WO2021019334A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2021019334A1
WO2021019334A1 PCT/IB2020/056540 IB2020056540W WO2021019334A1 WO 2021019334 A1 WO2021019334 A1 WO 2021019334A1 IB 2020056540 W IB2020056540 W IB 2020056540W WO 2021019334 A1 WO2021019334 A1 WO 2021019334A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulator
oxide
conductor
region
film
Prior art date
Application number
PCT/IB2020/056540
Other languages
English (en)
French (fr)
Inventor
山崎舜平
笹川慎也
方堂涼太
廣瀬貴史
小松良寛
栃林克明
菅谷健太郎
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to US17/628,296 priority Critical patent/US20220271168A1/en
Priority to JP2021536436A priority patent/JPWO2021019334A1/ja
Priority to CN202080052839.3A priority patent/CN114144894A/zh
Priority to KR1020227004632A priority patent/KR20220039740A/ko
Publication of WO2021019334A1 publication Critical patent/WO2021019334A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • H01L23/53295Stacked insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/70Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates the floating gate being an electrode shared by two or more components

Definitions

  • One aspect of the present invention relates to transistors, semiconductor devices, and electronic devices. Alternatively, one aspect of the present invention relates to a method for manufacturing a semiconductor device. Alternatively, one aspect of the present invention relates to semiconductor wafers and modules.
  • the semiconductor device refers to all devices that can function by utilizing the semiconductor characteristics.
  • a semiconductor device such as a transistor, a semiconductor circuit, an arithmetic unit, and a storage device are one aspect of the semiconductor device. It may be said that a display device (liquid crystal display device, light emission display device, etc.), projection device, lighting device, electro-optical device, power storage device, storage device, semiconductor circuit, image pickup device, electronic device, and the like have a semiconductor device.
  • One aspect of the present invention is not limited to the above technical fields.
  • One aspect of the invention disclosed in the present specification and the like relates to a product, a method, or a manufacturing method.
  • one aspect of the invention relates to a process, machine, manufacture, or composition (composition of matter).
  • a CPU is an aggregate of semiconductor elements having a semiconductor integrated circuit (at least a transistor and a memory) separated from a semiconductor wafer and having electrodes as connection terminals formed therein.
  • IC chips Semiconductor circuits (IC chips) such as LSIs, CPUs, and memories are mounted on circuit boards, for example, printed wiring boards, and are used as one of various electronic device components.
  • a technique for constructing a transistor by using a semiconductor thin film formed on a substrate having an insulating surface is attracting attention.
  • the transistor is widely applied to electronic devices such as integrated circuits (ICs (Integrated Circuits)) and image display devices (also simply referred to as display devices).
  • ICs integrated circuits
  • image display devices also simply referred to as display devices.
  • Silicon-based semiconductor materials are widely known as semiconductor thin films applicable to transistors, but oxide semiconductors are attracting attention as other materials.
  • a transistor using an oxide semiconductor has an extremely small leakage current in a non-conducting state.
  • a low power consumption CPU that applies the characteristic that the leakage current of a transistor using an oxide semiconductor is low is disclosed (see Patent Document 1).
  • a storage device capable of retaining a storage content for a long period of time by applying the characteristic that a transistor using an oxide semiconductor has a low leakage current is disclosed (see Patent Document 2).
  • One aspect of the present invention is to provide a semiconductor device having little variation in transistor characteristics. Alternatively, one aspect of the present invention is to provide a semiconductor device having good reliability. Alternatively, one aspect of the present invention is to provide a semiconductor device having good electrical characteristics. Alternatively, one aspect of the present invention is to provide a semiconductor device having a large on-current. Alternatively, one aspect of the present invention is to provide a semiconductor device capable of miniaturization or high integration. Alternatively, one aspect of the present invention is to provide a semiconductor device having low power consumption.
  • One aspect of the present invention includes an oxide semiconductor, a first conductor on the oxide semiconductor, a second conductor, a first insulator in contact with the upper surface of the first conductor, and a first insulator. It is placed on the second insulator, the first insulator and the second insulator, which are in contact with the upper surface of the second conductor, and overlaps with the region between the first conductor and the second conductor.
  • a third insulator and a fourth insulator arranged on the oxide semiconductor and in the region between the first conductor and the second conductor, and the fourth insulator.
  • a semiconductor device having a third conductor on the insulator, the first insulator, and the second insulator being a metal oxide having an amorphous structure.
  • One aspect of the present invention covers the oxide semiconductor, the first conductor on the oxide semiconductor, the second conductor, the first conductor and the second conductor, and the first conductivity.
  • the first conductor and the second conductor which are arranged on the first insulator and the first insulator, in which an opening is formed so as to overlap the region between the body and the second conductor, are formed.
  • a second insulator having an opening superimposed on the region between the two, and a third conductor arranged on the oxide semiconductor and in the region between the first conductor and the second conductor.
  • a semiconductor device having an insulator and a third conductor on a third insulator, the first insulator being a metal oxide having an amorphous structure.
  • One aspect of the present invention includes an oxide semiconductor, a first conductor on the oxide semiconductor, a second conductor, a first insulator in contact with the upper surface of the first conductor, and a first conductor. It covers the second insulator, the first insulator, and the second conductor, which are in contact with the upper surface of the second conductor, and opens over the region between the first conductor and the second conductor. A fourth, which was placed on top of the third and third conductors in which the was formed, and which was superimposed on the region between the first and second conductors to form an opening. And a fifth conductor arranged on the oxide semiconductor and in the region between the first conductor and the second conductor, and a third conductor on the fifth conductor.
  • the first insulator, the second conductor, and the third insulator are semiconductor devices, which are metal oxides having an amorphous structure.
  • the semiconductor device has a sixth insulator under the oxide semiconductor, a fourth insulator, and a seventh insulator in contact with the upper surface of the third conductor, and the sixth insulator.
  • the insulator and the seventh insulator are preferably metal oxides having an amorphous structure.
  • the semiconductor device has an eighth insulator that covers the seventh insulator and is in contact with the upper surface of the sixth insulator in a region that does not overlap with the fifth insulator.
  • the insulator is preferably a metal oxide having an amorphous structure.
  • the semiconductor device has a ninth insulator in contact with the lower surface of the sixth insulator and a tenth insulator in contact with the upper surface of the seventh insulator, the ninth insulator, and the ninth insulator.
  • the tenth insulator is preferably silicon nitride.
  • the semiconductor device has a dielectric and a fourth conductor, and openings in the second insulator, the third insulator, and the fourth insulator to reach the second conductor. Is formed and the dielectric is placed in the opening and is in contact with the top surface of the second conductor, the side surface of the second insulator, the side surface of the third insulator, and the side surface of the fourth insulator.
  • the fourth conductor is preferably arranged in the opening and in contact with the upper surface of the dielectric.
  • the semiconductor device is arranged between the first insulator and the third insulator arranged between the first insulator and the third insulator, and between the second insulator and the third insulator. It has a second nitride insulator, and the first nitride insulator and the second nitride insulator are preferably silicon nitride.
  • the upper surface of the first insulator and the upper surface of the second insulator are in contact with the third insulator.
  • the metal oxide having an amorphous structure is preferably AlO x (x is an arbitrary number larger than 0).
  • one aspect of the present invention it is possible to provide a semiconductor device having little variation in transistor characteristics.
  • one aspect of the present invention can provide a semiconductor device with good reliability.
  • one aspect of the present invention can provide a semiconductor device having good electrical characteristics.
  • one aspect of the present invention can provide a semiconductor device having a large on-current.
  • one aspect of the present invention can provide a semiconductor device capable of miniaturization or high integration.
  • one aspect of the present invention can provide a low power consumption semiconductor device.
  • FIG. 1A is a top view of a semiconductor device according to an aspect of the present invention.
  • 1B to 1D are cross-sectional views of a semiconductor device according to an aspect of the present invention.
  • FIG. 2 is a cross-sectional view of a semiconductor device according to an aspect of the present invention.
  • FIG. 3A is a diagram illustrating classification of the crystal structure of IGZO.
  • FIG. 3B is a diagram illustrating an XRD spectrum of a CAAC-IGZO film.
  • FIG. 3C is a diagram for explaining the microelectron diffraction pattern of the CAAC-IGZO film.
  • FIG. 4A is a top view showing a method for manufacturing a semiconductor device according to an aspect of the present invention.
  • FIG. 4B to 4D are cross-sectional views showing a method of manufacturing a semiconductor device according to an aspect of the present invention.
  • FIG. 5A is a top view showing a method for manufacturing a semiconductor device according to an aspect of the present invention.
  • 5B to 5D are cross-sectional views showing a method of manufacturing a semiconductor device according to an aspect of the present invention.
  • FIG. 6A is a top view showing a method for manufacturing a semiconductor device according to an aspect of the present invention.
  • 6B to 6D are cross-sectional views showing a method of manufacturing a semiconductor device according to an aspect of the present invention.
  • FIG. 7A is a top view showing a method for manufacturing a semiconductor device according to an aspect of the present invention.
  • FIG. 7B to 7D are cross-sectional views showing a method of manufacturing a semiconductor device according to an aspect of the present invention.
  • FIG. 8A is a top view showing a method for manufacturing a semiconductor device according to an aspect of the present invention.
  • 8B to 8D are cross-sectional views showing a method of manufacturing a semiconductor device according to an aspect of the present invention.
  • FIG. 9A is a top view showing a method for manufacturing a semiconductor device according to an aspect of the present invention.
  • 9B to 9D are cross-sectional views showing a method of manufacturing a semiconductor device according to an aspect of the present invention.
  • FIG. 10A is a top view showing a method for manufacturing a semiconductor device according to an aspect of the present invention.
  • FIG. 10B to 10D are cross-sectional views showing a method of manufacturing a semiconductor device according to an aspect of the present invention.
  • FIG. 11A is a top view showing a method for manufacturing a semiconductor device according to an aspect of the present invention.
  • 11B to 11D are cross-sectional views showing a method of manufacturing a semiconductor device according to an aspect of the present invention.
  • FIG. 12A is a top view showing a method for manufacturing a semiconductor device according to an aspect of the present invention.
  • 12B to 12D are cross-sectional views showing a method of manufacturing a semiconductor device according to an aspect of the present invention.
  • FIG. 13A is a top view showing a method for manufacturing a semiconductor device according to an aspect of the present invention.
  • FIG. 13B to 13D are cross-sectional views showing a method of manufacturing a semiconductor device according to an aspect of the present invention.
  • FIG. 14A is a top view showing a method for manufacturing a semiconductor device according to an aspect of the present invention.
  • 14B to 14D are cross-sectional views showing a method of manufacturing a semiconductor device according to an aspect of the present invention.
  • FIG. 15A is a top view showing a method for manufacturing a semiconductor device according to an aspect of the present invention.
  • 15B to 15D are cross-sectional views showing a method of manufacturing a semiconductor device according to an aspect of the present invention.
  • FIG. 16A is a top view showing a method for manufacturing a semiconductor device according to an aspect of the present invention.
  • FIG. 16B to 16D are cross-sectional views showing a method of manufacturing a semiconductor device according to an aspect of the present invention.
  • FIG. 17 is a top view illustrating a microwave processing apparatus according to an aspect of the present invention.
  • FIG. 18 is a cross-sectional view illustrating a microwave processing apparatus according to an aspect of the present invention.
  • FIG. 19 is a cross-sectional view illustrating a microwave processing apparatus according to an aspect of the present invention.
  • FIG. 20A is a top view of a semiconductor device according to an aspect of the present invention.
  • 20B to 20D are cross-sectional views of a semiconductor device according to an aspect of the present invention.
  • FIG. 21A is a top view of a semiconductor device according to an aspect of the present invention.
  • FIG. 21B to 21D are cross-sectional views of a semiconductor device according to an aspect of the present invention.
  • FIG. 22A is a top view of a semiconductor device according to an aspect of the present invention.
  • 22B to 22D are cross-sectional views of a semiconductor device according to an aspect of the present invention.
  • FIG. 23A is a top view of a semiconductor device according to an aspect of the present invention.
  • 23B to 23D are cross-sectional views of a semiconductor device according to an aspect of the present invention.
  • 24A and 24B are cross-sectional views of the semiconductor device according to one aspect of the present invention.
  • FIG. 25 is a cross-sectional view showing the configuration of the storage device according to one aspect of the present invention.
  • FIG. 26 is a cross-sectional view showing the configuration of a storage device according to one aspect of the present invention.
  • 27A and 27B are cross-sectional views of the semiconductor device according to one aspect of the present invention.
  • 28A and 28B are cross-sectional views of the semiconductor device according to one aspect of the present invention.
  • FIG. 29 is a cross-sectional view of the semiconductor device according to one aspect of the present invention.
  • FIG. 30 is a cross-sectional view of the semiconductor device according to one aspect of the present invention.
  • FIG. 31A is a block diagram showing a configuration example of a storage device according to an aspect of the present invention.
  • FIG. 31B is a schematic view showing a configuration example of a storage device according to one aspect of the present invention.
  • FIG. 32A to 32H are circuit diagrams showing a configuration example of a storage device according to one aspect of the present invention.
  • FIG. 33 is a diagram showing various storage devices for each layer.
  • FIG. 34A is a block diagram of the semiconductor device according to one aspect of the present invention.
  • FIG. 34B is a schematic view of the semiconductor device according to one aspect of the present invention.
  • 35A and 35B are diagrams illustrating an example of an electronic component.
  • 36A to 36E are schematic views of a storage device according to an aspect of the present invention.
  • 37A to 37H are diagrams showing an electronic device according to an aspect of the present invention.
  • 38A to 38C are schematic views illustrating a method of calculating an operating frequency according to the present embodiment.
  • FIG. 39A is a diagram showing the electrical characteristics of the sample according to this embodiment.
  • FIG. 39B is a diagram showing the result of calculating the operating frequency of the sample according to this embodiment.
  • 40A and 40B are diagrams showing the stress time dependence of ⁇ Vsh in the + GBT stress test according to this example.
  • FIG. 41 is a schematic diagram of a sample according to this embodiment.
  • FIG. 42A is a TEM image according to this embodiment.
  • FIG. 42B is an FFT image according to this embodiment.
  • FIG. 43A is a TEM image according to this embodiment.
  • FIG. 43B is an FFT image according to this embodiment.
  • FIG. 44A is a TEM image according to this embodiment.
  • FIG. 44B is an FFT image according to this embodiment.
  • FIG. 45 is a diagram showing the deuterium concentration of the sample according to this example.
  • the size, layer thickness, or area may be exaggerated for clarity. Therefore, it is not necessarily limited to that scale.
  • the drawings schematically show ideal examples, and are not limited to the shapes or values shown in the drawings. For example, in an actual manufacturing process, layers, resist masks, and the like may be unintentionally reduced due to processing such as etching, but they may not be reflected in the figure for the sake of easy understanding. Further, in the drawings, the same reference numerals may be used in common between different drawings for the same parts or parts having similar functions, and the repeated description thereof may be omitted. Further, when referring to the same function, the hatch pattern may be the same and no particular sign may be added.
  • a top view also referred to as a "plan view”
  • a perspective view the description of some components may be omitted.
  • some hidden lines may be omitted.
  • the ordinal numbers attached as the first, second, etc. are used for convenience, and do not indicate the process order or the stacking order. Therefore, for example, the "first” can be appropriately replaced with the “second” or “third” for explanation.
  • the ordinal numbers described in the present specification and the like may not match the ordinal numbers used to specify one aspect of the present invention.
  • X and Y are connected, the case where X and Y are electrically connected and the case where X and Y function. It is assumed that the case where X and Y are directly connected and the case where X and Y are directly connected are disclosed in the present specification and the like. Therefore, it is not limited to the predetermined connection relationship, for example, the connection relationship shown in the figure or text, and other than the connection relationship shown in the figure or text, it is assumed that the connection relationship is disclosed in the figure or text.
  • X and Y are assumed to be objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, etc.).
  • a transistor is an element having at least three terminals including a gate, a drain, and a source. It also has a region (hereinafter, also referred to as a channel forming region) in which a channel is formed between the drain (drain terminal, drain region or drain electrode) and the source (source terminal, source region or source electrode). A current can flow between the source and the drain through the channel formation region.
  • the channel forming region means a region in which a current mainly flows.
  • source and drain may be interchanged with each other. Therefore, in the present specification and the like, the terms source and drain may be used interchangeably.
  • the channel length is, for example, the source in the top view of the transistor, the region where the semiconductor (or the portion where the current flows in the semiconductor when the transistor is on) and the gate electrode overlap each other, or the channel formation region.
  • the channel length does not always take the same value in all regions. That is, the channel length of one transistor may not be fixed to one value. Therefore, in the present specification, the channel length is set to any one value, the maximum value, the minimum value, or the average value in the channel formation region.
  • the channel width is, for example, the channel length direction in the region where the semiconductor (or the portion where the current flows in the semiconductor when the transistor is on) and the gate electrode overlap each other in the top view of the transistor, or in the channel formation region. Refers to the length of the channel formation region in the vertical direction with reference to. In one transistor, the channel width does not always take the same value in all regions. That is, the channel width of one transistor may not be fixed to one value. Therefore, in the present specification, the channel width is set to any one value, the maximum value, the minimum value, or the average value in the channel formation region.
  • the channel width in the region where the channel is actually formed (hereinafter, also referred to as “effective channel width”) and the channel width shown in the top view of the transistor. (Hereinafter, also referred to as “apparent channel width”) and may be different.
  • the effective channel width may be larger than the apparent channel width, and the influence thereof may not be negligible.
  • the proportion of the channel forming region formed on the side surface of the semiconductor may be large. In that case, the effective channel width is larger than the apparent channel width.
  • channel width may refer to the apparent channel width.
  • channel width may refer to an effective channel width.
  • the channel length, channel width, effective channel width, apparent channel width, and the like can be determined by analyzing a cross-sectional TEM image or the like.
  • the semiconductor impurity means, for example, a component other than the main components constituting the semiconductor.
  • an element having a concentration of less than 0.1 atomic% can be said to be an impurity. Due to the inclusion of impurities, for example, the defect level density of the semiconductor may increase or the crystallinity may decrease.
  • the impurities that change the characteristics of the semiconductor include, for example, Group 1 elements, Group 2 elements, Group 13 elements, Group 14 elements, Group 15 elements, and oxide semiconductors.
  • transition metals other than the main component such as hydrogen, lithium, sodium, silicon, boron, phosphorus, carbon, and nitrogen. Water may also function as an impurity.
  • the oxide semiconductor to an oxygen vacancy V O: also referred to as oxygen vacancy
  • the oxide nitride has a higher oxygen content than nitrogen as its composition.
  • silicon oxide has a higher oxygen content than nitrogen in its composition.
  • the nitride oxide has a higher nitrogen content than oxygen in its composition.
  • silicon nitride has a higher nitrogen content than oxygen in its composition.
  • the term “insulator” can be paraphrased as an insulating film or an insulating layer.
  • the term “conductor” can be rephrased as a conductive film or a conductive layer.
  • semiconductor can be paraphrased as a semiconductor film or a semiconductor layer.
  • parallel means a state in which two straight lines are arranged at an angle of -10 degrees or more and 10 degrees or less. Therefore, the case of -5 degrees or more and 5 degrees or less is also included.
  • approximately parallel means a state in which two straight lines are arranged at an angle of -30 degrees or more and 30 degrees or less.
  • vertical means a state in which two straight lines are arranged at an angle of 80 degrees or more and 100 degrees or less. Therefore, the case of 85 degrees or more and 95 degrees or less is also included.
  • approximately vertical means a state in which two straight lines are arranged at an angle of 60 degrees or more and 120 degrees or less.
  • a metal oxide is a metal oxide in a broad sense. Metal oxides are classified into oxide insulators, oxide conductors (including transparent oxide conductors), oxide semiconductors (also referred to as Oxide Semiconductor or simply OS) and the like. For example, when a metal oxide is used in the semiconductor layer of a transistor, the metal oxide may be referred to as an oxide semiconductor. That is, when it is described as an OS transistor, it can be rephrased as a transistor having a metal oxide or an oxide semiconductor.
  • normally off means that when a potential is not applied to the gate or a ground potential is applied to the gate, the drain current per 1 ⁇ m of the channel width flowing through the transistor is 1 ⁇ 10 ⁇ at room temperature. It means that it is 20 A or less, 1 ⁇ 10 -18 A or less at 85 ° C, or 1 ⁇ 10 -16 A or less at 125 ° C.
  • FIG. 1A is a top view of the semiconductor device.
  • 1B to 1D are cross-sectional views of the semiconductor device.
  • FIG. 1B is a cross-sectional view of the portion shown by the alternate long and short dash line of A1-A2 in FIG. 1A, and is also a cross-sectional view of the transistor 200 in the channel length direction.
  • FIG. 1C is a cross-sectional view of the portion shown by the alternate long and short dash line of A3-A4 in FIG. 1A, and is also a cross-sectional view of the transistor 200 in the channel width direction.
  • FIG. 1D is a cross-sectional view of the portion shown by the alternate long and short dash line in FIG. 1A.
  • some elements are omitted for the purpose of clarifying the figure.
  • the semiconductor device of one aspect of the present invention includes an insulator 212 on a substrate (not shown), an insulator 214 on the insulator 212, a transistor 200 on the insulator 214, and an insulator 280 on the transistor 200. It has an insulator 282 on an insulator 280 and an insulator 283 on an insulator 282.
  • the insulator 212, the insulator 214, the insulator 280, the insulator 282, and the insulator 283 function as an interlayer film. Further, it has a conductor 240 (conductor 240a and conductor 240b) that is electrically connected to the transistor 200 and functions as a plug.
  • An insulator 241 (insulator 241a and insulator 241b) is provided in contact with the side surface of the conductor 240 that functions as a plug. Further, on the insulator 283 and on the conductor 240, a conductor 246 (conductor 246a and a conductor 246b) that is electrically connected to the conductor 240 and functions as wiring is provided. Further, an insulator 286 is provided on the conductor 246 and the insulator 283.
  • the insulator 241a is provided in contact with the inner wall of the opening of the insulator 280, the insulator 282, and the insulator 283, and the first conductor of the conductor 240a is provided in contact with the side surface of the insulator 241a, and further inside.
  • a second conductor of the conductor 240a is provided.
  • the insulator 241b is provided in contact with the inner wall of the opening of the insulator 280, the insulator 282, and the insulator 283, and the first conductor of the conductor 240b is provided in contact with the side surface of the insulator 241b.
  • a second conductor of the conductor 240b is provided inside.
  • the height of the upper surface of the conductor 240 and the height of the upper surface of the insulator 283 in the region overlapping the conductor 246 can be made about the same.
  • the transistor 200 shows a configuration in which the first conductor of the conductor 240 and the second conductor of the conductor 240 are laminated, but the present invention is not limited to this.
  • the conductor 240 may be provided as a single layer or a laminated structure having three or more layers. When the structure has a laminated structure, an ordinal number may be given in the order of formation to distinguish them.
  • the conductor 200 includes an insulator 216 on the insulator 214 and a conductor 205 (conductor 205a, conductor 205b, and a conductor) arranged so as to be embedded in the insulator 216. 205c), the insulator 222 on the insulator 216 and the conductor 205, the insulator 224 on the insulator 222, the oxide 230a on the insulator 224, and the oxide 230b on the oxide 230a.
  • the oxide 243 (oxide 243a and oxide 243b) on the oxide 230b, the conductor 242a on the oxide 243a, the insulator 271a on the conductor 242a, and the insulator 273a on the insulator 271a.
  • the conductor 242b on the oxide 243b, the conductor 271b on the conductor 242b, the insulator 273b on the insulator 271b, the insulator 250 on the oxide 230b, and the insulator 250 and oxidized.
  • the conductor 260 (conductor 260a and conductor 260b) that overlaps a part of the object 230b, the insulator 272a that contacts the side surface of the oxide 230b, the side surface of the oxide 243a, and the side surface of the conductor 242a, and the oxide 230b.
  • the insulator 272b With the insulator 272b in contact with the side surface, the side surface of the oxide 243b and the side surface of the conductor 242b, and the insulator 225, the insulator 272a, the insulator 272b, the insulator 273a, and the insulator 275 arranged on the insulator 273b.
  • the upper surface of the conductor 260 is substantially aligned in height with at least a part of the upper surface of the insulator 250 and at least a part of the upper surface of the insulator 280. Be placed. Further, the insulator 282 is in contact with at least a part of the upper surfaces of the conductor 260, the insulator 250, and the insulator 280.
  • the oxide 230a and the oxide 230b may be collectively referred to as the oxide 230.
  • the insulator 271a and the insulator 271b may be collectively referred to as an insulator 271.
  • the insulator 272a and the insulator 272b may be collectively referred to as an insulator 272.
  • the insulator 273a and the insulator 273b may be collectively referred to as an insulator 273.
  • the conductor 242a and the conductor 242b may be collectively referred to as a conductor 242.
  • the insulator 280 and the insulator 275 are provided with an opening reaching the oxide 230b.
  • An insulator 250 and a conductor 260 are arranged in the opening. Further, in the channel length direction of the transistor 200, the conductor 260 is between the insulator 271a, the insulator 273a, the conductor 242a and the oxide 243a, and the insulator 271b, the insulator 273b, the conductor 242b and the oxide 243b.
  • an insulator 250 is provided.
  • the insulator 250 has a region in contact with the side surface of the conductor 260 and a region in contact with the bottom surface of the conductor 260.
  • the oxide 230 preferably has an oxide 230a arranged on the insulator 224 and an oxide 230b arranged on the oxide 230a.
  • the oxide 230a By having the oxide 230a under the oxide 230b, it is possible to suppress the diffusion of impurities into the oxide 230b from the structure formed below the oxide 230a.
  • the present invention is not limited to this.
  • a single layer of the oxide 230b or a laminated structure of three or more layers may be provided, or each of the oxide 230a and the oxide 230b may have a laminated structure.
  • the conductor 260 functions as a first gate (also referred to as a top gate) electrode, and the conductor 205 functions as a second gate (also referred to as a back gate) electrode.
  • the insulator 250 functions as a first gate insulator, and the insulator 224 functions as a second gate insulator.
  • the conductor 242a functions as one of the source and the drain, and the conductor 242b functions as the other of the source and the drain. Further, at least a part of the region of the oxide 230 overlapping with the conductor 260 functions as a channel forming region.
  • the oxide 230b includes a region 230bc that functions as a channel forming region of the transistor 200, and a region 230ba and a region 230bb that are provided so as to sandwich the region 230bc and function as a source region or a drain region.
  • the region 230bc overlaps with the conductor 260.
  • the region 230bc is provided in the region between the conductor 242a and the conductor 242b.
  • the region 230ba is provided so as to be superimposed on the conductor 242a, and the region 230bb is provided so as to be superimposed on the conductor 242b.
  • the region 230bc that functions as a channel forming region is a high resistance region having a low carrier concentration because it has less oxygen deficiency or a lower impurity concentration than the regions 230ba and 230bb. Further, the region 230ba and the region 230bb that function as the source region or the drain region have a large amount of oxygen deficiency or a high concentration of impurities such as hydrogen, nitrogen, and metal elements, so that the carrier concentration is increased and the resistance is lowered. It is an area. That is, the region 230ba and the region 230bb are regions having a high carrier concentration and low resistance as compared with the region 230bc.
  • the carrier concentration of the region 230 bc that functions as the channel forming region is preferably 1 ⁇ 10 18 cm -3 or less, more preferably less than 1 ⁇ 10 17 cm -3 , and 1 ⁇ 10 16 cm. It is more preferably less than -3 , still more preferably less than 1 ⁇ 10 13 cm -3 , and even more preferably less than 1 ⁇ 10 12 cm -3 .
  • the lower limit of the carrier concentration in the region 230 bc that functions as the channel formation region is not particularly limited, but may be, for example, 1 ⁇ 10 -9 cm -3 .
  • the carrier concentration is equal to or lower than the carrier concentration of the region 230ba and the region 230bb, and equal to or higher than the carrier concentration of the region 230bb.
  • Regions may be formed. That is, the region functions as a junction region between the region 230bc and the region 230ba or the region 230bb.
  • the hydrogen concentration may be equal to or lower than the hydrogen concentration in the region 230ba and 230bb, and may be equal to or higher than the hydrogen concentration in the region 230bc.
  • the junction region may have an oxygen deficiency equal to or less than that of the region 230ba and 230bb, and may be equal to or greater than that of the region 230bc.
  • FIG. 2 shows an example in which the region 230ba, the region 230bb, and the region 230bc are formed on the oxide 230b, but the present invention is not limited to this.
  • each of the above regions may be formed not only with the oxide 230b but also with the oxide 230a.
  • concentrations of the metal elements detected in each region and the impurity elements such as hydrogen and nitrogen are not limited to the stepwise changes in each region, but may be continuously changed in each region. That is, the closer the region is to the channel formation region, the lower the concentration of metal elements and impurity elements such as hydrogen and nitrogen is sufficient.
  • a metal oxide hereinafter, also referred to as an oxide semiconductor that functions as a semiconductor for the oxide 230 (oxide 230a and oxide 230b) containing the channel forming region.
  • the metal oxide that functions as a semiconductor it is preferable to use a metal oxide having a band gap of 2 eV or more, preferably 2.5 eV or more. As described above, by using a metal oxide having a large bandgap, the off-current of the transistor can be reduced.
  • an In-M-Zn oxide having indium, element M and zinc (element M is aluminum, gallium, yttrium, tin, copper, vanadium, beryllium, boron, titanium, iron, nickel, germanium).
  • Zinc, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, etc. (one or more) and the like may be used.
  • an oxide of In—M oxide, In—Ga oxide, In—Zn oxide, indium oxide, M—Zn oxide, or element M may be used.
  • the atomic number ratio of In to the element M in the metal oxide used for the oxide 230b is larger than the atomic number ratio of In to the element M in the metal oxide used for the oxide 230a.
  • the oxide 230a under the oxide 230b By arranging the oxide 230a under the oxide 230b in this way, it is possible to suppress the diffusion of impurities and oxygen from the structure formed below the oxide 230a to the oxide 230b. ..
  • the oxide 230a and the oxide 230b have a common element (main component) other than oxygen, the defect level density at the interface between the oxide 230a and the oxide 230b can be lowered. Since the defect level density at the interface between the oxide 230a and the oxide 230b can be lowered, the influence of interfacial scattering on carrier conduction is small, and a high on-current can be obtained.
  • each oxide 230b has crystallinity.
  • CAAC-OS c-axis aligned crystalline semiconductor semiconductor
  • CAAC-OS is a metal oxide having a highly crystalline and dense structure and having few impurities and defects (for example, oxygen deficiency ( VO )).
  • the CAAC-OS is subjected to heat treatment at a temperature at which the metal oxide does not undergo polycrystallization (for example, 400 ° C. or higher and 600 ° C. or lower), whereby CAAC-OS has a more crystalline and dense structure. Can be.
  • a temperature at which the metal oxide does not undergo polycrystallization for example, 400 ° C. or higher and 600 ° C. or lower
  • the metal oxide having CAAC-OS has stable physical properties. Therefore, the metal oxide having CAAC-OS is resistant to heat and has high reliability.
  • Transistors using oxide semiconductors may have poor electrical characteristics and poor reliability if impurities and oxygen deficiencies are present in the region where channels are formed in the oxide semiconductor.
  • the hydrogen of oxygen vacancies near defects containing the hydrogen to the oxygen deficiency (hereinafter, may be referred to as V O H.)
  • V O H defects containing the hydrogen to the oxygen deficiency
  • the transistor has normal-on characteristics (the channel exists even if no voltage is applied to the gate electrode, and the current is applied to the transistor. Flowing characteristics). Therefore, in the region where a channel of the oxide semiconductor is formed, impurities, oxygen deficiency, and V O H it is preferred to be reduced as much as possible.
  • the region in which the channel is formed in the oxide semiconductor is preferably i-type (intrinsicized) or substantially i-type with a reduced carrier concentration.
  • excess oxygen an insulator containing oxygen desorbed by heating
  • the oxide semiconductor is separated from the insulator.
  • oxygen is supplied, it is possible to reduce oxygen vacancies, and V O H to.
  • the on-current of the transistor 200 may decrease or the field effect mobility may decrease.
  • the oxygen supplied to the source region or the drain region varies in the surface of the substrate, so that the characteristics of the semiconductor device having the transistor vary.
  • the region 230bc that functions as a channel forming region preferably has a reduced carrier concentration and is i-type or substantially i-type, but the region 230ba that functions as a source region or drain region and
  • the region 230bb has a high carrier concentration and is preferably n-type.
  • the oxygen deficiency in the oxide semiconductor region 230Bc, and reduces V O H it is preferred that an excess amount of oxygen in the region 230ba and region 230bb to not be supplied.
  • the microwave processing refers to processing using, for example, a device having a power source that generates high-density plasma using microwaves.
  • oxygen gas By performing microwave treatment in an atmosphere containing oxygen, oxygen gas can be turned into plasma using microwaves or high frequencies such as RF, and the oxygen plasma can be allowed to act. At this time, the region 230bc can be irradiated with a high frequency such as microwave or RF. Plasma, by the action such as a microwave, and divide the V O H region 230Bc, hydrogen H is removed from the region 230Bc, it is possible to fill oxygen vacancies V O in oxygen. That is, in the region 230Bc, happening reaction of "V O H ⁇ H + V O", it is possible to reduce the hydrogen concentration in the regions 230Bc. Therefore, to reduce oxygen vacancies, and V O H in the region 230Bc, the carrier concentration can be decreased.
  • the action of microwaves, high frequencies such as RF, oxygen plasma, etc. is shielded by the conductors 242a and 242b and does not reach the regions 230ba and 230bb. ..
  • the action of the oxygen plasma can be reduced by the insulator 271, the insulator 273, the insulator 275, and the insulator 280, which are provided so as to cover the oxide 230b and the conductor 242.
  • the region 230ba and area 230Bb, reduction of V O H, and excessive amount of oxygen supply does not occur, it is possible to prevent a decrease in carrier concentration.
  • the oxide selectively oxygen deficiency in the semiconductor region 230Bc, a and V O H may be removed to an area 230Bc i-type or substantially i-type. Further, it is possible to suppress the supply of excess oxygen to the region 230ba and the region 230bb that function as the source region or the drain region, and maintain the n-type. As a result, fluctuations in the electrical characteristics of the transistor 200 can be suppressed, and variations in the electrical characteristics of the transistor 200 within the substrate surface can be suppressed.
  • the side surface of the opening in which the conductor 260 and the like are embedded is substantially perpendicular to the surface to be formed of the oxide 230b, including the groove portion of the oxide 230b. It is not limited to this.
  • the bottom of the opening may have a gently curved surface and may have a U-shape.
  • the side surface of the opening may be inclined with respect to the surface to be formed of the oxide 230b.
  • a curved surface may be provided between the side surface of the oxide 230b and the upper surface of the oxide 230b in a cross-sectional view of the transistor 200 in the channel width direction. That is, the end of the side surface and the end of the upper surface may be curved (also referred to as a round shape).
  • the radius of curvature on the curved surface is preferably larger than 0 nm, smaller than the film thickness of the oxide 230b in the region overlapping the conductor 242, or smaller than half the length of the region having no curved surface.
  • the radius of curvature on the curved surface is larger than 0 nm and 20 nm or less, preferably 1 nm or more and 15 nm or less, and more preferably 2 nm or more and 10 nm or less.
  • the oxide 230 preferably has a laminated structure of a plurality of oxide layers having different chemical compositions.
  • the atomic number ratio of the element M to the metal element as the main component is the ratio of the element M to the metal element as the main component in the metal oxide used for the oxide 230b. It is preferably larger than the atomic number ratio.
  • the atomic number ratio of the element M to In is preferably larger than the atomic number ratio of the element M to In in the metal oxide used for the oxide 230b.
  • the atomic number ratio of In to the element M is preferably larger than the atomic number ratio of In to the element M in the metal oxide used for the oxide 230a.
  • the oxide 230b is preferably an oxide having crystallinity such as CAAC-OS.
  • Crystalline oxides such as CAAC-OS have few impurities and defects (oxygen deficiency, etc.), and have a highly crystalline and dense structure. Therefore, it is possible to suppress the extraction of oxygen from the oxide 230b by the source electrode or the drain electrode. As a result, oxygen can be reduced from being extracted from the oxide 230b even if heat treatment is performed, so that the transistor 200 is stable against a high temperature (so-called thermal budget) in the manufacturing process.
