対応する。また、幅W2は、導電体242aが有する開口の幅に対応する。なお、上述のように、導電体242aを、トランジスタ200a側とトランジスタ200b側で分離して設ける場合は、幅W2は、トランジスタ200a側の導電体242aと、トランジスタ200b側の導電体242aの距離に対応する。
 図7に示すように、幅W1は、幅W2より大きいことが好ましい。当該構成において、導電体240は、導電体242aの上面の一部及び側面の一部と少なくとも接する。したがって、導電体240と導電体242aが接する領域の面積を大きくすることができる。ここで、図7に示すように、開口206において、導電体242aの側面は、絶縁体280及び絶縁体275の側面より突出している。なお、本明細書等では、導電体240と導電体242aとのコンタクトを、トップサイドコンタクト(Top Side Contact)と呼ぶことがある。
 また、図7に示すように、導電体240は、導電体242aの下面の一部と接してもよい。当該構成にすることで、導電体240と導電体242aが接する領域の面積をさらに大きくすることができる。ここで、図7に示すように、開口206において、導電体242aの側面は、絶縁体222及び絶縁体216の側面より突出している。
 上記のように、導電体240と導電体242の接触面積を大きくすることで、接触抵抗を低減することができる。これにより、本発明に係る記憶装置の動作速度の向上、消費電力の低減を図ることができる。
 導電体209は、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、およびダイオードなどの回路素子の一部、配線、電極、または、端子として機能する。
 また、絶縁体210は、層間膜として機能する。絶縁体210としては、上述の絶縁体214、絶縁体216などに用いることができる絶縁体を用いればよい。
<半導体装置の構成材料>
 以下では、半導体装置に用いることができる構成材料について説明する。
<<基板>>
 トランジスタ200を形成する基板としては、例えば、絶縁体基板、半導体基板、または導電体基板を用いればよい。絶縁体基板としては、例えば、ガラス基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)、樹脂基板などがある。また、半導体基板としては、例えば、シリコン、ゲルマニウムを材料とした半導体基板、または炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、酸化ガリウムからなる化合物半導体基板などがある。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えば、SOI(Silicon On Insulator)基板などがある。導電体基板としては、黒鉛基板、金属基板、合金基板、導電性樹脂基板などがある。または、金属の窒化物を有する基板、金属の酸化物を有する基板などがある。さらには、絶縁体基板に導電体または半導体が設けられた基板、半導体基板に導電体または絶縁体が設けられた基板、導電体基板に半導体または絶縁体が設けられた基板などがある。または、これらの基板に素子が設けられたものを用いてもよい。基板に設けられる素子としては、容量素子、抵抗素子、スイッチ素子、発光素子、記憶素子などがある。
<<絶縁体>>
 絶縁体としては、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物などがある。
 例えば、トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体に、high−k材料を用いることで物理膜厚を保ちながら、トランジスタ動作時の低電圧化が可能となる。一方、層間膜として機能する絶縁体には、比誘電率が低い材料を用いることで、配線間に生じる寄生容量を低減することができる。したがって、絶縁体の機能に応じて、材料を選択するとよい。
 また、比誘電率の高い絶縁体としては、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物、またはシリコンおよびハフニウムを有する窒化物などがある。
 また、比誘電率が低い絶縁体としては、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などがある。
 また、金属酸化物を用いたトランジスタは、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体で囲うことによって、トランジスタの電気特性を安定にすることができる。水素などの不純物および酸素の透過を抑制する機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウム、またはタンタルを含む絶縁体を、単層で、または積層で用いればよい。具体的には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体として、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム、酸化タンタルなどの金属酸化物、窒化アルミニウム、窒化酸化シリコン、窒化シリコンなどの金属窒化物を用いることができる。
 また、ゲート絶縁体として機能する絶縁体は、加熱により脱離する酸素を含む領域を有する絶縁体であることが好ましい。例えば、加熱により脱離する酸素を含む領域を有する酸化シリコンまたは酸化窒化シリコンを酸化物230と接する構造とすることで、酸化物230が有する酸素欠損を補償することができる。
<<導電体>>
 導電体としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
 また、上記の材料で形成される導電層を複数積層して用いてもよい。例えば、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、酸素を含む導電性材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。
 なお、トランジスタのチャネル形成領域に酸化物を用いる場合において、ゲート電極として機能する導電体には、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造を用いることが好ましい。この場合は、酸素を含む導電性材料をチャネル形成領域側に設けるとよい。酸素を含む導電性材料をチャネル形成領域側に設けることで、当該導電性材料から脱離した酸素がチャネル形成領域に供給されやすくなる。
 特に、ゲート電極として機能する導電体として、チャネルが形成される金属酸化物に含まれる金属元素および酸素を含む導電性材料を用いることが好ましい。また、前述した金属元素および窒素を含む導電性材料を用いてもよい。例えば、窒化チタン、窒化タンタルなどの窒素を含む導電性材料を用いてもよい。また、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、シリコンを添加したインジウム錫酸化物を用いてもよい。また、窒素を含むインジウムガリウム亜鉛酸化物を用いてもよい。このような材料を用いることで、チャネルが形成される金属酸化物に含まれる水素を捕獲することができる場合がある。または、外方の絶縁体などから混入する水素を捕獲することができる場合がある。
<<金属酸化物>>
 酸化物230として、半導体として機能する金属酸化物(酸化物半導体)を用いることが好ましい。以下では、本発明に係る酸化物230に適用可能な金属酸化物について説明する。
 金属酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特に、インジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、錫などが含まれていることが好ましい。また、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルトなどから選ばれた一種、または複数種が含まれていてもよい。
 ここでは、金属酸化物が、インジウム、元素Mおよび亜鉛を有するIn−M−Zn酸化物である場合を考える。なお、元素Mは、アルミニウム、ガリウム、イットリウム、または錫とする。そのほかの元素Mに適用可能な元素としては、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルトなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。特に、元素Mは、ガリウム、アルミニウム、イットリウム、及び錫から選ばれた一種または複数種であることが好ましい。
 特に、トランジスタの半導体層として、インジウム(In)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物(IGZOとも記す)を用いることが好ましい。又は、トランジスタの半導体層としては、インジウム(In)、アルミニウム(Al)、及び亜鉛(Zn)を含む酸化物(IAZOとも記す)を用いてもよい。又は、半導体層としては、インジウム(In)、アルミニウム(Al)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物(IAGZOまたはIGAZO)を用いてもよい。
 なお、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。
 以降では、金属酸化物の一例として、インジウム(In)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物について説明する。なお、インジウム(In)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物を、In−Ga−Zn酸化物と呼ぶ場合がある。
<結晶構造の分類>
 酸化物半導体の結晶構造としては、アモルファス(completely amorphousを含む)、CAAC(c−axis−aligned crystalline)、nc(nanocrystalline)、CAC(cloud−aligned composite)、単結晶(single crystal)、および多結晶(poly crystal)等が挙げられる。
 なお、膜または基板の結晶構造は、X線回折(XRD:X−Ray Diffraction)スペクトルを用いて評価することができる。例えば、GIXD(Grazing−Incidence XRD)測定で得られるXRDスペクトルを用いて評価することができる。なお、GIXD法は、薄膜法またはSeemann−Bohlin法ともいう。また、以下では、GIXD測定で得られるXRDスペクトルを、単に、XRDスペクトルと記す場合がある。
 例えば、石英ガラス基板では、XRDスペクトルのピークの形状がほぼ左右対称である。一方で、結晶構造を有するIn−Ga−Zn酸化物膜では、XRDスペクトルのピークの形状が左右非対称である。XRDスペクトルのピークの形状が左右非対称であることは、膜中または基板中の結晶の存在を明示している。別言すると、XRDスペクトルのピークの形状が左右対称でないと、膜または基板は非晶質状態であるとは言えない。
 また、膜または基板の結晶構造は、極微電子線回折法(NBED:Nano Beam Electron Diffraction)によって観察される回折パターン(極微電子線回折パターンともいう)にて評価することができる。例えば、石英ガラス基板の回折パターンでは、ハローが観察され、石英ガラスは、非晶質状態であることが確認できる。また、室温成膜したIn−Ga−Zn酸化物膜の回折パターンでは、ハローではなく、スポット状のパターンが観察される。このため、室温成膜したIn−Ga−Zn酸化物は、単結晶または多結晶でもなく、非晶質状態でもない、中間状態であり、非晶質状態であると結論することはできないと推定される。
<<酸化物半導体の構造>>
 なお、酸化物半導体は、構造に着目した場合、上記とは異なる分類となる場合がある。例えば、酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、上述のCAAC−OS、及びnc−OSがある。また、非単結晶酸化物半導体には、多結晶酸化物半導体、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、非晶質酸化物半導体、などが含まれる。
 ここで、上述のCAAC−OS、nc−OS、及びa−like OSの詳細について、説明を行う。
[CAAC−OS]
 CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、またはCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。
 なお、上記複数の結晶領域のそれぞれは、1つまたは複数の微小な結晶(最大径が10nm未満である結晶)で構成される。結晶領域が1つの微小な結晶で構成されている場合、当該結晶領域の最大径は10nm未満となる。また、結晶領域が多数の微小な結晶で構成されている場合、当該結晶領域の最大径は、数十nm程度となる場合がある。
 また、In−Ga−Zn酸化物において、CAAC−OSは、インジウム(In)、及び酸素を有する層(以下、In層)と、ガリウム(Ga)、亜鉛(Zn)、及び酸素を有する層(以下、(Ga,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムとガリウムは、互いに置換可能である。よって、(Ga,Zn)層にはインジウムが含まれる場合がある。また、In層にはガリウムが含まれる場合がある。なお、In層には亜鉛が含まれる場合もある。当該層状構造は、例えば、高分解能TEM(Transmission Electron Microscope)像において、格子像として観察される。
 CAAC−OS膜に対し、例えば、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、c軸配向を示すピークが2θ=31°またはその近傍に検出される。なお、c軸配向を示すピークの位置(2θの値)は、CAAC−OSを構成する金属元素の種類、組成などにより変動する場合がある。
 また、例えば、CAAC−OS膜の電子線回折パターンにおいて、複数の輝点(スポット)が観測される。なお、あるスポットと別のスポットとは、試料を透過した入射電子線のスポット(ダイレクトスポットともいう)を対称中心として、点対称の位置に観測される。
 上記特定の方向から結晶領域を観察した場合、当該結晶領域内の格子配列は、六方格子を基本とするが、単位格子は正六角形とは限らず、非正六角形である場合がある。また、上記歪みにおいて、五角形、七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリー)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないこと、金属原子が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。
 なお、明確な結晶粒界が確認される結晶構造は、いわゆる多結晶と呼ばれる。結晶粒界は、再結合中心となり、キャリアが捕獲されトランジスタのオン電流の低下、電界効果移動度の低下などを引き起こす可能性が高い。よって、明確な結晶粒界が確認されないCAAC−OSは、トランジスタの半導体層に好適な結晶構造を有する結晶性の酸化物の一つである。なお、CAAC−OSを構成するには、Znを有する構成が好ましい。例えば、In−Zn酸化物、及びIn−Ga−Zn酸化物は、In酸化物よりも結晶粒界の発生を抑制できるため好適である。
 CAAC−OSは、結晶性が高く、明確な結晶粒界が確認されない酸化物半導体である。よって、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入、欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物および欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC−OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。したがって、チャネル形成領域に金属酸化物を有するトランジスタ(OSトランジスタと呼ぶ場合がある)にCAAC−OSを用いると、製造工程の自由度を広げることが可能となる。
[nc−OS]
 nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。別言すると、nc−OSは、微小な結晶を有する。なお、当該微小な結晶の大きさは、例えば、1nm以上10nm以下、特に1nm以上3nm以下であることから、当該微小な結晶をナノ結晶ともいう。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSまたは非晶質酸化物半導体と区別が付かない場合がある。例えば、nc−OS膜に対し、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、結晶性を示すピークが検出されない。また、nc−OS膜に対し、ナノ結晶よりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子線回折(制限視野電子線回折ともいう)を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OS膜に対し、ナノ結晶の大きさと近いかナノ結晶より小さいプローブ径(例えば1nm以上30nm以下)の電子線を用いる電子線回折(ナノビーム電子線回折ともいう)を行うと、ダイレクトスポットを中心とするリング状の領域内に複数のスポットが観測される電子線回折パターンが取得される場合がある。
[a−like OS]
 a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆又は低密度領域を有する。即ち、a−like OSは、nc−OS及びCAAC−OSと比べて、結晶性が低い。また、a−like OSは、nc−OS及びCAAC−OSと比べて、膜中の水素濃度が高い。
<<酸化物半導体の構成>>
 次に、上述のCAC−OSの詳細について、説明を行う。なお、CAC−OSは材料構成に関する。
[CAC−OS]
 CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つまたは複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
 さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
 ここで、In−Ga−Zn酸化物におけるCAC−OSを構成する金属元素に対するIn、Ga、およびZnの原子数比のそれぞれを、[In]、[Ga]、および[Zn]と表記する。例えば、In−Ga−Zn酸化物におけるCAC−OSにおいて、第1の領域は、[In]が、CAC−OS膜の組成における[In]よりも大きい領域である。また、第2の領域は、[Ga]が、CAC−OS膜の組成における[Ga]よりも大きい領域である。または、例えば、第1の領域は、[In]が、第2の領域における[In]よりも大きく、且つ、[Ga]が、第2の領域における[Ga]よりも小さい領域である。また、第2の領域は、[Ga]が、第1の領域における[Ga]よりも大きく、且つ、[In]が、第1の領域における[In]よりも小さい領域である。
 具体的には、上記第1の領域は、インジウム酸化物、インジウム亜鉛酸化物などが主成分である領域である。また、上記第2の領域は、ガリウム酸化物、ガリウム亜鉛酸化物などが主成分である領域である。つまり、上記第1の領域を、Inを主成分とする領域と言い換えることができる。また、上記第2の領域を、Gaを主成分とする領域と言い換えることができる。
 なお、上記第1の領域と、上記第2の領域とは、明確な境界が観察できない場合がある。
 また、In−Ga−Zn酸化物におけるCAC−OSとは、In、Ga、Zn、およびOを含む材料構成において、一部にGaを主成分とする領域と、一部にInを主成分とする領域とが、それぞれモザイク状であり、これらの領域がランダムに存在している構成をいう。よって、CAC−OSは、金属元素が不均一に分布した構造を有していると推測される。
 CAC−OSは、例えば基板を加熱しない条件で、スパッタリング法により形成することができる。また、CAC−OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、および窒素ガスの中から選ばれたいずれか一つまたは複数を用いればよい。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましい。例えば、成膜時の成膜ガスの総流量に対する酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とする。
 また、例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
 ここで、第1の領域は、第2の領域と比較して、導電性が高い領域である。つまり、第1の領域を、キャリアが流れることにより、金属酸化物としての導電性が発現する。従って、第1の領域が、金属酸化物中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。
 一方、第2の領域は、第1の領域と比較して、絶縁性が高い領域である。つまり、第2の領域が、金属酸化物中に分布することで、リーク電流を抑制することができる。
 したがって、CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、および良好なスイッチング動作を実現することができる。
 また、CAC−OSを用いたトランジスタは、信頼性が高い。従って、CAC−OSは、表示装置をはじめとするさまざまな半導体装置に最適である。
 酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
<酸化物半導体を有するトランジスタ>
 続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
 上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
 トランジスタには、キャリア濃度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体のキャリア濃度は1×1017cm−3以下、好ましくは1×1015cm−3以下、さらに好ましくは1×1013cm−3以下、より好ましくは1×1011cm−3以下、さらに好ましくは1×1010cm−3未満であり、1×10−9cm−3以上である。なお、酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性又は実質的に高純度真性と言う。なお、キャリア濃度の低い酸化物半導体を、高純度真性又は実質的に高純度真性な酸化物半導体と呼ぶ場合がある。
 また、高純度真性又は実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
 また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
 従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。なお、酸化物半導体中の不純物とは、例えば、酸化物半導体を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物と言える。
<不純物>
 ここで、酸化物半導体中における各不純物の影響について説明する。
 酸化物半導体において、第14族元素の一つであるシリコンまたは炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体中のシリコンまたは炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
 また、酸化物半導体にアルカリ金属又はアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属又はアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、SIMSにより得られる酸化物半導体中のアルカリ金属又はアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
 また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。または、酸化物半導体において、窒素が含まれると、トラップ準位が形成される場合がある。この結果、トランジスタの電気特性が不安定となる場合がある。このため、SIMSにより得られる酸化物半導体中の窒素濃度を、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下にする。
 また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、SIMSにより得られる酸化物半導体中の水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満にする。
 不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
<<その他の半導体材料>>
 酸化物230に用いることができる半導体材料は、上述の金属酸化物に限られない。酸化物230として、バンドギャップを有する半導体材料(ゼロギャップ半導体ではない半導体材料)を用いてもよい。例えば、シリコンなどの単体元素の半導体、ヒ化ガリウムなどの化合物半導体、半導体として機能する層状物質(原子層物質、2次元材料などともいう)などを半導体材料に用いることが好ましい。特に、半導体として機能する層状物質を半導体材料に用いると好適である。
 ここで、本明細書等において、層状物質とは、層状の結晶構造を有する材料群の総称である。層状の結晶構造は、共有結合またはイオン結合によって形成される層が、ファンデルワールス力のような、共有結合またはイオン結合よりも弱い結合を介して積層している構造である。層状物質は、単位層内における電気伝導性が高く、つまり、2次元電気伝導性が高い。半導体として機能し、かつ、2次元電気伝導性の高い材料をチャネル形成領域に用いることで、オン電流の大きいトランジスタを提供することができる。
 層状物質として、グラフェン、シリセン、カルコゲン化物などがある。カルコゲン化物は、カルコゲンを含む化合物である。また、カルコゲンは、第16族に属する元素の総称であり、酸素、硫黄、セレン、テルル、ポロニウム、リバモリウムが含まれる。また、カルコゲン化物として、遷移金属カルコゲナイド、13族カルコゲナイドなどが挙げられる。
 酸化物230として、例えば、半導体として機能する遷移金属カルコゲナイドを用いることが好ましい。酸化物230として適用可能な遷移金属カルコゲナイドとして、具体的には、硫化モリブデン(代表的にはMoS)、セレン化モリブデン(代表的にはMoSe)、モリブデンテルル(代表的にはMoTe)、硫化タングステン(代表的にはWS)、セレン化タングステン(代表的にはWSe)、タングステンテルル(代表的にはWTe)、硫化ハフニウム(代表的にはHfS)、セレン化ハフニウム(代表的にはHfSe)、硫化ジルコニウム(代表的にはZrS)、セレン化ジルコニウム(代表的にはZrSe)などが挙げられる。上述の遷移金属カルコゲナイドを、酸化物230に適用することで、オン電流が大きい半導体装置を提供することができる。
<半導体装置の作製方法例>
 次に、図1A乃至図1Dに示す、本発明の一態様である半導体装置の作製方法を、図8A乃至図25Dを用いて説明する。
 各図のAは、上面図を示す。また、各図のBはそれぞれ、各図のAにA1−A2の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、各図のCはそれぞれ、各図のAにA3−A4の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。また、各図のDはそれぞれ、各図のAにA5−A6の一点鎖線で示す部位の断面図である。なお、各図のAの上面図では、図の明瞭化のために一部の要素を省いている。
 以下において、絶縁体を形成するための絶縁性材料、導電体を形成するための導電性材料、または半導体を形成するための半導体材料は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを適宜用いて成膜することができる。
 なお、スパッタリング法にはスパッタリング用電源に高周波電源を用いるRFスパッタリング法、直流電源を用いるDCスパッタリング法、さらにパルス的に電極に印加する電圧を変化させるパルスDCスパッタリング法がある。RFスパッタリング法は主に絶縁膜を成膜する場合に用いられ、DCスパッタリング法は主に金属導電膜を成膜する場合に用いられる。また、パルスDCスパッタリング法は、主に、酸化物、窒化物、炭化物などの化合物をリアクティブスパッタリング法で成膜する際に用いられる。
 なお、CVD法は、プラズマを利用するプラズマCVD(PECVD)法、熱を利用する熱CVD(TCVD:Thermal CVD)法、光を利用する光CVD(Photo CVD)法などに分類できる。さらに用いる原料ガスによって金属CVD(MCVD:Metal CVD)法、有機金属CVD(MOCVD:Metal Organic CVD)法に分けることができる。
 プラズマCVD法は、比較的低温で高品質の膜が得られる。また、熱CVD法は、プラズマを用いないため、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。例えば、半導体装置に含まれる配線、電極、素子(トランジスタ、容量素子など)などは、プラズマから電荷を受け取ることでチャージアップする場合がある。このとき、蓄積した電荷によって、半導体装置に含まれる配線、電極、素子などが破壊される場合がある。一方、プラズマを用いない熱CVD法の場合、こういったプラズマダメージが生じないため、半導体装置の歩留まりを高くすることができる。また、熱CVD法では、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。
 また、ALD法としては、プリカーサ及びリアクタントの反応を熱エネルギーのみで行う熱ALD法、プラズマ励起されたリアクタントを用いるPEALD法などを用いることができる。
 CVD法およびALD法は、ターゲットなどから放出される粒子が堆積するスパッタリング法とは異なる。したがって、被処理物の形状の影響を受けにくく、良好な段差被覆性を有する成膜方法である。特に、ALD法は、優れた段差被覆性と、優れた厚さの均一性を有するため、アスペクト比の高い開口部の表面を被覆する場合などに好適である。ただし、ALD法は、比較的成膜速度が遅いため、成膜速度の速いCVD法などの他の成膜方法と組み合わせて用いることが好ましい場合もある。
 また、CVD法では、原料ガスの流量比によって、任意の組成の膜を成膜することができる。例えば、CVD法では、成膜しながら原料ガスの流量比を変化させることによって、組成が連続的に変化した膜を成膜することができる。原料ガスの流量比を変化させながら成膜する場合、複数の成膜室を用いて成膜する場合と比べて、搬送または圧力調整に掛かる時間を要さない分、成膜に掛かる時間を短くすることができる。したがって、半導体装置の生産性を高めることができる場合がある。
 また、ALD法では、異なる複数種のプリカーサを同時に導入することで任意の組成の膜を成膜することができる。または、異なる複数種のプリカーサを導入する場合、各プリカーサのサイクル数を制御することで任意の組成の膜を成膜することができる。
 まず、基板(図示しない)を準備し、当該基板上に絶縁体210及び導電体209を形成する(図8A乃至図8D参照)。
 次に、絶縁体210上及び導電体209上に絶縁体212を成膜する(図8A乃至図8D参照)。絶縁体212の成膜は、スパッタリング法を用いて行うことが好ましい。成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁体212中の水素濃度を低減できる。ただし、絶縁体212の成膜は、スパッタリング法に限られるものではなく、CVD法、MBE法、PLD法、ALD法などを適宜用いてもよい。
 本実施の形態では、絶縁体212として、窒素ガスを含む雰囲気でシリコンターゲットを用いて、パルスDCスパッタリング法で窒化シリコンを成膜する。パルスDCスパッタリング法を用いることで、ターゲット表面のアーキングによるパーティクルの発生を抑制できるため、膜厚分布をより均一にすることができる。また、パルス電圧を用いることで、高周波電圧より、放電の立ち上がり、立ち下がりを急峻にすることができる。これにより、電極に、電力をより効率的に供給しスパッタレート、および膜質を向上することができる。
 窒化シリコンのように水、水素などの不純物が透過しにくい絶縁体を用いることにより、絶縁体212より下層に含まれる水、水素などの不純物の拡散を抑制できる。また、絶縁体212として、窒化シリコンなどの銅が透過しにくい絶縁体を用いることにより、絶縁体212より下層の導電体(図示しない)に銅など拡散しやすい金属を用いても、当該金属が絶縁体212を介して上方に拡散するのを抑制できる。
 次に、絶縁体212上に絶縁体214を成膜する(図8A乃至図8D参照)。絶縁体214の成膜は、スパッタリング法を用いて行うことが好ましい。成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁体214中の水素濃度を低減できる。ただし、絶縁体214の成膜は、スパッタリング法に限られるものではなく、CVD法、MBE法、PLD法、ALD法などを適宜用いてもよい。
 本実施の形態では、絶縁体214として、酸素ガスを含む雰囲気でアルミニウムターゲットを用いて、パルスDCスパッタリング法で酸化アルミニウムを成膜する。パルスDCスパッタリング法を用いることで、膜厚分布をより均一にし、スパッタレート、および膜質を向上することができる。ここで、基板にRF電力を印加してもよい。基板に印加するRF電力の大きさによって、絶縁体214より下層へ注入する酸素量を制御することができる。RF電力としては、0W/cm以上、1.86W/cm以下とする。つまり、絶縁体214の形成の際のRF電力によって、トランジスタの特性に適する酸素量を変化させて注入することができる。従って、トランジスタの信頼性向上に適する酸素量を注入することができる。また、RFの周波数は、10MHz以上が好ましい。代表的には、13.56MHzである。RFの周波数が高いほど基板へ与えるダメージを小さくすることができる。
 絶縁体214として、水素を捕獲および水素を固着する機能が高い、アモルファス構造を有する金属酸化物、例えば酸化アルミニウムを用いることが好ましい。これにより、絶縁体216などに含まれる水素を捕獲または固着し、当該水素が酸化物230に拡散するのを防ぐことができる。特に、絶縁体214として、アモルファス構造を有する酸化アルミニウム、またはアモルファス構造の酸化アルミニウムを用いることで、より効果的に水素を捕獲または固着できる場合があるため好ましい。これにより、良好な特性を有し、信頼性の高いトランジスタ200、および半導体装置を作製できる。
 次に、絶縁体214上に絶縁体216を成膜する。絶縁体216の成膜は、スパッタリング法を用いて行うことが好ましい。成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁体216中の水素濃度を低減できる。ただし、絶縁体216の成膜は、スパッタリング法に限られるものではなく、CVD法、MBE法、PLD法、ALD法などを適宜用いてもよい。
 本実施の形態では、絶縁体216として、酸素ガスを含む雰囲気でシリコンターゲットを用いて、パルスDCスパッタリング法で酸化シリコンを成膜する。パルスDCスパッタリング法を用いることで、膜厚分布をより均一にし、スパッタレート、および膜質を向上することができる。
 絶縁体212、絶縁体214、および絶縁体216は、大気に暴露することなく連続して成膜することが好ましい。例えば、マルチチャンバー方式の成膜装置を用いればよい。これにより、絶縁体212、絶縁体214、および絶縁体216を、膜中の水素を低減して成膜し、さらに、各成膜工程の合間に膜中に水素が混入するのを低減できる。
 次に、絶縁体216に絶縁体214に達する開口を形成する。開口とは、例えば、溝、スリットなども含まれる。また、開口が形成された領域を指して開口部とする場合がある。開口の形成はウェットエッチングを用いてもよいが、ドライエッチングを用いるほうが微細加工には好ましい。また、絶縁体214は、絶縁体216をエッチングして溝を形成する際のエッチングストッパ膜として機能する絶縁体を選択することが好ましい。例えば、溝を形成する絶縁体216に酸化シリコンまたは酸化窒化シリコンを用いた場合は、絶縁体214は窒化シリコン、酸化アルミニウム、酸化ハフニウムを用いるとよい。
 ドライエッチング装置としては、平行平板型電極を有する容量結合型プラズマ(CCP:Capacitively Coupled Plasma)エッチング装置を用いることができる。平行平板型電極を有する容量結合型プラズマエッチング装置は、平行平板型電極の一方の電極に高周波電圧を印加する構成でもよい。または平行平板型電極の一方の電極に複数の異なった高周波電圧を印加する構成でもよい。または平行平板型電極それぞれに同じ周波数の高周波電圧を印加する構成でもよい。または平行平板型電極それぞれに周波数の異なる高周波電圧を印加する構成でもよい。または高密度プラズマ源を有するドライエッチング装置を用いることができる。高密度プラズマ源を有するドライエッチング装置は、例えば、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)エッチング装置などを用いることができる。
 開口の形成後に、導電体205aとなる導電膜を成膜する。導電体205aとなる導電膜は、酸素の透過を抑制する機能を有する導電体を含むことが望ましい。例えば、窒化タンタル、窒化タングステン、窒化チタンなどを用いることができる。または、酸素の透過を抑制する機能を有する導電体と、タンタル、タングステン、チタン、モリブデン、アルミニウム、銅、モリブデンタングステン合金との積層膜とすることができる。導電体205aとなる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。
 本実施の形態では、導電体205aとなる導電膜として窒化チタンを成膜する。このような金属窒化物を導電体205bの下層に用いることにより、絶縁体216などによって、導電体205bが酸化されるのを抑制できる。また、導電体205bとして銅などの拡散しやすい金属を用いても、当該金属が導電体205aから外に拡散するのを防ぐことができる。
 次に、導電体205bとなる導電膜を成膜する。導電体205bとなる導電膜としては、タンタル、タングステン、チタン、モリブデン、アルミニウム、銅、モリブデンタングステン合金などを用いることができる。該導電膜の成膜は、メッキ法、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。本実施の形態では、導電体205bとなる導電膜として、タングステンを成膜する。
 次に、CMP処理を行うことで、導電体205aとなる導電膜および導電体205bとなる導電膜の一部を除去し、絶縁体216を露出する(図8A乃至図8D参照)。その結果、開口部のみに、導電体205aおよび導電体205bが残存する。なお、当該CMP処理により、絶縁体216の一部が除去される場合がある。
 次に、絶縁体216上及び導電体205上に絶縁体222を成膜する(図8A乃至図8D参照)。絶縁体222として、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。または、ハフニウムジルコニウム酸化物を用いることが好ましい。アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体は、酸素、水素、および水に対するバリア性を有する。絶縁体222が、水素および水に対するバリア性を有することで、トランジスタ200の周辺に設けられた構造体に含まれる水素、および水が、絶縁体222を通じてトランジスタ200の内側へ拡散することが抑制され、酸化物230中の酸素欠損の生成を抑制できる。
 絶縁体222の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。本実施の形態では、絶縁体222として、ALD法を用いて、酸化ハフニウムを成膜する。特に、本発明の一態様である水素濃度の低減された酸化ハフニウムの形成方法を用いることが好ましい。
 続いて、加熱処理を行うと好ましい。加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以下、さらに好ましくは320℃以上450℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、窒素ガスと酸素ガスの混合雰囲気で加熱処理をする場合、酸素ガスを20%程度にすればよい。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理を行ってもよい。
 また、上記加熱処理で用いるガスは、高純度化されていることが好ましい。例えば、上記加熱処理で用いるガスに含まれる水分量が1ppb以下、好ましくは0.1ppb以下、より好ましくは0.05ppb以下にすればよい。高純度化されたガスを用いて加熱処理を行うことで、絶縁体222などに水分等が取り込まれることを可能な限り防ぐことができる。
 本実施の形態では、加熱処理として、絶縁体222の成膜後に、窒素ガスと酸素ガスの流量比を4:1として、400℃の温度で1時間の処理を行う。当該加熱処理によって、絶縁体222に含まれる水、水素などの不純物を除去することなどができる。また、絶縁体222として、ハフニウムを含む酸化物を用いる場合、当該加熱処理によって、絶縁体222の一部が結晶化する場合がある。また、加熱処理は、絶縁体224の成膜後などのタイミングで行うこともできる。
 次に、絶縁体222上に絶縁膜224Afを成膜する(図8A乃至図8D参照)。絶縁膜224Afの成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。本実施の形態では、絶縁膜224Afとして、スパッタリング法を用いて、酸化シリコンを成膜する。成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁膜224Af中の水素濃度を低減できる。絶縁膜224Afは、後の工程で酸化物230aと接するため、このように水素濃度が低減されていることが好適である。
 次に、絶縁膜224Af上に、酸化膜230Af、酸化膜230Bfを順に成膜する(図8A乃至図8D参照)。なお、酸化膜230Afおよび酸化膜230Bfは、大気環境にさらさずに連続して成膜することが好ましい。大気開放せずに成膜することで、酸化膜230Af上及び酸化膜230Bf上に大気環境からの不純物または水分が付着することを防ぐことができ、酸化膜230Afと酸化膜230Bfとの界面近傍を清浄に保つことができる。
 酸化膜230Af及び酸化膜230Bfの成膜はスパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。本実施の形態では、酸化膜230Afおよび酸化膜230Bfの成膜はスパッタリング法を用いる。
 例えば、酸化膜230Af及び酸化膜230Bfをスパッタリング法によって成膜する場合は、スパッタリングガスとして酸素、または、酸素と貴ガスの混合ガスを用いる。スパッタリングガスに含まれる酸素の割合を高めることで、成膜される酸化膜中の過剰酸素を増やすことができる。また、上記の酸化膜をスパッタリング法によって成膜する場合は、上記のIn−M−Zn酸化物ターゲットなどを用いることができる。
 特に、酸化膜230Afの成膜時に、スパッタリングガスに含まれる酸素の一部が絶縁体224に供給される場合がある。したがって、当該スパッタリングガスに含まれる酸素の割合は70%以上、好ましくは80%以上、より好ましくは100%とすればよい。
 また、酸化膜230Bfをスパッタリング法で形成する場合、スパッタリングガスに含まれる酸素の割合を、30%を超えて100%以下、好ましくは70%以上100%以下として成膜すると、酸素過剰型の酸化物半導体が形成される。酸素過剰型の酸化物半導体をチャネル形成領域に用いたトランジスタは、比較的高い信頼性が得られる。ただし、本発明の一態様はこれに限定されない。酸化膜230Bfをスパッタリング法で形成する場合、スパッタリングガスに含まれる酸素の割合を1%以上30%以下、好ましくは5%以上20%以下として成膜すると、酸素欠乏型の酸化物半導体が形成される。酸素欠乏型の酸化物半導体をチャネル形成領域に用いたトランジスタは、比較的高い電界効果移動度が得られる。また、基板を加熱しながら成膜を行うことによって、当該酸化膜の結晶性を向上させることができる。
 本実施の形態では、酸化膜230Afを、スパッタリング法によって、In:Ga:Zn=1:3:4[原子数比]の酸化物ターゲットを用いて成膜する。また、酸化膜230Bfを、スパッタリング法によって、In:Ga:Zn=4:2:4.1[原子数比]の酸化物ターゲット、In:Ga:Zn=1:1:1[原子数比]の酸化物ターゲット、In:Ga:Zn=1:1:1.2[原子数比]の酸化物ターゲット、またはIn:Ga:Zn=1:1:2[原子数比]の酸化物ターゲットを用いて成膜する。なお、各酸化膜は、成膜条件、および原子数比を適宜選択することで、酸化物230a、および酸化物230bに求める特性に合わせて形成するとよい。
 なお、絶縁膜224Af、酸化膜230Af、および酸化膜230Bfを、大気に暴露することなく、スパッタリング法で成膜することが好ましい。例えば、マルチチャンバー方式の成膜装置を用いればよい。これにより、絶縁膜224Af、酸化膜230Af、および酸化膜230Bfについて、各成膜工程の合間に膜中に水素が混入するのを低減できる。
 なお、酸化膜230Afおよび酸化膜230Bfの成膜に、ALD法を用いてもよい。酸化膜230Afおよび酸化膜230Bfの成膜にALD法を用いることで、アスペクト比の大きい溝または開口部に対しても、厚さの均一な膜を形成できる。また、PEALD法を用いることで、熱ALD法に比べて低温で酸化膜230Afおよび酸化膜230Bfを形成できる。
 次に、加熱処理を行うことが好ましい。加熱処理は、酸化膜230Af、および酸化膜230Bfが多結晶化しない温度範囲で行えばよく、250℃以上650℃以下、好ましくは400℃以上600℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、窒素ガスと酸素ガスの混合雰囲気で加熱処理をする場合、酸素ガスを20%程度にすればよい。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理を行ってもよい。
 また、上記加熱処理で用いるガスは、高純度化されていることが好ましい。例えば、上記加熱処理で用いるガスに含まれる水分量が1ppb以下、好ましくは0.1ppb以下、より好ましくは0.05ppb以下にすればよい。高純度化されたガスを用いて加熱処理を行うことで、酸化膜230Af、および酸化膜230Bfなどに水分等が取り込まれることを可能な限り防ぐことができる。
 本実施の形態では、加熱処理として、窒素ガスと酸素ガスの流量比を4:1として、400℃の温度で1時間の処理を行う。このような酸素ガスを含む加熱処理によって、酸化膜230Afおよび酸化膜230Bf中の炭素、水、水素などの不純物を低減できる。このように膜中の不純物を低減することで、酸化膜230Bfの結晶性を向上させ、より密度の高い、緻密な構造にすることができる。これにより、酸化膜230Afおよび酸化膜230Bf中の結晶領域を増大させ、酸化膜230Afおよび酸化膜230Bf中における、結晶領域の面内ばらつきを低減できる。よって、トランジスタ200の電気特性の面内ばらつきを低減できる。
 また、加熱処理を行うことで、絶縁体216、絶縁膜224Af、酸化膜230Afおよび酸化膜230Bf中の水素が絶縁体222に移動し、絶縁体222内に吸い取られる。別言すると、絶縁体216、絶縁膜224Af、酸化膜230Af、および酸化膜230Bf中の水素が絶縁体222に拡散する。従って、絶縁体222の水素濃度は高くなるが、絶縁体216、絶縁膜224Af、酸化膜230Afおよび酸化膜230Bf中のそれぞれの水素濃度は低下する。
 特に、絶縁膜224Afは、トランジスタ200の第2のゲート絶縁体として機能し、酸化膜230Afおよび酸化膜230Bfは、トランジスタ200のチャネル形成領域として機能する。そのため、水素濃度が低減された絶縁膜224Af、酸化膜230Afおよび酸化膜230Bfを有するトランジスタ200は、良好な信頼性を有するため好ましい。
 次に、リソグラフィー法を用いて、絶縁膜224Af、酸化膜230Af、及び酸化膜230Bfを帯状に加工して、絶縁層224A、酸化物層230A、及び酸化物層230Bを形成する(図9A乃至図9D参照)。ここで、絶縁層224A、酸化物層230A、及び酸化物層230Bは、一点鎖線A3−A4に平行な方向(トランジスタ200のチャネル幅方向、又は図1Aに示すY方向)に延在するように形成する。また、絶縁層224A、酸化物層230A、及び酸化物層230Bは、少なくとも一部が導電体205と重なるように形成する。上記加工はドライエッチング法またはウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。また、絶縁膜224Af、酸化膜230Af、及び酸化膜230Bfの加工は、それぞれ異なる条件で行ってもよい。
 なお、リソグラフィー法では、まず、マスクを介してレジストを露光する。次に、露光された領域を、現像液を用いて除去または残存させてレジストマスクを形成する。次に、当該レジストマスクを介してエッチング処理することで導電体、半導体、または絶縁体などを所望の形状に加工することができる。例えば、KrFエキシマレーザ光、ArFエキシマレーザ光、EUV(Extreme Ultraviolet)光などを用いて、レジストを露光することでレジストマスクを形成すればよい。また、基板と投影レンズとの間に液体(例えば水)を満たして露光する、液浸技術を用いてもよい。また、前述した光に代えて、電子ビームまたはイオンビームを用いてもよい。なお、電子ビームまたはイオンビームを用いる場合には、マスクは不要となる。なお、レジストマスクは、アッシングなどのドライエッチング処理を行う、ウェットエッチング処理を行う、ドライエッチング処理後にウェットエッチング処理を行う、またはウェットエッチング処理後にドライエッチング処理を行うことで、除去することができる。
 さらに、レジストマスクの下に絶縁体または導電体からなるハードマスクを用いてもよい。ハードマスクを用いる場合、酸化膜230Bf上にハードマスク材料となる絶縁膜または導電膜を形成し、その上にレジストマスクを形成し、ハードマスク材料をエッチングすることで所望の形状のハードマスクを形成することができる。酸化膜230Bfなどのエッチングは、レジストマスクを除去してから行っても良いし、レジストマスクを残したまま行っても良い。後者の場合、エッチング中にレジストマスクが消失することがある。酸化膜230Bfなどのエッチング後にハードマスクをエッチングにより除去しても良い。一方、ハードマスクの材料が後工程に影響が無い、あるいは後工程で利用できる場合、必ずしもハードマスクを除去する必要は無い。
 次に、絶縁体222上及び酸化物層230B上に、導電膜242Af、導電膜242Bfを順に成膜する(図10A乃至図10D参照)。導電膜242Af及び導電膜242Bfの成膜はスパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。例えば、導電膜242Afとしてスパッタリング法を用いて窒化タンタルを成膜し、導電膜242Bfとしてタングステンを成膜すればよい。なお、導電膜242Afの成膜前に、加熱処理を行ってもよい。当該加熱処理は、減圧下で行い、大気に暴露することなく、連続して導電膜242Afを成膜してもよい。このような処理を行うことによって、酸化物層230Bの表面に吸着している水分および水素を除去し、さらに酸化物層230A、および酸化物層230B中の水分濃度および水素濃度を低減させることができる。加熱処理の温度は、100℃以上400℃以下が好ましい。本実施の形態では、加熱処理の温度を200℃とする。