  • the lower end of the conduction band changes gently.
  • the lower end of the conduction band at the junction between the oxide 230a and the oxide 230b is continuously changed or continuously bonded. In order to do so, it is preferable to reduce the defect level density of the mixed layer formed at the interface between the oxide 230a and the oxide 230b.
  • the oxide 230a and the oxide 230b have a common element other than oxygen as a main component, a mixed layer having a low defect level density can be formed.
  • the oxide 230b is an In-M-Zn oxide
  • the oxide 230a is an In-M-Zn oxide, an M-Zn oxide, an element M oxide, an In-Zn oxide, or an indium oxide. Etc. may be used.
  • a metal oxide having a composition in the vicinity thereof may be used.
  • a metal oxide having a composition may be used.
  • the composition in the vicinity includes a range of ⁇ 30% of the desired atomic number ratio.
  • the above atomic number ratio is not limited to the atomic number ratio of the formed metal oxide, but is the atomic number ratio of the sputtering target used for forming the metal oxide. It may be.
  • the defect level density at the interface between the oxide 230a and the oxide 230b can be lowered. Therefore, the influence of interfacial scattering on carrier conduction is reduced, and the transistor 200 can obtain a large on-current and high frequency characteristics.
  • At least one of the insulator 212, the insulator 214, the insulator 271, the insulator 272, the insulator 275, the insulator 282, the insulator 283, and the insulator 286 has impurities such as water and hydrogen from the substrate side or , It is preferable to function as a barrier insulating film that suppresses diffusion from above the transistor 200 to the transistor 200. Therefore, at least one of the insulator 212, the insulator 214, the insulator 271, the insulator 272, the insulator 275, the insulator 282, the insulator 283, and the insulator 286 is a hydrogen atom, a hydrogen molecule, a water molecule, and a nitrogen atom.
  • molecular nitrogen, nitric oxide molecule (N 2 O, NO, etc. NO 2), it has a function of suppressing the diffusion of impurities such as copper atoms (hardly the impurity is transmitted) it is preferable to use an insulating material.
  • an insulating material having a function of suppressing the diffusion of oxygen for example, at least one oxygen atom, oxygen molecule, etc. (the oxygen is difficult to permeate).
  • the barrier insulating film refers to an insulating film having a barrier property.
  • the barrier property refers to a function of suppressing the diffusion of the corresponding substance (also referred to as low permeability). Alternatively, it refers to the function of capturing and fixing (also called gettering) the corresponding substance.
  • the insulator 212, insulator 214, insulator 271, insulator 272, insulator 275, insulator 282, insulator 283, and insulator 286 have a function of suppressing the diffusion of impurities such as water and hydrogen, and oxygen. It is preferable to use an insulator having the above, and for example, aluminum oxide, magnesium oxide, hafnium oxide, gallium oxide, indium gallium zinc oxide, silicon nitride, silicon nitride and the like can be used. For example, as the insulator 212, the insulator 272, the insulator 283, and the insulator 286, it is preferable to use silicon nitride or the like having a higher hydrogen barrier property.
  • the insulator 214 it is preferable to use aluminum oxide or magnesium oxide having a high function of capturing hydrogen and fixing hydrogen.
  • impurities such as water and hydrogen from diffusing from the substrate side to the transistor 200 side via the insulator 212 and the insulator 214.
  • impurities such as water and hydrogen from diffusing to the transistor 200 side from the interlayer insulating film or the like arranged outside the insulator 286.
  • the transistor 200 is insulated from the insulator 212, the insulator 214, the insulator 271, the insulator 272, the insulator 275, the insulator 282, and the insulator having a function of suppressing the diffusion of impurities such as water and hydrogen and oxygen. It is preferable that the structure is surrounded by the body 283 and the insulator 286.
  • a metal oxide such as AlO x (x is an arbitrary number larger than 0) or MgO y (y is an arbitrary number larger than 0).
  • an oxygen atom has a dangling bond, and the dangling bond may have a property of capturing or fixing hydrogen.
  • a metal oxide having such an amorphous structure as a component of the transistor 200 or providing it around the transistor 200, hydrogen contained in the transistor 200 or hydrogen existing around the transistor 200 is captured or fixed. be able to. In particular, it is preferable to capture or fix hydrogen contained in the channel forming region of the transistor 200.
  • a metal oxide having an amorphous structure as a component of the transistor 200 or providing it around the transistor 200, the transistor 200 having good characteristics and high reliability and a semiconductor device can be manufactured.
  • the insulator 212, the insulator 214, the insulator 271, the insulator 272, the insulator 275, the insulator 282, the insulator 283, and the insulator 286 preferably have an amorphous structure, but some of them are polycrystal. Areas of structure may be formed. Further, the insulator 212, the insulator 214, the insulator 271, the insulator 272, the insulator 275, the insulator 282, the insulator 283, and the insulator 286 have a layer having an amorphous structure and a layer having a polycrystalline structure. It may have a laminated multi-layer structure. For example, it may be a laminated structure in which a layer having a polycrystalline structure is formed on a layer having an amorphous structure.
  • the film formation of the insulator 212, the insulator 214, the insulator 271, the insulator 272, the insulator 275, the insulator 282, the insulator 283, and the insulator 286 may be performed by using, for example, a sputtering method. Since hydrogen does not have to be used as the film forming gas in the sputtering method, hydrogen in the insulator 212, the insulator 214, the insulator 271, the insulator 272, the insulator 275, the insulator 282, the insulator 283, and the insulator 286. The concentration can be reduced.
  • the film forming method is not limited to the sputtering method, but is limited to a chemical vapor deposition (CVD) method, a molecular beam epitaxy (MBE) method, and a pulsed laser deposition (PLD: Pulsed Laser Deposition) method.
  • CVD chemical vapor deposition
  • MBE molecular beam epitaxy
  • PLD pulsed laser deposition
  • Method atomic layer deposition (ALD: Atomic Layer Deposition) method and the like may be appropriately used.
  • the resistivity of the insulator 212, the insulator 283, and the insulator 286 may be preferable to reduce the resistivity of the insulator 212, the insulator 283, and the insulator 286.
  • the resistivity of the insulator 212, the insulator 283, and the insulator 286 is preferably 1 ⁇ 10 10 ⁇ cm or more and 1 ⁇ 10 15 ⁇ cm or less.
  • the insulator 216 and the insulator 280 have a lower dielectric constant than the insulator 214.
  • a material having a low dielectric constant as an interlayer film, it is possible to reduce the parasitic capacitance generated between the wirings.
  • the conductor 205 is arranged so as to overlap the oxide 230 and the conductor 260.
  • the conductor 205 is embedded in the opening formed in the insulator 216.
  • a part of the conductor 205 may be provided so as to be embedded in the insulator 214.
  • the conductor 205 has a conductor 205a, a conductor 205b, and a conductor 205c.
  • the conductor 205a is provided in contact with the bottom surface and the side wall of the opening.
  • the conductor 205b is provided so as to be embedded in the recess formed in the conductor 205a.
  • the upper surface of the conductor 205b is lower than the upper surface of the conductor 205a and the upper surface of the insulator 216.
  • the conductor 205c is provided in contact with the upper surface of the conductor 205b and the side surface of the conductor 205a.
  • the height of the upper surface of the conductor 205c is substantially the same as the height of the upper surface of the conductor 205a and the height of the upper surface of the insulator 216. That is, the conductor 205b is wrapped in the conductor 205a and the conductor 205c.
  • the conductors 205a and conductors 205c are hydrogen atoms, hydrogen molecules, water molecules, nitrogen atom, a nitrogen molecule, nitric oxide molecule (N 2 O, NO, etc. NO 2), the diffusion of impurities such as copper atoms It is preferable to use a conductive material having a suppressing function. Alternatively, it is preferable to use a conductive material having a function of suppressing the diffusion of oxygen (for example, at least one oxygen atom, oxygen molecule, etc.).
  • the conductor 205a By using a conductive material having a function of reducing the diffusion of hydrogen for the conductor 205a and the conductor 205c, impurities such as hydrogen contained in the conductor 205b are transferred to the oxide 230 via the insulator 224 and the like. It can be prevented from spreading. Further, by using a conductive material having a function of suppressing the diffusion of oxygen for the conductor 205a and the conductor 205c, it is possible to prevent the conductor 205b from being oxidized and the conductivity from being lowered.
  • the conductive material having a function of suppressing the diffusion of oxygen for example, titanium, titanium nitride, tantalum, tantalum nitride, ruthenium, ruthenium oxide and the like are preferably used. Therefore, as the conductor 205a, the conductive material may be a single layer or a laminated material. For example, titanium nitride may be used for the conductor 205a.
  • the conductor 205b it is preferable to use a conductive material containing tungsten, copper, or aluminum as a main component.
  • tungsten may be used for the conductor 205b.
  • the conductor 205 may function as a second gate electrode.
  • the threshold voltage (Vth) of the transistor 200 can be controlled by changing the potential applied to the conductor 205 independently of the potential applied to the conductor 260 without interlocking with it.
  • Vth threshold voltage
  • the electrical resistivity of the conductor 205 is designed in consideration of the potential applied to the conductor 205, and the film thickness of the conductor 205 is set according to the electrical resistivity. Further, the film thickness of the insulator 216 is almost the same as that of the conductor 205. Here, it is preferable to reduce the film thickness of the conductor 205 and the insulator 216 within the range allowed by the design of the conductor 205. By reducing the film thickness of the insulator 216, the absolute amount of impurities such as hydrogen contained in the insulator 216 can be reduced, so that the impurities can be reduced from diffusing into the oxide 230. ..
  • the conductor 205 may be provided larger than the size of the region that does not overlap with the conductor 242a and the conductor 242b of the oxide 230.
  • the conductor 205 is also stretched in a region outside the end portion of the oxide 230a and the oxide 230b intersecting the channel width direction. That is, it is preferable that the conductor 205 and the conductor 260 are superposed on each other via an insulator on the outside of the side surface of the oxide 230 in the channel width direction.
  • the channel forming region of the oxide 230 is electrically surrounded by the electric field of the conductor 260 that functions as the first gate electrode and the electric field of the conductor 205 that functions as the second gate electrode. Can be done.
  • the structure of the transistor that electrically surrounds the channel forming region by the electric fields of the first gate and the second gate is referred to as a surroundd channel (S-channel) structure.
  • the transistor having the S-channel structure represents the structure of the transistor that electrically surrounds the channel formation region by the electric fields of one and the other of the pair of gate electrodes.
  • the S-channel structure disclosed in the present specification and the like is different from the Fin type structure and the planar type structure.
  • the conductor 205 is stretched to function as wiring.
  • the present invention is not limited to this, and a conductor that functions as wiring may be provided under the conductor 205. Further, it is not always necessary to provide one conductor 205 for each transistor. For example, the conductor 205 may be shared by a plurality of transistors.
  • the conductor 205 shows a configuration in which the conductor 205a, the conductor 205b, and the conductor 205c are laminated, but the present invention is not limited to this.
  • the conductor 205 may be provided as a single-layer, two-layer, or four-layer or higher laminated structure. For example, it may have a two-layer structure of the conductor 205a and the conductor 205b.
  • the insulator 222 and the insulator 224 function as gate insulators.
  • the insulator 222 has a function of suppressing the diffusion of hydrogen (for example, at least one hydrogen atom, hydrogen molecule, etc.). Further, the insulator 222 preferably has a function of suppressing the diffusion of oxygen (for example, at least one oxygen atom, oxygen molecule, etc.). For example, the insulator 222 preferably has a function of suppressing the diffusion of one or both of hydrogen and oxygen more than the insulator 224.
  • the insulator 222 it is preferable to use an insulator containing oxides of one or both of aluminum and hafnium, which are insulating materials.
  • the insulator it is preferable to use aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate) and the like.
  • the insulator 222 releases oxygen from the oxide 230 to the substrate side and diffuses impurities such as hydrogen from the peripheral portion of the transistor 200 to the oxide 230. Functions as a layer that suppresses.
  • the insulator 222 it is possible to suppress the diffusion of impurities such as hydrogen into the inside of the transistor 200 and suppress the generation of oxygen deficiency in the oxide 230. Further, it is possible to suppress the conductor 205 from reacting with the oxygen contained in the insulator 224 and the oxide 230.
  • aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, and zirconium oxide may be added to the insulator.
  • these insulators may be nitrided.
  • the insulator 222 may be used by laminating silicon oxide, silicon oxide or silicon nitride on these insulators.
  • the insulator 222 includes, for example, aluminum oxide, hafnium oxide, tantalum oxide, zirconate oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ), (Ba, Sr) TiO 3 (BST) and the like. Insulators containing so-called high-k materials may be used in single layers or in layers. As the miniaturization and high integration of transistors progress, problems such as leakage current may occur due to the thinning of the gate insulator. By using a high-k material for an insulator that functions as a gate insulator, it is possible to reduce the gate potential during transistor operation while maintaining the physical film thickness.
  • the insulator 224 in contact with the oxide 230 preferably contains excess oxygen (desorbs oxygen by heating).
  • excess oxygen desorbs oxygen by heating
  • silicon oxide, silicon oxide nitride, or the like may be appropriately used for the insulator 224.
  • an oxide material in which a part of oxygen is desorbed by heating in other words, an insulator material having an excess oxygen region.
  • Oxides that desorb oxygen by heating are those in which the amount of desorbed oxygen molecules is 1.0 ⁇ 10 18 molecules / cm 3 or more, preferably 1.0 ⁇ 10 19 molecules, as determined by TDS (Thermal Desolation Spectropy) analysis.
  • the surface temperature of the film during the TDS analysis is preferably in the range of 100 ° C. or higher and 700 ° C. or lower, or 100 ° C. or higher and 400 ° C. or lower.
  • the heat treatment may be performed, for example, at 100 ° C. or higher and 600 ° C. or lower, more preferably 350 ° C. or higher and 550 ° C. or lower.
  • the heat treatment is carried out in an atmosphere of nitrogen gas or an inert gas, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas.
  • the heat treatment is preferably performed in an oxygen atmosphere.
  • oxygen can be supplied to the oxide 230 to reduce oxygen deficiency ( VO ).
  • the heat treatment may be performed in a reduced pressure state.
  • the heat treatment may be carried out in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of oxidizing gas in order to supplement the desorbed oxygen after the heat treatment in an atmosphere of nitrogen gas or an inert gas.
  • the heat treatment may be performed in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of the oxidizing gas, and then the heat treatment may be continuously performed in an atmosphere of nitrogen gas or an inert gas.
  • the insulator 222 and the insulator 224 may have a laminated structure of two or more layers.
  • the laminated structure is not limited to the same material, and may be a laminated structure made of different materials.
  • the insulator 224 may be formed in an island shape by superimposing on the oxide 230a. In this case, the insulator 275 is in contact with the side surface of the insulator 224 and the upper surface of the insulator 222.
  • Oxide 243a and oxide 243b are provided on the oxide 230b.
  • the oxide 243a and the oxide 243b are provided so as to be separated from each other with the conductor 260 interposed therebetween.
  • Oxide 243 (oxide 243a and oxide 243b) preferably has a function of suppressing oxygen permeation.
  • the oxide 243 having a function of suppressing the permeation of oxygen between the conductor 242 functioning as a source electrode or a drain electrode and the oxide 230b, electricity between the conductor 242 and the oxide 230b can be obtained. This is preferable because the resistance is reduced. With such a configuration, the electrical characteristics of the transistor 200 and the reliability of the transistor 200 can be improved. If the electrical resistance between the conductor 242 and the oxide 230b can be sufficiently reduced, the oxide 243 may not be provided.
  • a metal oxide having an element M may be used.
  • the element M aluminum, gallium, yttrium, or tin may be used.
  • Oxide 243 preferably has a higher concentration of element M than oxide 230b.
  • gallium oxide may be used as the oxide 243.
  • a metal oxide such as In—M—Zn oxide may be used.
  • the atomic number ratio of the element M to In is preferably larger than the atomic number ratio of the element M to In in the metal oxide used for the oxide 230b.
  • the film thickness of the oxide 243 is preferably 0.5 nm or more and 5 nm or less, more preferably 1 nm or more and 3 nm or less, and further preferably 1 nm or more and 2 nm or less. Further, the oxide 243 is preferably crystalline. When the oxide 243 has crystallinity, the release of oxygen in the oxide 230 can be suitably suppressed. For example, as the oxide 243, if it has a crystal structure such as a hexagonal crystal, the release of oxygen in the oxide 230 may be suppressed.
  • the conductor 242a is provided in contact with the upper surface of the oxide 243a, and the conductor 242b is provided in contact with the upper surface of the oxide 243b.
  • the conductor 242a and the conductor 242b function as a source electrode or a drain electrode of the transistor 200, respectively.
  • Examples of the conductors 242 include nitrides containing tantalum, nitrides containing titanium, nitrides containing molybdenum, nitrides containing tungsten, and nitrides containing tantalum and aluminum. It is preferable to use a nitride containing titanium and aluminum. In one aspect of the invention, tantalum-containing nitrides are particularly preferred. Further, for example, ruthenium oxide, ruthenium nitride, an oxide containing strontium and ruthenium, an oxide containing lanthanum and nickel, and the like may be used. These materials are preferable because they are conductive materials that are difficult to oxidize or materials that maintain conductivity even when oxygen is absorbed.
  • hydrogen contained in the oxide 230b or the like may diffuse into the conductor 242a or the conductor 242b.
  • hydrogen contained in the oxide 230b or the like is easily diffused to the conductor 242a or the conductor 242b, and the diffused hydrogen is the conductor. It may bind to the nitrogen contained in the 242a or the conductor 242b. That is, hydrogen contained in the oxide 230b or the like may be absorbed by the conductor 242a or the conductor 242b.
  • the conductor 242 it is preferable that no curved surface is formed between the side surface of the conductor 242 and the upper surface of the conductor 242.
  • the cross-sectional area of the conductor 242 in the cross section in the channel width direction as shown in FIG. 1D can be increased.
  • the conductivity of the conductor 242 can be increased, and the on-current of the transistor 200 can be increased.
  • the insulator 271a is provided in contact with the upper surface of the conductor 242a, and the insulator 271b is provided in contact with the upper surface of the conductor 242b.
  • the insulator 271 preferably functions as a barrier insulating film against at least oxygen. Therefore, it is preferable that the insulator 271 has a function of suppressing the diffusion of oxygen.
  • the insulator 271 preferably has a function of suppressing the diffusion of oxygen more than the insulator 280.
  • the insulator 271 for example, a nitride containing silicon such as silicon nitride may be used. Further, the insulator 271 preferably has a function of capturing impurities such as hydrogen.
  • a metal oxide having an amorphous structure for example, an insulator such as aluminum oxide or magnesium oxide may be used.
  • aluminum oxide having an amorphous structure or aluminum oxide having an amorphous structure as the insulator 271 because hydrogen may be captured or fixed more effectively. Thereby, the transistor 200 having good characteristics and high reliability and the semiconductor device can be manufactured.
  • the insulator 273a is provided in contact with the upper surface of the insulator 271a, and the insulator 273b is provided in contact with the upper surface of the insulator 271b. Further, it is preferable that the upper surface of the insulator 273a is in contact with the insulator 275 and the side surface of the insulator 273a is in contact with the insulator 250. Further, it is preferable that the upper surface of the insulator 273b is in contact with the insulator 275 and the side surface of the insulator 273b is in contact with the insulator 250.
  • the insulator 273, like the insulator 224, preferably has an excess oxygen region or excess oxygen.
  • the concentration of impurities such as water and hydrogen in the insulator 273 is reduced.
  • an oxide or a nitride containing silicon such as silicon oxide, silicon nitride nitride, silicon nitride, and silicon nitride may be appropriately used.
  • the insulator 273 may not be provided.
  • the insulator 272a is provided in contact with the side surfaces of the oxide 230a, the oxide 230b, the oxide 243a, the conductor 242a, the insulator 271a, and the insulator 273a, and the insulator 272b is provided with the oxide 230a and the oxide. It is provided in contact with the side surfaces of 230b, oxide 243b, conductor 242b, insulator 271b, and insulator 273b. Further, the insulator 272a and the insulator 272b are provided in contact with the upper surface of the insulator 224.
  • the insulator 272 preferably functions as a barrier insulating film against at least oxygen.
  • the insulator 272 preferably has a function of suppressing the diffusion of oxygen.
  • the insulator 272 preferably has a function of suppressing the diffusion of oxygen more than the insulator 280.
  • a nitride containing silicon such as silicon nitride may be used.
  • the conductor 242 can be wrapped with an insulator having a barrier property against oxygen. That is, it is possible to prevent oxygen added at the time of forming the insulator 275 or oxygen contained in the insulator 273 from diffusing into the conductor 242. As a result, the conductor 242 is directly oxidized by oxygen added at the time of forming the insulator 275 or oxygen contained in the insulator 273 to increase the resistivity and suppress the decrease in the on-current. it can.
  • FIG. 1B and the like show the configuration in which the insulator 272 is in contact with the side surfaces of the oxide 230a, the oxide 230b, the oxide 243, the conductor 242, the insulator 271, and the insulator 273, the insulator 272 is shown. , At least in contact with the side surfaces of the insulator 271 and the conductor 242.
  • the insulator 272 may be in contact with the side surfaces of the oxide 230a, the oxide 230b, the oxide 243, the conductor 242, and the insulator 271 and not in contact with the insulator 273. In this case, the side surface of the insulator 273 comes into contact with the insulator 275.
  • the insulator 275 has a sufficient barrier property against oxygen or the like, one or both of the insulator 271 and the insulator 272 may not be provided.
  • the insulator 275 is provided so as to cover the insulator 224, the insulator 272, and the insulator 273, and an opening is formed in the region where the insulator 250 and the conductor 260 are provided.
  • the insulator 275 is preferably provided in contact with the upper surface of the insulator 224, the side surface of the insulator 272, and the upper surface of the insulator 273. Further, the insulator 275 preferably functions as a barrier insulating film that suppresses the permeation of oxygen.
  • the insulator 275 preferably functions as a barrier insulating film that suppresses impurities such as water and hydrogen from diffusing into the insulator 224 or the insulator 273 from above, and has a function of capturing impurities such as hydrogen. It is preferable to have.
  • the insulator 275 preferably contains a metal oxide having an amorphous structure, for example, an insulator such as aluminum oxide or magnesium oxide.
  • an insulator such as aluminum oxide and silicon nitride may be used as a single layer or laminated.
  • aluminum oxide and silicon nitride are laminated and used as the insulator 275, aluminum oxide may be provided so as to be in contact with the insulator 224, the insulator 272, and the insulator 273, and silicon nitride may be provided on the aluminum oxide. preferable.
  • the insulator 272 is not provided, the insulator 275 is in contact with the side surfaces of the oxide 230a, the oxide 230b, the oxide 243, the conductor 242, and the insulator 271.
  • the aluminum oxide is preferably aluminum oxide having an amorphous structure or aluminum oxide having an amorphous structure.
  • Metal oxides having an amorphous structure particularly aluminum oxide having an amorphous structure, and aluminum oxide having an amorphous structure have good properties because they may be able to capture or fix hydrogen existing in the surroundings.
  • a highly reliable transistor 200 and a semiconductor device can be manufactured.
  • an insulator 275 having a function of capturing impurities such as hydrogen in contact with the insulator 280, the insulator 224, or the insulator 273 in the region sandwiched between the insulator 212 and the insulator 283. It is possible to capture impurities such as hydrogen contained in the insulator 280, the insulator 224, the insulator 273, and the like, and make the amount of hydrogen in the region constant. In this case, it is preferable to use aluminum oxide or the like as the insulator 275.
  • the insulator 250 functions as a gate insulator.
  • the insulator 250 is preferably arranged in contact with the upper surface of the oxide 230b.
  • the insulator 250 includes silicon oxide, silicon oxide, silicon nitride, silicon nitride, silicon oxide added with fluorine, silicon oxide added with carbon, silicon oxide added with carbon and nitrogen, silicon oxide having pores, and the like. Can be used. In particular, silicon oxide and silicon nitride nitride are preferable because they are stable against heat.
  • the insulator 250 preferably has a reduced concentration of impurities such as water and hydrogen in the insulator 250.
  • the film thickness of the insulator 250 is preferably 1 nm or more and 20 nm or less.
  • the insulator 250 is shown as a single layer in FIGS. 1B and 1C, it may have a laminated structure of two or more layers.
  • the lower layer of the insulator 250 is formed by using an insulator that releases oxygen by heating, and the upper layer of the insulator 250 has a function of suppressing the diffusion of oxygen. It is preferably formed using an insulator having. With such a configuration, oxygen contained in the lower layer of the insulator 250 can be suppressed from diffusing into the conductor 260. That is, it is possible to suppress a decrease in the amount of oxygen supplied to the oxide 230.
  • the lower layer of the insulator 250 can be provided by using a material that can be used for the insulator 250 described above, and the upper layer of the insulator 250 can be provided by using the same material as the insulator 222.
  • an insulating material which is a high-k material having a high relative permittivity may be used for the upper layer of the insulator 250.
  • the gate insulator in such a laminated structure of the lower layer of the insulator 250 and the upper layer of the insulator 250, it is possible to obtain a laminated structure that is stable against heat and has a high relative permittivity. Therefore, it is possible to reduce the gate potential applied during transistor operation while maintaining the physical film thickness of the gate insulator.
  • the equivalent oxide film thickness (EOT) of an insulator that functions as a gate insulator can be thinned.
  • a thing or a metal oxide that can be used as the oxide 230 can be used.
  • a laminated structure containing silicon oxide and hafnium oxide on the silicon oxide may be used as the insulator 250.
  • a metal oxide may be provided between the insulator 250 and the conductor 260.
  • the metal oxide preferably suppresses the diffusion of oxygen from the insulator 250 to the conductor 260.
  • the diffusion of oxygen from the insulator 250 to the conductor 260 is suppressed. That is, it is possible to suppress a decrease in the amount of oxygen supplied to the oxide 230.
  • the oxidation of the conductor 260 by oxygen of the insulator 250 can be suppressed.
  • the metal oxide may be configured to function as a part of the first gate electrode.
  • a metal oxide that can be used as the oxide 230 can be used as the metal oxide.
  • the electric resistance value of the metal oxide can be lowered to form a conductor. This can be called an OC (Oxide Conductor) electrode.
  • the metal oxide By having the metal oxide, it is possible to improve the on-current of the transistor 200 without weakening the influence of the electric field from the conductor 260. Further, by keeping the distance between the conductor 260 and the oxide 230 due to the physical thickness of the insulator 250 and the metal oxide, the leakage current between the conductor 260 and the oxide 230 is maintained. Can be suppressed. Further, by providing the insulator 250 and the laminated structure with the metal oxide, the physical distance between the conductor 260 and the oxide 230 and the electric field strength applied from the conductor 260 to the oxide 230 can be determined. It can be easily adjusted as appropriate.
  • the conductor 260 functions as the first gate electrode of the transistor 200.
  • the conductor 260 preferably has a conductor 260a and a conductor 260b arranged on the conductor 260a.
  • the conductor 260a is preferably arranged so as to wrap the bottom surface and the side surface of the conductor 260b.
  • the uppermost portion of the upper surface of the conductor 260 substantially coincides with the uppermost portion of the upper surface of the insulator 250.
  • the conductor 260 is shown as a two-layer structure of the conductor 260a and the conductor 260b in FIGS. 1B and 1C, it may be a single-layer structure or a laminated structure of three or more layers.
  • the conductor 260a it is preferable to use a conductive material having a function of suppressing the diffusion of impurities such as hydrogen atom, hydrogen molecule, water molecule, nitrogen atom, nitrogen molecule, nitrogen oxide molecule and copper atom.
  • impurities such as hydrogen atom, hydrogen molecule, water molecule, nitrogen atom, nitrogen molecule, nitrogen oxide molecule and copper atom.
  • a conductive material having a function of suppressing the diffusion of oxygen for example, at least one oxygen atom, oxygen molecule, etc.
  • the conductor 260a has a function of suppressing the diffusion of oxygen, it is possible to prevent the conductor 260b from being oxidized by the oxygen contained in the insulator 250 to reduce the conductivity.
  • the conductive material having a function of suppressing the diffusion of oxygen for example, titanium, titanium nitride, tantalum, tantalum nitride, ruthenium, ruthenium oxide and the like are preferably used.
  • the conductor 260 also functions as wiring, it is preferable to use a conductor having high conductivity.
  • a conductor having high conductivity for example, as the conductor 260b, a conductive material containing tungsten, copper, or aluminum as a main component can be used.
  • the conductor 260b may have a laminated structure, for example, a laminated structure of titanium or titanium nitride and the conductive material.
  • the conductor 260 is self-aligned so as to fill the opening formed in the insulator 280 or the like.
  • the conductor 260 can be reliably arranged in the region between the conductor 242a and the conductor 242b without aligning the conductor 260.
  • the height is preferably lower than the height of the bottom surface of the oxide 230b.
  • the conductor 260 which functions as a gate electrode, covers the side surface and the upper surface of the channel forming region of the oxide 230b via an insulator 250 or the like, so that the electric field of the conductor 260 is covered with the channel forming region of the oxide 230b. It becomes easier to act on the whole. Therefore, the on-current of the transistor 200 can be increased and the frequency characteristics can be improved.
  • the difference is 0 nm or more and 100 nm or less, preferably 3 nm or more and 50 nm or less, and more preferably 5 nm or more and 20 nm or less.
  • the insulator 280 is provided on the insulator 275, and an opening is formed in a region where the insulator 250 and the conductor 260 are provided. Further, the upper surface of the insulator 280 may be flattened.
  • the insulator 280 that functions as an interlayer film preferably has a low dielectric constant.
  • a material having a low dielectric constant as an interlayer film, it is possible to reduce the parasitic capacitance generated between the wirings.
  • the insulator 280 is provided by using the same material as the insulator 216, for example.
  • silicon oxide and silicon oxide nitride are preferable because they are thermally stable.
  • materials such as silicon oxide, silicon oxide nitride, and silicon oxide having pores are preferable because a region containing oxygen desorbed by heating can be easily formed.
  • the insulator 280 preferably has an excess oxygen region or excess oxygen. Further, it is preferable that the concentration of impurities such as water and hydrogen in the insulator 280 is reduced.
  • the insulator 280 an oxide containing silicon such as silicon oxide and silicon oxide nitride may be appropriately used. By providing an insulator having excess oxygen in contact with the oxide 230, oxygen deficiency in the oxide 230 can be reduced and the reliability of the transistor 200 can be improved.
  • the insulator 282 preferably functions as a barrier insulating film that suppresses impurities such as water and hydrogen from diffusing into the insulator 280 from above, and preferably has a function of capturing impurities such as hydrogen. Further, the insulator 282 preferably functions as a barrier insulating film that suppresses the permeation of oxygen.
  • a metal oxide having an amorphous structure for example, an insulator such as aluminum oxide may be used.
  • Impurities can be captured and the amount of hydrogen in the region can be kept constant.
  • the insulator 283 functions as a barrier insulating film that suppresses impurities such as water and hydrogen from diffusing into the insulator 280 from above.
  • the insulator 283 is placed on top of the insulator 282.
  • a nitride containing silicon such as silicon nitride or silicon nitride oxide.
  • silicon nitride formed by a sputtering method may be used as the insulator 283.
  • silicon nitride formed by the CVD method may be further laminated on the silicon nitride formed by the sputtering method.
  • the conductor 240a and the conductor 240b it is preferable to use a conductive material containing tungsten, copper, or aluminum as a main component. Further, the conductor 240a and the conductor 240b may have a laminated structure.
  • the conductor in contact with the insulator 283, the insulator 282, the insulator 280, the insulator 275, the insulator 273, and the insulator 271 contains impurities such as water and hydrogen.
  • a conductive material having a function of suppressing permeation For example, tantalum, tantalum nitride, titanium, titanium nitride, ruthenium, ruthenium oxide and the like are preferably used.
  • the conductive material having a function of suppressing the permeation of impurities such as water and hydrogen may be used in a single layer or in a laminated state. Further, it is possible to prevent impurities such as water and hydrogen contained in the layer above the insulator 283 from being mixed into the oxide 230 through the conductor 240a and the conductor 240b.
  • an insulator such as silicon nitride, aluminum oxide, or silicon nitride may be used. Since the insulator 241a and the insulator 241b are provided in contact with the insulator 283, the insulator 282, the insulator 275, and the insulator 271, impurities such as water and hydrogen contained in the insulator 280 and the like are removed from the conductor 240a. And it is possible to suppress mixing with the oxide 230 through the conductor 240b. In particular, silicon nitride is suitable because it has a high barrier property against hydrogen. Further, it is possible to prevent oxygen contained in the insulator 280 from being absorbed by the conductor 240a and the conductor 240b.
  • the conductor 246 (conductor 246a and conductor 246b) which is in contact with the upper surface of the conductor 240a and the upper surface of the conductor 240b and functions as wiring may be arranged.
  • the conductor 246 it is preferable to use a conductive material containing tungsten, copper, or aluminum as a main component.
  • the conductor may have a laminated structure, for example, titanium or titanium nitride may be laminated with the conductive material.
  • the conductor may be formed so as to be embedded in an opening provided in the insulator.
  • the insulator 286 is provided on the conductor 246 and on the insulator 283.
  • the conductor 246 and the side surface of the conductor 246 are in contact with the insulator 286, and the lower surface of the conductor 246 is in contact with the insulator 283. That is, the conductor 246 can be configured to be wrapped with the insulator 283 and the insulator 286. With such a configuration, it is possible to suppress the permeation of oxygen from the outside and prevent the oxidation of the conductor 246. Further, it is preferable because impurities such as water and hydrogen can be prevented from diffusing from the conductor 246 to the outside.
  • an insulator substrate for example, an insulator substrate, a semiconductor substrate, or a conductor substrate may be used.
  • the insulator substrate include a glass substrate, a quartz substrate, a sapphire substrate, a stabilized zirconia substrate (yttria-stabilized zirconia substrate, etc.), a resin substrate, and the like.
  • the semiconductor substrate include a semiconductor substrate made of silicon and germanium, and a compound semiconductor substrate made of silicon carbide, silicon germanium, gallium arsenide, indium phosphide, zinc oxide, and gallium oxide.
  • the conductor substrate includes a graphite substrate, a metal substrate, an alloy substrate, and a conductive resin substrate.
  • a substrate having a metal nitride a substrate having a metal oxide, and the like.
  • a substrate in which a conductor or a semiconductor is provided in an insulator substrate a substrate in which a conductor or an insulator is provided in a semiconductor substrate, a substrate in which a semiconductor or an insulator is provided in a conductor substrate, and the like.
  • those substrates provided with elements may be used.
  • Elements provided on the substrate include capacitive elements, resistance elements, switch elements, light emitting elements, storage elements, and the like.
  • Insulator examples include oxides, nitrides, oxide nitrides, nitride oxides, metal oxides, metal oxide nitrides, and metal nitride oxides having insulating properties.
  • the material may be selected according to the function of the insulator.
  • Examples of the insulator having a high specific dielectric constant include gallium oxide, hafnium oxide, zirconium oxide, oxides having aluminum and hafnium, nitrides having aluminum and hafnium, oxides having silicon and hafnium, silicon and hafnium. There are nitrides having oxides, or nitrides having silicon and hafnium.
  • Examples of insulators having a low relative permittivity include silicon oxide, silicon oxide, silicon nitride, silicon nitride, silicon oxide with fluorine added, silicon oxide with carbon added, silicon oxide with carbon and nitrogen added, and empty. There are silicon oxide having holes, resin, and the like.
  • the electric characteristics of the transistor can be stabilized by surrounding the transistor using the metal oxide with an insulator having a function of suppressing the permeation of impurities such as hydrogen and oxygen.
  • the insulator having a function of suppressing the permeation of impurities such as hydrogen and oxygen include boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, tantalum, and zirconium. Insulations containing, lanthanum, neodymium, hafnium, or tantalum may be used in single layers or in layers.
  • an insulator having a function of suppressing the permeation of impurities such as hydrogen and oxygen
  • Metal oxides such as tantalum oxide and metal nitrides such as aluminum nitride, silicon nitride and silicon nitride can be used.
  • the insulator that functions as a gate insulator is preferably an insulator having a region containing oxygen that is desorbed by heating.
  • the oxygen deficiency of the oxide 230 can be compensated.
  • Conductors include aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, berylium, indium, ruthenium, iridium, strontium, and lanthanum. It is preferable to use a metal element selected from the above, an alloy containing the above-mentioned metal element as a component, an alloy in which the above-mentioned metal element is combined, or the like.