 次に、リソグラフィー法を用いて、絶縁層224A、酸化物層230A、酸化物層230B、導電膜242Af、および導電膜242Bfを加工して、島状の、絶縁体224、酸化物230a、及び酸化物230bと、島状であって、開口を有する、導電層242A、及び導電層242Bと、を形成する(図11A乃至図11D参照)。例えば、絶縁層224A、酸化物層230A、酸化物層230B、導電膜242Af、及び導電膜242Bfを加工して、島状の、絶縁体224、酸化物230a、及び酸化物230bと、一点鎖線A1−A2に平行な方向(トランジスタ200のチャネル長方向、又は図1Aに示すX方向)に延在する導電層242A、及び導電層242Bと、を形成した後、導電層242A、及び導電層242Bを加工して、島状であって、開口を有する導電層242A、及び導電層242Bを形成する。または、例えば、絶縁層224A、酸化物層230A、酸化物層230B、導電膜242Af、及び導電膜242Bfを島状に加工して、絶縁体224、酸化物230a、酸化物230b、導電層242A、及び導電層242Bを形成した後、導電層242A、及び導電層242Bに開口を形成してもよい。
 ここで、絶縁体224、酸化物230a、酸化物230b、導電層242A、および導電層242Bは、少なくとも一部が導電体205と重なるように形成する。また、導電層242A及び導電層242Bに設ける開口は、酸化物230bと重ならない位置に形成される。上記加工はドライエッチング法またはウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。また、絶縁層224A、酸化物層230A、酸化物層230B、導電膜242Af、および導電膜242Bfの加工は、それぞれ異なる条件で行ってもよい。
 また、図11B乃至図11Dに示すように、絶縁体224、酸化物230a、及び酸化物230bの側面がテーパー形状になっていてもよい。絶縁体224、酸化物230a、及び酸化物230bは、例えば、テーパー角が60°以上90°未満になるようにすればよい。このように側面をテーパー形状にすることで、これより後の工程において、絶縁体275などの被覆性が向上し、鬆などの欠陥を低減できる。
 ただし、上記に限られず、絶縁体224、酸化物230a、及び酸化物230bの側面が、絶縁体222の上面に対し、概略垂直になる構成にしてもよい。このような構成にすることで、複数のトランジスタ200を設ける際に、小面積化、高密度化が可能となる。
 また、上記エッチング工程で発生した副生成物が、絶縁体224、酸化物230a、酸化物230b、導電層242A、及び導電層242Bの側面に層状に形成される場合がある。この場合、当該層状の副生成物が、絶縁体224、酸化物230a、酸化物230b、導電層242A、及び導電層242Bと、絶縁体275の間に形成されることになる。よって、絶縁体222の上面に接して形成された当該層状の副生成物は、除去することが好ましい。
 また、上記エッチング工程において、導電層242A、および導電層242Bの中央に開口を設ける構成について示したが、本発明はこれに限られるものではない。例えば、導電層242A、および導電層242Bを、トランジスタ200a側と、トランジスタ200b側で分離して設ける構成にしてもよい。
 次に、絶縁体224、酸化物230a、酸化物230b、導電層242A、及び導電層242Bを覆って、絶縁体275を成膜する(図12A乃至図12D参照)。ここで、絶縁体275は、絶縁体222の上面および絶縁体224の側面に接することが好ましい。絶縁体275の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。絶縁体275は、酸素の透過を抑制する機能を有する絶縁膜を用いることが好ましい。例えば、絶縁体275として、ALD法を用いて窒化シリコンを成膜すればよい。または、絶縁体275として、スパッタリング法を用いて、酸化アルミニウムを成膜し、その上にPEALD法を用いて窒化シリコンを成膜すればよい。絶縁体275をこのような積層構造とすることで、水、水素などの不純物、および酸素の拡散を抑制する機能が向上することがある。
 このようにして、酸化物230a、酸化物230b、導電層242A、及び導電層242Bを、酸素の拡散を抑制する機能を有する、絶縁体275で覆うことができる。これにより、のちの工程で、絶縁体224、酸化物230a、酸化物230b、導電層242A、及び導電層242Bに、絶縁体280などから酸素が直接拡散するのを低減できる。
 次に、絶縁体275上に、絶縁体280となる絶縁膜を成膜する。当該絶縁膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。例えば、当該絶縁膜として、スパッタリング法を用いて酸化シリコン膜を成膜すればよい。当該絶縁膜を、酸素を含む雰囲気で、スパッタリング法で成膜することで、過剰酸素を含む絶縁体280を形成することができる。また、成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁体280中の水素濃度を低減できる。なお、当該絶縁膜の成膜前に、加熱処理を行ってもよい。加熱処理は、減圧下で行い、大気に暴露することなく、連続して当該絶縁膜を成膜してもよい。このような処理を行うことによって、絶縁体275の表面などに吸着している水分および水素を除去し、さらに酸化物230a、酸化物230b、および絶縁体224中の水分濃度および水素濃度を低減できる。当該加熱処理には、上述した加熱処理条件を用いることができる。
 次に、絶縁体280となる絶縁膜にCMP処理を行い、上面が平坦な絶縁体280を形成する(図12A乃至図12D参照)。なお、絶縁体280上に、例えば、スパッタリング法によって窒化シリコンを成膜し、該窒化シリコンを絶縁体280に達するまで、CMP処理を行ってもよい。
 次に、絶縁体280の一部、絶縁体275の一部、導電層242Aの一部、導電層242Bの一部を加工して、酸化物230bに達する開口258を形成する。開口258の形成によって、導電層242Aから導電体242a1及び導電体242b1を形成し、導電層242Bから導電体242a2及び導電体242b2を形成することができる(図13A乃至図13D参照)。
 また、絶縁体280の一部、絶縁体275の一部、導電層242Aの一部、及び導電層242Bの一部の加工は、ドライエッチング法、またはウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。また、当該加工は、それぞれ異なる条件で行ってもよい。例えば、絶縁体280の一部をドライエッチング法で加工し、絶縁体275の一部をウェットエッチング法で加工し、導電層242Aの一部及び導電層242Bの一部をドライエッチング法で加工してもよい。
 開口258は、図13Aに示すように、一点鎖線A3−A4に平行な方向(トランジスタのチャネル幅方向、又は図1Aに示すY方向)に延在して形成される構成にすることが好ましい。このように、開口258を形成することで、後に形成される、導電体260を上記方向に延在して設け、配線として機能させることができる。また、開口258は、導電体205と重なるように形成することが好ましい。
 開口258のX方向の幅は、トランジスタ200のチャネル長に反映されるため、微細であることが好ましい。例えば、開口258のX方向の幅が、60nm以下、50nm以下、40nm以下、30nm以下、20nm以下、または10nm以下であって、1nm以上、または5nm以上であることが好ましい。このように、開口258を微細に加工するには、EUV光などの短波長の光、または電子ビームを用いたリソグラフィー法を用いることが好ましい。
 開口258を微細に加工する場合、絶縁体280の一部、絶縁体275の一部、導電層242Bの一部、及び導電層242Aの一部の加工は、異方性エッチングを用いて行うことが好ましい。特に、ドライエッチング法による加工は、微細加工に適しているので好ましい。また、当該加工は、それぞれ異なる条件で行ってもよい。
 異方性エッチングを用いて、絶縁体280、絶縁体275、導電層242B、及び導電層242Aを加工することで、導電体242aおよび導電体242bの互いに対向する側面が、それぞれ酸化物230bの上面に対して概略垂直になるように形成することができる。このような構成にすることで、領域230baと領域230bcの間、及び領域230bbと領域230bcの間、に所謂Loff領域が形成されるのを低減できる。よって、トランジスタ200の周波数特性を向上させ、本発明の一態様に係る半導体装置の動作速度を向上させることができる。
 ただし、上記に限られず、図3Bに示すように、絶縁体280、絶縁体275、および導電体242の側面がテーパー形状となる場合がある。また、絶縁体280のテーパー角が、導電体242のテーパー角より大きくなる場合がある。また、開口258を形成する際に、酸化物230bの上部が除去される場合がある。
 上記エッチング処理によって、酸化物230aの側面、酸化物230bの上面および側面、導電体242の側面、絶縁体280の側面などへの不純物の付着またはこれらの内部への該不純物の拡散が生じる場合がある。このような不純物を除去する工程を行ってもよい。また、上記ドライエッチングで酸化物230bの表面に損傷領域が形成される場合がある。このような損傷領域を除去してもよい。当該不純物としては、絶縁体280、絶縁体275、導電層242B、及び導電層242Aに含まれる成分、上記開口を形成する際に用いられる装置に使われている部材に含まれる成分、エッチングに使用するガスまたは液体に含まれる成分などに起因したものが挙げられる。当該不純物としては、例えば、ハフニウム、アルミニウム、シリコン、タンタル、フッ素、塩素などがある。
 特に、アルミニウム、シリコンなどの不純物は、酸化物230bの結晶性を低下させる場合がある。よって、酸化物230bの表面およびその近傍において、アルミニウム、シリコンなどの不純物は除去されることが好ましい。また、当該不純物の濃度は低減されていることが好ましい。例えば、酸化物230b表面およびその近傍における、アルミニウム原子の濃度が、5.0原子%以下とすればよく、2.0原子%以下が好ましく、1.5原子%以下がより好ましく、1.0原子%以下がさらに好ましく、0.3原子%未満がさらに好ましい。
 なお、アルミニウム、シリコンなどの不純物により、酸化物230bの結晶性が低い領域では、結晶構造の緻密さが低下しているため、VHが多量に形成され、トランジスタがノーマリーオン化しやすくなる。よって、酸化物230bの結晶性が低い領域は、低減または除去されていることが好ましい。
 これに対して、酸化物230bに層状のCAAC構造を有していることが好ましい。特に、酸化物230bのドレイン下端部までCAAC構造を有することが好ましい。ここで、トランジスタ200において、導電体242aまたは導電体242b、およびその近傍がドレインとして機能する。つまり、導電体242a(導電体242b)の下端部近傍の、酸化物230bが、CAAC構造を有することが好ましい。このように、ドレイン耐圧に顕著に影響するドレイン端部においても、酸化物230bの結晶性の低い領域が除去され、CAAC構造を有することで、トランジスタ200の電気特性の変動をさらに抑制することができる。また、トランジスタ200の信頼性を向上させることができる。
 上記エッチング工程で酸化物230b表面に付着した不純物などを除去するために、洗浄処理を行う。洗浄方法としては、洗浄液など用いたウェット洗浄(ウェットエッチング処理ということもできる)、プラズマを用いたプラズマ処理、熱処理による洗浄などがあり、上記洗浄を適宜組み合わせて行ってもよい。なお、当該洗浄処理によって、上記溝部が深くなる場合がある。
 ウェット洗浄としては、アンモニア水、シュウ酸、リン酸、フッ化水素酸などを炭酸水または純水で希釈した水溶液、純水、炭酸水などを用いて行ってもよい。または、これらの水溶液、純水、または炭酸水を用いた超音波洗浄を行ってもよい。または、これらの洗浄を適宜組み合わせて行ってもよい。
 なお、本明細書等では、フッ化水素酸を純水で希釈した水溶液を希釈フッ化水素酸と呼び、アンモニア水を純水で希釈した水溶液を希釈アンモニア水と呼ぶ場合がある。また、当該水溶液の濃度、温度などは、除去したい不純物、洗浄される半導体装置の構成などによって、適宜調整すればよい。希釈アンモニア水のアンモニア濃度は0.01%以上5%以下、好ましくは0.1%以上0.5%以下とすればよい。また、希釈フッ化水素酸のフッ化水素濃度は0.01ppm以上100ppm以下、好ましくは0.1ppm以上10ppm以下とすればよい。
 なお、超音波洗浄には、200kHz以上の周波数を用いることが好ましく、900kHz以上の周波数を用いることがより好ましい。当該周波数を用いることで、酸化物230bなどへのダメージを低減することができる。
 また、上記洗浄処理を複数回行ってもよく、洗浄処理毎に洗浄液を変更してもよい。例えば、第1の洗浄処理として希釈フッ化水素酸、または希釈アンモニア水を用いた処理を行い、第2の洗浄処理として純水、または炭酸水を用いた処理を行ってもよい。
 上記洗浄処理として、本実施の形態では、希釈アンモニア水を用いてウェット洗浄を行う。当該洗浄処理を行うことで、酸化物230a、酸化物230bなどの表面に付着または内部に拡散した不純物を除去することができる。さらに、酸化物230bの結晶性を高めることができる。
 上記エッチング後、または上記洗浄後に加熱処理を行ってもよい。加熱処理は、100℃以上450℃以下、好ましくは350℃以上400℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、加熱処理は酸素雰囲気で行うことが好ましい。これにより、酸化物230aおよび酸化物230bに酸素を供給して、酸素欠損の低減を図ることができる。また、このような熱処理を行うことで、酸化物230bの結晶性を向上させることができる。また、加熱処理は減圧状態で行ってもよい。または、酸素雰囲気で加熱処理した後に、大気に露出せずに連続して窒素雰囲気で加熱処理を行ってもよい。
 次に、絶縁膜253Aを成膜する(図14A乃至図14D参照)。絶縁膜253Aは、後の工程で絶縁体253となる絶縁膜である。絶縁膜253Aは、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて成膜することができる。絶縁膜253AはALD法を用いて成膜することが好ましい。上述の通り、絶縁膜253Aは薄い膜厚で成膜することが好ましく、膜厚のバラつきが小さくなるようにする必要がある。これに対して、ALD法は、プリカーサと、リアクタント(例えば酸化剤など)を交互に導入して行う成膜方法であり、このサイクルを繰り返す回数によって膜厚を調節することができるため、精密な膜厚調節が可能である。また、図14Bおよび図14Cに示すように、絶縁膜253Aは、開口258の底面および側面に、被覆性良く成膜される必要がある。開口258において、酸化物230の上面および側面に、被覆性良く成膜されることが好ましい。ALD法を用いることで、開口258の底面および側面において、原子の層を一層ずつ堆積させることができるため、絶縁膜253Aを当該開口に対して良好な被覆性で成膜できる。
 また、絶縁膜253AをALD法で成膜する場合、酸化剤として、オゾン(O)、酸素(O)、水(HO)などを用いることができる。水素を含まない、オゾン(O)、酸素(O)などを酸化剤として用いることで、酸化物230bに拡散する水素を低減できる。
 本実施の形態では、絶縁膜253Aとして酸化ハフニウムを熱ALD法によって成膜する。
 次に、酸素を含む雰囲気でマイクロ波処理を行うことが好ましい(図14A乃至図14D参照)。ここで、マイクロ波処理とは、例えばマイクロ波を用いて高密度プラズマを発生させる電源を有する装置を用いた処理のことを指す。また、本明細書などにおいて、マイクロ波とは、300MHz以上300GHz以下の周波数を有する電磁波を指すものとする。なお、絶縁膜253Aを積層構造とする場合、絶縁膜253Aの一部を成膜した段階で、マイクロ波処理を行ってもよい。例えば、絶縁膜253Aが酸化シリコン膜または酸化窒化シリコン膜を含む場合、酸化シリコン膜または酸化窒化シリコン膜を成膜した段階で当該マイクロ波処理を行ってもよい。
 図14B乃至図14Dに示す点線の矢印は、マイクロ波、RFなどの高周波、酸素プラズマ、または酸素ラジカルなどを示す。マイクロ波処理は、例えばマイクロ波を用いた高密度プラズマを発生させる電源を有する、マイクロ波処理装置を用いることが好ましい。ここで、マイクロ波処理装置の周波数は、300MHz以上300GHz以下、好ましくは2.4GHz以上2.5GHz以下、例えば、2.45GHzにすればよい。高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができる。また、マイクロ波処理装置のマイクロ波を印加する電源の電力は、1000W以上10000W以下、好ましくは2000W以上5000W以下にすればよい。また、マイクロ波処理装置は基板側にRFを印加する電源を有してもよい。また、基板側にRFを印加することで、高密度プラズマによって生成された酸素イオンを、効率よく酸化物230b中に導くことができる。
 また、上記マイクロ波処理は、減圧下で行うことが好ましく、圧力は、10Pa以上1000Pa以下、好ましくは300Pa以上700Pa以下にすればよい。また、処理温度は、750℃以下、好ましくは500℃以下、例えば250℃程度とすればよい。また、酸素プラズマ処理を行った後に、外気に曝すことなく、連続して熱処理を行ってもよい。例えば、100℃以上750℃以下、好ましくは300℃以上500℃以下にすればよい。
 また、例えば、上記マイクロ波処理は、酸素ガスとアルゴンガスを用いて行えばよい。ここで、酸素流量比(O/(O+Ar))は、0%より大きく、100%以下にすればよい。好ましくは、酸素流量比(O/(O+Ar))を、0%より大きく、50%以下にすればよい。より好ましくは、酸素流量比(O/(O+Ar))を、10%以上、40%以下にすればよい。さらに好ましくは、酸素流量比(O/(O+Ar))を、10%以上、30%以下にすればよい。このように、酸素を含む雰囲気でマイクロ波処理を行うことで、領域230bc中のキャリア濃度を低下させることができる。また、マイクロ波処理において、チャンバーに過剰な量の酸素が導入されないようにすることで、領域230baおよび領域230bbでキャリア濃度が過剰に低下するのを防ぐことができる。
 図14B乃至図14Dに示すように、酸素を含む雰囲気でマイクロ波処理を行うことで、マイクロ波、またはRF等の高周波を用いて酸素ガスをプラズマ化し、当該酸素プラズマを酸化物230bの導電体242aと導電体242bの間の領域に作用させることができる。このとき、マイクロ波、またはRF等の高周波を領域230bcに照射することもできる。つまり、図3Aに示す領域230bcに、マイクロ波、またはRF等の高周波、酸素プラズマなどを作用させることができる。プラズマ、マイクロ波などの作用により、領域230bcのVHを分断し、水素を領域230bcから除去することができる。つまり、領域230bcに含まれるVHを低減できる。よって、領域230bc中の酸素欠損、およびVHを低減し、キャリア濃度を低下させることができる。また、領域230bcで形成された酸素欠損に、上記酸素プラズマで発生した酸素ラジカルを供給することで、さらに、領域230bc中の酸素欠損を低減し、キャリア濃度を低下させることができる。
 一方、図3Aに示す領域230baおよび領域230bb上には、導電体242aおよび導電体242bが設けられている。ここで、導電体242は、酸素を含む雰囲気でマイクロ波処理を行う際、マイクロ波、RF等の高周波、酸素プラズマなどの作用に対する遮蔽膜として機能することが好ましい。このため、導電体242は、300MHz以上300GHz以下、例えば、2.4GHz以上2.5GHz以下の電磁波を遮蔽する機能を有することが好ましい。
 図14B乃至図14Dに示すように、導電体242aおよび導電体242bは、マイクロ波、またはRF等の高周波、酸素プラズマなどの作用を遮蔽するため、これらの作用は領域230baおよび領域230bbには及ばない。これにより、マイクロ波処理によって、領域230baおよび領域230bbで、VHの低減、および過剰な量の酸素供給が発生しないため、キャリア濃度の低下を防ぐことができる。
 また、導電体242aおよび導電体242bの側面に接して、酸素に対するバリア性を有する絶縁膜253Aが設けられている。これにより、マイクロ波処理によって、導電体242aおよび導電体242bの側面に酸化膜が形成されるのを抑制できる。
 また、絶縁膜253Aの膜質を向上させることができるため、トランジスタ200の信頼性が向上する。
 以上のようにして、酸化物半導体の領域230bcで選択的に酸素欠損、およびVHを除去して、領域230bcをi型または実質的にi型とすることができる。さらに、ソース領域またはドレイン領域として機能する領域230baおよび領域230bbに過剰な酸素が供給されるのを抑制し、導電性を維持することができる。これにより、トランジスタ200の電気特性の変動を抑制し、基板面内でトランジスタ200の電気特性がばらつくのを抑制できる。
 なお、マイクロ波処理では、マイクロ波と酸化物230b中の分子の電磁気的な相互作用により、酸化物230bに直接的に熱エネルギーを伝達する場合がある。この熱エネルギーにより、酸化物230bが加熱される場合がある。このような加熱処理をマイクロ波アニールと呼ぶ場合がある。マイクロ波処理を、酸素を含む雰囲気中で行うことで、酸素アニールと同等の効果が得られる場合がある。また、酸化物230bに水素が含まれる場合、この熱エネルギーが酸化物230b中の水素に伝わり、これにより活性化した水素が酸化物230bから放出されることが考えられる。
 なお、絶縁膜253Aの成膜後に行うマイクロ波処理は行わずに、絶縁膜253Aの成膜前にマイクロ波処理を行ってもよい。
 また、絶縁膜253Aの成膜後のマイクロ波処理後に減圧状態を保ったままで、加熱処理を行ってもよい。このような処理を行うことで、絶縁膜253A中、酸化物230b中、および酸化物230a中の水素を効率よく除去できる。また、水素の一部は、導電体242(導電体242a、および導電体242b)にゲッタリングされる場合がある。または、マイクロ波処理後に減圧状態を保ったままで、加熱処理を行うステップを複数回繰り返して行ってもよい。加熱処理を繰り返し行うことで、絶縁膜253A中、酸化物230b中、および酸化物230a中の水素をさらに効率よく除去できる。なお、加熱処理温度は、300℃以上500℃以下とすることが好ましい。また、上記マイクロ波処理、すなわちマイクロ波アニールが該加熱処理を兼ねてもよい。マイクロ波アニールにより、酸化物230bなどが十分加熱される場合、該加熱処理を行わなくてもよい。
 また、マイクロ波処理を行って絶縁膜253Aの膜質を改質することで、水素、水、不純物等の拡散を抑制できる。従って、導電体260となる導電膜の成膜などの後工程、または熱処理などの後処理により、絶縁体253を介して、水素、水、不純物等が、酸化物230b、酸化物230aなどへ拡散することを抑制できる。
 次に、絶縁体254となる絶縁膜を成膜する。当該絶縁膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いることができる。当該絶縁膜は、絶縁膜253Aと同様にALD法を用いて成膜することが好ましい。ALD法を用いることで、当該絶縁膜を薄い膜厚で被覆性良く成膜することができる。本実施の形態では、当該絶縁膜として窒化シリコンをPEALD法で成膜する。
 次に、導電体260aとなる導電膜、導電体260bとなる導電膜を順に成膜する。導電体260aとなる導電膜、及び導電体260bとなる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。本実施の形態では、ALD法を用いて、導電体260aとなる導電膜として窒化チタンを成膜し、CVD法を用いて導電体260bとなる導電膜としてタングステンを成膜する。
 次に、CMP処理によって、絶縁膜253A、絶縁体254となる絶縁膜、導電体260aとなる導電膜、及び導電体260bとなる導電膜を、絶縁体280が露出するまで研磨する。つまり、絶縁膜253A、絶縁体254となる絶縁膜、導電体260aとなる導電膜、及び導電体260bとなる導電膜の、開口258から露出した部分を除去する。これによって、開口258の中に、絶縁体253、絶縁体254、および導電体260(導電体260a、および導電体260b)を形成する(図15A乃至図15D参照)。
 これにより、絶縁体253は、酸化物230bに重畳する開口258の内壁および側面に接して設けられる。また、導電体260は、絶縁体253および絶縁体254を介して、開口258を埋め込むように配置される。このようにして、トランジスタ200が形成される。
 次に、上記の加熱処理と同様の条件で加熱処理を行ってもよい。本実施の形態では、窒素雰囲気にて400℃の温度で1時間の処理を行う。該加熱処理によって、絶縁体280中の水分濃度および水素濃度を低減させることができる。なお、上記加熱処理後、大気に曝すことなく連続して、絶縁体282の成膜を行ってもよい。
 次に、絶縁体253上、絶縁体254上、導電体260上、および絶縁体280上に、絶縁体282を形成する(図16A乃至図16D参照)。絶縁体282の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。絶縁体282の成膜は、スパッタリング法を用いて行うことが好ましい。成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁体282中の水素濃度を低減できる。
 本実施の形態では、絶縁体282として、酸素ガスを含む雰囲気でアルミニウムターゲットを用いて、パルスDCスパッタリング法で酸化アルミニウムを成膜する。パルスDCスパッタリング法を用いることで、膜厚分布をより均一にし、スパッタレート、および膜質を向上することができる。また、基板に印加するRF電力は1.86W/cm以下とする。好ましくは、0W/cm以上0.62W/cm以下とする。RF電力を小さくすることで、絶縁体280へ注入される酸素量を抑制できる。または、絶縁体282を2層の積層構造で成膜してもよい。このとき、絶縁体282の下層を、基板に印加するRF電力を0W/cmとして成膜し、絶縁体282の上層を、基板に印加するRF電力を0.62W/cmとして成膜する。
 また、スパッタリング法を用いて、酸素を含む雰囲気で絶縁体282の成膜を行うことで、成膜しながら、絶縁体280に酸素を添加できる。これにより、絶縁体280に過剰酸素を含ませることができる。このとき、基板加熱を行いながら、絶縁体282を成膜することが好ましい。
 次に、絶縁体282の一部、絶縁体280の一部、絶縁体275の一部を加工して、導電体242bに達する開口158を形成する(図17A乃至図17D参照)。開口158の形成は、リソグラフィー法を用いて行えばよい。なお、図17Aで開口158の形状は、上面視において四角形状にしているが、これに限られるものではない。例えば、当該開口が、上面視において、円形状、楕円などの略円形状、四角形などの多角形状、四角形等の多角形の角部を丸めた形状になっていてもよい。
 開口158のX方向の幅は、微細であることが好ましい。例えば、開口158のX方向の幅が、60nm以下、50nm以下、40nm以下、30nm以下、20nm以下、または10nm以下であって、1nm以上、または5nm以上であることが好ましい。このように、開口158を微細に加工するには、EUV光などの短波長の光、または電子ビームを用いたリソグラフィー法を用いることが好ましい。
 開口158はアスペクト比が大きいので、異方性エッチングを用いて、絶縁体282の一部、絶縁体280の一部、絶縁体275の一部を加工することが好ましい。特に、ドライエッチング法による加工は、微細加工に適しているので好ましい。また、当該加工は、それぞれ異なる条件で行ってもよい。
 次に、開口158、及び絶縁体282を覆って、導電膜156Aを成膜する(図18A乃至図18D参照)。導電膜156Aは、後の工程で導電体156となる導電膜である。導電膜156Aは、アスペクト比の大きい、開口158の側面および底面に接して形成されることが好ましい。このため、導電膜156Aは、ALD法またはCVD法などの被覆性の良い成膜方法を用いて成膜することが好ましい。例えば、ALD法を用いて窒化チタンまたは窒化タンタルを成膜すればよい。
 次に導電膜156Aを、リソグラフィー法を用いて加工し、導電体156を形成する(図19A乃至図19D参照)。これにより、導電体156の一部が、開口158上に形成され、絶縁体282の上面の一部に接する。
 また、導電膜156Aを、CMP法を用いて加工してもよい。この場合、開口158を充填剤で埋め込み、当該充填剤と導電膜156Aに、絶縁体282が露出するまでCMP処理を行えばよい。これにより、図5A及び図5Bと同様に、導電体156の最上部が、絶縁体282の上面と概略一致する形状にすることができる。充填剤は、導電体156の形成後に除去すればよい。
 次に、導電体156の上に絶縁膜153Aを成膜する(図20A乃至図20D参照)。絶縁膜153Aは、後の工程で絶縁体153となる絶縁膜である。絶縁膜153Aは、アスペクト比の大きい開口158の内側に設けられた導電体156に接して形成されることが好ましい。このため、絶縁膜153Aは、ALD法またはCVD法などの被覆性の良い成膜方法を用いて成膜することが好ましい。絶縁膜153Aは、上述のHigh−k材料を用いることができる。
 次に、導電体160aとなる導電膜160A、導電体160bとなる導電膜160Bを順に成膜する。(図20A乃至図20D参照)。導電膜160Aは、後の工程で導電体160aとなる導電膜であり、導電膜160Bは、後の工程で導電体160bとなる導電膜である。導電膜160Aは、アスペクト比の大きい開口158の内側に設けられた絶縁膜153Aに接して形成されることが好ましく、導電膜160Bは、開口158を埋め込むように形成されることが好ましい。このため、導電膜160A及び導電膜160Bは、ALD法またはCVD法などの被覆性の良い成膜方法を用いて成膜することが好ましい。例えば、ALD法を用いて、導電膜160Aとして窒化チタンを成膜し、CVD法を用いて導電膜160Bとしてタングステンを成膜すればよい。
 なお、CVD法を用いて導電膜160Bを成膜した場合、図20B乃至図20Dに示すように、導電膜160Bの上面の平均面粗さが大きくなることがある。この場合、CMP法を用いて、導電膜160Bを平坦化することが好ましい(図21A乃至図21D参照)。このとき、CMP処理を行う前に、導電膜160B上に酸化シリコン膜または酸化窒化シリコン膜を成膜し、当該酸化シリコン膜または酸化窒化シリコン膜を除去するまで、CMP処理を行ってもよい。
 次に、絶縁膜153A、導電膜160A、及び導電膜160Bを、リソグラフィー法を用いて加工し、絶縁体153、導電体160a、及び導電体160bを形成する(図22A乃至図22D参照)。このとき、絶縁体153、導電体160a、及び導電体160bが、導電体156の側端部を覆うように形成することが好ましい。このような構成にすることで、導電体160と導電体156を絶縁体153で分離させることができるので、導電体160と導電体156のショートを抑制することができる。
 また、図22A及び図22Dに示すように、導電体160を、A5−A6方向に延在して設けることが好ましい。また、この場合、導電体160とともに、絶縁体153も延在して設けることができる。
 なお、上記において、絶縁膜153Aも絶縁体153に加工する例を示したが、本発明はこれに限られるものではない。導電膜160A、及び導電膜160Bだけを加工し、絶縁膜153Aを残す構成にしてもよい。この場合、図5A及び図5Bに示したように、絶縁体153の一部が、導電体160から露出して設けられる。これにより、絶縁体153の加工を行わなくて済むので、記憶装置の作製工程を削減し、生産性向上を図ることができる。
 このようにして、導電体156、絶縁体153、及び導電体160の少なくとも一部が開口158内に形成された容量素子100を形成することができる。
 次に、絶縁体282、及び導電体160上に、絶縁体285を形成する(図23A乃至図23D参照)。絶縁体285の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。絶縁体285の成膜は、スパッタリング法を用いて行うことが好ましい。成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁体285中の水素濃度を低減できる。
 本実施の形態では、絶縁体285として、スパッタリング法によって酸化シリコンを成膜する。
 次に、絶縁体212、絶縁体214、絶縁体216、絶縁体222、絶縁体275、絶縁体280、絶縁体282、および絶縁体285に、導電体209に達する開口206を形成する(図23Aおよび図23B参照)。当該開口の形成は、リソグラフィー法を用いて行えばよい。なお、図23Aで当該開口の形状は、上面視において四角形状にしているが、これに限られるものではない。例えば、当該開口が、上面視において、円形状、楕円などの略円形状、四角形などの多角形状、四角形等の多角形の角部を丸めた形状になっていてもよい。
 開口206の形成は、例えば、異方性エッチングで導電体209の上面を露出させ、それから等方性エッチングを行って、絶縁体212、絶縁体214、絶縁体216、絶縁体222、絶縁体275、絶縁体280、絶縁体282、および絶縁体285の側面を、導電体242aの側面より後退させればよい。ここで、等方性エッチングでは、導電体242がエッチングされにくい条件を用いる。
 異方性エッチングと等方性エッチングとは、同一のエッチング装置で条件を変えることにより、大気に曝すことなく連続して行うことが好ましい。例えば、異方性エッチングと等方性エッチングの両方にドライエッチング法を用いる場合には、電源電力、バイアス電力、エッチングガスの流量、エッチングガス種、または圧力などの条件のうち、1つ以上を変更することによって異方性エッチングから等方性エッチングに切り替えることができる。
 または、異方性エッチングと等方性エッチングとで、異なるエッチング方法を用いてもよい。例えば、異方性エッチングにドライエッチング法を用い、等方性エッチングにウェットエッチング法を用いることができる。
 次に、導電体240aとなる導電膜、導電体240bとなる導電膜を順に成膜する。これら導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。
 導電体240aとなる導電膜は、水、水素など不純物の透過を抑制する機能を有することが好ましい。導電体240aのとなる導電膜の成膜は、例えば、ALD法などの被覆性の良好な成膜方法を用いることが好ましい。導電体240aとなる導電膜として、例えば、窒化タンタル、窒化チタンなどを用いることができる。
 また、導電体240bのとなる導電膜の成膜は、例えば、CVD法などの埋め込み性の良好な成膜方法を用いることが好ましい。導電体240bとなる導電膜として、例えば、タングステン、モリブデン、銅などを用いることができる。
 次に、CMP処理を行うことで、導電体240aとなる導電膜の一部、及び導電体240bとなる導電膜の一部を除去し、絶縁体285の上面を露出する。その結果、開口206のみに、これら導電膜が残存することで上面が平坦な導電体240(導電体240a及び導電体240b)を形成することができる(図1A乃至図1D参照)。なお、当該CMP処理により、絶縁体285の上面の一部が除去される場合がある。
 以上により、図1A乃至図1Dに示すトランジスタ200及び容量素子100を有する半導体装置を作製できる。図8A乃至図23Dに示すように、本実施の形態に示す半導体装置の作製方法を用いることで、容量素子100とトランジスタ200を有する半導体装置の作製工程を低減できる。
 なお、絶縁体224、酸化物230a、酸化物230b、導電層242A、及び導電層242Bの形成方法は、上記に限られない。絶縁体224、酸化物230a、酸化物230b、導電層242A、及び導電層242Bの別の形成方法について、以下に説明する。
 絶縁膜224Af、酸化膜230Af、及び酸化膜230Bfを成膜するまでの工程は、上記と同じである。
 次に、リソグラフィー法を用いて、絶縁膜224Af、酸化膜230Af、及び酸化膜230Bfを島状に加工して、絶縁体224、酸化物230a、及び酸化物230bを形成する(図24A乃至図24D参照)。ここで、絶縁体224、酸化物230a、及び酸化物230bは、少なくとも一部が導電体205と重なるように形成する。上記加工はドライエッチング法またはウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。また、絶縁膜224Af、酸化膜230Af、及び酸化膜230Bfの加工は、それぞれ異なる条件で行ってもよい。
 次に、絶縁体222上及び酸化物230b上に、導電膜242Af、導電膜242Bfを順に成膜する(図25A乃至図25D参照)。導電膜242Af及び導電膜242Bfの成膜方法については、図10A乃至図10Dに係る記載を参酌できる。
 次に、リソグラフィー法を用いて、導電膜242Af及び導電膜242Bfを加工して、島状の、導電層242A及び導電層242Bを形成する(図11A乃至図11D参照)。なお、導電膜242Af及び導電膜242Bfを島状に加工する際に、開口を形成してもよい。
 上記方法を用いることで、絶縁体224、酸化物230a、及び酸化物230bの加工と、導電層242A、及び導電層242Bの加工を、独立して行うことができる。
 以上が、絶縁体224、酸化物230a、酸化物230b、導電層242A、及び導電層242Bの別の形成方法についての説明である。
<マイクロ波処理装置>
 以下では、上記半導体装置の作製方法に用いることができる、マイクロ波処理装置について説明する。
 まずは、半導体装置などの製造時に不純物の混入が少ない製造装置の構成について図26乃至図29を用いて説明する。
 図26は、枚葉式マルチチャンバーの製造装置2700の上面図を模式的に示している。製造装置2700は、基板を収容するカセットポート2761と、基板のアライメントを行うアライメントポート2762と、を備える大気側基板供給室2701と、大気側基板供給室2701から、基板を搬送する大気側基板搬送室2702と、基板の搬入を行い、かつ室内の圧力を大気圧から減圧、または減圧から大気圧へ切り替えるロードロック室2703aと、基板の搬出を行い、かつ室内の圧力を減圧から大気圧、または大気圧から減圧へ切り替えるアンロードロック室2703bと、真空中の基板の搬送を行う搬送室2704と、チャンバー2706aと、チャンバー2706bと、チャンバー2706cと、チャンバー2706dと、を有する。
 また、大気側基板搬送室2702は、ロードロック室2703aおよびアンロードロック室2703bと接続され、ロードロック室2703aおよびアンロードロック室2703bは、搬送室2704と接続され、搬送室2704は、チャンバー2706a、チャンバー2706b、チャンバー2706cおよびチャンバー2706dと接続する。
 なお、各室の接続部にはゲートバルブGVが設けられており、大気側基板供給室2701と、大気側基板搬送室2702を除き、各室を独立して真空状態に保持することができる。また、大気側基板搬送室2702には搬送ロボット2763aが設けられており、搬送室2704には搬送ロボット2763bが設けられている。搬送ロボット2763aおよび搬送ロボット2763bによって、製造装置2700内で基板を搬送することができる。
 搬送室2704および各チャンバーの背圧(全圧)は、例えば、1×10−4Pa以下、好ましくは3×10−5Pa以下、さらに好ましくは1×10−5Pa以下とする。また、搬送室2704および各チャンバーの質量電荷比(m/z)が18である気体分子(原子)の分圧は、例えば、3×10−5Pa以下、好ましくは1×10−5Pa以下、さらに好ましくは3×10−6Pa以下とする。また、搬送室2704および各チャンバーのm/zが28である気体分子(原子)の分圧は、例えば、3×10−5Pa以下、好ましくは1×10−5Pa以下、さらに好ましくは3×10−6Pa以下とする。また、搬送室2704および各チャンバーのm/zが44である気体分子(原子)の分圧は、例えば、3×10−5Pa以下、好ましくは1×10−5Pa以下、さらに好ましくは3×10−6Pa以下とする。
 なお、搬送室2704および各チャンバー内の全圧および分圧は、電離真空計、質量分析計などを用いて測定することができる。
 また、搬送室2704および各チャンバーは、外部リークまたは内部リークが少ない構成とすることが望ましい。例えば、搬送室2704のリークレートは、1×10Pa/分以下、好ましくは5×10−1Pa/分以下とする。また、各チャンバーのリークレートは、1×10−1Pa/分以下、好ましくは5×10−2Pa/分以下とする。
 なお、リークレートに関しては、電離真空計、質量分析計などを用いて測定した全圧および分圧から導出すればよい。例えば、ターボ分子ポンプなどの真空ポンプで真空引きを開始してから10分経過後の全圧と、バルブを閉じてから10分経過後の全圧と、から導出するとよい。なお、上記真空引きを開始してから10分経過後の全圧は、当該全圧を複数回測定した場合の平均値とするとよい。
 リークレートは、外部リークおよび内部リークに依存する。外部リークは、微小な穴、シール不良などによって真空系外から気体が流入することである。内部リークは、真空系内のバルブなどの仕切りからの漏れまたは内部の部材からの放出ガスに起因する。リークレートを上述の数値以下とするために、外部リークおよび内部リークの両面から対策をとる必要がある。
 例えば、搬送室2704および各チャンバーの開閉部分はメタルガスケットでシールするとよい。メタルガスケットは、フッ化鉄、酸化アルミニウム、または酸化クロムによって被覆された金属を用いると好ましい。メタルガスケットはOリングと比べ密着性が高く、外部リークを低減できる。また、フッ化鉄、酸化アルミニウム、酸化クロムなどによって被覆された金属の不動態を用いることで、メタルガスケットから放出される不純物を含む放出ガスが抑制され、内部リークを低減することができる。
 また、製造装置2700を構成する部材として、不純物を含む放出ガスの少ないアルミニウム、クロム、チタン、ジルコニウム、ニッケルまたはバナジウムを用いる。また、前述の不純物を含む放出ガスの少ない金属を鉄、クロムおよびニッケルなどを含む合金に被覆して用いてもよい。鉄、クロムおよびニッケルなどを含む合金は、剛性があり、熱に強く、また加工に適している。ここで、表面積を小さくするために部材の表面凹凸を研磨などによって低減しておくと、放出ガスを低減できる。
 または、前述の製造装置2700の部材をフッ化鉄、酸化アルミニウム、酸化クロムなどで被覆してもよい。
 製造装置2700の部材は、極力金属のみで構成することが好ましく、例えば石英などで構成される覗き窓などを設置する場合も、放出ガスを抑制するために表面をフッ化鉄、酸化アルミニウム、酸化クロムなどで薄く被覆するとよい。
 搬送室2704および各チャンバーに存在する吸着物は、内壁などに吸着しているために搬送室2704および各チャンバーの圧力に影響しないが、搬送室2704および各チャンバーを排気した際のガス放出の原因となる。そのため、リークレートと排気速度に相関はないものの、排気能力の高いポンプを用いて、搬送室2704および各チャンバーに存在する吸着物をできる限り脱離し、あらかじめ排気しておくことは重要である。なお、吸着物の脱離を促すために、搬送室2704および各チャンバーをベーキングしてもよい。ベーキングすることで吸着物の脱離速度を10倍程度大きくすることができる。ベーキングは100℃以上450℃以下で行えばよい。このとき、不活性ガスを搬送室2704および各チャンバーに導入しながら吸着物の除去を行うと、排気するだけでは脱離しにくい水などの脱離速度をさらに大きくすることができる。なお、導入する不活性ガスをベーキングの温度と同程度に加熱することで、吸着物の脱離速度をさらに高めることができる。ここで不活性ガスとして貴ガスを用いると好ましい。
 または、加熱した貴ガスなどの不活性ガスまたは酸素などを導入することで搬送室2704および各チャンバー内の圧力を高め、一定時間経過後に再び搬送室2704および各チャンバーを排気する処理を行うと好ましい。加熱したガスの導入により搬送室2704および各チャンバー内の吸着物を脱離させることができ、搬送室2704および各チャンバー内に存在する不純物を低減することができる。なお、この処理は2回以上30回以下、好ましくは5回以上15回以下の範囲で繰り返し行うと効果的である。具体的には、温度が40℃以上400℃以下、好ましくは50℃以上200℃以下である不活性ガスまたは酸素などを導入することで搬送室2704および各チャンバー内の圧力を0.1Pa以上10kPa以下、好ましくは1Pa以上1kPa以下、さらに好ましくは5Pa以上100Pa以下とし、圧力を保つ期間を1分以上300分以下、好ましくは5分以上120分以下とすればよい。その後、搬送室2704および各チャンバーを5分以上300分以下、好ましくは10分以上120分以下の期間排気する。
 次に、チャンバー2706bおよびチャンバー2706cについて図27に示す断面模式図を用いて説明する。
 チャンバー2706bおよびチャンバー2706cは、例えば、被処理物にマイクロ波処理を行うことが可能なチャンバーである。なお、チャンバー2706bと、チャンバー2706cと、はマイクロ波処理を行う際の雰囲気が異なるのみである。そのほかの構成については共通するため、以下ではまとめて説明を行う。
 チャンバー2706bおよびチャンバー2706cは、スロットアンテナ板2808と、誘電体板2809と、基板ホルダ2812と、排気口2819と、を有する。また、チャンバー2706bおよびチャンバー2706cの外などには、ガス供給源2801と、バルブ2802と、高周波発生器2803と、導波管2804と、モード変換器2805と、ガス管2806と、導波管2807と、マッチングボックス2815と、高周波電源2816と、真空ポンプ2817と、バルブ2818と、が設けられる。
 高周波発生器2803は、導波管2804を介してモード変換器2805と接続している。モード変換器2805は、導波管2807を介してスロットアンテナ板2808に接続している。スロットアンテナ板2808は、誘電体板2809と接して配置される。また、ガス供給源2801は、バルブ2802を介してモード変換器2805に接続している。そして、モード変換器2805、導波管2807および誘電体板2809を通るガス管2806によって、チャンバー2706bおよびチャンバー2706cにガスが送られる。また、真空ポンプ2817は、バルブ2818および排気口2819を介して、チャンバー2706bおよびチャンバー2706cからガスなどを排気する機能を有する。また、高周波電源2816は、マッチングボックス2815を介して基板ホルダ2812に接続している。
 基板ホルダ2812は、基板2811を保持する機能を有する。例えば、基板2811を静電チャックまたは機械的にチャックする機能を有する。また、高周波電源2816から電力を供給される電極としての機能を有する。また、内部に加熱機構2813を有し、基板2811を加熱する機能を有する。
 真空ポンプ2817としては、例えば、ドライポンプ、メカニカルブースターポンプ、イオンポンプ、チタンサブリメーションポンプ、クライオポンプまたはターボ分子ポンプなどを用いることができる。また、真空ポンプ2817に加えて、クライオトラップを用いてもよい。クライオポンプおよびクライオトラップを用いると、水を効率よく排気できて特に好ましい。
 また、加熱機構2813としては、例えば、抵抗発熱体などを用いて加熱する加熱機構とすればよい。または、加熱されたガスなどの媒体からの熱伝導または熱輻射によって、加熱する加熱機構としてもよい。例えば、GRTA(Gas Rapid Thermal Annealing)またはLRTA(Lamp Rapid Thermal Annealing)などのRTA(Rapid Thermal Annealing)を用いることができる。GRTAは、高温のガスを用いて加熱処理を行う。ガスとしては、不活性ガスが用いられる。
 また、ガス供給源2801は、マスフローコントローラを介して、精製機と接続されていてもよい。ガスは、露点が−80℃以下、好ましくは−100℃以下であるガスを用いることが好ましい。例えば、酸素ガス、窒素ガス、および貴ガス(アルゴンガスなど)を用いればよい。
 誘電体板2809としては、例えば、酸化シリコン(石英)、酸化アルミニウム(アルミナ)または酸化イットリウム(イットリア)などを用いればよい。また、誘電体板2809の表面に、さらに別の保護層が形成されていてもよい。保護層としては、酸化マグネシウム、酸化チタン、酸化クロム、酸化ジルコニウム、酸化ハフニウム、酸化タンタル、酸化シリコン、酸化アルミニウムまたは酸化イットリウムなどを用いればよい。誘電体板2809は、後述する高密度プラズマ2810の特に高密度領域に曝されることになるため、保護層を設けることで損傷を緩和することができる。その結果、処理時のパーティクルの増加などを抑制することができる。
 高周波発生器2803では、例えば、0.3GHz以上3.0GHz以下、0.7GHz以上1.1GHz以下、または2.2GHz以上2.8GHz以下のマイクロ波を発生させる機能を有する。高周波発生器2803で発生させたマイクロ波は、導波管2804を介してモード変換器2805に伝わる。モード変換器2805では、TEモードとして伝わったマイクロ波がTEMモードに変換される。そして、マイクロ波は、導波管2807を介してスロットアンテナ板2808に伝わる。スロットアンテナ板2808は、複数のスロット孔が設けられており、マイクロ波は該スロット孔および誘電体板2809を通過する。そして、誘電体板2809の下方に電界を生じさせ、高密度プラズマ2810を生成することができる。高密度プラズマ2810には、ガス供給源2801から供給されたガス種に応じたイオンおよびラジカルが存在する。例えば、酸素ラジカルなどが存在する。
 このとき、高密度プラズマ2810で生成されたイオンおよびラジカルによって、基板2811上の膜などを改質することができる。なお、高周波電源2816を用いて、基板2811側にバイアスを印加すると好ましい場合がある。高周波電源2816には、例えば、13.56MHz、27.12MHzなどの周波数のRF(Radio Frequency)電源を用いればよい。基板側にバイアスを印加することで、高密度プラズマ2810中のイオンを基板2811上の膜などの開口部の奥まで効率よく到達させることができる。
 例えば、チャンバー2706bまたはチャンバー2706cで、ガス供給源2801から酸素を導入することで高密度プラズマ2810を用いた酸素ラジカル処理を行うことができる。
 次に、チャンバー2706aおよびチャンバー2706dについて図28に示す断面模式図を用いて説明する。
 チャンバー2706aおよびチャンバー2706dは、例えば、被処理物に電磁波の照射を行うことが可能なチャンバーである。なお、チャンバー2706aと、チャンバー2706dと、は電磁波の種類が異なるのみである。そのほかの構成については共通する部分が多いため、以下ではまとめて説明を行う。
 チャンバー2706aおよびチャンバー2706dは、一または複数のランプ2820と、基板ホルダ2825と、ガス導入口2823と、排気口2830と、を有する。また、チャンバー2706aおよびチャンバー2706dの外などには、ガス供給源2821と、バルブ2822と、真空ポンプ2828と、バルブ2829と、が設けられる。
 ガス供給源2821は、バルブ2822を介してガス導入口2823に接続している。真空ポンプ2828は、バルブ2829を介して排気口2830に接続している。ランプ2820は、基板ホルダ2825と向かい合って配置されている。基板ホルダ2825は、基板2824を保持する機能を有する。また、基板ホルダ2825は、内部に加熱機構2826を有し、基板2824を加熱する機能を有する。
 ランプ2820としては、例えば、可視光または紫外光などの電磁波を放射する機能を有する光源を用いればよい。例えば、波長10nm以上2500nm以下、500nm以上2000nm以下、または40nm以上340nm以下にピークを有する電磁波を放射する機能を有する光源を用いればよい。
 例えば、ランプ2820としては、ハロゲンランプ、メタルハライドランプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウムランプまたは高圧水銀ランプなどの光源を用いればよい。
 例えば、ランプ2820から放射される電磁波は、その一部または全部が基板2824に吸収されることで基板2824上の膜などを改質することができる。例えば、欠陥の生成もしくは低減、または不純物の除去などができる。なお、基板2824を加熱しながら行うと、効率よく、欠陥の生成もしくは低減、または不純物の除去などができる。
 または、例えば、ランプ2820から放射される電磁波によって、基板ホルダ2825を発熱させ、基板2824を加熱してもよい。その場合、基板ホルダ2825の内部に加熱機構2826を有さなくてもよい。
 真空ポンプ2828は、真空ポンプ2817についての記載を参照する。また、加熱機構2826は、加熱機構2813についての記載を参照する。また、ガス供給源2821は、ガス供給源2801についての記載を参照する。