  • tantalum nitride, titanium nitride, tungsten, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, oxides containing lanthanum and nickel, etc. are used. Is preferable.
  • tantalum nitride, titanium nitride, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, and oxides containing lanthanum and nickel are difficult to oxidize.
  • a plurality of conductive layers formed of the above materials may be laminated and used.
  • a laminated structure may be formed in which the above-mentioned material containing a metal element and a conductive material containing oxygen are combined.
  • a laminated structure may be formed in which the above-mentioned material containing a metal element and a conductive material containing nitrogen are combined.
  • a laminated structure may be formed in which the above-mentioned material containing a metal element, a conductive material containing oxygen, and a conductive material containing nitrogen are combined.
  • a laminated structure in which the above-mentioned material containing a metal element and a conductive material containing oxygen are combined is used for the conductor functioning as a gate electrode.
  • a conductive material containing oxygen may be provided on the channel forming region side.
  • a conductor that functions as a gate electrode it is preferable to use a conductive material containing a metal element and oxygen contained in a metal oxide in which a channel is formed.
  • the above-mentioned conductive material containing a metal element and nitrogen may be used.
  • a conductive material containing nitrogen such as titanium nitride or tantalum nitride may be used.
  • indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, and silicon were added.
  • Indium tin oxide may be used.
  • indium gallium zinc oxide containing nitrogen may be used.
  • Metal Oxide As the oxide 230, it is preferable to use a metal oxide (oxide semiconductor) that functions as a semiconductor.
  • a metal oxide oxide semiconductor
  • the metal oxide applicable to the oxide 230 and the oxide 243 according to the present invention will be described.
  • the metal oxide preferably contains at least indium or zinc. In particular, it preferably contains indium and zinc. In addition to them, it is preferable that aluminum, gallium, yttrium, tin and the like are contained. Further, one or more kinds selected from boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lantern, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, cobalt and the like may be contained.
  • the metal oxide is an In-M-Zn oxide having indium, the element M, and zinc.
  • the element M is aluminum, gallium, yttrium, or tin.
  • elements applicable to the other element M include boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, and cobalt.
  • the element M a plurality of the above-mentioned elements may be combined in some cases.
  • a metal oxide having nitrogen may also be collectively referred to as a metal oxide. Further, a metal oxide having nitrogen may be referred to as a metal oxide nitride.
  • FIG. 3A is a diagram illustrating the classification of crystal structures of oxide semiconductors, typically IGZO (metal oxides containing In, Ga, and Zn).
  • IGZO metal oxides containing In, Ga, and Zn
  • oxide semiconductors are roughly classified into “Amorphous (amorphous)”, “Crystalline (crystallinity)", and “Crystal (crystal)”.
  • Amorphous includes “completable amorphous”.
  • the "Crystalline” includes CAAC (c-axis-aligned crystalline), nc (nanocrystalline), and CAC (cloud-aligned crystal) (extracting single crystal and crystal).
  • single crystal, poly crystal, and single crystal amorphous are excluded from the classification of "Crystalline”.
  • “Crystal” includes single crystal and poly crystal.
  • the structure in the thick frame shown in FIG. 3A is an intermediate state between "Amorphous” and “Crystal", and is a structure belonging to a new boundary region (New crystal line phase). .. That is, the structure can be rephrased as a structure completely different from the energetically unstable "Amorphous” and "Crystal".
  • the crystal structure of the film or substrate can be evaluated using an X-ray diffraction (XRD: X-Ray Evaluation) spectrum.
  • XRD X-ray diffraction
  • FIG. 3B the XRD spectrum obtained by GIXD (Glazing-Incidence XRD) measurement of a CAAC-IGZO film classified as "Crystalline" is shown in FIG. 3B.
  • the GIXD method is also referred to as a thin film method or a Seemann-Bohlin method.
  • the XRD spectrum obtained by the GIXD measurement shown in FIG. 3B will be simply referred to as an XRD spectrum.
  • the thickness of the CAAC-IGZO film shown in FIG. 3B is 500 nm.
  • a peak showing clear crystallinity is detected in the XRD spectrum of the CAAC-IGZO film.
  • the crystal structure of the film or substrate can be evaluated by a diffraction pattern (also referred to as a microelectron diffraction pattern) observed by a micro electron diffraction method (NBED: Nano Beam Electron Diffraction).
  • the diffraction pattern of the CAAC-IGZO film is shown in FIG. 3C.
  • FIG. 3C is a diffraction pattern observed by the NBED in which the electron beam is incident parallel to the substrate.
  • electron beam diffraction is performed with the probe diameter set to 1 nm.
  • oxide semiconductors may be classified differently from FIG. 3A.
  • oxide semiconductors are divided into single crystal oxide semiconductors and other non-single crystal oxide semiconductors.
  • the non-single crystal oxide semiconductor include the above-mentioned CAAC-OS and nc-OS.
  • the non-single crystal oxide semiconductor includes a polycrystalline oxide semiconductor, a pseudo-amorphous oxide semiconductor (a-like OS: amorphous-like oxide semiconductor), an amorphous oxide semiconductor, and the like.
  • CAAC-OS CAAC-OS
  • nc-OS nc-OS
  • a-like OS the details of the above-mentioned CAAC-OS, nc-OS, and a-like OS will be described.
  • CAAC-OS is an oxide semiconductor having a plurality of crystal regions, the plurality of crystal regions having the c-axis oriented in a specific direction.
  • the specific direction is the thickness direction of the CAAC-OS film, the normal direction of the surface to be formed of the CAAC-OS film, or the normal direction of the surface of the CAAC-OS film.
  • the crystal region is a region having periodicity in the atomic arrangement. When the atomic arrangement is regarded as a lattice arrangement, the crystal region is also a region in which the lattice arrangement is aligned. Further, the CAAC-OS has a region in which a plurality of crystal regions are connected in the ab plane direction, and the region may have distortion.
  • the strain refers to a region in which a plurality of crystal regions are connected in which the orientation of the lattice arrangement changes between a region in which the lattice arrangement is aligned and a region in which another grid arrangement is aligned. That is, CAAC-OS is an oxide semiconductor that is c-axis oriented and not clearly oriented in the ab plane direction.
  • Each of the plurality of crystal regions is composed of one or a plurality of minute crystals (crystals having a maximum diameter of less than 10 nm).
  • the maximum diameter of the crystal region is less than 10 nm.
  • the size of the crystal region may be about several tens of nm.
  • CAAC-OS has indium (In) and oxygen. It tends to have a layered crystal structure (also referred to as a layered structure) in which a layer (hereinafter, In layer) and a layer having elements M, zinc (Zn), and oxygen (hereinafter, (M, Zn) layer) are laminated. There is. Indium and element M can be replaced with each other. Therefore, the (M, Zn) layer may contain indium. In addition, the In layer may contain the element M. In addition, Zn may be contained in the In layer.
  • the layered structure is observed as a lattice image in, for example, a high-resolution TEM image.
  • the position of the peak indicating the c-axis orientation may vary depending on the type and composition of the metal elements constituting CAAC-OS.
  • a plurality of bright spots are observed in the electron diffraction pattern of the CAAC-OS film.
  • a certain spot and another spot are observed at point-symmetrical positions with the spot of the incident electron beam transmitted through the sample (also referred to as a direct spot) as the center of symmetry.
  • the lattice arrangement in the crystal region is based on a hexagonal lattice, but the unit lattice is not limited to a regular hexagon and may be a non-regular hexagon. Further, in the above strain, it may have a lattice arrangement such as a pentagon or a heptagon.
  • a clear grain boundary cannot be confirmed even in the vicinity of strain. That is, it can be seen that the formation of grain boundaries is suppressed by the distortion of the lattice arrangement. This is because CAAC-OS can tolerate distortion because the arrangement of oxygen atoms is not dense in the ab plane direction and the bond distance between atoms changes due to substitution of metal atoms. It is thought that this is the reason.
  • CAAC-OS for which no clear crystal grain boundary is confirmed, is one of the crystalline oxides having a crystal structure suitable for the semiconductor layer of the transistor.
  • a configuration having Zn is preferable.
  • In-Zn oxide and In-Ga-Zn oxide are more suitable than In oxide because they can suppress the generation of grain boundaries.
  • CAAC-OS is an oxide semiconductor with high crystallinity and no clear grain boundaries can be confirmed. Therefore, it can be said that CAAC-OS is unlikely to cause a decrease in electron mobility due to grain boundaries. Further, since the crystallinity of the oxide semiconductor may be lowered due to the mixing of impurities or the generation of defects, CAAC-OS can be said to be an oxide semiconductor having few impurities and defects (oxygen deficiency, etc.). Therefore, the oxide semiconductor having CAAC-OS has stable physical properties. Therefore, the oxide semiconductor having CAAC-OS is resistant to heat and has high reliability. CAAC-OS is also stable against high temperatures in the manufacturing process (so-called thermal budget). Therefore, if CAAC-OS is used for the OS transistor, the degree of freedom in the manufacturing process can be expanded.
  • nc-OS has periodicity in the atomic arrangement in a minute region (for example, a region of 1 nm or more and 10 nm or less, particularly a region of 1 nm or more and 3 nm or less).
  • nc-OS has tiny crystals. Since the size of the minute crystal is, for example, 1 nm or more and 10 nm or less, particularly 1 nm or more and 3 nm or less, the minute crystal is also referred to as a nanocrystal.
  • nc-OS does not show regularity in crystal orientation between different nanocrystals. Therefore, no orientation is observed in the entire film.
  • the nc-OS may be indistinguishable from the a-like OS and the amorphous oxide semiconductor depending on the analysis method.
  • a peak indicating crystallinity is not detected in the Out-of-plane XRD measurement using a ⁇ / 2 ⁇ scan.
  • electron beam diffraction also referred to as limited field electron diffraction
  • a diffraction pattern such as a halo pattern is performed. Is observed.
  • electron diffraction also referred to as nanobeam electron diffraction
  • an electron beam having a probe diameter for example, 1 nm or more and 30 nm or less
  • An electron diffraction pattern in which a plurality of spots are observed in a ring-shaped region centered on a direct spot may be acquired.
  • the a-like OS is an oxide semiconductor having a structure between nc-OS and an amorphous oxide semiconductor.
  • the a-like OS has a void or low density region. That is, the a-like OS has lower crystallinity than the nc-OS and CAAC-OS.
  • a-like OS has a higher hydrogen concentration in the membrane than nc-OS and CAAC-OS.
  • CAC-OS relates to the material composition.
  • CAC-OS is, for example, a composition of a material in which the elements constituting the metal oxide are unevenly distributed in a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size close thereto.
  • the metal oxide one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size close thereto.
  • the mixed state is also called a mosaic shape or a patch shape.
  • CAC-OS has a structure in which the material is separated into a first region and a second region to form a mosaic shape, and the first region is distributed in the membrane (also referred to as a cloud shape). ). That is, CAC-OS is a composite metal oxide having a structure in which the first region and the second region are mixed.
  • the atomic number ratios of In, Ga, and Zn with respect to the metal elements constituting CAC-OS in the In-Ga-Zn oxide are expressed as [In], [Ga], and [Zn], respectively.
  • the first region is a region in which [In] is larger than [In] in the composition of the CAC-OS film.
  • the second region is a region in which [Ga] is larger than [Ga] in the composition of the CAC-OS film.
  • the first region is a region in which [In] is larger than [In] in the second region and [Ga] is smaller than [Ga] in the second region.
  • the second region is a region in which [Ga] is larger than [Ga] in the first region and [In] is smaller than [In] in the first region.
  • the first region is a region in which indium oxide, indium zinc oxide, or the like is the main component.
  • the second region is a region in which gallium oxide, gallium zinc oxide, or the like is the main component. That is, the first region can be rephrased as a region containing In as a main component. Further, the second region can be rephrased as a region containing Ga as a main component.
  • a region containing In as a main component (No. 1) by EDX mapping acquired by using energy dispersive X-ray spectroscopy (EDX: Energy Dispersive X-ray spectroscopy). It can be confirmed that the region (1 region) and the region containing Ga as a main component (second region) have a structure in which they are unevenly distributed and mixed.
  • EDX Energy Dispersive X-ray spectroscopy
  • CAC-OS When CAC-OS is used for a transistor, the conductivity caused by the first region and the insulating property caused by the second region act in a complementary manner to switch the switching function (On / Off function). Can be added to the CAC-OS. That is, the CAC-OS has a conductive function in a part of the material and an insulating function in a part of the material, and has a function as a semiconductor in the whole material. By separating the conductive function and the insulating function, both functions can be maximized. Therefore, by using CAC-OS for the transistor, high on-current ( Ion ), high field effect mobility ( ⁇ ), and good switching operation can be realized.
  • Ion on-current
  • high field effect mobility
  • Oxide semiconductors have various structures, and each has different characteristics.
  • the oxide semiconductor according to one aspect of the present invention has two or more of amorphous oxide semiconductor, polycrystalline oxide semiconductor, a-like OS, CAC-OS, nc-OS, and CAAC-OS. You may.
  • the oxide semiconductor as a transistor, a transistor with high field effect mobility can be realized. Moreover, a highly reliable transistor can be realized.
  • the carrier concentration in the channel formation region of the oxide semiconductor is 1 ⁇ 10 17 cm -3 or less, preferably 1 ⁇ 10 15 cm -3 or less, more preferably 1 ⁇ 10 13 cm -3 or less, more preferably 1 ⁇ . It is 10 11 cm -3 or less, more preferably 1 ⁇ 10 10 cm -3 or less, and 1 ⁇ 10 -9 cm -3 or more.
  • the impurity concentration in the oxide semiconductor film may be lowered to lower the defect level density.
  • a low impurity concentration and a low defect level density is referred to as high-purity intrinsic or substantially high-purity intrinsic.
  • An oxide semiconductor having a low carrier concentration may be referred to as a high-purity intrinsic or substantially high-purity intrinsic oxide semiconductor.
  • the trap level density may also be low.
  • the charge captured at the trap level of the oxide semiconductor takes a long time to disappear, and may behave as if it were a fixed charge. Therefore, a transistor in which a channel forming region is formed in an oxide semiconductor having a high trap level density may have unstable electrical characteristics.
  • Impurities include hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, silicon and the like.
  • the concentration of silicon and carbon in the channel formation region of the oxide semiconductor and the concentration of silicon and carbon near the interface with the channel formation region of the oxide semiconductor is 2 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 17 atoms / cm 3 or less.
  • the oxide semiconductor contains an alkali metal or an alkaline earth metal
  • a defect level may be formed and carriers may be generated. Therefore, a transistor using an oxide semiconductor containing an alkali metal or an alkaline earth metal tends to have a normally-on characteristic. Therefore, the concentration of the alkali metal or alkaline earth metal in the channel formation region of the oxide semiconductor obtained by SIMS is set to 1 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 16 atoms / cm 3 or less. ..
  • the nitrogen concentration in the channel formation region of the oxide semiconductor obtained by SIMS is less than 5 ⁇ 10 19 atoms / cm 3 , preferably 5 ⁇ 10 18 atoms / cm 3 or less, more preferably 1 ⁇ 10 18 atoms. / Cm 3 or less, more preferably 5 ⁇ 10 17 atoms / cm 3 or less.
  • hydrogen contained in an oxide semiconductor reacts with oxygen bonded to a metal atom to become water, which may form an oxygen deficiency.
  • oxygen deficiency When hydrogen enters the oxygen deficiency, electrons that are carriers may be generated.
  • a part of hydrogen may be combined with oxygen that is bonded to a metal atom to generate an electron as a carrier. Therefore, a transistor using an oxide semiconductor containing hydrogen tends to have a normally-on characteristic. Therefore, it is preferable that hydrogen in the channel forming region of the oxide semiconductor is reduced as much as possible.
  • the hydrogen concentration obtained by SIMS is less than 1 ⁇ 10 20 atoms / cm 3 , preferably less than 5 ⁇ 10 19 atoms / cm 3 , more preferably 1 ⁇ 10. It should be less than 19 atoms / cm 3 , more preferably less than 5 ⁇ 10 18 atoms / cm 3 , and even more preferably less than 1 ⁇ 10 18 atoms / cm 3 .
  • the semiconductor material that can be used for the oxide 230 is not limited to the above-mentioned metal oxide.
  • a semiconductor material having a bandgap (a semiconductor material that is not a zero-gap semiconductor) may be used.
  • a semiconductor of a single element such as silicon, a compound semiconductor such as gallium arsenide, a layered substance (also referred to as an atomic layer substance, a two-dimensional material, or the like) that functions as a semiconductor as a semiconductor material.
  • a layered substance also referred to as an atomic layer substance, a two-dimensional material, or the like
  • the layered substance is a general term for a group of materials having a layered crystal structure.
  • a layered crystal structure is a structure in which layers formed by covalent bonds or ionic bonds are laminated via bonds weaker than covalent bonds or ionic bonds, such as van der Waals forces.
  • the layered material has high electrical conductivity in the unit layer, that is, high two-dimensional electrical conductivity.
  • a chalcogenide is a compound containing a chalcogen.
  • chalcogen is a general term for elements belonging to Group 16, and includes oxygen, sulfur, selenium, tellurium, polonium, and livermorium.
  • Examples of chalcogenides include transition metal chalcogenides and group 13 chalcogenides.
  • oxide 230 for example, it is preferable to use a transition metal chalcogenide that functions as a semiconductor.
  • Specific transition metal chalcogenides applicable as oxide 230 include molybdenum sulfide (typically MoS 2 ), molybdenum selenate (typically MoSe 2 ), and molybdenum tellurium (typically MoTe 2 ).
  • Tungsten sulfide typically WS 2
  • Tungsten disulfide typically WSe 2
  • Tungsten tellurium typically WTe 2
  • Hafnium sulfide typically HfS 2
  • Hafnium serene typically typically
  • Typical examples include HfSe 2 ), zirconium sulfide (typically ZrS 2 ), and zirconium selenium (typically ZrSe 2 ).
  • FIGS. 1A to 1D the method of manufacturing the semiconductor device according to one aspect of the present invention shown in FIGS. 1A to 1D is shown in FIGS. 4A to 16A, 4B to 16B, 4C to 16C, and 4D to 16D. It will be described using.
  • 4A to 16A show top views.
  • 4B to 16B are cross-sectional views corresponding to the portions indicated by the alternate long and short dash lines of A1-A2 shown in FIGS. 4A to 16A, and are also cross-sectional views in the channel length direction of the transistor 200.
  • 4C to 16C are cross-sectional views corresponding to the portions shown by the alternate long and short dash lines in FIGS. 4A to 16A, and are also cross-sectional views in the channel width direction of the transistor 200.
  • 4D to 16D are cross-sectional views of the portions shown by the alternate long and short dash lines of A5-A6 in FIGS. 4A to 16A.
  • FIGS. 4A to 16A some elements are omitted for the purpose of clarifying the drawings.
  • the insulating material for forming an insulator, the conductive material for forming a conductor, or the semiconductor material for forming a semiconductor is a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method. Etc. can be used as appropriate to form a film.
  • the sputtering method includes an RF sputtering method that uses a high-frequency power source as a sputtering power source, a DC sputtering method that uses a DC power source, and a pulse DC sputtering method that changes the voltage applied to the electrodes in a pulsed manner.
  • the RF sputtering method is mainly used when forming an insulating film
  • the DC sputtering method is mainly used when forming a metal conductive film.
  • the pulse DC sputtering method is mainly used when a compound such as an oxide, a nitride, or a carbide is formed into a film by the reactive sputtering method.
  • the CVD method can be classified into a plasma CVD (PECVD: Plasma Enhanced CVD) method using plasma, a thermal CVD (TCVD: Thermal CVD) method using heat, an optical CVD (Photo CVD) method using light, and the like. .. Further, it can be divided into a metal CVD (MCVD: Metal CVD) method and an organic metal CVD (MOCVD: Metal organic CVD) method depending on the raw material gas used.
  • PECVD Plasma Enhanced CVD
  • TCVD Thermal CVD
  • Photo CVD Photo CVD
  • MCVD Metal CVD
  • MOCVD Metal organic CVD
  • the plasma CVD method can obtain a high quality film at a relatively low temperature. Further, since the thermal CVD method does not use plasma, it is a film forming method capable of reducing plasma damage to the object to be processed. For example, wiring, electrodes, elements (transistors, capacitive elements, etc.) and the like included in a semiconductor device may be charged up by receiving electric charges from plasma. At this time, the accumulated electric charge may destroy the wiring, electrodes, elements, and the like included in the semiconductor device. On the other hand, in the case of the thermal CVD method that does not use plasma, such plasma damage does not occur, so that the yield of the semiconductor device can be increased. Further, in the thermal CVD method, plasma damage does not occur during film formation, so that a film having few defects can be obtained.
  • a thermal ALD (Thermal ALD) method in which the reaction of the precursor and the reactor is performed only by thermal energy, a PEALD (Plasma Enhanced ALD) method using a plasma-excited reactor, or the like can be used.
  • the ALD method utilizes the self-regulating properties of atoms and allows atoms to be deposited layer by layer, so ultra-thin film formation is possible, and film formation into structures with a high aspect ratio is possible. It has the effects of being able to form a film with few defects such as holes, being able to form a film with excellent coverage, and being able to form a film at a low temperature.
  • the PEALD method it may be preferable to use plasma because it is possible to form a film at a lower temperature.
  • Some precursors used in the ALD method contain impurities such as carbon. Therefore, the film provided by the ALD method may contain a large amount of impurities such as carbon as compared with the film provided by other film forming methods.
  • the quantification of impurities can be performed by using X-ray photoelectron spectroscopy (XPS: X-ray Photoelectron Spectroscopy).
  • the CVD method and the ALD method are different from the film forming method in which particles emitted from a target or the like are deposited, and are film forming methods in which a film is formed by a reaction on the surface of an object to be treated. Therefore, it is a film forming method that is not easily affected by the shape of the object to be treated and has good step coverage.
  • the ALD method has excellent step covering property and excellent thickness uniformity, and is therefore suitable for covering the surface of an opening having a high aspect ratio.
  • the ALD method since the ALD method has a relatively slow film formation rate, it may be preferable to use it in combination with another film formation method such as a CVD method having a high film formation rate.
  • the composition of the obtained film can be controlled by the flow rate ratio of the raw material gas.
  • a film having an arbitrary composition can be formed depending on the flow rate ratio of the raw material gas.
  • a film having a continuously changed composition can be formed by changing the flow rate ratio of the raw material gas while forming the film.
  • a substrate (not shown) is prepared, and an insulator 212 is formed on the substrate (see FIGS. 4A to 4D).
  • the film formation of the insulator 212 is preferably performed by using a sputtering method.
  • a sputtering method that does not require hydrogen to be used as the film-forming gas, the hydrogen concentration in the insulator 212 can be reduced.
  • the film formation of the insulator 212 is not limited to the sputtering method, and the CVD method, MBE method, PLD method, ALD method and the like may be appropriately used.
  • silicon nitride is formed as the insulator 212 by the pulse DC sputtering method using a silicon target in an atmosphere containing nitrogen gas.
  • the pulse DC sputtering method it is possible to suppress the generation of particles due to the arcing of the target surface, so that the film thickness distribution can be made more uniform.
  • the pulse voltage the rise and fall of the discharge can be made steeper than the high frequency voltage. As a result, electric power can be supplied to the electrodes more efficiently to improve the sputtering rate and film quality.
  • an insulator such as silicon nitride that is difficult for impurities such as water and hydrogen to permeate it is possible to suppress the diffusion of impurities such as water and hydrogen contained in the layer below the insulator 212. Further, by using an insulator such as silicon nitride that does not easily allow copper to permeate as the insulator 212, even if a metal such as copper that easily diffuses is used for the conductor in the lower layer (not shown) of the insulator 212, the metal is used. Can be suppressed from diffusing upward through the insulator 212.
  • the insulator 214 is formed on the insulator 212 (see FIGS. 4A to 4D).
  • the film formation of the insulator 214 is preferably performed by using a sputtering method.
  • a sputtering method that does not require hydrogen to be used as the film-forming gas, the hydrogen concentration in the insulator 214 can be reduced.
  • the film formation of the insulator 214 is not limited to the sputtering method, and a CVD method, an MBE method, a PLD method, an ALD method, or the like may be appropriately used.
  • aluminum oxide is formed as the insulator 214 by a pulse DC sputtering method using an aluminum target in an atmosphere containing oxygen gas.
  • the pulse DC sputtering method By using the pulse DC sputtering method, the film thickness distribution can be made more uniform, and the sputtering rate and film quality can be improved.
  • the insulator 214 it is preferable to use a metal oxide having an amorphous structure, for example, aluminum oxide, which has a high function of capturing hydrogen and fixing hydrogen. As a result, hydrogen contained in the insulator 216 or the like can be captured or fixed, and the hydrogen can be prevented from diffusing into the oxide 230.
  • a metal oxide having an amorphous structure or aluminum oxide having an amorphous structure as the insulator 214 because hydrogen may be captured or fixed more effectively. Thereby, the transistor 200 having good characteristics and high reliability and the semiconductor device can be manufactured.
  • the insulator 216 is formed on the insulator 214.
  • the film formation of the insulator 216 is preferably performed by using a sputtering method.
  • a sputtering method that does not require hydrogen to be used as the film-forming gas, the hydrogen concentration in the insulator 216 can be reduced.
  • the film formation of the insulator 216 is not limited to the sputtering method, and a CVD method, an MBE method, a PLD method, an ALD method, or the like may be appropriately used.
  • silicon oxide is formed as the insulator 216 by a pulse DC sputtering method using a silicon target in an atmosphere containing oxygen gas.
  • the pulse DC sputtering method By using the pulse DC sputtering method, the film thickness distribution can be made more uniform, and the sputtering rate and film quality can be improved.
  • the insulator 212, the insulator 214, and the insulator 216 are continuously formed without being exposed to the atmosphere.
  • a multi-chamber type film forming apparatus may be used.
  • the insulator 212, the insulator 214, and the insulator 216 are formed by reducing the amount of hydrogen in the film, and further, the amount of hydrogen mixed in the film between the film forming steps is reduced. Can be done.
  • an opening is formed in the insulator 216 to reach the insulator 214.
  • the opening also includes, for example, a groove or a slit.
  • the area where the opening is formed may be referred to as the opening.
  • Wet etching may be used to form the openings, but dry etching is preferable for microfabrication.
  • the insulator 214 it is preferable to select an insulator that functions as an etching stopper film when the insulator 216 is etched to form a groove. For example, when silicon oxide or silicon oxide nitride is used for the insulator 216 forming the groove, silicon nitride, aluminum oxide, or hafnium oxide may be used for the insulator 214.
  • a capacitively coupled plasma (CCP: Capacitively Coupled Plasma) etching apparatus having parallel plate type electrodes can be used.
  • the capacitively coupled plasma etching apparatus having the parallel plate type electrodes may be configured to apply a high frequency voltage to one of the parallel plate type electrodes.
  • a plurality of different high frequency voltages may be applied to one of the parallel plate type electrodes.
  • a high frequency voltage having the same frequency may be applied to each of the parallel plate type electrodes.
  • a high frequency voltage having a different frequency may be applied to each of the parallel plate type electrodes.
  • a dry etching apparatus having a high-density plasma source can be used.
  • an inductively coupled plasma (ICP: Inductively Coupled Plasma) etching apparatus or the like can be used.
  • a conductive film 205A is formed (see FIGS. 4A to 4D). It is desirable that the conductive film 205A contains a conductor having a function of suppressing the permeation of oxygen.
  • a conductor having a function of suppressing the permeation of oxygen For example, tantalum nitride, tungsten nitride, titanium nitride and the like can be used. Alternatively, it can be a laminated film of a conductor having a function of suppressing oxygen permeation and a tantalum, tungsten, titanium, molybdenum, aluminum, copper or molybdenum tungsten alloy.
  • the film formation of the conductive film 205A can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • titanium nitride is formed as the conductive film 205A.
  • a metal nitride as the lower layer of the conductor 205b, it is possible to suppress the oxidation of the conductor 205b by the insulator 216 or the like. Further, even if a metal such as copper that easily diffuses is used as the conductor 205b, it is possible to prevent the metal from diffusing out from the conductor 205a.
  • the conductive film 205B is formed (see FIGS. 4A to 4D).
  • the conductive film 205B tantalum, tungsten, titanium, molybdenum, aluminum, copper, molybdenum-tungsten alloy and the like can be used.
  • the film formation of the conductive film can be performed by using a plating method, a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • tungsten is formed as the conductive film 205B.
  • a part of the conductive film 205A and the conductive film 205B is removed, and the insulator 216 is exposed (see FIGS. 5A to 5D).
  • the conductor 205a and the conductor 205b remain only in the opening.
  • a part of the insulator 216 may be removed by the CMP treatment.
  • etching is performed to remove the upper part of the conductor 205b (see FIGS. 6A to 6D). As a result, the upper surface of the conductor 205b becomes lower than the upper surface of the conductor 205a and the upper surface of the insulator 216. Dry etching or wet etching may be used for etching the conductor 205b, but it is preferable to use dry etching for microfabrication.
  • the conductive film 205C is formed on the insulator 216, the conductor 205a, and the conductor 205b (see FIGS. 7A to 7D). It is desirable that the conductive film 205C contains a conductor having a function of suppressing the permeation of oxygen, similarly to the conductive film 205A.
  • titanium nitride is formed as the conductive film 205C.
  • a metal nitride as the upper layer of the conductor 205b, it is possible to prevent the conductor 205b from being oxidized by the insulator 222 or the like. Further, even if a metal that easily diffuses such as copper is used as the conductor 205b, it is possible to prevent the metal from diffusing out from the conductor 205c.
  • the conductor 205a, the conductor 205b, and the conductor 205c remain only in the opening.
  • the conductor 205 having a flat upper surface can be formed.
  • the conductor 205b is wrapped in the conductor 205a and the conductor 205c. Therefore, impurities such as hydrogen are prevented from diffusing from the conductor 205b to the outside of the conductor 205a and the conductor 205c, and oxygen is mixed from the outside of the conductor 205a and the conductor 205c to oxidize the conductor 205b. Can be prevented.
  • a part of the insulator 216 may be removed by the CMP treatment.
  • the insulator 222 is formed on the insulator 216 and the conductor 205 (see FIGS. 9A to 9D).
  • an insulator containing an oxide of one or both of aluminum and hafnium may be formed.
  • the insulator containing one or both oxides of aluminum and hafnium it is preferable to use aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), and the like. Insulators containing oxides of one or both of aluminum and hafnium have barrier properties against oxygen, hydrogen, and water.
  • the insulator 222 has a barrier property against hydrogen and water, hydrogen and water contained in the structure provided around the transistor 200 are suppressed from diffusing into the inside of the transistor 200 through the insulator 222. , The formation of oxygen deficiency in the oxide 230 can be suppressed.
  • the film formation of the insulator 222 can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • hafnium oxide is formed as the insulator 222 by using a sputtering method.
  • a sputtering method that does not require hydrogen to be used as the film-forming gas, the hydrogen concentration in the insulator 222 can be reduced.
  • the heat treatment may be carried out at 250 ° C. or higher and 650 ° C. or lower, preferably 300 ° C. or higher and 500 ° C. or lower, and more preferably 320 ° C. or higher and 450 ° C. or lower.
  • the heat treatment is carried out in an atmosphere of nitrogen gas or an inert gas, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas.
  • the oxygen gas may be set to about 20%.
  • the heat treatment may be performed in a reduced pressure state.
  • the heat treatment is performed in an atmosphere of nitrogen gas or an inert gas, and then the heat treatment is performed in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas to supplement the desorbed oxygen. You may.
  • the gas used in the above heat treatment is highly purified.
  • the amount of water contained in the gas used in the heat treatment may be 1 ppb or less, preferably 0.1 ppb or less, and more preferably 0.05 ppb or less.
  • the flow rate ratio of nitrogen gas and oxygen gas is set to 4 slm: 1 slm, and the treatment is performed at a temperature of 400 ° C. for 1 hour.
  • impurities such as water and hydrogen contained in the insulator 222 can be removed.
  • an oxide containing hafnium is used as the insulator 222, a part of the insulator 222 may be crystallized by the heat treatment.
  • the heat treatment can be performed at a timing such as after the film formation of the insulator 224 is performed.
  • the insulator 224 is formed on the insulator 222 (see FIGS. 9A to 9D).
  • the film formation of the insulator 224 can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • silicon oxide is formed as the insulator 224 by using a sputtering method.
  • a sputtering method that does not require hydrogen to be used as the film-forming gas, the hydrogen concentration in the insulator 224 can be reduced. Since the insulator 224 comes into contact with the oxide 230a in a later step, it is preferable that the hydrogen concentration is reduced in this way.
  • plasma treatment containing oxygen may be performed in a reduced pressure state.
  • the plasma treatment containing oxygen for example, it is preferable to use an apparatus having a power source for generating high-density plasma using microwaves.
  • the substrate side may have a power supply for applying RF (Radio Frequency).
  • RF Radio Frequency
  • high-density plasma high-density oxygen radicals can be generated, and by applying RF to the substrate side, oxygen radicals generated by high-density plasma can be efficiently guided into the insulator 224. it can.
  • plasma treatment containing oxygen may be performed to supplement the desorbed oxygen. Impurities such as water and hydrogen contained in the insulator 224 can be removed by appropriately selecting the conditions for the plasma treatment. In that case, the heat treatment does not have to be performed.
  • CMP treatment may be performed until the insulator 224 is reached.
  • the surface of the insulator 224 can be flattened and smoothed.
  • a part of the insulator 224 may be polished by the CMP treatment to reduce the film thickness of the insulator 224, but the film thickness may be adjusted when the insulator 224 is formed.
  • oxygen can be added to the insulator 224 by forming aluminum oxide on the insulator 224 by a sputtering method.
  • the oxide film 230A and the oxide film 230B are formed on the insulator 224 in this order (see FIGS. 9A to 9D). It is preferable that the oxide film 230A and the oxide film 230B are continuously formed without being exposed to the atmospheric environment. By forming the film without opening it to the atmosphere, it is possible to prevent impurities or moisture from the atmospheric environment from adhering to the oxide film 230A and the oxide film 230B, and the vicinity of the interface between the oxide film 230A and the oxide film 230B can be prevented. Can be kept clean.
  • the oxide film 230A and the oxide film 230B can be formed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the oxide film 230A and the oxide film 230B are formed by a sputtering method
  • oxygen or a mixed gas of oxygen and a rare gas is used as the sputtering gas.
  • excess oxygen in the oxide film formed can be increased.
  • the above oxide film is formed by a sputtering method
  • the above In—M—Zn oxide target or the like can be used.
  • the proportion of oxygen contained in the sputtering gas may be 70% or more, preferably 80% or more, and more preferably 100%.
  • the oxide film 230B is formed by a sputtering method, if the ratio of oxygen contained in the sputtering gas is more than 30% and 100% or less, preferably 70% or more and 100% or less, the oxygen excess type oxidation A physical semiconductor is formed. Transistors using oxygen-rich oxide semiconductors in the channel formation region can obtain relatively high reliability. However, one aspect of the present invention is not limited to this.
  • the oxide film 230B is formed by a sputtering method and the ratio of oxygen contained in the sputtering gas is 1% or more and 30% or less, preferably 5% or more and 20% or less, an oxygen-deficient oxide semiconductor is formed. To. A transistor using an oxygen-deficient oxide semiconductor in the channel formation region can obtain a relatively high field-effect mobility. Further, the crystallinity of the oxide film can be improved by forming a film while heating the substrate.
  • an oxide film 243A is formed on the oxide film 230B (see FIGS. 9A to 9D).
  • the oxide film 243A can be formed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the atomic number ratio of Ga to In is preferably larger than the atomic number ratio of Ga to In in the oxide film 230B.
  • the insulator 222, the insulator 224, the oxide film 230A, the oxide film 230B, and the oxide film 243A are formed by a sputtering method without being exposed to the atmosphere.
  • a multi-chamber type film forming apparatus may be used.
  • the insulator 222, the insulator 224, the oxide film 230A, the oxide film 230B, and the oxide film 243A are formed by reducing the amount of hydrogen in the film, and further, hydrogen is formed in the film between each film forming step. Can be reduced.
  • the heat treatment may be performed in a temperature range in which the oxide film 230A, the oxide film 230B, and the oxide film 243A do not crystallize, and may be performed at 250 ° C. or higher and 650 ° C. or lower, preferably 400 ° C. or higher and 600 ° C. or lower.