 本実施の形態に用いることができるマイクロ波処理装置は、上記に限らない。図29に示すマイクロ波処理装置2900を用いることができる。マイクロ波処理装置2900は、石英管2901、排気口2819、ガス供給源2801、バルブ2802、高周波発生器2803、導波管2804、ガス管2806、真空ポンプ2817、およびバルブ2818を有する。また、マイクロ波処理装置2900は、石英管2901内に、複数の基板2811(2811_1乃至2811_n、nは2以上の整数)を保持する基板ホルダ2902を有する。また、マイクロ波処理装置2900は、石英管2901の外側に、加熱手段2903を有していてもよい。
 高周波発生器2803で発生させたマイクロ波は、導波管2804を介して、石英管2901内に設けられた基板に照射される。真空ポンプ2817は、バルブ2818を介して排気口2819と接続されており、石英管2901内部の圧力を調整することができる。また、ガス供給源2801は、バルブ2802を介して、ガス管2806に接続されており、石英管2901内に所望のガスを導入することができる。また、加熱手段2903により、石英管2901内の基板2811を、所望の温度に加熱することができる。または、加熱手段2903により、ガス供給源2801から供給されるガスを加熱してもよい。マイクロ波処理装置2900により、基板2811に対して、加熱処理と、マイクロ波処理を同時に行うことができる。また、基板2811を加熱した後に、マイクロ波処理を行うことができる。また、基板2811に対してマイクロ波処理を行った後に、加熱処理を行うことができる。
 基板2811_1乃至基板2811_nは、全て半導体装置、または記憶装置を形成する処理基板でもよいし、一部の基板をダミー基板としてもよい。例えば、基板2811_1、および基板2811_nをダミー基板とし、基板2811_2乃至基板2811_n−1を処理基板としてもよい。また、基板2811_1、基板2811_2、基板2811_n−1、および基板2811_nをダミー基板とし、基板2811_3乃至基板2811_n−2を処理基板としてもよい。ダミー基板を用いることで、マイクロ波処理、または加熱処理の際、複数の処理基板が均一に処理され、処理基板間のばらつきを低減できるため好ましい。例えば、高周波発生器2803、および導波管2804に最も近い処理基板上にダミー基板を配置することで、該処理基板が直接マイクロ波に曝されることを抑制できるため、好ましい。
 以上の製造装置を用いることで、被処理物への不純物の混入を抑制しつつ、膜の改質などが可能となる。
<半導体装置の変形例>
 以下では、図30A乃至図30Dを用いて、本発明の一態様である半導体装置の一例について説明する。
 図30Aは半導体装置の上面図を示す。また、図30Bは、図30Aに示すA1−A2の一点鎖線で示す部位に対応する断面図である。また、図30Cは、図30AにA3−A4の一点鎖線で示す部位に対応する断面図である。また、図30Dは、図30AにA5−A6の一点鎖線で示す部位に対応する断面図である。図30Aの上面図では、図の明瞭化のために一部の要素を省いている。
 なお、図30A乃至図30Dに示す半導体装置において、<半導体装置の構成例>に示した半導体装置を構成する構造と同機能を有する構造には、同符号を付記する。なお、本項目においても、半導体装置の構成材料については<半導体装置の構成例>で詳細に説明した材料を用いることができる。
 図30A乃至図30Dに示す半導体装置は、図1A乃至図1Dに示した半導体装置の変形例である。図30A乃至図30Dに示す半導体装置は、図1A乃至図1Dに示した半導体装置とは、絶縁体283、及び絶縁体221を有する点で異なる。
 絶縁体283は、絶縁体282と絶縁体285との間に設けられている。この場合、導電体156の一部、及び絶縁体153の一部が、絶縁体283の上面に接する。絶縁体283として、水素の拡散を抑制する機能を有する絶縁体を用いることが好ましい。これにより、絶縁体283の上方からトランジスタ200に水素が拡散するのを抑制できる。なお、絶縁体283としては、上述の絶縁体275に用いることができる絶縁体を用いればよい。例えば、絶縁体283としてスパッタリング法で成膜された窒化シリコンを用いればよい。絶縁体283をスパッタリング法で成膜することで、密度が高い窒化シリコン膜を形成することができる。また、絶縁体283として、スパッタリング法で成膜された窒化シリコンの上に、さらに、PEALD法またはCVD法で成膜された窒化シリコンを積層してもよい。
 絶縁体212と絶縁体283に挟まれた領域内で、絶縁体280に接して、水素などの不純物を捕獲する機能を有する絶縁体282を設けることで、絶縁体280などに含まれる水素などの不純物を捕獲し、当該領域内における、水素の量を一定値にすることができる。特に、絶縁体282として、アモルファス構造を有する酸化アルミニウムを用いることで、より効果的に水素を捕獲または固着できる場合があるため好ましい。これにより、良好な特性を有し、信頼性の高いトランジスタ200、および半導体装置を作製できる。
 図30A乃至図30Dに示すトランジスタ200では、絶縁体283を単層として設ける構成について示しているが、本発明はこれに限られるものではない。例えば、絶縁体283を2層以上の積層構造として設ける構成にしてもよい。
 例えば、絶縁体283を2層の積層構造にする場合、絶縁体283の下層として、スパッタリング法を用いて窒化シリコンを成膜し、絶縁体283の上層としてALD法を用いて窒化シリコンを成膜してもよい。成膜ガスに水素を含む分子を用いなくてもよいスパッタリング法を用いることで、絶縁体283の下層中の水素濃度を低減することができる。さらに、スパッタリング法で成膜した膜にピンホールまたは段切れなどが形成された場合、被覆性の良好なALD法で成膜した膜を用いて、ピンホールまたは段切れなどと重畳する部分を塞ぐことができる。
 なお、絶縁体283を2層の積層構造にする場合、絶縁体283の上層の上面の一部が除去される場合がある。また、絶縁体283の上層と下層の境界は明確に検出することが困難な場合がある。
 絶縁体221は、絶縁体216及び導電体205と絶縁体222との間に設けられている。絶縁体221として、水素の拡散を抑制する機能を有することが好ましい。これにより、絶縁体221の下方からトランジスタ200に水素が拡散するのを抑制できる。なお、絶縁体221は絶縁体212が有する機能を兼ねることができる。このような場合、絶縁体212を設けない構成にすることで、半導体装置の作製工程を簡略化し、生産性の向上を図ることができる。
 なお、絶縁体221としては、上述の絶縁体275に用いることができる絶縁体を用いればよい。例えば、絶縁体221としてALD法(特にPEALD法)で成膜された窒化シリコンを用いることが好ましい。絶縁体221の成膜にALD法を用いることで、絶縁体216と導電体205とで凹凸が形成されても、絶縁体221を被覆性良く成膜することができる。したがって、絶縁体221上に成膜される絶縁体222に、ピンホールまたは段切れなどが形成されるのを抑制できる。
 また、絶縁体222と絶縁体224との間に、水素の拡散を抑制する機能を有する絶縁体を設けてもよい。これにより、当該絶縁体の下方からトランジスタ200に水素が拡散するのを抑制できる。
 また、図30Bおよび図30Cに示すように、導電体205を、導電体205a、導電体205b、および導電体205cの3層積層構造にしてもよい。導電体205cは、導電体205bの上面に接して設けられる。導電体205cの側面が導電体205aに接する構成にしてもよい。また、導電体205cの上面と、導電体205aの最上部が一致または概略一致する構成にしてもよい。
 導電体205cは、導電体205aと同様に、水素の拡散を低減する機能を有する導電性材料を用いることが好ましい。これにより、導電体205bを導電体205aおよび導電体205cで包み込むことができるので、導電体205bに含まれる水素などの不純物が、絶縁体216および絶縁体224等を介して、酸化物230に拡散するのを防ぐことができる。また、導電体205aおよび導電体205cに、酸素の拡散を抑制する機能を有する導電性材料を用いることにより、導電体205bが酸化して導電率が低下することを抑制することができる。
 トランジスタ200などのOSトランジスタは、放射線照射による電気特性の変動が小さい、つまり放射線に対する耐性が高いため、放射線が入射しうる環境においても好適に用いることができる。例えば、OSトランジスタは、宇宙空間にて使用する場合に好適に用いることができる。具体的には、OSトランジスタを、スペースシャトル、人工衛星、宇宙探査機などに設けられる半導体装置を構成するトランジスタに用いることができる。放射線として、例えば、X線、及び中性子線などが挙げられる。また、宇宙空間とは、例えば、高度100km以上を指すが、本明細書に記載の宇宙空間は、熱圏、中間圏、及び成層圏を含んでもよい。
 または、例えば、OSトランジスタは、原子力発電所、および、放射性廃棄物の処理場または処分場の作業用ロボットに設けられる半導体装置を構成するトランジスタに用いることができる。特に、原子炉施設の解体、核燃料または燃料デブリの取り出し、放射性物質の多い空間の実地調査などを遠隔操作される遠隔操作ロボットに設けられる半導体装置を構成するトランジスタに好適に用いることができる。
 本発明の一態様により、新規のトランジスタを提供できる。または、微細化または高集積化が可能な半導体装置を提供できる。または、周波数特性が良好な半導体装置を提供できる。または、動作速度が速い半導体装置を提供できる。または、トランジスタ特性のばらつきが少ない半導体装置を提供できる。または、良好な電気特性を有する半導体装置を提供できる。または、信頼性が良好な半導体装置を提供できる。または、オン電流が大きい半導体装置を提供できる。または、電界効果移動度が大きい半導体装置を提供できる。または、低消費電力の半導体装置を提供できる。
 本実施の形態に示す、トランジスタ200及び容量素子100を有する半導体装置は、記憶装置のメモリセルとして用いることができる。トランジスタ200は、OSトランジスタである。トランジスタ200は、オフ電流が小さいため、これを記憶装置に用いることにより長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作を必要としない、または、リフレッシュ動作の頻度が極めて少ないため、記憶装置の消費電力を十分に低減できる。また、トランジスタ200の周波数特性が高いため、記憶装置の読み出し、および書き込みを高速に行うことができる。
 また、メモリセルとして用いることができる、トランジスタ200及び容量素子100を有する半導体装置をマトリクス状に配置することで、メモリセルアレイを構成することができる。メモリセルアレイの一例として、図31Aに、A1−A2方向に上記メモリセルを複数配置した例を示す。
 なお、図31Aでは、隣接する容量素子100aの導電体160と、容量素子100bの導電体160が分離されている構成について示しているが、本発明はこれに限られるものではない。例えば、図31Bに示すように、隣接する容量素子100aの導電体160と、容量素子100bの導電体160が一体になる構成にしてもよい。このとき、隣接する容量素子100aの絶縁体153と、容量素子100bの絶縁体153が一体になってもよい。
 また、上記メモリセルを平面のみでなく積層する構成としてもよい。図32に上記メモリセルを有する層を複数積層する構成の断面図を示す。このとき、記憶装置は、メモリセルを含む層を複数有し、メモリセルがトランジスタ200及び容量素子100を有し、複数の当該層が積層される構成を有する、といえる。または、記憶装置は、少なくとも2つのメモリセルを有する層を複数有し、複数の当該層が積層される構成を有する、といえる。ここで、トランジスタ200a及び容量素子100aを有するメモリセルを第1のメモリセルと呼び、トランジスタ200b及び容量素子100bを有するメモリセルを第2のメモリセルと呼ぶことがある。
 なお、図32では、メモリセルを有する層を複数積層する構成を示しているが、これに限られない。例えば、図31Aまたは図31Bに示すメモリセルアレイを含む層を複数積層してもよい。このとき、記憶装置は、メモリセルアレイを含む層を複数有し、メモリセルアレイには、トランジスタ200及び容量素子100を有するメモリセルが設けられ、複数の当該層は積層されている、といえる。
 図32に示すように、記憶装置が有する複数の層のそれぞれは開口206を有する。具体的には、記憶装置が有する複数の層のそれぞれは、第1のメモリセルと第2のメモリセルとの間に開口206を有する。より具体的には、記憶装置が有する複数の層のそれぞれは、トランジスタ200aとトランジスタ200bとの間に開口206を有する。また、複数の層のそれぞれが有する開口206は、重なる領域を有する。なお、複数の層のそれぞれが有する開口206は重なる領域を有するため、複数の層のそれぞれが有する開口206は、一括形成することができる。したがって、記憶装置の作製工程を簡略化し、生産性の向上を図ることができる。
 また、複数の層のそれぞれが有する開口206内に、導電体240が配置されている。このとき、導電体240は、複数の層のそれぞれが有するトランジスタ200a及びトランジスタ200bと電気的に接続している。なお、本実施の形態では、トランジスタ200a、トランジスタ200bとで、導電体242aを共有する構成にしている。よって、導電体240は、複数の層のそれぞれが有する導電体242aと電気的に接続している、といえる。複数の層それぞれにおいて、上述のように、導電体240と導電体242の接触面積を大きくすることで、接触抵抗を低減することができる。これにより、本発明に係る記憶装置の動作速度の向上、消費電力の低減を図ることができる。
 なお、図示してはいないが、上記複数の層の一番上の層において、導電体240の上に、絶縁体が設けられることが好ましい。当該絶縁体としては、例えば絶縁体285、絶縁体282等に用いることができる絶縁体を設ければよい。
 図32に示すように、複数のメモリセルを積層することにより、メモリセルアレイの占有面積を増やすことなく、セルを集積して配置することができる。つまり、3Dメモリセルアレイを構成することができる。
 メモリセルアレイを有する記憶装置については、後の実施の形態で詳細に説明する。
 以上、本実施の形態に示す構成、方法などは、少なくともその一部を、本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態2)
 本実施の形態では、上記実施の形態で説明した半導体装置をメモリセルとして用いた記憶装置の構成例について説明する。本実施の形態では、積層されたメモリセルを有する層の間に、メモリセルに保持したデータ電位を増幅して出力する機能を有する機能回路を有する層が設けられた、記憶装置の構成例について説明する。
[記憶装置の構成例]
 図33に、本発明の一態様に係る記憶装置300の構成例を示すブロック図を示す。図33に示す記憶装置300は、駆動回路21と、メモリアレイ20と、を有する。メモリアレイ20は、複数のメモリセル10および複数の機能回路51を有する機能層50を有する。
 図33では、メモリアレイ20がm行n列(mおよびnは2以上の整数。)のマトリクス状に配置された複数のメモリセル10を有する例を示している。また機能回路51は、一例としてビット線として機能する配線BLごとに設けられる。図33では、n本の配線BLに対応して設けられた複数の機能回路51を有する例を示している。
 図33では、1行1列目のメモリセル10をメモリセル10[1,1]と示し、m行n列目のメモリセル10をメモリセル10[m,n]と示している。また、本実施の形態などでは、任意の行を示す場合にi行と記す場合がある。また、任意の列を示す場合にj列と記す場合がある。よって、iは1以上m以下の整数であり、jは1以上n以下の整数である。また、本実施の形態などでは、i行j列目のメモリセル10をメモリセル10[i,j]と示している。なお、本実施の形態などにおいて、「i+α」(αは正または負の整数)と示す場合は、「i+α」は1を下回らず、mを超えない。同様に、「j+α」と示す場合は、「j+α」は1を下回らず、nを超えない。
 また、メモリアレイ20は、行方向に延在するm本の配線WLと、行方向に延在するm本の配線PLと、列方向に延在するn本の配線BLと、を備える。本実施の形態などでは、1本目(1行目)に設けられた配線WLを配線WL[1]と示し、m本目(m行目)に設けられた配線WLを配線WL[m]と示す。同様に、1本目(1行目)に設けられた配線PLを配線PL[1]と示し、m本目(m行目)に設けられた配線PLを配線PL[m]と示す。同様に、1本目(1列目)に設けられた配線BLを配線BL[1]と示し、n本目(n列目)に設けられた配線BLを配線BL[n]と示す。
 i行目に設けられた複数のメモリセル10は、i行目の配線WL(配線WL[i])とi行目の配線PL(配線PL[i])に電気的に接続される。j列目に設けられた複数のメモリセル10は、j列目の配線BL(配線BL[j])と電気的に接続される。
 メモリアレイ20は、DOSRAM(登録商標)(Dynamic Oxide Semiconductor Random Access Memory)を適用することができる。DOSRAMは、1T(トランジスタ)1C(容量)型のメモリセルを有するRAMであり、アクセストランジスタがOSトランジスタであるメモリのことをいう。OSトランジスタはオフ状態でソースとドレインとの間を流れる電流、つまりリーク電流が極めて小さい。DOSRAMは、アクセストランジスタをオフ(非導通状態)にすることで、容量素子(キャパシタ)に保持しているデータに応じた電荷を長時間保持することが可能である。そのためDOSRAMは、チャネル形成領域にシリコンを有するトランジスタ(以下、「Siトランジスタ」とも呼ぶ。)で構成されるDRAMと比較して、リフレッシュ動作の頻度を低減できる。その結果、低消費電力化を図ることができる。
 また、メモリセル10は、実施の形態1等で説明したようにOSトランジスタを積層して配置することで、メモリセル10を積層して設けることができる。例えば図33に示すメモリアレイ20では、複数のメモリアレイ20[1]乃至20[m]を積層して設けることができる。メモリアレイ20が有するメモリアレイ20[1]乃至20[m]は、駆動回路21が設けられる基板表面の垂直方向に配置することで、メモリセル10のメモリ密度の向上を図ることができる。またメモリアレイ20は、垂直方向に繰り返し同じ製造工程を用いて作製することができる。記憶装置300は、メモリアレイ20の製造コストの低減を図ることができる。
 配線BLは、データの書き込みおよび読み出しを行うためのビット線として機能する。配線WLは、スイッチとして機能するアクセストランジスタのオンまたはオフ(導通状態または非導通状態)を制御するためのワード線として機能する。配線PLは、容量素子に接続される定電位線としての機能の他、アクセストランジスタであるOSトランジスタのバックゲートにバックゲート電位を伝える機能を有する。なおバックゲート電位を伝える配線としては、配線CL(図示せず)が別途設けることができる。
 メモリアレイ20[1]乃至20[m]がそれぞれ有するメモリセル10は、配線BLを介して機能回路51に接続される。配線BLは、駆動回路21が設けられる基板表面の垂直方向に配置することができる。メモリアレイ20[1]乃至20[m]が有するメモリセル10から延びて設けられる配線BLを基板表面の垂直方向に設けることで、メモリアレイ20と機能回路51との間の配線の長さを短くできる。そのため、ビット線に接続される2つの回路の間の信号伝搬距離を短くでき、ビット線の抵抗および寄生容量が大幅に削減されるため、消費電力および信号遅延の低減が実現できる。またメモリセル10が有する容量素子の容量を小さくしても動作させることが可能となる。
 機能回路51は、メモリセル10に保持したデータ電位を増幅し、後述する配線GBL(図示せず)を介して駆動回路21が有するセンスアンプ46に出力する機能を有する。当該構成にすることで、データ読み出し時に配線BLのわずかな電位差を増幅することができる。配線GBLは、配線BLと同様に駆動回路21が設けられる基板表面の垂直方向に配置することができる。メモリアレイ20[1]乃至20[m]が有するメモリセル10から延びて設けられる配線BLおよび配線GBLを基板表面の垂直方向に設けることで、機能回路51とセンスアンプ46との間の配線の長さを短くできる。そのため、配線GBLに接続される2つの回路の間の信号伝搬距離を短くでき、配線GBLの抵抗および寄生容量が大幅に削減されるため、消費電力および信号遅延の低減が実現できる。
 なお配線BLは、メモリセル10が有するトランジスタの半導体層に接して設けられる。あるいは配線BLは、メモリセル10が有するトランジスタの半導体層のソースまたはドレインとして機能する領域に接して設けられる。あるいは配線BLは、メモリセル10が有するトランジスタの半導体層のソースまたはドレインとして機能する領域と接して設けられる導電体に接して設けられる。つまり配線BLは、メモリアレイ20の各層におけるメモリセル10が有するトランジスタのソースまたはドレインの一方のそれぞれと、機能回路51と、を垂直方向で電気的に接続するための配線であるといえる。
 メモリアレイ20は、駆動回路21上に重ねて設けることができる。駆動回路21とメモリアレイ20を重ねて設けることで、駆動回路21とメモリアレイ20の間の信号伝搬距離を短くすることができる。よって、駆動回路21とメモリアレイ20の間の抵抗および寄生容量が低減され、消費電力および信号遅延の低減が実現できる。また、記憶装置300の小型化が実現できる。
 機能回路51は、DOSRAMのメモリセル10が有するトランジスタと同様にOSトランジスタで構成することで、メモリアレイ20[1]乃至20[m]と同様にしてSiトランジスタを用いた回路上などに自由に配置可能であるため、集積化を容易に行うことができる。機能回路51で信号を増幅する構成とすることで後段の回路であるセンスアンプ46等の回路を小型化できるため、記憶装置300の小型化を図ることができる。
 駆動回路21は、PSW22(パワースイッチ)、PSW23、および周辺回路31を有する。周辺回路31は、周辺回路41、コントロール回路32(Control Circuit)、および電圧生成回路33を有する。
 記憶装置300において、各回路、各信号および各電圧は、必要に応じて、適宜取捨することができる。あるいは、他の回路または他の信号を追加してもよい。信号BW、信号CE、信号GW、信号CLK、信号WAKE、信号ADDR、信号WDA、信号PON1、信号PON2は外部からの入力信号であり、信号RDAは外部への出力信号である。信号CLKはクロック信号である。
 また、信号BW、信号CE、および信号GWは制御信号である。信号CEはチップイネーブル信号であり、信号GWはグローバル書き込みイネーブル信号であり、信号BWはバイト書き込みイネーブル信号である。信号ADDRはアドレス信号である。信号WDAは書き込みデータであり、信号RDAは読み出しデータである。信号PON1、信号PON2は、パワーゲーティング制御用信号である。なお、信号PON1、信号PON2は、コントロール回路32で生成してもよい。
 コントロール回路32は、記憶装置300の動作全般を制御する機能を有するロジック回路である。例えば、コントロール回路は、信号CE、信号GWおよび信号BWを論理演算して、記憶装置300の動作モード(例えば、書き込み動作、読み出し動作)を決定する。または、コントロール回路32は、この動作モードが実行されるように、周辺回路41の制御信号を生成する。
 電圧生成回路33は負電圧を生成する機能を有する。信号WAKEは、信号CLKの電圧生成回路33への入力を制御する機能を有する。例えば、信号WAKEにHレベルの信号が与えられると、信号CLKが電圧生成回路33へ入力され、電圧生成回路33は負電圧を生成する。
 周辺回路41は、メモリセル10に対するデータの書き込みおよび読み出しをするための回路である。また周辺回路41は、機能回路51を制御するための各種信号を出力する回路である。周辺回路41は、行デコーダ42(Row Decoder)、列デコーダ44(Column Decoder)、行ドライバ43(Row Driver)、列ドライバ45(Column Driver)、入力回路47(Input Cir.)、出力回路48(Output Cir.)、センスアンプ46(Sense Amplifier)を有する。
 行デコーダ42および列デコーダ44は、信号ADDRをデコードする機能を有する。行デコーダ42は、アクセスする行を指定するための回路であり、列デコーダ44は、アクセスする列を指定するための回路である。行ドライバ43は、行デコーダ42が指定する配線WLを選択する機能を有する。列ドライバ45は、データをメモリセル10に書き込む機能、メモリセル10からデータを読み出す機能、読み出したデータを保持する機能等を有する。
 入力回路47は、信号WDAを保持する機能を有する。入力回路47が保持するデータは、列ドライバ45に出力される。入力回路47の出力データが、メモリセル10に書き込むデータ(Din)である。列ドライバ45がメモリセル10から読み出したデータ(Dout)は、出力回路48に出力される。出力回路48は、Doutを保持する機能を有する。また、出力回路48は、Doutを記憶装置300の外部に出力する機能を有する。出力回路48から出力されるデータが信号RDAである。
 PSW22は周辺回路31へのVDDの供給を制御する機能を有する。PSW23は、行ドライバ43へのVHMの供給を制御する機能を有する。ここでは、記憶装置300の高電源電圧がVDDであり、低電源電圧はGND(接地電位)である。また、VHMは、ワード線を高レベルにするために用いられる高電源電圧であり、VDDよりも高い。信号PON1によってPSW22のオン・オフが制御され、信号PON2によってPSW23のオン・オフが制御される。図33では、周辺回路31において、VDDが供給される電源ドメインの数を1としているが、複数にすることもできる。この場合、各電源ドメインに対してパワースイッチを設ければよい。
 メモリアレイ20[1]乃至20[m](mは2以上の整数)および機能層50を有するメモリアレイ20は、駆動回路21上に複数層のメモリアレイ20を重ねて設けることができる。複数層のメモリアレイ20を重ねて設けることで、メモリセル10のメモリ密度を高めることができる。図34Aに、駆動回路21上に5層(m=5)のメモリアレイ20[1]乃至20[5]および機能層50を重ねて設けられる様子を示す記憶装置300の斜視図を示している。