  • the heat treatment is carried out in an atmosphere of nitrogen gas or an inert gas, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas.
  • the oxygen gas may be set to about 20%.
  • the heat treatment may be performed in a reduced pressure state.
  • the heat treatment is performed in an atmosphere of nitrogen gas or an inert gas, and then the heat treatment is performed in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas to supplement the desorbed oxygen. You may.
  • the gas used in the above heat treatment is highly purified.
  • the amount of water contained in the gas used in the heat treatment may be 1 ppb or less, preferably 0.1 ppb or less, and more preferably 0.05 ppb or less.
  • the treatment after performing the treatment at a temperature of 550 ° C. for 1 hour in a nitrogen atmosphere, the treatment is continuously performed at a temperature of 550 ° C. for 1 hour in an oxygen atmosphere.
  • impurities such as water and hydrogen in the oxide film 230A, the oxide film 230B, and the oxide film 243A can be removed.
  • the heat treatment can improve the crystallinity of the oxide film 230B to obtain a denser and more dense structure. Thereby, the diffusion of oxygen or impurities in the oxide film 230B can be reduced.
  • a conductive film 242A is formed on the oxide film 243A (see FIGS. 9A to 9D).
  • the film formation of the conductive film 242A can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a sputtering method for example, as the conductive film 242A, tantalum nitride may be formed by using a sputtering method.
  • the heat treatment may be performed before the film formation of the conductive film 242A.
  • the heat treatment may be carried out under reduced pressure to continuously form a conductive film 242A without exposing it to the atmosphere.
  • the temperature of the heat treatment is preferably 100 ° C. or higher and 400 ° C. or lower. In the present embodiment, the temperature of the heat treatment is set to 200 ° C.
  • an insulating film 271A is formed on the conductive film 242A (see FIGS. 9A to 9D).
  • the film formation of the insulating film 271A can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • As the insulating film 271A it is preferable to use an insulating film having a function of suppressing the permeation of oxygen.
  • aluminum oxide or silicon nitride may be formed as the insulating film 271A by a sputtering method.
  • an insulating film 273A is formed on the insulating film 271A (see FIGS. 9A to 9D).
  • the film formation of the insulating film 273A can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • silicon nitride or silicon oxide may be formed by a sputtering method.
  • the conductive film 242A, the insulating film 271A, and the insulating film 273A are formed by a sputtering method without being exposed to the atmosphere.
  • a multi-chamber type film forming apparatus may be used.
  • the conductive film 242A, the insulating film 271A, and the insulating film 273A are formed by reducing the amount of hydrogen in the film, and further, reducing the mixing of hydrogen in the film between each film forming step. Can be done.
  • the film serving as the hard mask may be continuously formed without being exposed to the atmosphere.
  • the oxide film 230A, the oxide film 230B, the oxide film 243A, the conductive film 242A, the insulating film 271A, and the insulating film 273A are processed into an island shape to form an oxide 230a, an oxide 230b, and an oxide.
  • the material layer 243B, the conductive layer 242B, the insulating layer 271B, and the insulating layer 273B are formed (see FIGS. 10A to 10D). Further, a dry etching method or a wet etching method can be used for the processing. Processing by the dry etching method is suitable for microfabrication.
  • the oxide film 230A, the oxide film 230B, the oxide film 243A, the conductive film 242A, the insulating film 271A, and the insulating layer 271B may be processed under different conditions. In this step, the film thickness of the region that does not overlap with the oxide 230a of the insulator 224 may be reduced. Further, in the step, the insulator 224 may be superposed on the oxide 230a and processed into an island shape.
  • the resist is first exposed through a mask. Next, the exposed region is removed or left with a developer to form a resist mask. Next, a conductor, a semiconductor, an insulator, or the like can be processed into a desired shape by etching through the resist mask.
  • a resist mask may be formed by exposing the resist using KrF excimer laser light, ArF excimer laser light, EUV (Extreme Ultraviolet) light, or the like. Further, an immersion technique may be used in which a liquid (for example, water) is filled between the substrate and the projection lens for exposure. Further, instead of the above-mentioned light, an electron beam or an ion beam may be used.
  • the resist mask can be removed by performing a dry etching process such as ashing, performing a wet etching process, performing a wet etching process after the dry etching process, or performing a dry etching process after the wet etching process.
  • a dry etching process such as ashing, performing a wet etching process, performing a wet etching process after the dry etching process, or performing a dry etching process after the wet etching process.
  • a hard mask made of an insulator or a conductor may be used under the resist mask.
  • a hard mask an insulating film or a conductive film to be a hard mask material is formed on the conductive film 242A, a resist mask is formed on the insulating film or a conductive film, and the hard mask material is etched to form a hard mask having a desired shape. can do.
  • Etching of the conductive film 242A or the like may be performed after removing the resist mask, or may be performed while leaving the resist mask. In the latter case, the resist mask may disappear during etching.
  • the hard mask may be removed by etching after etching the conductive film 242A or the like.
  • the insulating layer 271B and the insulating layer 273B are used as hard masks.
  • the insulating layer 273B does not necessarily have to be provided. In that case, the formation of the insulating film 273A becomes unnecessary.
  • the insulating layer 271B is used as a hard mask without providing the insulating layer 273B, it is preferable to appropriately adjust the film thickness of the insulating layer 271B to suppress the disappearance of the insulating layer 271B during etching of the conductive film 242A or the like.
  • the conductive layer 242B does not have a curved surface between the side surface and the upper surface as shown in FIGS. 10B to 10D.
  • the conductor 242a and the conductor 242b shown in FIGS. 1B and 1D have a square end at the intersection of the side surface and the upper surface. Since the end portion where the side surface and the upper surface of the conductor 242 intersect is angular, the cross-sectional area of the conductor 242 becomes larger than that in the case where the end portion has a curved surface. As a result, the resistance of the conductor 242 is reduced, so that the on-current of the transistor 200 can be increased.
  • the oxide 230a, the oxide 230b, the oxide layer 243B, the conductive layer 242B, the insulating layer 271B, and the insulating layer 273B are formed so that at least a part thereof overlaps with the conductor 205. Further, it is preferable that the side surfaces of the oxide 230a, the oxide 230b, the oxide layer 243B, the conductive layer 242B, the insulating layer 271B, and the insulating layer 273B are substantially perpendicular to the upper surface of the insulator 222.
  • a plurality of transistors 200 are provided because the side surfaces of the oxide 230a, the oxide 230b, the oxide layer 243B, the conductive layer 242B, the insulating layer 271B, and the insulating layer 273B are substantially perpendicular to the upper surface of the insulator 222. At the same time, it is possible to reduce the area and increase the density. Alternatively, the angle formed by the side surfaces of the oxide 230a, the oxide 230b, the oxide layer 243B, the conductive layer 242B, the insulating layer 271B, and the insulating layer 273B and the upper surface of the insulator 222 may be low. ..
  • the angle formed by the side surfaces of the oxide 230a, the oxide 230b, the oxide layer 243B, the conductive layer 242B, the insulating layer 271B, and the insulating layer 273B and the upper surface of the insulator 222 is preferably 60 degrees or more and less than 70 degrees. .. With such a shape, the covering property of the insulator 275 and the like can be improved and defects such as voids can be reduced in the subsequent steps.
  • the by-products generated in the etching step may be formed in layers on the side surfaces of the oxide 230a, the oxide 230b, the oxide layer 243B, the conductive layer 242B, the insulating layer 271B, and the insulating layer 273B.
  • the layered by-product will be formed between the oxide 230a, the oxide 230b, the oxide 243, the conductor 242, the insulator 271, and the insulator 273 and the insulator 272.
  • layered by-products may be formed on the insulator 224.
  • the layered by-product interferes with the addition of oxygen to the insulator 224. Therefore, it is preferable to remove the layered by-product formed in contact with the upper surface of the insulator 224.
  • an insulating film to be the insulator 272 is formed on the insulator 224, the oxide 230a, the oxide 230b, the oxide layer 243B, the conductive layer 242B, the insulating layer 271B, and the insulating layer 273B.
  • the film formation of the insulating film to be the insulator 272 can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • silicon nitride is formed as an insulating film to be the insulator 272 by a sputtering method.
  • the insulating film to be the insulator 272 is anisotropically etched to remove the insulating film on the insulating layer 273B and the insulating film on the insulator 224 (see FIGS. 11A to 11D). Further, if a layered by-product remains in the step shown in FIG. 10, it can be removed by the anisotropic etching. As a result, the insulating layer 272A is formed in contact with the side surface of the oxide 230a, the side surface of the oxide 230b, the side surface of the oxide layer 243B, the side surface of the conductive layer 242B, the side surface of the insulating layer 271B, and the side surface of the insulating layer 273B. To.
  • the oxide 230a, the oxide 230b, the oxide layer 243B, and the conductive layer 242B can be covered with the insulating layer 272A and the insulating layer 271B having a function of suppressing the diffusion of oxygen.
  • the insulating layer 272A and the insulating layer 271B having a function of suppressing the diffusion of oxygen.
  • the insulator 275 is formed on the insulator 224, the insulating layer 272A, and the insulating layer 273B. (See FIGS. 11A to 11D.).
  • the film formation of the insulator 275 can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • As the insulator 275 it is preferable to use an insulating film having a function of suppressing the permeation of oxygen.
  • aluminum oxide may be formed as the insulator 275 by a sputtering method.
  • the insulator 275 is preferably formed by using a sputtering method. Oxygen can be added to the insulator 224 and the insulating layer 273B by forming the insulator 275 by the sputtering method. At this time, since the insulating layer 271B is provided in contact with the upper surface of the conductive layer 242B and the insulating layer 272A is provided in contact with the side surface of the conductive layer 242B, the oxidation of the conductive layer 242B can be reduced.
  • an insulating film to be the insulator 280 is formed on the insulator 275.
  • the film formation of the insulating film can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a silicon oxide film may be formed by using a sputtering method.
  • An insulator 280 containing excess oxygen can be formed by forming an insulating film to be an insulator 280 by a sputtering method in an atmosphere containing oxygen. Further, by using a sputtering method in which hydrogen does not have to be used as the film forming gas, the hydrogen concentration in the insulator 280 can be reduced.
  • heat treatment may be performed before the film formation of the insulating film.
  • the heat treatment may be carried out under reduced pressure to continuously form the insulating film without exposing it to the atmosphere.
  • water and hydrogen adsorbed on the surface of the insulator 275 and the like are removed, and further, the water concentration in the oxide 230a, the oxide 230b, the oxide layer 243B, and the insulator 224 and The hydrogen concentration can be reduced.
  • the above-mentioned heat treatment conditions can be used for the heat treatment.
  • the insulating film to be the insulator 280 is subjected to CMP treatment to form an insulator 280 having a flat upper surface (see FIGS. 11A to 11D).
  • silicon nitride may be formed on the insulator 280 by, for example, a sputtering method, and CMP treatment may be performed until the silicon nitride reaches the insulator 280.
  • a part of the oxide 230b is processed to form an opening reaching the oxide 230b.
  • the opening is preferably formed so as to overlap the conductor 205.
  • an insulator 273a, an insulator 273b, an insulator 271a, an insulator 271b, an insulator 272a, an insulator 272b, a conductor 242a, a conductor 242b, an oxide 243a, and an oxide 243b are formed ( 12A to 12D.).
  • the upper part of the oxide 230b is removed.
  • a groove is formed in the oxide 230b.
  • the groove may be formed in the opening forming step, or may be formed in a step different from the opening forming step.
  • a dry etching method or a wet etching method can be used for processing a part of the oxide 230b. Processing by the dry etching method is suitable for microfabrication. Further, the processing may be performed under different conditions.
  • a part of the insulator 280 is processed by a dry etching method, and a part of the insulator 275, a part of the insulating layer 273B, a part of the insulating layer 271B, and a part of the insulating layer 272A are processed by the wet etching method. Then, a part of the oxide layer 243B, a part of the conductive layer 242B, and a part of the oxide 230b may be processed by a dry etching method. Further, the processing of a part of the oxide layer 243B and a part of the conductive layer 242B and the processing of a part of the oxide 230b may be performed under different conditions.
  • the impurities include an insulator 280, an insulator 275, a part of the insulating layer 273B, a part of the insulating layer 271B, a part of the insulating layer 272A, a component contained in the conductive layer 242B, and when forming the above-mentioned opening.
  • the impurities include those caused by components contained in members used in the equipment used, components contained in gas or liquid used for etching, and the like.
  • the impurities include aluminum, silicon, tantalum, fluorine, chlorine and the like.
  • impurities such as aluminum or silicon inhibit the conversion of oxide 230b to CAAC-OS. Therefore, it is preferable that impurity elements such as aluminum and silicon that hinder CAAC-OS conversion are reduced or removed.
  • the concentration of aluminum atoms in the oxide 230b and its vicinity may be 5.0 atomic% or less, preferably 2.0 atomic% or less, more preferably 1.5 atomic% or less, and 1.0. Atomic% or less is more preferable, and less than 0.3 atomic% is further preferable.
  • the region of the metal oxide that has become a pseudo-amorphous oxide semiconductor (a-like OS: amorphous-like oxide semiconductor) due to the inhibition of CAAC-OS by impurities such as aluminum or silicon is defined as the non-CAAC region. May be called.
  • the non CAAC region since the compactness of the crystal structure is reduced, V O H has a large amount of formation, the transistor tends to be normally on reduction. Therefore, the non-CAAC region of the oxide 230b is preferably reduced or removed.
  • the oxide 230b has a layered CAAC structure.
  • the conductor 242a or the conductor 242b and its vicinity function as a drain. That is, it is preferable that the oxide 230b near the lower end of the conductor 242a (conductor 242b) has a CAAC structure.
  • the cleaning method include wet cleaning using a cleaning liquid, plasma treatment using plasma, cleaning by heat treatment, and the like, and the above cleanings may be appropriately combined.
  • the cleaning treatment may deepen the groove.
  • the cleaning treatment may be performed using an aqueous solution obtained by diluting ammonia water, oxalic acid, phosphoric acid, hydrofluoric acid or the like with carbonated water or pure water, pure water, carbonated water or the like.
  • ultrasonic cleaning may be performed using these aqueous solutions, pure water, or carbonated water.
  • these washings may be appropriately combined.
  • a commercially available aqueous solution obtained by diluting hydrofluoric acid with pure water may be referred to as diluted hydrofluoric acid
  • a commercially available aqueous solution obtained by diluting ammonia water with pure water may be referred to as diluted ammonia water.
  • concentration, temperature, etc. of the aqueous solution may be appropriately adjusted depending on the impurities to be removed, the configuration of the semiconductor device to be washed, and the like.
  • the ammonia concentration of the diluted ammonia water may be 0.01% or more and 5% or less, preferably 0.1% or more and 0.5% or less.
  • the hydrogen fluoride concentration of the diluted hydrofluoric acid may be 0.01 ppm or more and 100 ppm or less, preferably 0.1 ppm or more and 10 ppm or less.
  • a frequency of 200 kHz or higher, preferably 900 kHz or higher for ultrasonic cleaning it is preferable to use a frequency of 200 kHz or higher, preferably 900 kHz or higher for ultrasonic cleaning. By using this frequency, damage to the oxide 230b and the like can be reduced.
  • the above cleaning treatment may be performed a plurality of times, and the cleaning liquid may be changed for each cleaning treatment.
  • a treatment using diluted hydrofluoric acid or diluted aqueous ammonia may be performed as the first cleaning treatment
  • a treatment using pure water or carbonated water may be performed as the second cleaning treatment.
  • wet cleaning is performed using diluted hydrofluoric acid, and then wet cleaning is performed using pure water or carbonated water.
  • impurities adhering to or diffused inside the surface such as oxide 230a and oxide 230b can be removed.
  • the crystallinity of the oxide 230b can be enhanced.
  • the heat treatment may be performed after the etching or the cleaning.
  • the heat treatment may be performed at 100 ° C. or higher and 450 ° C. or lower, preferably 350 ° C. or higher and 400 ° C. or lower.
  • the heat treatment is carried out in an atmosphere of nitrogen gas or an inert gas, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas.
  • the heat treatment is preferably performed in an oxygen atmosphere.
  • oxygen is supplied to the oxide 230a and oxides 230b, it is possible to reduce the oxygen vacancies V O. Further, by performing such a heat treatment, the crystallinity of the oxide 230b can be improved.
  • the heat treatment may be performed in a reduced pressure state.
  • the heat treatment may be continuously performed in a nitrogen atmosphere without being exposed to the atmosphere.
  • an insulating film 250A is formed (see FIGS. 13A to 13D).
  • the heat treatment may be performed before the film formation of the insulating film 250A, and the heat treatment may be performed under reduced pressure to continuously form the insulating film 250A without exposure to the atmosphere. Further, the heat treatment is preferably performed in an atmosphere containing oxygen. By performing such a treatment, the water and hydrogen adsorbed on the surface of the oxide 230b and the like can be removed, and the water concentration and the hydrogen concentration in the oxide 230a and the oxide 230b can be further reduced.
  • the temperature of the heat treatment is preferably 100 ° C. or higher and 400 ° C. or lower.
  • the insulating film 250A can be formed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. Further, the insulating film 250A is preferably formed by a film forming method using a gas in which hydrogen atoms have been reduced or removed. Thereby, the hydrogen concentration of the insulating film 250A can be reduced. Since the insulating film 250A becomes an insulator 250 in contact with the oxide 230b in a later step, it is preferable that the hydrogen concentration is reduced in this way.
  • the insulating film 250A is formed by using the ALD method. It is necessary that the film thickness of the insulator 250 of the miniaturized transistor 200, which functions as the gate insulating film, is extremely thin (for example, about 5 nm or more and 30 nm or less) and the variation is small.
  • the ALD method is a film-forming method in which a precursor and a reactor (oxidizing agent) are alternately introduced, and the film thickness can be adjusted by the number of times this cycle is repeated, so that the film thickness is precise. It can be adjusted. Therefore, the accuracy of the gate insulating film required by the miniaturized transistor 200 can be achieved. Further, as shown in FIGS.
  • the insulating film 250A needs to be formed on the bottom surface and the side surface of the opening formed by the insulator 280 or the like with good coverage. Since layers of atoms can be deposited layer by layer on the bottom surface and the side surface of the opening, the insulating film 250A can be formed with good coverage on the opening.
  • the film-forming gas containing hydrogen is decomposed in the plasma and a large amount of hydrogen radicals are generated.
  • the reduction reaction of hydrogen radicals the oxygen is withdrawn by V O H in the oxide 230b is formed, the concentration of hydrogen in the oxide 230b is increased.
  • the insulating film 250A is formed by using the ALD method, the generation of hydrogen radicals can be suppressed both when the precursor is introduced and when the reactor is introduced. Therefore, by forming the insulating film 250A using the ALD method, it is possible to prevent the hydrogen concentration in the oxide 230b from increasing.
  • the insulating film 250A is shown as a single layer in FIGS. 13B, 13C, and 13D, it may have a laminated structure of two or more layers.
  • the lower layer of the insulating film 250A is formed by using an insulator that releases oxygen by heating, and the upper layer of the insulating film 250A has a function of suppressing the diffusion of oxygen. It is preferable to form using an insulator having. With such a configuration, oxygen contained in the lower layer of the insulator 250 can be suppressed from diffusing into the conductor 260. That is, it is possible to suppress a decrease in the amount of oxygen supplied to the oxide 230.
  • the lower layer of the insulating film 250A can be provided by using a material that can be used for the insulator 250 described above, and the upper layer of the insulating film 250A can be provided by using the same material as the insulator 222.
  • a thing or a metal oxide that can be used as the oxide 230 can be used.
  • the insulating film 250A has a two-layer laminated structure, silicon oxide is formed as a lower layer by the PEALD method, and hafnium oxide is formed as an upper layer by the thermal ALD method.
  • the insulating film that is the lower layer of the insulating film 250A and the insulating film that is the upper layer of the insulating film 250A should be continuously formed without being exposed to the atmospheric environment. Is preferable.
  • impurities such as hydrogen or moisture from the atmospheric environment from adhering to the insulating film that is the lower layer of the insulating film 250A and the insulating film that is the upper layer of the insulating film 250A.
  • the vicinity of the interface between the insulating film that is the lower layer of the insulating film 250A and the insulating film that is the upper layer of the insulating film 250A can be kept clean.
  • microwave treatment is performed in an atmosphere containing oxygen (see FIGS. 13A to 13D).
  • the dotted lines shown in FIGS. 13B, 13C, and 13D indicate microwaves, high frequencies such as RF, oxygen plasma, oxygen radicals, and the like.
  • the microwave processing apparatus may have a power source for applying RF to the substrate side.
  • high-density plasma high-density oxygen radicals can be generated.
  • oxygen ions generated by the high-density plasma can be efficiently guided into the oxide 230b.
  • the microwave treatment is preferably performed under reduced pressure, and the pressure may be 60 Pa or more, preferably 133 Pa or more, more preferably 200 Pa or more, and further preferably 400 Pa or more.
  • the oxygen flow rate ratio (O 2 / O 2 + Ar) is 50% or less, preferably 10% or more and 30% or less.
  • the treatment temperature may be 750 ° C. or lower, preferably 500 ° C. or lower, for example, about 400 ° C.
  • the heat treatment may be continuously performed without exposing to the outside air.
  • oxygen gas is turned into plasma using a high frequency such as microwave or RF, and the oxygen plasma is converted into oxide 230b. It can act on the region between the conductor 242a and the conductor 242b. At this time, the region 230bc can be irradiated with a high frequency such as microwave or RF. That is, microwaves, high frequencies such as RF, oxygen plasma, and the like can be applied to the region 230bc shown in FIG. Plasma, by the action such as a microwave, and divide the V O H region 230Bc, hydrogen H can be removed from the area 230Bc.
  • a high frequency such as microwave or RF
  • the carrier concentration can be decreased. Further, by supplying the oxygen radical generated by the oxygen plasma or the oxygen contained in the insulator 250 to the oxygen deficiency formed in the region 230 bc, the oxygen deficiency in the region 230 bc is further reduced and the carrier concentration is increased. Can be lowered.
  • the conductor 242a and the conductor 242b are provided on the region 230ba and the region 230bb shown in FIG.
  • the conductors 242a and 242b shield the action of microwaves, high frequencies such as RF, oxygen plasma, and the like, so that these actions block the actions of the regions 230ba and 230bb. Not as good as.
  • the microwave treatment, the region 230ba and area 230Bb, reduction of V O H, and excessive amount of oxygen supply does not occur, it is possible to prevent a decrease in carrier concentration.
  • the oxide selectively oxygen deficiency in the semiconductor region 230Bc, a and V O H may be removed to an area 230Bc i-type or substantially i-type. Further, it is possible to suppress the supply of excess oxygen to the region 230ba and the region 230bb that function as the source region or the drain region, and to maintain the n-type. As a result, fluctuations in the electrical characteristics of the transistor 200 can be suppressed, and variations in the electrical characteristics of the transistor 200 within the substrate surface can be suppressed.
  • microwave treatment was performed after the insulating film 250A was formed, but the present invention is not limited to this.
  • the microwave treatment may be performed before the film formation of the insulating film 250A, or the microwave treatment may be performed both before and after the film formation of the insulating film 250A.
  • microwave treatment is performed to form silicon oxide in the lower layer of the insulating film 250A by the PEALD method, and hafnium oxide in the upper layer of the insulating film 250A is formed by the thermal ALD method.
  • the film may be formed with.
  • the microwave treatment, the PEALD film formation of silicon oxide, and the thermal ALD film formation of hafnium oxide are continuously treated without being exposed to the atmosphere.
  • a multi-chamber type processing device may be used.
  • the microwave treatment may be replaced by the treatment of the plasma-excited reactor (oxidizer) of the PEALD apparatus.
  • oxygen gas may be used as the reactor (oxidizing agent).
  • the heat treatment may be performed while maintaining the reduced pressure state after the microwave treatment.
  • hydrogen in the insulating film 250A, the oxide 230b, and the oxide 230a can be efficiently removed.
  • a part of hydrogen may be gettered on the conductor 242 (conductor 242a and conductor 242b).
  • the step of performing the heat treatment may be repeated a plurality of times while maintaining the reduced pressure state after the microwave treatment. By repeating the heat treatment, hydrogen in the insulating film 250A, the oxide 230b, and the oxide 230a can be removed more efficiently.
  • the heat treatment temperature is preferably 300 ° C. or higher and 500 ° C. or lower.
  • the diffusion of hydrogen, water, impurities, etc. can be suppressed by modifying the film quality of the insulating film 250A by performing microwave treatment. Therefore, hydrogen, water, impurities, etc. are diffused to the oxide 230b, the oxide 230a, etc. through the insulator 250 by a post-process such as film formation of a conductive film to be a conductor 260 or a post-treatment such as heat treatment. It can be suppressed.
  • a conductive film to be the conductor 260a and a conductive film to be the conductor 260b are formed in this order.
  • the film formation of the conductive film to be the conductor 260a and the conductive film to be the conductor 260b can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the ALD method is used to form a conductive film to be the conductor 260a
  • the CVD method is used to form the conductive film to be the conductor 260b.
  • the insulating film 250A, the conductive film to be the conductor 260a, and the conductive film to be the conductor 260b are polished until the insulator 280 is exposed, so that the insulator 250 and the conductor 260 (conductor) are polished.
  • the body 260a and the conductor 260b) are formed (see FIGS. 14A-14D).
  • the insulator 250 is arranged so as to cover the opening reaching the oxide 230b and the inner wall (side wall and bottom surface) of the groove portion of the oxide 230b.
  • the conductor 260 is arranged so as to embed the opening and the groove through the insulator 250.
  • the heat treatment may be performed under the same conditions as the above heat treatment.
  • the treatment is carried out in a nitrogen atmosphere at a temperature of 400 ° C. for 1 hour.
  • the heat treatment the water concentration and the hydrogen concentration in the insulator 250 and the insulator 280 can be reduced.
  • the insulator 282, which is the next step may be continuously formed without being exposed to the atmosphere.
  • the insulator 282 is formed on the insulator 250, the conductor 260, and the insulator 280 (see FIGS. 15A to 15D).
  • the film formation of the insulator 282 can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the film formation of the insulator 282 is preferably performed by using a sputtering method. By using a sputtering method that does not require hydrogen to be used as the film forming gas, the hydrogen concentration in the insulator 282 can be reduced.
  • the insulator 282 in an atmosphere containing oxygen by using the sputtering method, oxygen can be added to the insulator 280 while forming the film. As a result, the insulator 280 can contain excess oxygen. At this time, it is preferable to form the insulator 282 while heating the substrate.
  • aluminum oxide is formed as the insulator 282 by a pulse DC sputtering method using an aluminum target in an atmosphere containing oxygen gas.
  • the pulse DC sputtering method By using the pulse DC sputtering method, the film thickness distribution can be made more uniform, and the sputtering rate and film quality can be improved.
  • the insulator 283 is formed on the insulator 282 (see FIGS. 16A to 16D).
  • the film formation of the insulator 283 can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the film formation of the insulator 283 is preferably performed by using a sputtering method.
  • a sputtering method that does not require hydrogen to be used as the film-forming gas, the hydrogen concentration in the insulator 283 can be reduced.
  • the insulator 283 may have multiple layers.
  • silicon nitride may be formed into a film by using a sputtering method, and silicon nitride may be formed on the silicon nitride by a CVD method.
  • a sputtering method silicon nitride may be formed on the silicon nitride by a CVD method.
  • heat treatment may be performed.
  • the treatment is carried out in a nitrogen atmosphere at a temperature of 400 ° C. for 1 hour.
  • the oxygen added by the film formation of the insulator 282 is diffused into the insulator 280 and the insulator 250, and selectively supplied to the channel forming region of the oxide 230.
  • the heat treatment may be performed not only after the formation of the insulator 283 but also after the film formation of the insulator 282.
  • an opening reaching the conductor 242 is formed in the insulator 271, the insulator 273, the insulator 275, the insulator 280, the insulator 282, and the insulator 283 (see FIGS. 16A to 16D).
  • the opening may be formed by using a lithography method.
  • the shape of the opening is circular in the top view, but the shape is not limited to this.
  • the opening may have a substantially circular shape such as an ellipse, a polygonal shape such as a quadrangle, or a polygonal shape such as a quadrangle with rounded corners in a top view.
  • an insulating film to be the insulator 241 is formed, and the insulating film is anisotropically etched to form the insulator 241.
  • the film formation of the insulating film to be the insulator 241 can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the insulating film to be the insulator 241 it is preferable to use an insulating film having a function of suppressing the permeation of oxygen.
  • the anisotropic etching of the insulating film to be the insulator 241 for example, a dry etching method or the like may be used.
  • a dry etching method or the like By providing the insulator 241 on the side wall portion of the opening, it is possible to suppress the permeation of oxygen from the outside and prevent the oxidation of the conductor 240a and the conductor 240b to be formed next. Further, it is possible to prevent impurities such as water and hydrogen from diffusing from the conductor 240a and the conductor 240b to the outside.
  • a conductive film to be a conductor 240a and a conductor 240b is formed. It is desirable that the conductive film to be the conductor 240a and the conductor 240b has a laminated structure including a conductor having a function of suppressing the permeation of impurities such as water and hydrogen.
  • impurities such as water and hydrogen.
  • tantalum nitride, titanium nitride and the like can be laminated with tungsten, molybdenum, copper and the like.
  • the film formation of the conductive film to be the conductor 240 can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a part of the conductive film to be the conductor 240a and the conductor 240b is removed, and the upper surface of the insulator 283 is exposed.
  • the conductor 240a and the conductor 240b having a flat upper surface can be formed by the conductive film remaining only in the opening (see FIGS. 16A to 16D).
  • a part of the upper surface of the insulator 283 and a part of the upper surface of the insulator 274 may be removed by the CMP treatment.
  • a conductive film to be a conductor 246 is formed.
  • the film formation of the conductive film to be the conductor 246 can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the conductive film to be the conductor 246 is processed by a lithography method to form the conductor 246a in contact with the upper surface of the conductor 240a and the conductor 246b in contact with the upper surface of the conductor 240b (see FIGS. 1A to 1D). ). At this time, a part of the insulator 283 in the region where the conductor 246a and the conductor 246b and the insulator 283 do not overlap may be removed.
  • the insulator 286 is formed on the conductor 246 and the insulator 283 (see FIGS. 1A to 1D).
  • the film formation of the insulator 286 can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the insulator 286 may have multiple layers.
  • silicon nitride may be formed into a film by using a sputtering method, and silicon nitride may be formed on the silicon nitride by a CVD method.
  • the semiconductor device having the transistor 200 shown in FIGS. 1A to 1D can be manufactured.
  • the transistor 200 is manufactured by using the method for manufacturing the semiconductor device shown in the present embodiment. be able to.
  • microwave processing device that can be used in the method for manufacturing the semiconductor device will be described.
  • FIG. 17 schematically shows a top view of the single-wafer multi-chamber manufacturing apparatus 2700.
  • the manufacturing apparatus 2700 has an atmospheric side substrate supply chamber 2701 including a cassette port 2761 for accommodating the substrate and an alignment port 2762 for aligning the substrate, and an atmospheric side substrate transport for transporting the substrate from the atmospheric side substrate supply chamber 2701.
  • Room 2702 and load lock chamber 2703a that carries in the substrate and switches the pressure in the room from atmospheric pressure to atmospheric pressure, or from reduced pressure to atmospheric pressure, and carries out the substrate and reduces the pressure in the room from reduced pressure to atmospheric pressure, or It has an unload lock chamber 2703b for switching from atmospheric pressure to depressurization, a transport chamber 2704 for transporting a substrate in vacuum, a chamber 2706a, a chamber 2706b, a chamber 2706c, and a chamber 2706d.
  • atmospheric side substrate transport chamber 2702 is connected to the load lock chamber 2703a and the unload lock chamber 2703b, the load lock chamber 2703a and the unload lock chamber 2703b are connected to the transport chamber 2704, and the transport chamber 2704 is connected to the chamber 2706a. , Connects to chamber 2706b, chamber 2706c and chamber 2706d.
  • a gate valve GV is provided at the connection portion of each chamber, and each chamber can be independently held in a vacuum state except for the atmospheric side substrate supply chamber 2701 and the atmospheric side substrate transport chamber 2702. Further, a transfer robot 2763a is provided in the atmospheric side substrate transfer chamber 2702, and a transfer robot 2763b is provided in the transfer chamber 2704. The transfer robot 2763a and the transfer robot 2763b can transfer the substrate in the manufacturing apparatus 2700.
  • the back pressure (total pressure) of the transport chamber 2704 and each chamber is, for example, 1 ⁇ 10 -4 Pa or less, preferably 3 ⁇ 10 -5 Pa or less, and more preferably 1 ⁇ 10 -5 Pa or less.
  • the partial pressure of gas molecules (atoms) having a mass-to-charge ratio (m / z) of 18 in the transport chamber 2704 and each chamber is, for example, 3 ⁇ 10 -5 Pa or less, preferably 1 ⁇ 10 -5 Pa or less. , More preferably 3 ⁇ 10 -6 Pa or less.
  • the partial pressure of the gas molecules (atoms) having an m / z of 28 in the transport chamber 2704 and each chamber is, for example, 3 ⁇ 10 -5 Pa or less, preferably 1 ⁇ 10 -5 Pa or less, more preferably 3. ⁇ 10-6 Pa or less.
  • the partial pressure of the gas molecules (atoms) having an m / z of 44 in the transport chamber 2704 and each chamber is, for example, 3 ⁇ 10 -5 Pa or less, preferably 1 ⁇ 10 -5 Pa or less, more preferably 3. ⁇ 10-6 Pa or less.
  • the total pressure and partial pressure in the transport chamber 2704 and each chamber can be measured using a mass spectrometer.
  • a mass spectrometer for example, a quadrupole mass spectrometer (also referred to as Q-mass) Qulee CGM-051 manufactured by ULVAC, Inc. may be used.
  • the transport chamber 2704 and each chamber have a configuration in which there are few external leaks or internal leaks.
  • the leakage rate of the transport chamber 2704 and each chamber is 3 ⁇ 10-6 Pa ⁇ m 3 / s or less, preferably 1 ⁇ 10-6 Pa ⁇ m 3 / s or less.
  • the leak rate of the gas molecule (atom) having m / z of 18 is set to 1 ⁇ 10 -7 Pa ⁇ m 3 / s or less, preferably 3 ⁇ 10 -8 Pa ⁇ m 3 / s or less.
  • the leak rate of a gas molecule (atom) having m / z of 28 is 1 ⁇ 10-5 Pa ⁇ m 3 / s or less, preferably 1 ⁇ 10-6 Pa ⁇ m 3 / s or less.
  • the leak rate of the gas molecule (atom) having m / z of 44 is set to 3 ⁇ 10 -6 Pa ⁇ m 3 / s or less, preferably 1 ⁇ 10 -6 Pa ⁇ m 3 / s or less.
  • the leak rate may be derived from the total pressure and partial pressure measured using the above-mentioned mass spectrometer.
  • the leak rate depends on external and internal leaks.
  • An external leak is a gas flowing in from outside the vacuum system due to a minute hole or a defective seal.
  • Internal leaks are caused by leaks from partitions such as valves in the vacuum system and gases released from internal members. In order to keep the leak rate below the above value, it is necessary to take measures from both the external leak and the internal leak.
  • the transport chamber 2704 and the opening and closing parts of each chamber may be sealed with a metal gasket.
  • a metal gasket it is preferable to use a metal coated with iron fluoride, aluminum oxide, or chromium oxide.
  • the metal gasket has higher adhesion than the O-ring and can reduce external leakage. Further, by using the passivation of the metal coated with iron fluoride, aluminum oxide, chromium oxide or the like, the released gas containing impurities released from the metal gasket can be suppressed, and the internal leak can be reduced.
  • a member constituting the manufacturing apparatus 2700 aluminum, chromium, titanium, zirconium, nickel or vanadium containing impurities and having a small amount of emitted gas is used. Further, the above-mentioned member may be used by coating it with an alloy containing iron, chromium, nickel and the like. Alloys containing iron, chromium, nickel, etc. are rigid, heat resistant and suitable for processing. Here, if the surface unevenness of the member is reduced by polishing or the like in order to reduce the surface area, the released gas can be reduced.
  • the members of the manufacturing apparatus 2700 described above may be coated with iron fluoride, aluminum oxide, chromium oxide, or the like.
  • the members of the manufacturing apparatus 2700 are preferably made of only metal as much as possible.
  • the surface thereof is made of iron fluoride, aluminum oxide, or oxide in order to suppress the emitted gas. It is recommended to coat it thinly with chrome or the like.
  • the adsorbents present in the transport chamber 2704 and each chamber do not affect the pressure of the transport chamber 2704 and each chamber because they are adsorbed on the inner wall and the like, but cause gas release when the transport chamber 2704 and each chamber are exhausted. It becomes. Therefore, although there is no correlation between the leak rate and the exhaust speed, it is important to use a pump having a high exhaust capacity to remove the adsorbents existing in the transport chamber 2704 and each chamber as much as possible and exhaust them in advance.
  • the transport chamber 2704 and each chamber may be baked in order to promote the desorption of adsorbed substances. By baking, the desorption rate of the adsorbent can be increased by about 10 times. Baking may be performed at 100 ° C. or higher and 450 ° C. or lower.
  • the desorption rate of water or the like which is difficult to desorb only by exhausting, can be further increased.
  • the desorption rate of the adsorbent can be further increased.
  • an inert gas such as a heated rare gas or oxygen
  • the adsorbents in the transport chamber 2704 and each chamber can be desorbed, and the impurities present in the transport chamber 2704 and each chamber can be reduced. It is effective to repeat this treatment 2 times or more and 30 times or less, preferably 5 times or more and 15 times or less.
  • an inert gas or oxygen having a temperature of 40 ° C. or higher and 400 ° C. or lower, preferably 50 ° C. or higher and 200 ° C.
  • the pressure in the transport chamber 2704 and each chamber is 0.1 Pa or higher and 10 kPa or lower.
  • the pressure may be preferably 1 Pa or more and 1 kPa or less, more preferably 5 Pa or more and 100 Pa or less, and the pressure holding period may be 1 minute or more and 300 minutes or less, preferably 5 minutes or more and 120 minutes or less.
  • the transfer chamber 2704 and each chamber are exhausted for a period of 5 minutes or more and 300 minutes or less, preferably 10 minutes or more and 120 minutes or less.
  • Chambers 2706b and 2706c are, for example, chambers capable of performing microwave treatment on an object to be processed. It should be noted that the chamber 2706b and the chamber 2706c differ only in the atmosphere when microwave processing is performed. Since other configurations are common, they will be described together below.
  • the chamber 2706b and the chamber 2706c have a slot antenna plate 2808, a dielectric plate 2809, a substrate holder 2812, and an exhaust port 2819. Further, outside the chamber 2706b and the chamber 2706c, a gas supply source 2801, a valve 2802, a high frequency generator 2803, a waveguide 2804, a mode converter 2805, a gas tube 2806, and a waveguide 2807 are provided outside the chamber 2706b and the chamber 2706c.
  • a matching box 2815, a high frequency power supply 2816, a vacuum pump 2817, and a valve 2818 are provided.
  • the high frequency generator 2803 is connected to the mode converter 2805 via a waveguide 2804.
  • the mode converter 2805 is connected to the slot antenna plate 2808 via a waveguide 2807.
  • the slot antenna plate 2808 is arranged in contact with the dielectric plate 2809.
  • the gas supply source 2801 is connected to the mode converter 2805 via a valve 2802. Then, gas is sent to the chamber 2706b and the chamber 2706c by the mode converter 2805, the waveguide 2807, and the gas tube 2806 passing through the dielectric plate 2809.
  • the vacuum pump 2817 has a function of exhausting gas or the like from the chamber 2706b and the chamber 2706c via the valve 2818 and the exhaust port 2819.
  • the high frequency power supply 2816 is connected to the substrate holder 2812 via the matching box 2815.
  • the board holder 2812 has a function of holding the board 2811. For example, it has a function of electrostatically chucking or mechanically chucking the substrate 2811. It also functions as an electrode to which power is supplied from the high frequency power supply 2816. Further, it has a heating mechanism 2813 inside and has a function of heating the substrate 2811.
  • the vacuum pump 2817 for example, a dry pump, a mechanical booster pump, an ion pump, a titanium sublimation pump, a cryopump, a turbo molecular pump, or the like can be used. Further, in addition to the vacuum pump 2817, a cryotrap may be used. It is particularly preferable to use a cryopump and a cryotrap because water can be efficiently exhausted.
  • the heating mechanism 2813 may be, for example, a heating mechanism that heats using a resistance heating element or the like. Alternatively, it may be a heating mechanism that heats by heat conduction or heat radiation from a medium such as a heated gas.
  • RTA Rapid Thermal Analing
  • GRTA Gas Rapid Thermal Annealing
  • LRTA Riv Rapid Thermal Annealing
  • GRTA is heat-treated using a high-temperature gas. As the gas, an inert gas is used.
  • the gas supply source 2801 may be connected to the refiner via a mass flow controller.
  • the gas it is preferable to use a gas having a dew point of ⁇ 80 ° C. or lower, preferably ⁇ 100 ° C. or lower.
  • oxygen gas, nitrogen gas, and rare gas argon gas, etc. may be used.
  • the dielectric plate 2809 for example, silicon oxide (quartz), aluminum oxide (alumina), yttrium oxide (itria), or the like may be used. Further, another protective layer may be formed on the surface of the dielectric plate 2809. As the protective layer, magnesium oxide, titanium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, silicon oxide, aluminum oxide, yttrium oxide and the like may be used. Since the dielectric plate 2809 is exposed to a particularly high-density region of the high-density plasma 2810 described later, damage can be mitigated by providing a protective layer. As a result, it is possible to suppress an increase in particles during processing.
  • the high frequency generator 2803 has, for example, a function of generating microwaves of 0.3 GHz or more and 3.0 GHz or less, 0.7 GHz or more and 1.1 GHz or less, or 2.2 GHz or more and 2.8 GHz or less.
  • the microwave generated by the high frequency generator 2803 is transmitted to the mode converter 2805 via the waveguide 2804.
  • the microwave transmitted as the TE mode is converted into the TEM mode.
  • the microwave is transmitted to the slot antenna plate 2808 via the waveguide 2807.
  • the slot antenna plate 2808 is provided with a plurality of slot holes, and microwaves pass through the slot holes and the dielectric plate 2809. Then, an electric field can be generated below the dielectric plate 2809 to generate high-density plasma 2810.
  • ions and radicals corresponding to the gas type supplied from the gas supply source 2801 are present. For example, there are oxygen radicals and the like.
  • the substrate 2811 can modify the film and the like on the substrate 2811 by the ions and radicals generated by the high-density plasma 2810. It may be preferable to apply a bias to the substrate 2811 side by using the high frequency power supply 2816.
  • the high frequency power supply 2816 for example, an RF power supply having a frequency such as 13.56 MHz or 27.12 MHz may be used.
  • the bias to the substrate side the ions in the high-density plasma 2810 can be efficiently reached to the depth of the opening such as the film on the substrate 2811.
  • oxygen radical treatment using the high-density plasma 2810 can be performed by introducing oxygen from the gas supply source 2801.
  • Chambers 2706a and 2706d are, for example, chambers capable of irradiating an object to be processed with electromagnetic waves. It should be noted that the chamber 2706a and the chamber 2706d differ only in the type of electromagnetic wave. Since there are many common parts about other configurations, they will be explained together below.
  • Chambers 2706a and 2706d have one or more lamps 2820, a substrate holder 2825, a gas inlet 2823, and an exhaust port 2830. Further, outside the chamber 2706a and the chamber 2706d, a gas supply source 2821, a valve 2822, a vacuum pump 2828, and a valve 2829 are provided.
  • the gas supply source 2821 is connected to the gas introduction port 2823 via a valve 2822.
  • the vacuum pump 2828 is connected to the exhaust port 2830 via a valve 2829.
  • the lamp 2820 is arranged to face the substrate holder 2825.
  • the substrate holder 2825 has a function of holding the substrate 2824. Further, the substrate holder 2825 has a heating mechanism 2826 inside, and has a function of heating the substrate 2824.
  • a light source having a function of radiating electromagnetic waves such as visible light or ultraviolet light
  • a light source having a function of emitting an electromagnetic wave having a peak at a wavelength of 10 nm or more and 2500 nm or less, 500 nm or more and 2000 nm or less, or 40 nm or more and 340 nm or less may be used.
  • a light source such as a halogen lamp, a metal halide lamp, a xenon arc lamp, a carbon arc lamp, a high-pressure sodium lamp, or a high-pressure mercury lamp may be used.
  • the electromagnetic wave radiated from the lamp 2820 can be partially or completely absorbed by the substrate 2824 to modify the film or the like on the substrate 2824.
  • defects can be created or reduced, or impurities can be removed. If the substrate 2824 is heated, defects can be efficiently generated or reduced, or impurities can be removed.
  • the substrate holder 2825 may be heated by the electromagnetic waves radiated from the lamp 2820 to heat the substrate 2824.
  • the heating mechanism 2826 does not have to be provided inside the substrate holder 2825.
  • the vacuum pump 2828 refers to the description about the vacuum pump 2817.
  • the heating mechanism 2826 refers to the description about the heating mechanism 2813.
  • the gas supply source 2821 refers to the description about the gas supply source 2801.
  • FIG. A shows a top view of the semiconductor device.
  • each FIG. B is a cross-sectional view corresponding to the portion indicated by the alternate long and short dash line of A1-A2 shown in each FIG. A.
  • each FIG. C is a cross-sectional view corresponding to the portion indicated by the alternate long and short dash line of A3-A4 in each FIG. A.
  • each FIG. D is a cross-sectional view corresponding to the portion indicated by the alternate long and short dash line of A5-A6 in each FIG.
  • some elements are omitted for the sake of clarity of the figure.
  • the same reference numerals are added to the structures having the same functions as the structures constituting the semiconductor devices shown in ⁇ Semiconductor device configuration example>.
  • the constituent material of the semiconductor device the material described in detail in ⁇ Semiconductor device configuration example> can be used.
  • the semiconductor device shown in FIGS. 20A to 20D is a modification of the semiconductor device shown in FIGS. 1A to 1D.
  • the semiconductor device shown in FIGS. 20A to 20D has a different shape of the insulator 283 from the semiconductor device shown in FIGS. 1A to 1D. It is also different from having an insulator 284 and an insulator 274.
  • the insulator 214, the insulator 216, the insulator 222, the insulator 224, the insulator 275, the insulator 280, and the insulator 282 are patterned.
  • the insulator 284 has a structure that covers the insulator 212, the insulator 214, the insulator 216, the insulator 222, the insulator 224, the insulator 275, the insulator 280, and the insulator 282.
  • the insulator 284 is formed on the upper surface of the insulator 282, the side surface of the insulator 214, the insulator 216, the insulator 222, the insulator 224, the insulator 275, and the insulator 280, and the upper surface of the insulator 212. Touch. Further, the insulator 284 is arranged so as to cover the insulator 284. As a result, the insulator 214, the insulator 216, the insulator 222, the insulator 224, the insulator 280, and the insulator 282 including the oxide 230 and the like are made of the insulator 283, the insulator 284, and the insulator 212. Isolated from the outside. In other words, the transistor 200 is arranged in the region sealed with the insulator 284 and the insulator 212.
  • the insulator 214, the insulator 271, the insulator 275, the insulator 282, and the insulator 284 may be formed by using a material having a function of capturing hydrogen and fixing hydrogen.
  • the same insulator as the insulator 282 can be used.
  • the insulator 212 and the insulator 283 may be formed by using a material having a function of suppressing diffusion to hydrogen and oxygen.
  • a metal oxide having an amorphous structure for example, aluminum oxide can be used.
  • silicon nitride can be used as the insulator 212 and the insulator 283.
  • silicon oxide having an amorphous structure or aluminum oxide having an amorphous structure as the insulator 284 because hydrogen may be captured or fixed more effectively. Thereby, the transistor 200 having good characteristics and high reliability and the semiconductor device can be manufactured.
  • the insulator 212 and the insulator 283 are provided as a single layer is shown, but the present invention is not limited to this.
  • the insulator 212 and the insulator 283 may each be provided as a laminated structure having two or more layers.
  • the insulator 274 is provided so as to cover the insulator 283 and functions as an interlayer film.
  • the insulator 274 preferably has a lower dielectric constant than the insulator 214.
  • the insulator 274 can be provided, for example, by using the same material as the insulator 280.
  • the semiconductor device shown in FIGS. 21A to 21D is a modification of the semiconductor device shown in FIGS. 20A to 20D.
  • the semiconductor device shown in FIGS. 21A to 21D is different from the semiconductor device shown in FIGS. 20A to 20D in that it has an oxide 230c and an oxide 230d. It is also different from having an insulator 287. Further, it is different in that it does not have the insulator 271, the insulator 272, the insulator 273, and the insulator 284.
  • the semiconductor device shown in FIGS. 21A to 21D further has an oxide 230c on the oxide 230b and an oxide 230d on the oxide 230c.
  • the oxide 230c and the oxide 230d are provided in the openings formed in the insulator 280 and the insulator 275. Further, the oxide 230c is in contact with the side surface of the oxide 243a, the side surface of the oxide 243b, the side surface of the conductor 242a, the side surface of the conductor 242b, and the side surface of the insulator 275, respectively. Further, the upper surface of the oxide 230c and the upper surface of the oxide 230d are in contact with the insulator 282.
  • the oxide 230d By arranging the oxide 230d on the oxide 230c, it is possible to suppress the diffusion of impurities to the oxide 230b or the oxide 230c from the structure formed above the oxide 230d. Further, by arranging the oxide 230d on the oxide 230c, the upward diffusion of oxygen from the oxide 230b or the oxide 230c can be suppressed.
  • the oxide 230c is arranged so as to cover the inner wall (side wall and bottom surface) of the groove.
  • the film thickness of the oxide 230c is preferably about the same as the depth of the groove.
  • the atomic number ratio of In to the element M in the metal oxide used for the oxide 230c is larger than the atomic number ratio of In to the element M in the metal oxide used for the oxide 230a or the oxide 230d. ..
  • the atomic number ratio of indium to the main component metal element in the oxide 230c is the atom number of indium to the main component metal element in the oxide 230b. It is preferably larger than the number ratio. Further, it is preferable that the atomic number ratio of In to the element M in the oxide 230c is larger than the atomic number ratio of In to the element M in the oxide 230b.
  • the atomic number ratio of indium to the metal element which is the main component is made larger than the atomic number ratio of indium to the metal element which is the main component in the oxide 230b, so that the oxide 230c is carried. Can be the main route of. Further, it is preferable that the lower end of the conduction band of the oxide 230c is separated from the vacuum level from the lower end of the conduction band of the oxide 230a and the oxide 230b. In other words, the electron affinity of the oxide 230c is preferably larger than the electron affinity of the oxides 230a and 230b. At this time, the main path of the carrier is the oxide 230c.
  • M: Zn 4: 2: 3 [atomic number ratio] or a composition in the vicinity thereof
  • M: Zn 5: 1: 3 [atomic number ratio] or its vicinity.
  • CAAC-OS As the oxide 230c, and it is preferable that the c-axis of the crystal of the oxide 230c is oriented substantially perpendicular to the surface to be formed or the upper surface of the oxide 230c.
  • CAAC-OS has the property of easily moving oxygen in the direction perpendicular to the c-axis. Therefore, the oxygen contained in the oxide 230c can be efficiently supplied to the oxide 230b.
  • the oxide 230d preferably contains at least one of the metal elements constituting the metal oxide used in the oxide 230c, and more preferably contains all the metal elements.
  • the oxide 230c In-M-Zn oxide, In-Zn oxide, or indium oxide is used as the oxide 230c, and In-M-Zn oxide, M-Zn oxide, or element M is used as the oxide 230d. It is advisable to use the oxide of. As a result, the defect level density at the interface between the oxide 230c and the oxide 230d can be lowered.
  • the lower end of the conduction band of the oxide 230d is closer to the vacuum level than the lower end of the conduction band of the oxide 230c.
  • the electron affinity of the oxide 230d is preferably smaller than the electron affinity of the oxide 230c.
  • the oxide 230d it is preferable to use a metal oxide that can be used for the oxide 230a or the oxide 230b.
  • the main path of the carrier is the oxide 230c.
  • the composition in the vicinity includes a range of ⁇ 30% of the desired atomic number ratio.
  • gallium it is preferable to use gallium as the element M.
  • the oxide 230d is more preferably a metal oxide that suppresses the diffusion or permeation of oxygen than the oxide 230c.
  • the atomic number ratio of In to the metal element as the main component is smaller than the atomic number ratio of In to the metal element as the main component in the metal oxide used for the oxide 230c.
  • the atomic number ratio of In to the element M may be smaller than the atomic number ratio of In to the element M in the oxide 230c.
  • the insulator 250 functions as a gate insulator, if In is mixed in the insulator 250 or the like, the characteristics of the transistor become poor. Therefore, by providing the oxide 230d between the oxide 230c and the insulator 250, it is possible to provide a highly reliable semiconductor device.
  • the oxide 230c may be provided for each transistor 200. That is, the oxide 230c of the transistor 200 and the oxide 230c of the transistor 200 adjacent to the transistor 200 do not have to be in contact with each other. Further, the oxide 230c of the transistor 200 and the oxide 230c of the transistor 200 adjacent to the transistor 200 may be separated from each other. In other words, the oxide 230c may not be arranged between the transistor 200 and the transistor 200 adjacent to the transistor 200.
  • the oxide 230c is independently provided on the transistors 200 by the above configuration. Therefore, it is possible to suppress the occurrence of a parasitic transistor between the transistor 200 and the transistor 200 adjacent to the transistor 200, and to suppress the occurrence of the leak path. Therefore, it is possible to provide a semiconductor device having good electrical characteristics and capable of miniaturization or high integration.
  • the same insulator as the insulator 282 or the insulator 284 can be used. Further, after forming the insulator 284 shown in FIG. 20, it is anisotropically etched by using a dry etching method, whereby the insulator 214, the insulator 216, the insulator 222, and the insulator 224 shown in FIG. 21 are formed. , Insulator 275, Insulator 280, and Insulator 287 in contact with the side surfaces of Insulator 282 can be formed.
  • a curved surface may be provided between the side surface of the conductor 242 and the upper surface of the conductor 242. That is, the side edge and the top edge may be curved.
  • the curved surface has, for example, a radius of curvature of 3 nm or more and 10 nm or less, preferably 5 nm or more and 6 nm or less at the end of the conductor 242. By having no corners at the ends, the coating property of the film in the subsequent film forming process is improved.
  • the present invention is not limited to this, and in the configuration shown in FIG. 21, an insulator 271, an insulator 272, and an insulator 273 may be further provided.
  • the semiconductor device shown in FIGS. 22A to 22D is a modification of the semiconductor device shown in FIGS. 20A to 20D.
  • the semiconductor device shown in FIGS. 22A to 22D has a different shape of the insulator 214 from the semiconductor device shown in FIGS. 20A to 20D. It is also different that it does not have an insulator 272. Moreover, the structure of the insulator 275 is different.
  • the insulator 214, the insulator 271, the insulator 275a, the insulator 282, and the insulator 284 each contain a metal oxide having an amorphous structure.
  • the insulator 214, the insulator 271, the insulator 275a, the insulator 282, and the insulator 284 are preferably aluminum oxide having an amorphous structure or aluminum oxide having an amorphous structure, respectively.
  • the insulator 214, the insulator 271, the insulator 275a, the insulator 282, and the insulator 284 each contain a metal oxide having an amorphous structure, so that they are present in hydrogen contained in the transistor 200 or around the transistor 200. Hydrogen can be captured or fixed. In particular, it is preferable to capture or fix hydrogen contained in the channel forming region of the transistor 200.
  • the insulator 250 functioning as the gate insulating film has a laminated structure of the insulator 250a and the insulator 250b.
  • silicon oxide can be used as the insulator 250a
  • hafnium oxide can be used as the insulator 250b.
  • the insulator 214 exists in a region other than the region overlapping with the insulator 222. Further, in the region where the insulator 214 does not overlap with the insulator 222, the upper surface of the insulator 214 is in contact with the lower surface of the insulator 284. Further, an insulator 212 is provided in the lower layer of the insulator 214, and an insulator 283 is provided above the insulator 284. Therefore, the transistor 200 is sealed by the insulator 214 and the insulator 284, and further sealed by the insulator 212 and the insulator 283.
  • the transistor 200 is sealed by an insulator 214 that captures or fixes hydrogen and an insulator 284, and further is sealed by an insulator 212 that suppresses diffusion to hydrogen and oxygen, and an insulator 283. With such a structure, a transistor 200 having good characteristics and high reliability and a semiconductor device can be manufactured.
  • the insulator 275 has a laminated structure of the insulator 275a and the insulator 275b.
  • aluminum oxide having an amorphous structure can be used as the insulator 275a
  • silicon nitride can be used as the insulator 275b. Since the semiconductor device shown in this modification does not have the insulator 272, the insulator 275a is in contact with the side surfaces of the oxide 230a, the oxide 230b, the oxide 243, the conductor 242, and the insulator 271. Therefore, the insulator 275a can capture or fix hydrogen contained in the oxide 230a, the oxide 230b, the oxide 243, and the like. In particular, it is preferable to capture or fix hydrogen contained in the channel forming region of the transistor 200.
  • the semiconductor device shown in FIGS. 23A to 23D is a modification of the semiconductor device shown in FIGS. 22A to 22D.
  • the semiconductor device shown in FIGS. 23A to 23D has a different shape of the insulator 271 from the semiconductor device shown in FIGS. 22A to 22D. It is also different that it does not have an insulator 273.
  • the insulator 275a is provided so as to be in contact with the upper surface of the insulator 271.
  • the insulator 271 is used as a hard mask in the manufacturing process of the transistor 200.
  • the thickness of the insulator 271 is adjusted accordingly, and the insulator 271 is used in the manufacturing process of the transistor 200. It is preferable to suppress the disappearance.
  • the insulator 271 of the present modification is formed thicker than the semiconductor device described above or the insulator 271 described in the modifications 1 to 3.
  • the transistor 200 according to one aspect of the present invention is provided, which is different from the ones shown in the above ⁇ Semiconductor device configuration example> and the above ⁇ Semiconductor device modification>.
  • An example of a semiconductor device will be described.
  • the structure having the same function as the structure constituting the semiconductor device (see FIGS. 20A to 20D) shown in ⁇ Modification example of the semiconductor device >> is the same.
  • the code is added.
  • the constituent material of the transistor 200 the materials described in detail in ⁇ Semiconductor device configuration example> and ⁇ Semiconductor device modification> can be used.
  • FIGS. 24A and 24B show a configuration in which a plurality of transistors 200_1 to 200_n are comprehensively sealed with an insulator 283 and an insulator 212.
  • the transistors 200_1 to 200_n appear to be arranged in the channel length direction, but the transistor 200_1 to the transistor 200_n are not limited to this.
  • the transistors 200_1 to 200_n may be arranged in the channel width direction or may be arranged in a matrix. Further, depending on the design, they may be arranged without regularity.
  • a portion where the insulator 283 and the insulator 212 are in contact with each other (hereinafter, may be referred to as a sealing portion 265) is formed outside the plurality of transistors 200_1 to 200_n.
  • the sealing portion 265 is formed so as to surround the plurality of transistors 200_1 to 200_n. With such a structure, a plurality of transistors 200_1 to 200_n can be wrapped with the insulator 283 and the insulator 212. Therefore, a plurality of transistor groups surrounded by the sealing portion 265 are provided on the substrate.
  • a dicing line (sometimes referred to as a scribe line, a dividing line, or a cutting line) may be provided on the sealing portion 265. Since the substrate is divided at the dicing line, the transistor group surrounded by the sealing portion 265 is taken out as one chip.
  • FIG. 24A an example in which a plurality of transistors 200_1 to 200_n are surrounded by one sealing portion 265 is shown, but the present invention is not limited to this.
  • a plurality of transistors 200_1 to 200_n may be surrounded by a plurality of sealing portions.
  • a plurality of transistors 200_1 to 200_n are surrounded by a sealing portion 265a, and further surrounded by an outer sealing portion 265b.
  • the portion where the insulator 283 and the insulator 212 are in contact with each other increases, so that the adhesion between the insulator 283 and the insulator 212 can be improved. It can be improved further. Thereby, a plurality of transistors 200_1 to 200_n can be more reliably sealed.
  • a dicing line may be provided on the sealing portion 265a or the sealing portion 265b, or a dicing line may be provided between the sealing portion 265a and the sealing portion 265b.
  • the transistors shown in FIGS. 24A and 24B have a configuration in which the upper surface of the insulator 274 substantially coincides with the upper surface of the insulator 283. Further, the insulator 284 is not provided. The present invention is not limited to this, and for example, the insulator 274 may be configured to cover the insulator 283, or the insulator 284 may be provided.
  • one aspect of the present invention it is possible to provide a semiconductor device having little variation in transistor characteristics.
  • one aspect of the present invention can provide a semiconductor device with good reliability.
  • one aspect of the present invention can provide a semiconductor device having good electrical characteristics.
  • one aspect of the present invention can provide a semiconductor device having a large on-current.
  • one aspect of the present invention can provide a semiconductor device capable of miniaturization or high integration.
  • one aspect of the present invention can provide a low power consumption semiconductor device.
  • FIG. 25 shows an example of a semiconductor device (storage device) according to one aspect of the present invention.
  • the transistor 200 is provided above the transistor 300, and the capacitive element 100 is provided above the transistor 300 and the transistor 200.
  • the transistor 200 the transistor 200 described in the previous embodiment can be used.
  • the transistor 200 is a transistor in which a channel is formed in a semiconductor layer having an oxide semiconductor. Since the transistor 200 has a small off-current, it is possible to retain the stored contents for a long period of time by using the transistor 200 as a storage device. That is, since the refresh operation is not required or the frequency of the refresh operation is extremely low, the power consumption of the storage device can be sufficiently reduced.
  • the wiring 1001 is electrically connected to the source of the transistor 300, and the wiring 1002 is electrically connected to the drain of the transistor 300. Further, the wiring 1003 is electrically connected to one of the source and drain of the transistor 200, the wiring 1004 is electrically connected to the first gate of the transistor 200, and the wiring 1006 is electrically connected to the second gate of the transistor 200. It is connected to the. The gate of the transistor 300 and the other of the source and drain of the transistor 200 are electrically connected to one of the electrodes of the capacitive element 100, and the wiring 1005 is electrically connected to the other of the electrodes of the capacitive element 100. ..
  • the storage devices shown in FIG. 25 can form a memory cell array by arranging them in a matrix.
  • the transistor 300 is provided on the substrate 311 and functions as a conductor 316 that functions as a gate, an insulator 315 that functions as a gate insulator, a semiconductor region 313 that is a part of the substrate 311 and a low that functions as a source region or a drain region. It has a resistance region 314a and a low resistance region 314b.
  • the transistor 300 may be either a p-channel type or an n-channel type.
  • the semiconductor region 313 (a part of the substrate 311) on which the channel is formed has a convex shape. Further, the side surface and the upper surface of the semiconductor region 313 are provided so as to be covered with the conductor 316 via the insulator 315.
  • the conductor 316 may be made of a material that adjusts the work function. Since such a transistor 300 utilizes a convex portion of a semiconductor substrate, it is also called a FIN type transistor. It should be noted that an insulator that is in contact with the upper portion of the convex portion and functions as a mask for forming the convex portion may be provided. Further, although the case where a part of the semiconductor substrate is processed to form a convex portion is shown here, the SOI substrate may be processed to form a semiconductor film having a convex shape.
  • transistor 300 shown in FIG. 25 is an example, and the transistor 300 is not limited to its structure, and an appropriate transistor may be used according to the circuit configuration and the driving method.
  • the capacitive element 100 is provided above the transistor 200.
  • the capacitive element 100 has a conductor 110 that functions as a first electrode, a conductor 120 that functions as a second electrode, and an insulator 130 that functions as a dielectric.
  • the insulator 130 it is preferable to use an insulator that can be used as the insulator 286 shown in the above embodiment.
  • the conductor 112 provided on the conductor 240 and the conductor 110 can be formed at the same time.
  • the conductor 112 has a function as a plug or wiring that electrically connects to the capacitance element 100, the transistor 200, or the transistor 300. Further, the conductor 112 and the conductor 110 correspond to the conductor 246 shown in the previous embodiment.
  • the conductor 112 and the conductor 110 have a single-layer structure, but the structure is not limited to this, and a laminated structure of two or more layers may be used.
  • a conductor having a barrier property and a conductor having a high adhesion to a conductor having a high conductivity may be formed between a conductor having a barrier property and a conductor having a high conductivity.
  • the insulator 130 includes, for example, silicon oxide, silicon nitride, silicon nitride, silicon nitride, aluminum oxide, aluminum nitride, aluminum nitride, aluminum nitride, hafnium oxide, hafnium oxide, hafnium oxide, hafnium nitride. Or the like may be used, and it can be provided in a laminated or single layer.
  • the capacitive element 100 can secure a sufficient capacitance by having an insulator having a high dielectric constant (high-k), and by having an insulator having a large dielectric strength, the dielectric strength is improved and the capacitance is improved. Electrostatic destruction of the element 100 can be suppressed.
  • gallium oxide As an insulator of a high dielectric constant (high-k) material (material having a high specific dielectric constant), gallium oxide, hafnium oxide, zirconium oxide, oxides having aluminum and hafnium, and nitrides having aluminum and hafnium. , Oxides with silicon and hafnium, nitrides with silicon and hafnium or nitrides with silicon and hafnium.
  • silicon oxide, silicon oxide nitride, silicon nitride oxide, silicon nitride, silicon oxide with fluorine added, silicon oxide with carbon added, carbon and nitrogen are used as materials with high dielectric strength (materials with low relative permittivity).
  • silicon oxide, silicon oxide nitride, silicon nitride oxide, silicon nitride, silicon oxide with fluorine added, silicon oxide with carbon added, carbon and nitrogen are used as materials with high dielectric strength (materials with low relative permittivity).
  • silicon oxide, silicon oxide nitride, silicon nitride oxide, silicon nitride, silicon oxide with fluorine added, silicon oxide with carbon added, carbon and nitrogen are used as materials with high dielectric strength (materials with low relative permittivity).
  • silicon oxide, silicon oxide nitride, silicon nitride oxide, silicon nitride, silicon oxide with fluorine added, silicon oxide with carbon added, carbon and nitrogen are used as materials with high dielectric strength (materials with low relative permittivity).
  • a wiring layer provided with an interlayer film, wiring, a plug, etc. may be provided between the structures. Further, a plurality of wiring layers can be provided according to the design.
  • the conductor having a function as a plug or wiring may collectively give a plurality of structures the same reference numerals. Further, in the present specification and the like, the wiring and the plug electrically connected to the wiring may be integrated. That is, a part of the conductor may function as a wiring, and a part of the conductor may function as a plug.
  • an insulator 320, an insulator 322, an insulator 324, and an insulator 326 are laminated in this order as an interlayer film on the transistor 300. Further, the insulator 320, the insulator 322, the insulator 324, and the insulator 326 are embedded with a capacitance element 100, a conductor 328 electrically connected to the transistor 200, a conductor 330, and the like. The conductor 328 and the conductor 330 function as plugs or wirings.
  • the insulator that functions as an interlayer film may function as a flattening film that covers the uneven shape below the insulator.
  • the upper surface of the insulator 322 may be flattened by a flattening treatment using a chemical mechanical polishing (CMP) method or the like in order to improve the flatness.
  • CMP chemical mechanical polishing
  • a wiring layer may be provided on the insulator 326 and the conductor 330.
  • the insulator 350, the insulator 352, and the insulator 354 are laminated in this order.
  • a conductor 356 is formed on the insulator 350, the insulator 352, and the insulator 354. The conductor 356 functions as a plug or wiring.
  • the insulator 210, the insulator 212, the insulator 214, and the insulator 216 are embedded with a conductor 218, a conductor (conductor 205) constituting the transistor 200, and the like.
  • the conductor 218 has a function as a plug or wiring for electrically connecting to the capacitance element 100 or the transistor 300.
  • an insulator 150 is provided on the conductor 120 and the insulator 130.
  • the insulator 217 is provided in contact with the side surface of the conductor 218 that functions as a plug.
  • the insulator 217 is provided in contact with the inner wall of the opening formed in the insulator 210, the insulator 212, the insulator 214, and the insulator 216. That is, the insulator 217 is provided between the conductor 218 and the insulator 210, the insulator 212, the insulator 214, and the insulator 216. Since the conductor 205 can be formed in parallel with the conductor 218, the insulator 217 may be formed in contact with the side surface of the conductor 205.
  • an insulator such as silicon nitride, aluminum oxide, or silicon nitride may be used. Since the insulator 217 is provided in contact with the insulator 210, the insulator 212, the insulator 214, and the insulator 222, impurities such as water or hydrogen from the insulator 210 or the insulator 216 or the like are oxidized through the conductor 218. It is possible to suppress mixing with the object 230. In particular, silicon nitride is suitable because it has a high barrier property against hydrogen. Further, it is possible to prevent oxygen contained in the insulator 210 or the insulator 216 from being absorbed by the conductor 218.
  • the insulator 217 can be formed in the same manner as the insulator 241.
  • the PEALD method may be used to form a film of silicon nitride, and anisotropic etching may be used to form an opening reaching the conductor 356.
  • Examples of the insulator that can be used as the interlayer film include oxides, nitrides, oxide nitrides, nitride oxides, metal oxides, metal oxide nitrides, and metal nitride oxides having insulating properties.
  • the material may be selected according to the function of the insulator.
  • the insulator 150, the insulator 210, the insulator 352, the insulator 354, and the like have an insulator having a low relative permittivity.
  • the insulator may have silicon nitride, silicon nitride, silicon oxide to which fluorine has been added, silicon oxide to which carbon has been added, silicon oxide to which carbon and nitrogen have been added, silicon oxide or resin having pores, and the like.
  • the insulator may be silicon oxide, silicon oxide, silicon nitride, silicon nitride, silicon oxide added with fluorine, silicon oxide added with carbon, silicon oxide added with carbon and nitrogen, or silicon oxide having pores.
  • silicon oxide and silicon oxide nitride are thermally stable, they can be combined with a resin to form a laminated structure that is thermally stable and has a low relative permittivity.
  • the resin include polyester, polyolefin, polyamide (nylon, aramid, etc.), polyimide, polycarbonate, acrylic, and the like.
  • a transistor using an oxide semiconductor can stabilize the electrical characteristics of the transistor by surrounding it with an insulator having a function of suppressing the permeation of impurities such as hydrogen and oxygen. Therefore, as the insulator 214, the insulator 212, the insulator 350, and the like, an insulator having a function of suppressing the permeation of impurities such as hydrogen and oxygen may be used.
  • Examples of the insulator having a function of suppressing the permeation of impurities such as hydrogen and oxygen include boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, tantalum, and zirconium. Insulations containing, lanthanum, neodymium, hafnium or tantalum may be used in single layers or in layers.
  • an insulator having a function of suppressing the permeation of impurities such as hydrogen and oxygen aluminum oxide, magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide or Metal oxides such as tantalum oxide, silicon nitride oxide, silicon nitride and the like can be used.
  • Conductors that can be used for wiring and plugs include aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, and indium.
  • a material containing one or more metal elements selected from ruthenium and the like can be used.
  • a semiconductor having high electric conductivity typified by polycrystalline silicon containing an impurity element such as phosphorus, and a silicide such as nickel silicide may be used.
  • the conductor 328, the conductor 330, the conductor 356, the conductor 218, the conductor 112, and the like include a metal material, an alloy material, a metal nitride material, a metal oxide material, and the like formed of the above materials.
  • a metal material such as tungsten or molybdenum that has both heat resistance and conductivity, and it is preferable to use tungsten.
  • it is preferably formed of a low resistance conductive material such as aluminum or copper. Wiring resistance can be reduced by using a low resistance conductive material.
  • an insulator having an excess oxygen region may be provided in the vicinity of the oxide semiconductor. In that case, it is preferable to provide an insulator having a barrier property between the insulator having the excess oxygen region and the conductor provided in the insulator having the excess oxygen region.
  • an insulator 241 between the insulator 224 and the insulator 280 having excess oxygen and the conductor 240 it is preferable to provide an insulator 241 between the insulator 224 and the insulator 280 having excess oxygen and the conductor 240.
  • the insulator 241 in contact with the insulator 222, the insulator 275, the insulator 282, and the insulator 283, the insulator 224 and the transistor 200 are sealed by the insulator having a barrier property. It can be a structure.