 図34Aでは、1層目に設けられたメモリアレイ20をメモリアレイ20[1]と示し、2層目に設けられたメモリアレイ20をメモリアレイ20[2]と示し、5層目に設けられたメモリアレイ20をメモリアレイ20[5]と示している。また図34Aにおいて、X方向に延びて設けられる配線WL、配線PLおよび配線CLと、Z方向(駆動回路が設けられる基板表面に垂直な方向)に延びて設けられる配線BLと、を図示している。なお、図面を見やすくするため、メモリアレイ20それぞれが有する配線WLおよび配線PLの記載を一部省略している。
 図34Bに、図34Aで図示した配線BLに接続された機能回路51、および配線BLに接続されたメモリアレイ20[1]乃至20[5]が有するメモリセル10の構成例を説明する模式図を示す。また図34Bでは、機能回路51と駆動回路21との間に設けられる配線GBLを図示している。なお、1つの配線BLに複数のメモリセル(メモリセル10)が電気的に接続される構成を「メモリストリング」ともいう。なお図面において、配線GBLは、視認性を高めるため、太線で図示する場合がある。
 図34Bでは、配線BLに接続されるメモリセル10の回路構成の一例を図示している。メモリセル10は、トランジスタ11および容量素子12を有する。トランジスタ11、容量素子12、および各配線(BL、およびWLなど)についても、例えば配線BL[1]および配線WL[1]を配線BLおよび配線WLなどのようにいう場合がある。
 メモリセル10において、トランジスタ11のソースまたはドレインの一方は配線BLに接続される。トランジスタ11のソースまたはドレインの他方は容量素子12の一方の電極に接続される。容量素子12の他方の電極は、配線PLに接続される。トランジスタ11のゲートは配線WLに接続される。トランジスタ11のバックゲートは配線CLに接続される。
 配線PLは、容量素子12の電位を保持するための定電位を与える配線である。配線CLは、トランジスタ11のしきい値電圧を制御するための定電位である。配線PLと配線CLは、同じ電位でもよい。この場合、2つの配線を接続することで、メモリセル10に接続される配線数を削減することができる。
 図34Bに図示する配線GBLは、駆動回路21と機能層50との間を電気的に接続するように設けられる。図35Aでは、機能回路51、およびメモリアレイ20[1]乃至20[m]を繰り返し単位70とする記憶装置300の模式図を図示している。なお図35Aでは、配線GBLを1本図示しているが、配線GBLは機能層50に設けられる機能回路51の数に応じて適宜設ければよい。
 なお配線GBLは、機能回路51が有するトランジスタの半導体層に接して設けられる。あるいは配線GBLは、機能回路51が有するトランジスタの半導体層のソースまたはドレインとして機能する領域に接して設けられる。あるいは配線GBLは、機能回路51が有するトランジスタの半導体層のソースまたはドレインとして機能する領域と接して設けられる導電体に接して設けられる。つまり配線GBLは、機能層50における機能回路51が有するトランジスタのソースまたはドレインの一方と、駆動回路21と、を垂直方向で電気的に接続するための配線であるといえる。
 また機能回路51、およびメモリアレイ20[1]乃至20[m]を有する繰り返し単位70は、さらに積層する構成としてもよい。本発明の一態様の記憶装置300Aは、図35Bに図示するように繰り返し単位70[1]乃至70[p](pは2以上の整数)とすることができる。配線GBLは繰り返し単位70が有する機能層50に接続される。配線GBLは、機能回路51の数に応じて適宜設ければよい。
 本発明の一形態では、OSトランジスタは積層して設けるとともに、ビット線として機能する配線を、駆動回路21が設けられる基板表面の垂直方向に配置する。メモリアレイ20から延びて設けられるビット線として機能する配線を基板表面の垂直方向に設けることで、メモリアレイ20と駆動回路21との間の配線の長さを短くできる。そのため、ビット線の寄生容量を大幅に削減できる。
 また本発明の一形態は、メモリアレイ20が設けられる層において、メモリセル10に保持したデータ電位を増幅して出力する機能を有する機能回路51を有する機能層50を備えている。当該構成にすることで、データ読み出し時にビット線として機能する配線BLのわずかな電位差を増幅して、駆動回路21が有するセンスアンプ46を駆動することができる。センスアンプ等の回路を小型化できるため、記憶装置300の小型化を図ることができる。またメモリセル10が有する容量素子12の容量を小さくしても動作させることが可能となる。
[メモリアレイ20および機能回路51の構成例]
 図36を用いて、図33乃至図35で説明した機能回路51の構成例、およびメモリアレイ20および駆動回路21が有するセンスアンプ46の構成例、について説明する。図36では、異なる配線BL(BL_A、BL_B)に接続されたメモリセル10(10_A、10_B)に接続された機能回路51(51_A、51_B)に接続される配線GBL(GBL_A、GBL_B)に接続された駆動回路21を図示している。図36に図示する駆動回路21として、センスアンプ46の他、プリチャージ回路71_A、プリチャージ回路71_B、スイッチ回路72_A、スイッチ回路72_Bおよび書き込み読み出し回路73を図示している。
 機能回路51_A、51_Bとして、トランジスタ52_a、52_b、53_a、53_b、54_a、54_b、55_a、55_bを図示している。図36に図示するトランジスタ52_a、52_b、53_a、53_b、54_a、54_b、55_a、55_bは、メモリセル10が有するトランジスタ11と同様にOSトランジスタである。機能回路51を有する機能層50は、メモリアレイ20[1]乃至20[m]と同様に積層して設けることができる。
 配線BL_AおよびBL_Bは、トランジスタ52_a、52_bのゲートに接続される。配線GBL_AおよびGBL_Bは、トランジスタ53_a、53_b、54_a、54_bのソースまたはドレインの一方が接続される。配線GBL_AおよびGBL_Bは、配線BL_AおよびBL_Bと同様に垂直方向に設けられ、駆動回路21が有するトランジスタに接続される。トランジスタ53_a、53_b、54_a、54_b、55_a、55_bのゲートには、図36に図示するように、制御信号WE、RE、MUXが与えられる。
 図36に示すセンスアンプ46、プリチャージ回路71_A、およびプリチャージ回路71_Bを構成するトランジスタ81_1乃至81_6、および82_1乃至82_4は、Siトランジスタで構成される。スイッチ回路72_Aおよびスイッチ回路72_Bを構成するスイッチ83_A乃至83_DもSiトランジスタで構成することができる。トランジスタ53_a、53_b、54_a、54_bのソースまたはドレインの一方は、プリチャージ回路71_A、プリチャージ回路71_B、センスアンプ46、スイッチ回路72_Aを構成するトランジスタまたはスイッチに接続される。
 プリチャージ回路71_Aは、nチャネル型のトランジスタ81_1乃至81_3を有する。プリチャージ回路71_Aは、プリチャージ線PCL1に与えられるプリチャージ信号に応じて、配線BL_AおよびBL_BをVDDとVSSの間の電位VDD/2に相当する中間電位VPCにプリチャージするための回路である。
 プリチャージ回路71_Bは、nチャネル型のトランジスタ81_4乃至81_6を有する。プリチャージ回路71_Bは、プリチャージ線PCL2に与えられるプリチャージ信号に応じて、配線GBL_Aおよび配線GBL_BをVDDとVSSの間の電位VDD/2に相当する中間電位VPCにプリチャージするための回路である。
 センスアンプ46は、配線VHHまたは配線VLLに接続された、pチャネル型のトランジスタ82_1、82_2およびnチャネル型のトランジスタ82_3、82_4を有する。配線VHHまたは配線VLLは、VDDまたはVSSを与える機能を有する配線である。トランジスタ82_1乃至82_4は、インバータループを構成するトランジスタである。メモリセル10_A、10_Bを選択することでプリチャージされた配線BL_Aおよび配線BL_Bの電位が変化し、当該変化に応じて配線GBL_Aおよび配線GBL_Bの電位を高電源電位VDDまたは低電源電位VSSとする。配線GBL_Aおよび配線GBL_Bの電位は、スイッチ83_Cおよびスイッチ83_D、および書き込み読み出し回路73を介して外部に出力することができる。配線BL_Aおよび配線BL_B、ならびに配線GBL_Aおよび配線GBL_Bは、ビット線対に相当する。書き込み読み出し回路73は、信号EN_dataに応じて、データ信号の書き込みが制御される。
 スイッチ回路72_Aは、センスアンプ46と配線GBL_Aおよび配線GBL_Bとの間の導通状態を制御するための回路である。スイッチ回路72_Aは、切り替え信号CSEL1の制御によってオンまたはオフが切り替えられる。スイッチ83_Aおよび83_Bが、nチャネルトランジスタの場合、切り替え信号CSEL1がハイレベルでオン、ローレベルでオフとなる。スイッチ回路72_Bは、書き込み読み出し回路73と、センスアンプ46に接続されるビット線対との間の導通状態を制御するための回路である。スイッチ回路72_Bは、切り替え信号CSEL2の制御によってオンまたはオフが切り替えられる。スイッチ83_Cおよび83_Dは、スイッチ83_Aおよび83_Bと同様にすればよい。
 図36に図示するように記憶装置300は、メモリセル10と、機能回路51と、センスアンプ46と、を最短距離である垂直方向に設けられる配線BLおよび配線GBLを介して接続する構成とすることができる。機能回路51を構成するトランジスタを有する機能層50が増えるものの、配線BLの負荷が低減されることで、書き込み時間の短縮、おおびデータを読み出しやすくすること、ができる。
 また図36に図示するように機能回路51_A、51_Bが有する各トランジスタは、制御信号WE、RE、および選択信号MUXに応じて制御される。各トランジスタは、制御信号および選択信号に応じて、配線GBLを介して配線BLの電位を駆動回路21に出力することができる。機能回路51_A、51_Bは、OSトランジスタで構成されるセンスアンプとして機能させることができる。当該構成にすることで、読み出し時に配線BLのわずかな電位差を増幅して、Siトランジスタを用いたセンスアンプ46を駆動することができる。
[メモリセル20、機能回路51およびセンスアンプ46の動作例]
 図37では、図36に示す回路図の動作を説明するためのタイミングチャートを示す。図37に示すタイミングチャートにおいて、期間T11は書き込みの動作、期間T12は配線BLのプリチャージ動作、期間T13は配線GBLのプリチャージ動作、期間T14はチャージシェアリングの動作、期間T15は読み出し待機の動作、期間T16は読み出しの動作、を説明する期間に対応する。
 期間T11は、データ信号を書き込みたいメモリセル10が有するトランジスタ11のゲートに接続された配線WLの電位をハイレベルとする。このとき、制御信号WEおよび信号EN_dataをハイレベルとし、データ信号を配線GBLおよび配線BLを介してメモリセルに書き込む。
 期間T12は、配線BLをプリチャージするため、制御信号WEをハイレベルとした状態で、プリチャージ線PCL1をハイレベルとする。配線BLは、プリチャージ電位にプリチャージされる。期間T12において、センスアンプ46に電源電圧を供給する配線VHHまたは配線VLLは、共にVDD/2として貫通電流による消費電力を抑制することが好ましい。
 期間T13は、配線GBLをプリチャージするため、プリチャージ線PCL2をハイレベルとする。配線GBLは、プリチャージ電位にプリチャージされる。期間T13において、配線VHHおよび配線VLLの電位は、共にVDDとすることで、負荷の大きい配線GBLを短時間でプリチャージすることができる。
 期間T14は、メモリセル10に保持された電荷および配線BLにプリチャージされた電荷を平衡化するためのチャージシェアリングのため、配線WLの電位をハイレベルとする。期間T14において、センスアンプ46に電源電圧を供給する配線VHHまたは配線VLLの電位は、共にVDD/2として貫通電流による消費電力を抑制することが好ましい。
 期間T15は、制御信号REおよび制御信号MUXをハイレベルとする。配線BLの電位に応じて、トランジスタ52に電流が流れ、当該電流量に応じて配線GBLの電位が変動する。切り替え信号CSEL1をローレベルとして、配線GBLの電位の変動がセンスアンプ46の影響を受けないようにする。配線VHHまたは配線VLLは、期間T14と同様である。
 期間T16は、切り替え信号CSEL1をハイレベルとして、配線GBLの電位の変動をセンスアンプ46に接続されたビット線対で増幅することでメモリセルに書き込まれたデータ信号を読み出す。
[機能回路の構成例]
 次いで機能層50が有するOSトランジスタで構成されるセンスアンプとして機能する機能回路51の具体的な構成例について、図38A、図38Bおよび図39A、図39Bを参照して説明する。
 図38Aには、図36で示す機能回路51_Aまたは51_Bに相当する、機能回路51Aを示す。図38Aに示す機能回路51Aは、トランジスタ52乃至55を有する。トランジスタ52乃至55はそれぞれOSトランジスタで構成することができ、nチャネル型のトランジスタとして図示している。
 トランジスタ52は、メモリセル10からデータ信号を読み出す期間において、配線BLの電位に応じた電位に配線GBLを増幅するための、ソースフォロワを構成するトランジスタである。トランジスタ53は、選択信号MUXがゲートに入力され、当該選択信号MUXに応じて、ソースとドレインとの間のオンまたはオフが制御されるスイッチとして機能するトランジスタである。トランジスタ54は、書き込み制御信号WEがゲートに入力され、当該書き込み制御信号WEに応じて、ソースとドレインとの間のオンまたはオフが制御されるスイッチとして機能するトランジスタである。トランジスタ55は、読み出し制御信号REがゲートに入力され、当該読み出し制御信号REに応じて、ソースとドレインとの間のオンまたはオフが制御されるスイッチとして機能するトランジスタである。なおトランジスタ55のソース側は、一例として、固定電位であるグラウンド電位GNDが与えられる。
 なお図38Aに示す機能回路51Aの構成は、図38Bおよび図39A、図39Bに示す変形例を適用可能である。図38Bの機能回路51Bでは、トランジスタ54のソースまたはドレインの一方の接続を、配線GBLからトランジスタ52のソースまたはドレインの一方に切り替えた構成である。図39Aの機能回路51Cでは、トランジスタ53の機能を駆動回路21で行うことで、トランジスタ53を省略した構成に相当する。図39Bの機能回路51Dでは、トランジスタ55を省略した構成に相当する。
 本発明の一形態の半導体装置は、メモリアレイ20に設けられるトランジスタとして、オフ電流が極めて低いOSトランジスを用いる。OSトランジスタは、Siトランジスタが設けられる駆動回路21が設けられる基板上に積層して設けることができる。そのため、垂直方向に繰り返し同じ製造工程を用いて作製することができ、製造コストの低減を図ることができる。また本発明の一形態は、メモリセル10を構成するトランジスタを平面方向でなく、垂直方向に配置してメモリ密度の向上を図ることができ、記憶装置の小型化を図ることができる。
 加えて本発明の一形態は、機能回路51を有する機能層50を備えている。機能回路は、配線BLをトランジスタ52のゲートに接続するため、トランジスタ52を増幅器として機能させることができる。当該構成にすることで、読み出し時に配線BLのわずかな電位差を増幅して、Siトランジスタを用いたセンスアンプ46を駆動することができる。Siトランジスタを用いたセンスアンプ46等の回路を小型化できるため、記憶装置の小型化を図ることができる。またメモリセル10が有する容量素子12の容量を小さくしても動作させることが可能となる。
[メモリセルアレイの配置例]
 図40Aは、上記説明したメモリセル10における各配線および半導体層の配置例を説明するためのレイアウト図である。図40Aにおいて、X方向に延びて設けられる配線WLおよび配線PLと、半導体層11aおよび半導体層11bと、導電層13と、導電層14aおよび導電層14bと、導電層15aおよび導電層15bと、Z方向に延びて設けられる配線BLと、を図示している。図40Aに示す半導体層11aおよび半導体層11bのそれぞれは、1本の配線WLと交差するように設けられ、導電層14aおよび導電層14bのそれぞれは、一本の配線PLと重なるように設けられ、半導体層11aおよび半導体層11bが導電層13を介して1本の配線BLに接続されることで、2つのメモリセル10が配置される様子を図示している。なお、半導体層11aは、導電層15aを介して、導電層14aに電気的に接続される。また、半導体層11bは、導電層15bを介して、導電層14bに電気的に接続される。
 なお、発明の理解を容易にするため、半導体層11aを有するメモリセル10をメモリセル10aと表記し、半導体層11bを有するメモリセル10をメモリセル10bと表記することで、2つのメモリセル10を区別することがある。
 メモリセル10aにおいて、半導体層11a上に配線WL、および導電層13が重なるように設けられ、半導体層11aと電気的に接続された導電層14a上に配線PLが重なるように設けられる。配線WLと半導体層11aとが重なる領域にトランジスタTraが設けられる。配線PLと導電層14aとが重なる領域に容量素子Caが設けられる。導電層13は、トランジスタTraを配線BLに接続するための導電層である。同様に、メモリセル10bにおいて、半導体層11b上に配線WL、および導電層13が重なるように設けられ、半導体層11bと電気的に接続された導電層14b上に配線PLが重なるように設けられる。配線WLと半導体層11bとが重なる領域にトランジスタTrbが設けられる。配線PLと導電層14bとが重なる領域に容量素子Cbが設けられる。導電層13は、トランジスタTrbを配線BLに接続するための導電層である。
 なお、トランジスタTra、トランジスタTrb、容量素子Ca、および容量素子Cbはそれぞれ、実施の形態1で説明したトランジスタ200a、トランジスタ200b、容量素子100a、および容量素子100bに対応する。また、半導体層11aおよび半導体層11bは、実施の形態1で説明した酸化物230に対応する。また、導電層13は、実施の形態1で説明した導電体242aに対応する。また、導電層15aおよび導電層15bは、実施の形態1で説明した導電体242bに対応する。また、導電層14aおよび導電層14bは、実施の形態1で説明した導電体156に対応する。また、配線WL、および配線PLはそれぞれ、実施の形態1で説明した導電体260、及び導電体160に対応する。よって、メモリセル10において、詳細な断面図の説明は実施の形態1での説明と同様であるため、上述の説明を援用するものとする。
 図40Aに示すメモリセル10を有するメモリアレイ20を積層する場合、上層の配線PLおよび下層の配線PLが重なるように設けられる構成、ならびに上層の配線WLおよび下層の配線WLが重なるように設けられる構成、とすることが好ましい。つまり重ねて設けられる2層のメモリアレイ20のレイアウト図は、重なる構成とすることが好ましい。当該構成とすることで、記憶装置の作製工程を簡略化し、生産性の向上を図ることができる。
 なお図40Aでは、Y方向に延びて設けられる半導体層11aおよび半導体層11b、導電層13、並びに、導電層15aおよび導電層15bが、配線WLおよび配線PLに直角に交わるように設けられる構成を図示しているが、これに限らない。例えば図40Bに図示するように、Y方向に延びて設けられる、半導体層11aの一方の端部、および半導体層11bの一方の端部をX方向に傾けて配置し、半導体層11aおよび半導体層11b、導電層13、並びに、導電層15aおよび導電層15bが、配線WLおよび配線PLと交わるよう設ける構成としてもよい。当該構成とすることで、メモリセル10のメモリ密度をより高めることができる。
 ここで、図40Aに示す一点鎖線A1−A2を含む切断面を、メモリアレイ20[1]乃至メモリアレイ20[5]に拡張し、各メモリセルアレイに先の実施の形態に示すトランジスタ200および容量素子100を設けた断面図を、図41に示す。
 図41において、トランジスタ200aと容量素子100aの組み合わせがメモリセル10aに対応し、トランジスタ200bと容量素子100bの組み合わせがメモリセル10bに対応する。また、導電体260が配線WLに対応し、導電体160が配線PLに対応する。また、酸化物230が半導体層11aおよび半導体層11bに対応する。
 図41に示すように、下層の容量素子100aの導電体160上に重畳して、上層の容量素子100aの導電体160が設けられ、下層のトランジスタ200aの導電体260上に重畳して、上層のトランジスタ200aの導電体260が設けられている。
 また、図42に示すように、メモリアレイ20[1]の下に設けられる、駆動回路21には、トランジスタ310を設けることができる。
 トランジスタ310は、基板311上に設けられ、ゲートとして機能する導電体316、ゲート絶縁体として機能する絶縁体315、基板311の一部からなる半導体領域313、およびソース領域またはドレイン領域として機能する低抵抗領域314a、および低抵抗領域314bを有する。トランジスタ310は、pチャネル型、あるいはnチャネル型のいずれでもよい。
 ここで、図42に示すトランジスタ310はチャネルが形成される半導体領域313(基板311の一部)が凸形状を有する。また、半導体領域313の側面および上面を、絶縁体315を介して、導電体316が覆うように設けられている。なお、導電体316は仕事関数を調整する材料を用いてもよい。このようなトランジスタ310は半導体基板の凸部を利用していることからFIN型トランジスタとも呼ばれる。なお、凸部の上部に接して、凸部を形成するためのマスクとして機能する絶縁体を有していてもよい。また、ここでは半導体基板の一部を加工して凸部を形成する場合を示したが、SOI基板を加工して凸形状を有する半導体膜を形成してもよい。
 なお、図42に示すトランジスタ310は一例であり、その構造に限定されず、回路構成または駆動方法に応じて適切なトランジスタを用いればよい。
 各構造体の間には、層間膜、配線、およびプラグ等が設けられた配線層が設けられていてもよい。また、配線層は、設計に応じて複数層設けることができる。ここで、プラグまたは配線としての機能を有する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と電気的に接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。
 例えば、トランジスタ310上には、層間膜として、絶縁体320、絶縁体322、絶縁体324、および絶縁体326が順に積層して設けられている。また、絶縁体320、絶縁体322、絶縁体324、および絶縁体326には容量素子100、トランジスタ200、または導電体240と電気的に接続する導電体328、および導電体330等が埋め込まれている。なお、導電体328、および導電体330はプラグ、または配線として機能する。
 また、層間膜として機能する絶縁体は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP)法等を用いた平坦化処理により平坦化されていてもよい。
 層間膜として用いることができる絶縁体としては、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物などがある。
 例えば、層間膜として機能する絶縁体には、比誘電率が低い材料を用いることで、配線間に生じる寄生容量を低減することができる。したがって、絶縁体の機能に応じて、材料を選択するとよい。
 例えば、絶縁体320、絶縁体322、および絶縁体326等には、比誘電率の低い絶縁体を有することが好ましい。例えば、当該絶縁体は、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、樹脂などを有することが好ましい。または、当該絶縁体は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコンまたは空孔を有する酸化シリコンと、樹脂との積層構造を有することが好ましい。酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、樹脂と組み合わせることで、熱的に安定かつ比誘電率の低い積層構造とすることができる。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネートまたはアクリルなどがある。
 また、酸化物半導体を用いたトランジスタは、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体で囲うことによって、トランジスタの電気特性を安定にすることができる。従って、絶縁体324、絶縁体212、および絶縁体214等には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体を用いればよい。
 水素などの不純物および酸素の透過を抑制する機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。具体的には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体として、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウムまたは酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いることができる。
 配線、プラグに用いることができる導電体としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウムなどから選ばれた金属元素を1種以上含む材料を用いることができる。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
 例えば、導電体328、導電体330、および導電体209等としては、上記の材料で形成される金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。耐熱性と導電性を両立するタングステン、モリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。または、アルミニウム、銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