  • the insulator 241 it is possible to suppress the excess oxygen contained in the insulator 224 and the insulator 280 from being absorbed by the conductor 240. Further, by having the insulator 241, it is possible to suppress the diffusion of hydrogen, which is an impurity, to the transistor 200 via the conductor 240.
  • an insulating material having a function of suppressing the diffusion of impurities such as water and hydrogen and oxygen it is preferable to use silicon nitride, silicon nitride oxide, aluminum oxide or hafnium oxide.
  • silicon nitride is preferable because it has a high barrier property against hydrogen.
  • metal oxides such as magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, and tantalum oxide can be used.
  • the transistor 200 may be configured to be sealed with an insulator 212, an insulator 214, an insulator 282, and an insulator 283. With such a configuration, it is possible to reduce the mixing of hydrogen contained in the insulator 274, the insulator 150 and the like into the insulator 280 and the like.
  • the conductor 240 penetrates the insulator 283 and the insulator 282, and the conductor 218 penetrates the insulator 214 and the insulator 212.
  • the insulator 241 is in contact with the conductor 240.
  • the insulator 217 is provided in contact with the conductor 218.
  • the transistor 200 is sealed with the insulator 212, the insulator 214, the insulator 282, the insulator 283, the insulator 241 and the insulator 217, and impurities such as hydrogen contained in the insulator 274 and the like are outside. It is possible to reduce contamination from.
  • a dicing line (sometimes referred to as a scribe line, a division line, or a cutting line) provided when a plurality of semiconductor devices are taken out in a chip shape by dividing a large-area substrate into semiconductor elements will be described. ..
  • a dividing method for example, there is a case where a groove (dicing line) for dividing a semiconductor element is first formed on a substrate, then the dicing line is cut, and the semiconductor device is divided (divided) into a plurality of semiconductor devices.
  • the region where the insulator 283 and the insulator 212 are in contact overlap with the dicing line. That is, in the vicinity of the region serving as the dicing line provided on the outer edge of the memory cell having the plurality of transistors 200, the insulator 282, the insulator 280, the insulator 275, the insulator 224, the insulator 222, the insulator 216, and the insulator.
  • An opening is provided in 214.
  • the insulator 212 and the insulator 283 come into contact with each other at the openings provided in the insulator 282, the insulator 280, the insulator 275, the insulator 224, the insulator 222, the insulator 216, and the insulator 214.
  • the insulator 212 and the insulator 283 may be formed by using the same material and the same method.
  • the adhesion can be improved. For example, it is preferable to use silicon nitride.
  • the transistor 200 can be wrapped by the insulator 212, the insulator 214, the insulator 282, and the insulator 283. Since at least one of the insulator 212, the insulator 214, the insulator 282, and the insulator 283 has a function of suppressing the diffusion of oxygen, hydrogen, and water, the semiconductor element shown in the present embodiment is formed. By dividing the substrate for each circuit region, even if it is processed into a plurality of chips, impurities such as hydrogen or water are prevented from being mixed in from the side surface direction of the divided substrate and diffused to the transistor 200. Can be done.
  • the structure can prevent the excess oxygen of the insulator 280 and the insulator 224 from diffusing to the outside. Therefore, the excess oxygen of the insulator 280 and the insulator 224 is efficiently supplied to the oxide in which the channel is formed in the transistor 200.
  • the oxygen can reduce the oxygen deficiency of the oxide in which the channel is formed in the transistor 200.
  • the oxide in which the channel is formed in the transistor 200 can be made into an oxide semiconductor having a low defect level density and stable characteristics. That is, it is possible to suppress fluctuations in the electrical characteristics of the transistor 200 and improve reliability.
  • the shape of the capacitance element 100 is a planar type, but the storage device shown in the present embodiment is not limited to this.
  • the shape of the capacitance element 100 may be a cylinder type.
  • the storage device shown in FIG. 26 has the same configuration as the semiconductor device shown in FIG. 25 in the configuration below the insulator 150.
  • the capacitive element 100 shown in FIG. 26 is an insulator 150 on the insulator 130, an insulator 142 on the insulator 150, and a conductor 115 arranged in an opening formed in the insulator 150 and the insulator 142.
  • at least a part of the conductor 115, the insulator 145, and the conductor 125 is arranged in the openings formed in the insulator 150 and the insulator 142.
  • the insulator 154 is arranged on the insulator 152, and the conductor 153 and the insulator 156 are arranged on the insulator 154.
  • the conductor 140 is provided in the openings formed in the insulator 130, the insulator 150, the insulator 142, the insulator 145, the insulator 152, and the insulator 154.
  • the conductor 115 functions as a lower electrode of the capacitance element 100
  • the conductor 125 functions as an upper electrode of the capacitance element 100
  • the insulator 145 functions as a dielectric of the capacitance element 100.
  • the capacitance element 100 has a configuration in which the upper electrode and the lower electrode face each other with a dielectric sandwiched not only on the bottom surface but also on the side surface at the openings of the insulator 150 and the insulator 142, and the capacitance per unit area.
  • the capacity can be increased. Therefore, the deeper the depth of the opening, the larger the capacitance of the capacitance element 100 can be.
  • an insulator that can be used for the insulator 280 may be used.
  • the insulator 142 preferably functions as an etching stopper when forming an opening of the insulator 150, and an insulator that can be used for the insulator 214 may be used.
  • the shape of the openings formed in the insulator 150 and the insulator 142 as viewed from the upper surface may be a quadrangle, a polygonal shape other than the quadrangle, or a polygonal shape with curved corners. , It may be a circular shape including an ellipse.
  • it is preferable that the area where the opening and the transistor 200 overlap is large. With such a configuration, the occupied area of the semiconductor device having the capacitance element 100 and the transistor 200 can be reduced.
  • the conductor 115 is arranged in contact with the insulator 142 and the opening formed in the insulator 150. It is preferable that the upper surface of the conductor 115 substantially coincides with the upper surface of the insulator 142. Further, the lower surface of the conductor 115 is in contact with the conductor 110 through the opening of the insulator 130.
  • the conductor 115 is preferably formed by using an ALD method, a CVD method, or the like, and for example, a conductor that can be used for the conductor 205 may be used.
  • the insulator 145 is arranged so as to cover the conductor 115 and the insulator 142.
  • the insulator 145 includes, for example, silicon oxide, silicon nitride, silicon nitride, silicon nitride, zirconium oxide, aluminum oxide, aluminum oxide, aluminum nitride, aluminum nitride, hafnium oxide, hafnium oxide, hafnium oxide, and nitride.
  • Hafnium or the like may be used, and it can be provided in a laminated or single layer.
  • an insulating film in which zirconium oxide, aluminum oxide, and zirconium oxide are laminated in this order can be used.
  • the insulator 145 it is preferable to use a material having a large dielectric strength such as silicon oxide nitride or a material having a high dielectric constant (high-k).
  • a material having a large dielectric strength such as silicon oxide nitride or a material having a high dielectric constant (high-k).
  • a laminated structure of a material having a large dielectric strength and a high dielectric constant (high-k) material may be used.
  • insulator of a high dielectric constant (high-k) material material having a high specific dielectric constant
  • silicon oxide, silicon oxide, silicon nitride, silicon nitride, silicon nitride added with fluorine, silicon oxide added with carbon, silicon oxide added with carbon and nitrogen, and pores are used as materials having high dielectric strength.
  • silicon oxide, resin, etc. laminated in the order of silicon nitride was deposited using ALD (SiN x), silicon oxide was deposited using PEALD method (SiO x), silicon nitride was deposited using ALD (SiN x)
  • An insulating film that has been formed can be used. By using such an insulator having a large dielectric strength, the dielectric strength can be improved and electrostatic breakdown of the capacitive element 100 can be suppressed.
  • the conductor 125 is arranged so as to fill the openings formed in the insulator 142 and the insulator 150. Further, the conductor 125 is electrically connected to the wiring 1005 via the conductor 140 and the conductor 153.
  • the conductor 125 is preferably formed by using an ALD method, a CVD method, or the like, and for example, a conductor that can be used for the conductor 205 may be used.
  • the conductor 153 is provided on the insulator 154 and is covered with the insulator 156.
  • a conductor that can be used for the conductor 112 may be used, and as the insulator 156, an insulator that can be used for the insulator 152 may be used.
  • the conductor 153 is in contact with the upper surface of the conductor 140, and functions as a terminal of the capacitive element 100, the transistor 200, or the transistor 300.
  • FIGS. 27A and 27B An example of a semiconductor device (storage device) according to one aspect of the present invention is shown in FIGS. 27A and 27B.
  • FIG. 27A is a cross-sectional view of a semiconductor device having a memory device 290.
  • the memory device 290 shown in FIG. 27A has a capacitive device 292 in addition to the transistors 200 shown in FIGS. 1A to 1D.
  • FIG. 27A corresponds to a cross-sectional view of the transistor 200 in the channel length direction.
  • the capacitive device 292 includes a conductor 242b, an insulator 271b and an insulator 273b provided on the conductor 242b, an insulator 272b provided in contact with the side surface of the conductor 242b, an insulator 273b, and an insulator. It has an insulator 275 provided so as to cover 272b, and a conductor 294 on the insulator 275. That is, the capacitance device 292 constitutes a MIM (Metal-Insulator-Metal) capacitance.
  • One of the pair of electrodes of the capacitive device 292, that is, the conductor 242b, can also serve as the source electrode of the transistor.
  • the dielectric layer included in the capacitive device 292 can also serve as a protective layer provided on the transistor, that is, an insulator 271, an insulator 272, and an insulator 275. Therefore, in the manufacturing process of the capacitive device 292, a part of the manufacturing process of the transistor can also be used, so that the semiconductor device can be highly productive. Further, since one of the pair of electrodes of the capacitive device 292, that is, the conductor 242b also serves as the source electrode of the transistor, it is possible to reduce the area where the transistor and the capacitive device are arranged.
  • the conductor 294 for example, a material that can be used for the conductor 242 may be used.
  • FIG. 27B is a cross-sectional view of a semiconductor device having a memory device 290, which is different from the structure shown in FIG. 27A.
  • the memory device 290 shown in FIG. 27B has a capacitive device 292 in addition to the transistor 200 shown in FIGS. 22A to 22D.
  • a part of the capacitance device 292 shown in FIG. 27B is provided in the insulator 280, the insulator 275, the insulator 273b, and the opening formed in the insulator 271b, unlike the capacitance device 292 shown in FIG. 27A. Be done.
  • FIG. 27B corresponds to a cross-sectional view of the transistor 200 in the channel length direction.
  • the capacitance device 292 includes a conductor 242b, an insulator 293 provided on the conductor 242b, and a conductor 294 provided on the insulator 293.
  • the insulator 293 and the conductor 294 are arranged in the openings formed in the insulator 280, the insulator 275, the insulator 273b, and the insulator 271b.
  • the insulator 293 is provided in contact with the bottom surface and the side wall of the opening.
  • the insulator 293 is in contact with the upper surface of the conductor 242b, the side surface of the insulator 271b, the side surface of the insulator 273b, the side surface of the insulator 275a, the side surface of the insulator 275b, and the side surface of the insulator 280. Further, the insulator 293 is provided so as to form a recess along the shape of the opening. The conductor 294 is arranged in contact with the upper surface and the side surface of the insulator 293 so as to embed the recess. The heights of the upper surfaces of the insulator 293 and the conductor 294 may be substantially the same as the heights of the upper surfaces of the insulator 280, the insulator 250, and the conductor 260.
  • the conductor 242b functions as a lower electrode of the capacitive device 292
  • the conductor 294 functions as an upper electrode of the capacitive device 292
  • the insulator 293 functions as a dielectric of the capacitive device 292.
  • the capacitance device 292 constitutes the MIM capacitance.
  • One of the pair of electrodes of the capacitive device 292, that is, the conductor 242b, can also serve as the source electrode of the transistor. Therefore, in the manufacturing process of the capacitive device 292, a part of the manufacturing process of the transistor can also be used, so that the semiconductor device can be highly productive.
  • the insulator 293 can be provided separately from the configuration of the transistor 200, the structure and material of the insulator 293 can be appropriately selected according to the performance required for the capacitive device 292. Further, since one of the pair of electrodes of the capacitive device 292, that is, the conductor 242b also serves as the source electrode of the transistor, it is possible to reduce the area where the transistor and the capacitive device are arranged.
  • a high dielectric constant (high-k) material for the insulator 293.
  • a high dielectric constant (high-k) material material having a high specific dielectric constant
  • the insulator 293 one in which films of these high dielectric constant materials are laminated may be used.
  • the insulator 293, an insulating film in which zirconium oxide, aluminum oxide, and zirconium oxide are laminated in this order can be used.
  • the conductor 294 for example, a material that can be used for the conductor 260 may be used. Further, the conductor 294 may have a laminated structure like the conductor 260.
  • the insulator 293 and the conductor 294 may be formed before the film formation of the insulator 282, that is, before the step shown in FIG.
  • the formation of the insulator 293 and the conductor 294 can be performed in the same manner as the formation of the insulator 250 and the conductor 260. That is, openings are formed in the insulator 280, the insulator 275, the insulator 273b, and the insulator 271b, and a laminated film to be the insulator 293 and the conductor 294 is formed so as to be embedded in the openings, and the laminated film is formed. A part of the film may be removed by using a CMP treatment to form an insulator 293 and a conductor 294.
  • FIGS. 28A, 28B, 29, and 30 a transistor 200 and a capacitive device according to one aspect of the present invention, which are different from those shown in ⁇ Memory device configuration example 1> above.
  • An example of the semiconductor device having 292 will be described.
  • the semiconductor devices shown in FIGS. 28A, 28B, 29, and 30 have the same structure as the semiconductor device (see FIG. 27A) shown in the previous embodiment and ⁇ Memory device configuration example 1>.
  • the same reference numerals are added to structures having functions.
  • the constituent materials of the transistor 200 and the capacitive device 292 the materials described in detail in the previous embodiment and ⁇ Memory device configuration example 1> can be used.
  • FIGS. 28A, 28B, 29, 30 and the like the memory device shown in FIG. 27A is used as the memory device, but the present invention is not limited to this.
  • the memory device shown in FIG. 27B may be used.
  • FIG. 28A is a cross-sectional view of a semiconductor device 600 having a transistor 200a, a transistor 200b, a capacitive device 292a, and a capacitive device 292b in the channel length direction.
  • the capacitive device 292a includes a conductor 242a, an insulator 271a provided on the conductor 242a, an insulator 272a provided in contact with the side surface of the conductor 242a, an insulator 271a, and an insulator 272a. It has a conductor 294a provided so as to cover the above.
  • the capacitive device 292b includes a conductor 242b, an insulator 271b provided on the conductor 242b, an insulator 272b provided in contact with the side surface of the conductor 242b, an insulator 271b, and an insulator 272b. It has a conductor 294b provided so as to cover it.
  • the semiconductor device 600 has a line-symmetrical configuration with the alternate long and short dash line of A3-A4 as the axis of symmetry.
  • One of the source electrode or the drain electrode of the transistor 200a and one of the source electrode or the drain electrode of the transistor 200b are configured by the conductor 242c.
  • An insulator 271c is provided on the conductor 242c, and an insulator 273c is provided on the insulator 271c.
  • the conductor 246 that functions as wiring and the conductor 240 that also functions as a plug for connecting the transistor 200a and the transistor 200b are configured.
  • the configuration examples of the semiconductor devices shown in FIGS. 1A to 1D and 27A can be referred to.
  • ⁇ Modification example 2 of memory device >>
  • the transistor 200a, the transistor 200b, the capacitive device 292a, and the capacitive device 292b have been mentioned as configuration examples of the semiconductor device, but the semiconductor device shown in the present embodiment is not limited to this.
  • the semiconductor device 600 and the semiconductor device having the same configuration as the semiconductor device 600 may be connected via a capacitance portion.
  • a semiconductor device having a transistor 200a, a transistor 200b, a capacitive device 292a, and a capacitive device 292b is referred to as a cell.
  • the above-mentioned description relating to the transistor 200a, the transistor 200b, the capacitive device 292a, and the capacitive device 292b can be referred to.
  • FIG. 28B is a cross-sectional view in which a semiconductor device 600 having a transistor 200a, a transistor 200b, a capacitance device 292a, and a capacitance device 292b and a cell having the same configuration as the semiconductor device 600 are connected via a capacitance section.
  • the conductor 294b that functions as one electrode of the capacitance device 292b of the semiconductor device 600 also serves as one electrode of the capacitance device of the semiconductor device 601 having the same configuration as the semiconductor device 600. It has become.
  • the conductor 294a, which functions as one electrode of the capacitance device 292a of the semiconductor device 600 is on the left side of the semiconductor device 600, that is, in FIG. 28B, one of the capacitance devices of the semiconductor device adjacent to the semiconductor device 600 in the A1 direction. Also serves as an electrode.
  • the cell on the right side of the semiconductor device 601, that is, in FIG. 28B has the same configuration for the cell in the A2 direction.
  • a cell array (also referred to as a memory device layer) can be formed.
  • the distance between adjacent cells can be reduced, so that the projected area of the cell array can be reduced, and high integration is possible.
  • a matrix-like cell array can be configured.
  • the cell area is reduced, and the semiconductor device having the cell array is miniaturized or increased. It can be integrated.
  • FIG. 29 shows a cross-sectional view of a configuration in which n layers of cell array 610 are laminated.
  • FIG. 29 by stacking a plurality of cell cells (series cell array 610_1 to cell array 610_n), cells can be integrated and arranged without increasing the occupied area of the cell array. That is, a 3D cell array can be constructed.
  • FIG. 30 shows an example in which the memory unit 470 has a transistor layer 413 having a transistor 200T and four memory device layers 415 (memory device layer 415_1 to memory device layer 415_4).
  • the memory device layer 415_1 to the memory device layer 415_1 each have a plurality of memory devices 420.
  • the memory device 420 is electrically connected to the memory device 420 of the different memory device layers 415 and the transistor 200T of the transistor layer 413 via the conductor 424 and the conductor 205.
  • the memory unit 470 is sealed by an insulator 212, an insulator 214, an insulator 282, and an insulator 283 (for convenience, hereinafter referred to as a sealing structure).
  • An insulator 274 is provided around the insulator 283. Further, the insulator 274, the insulator 283, and the insulator 212 are provided with a conductor 440, which is electrically connected to the element layer 411.
  • an insulator 280 is provided inside the sealing structure.
  • the insulator 280 has a function of releasing oxygen by heating.
  • the insulator 280 has an excess oxygen region.
  • the insulator 212 and the insulator 283 are preferably materials having a function of having a high barrier property against hydrogen. Further, the insulator 214 and the insulator 282 are preferably materials having a function of capturing hydrogen or fixing hydrogen.
  • the material having a function of having a high barrier property against hydrogen includes silicon nitride, silicon nitride, and the like.
  • Examples of the material having a function of capturing hydrogen or fixing hydrogen include aluminum oxide, hafnium oxide, and oxides containing aluminum and hafnium (hafnium aluminate).
  • the crystal structure of the materials used for the insulator 212, the insulator 214, the insulator 282, and the insulator 283 is not particularly limited, but may be an amorphous or crystalline structure.
  • Amorphous aluminum oxide may capture and adhere more hydrogen than highly crystalline aluminum oxide.
  • the insulator 282 and the insulator 214 are provided between the transistor layer 413 and the memory device layer 415, or also between each memory device layer 415. Further, it is preferable that the insulator 296 is provided between the insulator 282 and the insulator 214.
  • the excess oxygen in the insulator 280 can be considered as the following model for the diffusion of hydrogen in the oxide semiconductor in contact with the insulator 280.
  • Hydrogen present in the oxide semiconductor diffuses into other structures via the insulator 280 in contact with the oxide semiconductor. Due to the diffusion of the hydrogen, the excess oxygen in the insulator 280 reacts with the hydrogen in the oxide semiconductor to form an OH bond, and diffuses in the insulator 280.
  • a hydrogen atom having an OH bond reaches a material having a function of capturing hydrogen or fixing hydrogen (typically, an insulator 282)
  • the hydrogen atom becomes an atom in the insulator 282 (for example, an insulator 282). It reacts with oxygen atoms bonded to metal atoms, etc.) and is captured or fixed in the insulator 282.
  • an insulator 280 having excess oxygen is formed on an oxide semiconductor, and then an insulator 282 is formed. After that, it is preferable to perform heat treatment. Specifically, the heat treatment is carried out in an atmosphere containing oxygen, an atmosphere containing nitrogen, or a mixed atmosphere of oxygen and nitrogen at a temperature of 350 ° C. or higher, preferably 400 ° C. or higher.
  • the heat treatment time is 1 hour or longer, preferably 4 hours or longer, and more preferably 8 hours or longer.
  • hydrogen in the oxide semiconductor can be diffused to the outside through the insulator 280 and the insulator 282. That is, the absolute amount of the oxide semiconductor and hydrogen existing in the vicinity of the oxide semiconductor can be reduced.
  • an insulator 283 is formed. Since the insulator 283 is a material having a function of having a high barrier property against hydrogen, hydrogen diffused to the outside or hydrogen existing on the outside is transferred to the inside, specifically, an oxide semiconductor or the insulator 280. It can be suppressed from entering the side.
  • the heat treatment may be performed after the transistor layer 413 is formed or after the memory device layer 415_1 to the memory device layer 415_3 are formed. Further, when hydrogen is diffused outward by the above heat treatment, hydrogen is diffused above or in the lateral direction of the transistor layer 413. Similarly, when the heat treatment is performed after the memory device layer 415_1 to the memory device layer 415_3 are formed, hydrogen is diffused upward or laterally.
  • the insulator 212 and the insulator 283 are adhered to each other to form the above-mentioned sealing structure.
  • an OS transistor a transistor using an oxide as a semiconductor
  • a storage device to which a capacitive element is applied hereinafter, may be referred to as an OS memory device
  • the OS memory device is a storage device having at least a capacitance element and an OS transistor that controls charging / discharging of the capacitance element. Since the off-current of the OS transistor is extremely small, the OS memory device has excellent holding characteristics and can function as a non-volatile memory.
  • FIG. 31A shows an example of the configuration of the OS memory device.
  • the storage device 1400 has a peripheral circuit 1411 and a memory cell array 1470.
  • the peripheral circuit 1411 includes a row circuit 1420, a column circuit 1430, an output circuit 1440, and a control logic circuit 1460.
  • the column circuit 1430 includes, for example, a column decoder, a precharge circuit, a sense amplifier, a writing circuit, and the like.
  • the precharge circuit has a function of precharging the wiring.
  • the sense amplifier has a function of amplifying a data signal read from a memory cell.
  • the wiring is the wiring connected to the memory cell of the memory cell array 1470, and will be described in detail later.
  • the amplified data signal is output to the outside of the storage device 1400 as a data signal RDATA via the output circuit 1440.
  • the row circuit 1420 has, for example, a row decoder, a word line driver circuit, and the like, and can select a row to be accessed.
  • a low power supply voltage (VSS), a high power supply voltage (VDD) for the peripheral circuit 1411, and a high power supply voltage (VIL) for the memory cell array 1470 are supplied to the storage device 1400 from the outside as power supply voltages. Further, a control signal (CE, WE, RE), an address signal ADDR, and a data signal WDATA are input to the storage device 1400 from the outside.
  • the address signal ADDR is input to the row decoder and column decoder, and the data signal WDATA is input to the write circuit.
  • the control logic circuit 1460 processes control signals (CE, WE, RE) input from the outside to generate control signals for row decoders and column decoders.
  • the control signal CE is a chip enable signal
  • the control signal WE is a write enable signal
  • the control signal RE is a read enable signal.
  • the signal processed by the control logic circuit 1460 is not limited to this, and other control signals may be input as needed.
  • the memory cell array 1470 has a plurality of memory cell MCs arranged in a matrix and a plurality of wirings.
  • the number of wires connecting the memory cell array 1470 and the row circuit 1420 is determined by the configuration of the memory cell MC, the number of memory cell MCs in a row, and the like. Further, the number of wirings connecting the memory cell array 1470 and the column circuit 1430 is determined by the configuration of the memory cell MC, the number of memory cell MCs in one row, and the like.
  • FIG. 31A shows an example in which the peripheral circuit 1411 and the memory cell array 1470 are formed on the same plane
  • the present embodiment is not limited to this.
  • the memory cell array 1470 may be provided so as to overlap a part of the peripheral circuit 1411.
  • a sense amplifier may be provided so as to overlap under the memory cell array 1470.
  • 32A to 32H show examples of memory cell configurations applicable to the above-mentioned memory cell MC.
  • [DOSRAM] 32A to 32C show an example of a circuit configuration of a DRAM memory cell.
  • a DRAM using a memory cell of a 1OS transistor and 1 capacitance element type may be referred to as a DOSRAM (Dynamic Oxide Semiconductor Random Access Memory).
  • the memory cell 1471 shown in FIG. 32A includes a transistor M1 and a capacitive element CA.
  • the transistor M1 has a gate (sometimes called a top gate) and a back gate.
  • the first terminal of the transistor M1 is connected to the first terminal of the capacitive element CA, the second terminal of the transistor M1 is connected to the wiring BIL, the gate of the transistor M1 is connected to the wiring WOL, and the back gate of the transistor M1. Is connected to the wiring BGL.
  • the second terminal of the capacitive element CA is connected to the wiring CAL.
  • the wiring BIL functions as a bit line
  • the wiring WOL functions as a word line.
  • the wiring CAL functions as wiring for applying a predetermined potential to the second terminal of the capacitive element CA. It is preferable to apply a low level potential to the wiring CAL when writing and reading data.
  • the wiring BGL functions as wiring for applying a potential to the back gate of the transistor M1.
  • the threshold voltage of the transistor M1 can be increased or decreased by applying an arbitrary potential to the wiring BGL.
  • the memory cell 1471 shown in FIG. 32A corresponds to the storage device shown in FIG. 27. That is, the transistor M1 corresponds to the transistor 200, and the capacitive element CA corresponds to the capacitive device 292.
  • the memory cell MC is not limited to the memory cell 1471, and the circuit configuration can be changed.
  • the memory cell MC may have a configuration in which the back gate of the transistor M1 is connected to the wiring WOL instead of the wiring BGL, as in the memory cell 1472 shown in FIG. 32B.
  • the memory cell MC may be a memory cell composed of a transistor having a single gate structure, that is, a transistor M1 having no back gate, as in the memory cell 1473 shown in FIG. 32C.
  • a transistor 200 can be used as the transistor M1 and a capacitance element 100 can be used as the capacitance element CA.
  • an OS transistor as the transistor M1
  • the leakage current of the transistor M1 can be made very small. That is, since the written data can be held by the transistor M1 for a long time, the frequency of refreshing the memory cells can be reduced. Moreover, the refresh operation of the memory cell can be eliminated. Further, since the leak current is very small, multi-valued data or analog data can be held in the memory cell 1471, the memory cell 1472, and the memory cell 1473.
  • the sense amplifier is provided so as to overlap under the memory cell array 1470 as described above, the bit line can be shortened. As a result, the bit line capacity is reduced, and the holding capacity of the memory cell can be reduced.
  • [NOSRAM] 32D to 32G show a circuit configuration example of a gain cell type memory cell having two transistors and one capacitance element.
  • the memory cell 1474 shown in FIG. 32D includes a transistor M2, a transistor M3, and a capacitance element CB.
  • the transistor M2 has a top gate (sometimes referred to simply as a gate) and a back gate.
  • NOSRAM Nonvolatile Oxide Semiconductor RAM
  • the first terminal of the transistor M2 is connected to the first terminal of the capacitive element CB, the second terminal of the transistor M2 is connected to the wiring WBL, the gate of the transistor M2 is connected to the wiring WOL, and the back gate of the transistor M2. Is connected to the wiring BGL.
  • the second terminal of the capacitance element CB is connected to the wiring CAL.
  • the first terminal of the transistor M3 is connected to the wiring RBL, the second terminal of the transistor M3 is connected to the wiring SL, and the gate of the transistor M3 is connected to the first terminal of the capacitive element CB.
  • the wiring WBL functions as a write bit line
  • the wiring RBL functions as a read bit line
  • the wiring WOL functions as a word line.
  • the wiring CAL functions as wiring for applying a predetermined potential to the second terminal of the capacitance element CB. It is preferable to apply a low level potential to the wiring CAL during data writing, data retention, and data reading.
  • the wiring BGL functions as wiring for applying an electric potential to the back gate of the transistor M2.
  • the threshold voltage of the transistor M2 can be increased or decreased by applying an arbitrary potential to the wiring BGL.
  • the memory cell 1474 shown in FIG. 32D corresponds to the storage device shown in FIG. 25. That is, the transistor M2 is in the transistor 200, the capacitive element CB is in the capacitive element 100, the transistor M3 is in the transistor 300, the wiring WBL is in the wiring 1003, the wiring WOL is in the wiring 1004, the wiring BGL is in the wiring 1006, and the wiring CAL is in the wiring 1006.
  • the wiring RBL corresponds to the wiring 1002
  • the wiring SL corresponds to the wiring 1001.
  • the memory cell MC is not limited to the memory cell 1474, and the circuit configuration can be appropriately changed.
  • the memory cell MC may have a configuration in which the back gate of the transistor M2 is connected to the wiring WOL instead of the wiring BGL, as in the memory cell 1475 shown in FIG. 32E.
  • the memory cell MC may be a memory cell composed of a transistor having a single gate structure, that is, a transistor M2 having no back gate, as in the memory cell 1476 shown in FIG. 32F.
  • the memory cell MC may have a configuration in which the wiring WBL and the wiring RBL are combined as one wiring BIL, as in the memory cell 1477 shown in FIG. 32G.
  • a transistor 200 can be used as the transistor M2
  • a transistor 300 can be used as the transistor M3
  • a capacitance element 100 can be used as the capacitance element CB.
  • OS transistor an OS transistor
  • the leakage current of the transistor M2 can be made very small.
  • the written data can be held by the transistor M2 for a long time, so that the frequency of refreshing the memory cells can be reduced.
  • the refresh operation of the memory cell can be eliminated.
  • the leak current is very small, multi-valued data or analog data can be held in the memory cell 1474. The same applies to the memory cells 1475 to 1477.
  • the transistor M3 may be a transistor having silicon in the channel forming region (hereinafter, may be referred to as a Si transistor).
  • the conductive type of the Si transistor may be an n-channel type or a p-channel type.
  • the Si transistor may have higher field effect mobility than the OS transistor. Therefore, a Si transistor may be used as the transistor M3 that functions as a readout transistor. Further, by using a Si transistor for the transistor M3, since the transistor M2 can be provided by stacking on the transistor M3, the occupied area of the memory cell can be reduced and the storage device can be highly integrated.
  • the transistor M3 may be an OS transistor.
  • an OS transistor is used for the transistor M2 and the transistor M3, the circuit can be configured by using only the n-type transistor in the memory cell array 1470.
  • FIG. 32H shows an example of a gain cell type memory cell having a 3-transistor and 1-capacity element.
  • the memory cell 1478 shown in FIG. 32H includes transistors M4 to M6 and a capacitive element CC.
  • the capacitive element CC is appropriately provided.
  • the memory cell 1478 is electrically connected to the wiring BIL, the wiring RWL, the wiring WWL, the wiring BGL, and the wiring GNDL.
  • Wiring GNDL is a wiring that gives a low level potential. Note that the memory cell 1478 may be electrically connected to the wiring RBL and the wiring WBL instead of the wiring BIL.
  • the transistor M4 is an OS transistor having a back gate, and the back gate is electrically connected to the wiring BGL.
  • the back gate and the gate of the transistor M4 may be electrically connected to each other. Alternatively, the transistor M4 does not have to have a back gate.
  • the transistor M5 and the transistor M6 may be an n-channel Si transistor or a p-channel Si transistor, respectively.
  • the transistors M4 to M6 may be OS transistors.
  • the memory cell array 1470 can be configured by using only n-type transistors.
  • the transistor 200 can be used as the transistor M4
  • the transistor 300 can be used as the transistor M5 and the transistor M6, and the capacitance element 100 can be used as the capacitance element CC.
  • the leakage current of the transistor M4 can be made very small.
  • the configurations of the peripheral circuit 1411, the memory cell array 1470, and the like shown in the present embodiment are not limited to the above.
  • the arrangement or function of these circuits and the wiring, circuit elements, etc. connected to the circuits may be changed, deleted, or added as necessary.
  • FIG. 33 shows various storage devices for each layer.
  • a storage device located in the upper layer is required to have a faster access speed, and a storage device located in the lower layer is required to have a large storage capacity and a high recording density.
  • FIG. 33 shows, in order from the top layer, a memory, a SRAM (Static Random Access Memory), a DRAM (Dynamic Random Access Memory), and a 3D NAND memory, which are mixedly loaded as registers in an arithmetic processing unit such as a CPU.
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • 3D NAND memory which are mixedly loaded as registers in an arithmetic processing unit such as a CPU.
  • the memory that is mixedly loaded as a register in an arithmetic processing unit such as a CPU is used for temporary storage of arithmetic results, and therefore is frequently accessed from the arithmetic processing unit. Therefore, an operation speed faster than the storage capacity is required.
  • the register also has a function of holding setting information of the arithmetic processing unit.
  • SRAM is used for cache, for example.
  • the cache has a function of duplicating and holding a part of the information held in the main memory. By replicating frequently used data to the cache, the access speed to the data can be increased.
  • DRAM is used, for example, in main memory.
  • the main memory has a function of holding programs and data read from the storage.
  • the recording density of the DRAM is approximately 0.1 to 0.3 Gbit / mm 2 .
  • the 3D NAND memory is used, for example, for storage.
  • the storage has a function of holding data that needs to be stored for a long period of time and various programs used in the arithmetic processing unit. Therefore, the storage is required to have a storage capacity larger than the operating speed and a high recording density.
  • the recording density of the storage device used for storage is approximately 0.6 to 6.0 Gbit / mm 2 .
  • the storage device of one aspect of the present invention has a high operating speed and can retain data for a long period of time.
  • the storage device of one aspect of the present invention can be suitably used as a storage device located in the boundary area 901 including both the layer in which the cache is located and the layer in which the main memory is located.
  • the storage device of one aspect of the present invention can be suitably used as a storage device located in the boundary area 902 including both the layer in which the main memory is located and the layer in which the storage is located.
  • FIG. 34A and FIG. 34B are used to show an example of a chip 1200 on which the semiconductor device of the present invention is mounted.
  • a plurality of circuits (systems) are mounted on the chip 1200.
  • SoC system on chip
  • the chip 1200 has a CPU 1211, GPU 1212, one or more analog arithmetic units 1213, one or more memory controllers 1214, one or more interfaces 1215, one or more network circuits 1216, and the like.
  • a bump (not shown) is provided on the chip 1200, and as shown in FIG. 34B, the chip 1200 is connected to the first surface of a printed circuit board (Printed Circuit Board: PCB) 1201. Further, a plurality of bumps 1202 are provided on the back surface of the first surface of the PCB 1201 and are connected to the motherboard 1203.
  • PCB printed Circuit Board
  • the motherboard 1203 may be provided with a storage device such as a DRAM 1221 and a flash memory 1222.
  • a storage device such as a DRAM 1221 and a flash memory 1222.
  • the DOSRAM shown in the previous embodiment can be used for the DRAM 1221.
  • the NO SRAM shown in the above embodiment can be used for the flash memory 1222.
  • the CPU 1211 preferably has a plurality of CPU cores.
  • the GPU 1212 preferably has a plurality of GPU cores.
  • the CPU 1211 and the GPU 1212 may each have a memory for temporarily storing data.
  • a memory common to the CPU 1211 and the GPU 1212 may be provided on the chip 1200.
  • the above-mentioned NOSRAM or DOSRAM can be used.
  • GPU1212 is suitable for parallel calculation of a large amount of data, and can be used for image processing and product-sum calculation. By providing the GPU 1212 with an image processing circuit using the oxide semiconductor of the present invention and a product-sum calculation circuit, image processing and product-sum calculation can be executed with low power consumption.
  • the wiring between the CPU 1211 and the GPU 1212 can be shortened, and the data transfer from the CPU 1211 to the GPU 1212, the data transfer between the memory of the CPU 1211 and the GPU 1212, And, after the calculation by the GPU 1212, the calculation result can be transferred from the GPU 1212 to the CPU 1211 at high speed.
  • the analog arithmetic unit 1213 has one or both of an A / D (analog / digital) conversion circuit and a D / A (digital / analog) conversion circuit. Further, the product-sum calculation circuit may be provided in the analog calculation unit 1213.