 また、図35A及び図35Bなどで示したように、複数のメモリアレイ20の下に機能層50が設けられる。図42では、メモリアレイ20[1]と駆動回路21の間に、機能層50が設けられる。
 図42に、機能層50に設けられる、複数の機能回路51を構成するトランジスタ200c、200d、200eを示す。ここで、トランジスタ200c、200d、200eは、先の実施の形態に示すトランジスタ200と同様の構成を有する。トランジスタ200c、200d、200eは、図38Aなどに示すトランジスタ52、53、55に対応している。トランジスタ200c、200d、200eは、トランジスタ52、53、55と同様に、互いのソースおよびドレインが直列に接続されている。なお、図38Aなどに示すトランジスタ54は図示していない。
 機能層50の絶縁体280上に、絶縁体208が設けられ、絶縁体208に形成された開口に導電体207が設けられる。絶縁体208は絶縁体210と同様の絶縁体を設けることができ、導電体207は導電体209と同様の導電体を設けることができる。
 導電体207の下面は、トランジスタ200cの導電体160の上面に接して設けられる。また、導電体207の上面は、導電体209の下面に接して設けられる。このような構成にすることで、ビット線として機能する配線BLに相当する導電体240と、トランジスタ52に相当するトランジスタ200cのゲートを電気的に接続することができる。
 また、メモリセル10をマトリクス状に配列し、メモリアレイ20を形成したレイアウトの一例を図43に示す。図43中の符号は、図1Bなどに示す符号と対応している。最小加工寸法を20nmとした場合、図43中のメモリセル10の寸法は、45nm×125nmにすることができる。メモリセル10の占有面積は、0.0054μmとなるので、本実施の形態に係る記憶装置のメモリセル10の密度を185cell/μmとすることができる。
 以上のように、複数のメモリセルアレイ、および駆動回路を積層して設けることで、記憶装置の高集積化、および記憶容量の大容量化を図ることができる。
 本実施の形態は、本明細書で示す他の実施の形態などと適宜組み合わせることができる。
(実施の形態3)
 本実施の形態では、図44Aおよび図44Bを用いて、本発明の半導体装置が実装されたチップ1200の一例を示す。チップ1200には、複数の回路(システム)が実装されている。このように、複数の回路(システム)を一つのチップに集積する技術を、システムオンチップ(System on Chip:SoC)と呼ぶ場合がある。
 図44Aに示すように、チップ1200は、CPU1211、GPU1212、一または複数のアナログ演算部1213、一または複数のメモリコントローラ1214、一または複数のインターフェース1215、一または複数のネットワーク回路1216等を有する。
 チップ1200には、バンプ(図示しない)が設けられ、図44Bに示すように、パッケージ基板1201の第1の面と接続する。また、パッケージ基板1201の第1の面の裏面には、複数のバンプ1202が設けられており、マザーボード1203と接続する。
 マザーボード1203には、DRAM1221、フラッシュメモリ1222等の記憶装置が設けられていてもよい。例えば、DRAM1221に先の実施の形態に示すDOSRAMを用いることができる。これにより、DRAM1221を、低消費電力化、高速化、および大容量化させることができる。
 CPU1211は、複数のCPUコアを有することが好ましい。また、GPU1212は、複数のGPUコアを有することが好ましい。また、CPU1211、およびGPU1212は、それぞれ一時的にデータを格納するメモリを有していてもよい。または、CPU1211、およびGPU1212に共通のメモリが、チップ1200に設けられていてもよい。該メモリには、前述したDOSRAMを用いることができる。また、GPU1212は、多数のデータの並列計算に適しており、画像処理または積和演算に用いることができる。GPU1212に、本発明の酸化物半導体を用いた画像処理回路または、積和演算回路を設けることで、画像処理、および積和演算を低消費電力で実行することが可能になる。
 また、CPU1211、およびGPU1212が同一チップに設けられていることで、CPU1211およびGPU1212間の配線を短くすることができ、CPU1211からGPU1212へのデータ転送、CPU1211、およびGPU1212が有するメモリ間のデータ転送、およびGPU1212での演算後に、GPU1212からCPU1211への演算結果の転送を高速に行うことができる。
 アナログ演算部1213はA/D(アナログ/デジタル)変換回路、およびD/A(デジタル/アナログ)変換回路の一、または両方を有する。また、アナログ演算部1213に上記積和演算回路を設けてもよい。
 メモリコントローラ1214は、DRAM1221のコントローラとして機能する回路、およびフラッシュメモリ1222のインターフェースとして機能する回路を有する。
 インターフェース1215は、表示装置、スピーカー、マイクロフォン、カメラ、コントローラなどの外部接続機器とのインターフェース回路を有する。コントローラとは、マウス、キーボード、ゲーム用コントローラなどを含む。このようなインターフェースとして、USB(Universal Serial Bus)、HDMI(登録商標)(High−Definition Multimedia Interface)などを用いることができる。
 ネットワーク回路1216は、LAN(Local Area Network)などのネットワーク回路を有する。また、ネットワークセキュリティー用の回路を有してもよい。
 チップ1200には、上記回路(システム)を同一の製造プロセスで形成することが可能である。そのため、チップ1200に必要な回路の数が増えても、製造プロセスを増やす必要が無く、チップ1200を低コストで作製することができる。
 GPU1212を有するチップ1200が設けられたパッケージ基板1201、DRAM1221、およびフラッシュメモリ1222が設けられたマザーボード1203は、GPUモジュール1204と呼ぶことができる。
 GPUモジュール1204は、SoC技術を用いたチップ1200を有しているため、そのサイズを小さくすることができる。また、画像処理に優れていることから、スマートフォン、タブレット端末、ラップトップPC、携帯型(持ち出し可能な)ゲーム機などの携帯型電子機器に用いることが好適である。また、GPU1212を用いた積和演算回路により、ディープニューラルネットワーク(DNN)、畳み込みニューラルネットワーク(CNN)、再帰型ニューラルネットワーク(RNN)、自己符号化器、深層ボルツマンマシン(DBM)、深層信念ネットワーク(DBN)などの手法を実行することができるため、チップ1200をAIチップ、またはGPUモジュール1204をAIシステムモジュールとして用いることができる。
 以上、本実施の形態に示す構成、方法などは、少なくともその一部を、本明細書中に記載する他の実施の形態などと適宜組み合わせて実施することができる。
(実施の形態4)
 本実施の形態は、上記実施の形態に示す記憶装置などが組み込まれた電子部品および電子機器の一例を示す。上記実施の形態に示す記憶装置を、以下の電子部品および電子機器に用いることで、電子部品および電子機器を、低消費電力化、および高速化させることができる。
<電子部品>
 まず、記憶装置720が組み込まれた電子部品の例を、図45Aおよび図45Bを用いて説明を行う。
 図45Aに電子部品700および電子部品700が実装された基板(実装基板704)の斜視図を示す。図45Aに示す電子部品700は、モールド711内に記憶装置720を有している。図45Aは、電子部品700の内部を示すために、一部を省略している。電子部品700は、モールド711の外側にランド712を有する。ランド712は電極パッド713と電気的に接続され、電極パッド713は記憶装置720とワイヤ714によって電気的に接続されている。電子部品700は、例えばプリント基板702に実装される。このような電子部品が複数組み合わされて、それぞれがプリント基板702上で電気的に接続されることで実装基板704が完成する。
 記憶装置720は、駆動回路層721と、記憶回路層722と、を有する。
 図45Bに電子部品730の斜視図を示す。電子部品730は、SiP(System in package)またはMCM(Multi Chip Module)の一例である。電子部品730は、パッケージ基板732(プリント基板)上にインターポーザ731が設けられ、インターポーザ731上に半導体装置735、および複数の記憶装置720が設けられている。
 電子部品730では、記憶装置720を広帯域メモリ(HBM:High Bandwidth Memory)として用いる例を示している。また、半導体装置735は、CPU、GPU、FPGAなどの集積回路(半導体装置)を用いることができる。
 パッケージ基板732は、セラミック基板、プラスチック基板、ガラスエポキシ基板などを用いることができる。インターポーザ731は、シリコンインターポーザ、樹脂インターポーザなどを用いることができる。
 インターポーザ731は、複数の配線を有し、端子ピッチの異なる複数の集積回路を電気的に接続する機能を有する。複数の配線は、単層または多層で設けられる。また、インターポーザ731は、インターポーザ731上に設けられた集積回路をパッケージ基板732に設けられた電極と電気的に接続する機能を有する。これらのことから、インターポーザを「再配線基板」または「中間基板」と呼ぶ場合がある。また、インターポーザ731に貫通電極を設けて、当該貫通電極を用いて集積回路とパッケージ基板732を電気的に接続する場合もある。また、シリコンインターポーザでは、貫通電極として、TSV(Through Silicon Via)を用いることも出来る。
 インターポーザ731としてシリコンインターポーザを用いることが好ましい。シリコンインターポーザでは能動素子を設ける必要が無いため、集積回路よりも低コストで作製することができる。一方で、シリコンインターポーザの配線形成は半導体プロセスで行なうことができるため、樹脂インターポーザでは難しい微細配線の形成が容易である。
 HBMでは、広いメモリバンド幅を実現するために多くの配線を接続する必要がある。このため、HBMを実装するインターポーザには、微細かつ高密度の配線形成が求められる。よって、HBMを実装するインターポーザには、シリコンインターポーザを用いることが好ましい。
 また、シリコンインターポーザを用いたSiP、MCMなどでは、集積回路とインターポーザ間の膨張係数の違いによる信頼性の低下が生じにくい。また、シリコンインターポーザは表面の平坦性が高いため、シリコンインターポーザ上に設ける集積回路とシリコンインターポーザ間の接続不良が生じにくい。特に、インターポーザ上に複数の集積回路を横に並べて配置する2.5Dパッケージ(2.5次元実装)では、シリコンインターポーザを用いることが好ましい。
 また、電子部品730と重ねてヒートシンク(放熱板)を設けてもよい。ヒートシンクを設ける場合は、インターポーザ731上に設ける集積回路の高さを揃えることが好ましい。例えば、本実施の形態に示す電子部品730では、記憶装置720と半導体装置735の高さを揃えることが好ましい。
 電子部品730を他の基板に実装するため、パッケージ基板732の底部に電極733を設けてもよい。図45Bでは、電極733を半田ボールで形成する例を示している。パッケージ基板732の底部に半田ボールをマトリクス状に設けることで、BGA(Ball Grid Array)実装を実現できる。また、電極733を導電性のピンで形成してもよい。パッケージ基板732の底部に導電性のピンをマトリクス状に設けることで、PGA(Pin Grid Array)実装を実現できる。
 電子部品730は、BGAおよびPGAに限らず様々な実装方法を用いて他の基板に実装することができる。例えば、SPGA(Staggered Pin Grid Array)、LGA(Land Grid Array)、QFP(Quad Flat Package)、QFJ(Quad Flat J−leaded package)、またはQFN(Quad Flat Non−leaded package)などの実装方法を用いることができる。
 以上、本実施の形態に示す構成、方法などは、本実施の形態に示す他の構成、方法、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。
(実施の形態5)
 本実施の形態では、先の実施の形態に示す記憶装置を用いた記憶装置の応用例について説明する。先の実施の形態に示す記憶装置は、例えば、各種電子機器(例えば、情報端末、コンピュータ、スマートフォン、電子書籍端末、デジタルカメラ(ビデオカメラも含む)、録画再生装置、ナビゲーションシステムなど)の記憶装置に適用できる。上記実施の形態に示す記憶装置を、上記の電子機器の記憶装置に用いることで、電子機器を、低消費電力化、および高速化させることができる。なお、ここで、コンピュータとは、タブレット型のコンピュータ、ノート型のコンピュータ、デスクトップ型のコンピュータの他、サーバシステムのような大型のコンピュータを含むものである。または、先の実施の形態に示す記憶装置は、メモリカード(例えば、SDカード)、USBメモリ、SSD(ソリッド・ステート・ドライブ)等の各種のリムーバブル記憶装置に適用される。図46A乃至図46Eにリムーバブル記憶装置の幾つかの構成例を模式的に示す。例えば、先の実施の形態に示す記憶装置は、パッケージングされたメモリチップに加工され、様々なストレージ装置、リムーバブルメモリに用いられる。
 図46AはUSBメモリの模式図である。USBメモリ1100は、筐体1101、キャップ1102、USBコネクタ1103および基板1104を有する。基板1104は、筐体1101に収納されている。例えば、基板1104には、メモリチップ1105、コントローラチップ1106が取り付けられている。メモリチップ1105などに先の実施の形態に示す記憶装置を組み込むことができる。
 図46BはSDカードの外観の模式図であり、図46Cは、SDカードの内部構造の模式図である。SDカード1110は、筐体1111、コネクタ1112および基板1113を有する。基板1113は筐体1111に収納されている。例えば、基板1113には、メモリチップ1114、コントローラチップ1115が取り付けられている。基板1113の裏面側にもメモリチップ1114を設けることで、SDカード1110の容量を増やすことができる。また、無線通信機能を備えた無線チップを基板1113に設けてもよい。これによって、ホスト装置とSDカード1110間の無線通信によって、メモリチップ1114のデータの読み出し、書き込みが可能となる。メモリチップ1114などに先の実施の形態に示す記憶装置を組み込むことができる。
 図46DはSSDの外観の模式図であり、図46Eは、SSDの内部構造の模式図である。SSD1150は、筐体1151、コネクタ1152および基板1153を有する。基板1153は筐体1151に収納されている。例えば、基板1153には、メモリチップ1154、メモリチップ1155、コントローラチップ1156が取り付けられている。メモリチップ1155はコントローラチップ1156のワークメモリであり、例えばDOSRAMチップを用いればよい。基板1153の裏面側にもメモリチップ1154を設けることで、SSD1150の容量を増やすことができる。メモリチップ1154などに先の実施の形態に示す記憶装置を組み込むことができる。
 以上、本実施の形態に示す構成、方法などは、少なくともその一部を、本明細書中に記載する他の実施の形態などと適宜組み合わせて実施することができる。
(実施の形態6)
 本発明の一態様に係る記憶装置は、CPU、GPUなどのプロセッサ、またはチップに用いることができる。このような、CPU、GPUなどのプロセッサ、またはチップを電子機器に用いることで、電子機器を、低消費電力化、および高速化させることができる。図47A乃至図47Hに、当該記憶装置を用いたCPU、GPUなどのプロセッサ、またはチップを備えた電子機器の具体例を示す。
<電子機器・システム>
 本発明の一態様に係るGPUまたはチップは、様々な電子機器に搭載することができる。電子機器の例としては、例えば、テレビジョン装置、デスクトップ型またはノート型の情報端末用などのモニタ、デジタルサイネージ(Digital Signage:電子看板)、パチンコ機などの大型ゲーム機、などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、電子ブックリーダー、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。また、本発明の一態様に係るGPUまたはチップを電子機器に設けることにより、電子機器に人工知能を搭載することができる。
 本発明の一態様の電子機器は、アンテナを有していてもよい。アンテナで信号を受信することで、表示部で映像、情報等の表示を行うことができる。また、電子機器がアンテナ及び二次電池を有する場合、アンテナを、非接触電力伝送に用いてもよい。
 本発明の一態様の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)を有していてもよい。
 本発明の一態様の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。図47A乃至図47Hに、電子機器の例を示す。
[情報端末]
 図47Aには、情報端末の一種である携帯電話(スマートフォン)が図示されている。情報端末5100は、筐体5101と、表示部5102と、を有しており、入力用インターフェースとして、タッチパネルが表示部5102に備えられ、ボタンが筐体5101に備えられている。
 情報端末5100は、本発明の一態様のチップを適用することで、人工知能を利用したアプリケーションを実行することができる。人工知能を利用したアプリケーションとしては、例えば、会話を認識してその会話内容を表示部5102に表示するアプリケーション、表示部5102に備えるタッチパネルに対してユーザが入力した文字、図形などを認識して、表示部5102に表示するアプリケーション、指紋、声紋などの生体認証を行うアプリケーションなどが挙げられる。
 図47Bには、ノート型情報端末5200が図示されている。ノート型情報端末5200は、情報端末の本体5201と、表示部5202と、キーボード5203と、を有する。
 ノート型情報端末5200は、先述した情報端末5100と同様に、本発明の一態様のチップを適用することで、人工知能を利用したアプリケーションを実行することができる。人工知能を利用したアプリケーションとしては、例えば、設計支援ソフトウェア、文章添削ソフトウェア、献立自動生成ソフトウェアなどが挙げられる。また、ノート型情報端末5200を用いることで、新規の人工知能の開発を行うことができる。
 なお、上述では、電子機器としてスマートフォン、およびノート型情報端末を例として、それぞれ図47A、図47Bに図示したが、スマートフォン、およびノート型情報端末以外の情報端末を適用することができる。スマートフォン、およびノート型情報端末以外の情報端末としては、例えば、PDA(Personal Digital Assistant)、デスクトップ型情報端末、ワークステーションなどが挙げられる。
[ゲーム機]
 図47Cは、ゲーム機の一例である携帯ゲーム機5300を示している。携帯ゲーム機5300は、筐体5301、筐体5302、筐体5303、表示部5304、接続部5305、操作キー5306等を有する。筐体5302、および筐体5303は、筐体5301から取り外すことが可能である。筐体5301に設けられている接続部5305を別の筐体(図示せず)に取り付けることで、表示部5304に出力される映像を、別の映像機器(図示せず)に出力することができる。このとき、筐体5302、および筐体5303は、それぞれ操作部として機能することができる。これにより、複数のプレイヤーが同時にゲームを行うことができる。筐体5301、筐体5302、および筐体5303の基板に設けられているチップなどに先の実施の形態に示すチップを組み込むことができる。
 また、図47Dは、ゲーム機の一例である据え置き型ゲーム機5400を示している。据え置き型ゲーム機5400には、無線または有線でコントローラ5402が接続されている。
 携帯ゲーム機5300、据え置き型ゲーム機5400などのゲーム機に本発明の一態様のGPUまたはチップを適用することによって、低消費電力のゲーム機を実現することができる。また、低消費電力により、回路からの発熱を低減することができるため、発熱によるその回路自体、周辺回路、およびモジュールへの影響を少なくすることができる。
 更に、携帯ゲーム機5300に本発明の一態様のGPUまたはチップを適用することによって、人工知能を有する携帯ゲーム機5300を実現することができる。
 本来、ゲームの進行、ゲーム上に登場する生物の言動、ゲーム上で発生する現象などの表現は、そのゲームが有するプログラムによって定められているが、携帯ゲーム機5300に人工知能を適用することにより、ゲームのプログラムに限定されない表現が可能になる。例えば、プレイヤーが問いかける内容、ゲームの進行状況、時刻、ゲーム上に登場する人物の言動が変化するといった表現が可能となる。
 また、携帯ゲーム機5300で複数のプレイヤーが必要なゲームを行う場合、人工知能によって擬人的にゲームプレイヤーを構成することができるため、対戦相手を人工知能によるゲームプレイヤーとすることによって、1人でもゲームを行うことができる。
 図47C、図47Dでは、ゲーム機の一例として携帯ゲーム機、および据え置き型ゲーム機を図示しているが、本発明の一態様のGPUまたはチップを適用するゲーム機はこれに限定されない。本発明の一態様のGPUまたはチップを適用するゲーム機としては、例えば、娯楽施設(ゲームセンター、遊園地など)に設置されるアーケードゲーム機、スポーツ施設に設置されるバッティング練習用の投球マシンなどが挙げられる。
[大型コンピュータ]
 本発明の一態様のGPUまたはチップは、大型コンピュータに適用することができる。
 図47Eは、大型コンピュータの一例である、スーパーコンピュータ5500を示す図である。図47Fは、スーパーコンピュータ5500が有するラックマウント型の計算機5502を示す図である。
 スーパーコンピュータ5500は、ラック5501と、複数のラックマウント型の計算機5502と、を有する。なお、複数の計算機5502は、ラック5501に格納されている。また、計算機5502には、複数の基板5504が設けられ、当該基板上に上記実施の形態で説明したGPUまたはチップを搭載することができる。
 スーパーコンピュータ5500は、主に科学技術計算に利用される大型コンピュータである。科学技術計算では、膨大な演算を高速に処理する必要があるため、消費電力が高く、チップの発熱が大きい。スーパーコンピュータ5500に本発明の一態様のGPUまたはチップを適用することによって、低消費電力のスーパーコンピュータを実現することができる。また、低消費電力により、回路からの発熱を低減することができるため、発熱によるその回路自体、周辺回路、およびモジュールへの影響を少なくすることができる。
 図47E、図47Fでは、大型コンピュータの一例としてスーパーコンピュータを図示しているが、本発明の一態様のGPUまたはチップを適用する大型コンピュータはこれに限定されない。本発明の一態様のGPUまたはチップを適用する大型コンピュータとしては、例えば、サービスを提供するコンピュータ(サーバー)、大型汎用コンピュータ(メインフレーム)などが挙げられる。
[移動体]
 本発明の一態様のGPUまたはチップは、移動体である自動車、および自動車の運転席周辺に適用することができる。
 図47Gは、移動体の一例である自動車の室内におけるフロントガラス周辺を示す図である。図47Gでは、ダッシュボードに取り付けられた表示パネル5701、表示パネル5702、表示パネル5703の他、ピラーに取り付けられた表示パネル5704を図示している。
 表示パネル5701乃至表示パネル5703は、スピードメーター、タコメーター、走行距離、燃料計、ギア状態、エアコンの設定などを表示することで、様々な情報を提供することができる。また、表示パネルに表示される表示項目、レイアウトなどは、ユーザの好みに合わせて適宜変更することができ、デザイン性を高めることが可能である。表示パネル5701乃至表示パネル5703は、照明装置として用いることも可能である。
 表示パネル5704には、自動車に設けられた撮像装置(図示しない)からの映像を映し出すことによって、ピラーで遮られた視界(死角)を補完することができる。すなわち、自動車の外側に設けられた撮像装置からの画像を表示することによって、死角を補い、安全性を高めることができる。また、見えない部分を補完する映像を映すことによって、より自然に違和感なく安全確認を行うことができる。表示パネル5704は、照明装置として用いることもできる。
 本発明の一態様のGPUまたはチップは人工知能の構成要素として適用できるため、例えば、当該チップを自動車の自動運転システムに用いることができる。また、当該チップを道路案内、危険予測などを行うシステムに用いることができる。表示パネル5701乃至表示パネル5704には、道路案内、危険予測などの情報を表示する構成としてもよい。
 なお、上述では、移動体の一例として自動車について説明しているが、移動体は自動車に限定されない。例えば、移動体としては、電車、モノレール、船、飛行体(ヘリコプター、無人航空機(ドローン)、飛行機、ロケット)なども挙げることができ、これらの移動体に本発明の一態様のチップを適用して、人工知能を利用したシステムを付与することができる。
[電化製品]
 図47Hは、電化製品の一例である電気冷凍冷蔵庫5800を示している。電気冷凍冷蔵庫5800は、筐体5801、冷蔵室用扉5802、冷凍室用扉5803等を有する。
 電気冷凍冷蔵庫5800に本発明の一態様のチップを適用することによって、人工知能を有する電気冷凍冷蔵庫5800を実現することができる。人工知能を利用することによって電気冷凍冷蔵庫5800は、電気冷凍冷蔵庫5800に保存されている食材、その食材の消費期限などを基に献立を自動生成する機能、電気冷凍冷蔵庫5800に保存されている食材に合わせた温度に自動的に調節する機能などを有することができる。
 電化製品の一例として電気冷凍冷蔵庫について説明したが、その他の電化製品としては、例えば、掃除機、電子レンジ、電気オーブン、炊飯器、湯沸かし器、IH調理器、ウォーターサーバ、エアーコンディショナーを含む冷暖房器具、洗濯機、乾燥機、オーディオビジュアル機器などが挙げられる。
 本実施の形態で説明した電子機器、その電子機器の機能、人工知能の応用例、その効果などは、他の電子機器の記載と適宜組み合わせることができる。
 以上、本実施の形態に示す構成、方法などは、少なくともその一部を、本明細書中に記載する他の実施の形態などと適宜組み合わせて実施することができる。
(実施の形態7)
 本発明の一態様の半導体装置は、OSトランジスタを含む。当該OSトランジスタは、放射線照射による電気特性の変動が小さい。つまり放射線に対する耐性が高いため、放射線が入射しうる環境において好適に用いることができる。例えば、OSトランジスタは、宇宙空間にて使用する場合に好適に用いることができる。本実施の形態においては、本発明の一態様の半導体装置を宇宙用機器に適用する場合の具体例について、図48を用いて説明する。
 図48には、宇宙用機器の一例として、人工衛星6800を示している。人工衛星6800は、機体6801と、ソーラーパネル6802と、アンテナ6803と、二次電池6805と、制御装置6807と、を有する。なお、図48においては、宇宙空間に惑星6804を例示している。なお、宇宙空間とは、例えば、高度100km以上を指すが、本明細書に記載の宇宙空間は、熱圏、中間圏、及び成層圏を含んでもよい。
 また、宇宙空間は、地上に比べて100倍以上、放射線量の高い環境である。なお、放射線として、例えば、X線、及びガンマ線に代表される電磁波(電磁放射線)、並びにアルファ線、ベータ線、中性子線、陽子線、重イオン線、中間子線などに代表される粒子放射線が挙げられる。
 ソーラーパネル6802に太陽光が照射されることにより、人工衛星6800が動作するために必要な電力が生成される。しかしながら、例えばソーラーパネルに太陽光が照射されない状況、またはソーラーパネルに照射される太陽光の光量が少ない状況では、生成される電力が少なくなる。よって、人工衛星6800が動作するために必要な電力が生成されない可能性がある。生成される電力が少ない状況下であっても人工衛星6800を動作させるために、人工衛星6800に二次電池6805を設けるとよい。なお、ソーラーパネルは、太陽電池モジュールと呼ばれる場合がある。
 人工衛星6800は、信号を生成することができる。当該信号は、アンテナ6803を介して送信され、たとえば地上に設けられた受信機、または他の人工衛星が当該信号を受信することができる。人工衛星6800が送信した信号を受信することにより、当該信号を受信した受信機の位置を測定することができる。以上より、人工衛星6800は、衛星測位システムを構成することができる。
 また、制御装置6807は、人工衛星6800を制御する機能を有する。制御装置6807としては、例えば、CPU、GPU、及び記憶装置の中から選ばれるいずれか一または複数を用いて構成される。なお、制御装置6807には、本発明の一態様であるOSトランジスタを含む半導体装置を用いると好適である。OSトランジスタは、Siトランジスタと比較し、放射線照射による電気特性の変動が小さい。つまり放射線が入射しうる環境においても信頼性が高く、好適に用いることができる。
 また、人工衛星6800は、センサを有する構成とすることができる。たとえば、可視光センサを有する構成とすることにより、人工衛星6800は、地上に設けられている物体に当たって反射された太陽光を検出する機能を有することができる。または、熱赤外センサを有する構成とすることにより、人工衛星6800は、地表から放出される熱赤外線を検出する機能を有することができる。以上より、人工衛星6800は、たとえば地球観測衛星としての機能を有することができる。
 なお、本実施の形態においては、宇宙用機器の一例として、人工衛星について例示したがこれに限定されない。例えば、本発明の一態様の半導体装置は、宇宙船、宇宙カプセル、宇宙探査機などの宇宙用機器に好適に用いることができる。
ADDR:信号、BL[1]:配線、BL[j]:配線、BL[n]:配線、BL_A:配線、BL_B:配線、BL:配線、BW:信号、Ca:容量素子、Cb:容量素子、CE:信号、CL:配線、CLK:信号、EN_data:信号、GBL_A:配線、GBL_B:配線、GBL:配線、GND:グラウンド電位、GV:ゲートバルブ、GW:信号、MUX:選択信号、PL[1]:配線、PL[m]:配線、PL:配線、RDA:信号、RE:制御信号、T11:期間、T12:期間、T13:期間、T14:期間、T15:期間、T16:期間、Tra:トランジスタ、Trb:トランジスタ、VDD:高電源電位、VHH:配線、VLL:配線、VPC:中間電位、WAKE:信号、WDA:信号、WE:制御信号、WL[1]:配線、WL[m]:配線、WL:配線、10[1,1]:メモリセル、10[i,j]:メモリセル、10[m,n]:メモリセル、10_A:メモリセル、10_B:メモリセル、10a:メモリセル、10b:メモリセル、10:メモリセル、11a:半導体層、11b:半導体層、11:トランジスタ、12:容量素子、13:導電層、14a:導電層、14b:導電層、15a:導電層、15b:導電層、20[1]:メモリアレイ、20[2]:メモリアレイ、20[5]:メモリアレイ、20[m]:メモリアレイ、20:メモリアレイ、21:駆動回路、22:PSW、23:PSW、31:周辺回路、32:コントロール回路、33:電圧生成回路、41:周辺回路、42:行デコーダ、43:行ドライバ、44:列デコーダ、45:列ドライバ、46:センスアンプ、47:入力回路、48:出力回路、50:機能層、51_A:機能回路、51_B:機能回路、51A:機能回路、51B:機能回路、51C:機能回路、51D:機能回路、51:機能回路、52_a:トランジスタ、52_b:トランジスタ、52:トランジスタ、53_a:トランジスタ、53_b:トランジスタ、53:トランジスタ、54_a:トランジスタ、54_b:トランジスタ、54:トランジスタ、55_a:トランジスタ、55_b:トランジスタ、55:トランジスタ、70[1]:繰り返し単位、70:繰り返し単位、71_A:プリチャージ回路、71_B:プリチャージ回路、72_A:スイッチ回路、72_B:スイッチ回路、73:書き込み読み出し回路、81_1:トランジスタ、81_3:トランジスタ、81_4:トランジスタ、81_6:トランジスタ、82_1:トランジスタ、82_2:トランジスタ、82_3:トランジスタ、82_4:トランジスタ、83_A:スイッチ、83_B:スイッチ、83_C:スイッチ、83_D:スイッチ、100a:容量素子、100b:容量素子、100:容量素子、153A:絶縁膜、153:絶縁体、156A:導電膜、156:導電体、158:開口、160a:導電体、160A:導電膜、160b:導電体、160B:導電膜、160:導電体、200a:トランジスタ、200b:トランジスタ、200c:トランジスタ、200d:トランジスタ、200e:トランジスタ、200:トランジスタ、205a:導電体、205b:導電体、205c:導電体、205:導電体、206:開口、207:導電体、208:絶縁体、209:導電体、210:絶縁体、212:絶縁体、214:絶縁体、216:絶縁体、221:絶縁体、222:絶縁体、224A:絶縁層、224Af:絶縁膜、224:絶縁体、230a:酸化物、230A:酸化物層、230Af:酸化膜、230b:酸化物、230B:酸化物層、230ba:領域、230bb:領域、230bc:領域、230Bf:酸化膜、230:酸化物、240a:導電体、240b:導電体、240:導電体、242a:導電体、242A:導電層、242Af:導電膜、242b:導電体、242B:導電層、242Bf:導電膜、242:導電体、253A:絶縁膜、253:絶縁体、254:絶縁体、258:開口、260a:導電体、260b:導電体、260:導電体、275:絶縁体、280:絶縁体、282:絶縁体、283:絶縁体、285:絶縁体、300A:記憶装置、300:記憶装置、310:トランジスタ、311:基板、313:半導体領域、314a:低抵抗領域、314b:低抵抗領域、315:絶縁体、316:導電体、320:絶縁体、322:絶縁体、324:絶縁体、326:絶縁体、328:導電体、330:導電体、700:電子部品、702:プリント基板、704:実装基板、711:モールド、712:ランド、713:電極パッド、714:ワイヤ、720:記憶装置、721:駆動回路層、722:記憶回路層、730:電子部品、731:インターポーザ、732:パッケージ基板、733:電極、735:半導体装置、1100:USBメモリ、1101:筐体、1102:キャップ、1103:USBコネクタ、1104:基板、1105:メモリチップ、1106:コントローラチップ、1110:SDカード、1111:筐体、1112:コネクタ、1113:基板、1114:メモリチップ、1115:コントローラチップ、1150:SSD、1151:筐体、1152:コネクタ、1153:基板、1154:メモリチップ、1155:メモリチップ、1156:コントローラチップ、1200:チップ、1201:パッケージ基板、1202:バンプ、1203:マザーボード、1204:GPUモジュール、1211:CPU、1212:GPU、1213:アナログ演算部、1214:メモリコントローラ、1215:インターフェース、1216:ネットワーク回路、1221:DRAM、1222:フラッシュメモリ、2700:製造装置、2701:大気側基板供給室、2702:大気側基板搬送室、2703a:ロードロック室、2703b:アンロードロック室、2704:搬送室、2706a:チャンバー、2706b:チャンバー、2706c:チャンバー、2706d:チャンバー、2761:カセットポート、2762:アライメントポート、2763a:搬送ロボット、2763b:搬送ロボット、2801:ガス供給源、2802:バルブ、2803:高周波発生器、2804:導波管、2805:モード変換器、2806:ガス管、2807:導波管、2808:スロットアンテナ板、2809:誘電体板、2810:高密度プラズマ、2811_1:基板、2811_2:基板、2811_3:基板、2811_n:基板、2811:基板、2812:基板ホルダ、2813:加熱機構、2815:マッチングボックス、2816:高周波電源、2817:真空ポンプ、2818:バルブ、2819:排気口、2820:ランプ、2821:ガス供給源、2822:バルブ、2823:ガス導入口、2824:基板、2825:基板ホルダ、2826:加熱機構、2828:真空ポンプ、2829:バルブ、2830:排気口、2900:マイクロ波処理装置、2901:石英管、2902:基板ホルダ、2903:加熱手段、5100:情報端末、5101:筐体、5102:表示部、5200:ノート型情報端末、5201:本体、5202:表示部、5203:キーボード、5300:携帯ゲーム機、5301:筐体、5302:筐体、5303:筐体、5304:表示部、5305:接続部、5306:操作キー、5400:据え置き型ゲーム機、5402:コントローラ、5500:スーパーコンピュータ、5501:ラック、5502:計算機、5504:基板、5701:表示パネル、5702:表示パネル、5703:表示パネル、5704:表示パネル、5800:電気冷凍冷蔵庫、5801:筐体、5802:冷蔵室用扉、5803:冷凍室用扉、6800:人工衛星、6801:機体、6802:ソーラーパネル、6803:アンテナ、6804:惑星、6805:二次電池、6807:制御装置

Claims (14)

  1.  第1のトランジスタ及び第1の容量素子を有するメモリセルと、第1の絶縁体と、前記第1の絶縁体上の第2の絶縁体と、を有し、
     前記第1のトランジスタは、
     前記第1の絶縁体上の酸化物と、
     前記酸化物上の、第1の導電体、及び第2の導電体と、
     前記酸化物上の、第3の絶縁体と、
     前記第3の絶縁体上の、第3の導電体と、を有し、
     前記第2の絶縁体は、前記第1の導電体、及び前記第2の導電体の上に配置され、
     前記第2の絶縁体は、前記酸化物と重なる領域を有する、第1の開口と、前記第2の導電体と重なる領域を有する、第2の開口と、を有し、
     前記第3の絶縁体、及び前記第3の導電体は、前記第1の開口内に配置され、
     前記第1の容量素子は、前記第2の導電体の上面に接する第4の導電体、前記第4の導電体上の第4の絶縁体、及び前記第4の絶縁体上の第5の導電体を有し、
     前記第4の導電体、前記第4の絶縁体、及び前記第5の導電体は、前記第2の開口内に配置され、
     前記第1の絶縁体、前記第2の絶縁体、及び前記第1の導電体に、第3の開口が形成され、
     前記第3の開口内に、第6の導電体が配置され、
     前記第6の導電体は、前記第1の導電体の上面の一部、及び側面の一部と接する領域を有する、
     記憶装置。
  2.  第1のトランジスタ及び第1の容量素子を有するメモリセルと、第1の絶縁体と、前記第1の絶縁体上の第2の絶縁体と、を含む層を複数有し、
     複数の前記層は、積層され、
     前記第1のトランジスタは、
     前記第1の絶縁体上の酸化物と、
     前記酸化物上の、第1の導電体、及び第2の導電体と、
     前記酸化物上の、第3の絶縁体と、
     前記第3の絶縁体上の、第3の導電体と、を有し、
     前記第2の絶縁体は、前記第1の導電体、及び前記第2の導電体の上に配置され、
     前記第2の絶縁体は、前記酸化物と重なる領域を有する、第1の開口と、前記第2の導電体と重なる領域を有する、第2の開口と、を有し、
     前記第3の絶縁体、及び前記第3の導電体は、前記第1の開口内に配置され、
     前記第1の容量素子は、前記第2の導電体の上面に接する第4の導電体、前記第4の導電体上の第4の絶縁体、及び前記第4の絶縁体上の第5の導電体を有し、
     前記第4の導電体、前記第4の絶縁体、及び前記第5の導電体は、前記第2の開口内に配置され、
     複数の前記層のそれぞれが有する、第3の開口は互いに重なる領域を有し、
     前記第3の開口内に、第6の導電体が配置され、
     前記第6の導電体は、複数の前記層のそれぞれが有する、前記第1の導電体の上面の一部、及び側面の一部と接する領域を有する、
     記憶装置。
  3.  請求項2において、
     前記層は、さらに、第2のトランジスタ及び第2の容量素子と、を有し、
     前記第2のトランジスタは、前記第1のトランジスタと同様の構造を有し、前記第1のトランジスタに対して、前記第6の導電体を対称軸として、線対称の位置に配置され、
     前記第2の容量素子は、前記第1の容量素子と同様の構造を有し、前記第1の容量素子に対して、前記第6の導電体を対称軸として、線対称の位置に配置される、
     記憶装置。
  4.  第1のトランジスタ及び第1の容量素子を有するメモリセルと、第1の絶縁体、前記第1の絶縁体上の第2の絶縁体と、を含む層と、
     前記メモリセルを駆動する駆動回路が設けられる基板と、
     機能回路を有する機能層と、
     配線と、
     前記層は、前記駆動回路上に設けられた機能層上に設けられ、
     前記第1のトランジスタは、
     前記第1の絶縁体上の酸化物と、
     前記酸化物上の、第1の導電体、及び第2の導電体と、
     前記酸化物上の、第3の絶縁体と、
     前記第3の絶縁体上の、第3の導電体と、を有し、
     前記第2の絶縁体は、前記第1の導電体、及び前記第2の導電体の上に配置され、
     前記第2の絶縁体は、前記酸化物と重なる領域を有する、第1の開口と、前記第2の導電体と重なる領域を有する、第2の開口と、を有し、
     前記第3の絶縁体、及び前記第3の導電体は、前記第1の開口内に配置され、
     前記第1の容量素子は、前記第2の導電体の上面に接する第4の導電体、前記第4の導電体上の第4の絶縁体、及び前記第4の絶縁体上の第5の導電体を有し、
     前記第4の導電体、前記第4の絶縁体、及び前記第5の導電体は、前記第2の開口内に配置され、
     前記層が有する第3の開口は、第6の導電体が配置され、
     前記第6の導電体は、前記層が有する、前記第1の導電体の上面の一部、及び側面の一部と接する領域を有し、
     前記配線は、前記駆動回路と、前記機能回路と、を電気的に接続する機能を有し、
     前記機能回路は、ゲートが、前記メモリセルに電気的に接続された前記第6の導電体に電気的に接続された第2のトランジスタを有し、前記第6の導電体の電位に応じた信号を前記配線に伝える機能を有する、
     記憶装置。
  5.  請求項4において、
     前記層は、さらに、第2のトランジスタ及び第2の容量素子と、を有し、
     前記第2のトランジスタは、前記第1のトランジスタと同様の構造を有し、前記第1のトランジスタに対して、前記第6の導電体を対称軸として、線対称の位置に配置され、
     前記第2の容量素子は、前記第1の容量素子と同様の構造を有し、前記第1の容量素子に対して、前記第6の導電体を対称軸として、線対称の位置に配置される、
     記憶装置。
  6.  第1のトランジスタ及び第1の容量素子を有するメモリセルと、第1の絶縁体、前記第1の絶縁体上の第2の絶縁体と、を含む層と、
     前記メモリセルを駆動する駆動回路が設けられる基板と、
     機能回路を有する機能層と、
     配線と、
     複数の前記層は、前記駆動回路上に設けられた機能層上に積層して設けられ、
     前記第1のトランジスタは、
     前記第1の絶縁体上の酸化物と、
     前記酸化物上の、第1の導電体、及び第2の導電体と、
     前記酸化物上の、第3の絶縁体と、
     前記第3の絶縁体上の、第3の導電体と、を有し、
     前記第2の絶縁体は、前記第1の導電体、及び前記第2の導電体の上に配置され、
     前記第2の絶縁体は、前記酸化物と重なる領域を有する、第1の開口と、前記第2の導電体と重なる領域を有する、第2の開口と、を有し、
     前記第3の絶縁体、及び前記第3の導電体は、前記第1の開口内に配置され、
     前記第1の容量素子は、前記第2の導電体の上面に接する第4の導電体、前記第4の導電体上の第4の絶縁体、及び前記第4の絶縁体上の第5の導電体を有し、
     前記第4の導電体、前記第4の絶縁体、及び前記第5の導電体は、前記第2の開口内に配置され、
     複数の前記層のそれぞれが有する、第3の開口は互いに重なる領域を有し、
     前記第3の開口内に、第6の導電体が配置され、
     前記第6の導電体は、複数の前記層のそれぞれが有する、前記第1の導電体の上面の一部、及び側面の一部と接する領域を有し、
     前記配線は、前記駆動回路と、前記機能回路と、を電気的に接続する機能を有し、
     前記機能回路は、ゲートが、前記メモリセルに電気的に接続された前記第6の導電体に電気的に接続された第2のトランジスタを有し、前記第6の導電体の電位に応じた信号を前記配線に伝える機能を有する、
     記憶装置。
  7.  請求項6において、
     前記層は、さらに、第2のトランジスタ及び第2の容量素子と、を有し、
     前記第2のトランジスタは、前記第1のトランジスタと同様の構造を有し、前記第1のトランジスタに対して、前記第6の導電体を対称軸として、線対称の位置に配置され、
     前記第2の容量素子は、前記第1の容量素子と同様の構造を有し、前記第1の容量素子に対して、前記第6の導電体を対称軸として、線対称の位置に配置される、
     記憶装置。
  8.  請求項1乃至請求項7のいずれか一項において、
     前記第4の導電体の一部、前記第4の絶縁体の一部、及び前記第5の導電体の一部は、前記第3の導電体の上面より上に位置する、
     記憶装置。
  9.  請求項8において、
     前記第3の絶縁体は、前記酸化物の上面及び側面、並びに前記第2の絶縁体が有する前記第1の開口の側壁とそれぞれ接する領域を有する、
     記憶装置。
  10.  請求項8において、
     前記第1の導電体、及び前記第2の導電体は、それぞれ前記酸化物の上面及び側面に接する、
     記憶装置。
  11.  請求項8において、
     前記第4の導電体は、前記第2の絶縁体が有する前記第2の開口の側壁に接する領域を有する、
     記憶装置。
  12.  請求項8において、
     前記第1の絶縁体、前記第2の絶縁体、及び前記第1の導電体に、前記第3の開口が形成され、
     前記第3の開口において、前記第1の導電体の側面は、前記第1の絶縁体の側面及び前記第2の絶縁体の側面より突出している、
     記憶装置。
  13.  請求項8において、
     前記第6の導電体と前記第3の開口の間に、第7の導電体を有し、
     前記第6の導電体は、タングステンを有し、
     前記第7の導電体は、チタンと、窒素と、を有する、
     記憶装置。
  14.  請求項8において、
     前記第2の絶縁体の上面、及び前記第3の導電体の上面に接して、第5の絶縁体を有し、
     前記第5の絶縁体は、前記第2の開口が形成され、
     前記第4の導電体の一部、及び前記第4の絶縁体の一部が、前記第5の絶縁体の上面に接する、
     記憶装置。
PCT/IB2023/050529 2022-02-04 2023-01-23 記憶装置 WO2023148574A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-016431 2022-02-04
JP2022016404 2022-02-04
JP2022-016404 2022-02-04
JP2022016431 2022-02-04

Publications (1)

Publication Number Publication Date
WO2023148574A1 true WO2023148574A1 (ja) 2023-08-10

Family

ID=87553193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2023/050529 WO2023148574A1 (ja) 2022-02-04 2023-01-23 記憶装置

Country Status (2)

Country Link
TW (1) TW202341423A (ja)
WO (1) WO2023148574A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015181159A (ja) * 2014-03-07 2015-10-15 株式会社半導体エネルギー研究所 半導体装置
JP2015188070A (ja) * 2014-03-07 2015-10-29 株式会社半導体エネルギー研究所 半導体装置
WO2020008304A1 (ja) * 2018-07-06 2020-01-09 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
WO2020234689A1 (ja) * 2019-05-23 2020-11-26 株式会社半導体エネルギー研究所 半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015181159A (ja) * 2014-03-07 2015-10-15 株式会社半導体エネルギー研究所 半導体装置
JP2015188070A (ja) * 2014-03-07 2015-10-29 株式会社半導体エネルギー研究所 半導体装置
WO2020008304A1 (ja) * 2018-07-06 2020-01-09 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
WO2020234689A1 (ja) * 2019-05-23 2020-11-26 株式会社半導体エネルギー研究所 半導体装置

Also Published As

Publication number Publication date
TW202341423A (zh) 2023-10-16

Similar Documents

Publication Publication Date Title
KR20220031020A (ko) 반도체 장치 및 반도체 장치의 제작 방법
WO2021144666A1 (ja) 半導体装置、および半導体装置の作製方法
WO2021019334A1 (ja) 半導体装置
WO2020250083A1 (ja) 半導体装置、および半導体装置の作製方法
TW202213796A (zh) 半導體裝置、半導體裝置的製作方法
WO2021090104A1 (ja) 半導体装置およびその作製方法
WO2021084369A1 (ja) 半導体装置
US20220376113A1 (en) Transistor and electronic device
WO2021090116A1 (ja) 半導体装置およびその作製方法
WO2021053450A1 (ja) 半導体装置
US20230023720A1 (en) Semiconductor device and method for manufacturing semiconductor device
US20220416059A1 (en) Semiconductor device
WO2021038361A1 (ja) 半導体装置
WO2023148574A1 (ja) 記憶装置
WO2023152595A1 (ja) 記憶装置
WO2023126741A1 (ja) 半導体装置、記憶装置、及び半導体装置の作製方法
WO2023144654A1 (ja) 電子装置、電子装置の作製方法、半導体装置、半導体装置の作製方法、記憶装置
WO2023094941A1 (ja) 半導体装置
WO2023105339A1 (ja) 半導体装置
WO2023002290A1 (ja) 半導体装置
WO2023281353A1 (ja) トランジスタ
WO2023166374A1 (ja) 半導体装置、及び半導体装置の作製方法
WO2022238794A1 (ja) 半導体装置
WO2023126714A1 (ja) 半導体装置、記憶装置
WO2023166377A1 (ja) 記憶装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749395

Country of ref document: EP

Kind code of ref document: A1