  • the memory controller 1214 has a circuit that functions as a controller of the DRAM 1221 and a circuit that functions as an interface of the flash memory 1222.
  • the interface 1215 has an interface circuit with an externally connected device such as a display device, a speaker, a microphone, a camera, and a controller.
  • the controller includes a mouse, a keyboard, a game controller, and the like.
  • USB Universal Serial Bus
  • HDMI registered trademark
  • High-Definition Multimedia Interface High-Definition Multimedia Interface
  • the network circuit 1216 has a function of controlling a connection with a LAN (Local Area Network) or the like. It may also have a circuit for network security.
  • LAN Local Area Network
  • the above circuit (system) can be formed on the chip 1200 by the same manufacturing process. Therefore, even if the number of circuits required for the chip 1200 increases, it is not necessary to increase the manufacturing process, and the chip 1200 can be manufactured at low cost.
  • the PCB 1201, the DRAM 1221 provided with the chip 1200 having the GPU 1212, and the motherboard 1203 provided with the flash memory 1222 can be referred to as the GPU module 1204.
  • the GPU module 1204 Since the GPU module 1204 has a chip 1200 using SoC technology, its size can be reduced. Further, since it is excellent in image processing, it is suitable for use in portable electronic devices such as smartphones, tablet terminals, laptop PCs, and portable (take-out) game machines.
  • a deep neural network (DNN), a convolutional neural network (CNN), a recurrent neural network (RNN), a self-encoder, a deep Boltzmann machine (DBM), and a deep belief network (DEM) are provided by a product-sum calculation circuit using GPU1212. Since a method such as DBN) can be executed, the chip 1200 can be used as an AI chip, or the GPU module 1204 can be used as an AI system module.
  • the present embodiment shows an example of an electronic component and an electronic device in which the storage device and the like shown in the above embodiment are incorporated.
  • FIG. 35A shows a perspective view of the electronic component 700 and the substrate on which the electronic component 700 is mounted (mounting substrate 704).
  • the electronic component 700 shown in FIG. 35A has a storage device 720 in the mold 711. In FIG. 35A, a part is omitted in order to show the inside of the electronic component 700.
  • the electronic component 700 has a land 712 on the outside of the mold 711. The land 712 is electrically connected to the electrode pad 713, and the electrode pad 713 is electrically connected to the storage device 720 by a wire 714.
  • the electronic component 700 is mounted on, for example, the printed circuit board 702. A plurality of such electronic components are combined and each is electrically connected on the printed circuit board 702 to complete the mounting board 704.
  • the storage device 720 has a drive circuit layer 721 and a storage circuit layer 722.
  • FIG. 35B shows a perspective view of the electronic component 730.
  • the electronic component 730 is an example of SiP (System in package) or MCM (Multi-chip module).
  • the electronic component 730 is provided with an interposer 731 on a package substrate 732 (printed circuit board), and a semiconductor device 735 and a plurality of storage devices 720 are provided on the interposer 731.
  • the electronic component 730 shows an example in which the storage device 720 is used as a wideband memory (HBM: High Bandwidth Memory). Further, as the semiconductor device 735, an integrated circuit (semiconductor device) such as a CPU, GPU, or FPGA can be used.
  • HBM High Bandwidth Memory
  • the package substrate 732 a ceramic substrate, a plastic substrate, a glass epoxy substrate, or the like can be used.
  • the interposer 731 a silicon interposer, a resin interposer, or the like can be used.
  • the interposer 731 has a plurality of wirings and has a function of electrically connecting a plurality of integrated circuits having different terminal pitches.
  • the plurality of wirings are provided in a single layer or multiple layers.
  • the interposer 731 has a function of electrically connecting the integrated circuit provided on the interposer 731 to the electrode provided on the package substrate 732.
  • the interposer may be referred to as a "rewiring board” or an "intermediate board”.
  • a through electrode may be provided on the interposer 731, and the integrated circuit and the package substrate 732 may be electrically connected using the through electrode.
  • TSV Three Silicon Via
  • interposer 731 It is preferable to use a silicon interposer as the interposer 731. Since it is not necessary to provide an active element in the silicon interposer, it can be manufactured at a lower cost than an integrated circuit. On the other hand, since the wiring of the silicon interposer can be formed by a semiconductor process, it is easy to form fine wiring, which is difficult with a resin interposer.
  • the interposer on which the HBM is mounted is required to form fine and high-density wiring. Therefore, it is preferable to use a silicon interposer as the interposer on which the HBM is mounted.
  • the reliability is unlikely to decrease due to the difference in the expansion coefficient between the integrated circuit and the interposer. Further, since the surface of the silicon interposer is high, poor connection between the integrated circuit provided on the silicon interposer and the silicon interposer is unlikely to occur. In particular, in a 2.5D package (2.5-dimensional mounting) in which a plurality of integrated circuits are arranged side by side on an interposer, it is preferable to use a silicon interposer.
  • a heat sink heat dissipation plate
  • the heights of the integrated circuits provided on the interposer 731 are the same.
  • the heights of the storage device 720 and the semiconductor device 735 are the same.
  • an electrode 733 may be provided on the bottom of the package substrate 732.
  • FIG. 35B shows an example in which the electrode 733 is formed of solder balls.
  • BGA Ball Grid Array
  • the electrode 733 may be formed of a conductive pin.
  • PGA Peripheral Component Interconnect
  • the electronic component 730 can be mounted on another substrate by using various mounting methods, not limited to BGA and PGA.
  • BGA Band-GPU
  • PGA Stimble Pin Grid Array
  • LGA Land Grid Array
  • QFP Quad Flat Package
  • QFJ Quad Flat J-leaded package
  • QFN QuadFNeged
  • the semiconductor device shown in the above embodiment is, for example, a storage device for various electronic devices (for example, information terminals, computers, smartphones, electronic book terminals, digital cameras (including video cameras), recording / playback devices, navigation systems, etc.).
  • the computer includes a tablet computer, a notebook computer, a desktop computer, and a large computer such as a server system.
  • the semiconductor device shown in the above embodiment is applied to various removable storage devices such as a memory card (for example, an SD card), a USB memory, and an SSD (solid state drive).
  • 36A to 36E schematically show some configuration examples of the removable storage device.
  • the semiconductor device shown in the above embodiment is processed into a packaged memory chip and used for various storage devices and removable memories.
  • FIG. 36A is a schematic diagram of the USB memory.
  • the USB memory 1100 has a housing 1101, a cap 1102, a USB connector 1103, and a board 1104.
  • the substrate 1104 is housed in the housing 1101.
  • a memory chip 1105 and a controller chip 1106 are attached to the substrate 1104.
  • the semiconductor device shown in the previous embodiment can be incorporated into the memory chip 1105 or the like.
  • FIG. 36B is a schematic view of the appearance of the SD card
  • FIG. 36C is a schematic view of the internal structure of the SD card.
  • the SD card 1110 has a housing 1111 and a connector 1112 and a substrate 1113.
  • the substrate 1113 is housed in the housing 1111.
  • a memory chip 1114 and a controller chip 1115 are attached to the substrate 1113.
  • the capacity of the SD card 1110 can be increased.
  • a wireless chip having a wireless communication function may be provided on the substrate 1113.
  • data on the memory chip 1114 can be read and written by wireless communication between the host device and the SD card 1110.
  • the semiconductor device shown in the previous embodiment can be incorporated into the memory chip 1114 or the like.
  • FIG. 36D is a schematic view of the appearance of the SSD
  • FIG. 36E is a schematic view of the internal structure of the SSD.
  • the SSD 1150 has a housing 1151, a connector 1152 and a substrate 1153.
  • the substrate 1153 is housed in the housing 1151.
  • a memory chip 1154, a memory chip 1155, and a controller chip 1156 are attached to the substrate 1153.
  • the memory chip 1155 is a work memory of the controller chip 1156, and for example, a DOSRAM chip may be used.
  • the capacity of the SSD 1150 can be increased.
  • the semiconductor device shown in the previous embodiment can be incorporated into the memory chip 1154 or the like.
  • the semiconductor device according to one aspect of the present invention can be used for a processor such as a CPU or GPU, or a chip.
  • 37A to 37H show specific examples of electronic devices including a processor such as a CPU or GPU, or a chip according to one aspect of the present invention.
  • the GPU or chip according to one aspect of the present invention can be mounted on various electronic devices.
  • electronic devices include relatively large screens such as television devices, monitors for desktop or notebook information terminals, digital signage (electronic signage), and large game machines such as pachinko machines.
  • digital cameras, digital video cameras, digital photo frames, electronic book terminals, mobile phones, portable game machines, portable information terminals, sound reproduction devices, and the like can be mentioned.
  • the semiconductor device according to one aspect of the present invention it is possible to provide electronic devices with good reliability.
  • the GPU or chip according to one aspect of the present invention in the electronic device, the AI can be mounted in the electronic device.
  • the electronic device of one aspect of the present invention may have an antenna.
  • the display unit can display images, information, and the like.
  • the antenna may be used for non-contact power transmission.
  • the electronic device of one aspect of the present invention includes sensors (force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, voice, time, hardness, electric field, current, It may have the ability to measure voltage, power, radiation, flow rate, humidity, gradient, vibration, odor or infrared rays).
  • the electronic device of one aspect of the present invention can have various functions. For example, a function to display various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function to display a calendar, date or time, a function to execute various software (programs), wireless communication. It can have a function, a function of reading a program or data recorded on a recording medium, and the like.
  • 37A to 37H show examples of electronic devices.
  • FIG. 37A illustrates a mobile phone (smartphone) which is a kind of information terminal.
  • the information terminal 5100 has a housing 5101 and a display unit 5102, and as an input interface, a touch panel is provided in the display unit 5102 and buttons are provided in the housing 5101.
  • the information terminal 5100 can execute an application using AI by applying the chip of one aspect of the present invention.
  • Examples of the application using AI include an application that recognizes a conversation and displays the conversation content on the display unit 5102, and a touch panel provided on the display unit 5102 that recognizes and displays characters and figures input by the user. Examples thereof include an application displayed on the unit 5102 and an application for performing biometric authentication such as a fingerprint and a voice print.
  • FIG. 37B illustrates the notebook type information terminal 5200.
  • the notebook-type information terminal 5200 includes a main body 5201 of the information terminal, a display unit 5202, and a keyboard 5203.
  • the notebook-type information terminal 5200 can execute an application using AI by applying the chip of one aspect of the present invention.
  • applications using AI include design support software, text correction software, menu automatic generation software, and the like. Further, by using the notebook type information terminal 5200, it is possible to develop a new AI.
  • a smartphone and a notebook-type information terminal are taken as examples of electronic devices, respectively, as shown in FIGS. 37A and 37B, but information terminals other than the smartphone and the notebook-type information terminal can be applied.
  • information terminals other than smartphones and notebook-type information terminals include PDAs (Personal Digital Assistants), desktop-type information terminals, workstations, and the like.
  • FIG. 37C shows a portable game machine 5300, which is an example of a game machine.
  • the portable game machine 5300 has a housing 5301, a housing 5302, a housing 5303, a display unit 5304, a connection unit 5305, an operation key 5306, and the like.
  • the housing 5302 and the housing 5303 can be removed from the housing 5301.
  • the connection unit 5305 provided in the housing 5301 to another housing (not shown)
  • the video output to the display unit 5304 can be output to another video device (not shown). it can.
  • the housing 5302 and the housing 5303 can each function as operation units. This allows a plurality of players to play the game at the same time.
  • the chips shown in the previous embodiment can be incorporated into the chips provided on the substrates of the housing 5301, the housing 5302, and the housing 5303.
  • FIG. 37D shows a stationary game machine 5400, which is an example of a game machine.
  • a controller 5402 is connected to the stationary game machine 5400 wirelessly or by wire.
  • a low power consumption game machine can be realized by applying the GPU or chip of one aspect of the present invention to a game machine such as a portable game machine 5300 or a stationary game machine 5400. Further, since the heat generation from the circuit can be reduced due to the low power consumption, the influence of the heat generation on the circuit itself, the peripheral circuit, and the module can be reduced.
  • the portable game machine 5300 having AI can be realized.
  • expressions such as the progress of the game, the behavior of creatures appearing in the game, and the phenomena that occur in the game are defined by the program that the game has, but by applying AI to the portable game machine 5300.
  • Expressions that are not limited to game programs are possible. For example, it is possible to express what the player asks, the progress of the game, the time, and the behavior of the characters appearing in the game.
  • the game player when a plurality of players are required to play a game on the portable game machine 5300, the game player can be configured anthropomorphically by AI. Therefore, by setting the opponent as the game player by AI, even one player can play the game. It can be carried out.
  • FIGS. 37C and 37D a portable game machine and a stationary game machine are illustrated as examples of the game machine, but the game machine to which the GPU or chip of one aspect of the present invention is applied is not limited to this.
  • Examples of the game machine to which the GPU or chip of one aspect of the present invention is applied include an arcade game machine installed in an entertainment facility (game center, amusement park, etc.), a throwing machine for batting practice installed in a sports facility, and the like. Can be mentioned.
  • the GPU or chip of one aspect of the present invention can be applied to a large computer.
  • FIG. 37E is a diagram showing a supercomputer 5500, which is an example of a large computer.
  • FIG. 37F is a diagram showing a rack-mounted computer 5502 included in the supercomputer 5500.
  • the supercomputer 5500 has a rack 5501 and a plurality of rack mount type computers 5502.
  • the plurality of computers 5502 are stored in the rack 5501. Further, the computer 5502 is provided with a plurality of substrates 5504, and the GPU or chip described in the above embodiment can be mounted on the substrate.
  • the supercomputer 5500 is a large computer mainly used for scientific and technological calculations. In scientific and technological calculations, it is necessary to process a huge amount of calculations at high speed, so power consumption is high and the heat generated by the chip is large.
  • the GPU or chip of one aspect of the present invention to the supercomputer 5500, a supercomputer having low power consumption can be realized. Further, since the heat generation from the circuit can be reduced due to the low power consumption, the influence of the heat generation on the circuit itself, the peripheral circuit, and the module can be reduced.
  • a supercomputer is illustrated as an example of a large computer, but the large computer to which the GPU or chip of one aspect of the present invention is applied is not limited to this.
  • Examples of the large-scale computer to which the GPU or chip of one aspect of the present invention is applied include a computer (server) that provides services and a large-scale general-purpose computer (mainframe).
  • the GPU or chip of one aspect of the present invention can be applied to a moving vehicle and around the driver's seat of the vehicle.
  • FIG. 37G is a diagram showing the periphery of the windshield in the interior of an automobile, which is an example of a moving body.
  • the display panel 5701 attached to the dashboard, the display panel 5702, the display panel 5703, and the display panel 5704 attached to the pillar are shown.
  • the display panel 5701 to the display panel 5703 can provide various other information by displaying a speedometer, a tachometer, a mileage, a fuel gauge, a gear status, an air conditioner setting, and the like.
  • the display items and layout displayed on the display panel can be appropriately changed according to the user's preference, and the design can be improved.
  • the display panel 5701 to 5703 can also be used as a lighting device.
  • the display panel 5704 can supplement the field of view (blind spot) blocked by the pillars by projecting an image from an imaging device (not shown) provided in the automobile. That is, by displaying the image from the image pickup device provided on the outside of the automobile, the blind spot can be supplemented and the safety can be enhanced. In addition, by projecting an image that complements the invisible part, safety confirmation can be performed more naturally and without discomfort.
  • the display panel 5704 can also be used as a lighting device.
  • the GPU or chip of one aspect of the present invention can be applied as a component of AI, for example, the chip can be used in an automatic driving system of an automobile.
  • the chip can be used in a system for road guidance, danger prediction, and the like.
  • the display panel 5701 to the display panel 5704 may be configured to display information such as road guidance and danger prediction.
  • moving objects include trains, monorails, ships, flying objects (helicopters, unmanned aerial vehicles (drones), airplanes, rockets), etc., and the chip of one aspect of the present invention is applied to these moving objects. Therefore, a system using AI can be provided.
  • FIG. 37H shows an electric refrigerator / freezer 5800, which is an example of an electric appliance.
  • the electric refrigerator / freezer 5800 has a housing 5801, a refrigerator door 5802, a freezer door 5803, and the like.
  • the electric refrigerator / freezer 5800 having AI can be realized.
  • the electric freezer / refrigerator 5800 has a function of automatically generating a menu based on the foodstuffs stored in the electric freezer / refrigerator 5800 and the expiration date of the foodstuffs, and the foodstuffs stored in the electric freezer / refrigerator 5800. It can have a function of automatically adjusting the temperature according to the above.
  • electric refrigerators and freezers have been described as an example of electric appliances
  • other electric appliances include, for example, vacuum cleaners, microwave ovens, microwave ovens, rice cookers, water heaters, IH cookers, water servers, and air conditioners including air conditioners. Examples include washing machines, dryers, and audiovisual equipment.
  • the electronic device described in the present embodiment the function of the electronic device, the application example of AI, its effect, etc. can be appropriately combined with the description of other electronic devices.
  • the transistor shown in the previous embodiment was manufactured, the electrical characteristics were measured, and the data retention time and operating frequency were estimated.
  • the data retention time and operating frequency were estimated assuming a DOSRAM in which a capacitive element was provided in the transistor.
  • the sample includes an insulator 212 arranged on a substrate (not shown), an insulator 214 on the insulator 212, and an insulator 216 arranged on the insulator 214.
  • Insulator 205 arranged to be embedded in insulator 216
  • insulator 222 arranged on insulator 216 and insulator 205
  • insulator 224 arranged on insulator 222.
  • Oxide 230a placed on the body 224
  • oxide 230b placed on the oxide 230a
  • oxides 243a and 243b placed apart on the oxide 230b, and oxides.
  • the conductor 260, the insulator 282 arranged on the insulator 280 and the insulator 260, and the upper surface of the insulator 214 are in contact with each other, and the insulator 216, the insulator 222, the insulator 224, the insulator 275, and the insulator are insulated.
  • It has an insulator 284 arranged in contact with the side surface of the body 280 and the insulator 282, an insulator 283 arranged so as to cover the insulator 284, and an insulator 274 arranged so as to cover the insulator 283.
  • Silicon nitride with a film thickness of 60 nm was used as the insulator 212.
  • the insulator 212 was formed by a pulse DC sputtering method using a silicon target.
  • Argon gas 30 sccm (25 sccm from the first gas supply port, 5 sccm from the second gas supply port) and nitrogen gas 85 sccm were used as the film forming gas for the film formation of the insulator 212, and the film forming pressure was 0.5 Pa.
  • the substrate temperature was set to 200 ° C., and the distance between the target and the substrate was set to 62 mm.
  • the pulse DC power supply had a power of 1 kW, a frequency of 100 kHz, and an off time of 4016 nsec in one cycle.
  • Aluminum oxide having a film thickness of 40 nm was used as the insulator 214.
  • the insulator 214 was formed by a pulse DC sputtering method using an aluminum target.
  • Argon gas 14 sccm (9 sccm from the first gas supply port, 5 sccm from the second gas supply port) and oxygen gas 69 sccm were used as the film forming gas for forming the insulator 214, and the film forming pressure was 0.4 Pa.
  • the substrate temperature was set to 200 ° C., and the distance between the target and the substrate was set to 62 mm.
  • the pulse DC power supply had a power of 5 kW, a frequency of 100 kHz, and an off time of 976 nsec during one cycle.
  • Silicon oxide with a film thickness of 130 nm was used as the insulator 216.
  • the insulator 216 was formed by a pulse DC sputtering method using a silicon target.
  • Argon gas 30 sccm 25 sccm from the first gas supply port, 5 sccm from the second gas supply port
  • oxygen gas 100 sccm are used as the film forming gas for the film formation of the insulator 216, and the film forming pressure is 0.6 Pa.
  • the substrate temperature was set to 200 ° C., and the distance between the target and the substrate was set to 62 mm.
  • the pulse DC power supply had a power of 3 kW, a frequency of 100 kHz, and an off time of 4016 nsec in one cycle.
  • insulator 212, insulator 214, and insulator 216 were continuously formed by using a multi-chamber type sputtering device without exposing them to the outside air.
  • the conductor 205a is arranged in contact with the bottom surface and the side wall of the opening of the insulator 216, the conductor 205b is arranged on the conductor 205a, and the conductor 205c is arranged on the conductor 205b. ..
  • the side surface of the conductor 205c is arranged in contact with the conductor 205a. That is, the conductor 205b is provided so as to be wrapped in the conductor 205a and the conductor 205c.
  • the conductor 205a and the conductor 205c are titanium nitride formed by the metal CVD method, and the conductor 205b is tungsten formed by the metal CVD method.
  • the conductor 205 was formed by the method described with reference to FIGS. 4 to 8 in the above embodiment.
  • a target of In: Ga: Zn 1: 3: 4 [atomic number ratio] was used, oxygen gas 45 sccm was used as the film formation gas, and the film formation pressure was 0.7 Pa.
  • the film formation power was 500 W, the substrate temperature was 200 ° C., and the distance between the target and the substrate was 60 mm.
  • a target of In: Ga: Zn 4: 2: 4.1 [atomic number ratio] was used, oxygen gas 45 sccm was used as the film formation gas, and the film formation pressure was set to 0.
  • the film thickness was 7 Pa, the film formation power was 500 W, the substrate temperature was 200 ° C., and the distance between the target and the substrate was 60 mm.
  • an In-Ga-Zn oxide having a film thickness of 2 nm, which was formed by a DC sputtering method was used.
  • the film thickness was 0.7 Pa
  • the film formation power was 500 W
  • the substrate temperature was 200 ° C.
  • the distance between the target and the substrate was 60 mm.
  • heat treatment was performed at 500 ° C. for 1 hour in a nitrogen atmosphere, and continuously heat treatment was performed at 500 ° C. for 1 hour in an oxygen atmosphere.
  • tantalum nitride having a film thickness of 20 nm was used as the conductor 242a and the conductor 242b. Further, as the insulator 271, aluminum oxide having a film thickness of 10 nm formed by a sputtering method was used as the insulator 271. The insulator 275 was a laminated film of aluminum oxide having a film thickness of 5 nm formed by a sputtering method and aluminum oxide having a film thickness of 5 nm formed on the insulator by a sputtering method.
  • the insulator 280 silicon oxide having a film thickness of 125 nm, which was formed by a sputtering method, was used.
  • a Si target is used to form the insulator 280
  • oxygen gas 100 sccm and Ar gas 20 sccm are used as the film forming gas
  • the film forming pressure is 0.6 Pa
  • the film forming power is 3000 W
  • the substrate temperature is 200.
  • the temperature was adjusted to 62 mm, and the distance between the target and the substrate was set to 62 mm.
  • the insulator 275 and the insulator 280 were continuously formed by using a multi-chamber type sputtering device without exposing them to the outside air.
  • the insulator 250a silicon oxide having a film thickness of 10 nm, which was formed by the CVD method, was used.
  • the insulator 250b hafnium oxide having a film thickness of 1.5 nm, which was formed by the ALD method, was used.
  • microwave treatment was performed. In the microwave treatment, argon gas 150 sccm and oxygen gas 50 sccm were used as the treatment gas, the electric power was 4000 W, the pressure was 400 Pa, the treatment temperature was 400 ° C., and the treatment time was 600 seconds.
  • Titanium nitride having a film thickness of 5 nm was used as the conductor 260a. Further, tungsten was used as the conductor 260b.
  • Aluminum oxide having a film thickness of 20 nm was used as the insulator 282.
  • the insulator 282 was formed by using a pulse DC sputtering method using an aluminum target.
  • Aluminum oxide formed by the sputtering method was used as the insulator 284. Further, as the insulator 283, silicon nitride formed by a sputtering method was used.
  • silicon oxide-nitriding film formed by the CVD method was used as the insulator 274.
  • the sample having the above configuration is a transistor whose design value is 60 nm in channel length and 60 nm in channel width. Similar to the transistor 200, the sample further has a conductor 240, an insulator 241 and a conductor 246 in addition to the above configuration. After preparation, the sample was heat-treated in a nitrogen atmosphere at a temperature of 400 ° C. for 8 hours.
  • I D -V G characteristics - was measured (drain current gate voltage characteristic). Measurement of I D -V G characteristics, the drain potential V D and 0.1V or 1.2V, the source potential V S and 0V, the bottom gate voltage V BG and 0V, -4 top gate potential V G. It was swept from 0V to 4.0V in 0.1V steps.
  • the sample transistor of this example showed good electrical characteristics in all 27 elements.
  • the shift voltage Vsh of 27 elements are calculated, the median and calculated standard deviation sigma.
  • the median shift voltage Vsh was ⁇ 0.36 V, and the standard deviation of the shift voltage Vsh was 130 mV, which were good values.
  • the data retention time and operating frequency were estimated assuming a DOSRAM in which a capacitive element (holding capacity 3.5 fF) was provided in the sample transistor.
  • a capacitive element holding capacity 3.5 fF
  • the circuit shown in FIG. 32A is assumed.
  • the sample corresponds to the transistor M1 shown in FIG. 32A.
  • the "data retention time” of the DOSRAM can be said to be the time required for the amount of fluctuation of the voltage applied to the capacitance element of the DOSRAM to reach the allowable fluctuation voltage.
  • the “variable allowable voltage” is an allowable value of an amount in which the voltage applied to the capacitance element of the DOSRAM fluctuates after the data is written.
  • the “variable allowable voltage” is set to 0.2V
  • the “data holding time” is the time required for the voltage applied to the capacitive element (holding capacity 3.5fF) to decrease by 0.2V from the state after writing the data. And said.
  • the data retention of the DOSRAM is 1 hour in this embodiment, it means that the time from the time when the potential applied to the capacitance element of the DOSRAM is lowered by 0.2 V is 1 hour.
  • the data retention time of the DOSRAM depends on the magnitude of the off-current (denoted as If) of the transistor of the DOSRAM. For example, when the data retention characteristic of the DOSRAM depends only on the If of the transistor of the DOSRAM, the data retention time of the DOSRAM is inversely proportional to the If of the transistor of the DOSRAM.
  • the data retention time of the DOSRAM is the amount of charge lost from the capacitive element during data retention (the retained capacitance of the capacitive element (3.5 fF) and the decrease in voltage applied to the capacitive element). It can be calculated by dividing 0.7 fC), which corresponds to the product of (0.2 V), by If. Further, by setting the target holding time of the DOSRAM and dividing the above-mentioned charge amount of 0.7 fC by the holding time, the Ifoff required for the transistor of the DOSRAM can be estimated. When the target of the holding time is 1 hour, the Ifoff required for the transistor is about 200 zA (200 ⁇ 10-21 A). By adjusting the gate voltage (denoted as Vg (off)) so that the If is 200 zA, it is possible to obtain a DOSRAM having a high operating frequency in a wide temperature range.
  • I D -V G Measurement of the transistor I D -V G measurements in the drain potential V D + 1.2V transistors, to 0V source potential V S, was performed by sweeping the gate voltage V G from -1.0V to + 3.3V.
  • the bottom gate potential V BG was fixed at ⁇ 5.5 V.
  • the bottom gate potential V BG ⁇ 5.5 V is estimated so that the holding time of the sample transistor is 1 hour or more in the measurement at 85 ° C.
  • the measurement temperature was measured at three levels of ⁇ 40 ° C., 27 ° C., and 85 ° C.
  • Samples 5 inch square substrate to be measured transistors formed was carried out I D -V G measurements transistor in a state immobilized on thermo chucks set to each temperature. In addition, 18 elements were measured for each set temperature.
  • this transistor uses a metal oxide in a channel forming region.
  • a transistor using a metal oxide in the channel forming region has an extremely small leakage current in a non-conducting state as compared with a transistor using Si in the channel forming region, for example. Therefore, it may be difficult to detect If in a transistor using a metal oxide in the channel forming region by actual measurement.
  • the Vsh and S values obtained from I D -V G curve described above, Ioff by extrapolation using the equation (1) becomes 200zA Vg (off) Was estimated.
  • the DOSRAM operating frequency is the reciprocal of the DOSRAM data write cycle.
  • the data write cycle of the DOSRAM is a parameter set by the charging time of the capacitive element of the DOSRAM.
  • the time corresponding to 40% of the data write cycle of the DOSRAM (the reciprocal of the DOSRAM operating frequency) is set as the charging time of the capacitive element of the DOSRAM.
  • the DOSRAM operating frequency depends on the charging time of the capacitive element of the DOSRAM. Therefore, when estimating the DOSRAM operating frequency, it is first necessary to know the charging time of the capacitive element of the DOSRAM in advance.
  • a state in which a potential of 0.52 V or more is applied to a capacity element (holding capacity 3.5 fF) of the DOSRAM is defined as a “charged state” of the capacity element. Therefore, in this embodiment, the time from the start of the data writing operation of the DOSRAM until the potential applied to the capacitive element reaches 0.52 V corresponds to the charging time of the capacitive element of the DOSRAM.
  • the charging time of the capacitive element of the DOSRAM depends on the size of the ID of the transistor of the DOSRAM at the time of writing the DOSRAM data. Therefore, in this embodiment, the DOSRAM data writing operation is reproduced by actually applying the potential (see FIG. 38A) assumed to be applied to the transistor of the DOSRAM when writing the DOSRAM data to the transistor according to one aspect of the present invention. Then, the ID of the transistor at this time was measured.
  • FIG. 38A assumes a case where data is written to the capacitive element Cs via the transistor Tr1. D represents a drain, G represents a gate, and S represents a source. The source potential of the transistor Tr1 (the voltage applied across the capacitor Cs) and V S.
  • the measurement was performed.
  • the back gate voltage V BG was fixed at -5.5 V.
  • the measurement temperature was measured at three levels of ⁇ 40 ° C., 27 ° C., and 85 ° C.
  • V S is the charge completion when it reaches the write judgment voltage V CS charging DOSRAM is started.
  • the time at this time is defined as the charging time t W (see FIG. 38B).
  • the charge charged in the capacitor of the storage capacitor Cs [F] that DOSRAM has Q [C], the charging time t W [sec], Vcs a potential applied to the capacitor by the charging ( Vs) [V], DOSRAM
  • ID [A] the relationship of the following equation (2) holds between each parameter.
  • the charging time t W of the capacitance element of the DOSRAM can be expressed by the following equation (3) (see FIG. 38C).
  • Equation (3) 3.5fF the Cs of the Vcs + 0.52 V, by substituting the I D obtained in I D -V S measurements described above, the charging time t W of the capacitor having the DOSRAM was calculated.
  • A is a coefficient.
  • the time required for writing is assumed to be 40% of the one operation time. Therefore, in this embodiment, the coefficient A is fixed at 0.4 when t w exceeds 2.0 nsec. Further, when t w is 2.0 nsec or less, the influence of the signal delay of the peripheral circuit of the memory cannot be ignored, and it is necessary to set the coefficient A in consideration of the influence.
  • Table 1 shows the results calculated in consideration of the influence of the signal delay of the peripheral circuit of the memory. The peripheral circuit is assumed to operate with a 2.5 GHz clock.
  • FIG. 39B shows the correlation between the operating frequency and the data retention time in the sample.
  • the horizontal axis represents the data retention time [sec] and the vertical axis represents the operating frequency [MHz].
  • the thick dotted line (vertical line) in FIG. 39B indicates the holding time of 1 hour
  • the thin dotted line (horizontal line) in FIG. 39B indicates the operating frequency of 200 MHz.
  • all 18 elements of the sample had a data retention time of one hour or more and an operating frequency of 200 MHz or more in the 27 ° C. and 85 ° C. measurements.
  • 15 of the 18 elements of the sample had a data retention time of 1 hour or more and an operating frequency of 200 MHz or more in the measurement at ⁇ 40 ° C.
  • the reliability of the two elements selected from the samples used in the previous embodiment will be evaluated, and the results of investigating the stress time dependence will be described.
  • the reliability was evaluated by a + GBT (Gate Bias Temperature) stress test at a stress temperature of 150 ° C.
  • the setting temperature 0.99 ° C., the drain potential V D, source voltage V S, and the bottom gate voltage V BG, and a 0V, the top gate voltage V G and + 3.63V, evaluate ⁇ Vsh a variation of Vsh by stress time did.
  • FIGS. 40A and 40B The results of the + GBT stress test are shown in FIGS. 40A and 40B.
  • the horizontal axis represents the stress time (time) on a log scale, and the vertical axis represents ⁇ Vsh (mV).
  • the horizontal axis represents the stress time (time) on a linear scale, and the vertical axis represents ⁇ Vsh (mV).
  • ⁇ Vsh fluctuated to the + side with the stress time, and at the stress time of 70 hours, ⁇ Vsh became 140 mV.
  • ⁇ Vsh fluctuated to the + side with the stress time, and the stress time was 70 hours, and ⁇ Vsh was 79 mV.
  • Samples A to C having the structure shown in FIG. 41 are prepared, and these samples are observed with a transmission electron microscope (TEM: Transmission Electron Microscope) and the heavy hydrogen concentration by SIMS analysis. The result of the evaluation of is explained.
  • TEM Transmission Electron Microscope
  • the structure shown in FIG. 41 includes a silicon substrate 10, a silicon oxide film 12 on the silicon substrate 10, a silicon nitride film 14 on the silicon oxide film 12, a silicon nitride film 16 on the silicon nitride film 14, and an oxide nitride. It has a silicon oxide film 18 on a silicon film 16, an aluminum oxide film 20 on a silicon oxide film 18, and a silicon nitride film 22 on an aluminum oxide film 20.
  • the silicon substrate 10 was heat-treated at 950 ° C. in an HCl atmosphere to form a silicon oxide film 12 having a film thickness of 100 nm.
  • a silicon nitride film 14 having a film thickness of 20 nm was formed by an RF sputtering method using a silicon target.
  • a silicon oxide film 16 having a film thickness of 50 nm was formed by the PECVD method.
  • deuterium D 2 gas 200 sccm, SiH 4 gas 2.0 sccm, and N 2 O gas 800 sccm were used as the film forming gas.
  • a silicon oxide film 18 having a film thickness of 110 nm was formed by a pulse DC sputtering method using a silicon target.
  • an aluminum oxide film 20 having a film thickness of 40 nm was formed by a pulse DC sputtering method using an aluminum target.
  • the film formation pressure was 0.4 Pa
  • the substrate temperature was 200 ° C.
  • the distance between the target and the substrate was 62 mm.
  • the pulse DC power supply had a power of 5 kW and a frequency of 100 kHz.
  • argon gas 42 sccm (37 sccm from the first gas supply port, 5 sccm from the second gas supply port) and oxygen gas 42 sccm are used as the film forming gas
  • sample B and sample C film formation is performed.
  • the gas 14 sccm of argon gas (9 sccm from the first gas supply port, 5 sccm from the second gas supply port) and 69 sccm of oxygen gas were used. That is, in sample A, the ratio of oxygen in the film-forming gas of the aluminum oxide film 20 is 50% by volume, and in samples B and C, the ratio of oxygen in the film-forming gas of the aluminum oxide film 20 is 83% by volume. did.
  • the substrate bias power was set to 100 W in sample A
  • the substrate bias power was set to 200 W in sample B
  • the substrate bias power was set to 0 W in sample C.
  • a silicon nitride film 22 having a film thickness of 20 nm was formed by a pulse DC sputtering method using a silicon target.
  • the silicon nitride film 22 was continuously formed without being exposed to the outside air.
  • FIG. 42A shows a cross-sectional TEM image of sample A
  • FIG. 43A shows a cross-sectional TEM image of sample B
  • FIG. 44A shows a cross-sectional TEM image of sample C.
  • FFT Fast Fourier Transform
  • FIGS. 42B, 43B, and 44B The results of the FFT analysis are shown in FIGS. 42B, 43B, and 44B.
  • 42B is an FFT image of region A
  • FIG. 43B is an FFT image of region B
  • FIG. 44B is an FFT image of region C.
  • FIG. 45 is a deuterium concentration profile in the depth direction of each sample.
  • the horizontal axis represents the depth [nm] from the upper surface of the silicon nitride film 22, and the vertical axis represents the concentration of deuterium D in the film [atoms / cm 3 ].
  • sample A has a higher deuterium concentration than sample B and sample C. This indicates that in sample A, the deuterium contained in the silicon oxide film is more likely to diffuse into the aluminum oxide film 20 than in sample B and sample C.
  • the aluminum oxide film 20 of Sample B and Sample C has crystallinity, but the aluminum oxide film 20 of Sample A has an amorphous structure. That is, FIG. 45 suggests that deuterium is captured by the aluminum oxide film 20 having an amorphous structure in sample A.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

トランジスタ特性のばらつきが少ない半導体装置を提供する。酸化物半導体と、酸化物半導体上の、第1の導電体、および第2の導電体と、第1の導電体の上面に接する、第1の絶縁体と、第2の導電体の上面に接する、第2の絶縁体と、第1の絶縁体および第2の絶縁体の上に配置され、第1の導電体と第2の導電体の間の領域に重畳して開口が形成された、第3の絶縁体と、酸化物半導体上、かつ、第1の導電体と第2の導電体の間の領域に配置された第4の絶縁体と、第4の絶縁体上の第3の導電体と、を有し、第1の絶縁体、および第2の絶縁体は、アモルファス構造を有する金属酸化物である。

Description

半導体装置
 本発明の一態様は、トランジスタ、半導体装置、および電子機器に関する。または、本発明の一態様は、半導体装置の作製方法に関する。または、本発明の一態様は、半導体ウエハ、およびモジュールに関する。
 なお、本明細書等において半導体装置とは、半導体特性を利用することで機能し得る装置全般を指す。トランジスタなどの半導体素子をはじめ、半導体回路、演算装置、記憶装置は、半導体装置の一態様である。表示装置(液晶表示装置、発光表示装置など)、投影装置、照明装置、電気光学装置、蓄電装置、記憶装置、半導体回路、撮像装置、電子機器などは、半導体装置を有すると言える場合がある。
 なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。
 近年、半導体装置の開発が進められ、特にLSI(Large Scale Integrated Circuit)やCPU(Central Processing Unit)やメモリの開発が顕著に進められている。CPUは、半導体ウエハから切り離された半導体集積回路(少なくともトランジスタ及びメモリ)を有し、接続端子である電極が形成された半導体素子の集合体である。
 LSIやCPUやメモリなどの半導体回路(ICチップ)は、回路基板、例えばプリント配線板に実装され、様々な電子機器の部品の一つとして用いられる。
 また、絶縁表面を有する基板上に形成された半導体薄膜を用いてトランジスタを構成する技術が注目されている。該トランジスタは集積回路(IC(Integrated Circuit))や画像表示装置(単に表示装置とも表記する)のような電子デバイスに広く応用されている。トランジスタに適用可能な半導体薄膜としてシリコン系半導体材料が広く知られているが、その他の材料として酸化物半導体が注目されている。
 また、酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さいことが知られている。例えば、酸化物半導体を用いたトランジスタのリーク電流が低いという特性を応用した低消費電力のCPUなどが開示されている(特許文献1参照。)。また、例えば、酸化物半導体を用いたトランジスタのリーク電流が低いという特性を応用して、長期にわたり記憶内容を保持することができる記憶装置などが、開示されている(特許文献2参照。)。
 また、近年では電子機器の小型化、軽量化に伴い、集積回路のさらなる高密度化への要求が高まっている。また、集積回路を含む半導体装置の生産性の向上が求められている。
特開2012−257187号公報 特開2011−151383号公報
 本発明の一態様は、トランジスタ特性のばらつきが少ない半導体装置を提供することを課題の一とする。または、本発明の一態様は、信頼性が良好な半導体装置を提供することを課題の一つとする。または、本発明の一態様は、良好な電気特性を有する半導体装置を提供することを課題の一つとする。または、本発明の一態様は、オン電流が大きい半導体装置を提供することを課題の一つとする。または、本発明の一態様は、微細化または高集積化が可能な半導体装置を提供することを課題の一つとする。または、本発明の一態様は、低消費電力の半導体装置を提供することを課題の一つとする。
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
 本発明の一態様は、酸化物半導体と、酸化物半導体上の、第1の導電体、および第2の導電体と、第1の導電体の上面に接する、第1の絶縁体と、第2の導電体の上面に接する、第2の絶縁体と、第1の絶縁体および第2の絶縁体の上に配置され、第1の導電体と第2の導電体の間の領域に重畳して開口が形成された、第3の絶縁体と、酸化物半導体上、かつ、第1の導電体と第2の導電体の間の領域に配置された第4の絶縁体と、第4の絶縁体上の第3の導電体と、を有し、第1の絶縁体、および第2の絶縁体は、アモルファス構造を有する金属酸化物である、半導体装置である。
 本発明の一態様は、酸化物半導体と、酸化物半導体上の、第1の導電体、および第2の導電体と、第1の導電体および第2の導電体を覆い、第1の導電体と第2の導電体の間の領域に重畳して開口が形成された、第1の絶縁体と、第1の絶縁体の上に配置され、第1の導電体と第2の導電体の間の領域に重畳して開口が形成された、第2の絶縁体と、酸化物半導体上、かつ、第1の導電体と第2の導電体の間の領域に配置された第3の絶縁体と、第3の絶縁体上の第3の導電体と、を有し、第1の絶縁体は、アモルファス構造を有する金属酸化物である、半導体装置である。
 本発明の一態様は、酸化物半導体と、酸化物半導体上の、第1の導電体、および第2の導電体と、第1の導電体の上面に接する、第1の絶縁体と、第2の導電体の上面に接する、第2の絶縁体と、第1の絶縁体および第2の絶縁体を覆い、第1の導電体と第2の導電体の間の領域に重畳して開口が形成された、第3の絶縁体と、第3の絶縁体の上に配置され、第1の導電体と第2の導電体の間の領域に重畳して開口が形成された、第4の絶縁体と、酸化物半導体上、かつ、第1の導電体と第2の導電体の間の領域に配置された第5の絶縁体と、第5の絶縁体上の第3の導電体と、を有し、第1の絶縁体、第2の絶縁体、および第3の絶縁体は、アモルファス構造を有する金属酸化物である、半導体装置である。
 上記において、半導体装置は、酸化物半導体の下の、第6の絶縁体と、第4の絶縁体、および第3の導電体の上面に接する第7の絶縁体と、を有し、第6の絶縁体、および第7の絶縁体は、アモルファス構造を有する金属酸化物である、ことが好ましい。
 上記において、半導体装置は、第7の絶縁体を覆い、かつ、第5の絶縁体と重畳しない領域において、第6の絶縁体の上面に接する、第8の絶縁体を有し、第8の絶縁体は、アモルファス構造を有する金属酸化物である、ことが好ましい。
 上記において、半導体装置は、第6の絶縁体の下面に接する第9の絶縁体と、第7の絶縁体の上面に接する第10の絶縁体と、を有し、第9の絶縁体、および第10の絶縁体は、窒化シリコンである、ことが好ましい。
 上記において、半導体装置は、誘電体と、第4の導電体と、を有し、第2の絶縁体、第3の絶縁体、および第4の絶縁体に、第2の導電体に達する開口が形成され、誘電体は、当該開口の中に配置され、第2の導電体の上面、第2の絶縁体の側面、第3の絶縁体の側面、および第4の絶縁体の側面に接し、第4の導電体は、当該開口の中に配置され、誘電体の上面に接する、ことが好ましい。
 上記において、半導体装置は、第1の絶縁体と第3の絶縁体の間に配置された第1の窒化物絶縁体と、第2の絶縁体と第3の絶縁体の間に配置された第2の窒化物絶縁体と、を有し、第1の窒化物絶縁体、および第2の窒化物絶縁体は、窒化シリコンである、ことが好ましい。
 上記において、半導体装置は、第1の絶縁体の上面、および第2の絶縁体の上面は、第3の絶縁体に接することが好ましい。
 上記において、アモルファス構造を有する金属酸化物は、AlO(xは0より大きい任意数)である、ことが好ましい。
 本発明の一態様により、トランジスタ特性のばらつきが少ない半導体装置を提供することができる。または、本発明の一態様により、信頼性が良好な半導体装置を提供することができる。または、本発明の一態様により、良好な電気特性を有する半導体装置を提供することができる。または、本発明の一態様により、オン電流が大きい半導体装置を提供することができる。または、本発明の一態様により、微細化または高集積化が可能な半導体装置を提供することができる。または、本発明の一態様により、低消費電力の半導体装置を提供することができる。
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
図1Aは本発明の一態様である半導体装置の上面図である。図1B乃至図1D本発明の一態様である半導体装置の断面図である。
図2は本発明の一態様である半導体装置の断面図である。
図3AはIGZOの結晶構造の分類を説明する図である。図3BはCAAC−IGZO膜のXRDスペクトルを説明する図である。図3CはCAAC−IGZO膜の極微電子線回折パターンを説明する図である。
図4Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図4B乃至図4Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図5Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図5B乃至図5Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図6Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図6B乃至図6Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図7Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図7B乃至図7Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図8Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図8B乃至図8Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図9Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図9B乃至図9Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図10Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図10B乃至図10Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図11Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図11B乃至図11Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図12Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図12B乃至図12Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図13Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図13B乃至図13Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図14Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図14B乃至図14Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図15Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図15B乃至図15D本発明の一態様である半導体装置の作製方法を示す断面図である。
図16Aは本発明の一態様である半導体装置の作製方法を示す上面図である。図16B乃至図16Dは本発明の一態様である半導体装置の作製方法を示す断面図である。
図17は本発明の一態様に係るマイクロ波処理装置を説明する上面図である。
図18は本発明の一態様に係るマイクロ波処理装置を説明する断面図である。
図19は本発明の一態様に係るマイクロ波処理装置を説明する断面図である。
図20Aは本発明の一態様である半導体装置の上面図である。図20B乃至図20Dは本発明の一態様である半導体装置の断面図である。
図21Aは本発明の一態様である半導体装置の上面図である。図21B乃至図21Dは本発明の一態様である半導体装置の断面図である。
図22Aは本発明の一態様である半導体装置の上面図である。図22B乃至図22Dは本発明の一態様である半導体装置の断面図である。
図23Aは本発明の一態様である半導体装置の上面図である。図23B乃至図23Dは本発明の一態様である半導体装置の断面図である。
図24Aおよび図24Bは本発明の一態様に係る半導体装置の断面図である。
図25は本発明の一態様に係る記憶装置の構成を示す断面図である。
図26は本発明の一態様に係る記憶装置の構成を示す断面図である。
図27Aおよび図27Bは本発明の一態様に係る半導体装置の断面図である。
図28Aおよび図28Bは本発明の一態様に係る半導体装置の断面図である。
図29は本発明の一態様に係る半導体装置の断面図である。
図30は本発明の一態様に係る半導体装置の断面図である。
図31Aは本発明の一態様に係る記憶装置の構成例を示すブロック図である。図31Bは本発明の一態様に係る記憶装置の構成例を示す模式図である。
図32A乃至図32Hは本発明の一態様に係る記憶装置の構成例を示す回路図である。
図33は各種の記憶装置を階層ごとに示す図である。
図34Aは本発明の一態様に係る半導体装置のブロック図である。図34Bは本発明の一態様に係る半導体装置の模式図である。
図35Aおよび図35Bは電子部品の一例を説明する図である。
図36A乃至図36Eは本発明の一態様に係る記憶装置の模式図である。
図37A乃至図37Hは本発明の一態様に係る電子機器を示す図である。
図38A乃至図38Cは、本実施例に係る動作周波数の算出方法を説明する模式図である。
図39Aは、本実施例に係るサンプルの電気特性を示す図である。図39Bは、本実施例に係るサンプルの動作周波数を計算した結果を示す図である。
図40Aおよび図40Bは、本実施例に係る+GBTストレス試験におけるΔVshのストレス時間依存性を示す図である。
図41は、本実施例に係るサンプルの模式図である。
図42Aは本実施例に係るTEM像である。図42Bは本実施例に係るFFT像である。
図43Aは本実施例に係るTEM像である。図43Bは本実施例に係るFFT像である。
図44Aは本実施例に係るTEM像である。図44Bは本実施例に係るFFT像である。
図45は、本実施例に係るサンプルの重水素濃度を示す図である。
 以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの異なる態様で実施することが可能であり、趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。したがって、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
 また、図面において、大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお、図面は、理想的な例を模式的に示したものであり、図面に示す形状または値などに限定されない。例えば、実際の製造工程において、エッチングなどの処理により層やレジストマスクなどが意図せずに目減りすることがあるが、理解を容易とするため、図に反映しないことがある。また、図面において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する場合がある。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
 また、特に上面図(「平面図」ともいう。)や斜視図などにおいて、発明の理解を容易とするため、一部の構成要素の記載を省略する場合がある。また、一部の隠れ線などの記載を省略する場合がある。
 また、本明細書等において、第1、第2等として付される序数詞は便宜上用いるものであり、工程順または積層順を示すものではない。そのため、例えば、「第1の」を「第2の」または「第3の」などと適宜置き換えて説明することができる。また、本明細書等に記載されている序数詞と、本発明の一態様を特定するために用いられる序数詞は一致しない場合がある。
 また、本明細書等において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。したがって、明細書で説明した語句に限定されず、状況に応じて適切に言い換えることができる。
 また、本明細書等において、XとYとが接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接的に接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関係以外のものも、図または文章に開示されているものとする。ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
 また、本明細書等において、トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの端子を有する素子である。そして、ドレイン(ドレイン端子、ドレイン領域またはドレイン電極)とソース(ソース端子、ソース領域またはソース電極)の間にチャネルが形成される領域(以下、チャネル形成領域ともいう。)を有しており、チャネル形成領域を介して、ソースとドレインとの間に電流を流すことができるものである。なお、本明細書等において、チャネル形成領域とは、電流が主として流れる領域をいう。
 また、明細書や図面などの記載と異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合などには、ソースとドレインのそれぞれの機能が互いに入れ替わることがある。このため、本明細書等においては、ソースやドレインの用語は、入れ替えて用いることができる場合がある。
 なお、チャネル長とは、例えば、トランジスタの上面図において、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが互いに重なる領域、またはチャネル形成領域における、ソース(ソース領域またはソース電極)とドレイン(ドレイン領域またはドレイン電極)との間の距離をいう。なお、一つのトランジスタにおいて、チャネル長が全ての領域で同じ値をとるとは限らない。すなわち、一つのトランジスタのチャネル長は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル長は、チャネル形成領域における、いずれか一の値、最大値、最小値または平均値とする。
 チャネル幅とは、例えば、トランジスタの上面図において、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが互いに重なる領域、またはチャネル形成領域における、チャネル長方向を基準として垂直方向のチャネル形成領域の長さをいう。なお、一つのトランジスタにおいて、チャネル幅がすべての領域で同じ値をとるとは限らない。すなわち、一つのトランジスタのチャネル幅は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル幅は、チャネル形成領域における、いずれか一の値、最大値、最小値または平均値とする。
 なお、本明細書等において、トランジスタの構造によっては、実際にチャネルの形成される領域におけるチャネル幅(以下、「実効的なチャネル幅」ともいう。)と、トランジスタの上面図において示されるチャネル幅(以下、「見かけ上のチャネル幅」ともいう。)と、が異なる場合がある。例えば、ゲート電極が半導体の側面を覆う場合、実効的なチャネル幅が、見かけ上のチャネル幅よりも大きくなり、その影響が無視できなくなる場合がある。例えば、微細かつゲート電極が半導体の側面を覆うトランジスタでは、半導体の側面に形成されるチャネル形成領域の割合が大きくなる場合がある。その場合は、見かけ上のチャネル幅よりも、実効的なチャネル幅の方が大きくなる。
 このような場合、実効的なチャネル幅の、実測による見積もりが困難となる場合がある。例えば、設計値から実効的なチャネル幅を見積もるためには、半導体の形状が既知という仮定が必要である。したがって、半導体の形状が正確にわからない場合には、実効的なチャネル幅を正確に測定することは困難である。
 本明細書では、単にチャネル幅と記載した場合には、見かけ上のチャネル幅を指す場合がある。または、本明細書では、単にチャネル幅と記載した場合には、実効的なチャネル幅を指す場合がある。なお、チャネル長、チャネル幅、実効的なチャネル幅、見かけ上のチャネル幅などは、断面TEM像などを解析することなどによって、値を決定することができる。
 なお、半導体の不純物とは、例えば、半導体を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物と言える。不純物が含まれることにより、例えば、半導体の欠陥準位密度が高くなることや、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導体である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第13族元素、第14族元素、第15族元素、酸化物半導体の主成分以外の遷移金属などがあり、例えば、水素、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、窒素などがある。なお、水も不純物として機能する場合がある。また、例えば不純物の混入によって、酸化物半導体に酸素欠損(V:oxygen vacancyともいう)が形成される場合がある。
 なお、本明細書等において、酸化窒化物とは、その組成として、窒素よりも酸素の含有量が多いものである。例えば、酸化窒化シリコンは、その組成として、窒素よりも酸素の含有量が多い。また、窒化酸化物とは、その組成として、酸素よりも窒素の含有量が多いものである。例えば、窒化酸化シリコンは、その組成として、酸素よりも窒素の含有量が多い。
 また、本明細書等において、「絶縁体」という用語を、絶縁膜または絶縁層と言い換えることができる。また、「導電体」という用語を、導電膜または導電層と言い換えることができる。また、「半導体」という用語を、半導体膜または半導体層と言い換えることができる。
 また、本明細書等において、「平行」とは、二つの直線が−10度以上10度以下の角度で配置されている状態をいう。したがって、−5度以上5度以下の場合も含まれる。また、「概略平行」とは、二つの直線が−30度以上30度以下の角度で配置されている状態をいう。また、「垂直」とは、二つの直線が80度以上100度以下の角度で配置されている状態をいう。したがって、85度以上95度以下の場合も含まれる。また、「概略垂直」とは、二つの直線が60度以上120度以下の角度で配置されている状態をいう。
 本明細書等において、金属酸化物(metal oxide)とは、広い意味での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む。)、酸化物半導体(Oxide Semiconductorまたは単にOSともいう。)などに分類される。例えば、トランジスタの半導体層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、OSトランジスタと記載する場合においては、金属酸化物または酸化物半導体を有するトランジスタと換言することができる。
 また、本明細書等において、ノーマリーオフとは、ゲートに電位を印加しない、またはゲートに接地電位を与えたときに、トランジスタに流れるチャネル幅1μmあたりのドレイン電流が、室温において1×10−20A以下、85℃において1×10−18A以下、または125℃において1×10−16A以下であることをいう。
(実施の形態1)
 本実施の形態では、図1乃至図24を用いて、本発明の一態様に係るトランジスタ200を有する半導体装置の一例、およびその作製方法について説明する。
<半導体装置の構成例>
 図1A乃至図1Dを用いて、トランジスタ200を有する半導体装置の構成を説明する。図1Aは、当該半導体装置の上面図である。また、図1B乃至図1Dは、当該半導体装置の断面図である。ここで、図1Bは、図1AにA1−A2の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、図1Cは、図1AにA3−A4の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。また、図1Dは、図1AにA5−A6の一点鎖線で示す部位の断面図である。なお、図1Aの上面図では、図の明瞭化のために一部の要素を省いている。
 本発明の一態様の半導体装置は、基板(図示せず)上の絶縁体212と、絶縁体212上の絶縁体214と、絶縁体214上のトランジスタ200と、トランジスタ200上の絶縁体280と、絶縁体280上の絶縁体282と、絶縁体282上の絶縁体283と、を有する。絶縁体212、絶縁体214、絶縁体280、絶縁体282、および絶縁体283は層間膜として機能する。また、トランジスタ200と電気的に接続し、プラグとして機能する導電体240(導電体240a、および導電体240b)を有する。なお、プラグとして機能する導電体240の側面に接して絶縁体241(絶縁体241a、および絶縁体241b)が設けられる。また、絶縁体283上、および導電体240上には、導電体240と電気的に接続し、配線として機能する導電体246(導電体246a、および導電体246b)が設けられる。また、導電体246上、および絶縁体283上には、絶縁体286が設けられる。
 絶縁体280、絶縁体282、および絶縁体283の開口の内壁に接して絶縁体241aが設けられ、絶縁体241aの側面に接して導電体240aの第1の導電体が設けられ、さらに内側に導電体240aの第2の導電体が設けられている。また、絶縁体280、絶縁体282、および絶縁体283の開口の内壁に接して絶縁体241bが設けられ、絶縁体241bの側面に接して導電体240bの第1の導電体が設けられ、さらに内側に導電体240bの第2の導電体が設けられている。ここで、導電体240の上面の高さと、導電体246と重なる領域の、絶縁体283の上面の高さと、は同程度にできる。なお、トランジスタ200では、導電体240の第1の導電体および導電体240の第2の導電体を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体240を単層、または3層以上の積層構造として設ける構成にしてもよい。構造体が積層構造を有する場合、形成順に序数を付与し、区別する場合がある。
[トランジスタ200]
 図1A乃至図1Dに示すように、トランジスタ200は、絶縁体214上の絶縁体216と、絶縁体216に埋め込まれるように配置された導電体205(導電体205a、導電体205b、および導電体205c)と、絶縁体216上、および導電体205上の絶縁体222と、絶縁体222上の絶縁体224と、絶縁体224上の酸化物230aと、酸化物230a上の酸化物230bと、酸化物230b上の、酸化物243(酸化物243a、および酸化物243b)と、酸化物243a上の導電体242aと、導電体242a上の絶縁体271aと、絶縁体271a上の絶縁体273aと、酸化物243b上の導電体242bと、導電体242b上の絶縁体271bと、絶縁体271b上の絶縁体273bと、酸化物230b上の絶縁体250と、絶縁体250上に位置し、酸化物230bの一部と重なる導電体260(導電体260a、および導電体260b)と、酸化物230bの側面、酸化物243aの側面および導電体242aの側面に接する絶縁体272aと、酸化物230bの側面、酸化物243bの側面および導電体242bの側面に接する絶縁体272bと、絶縁体224、絶縁体272a、絶縁体272b、絶縁体273a、および絶縁体273bの上に配置される絶縁体275と、を有する。ここで、図1Bおよび図1Cに示すように、導電体260の上面は、絶縁体250の上面の少なくとも一部、および絶縁体280の上面の少なくとも一部と、高さが略一致するように配置される。また、絶縁体282は、導電体260、絶縁体250、および絶縁体280のそれぞれの上面の少なくとも一部と接する。
 なお、以下において、酸化物230aと酸化物230bをまとめて酸化物230と呼ぶ場合がある。また、絶縁体271aと絶縁体271bをまとめて絶縁体271と呼ぶ場合がある。また、絶縁体272aと絶縁体272bをまとめて絶縁体272と呼ぶ場合がある。また、絶縁体273aと絶縁体273bをまとめて絶縁体273と呼ぶ場合がある。また、導電体242aと導電体242bをまとめて導電体242と呼ぶ場合がある。
 絶縁体280および絶縁体275には、酸化物230bに達する開口が設けられる。当該開口内に、絶縁体250、および導電体260が配置されている。また、トランジスタ200のチャネル長方向において、絶縁体271a、絶縁体273a、導電体242aおよび酸化物243aと、絶縁体271b、絶縁体273b、導電体242bおよび酸化物243bと、の間に導電体260、および絶縁体250が設けられている。絶縁体250は、導電体260の側面と接する領域と、導電体260の底面と接する領域と、を有する。
 酸化物230は、絶縁体224の上に配置された酸化物230aと、酸化物230aの上に配置された酸化物230bと、を有することが好ましい。酸化物230b下に酸化物230aを有することで、酸化物230aよりも下方に形成された構造物から、酸化物230bへの不純物の拡散を抑制することができる。
 なお、トランジスタ200では、酸化物230が、酸化物230a、および酸化物230bの2層を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、酸化物230bの単層、または3層以上の積層構造を設ける構成にしてもよいし、酸化物230a、および酸化物230bのそれぞれが積層構造を有していてもよい。
 導電体260は、第1のゲート(トップゲートともいう。)電極として機能し、導電体205は、第2のゲート(バックゲートともいう。)電極として機能する。また、絶縁体250は、第1のゲート絶縁体として機能し、絶縁体224は、第2のゲート絶縁体として機能する。また、導電体242aは、ソースまたはドレインの一方として機能し、導電体242bは、ソースまたはドレインの他方として機能する。また、酸化物230の導電体260と重畳する領域の少なくとも一部はチャネル形成領域として機能する。
 ここで、図1Bにおけるチャネル形成領域近傍の拡大図を図2に示す。図2に示すように、酸化物230bは、トランジスタ200のチャネル形成領域として機能する領域230bcと、領域230bcを挟むように設けられ、ソース領域またはドレイン領域として機能する領域230baおよび領域230bbと、を有する。領域230bcは、少なくとも一部が導電体260と重畳している。言い換えると、領域230bcは、導電体242aと導電体242bの間の領域に設けられている。領域230baは、導電体242aに重畳して設けられており、領域230bbは、導電体242bに重畳して設けられている。
 チャネル形成領域として機能する領域230bcは、領域230baおよび領域230bbよりも、酸素欠損が少なく、または不純物濃度が低いため、キャリア濃度が低い高抵抗領域である。また、ソース領域またはドレイン領域として機能する領域230baおよび領域230bbは、酸素欠損が多く、または水素や、窒素や、金属元素などの不純物濃度が高い、ことでキャリア濃度が増加し、低抵抗化した領域である。すなわち、領域230baおよび領域230bbは、領域230bcと比較して、キャリア濃度が高く、低抵抗な領域である。
 ここで、チャネル形成領域として機能する領域230bcのキャリア濃度は、1×1018cm−3以下であることが好ましく、1×1017cm−3未満であることがより好ましく、1×1016cm−3未満であることがさらに好ましく、1×1013cm−3未満であることがさらに好ましく、1×1012cm−3未満であることがさらに好ましい。なお、チャネル形成領域として機能する領域230bcのキャリア濃度の下限値については、特に限定は無いが、例えば、1×10−9cm−3とすることができる。
 また、領域230bcと領域230baまたは領域230bbとの間に、キャリア濃度が、領域230baおよび領域230bbのキャリア濃度と同等、またはそれよりも低く、領域230bcのキャリア濃度と同等、またはそれよりも高い、領域が形成されていてもよい。つまり、当該領域は、領域230bcと領域230baまたは領域230bbとの接合領域として機能する。当該接合領域は、水素濃度が、領域230baおよび領域230bbの水素濃度と同等、またはそれよりも低く、領域230bcの水素濃度と同等、またはそれよりも高くなる場合がある。また、当該接合領域は、酸素欠損が、領域230baおよび領域230bbの酸素欠損と同等、またはそれよりも少なく、領域230bcの酸素欠損と同等、またはそれよりも多くなる場合がある。
 なお、図2では、領域230ba、領域230bb、および領域230bcが酸化物230bに形成される例について示しているが、本発明はこれに限られるものではない。例えば、上記の各領域が酸化物230bだけでなく、酸化物230aまで形成されてもよい。
 また、酸化物230において、各領域の境界を明確に検出することが困難な場合がある。各領域内で検出される金属元素、ならびに水素、および窒素などの不純物元素の濃度は、領域ごとの段階的な変化に限らず、各領域内でも連続的に変化していてもよい。つまり、チャネル形成領域に近い領域であるほど、金属元素、ならびに水素、および窒素などの不純物元素の濃度が減少していればよい。
 トランジスタ200は、チャネル形成領域を含む酸化物230(酸化物230a、および酸化物230b)に、半導体として機能する金属酸化物(以下、酸化物半導体ともいう。)を用いることが好ましい。
 また、半導体として機能する金属酸化物は、バンドギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
 酸化物230として、例えば、インジウム、元素Mおよび亜鉛を有するIn−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、錫、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種)等の金属酸化物を用いるとよい。また、酸化物230として、In−M酸化物、In−Ga酸化物、In−Zn酸化物、インジウム酸化物、M−Zn酸化物、元素Mの酸化物を用いてもよい。
 ここで、酸化物230bに用いる金属酸化物における、元素Mに対するInの原子数比が、酸化物230aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。
 このように、酸化物230bの下に酸化物230aを配置することで、酸化物230aよりも下方に形成された構造物からの、酸化物230bに対する、不純物および酸素の拡散を抑制することができる。
 また、酸化物230aおよび酸化物230bが、酸素以外に共通の元素を有する(主成分とする)ことで、酸化物230aと酸化物230bの界面における欠陥準位密度が低くすることができる。酸化物230aと酸化物230bとの界面における欠陥準位密度を低くすることができるため、界面散乱によるキャリア伝導への影響が小さく、高いオン電流が得られる。
 酸化物230bは、それぞれ結晶性を有することが好ましい。特に、酸化物230bとして、CAAC−OS(c−axis aligned crystalline oxide semiconductor)を用いることが好ましい。
 CAAC−OSは、結晶性の高い、緻密な構造を有しており、不純物や欠陥(例えば、酸素欠損(V)など)が少ない金属酸化物である。特に、金属酸化物の形成後に、金属酸化物が多結晶化しない程度の温度(例えば、400℃以上600℃以下)で加熱処理することで、CAAC−OSをより結晶性の高い、緻密な構造にすることができる。このようにして、CAAC−OSの密度をより高めることで、当該CAAC−OS中の不純物または酸素の拡散をより低減することができる。
 一方、CAAC−OSは、明確な結晶粒界を確認することが難しいため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。したがって、CAAC−OSを有する金属酸化物は、物理的性質が安定する。そのため、CAAC−OSを有する金属酸化物は熱に強く、信頼性が高い。
 酸化物半導体を用いたトランジスタは、酸化物半導体中のチャネルが形成される領域に不純物および酸素欠損が存在すると、電気特性が変動しやすく、信頼性が悪くなる場合がある。また、酸素欠損近傍の水素が、酸素欠損に水素が入った欠陥(以下、VHと呼ぶ場合がある。)を形成し、キャリアとなる電子を生成する場合がある。このため、酸化物半導体中のチャネルが形成される領域に酸素欠損が含まれていると、トランジスタはノーマリーオン特性(ゲート電極に電圧を印加しなくてもチャネルが存在し、トランジスタに電流が流れる特性)となりやすい。したがって、酸化物半導体中のチャネルが形成される領域では、不純物、酸素欠損、およびVHはできる限り低減されていることが好ましい。言い換えると、酸化物半導体中のチャネルが形成される領域は、キャリア濃度が低減され、i型(真性化)または実質的にi型であることが好ましい。
 これに対して、酸化物半導体の近傍に、加熱により脱離する酸素(以下、過剰酸素と呼ぶ場合がある。)を含む絶縁体を設け、熱処理を行うことで、当該絶縁体から酸化物半導体に酸素を供給し、酸素欠損、およびVHを低減することができる。ただし、ソース領域またはドレイン領域に過剰な量の酸素が供給されると、トランジスタ200のオン電流の低下、または電界効果移動度の低下を引き起こすおそれがある。さらに、ソース領域またはドレイン領域に供給される酸素が基板面内でばらつくことで、トランジスタを有する半導体装置の特性にばらつきが出ることになる。
 よって、酸化物半導体中において、チャネル形成領域として機能する領域230bcは、キャリア濃度が低減され、i型または実質的にi型であることが好ましいが、ソース領域またはドレイン領域として機能する領域230baおよび領域230bbは、キャリア濃度が高く、n型であることが好ましい。つまり、酸化物半導体の領域230bcの酸素欠損、およびVHを低減し、領域230baおよび領域230bbには過剰な量の酸素が供給されないようにすることが好ましい。
 そこで、本実施の形態では、酸化物230b上に導電体242aおよび導電体242bを設けた状態で、酸素を含む雰囲気でマイクロ波処理を行い、領域230bcの酸素欠損、およびVHの低減を図る。ここで、マイクロ波処理とは、例えばマイクロ波を用いて高密度プラズマを発生させる電源を有する装置を用いた処理のことを指す。
 酸素を含む雰囲気でマイクロ波処理を行うことで、マイクロ波、またはRF等の高周波を用いて酸素ガスをプラズマ化し、当該酸素プラズマを作用させることができる。このとき、マイクロ波、またはRF等の高周波を領域230bcに照射することもできる。プラズマ、マイクロ波などの作用により、領域230bcのVHを分断し、水素Hを領域230bcから除去し、酸素欠損Vを酸素で補填することができる。つまり、領域230bcにおいて、「VH→H+V」という反応が起きて、領域230bcの水素濃度を低減することができる。よって、領域230bc中の酸素欠損、およびVHを低減し、キャリア濃度を低下させることができる。
 また、酸素を含む雰囲気でマイクロ波処理を行う際、マイクロ波、またはRF等の高周波、酸素プラズマなどの作用は、導電体242aおよび導電体242bに遮蔽され、領域230baおよび領域230bbには及ばない。さらに、酸素プラズマの作用は、酸化物230b、および導電体242を覆って設けられている、絶縁体271、絶縁体273、絶縁体275、および絶縁体280によって、低減することができる。これにより、マイクロ波処理の際に、領域230baおよび領域230bbで、VHの低減、および過剰な量の酸素供給が発生しないので、キャリア濃度の低下を防ぐことができる。
 このようにして、酸化物半導体の領域230bcで選択的に酸素欠損、およびVHを除去して、領域230bcをi型または実質的にi型とすることができる。さらに、ソース領域またはドレイン領域として機能する領域230baおよび領域230bbに過剰な酸素が供給されるのを抑制し、n型を維持することができる。これにより、トランジスタ200の電気特性の変動を抑制し、基板面内でトランジスタ200の電気特性がばらつくのを抑制することができる。
 以上のような構成にすることで、トランジスタ特性のばらつきが少ない半導体装置を提供することができる。また、信頼性が良好な半導体装置を提供することができる。また、良好な電気特性を有する半導体装置を提供することができる。
 なお、図1などにおいて、導電体260等を埋め込む開口の側面が、酸化物230bの溝部も含めて、酸化物230bの被形成面に対して概略垂直となっているが、本実施の形態はこれに限られるものではない。例えば、当該開口の底部が緩やかな曲面を有する、U字型の形状となってもよい。また、例えば、当該開口の側面が酸化物230bの被形成面に対して傾斜していてもよい。
 また、図1Cに示すように、トランジスタ200のチャネル幅方向の断面視において、酸化物230bの側面と酸化物230bの上面との間に、湾曲面を有してもよい。つまり、当該側面の端部と当該上面の端部は、湾曲してもよい(ラウンド状ともいう。)。
 上記湾曲面での曲率半径は、0nmより大きく、導電体242と重なる領域の酸化物230bの膜厚より小さい、または、上記湾曲面を有さない領域の長さの半分より小さいことが好ましい。上記湾曲面での曲率半径は、具体的には、0nmより大きく20nm以下、好ましくは1nm以上15nm以下、さらに好ましくは2nm以上10nm以下とする。このような形状にすることで、絶縁体250および導電体260の、酸化物230bへの被覆性を高めることができる。
 酸化物230は、化学組成が異なる複数の酸化物層の積層構造を有することが好ましい。具体的には、酸化物230aに用いる金属酸化物において、主成分である金属元素に対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、主成分である金属元素に対する元素Mの原子数比より、大きいことが好ましい。また、酸化物230aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物230bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物230aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。
 また、酸化物230bは、CAAC−OSなどの結晶性を有する酸化物であることが好ましい。CAAC−OSなどの結晶性を有する酸化物は、不純物や欠陥(酸素欠損など)が少なく、結晶性の高い、緻密な構造を有している。よって、ソース電極またはドレイン電極による、酸化物230bからの酸素の引き抜きを抑制することができる。これにより、熱処理を行っても、酸化物230bから酸素が引き抜かれることを低減できるので、トランジスタ200は、製造工程における高い温度(所謂サーマルバジェット)に対して安定である。
 ここで、酸化物230aと酸化物230bの接合部において、伝導帯下端はなだらかに変化する。換言すると、酸化物230aと酸化物230bの接合部における伝導帯下端は、連続的に変化または連続接合するともいうことができる。このようにするためには、酸化物230aと酸化物230bとの界面に形成される混合層の欠陥準位密度を低くするとよい。
 具体的には、酸化物230aと酸化物230bが、酸素以外に共通の元素を主成分として有することで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物230bがIn−M−Zn酸化物の場合、酸化物230aとして、In−M−Zn酸化物、M−Zn酸化物、元素Mの酸化物、In−Zn酸化物、インジウム酸化物などを用いてもよい。
 具体的には、酸化物230aとして、In:M:Zn=1:3:4[原子数比]もしくはその近傍の組成、またはIn:M:Zn=1:1:0.5[原子数比]もしくはその近傍の組成の金属酸化物を用いればよい。また、酸化物230bとして、In:M:Zn=1:1:1[原子数比]もしくはその近傍の組成、またはIn:M:Zn=4:2:3[原子数比]もしくはその近傍の組成の金属酸化物を用いればよい。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。また、元素Mとして、ガリウムを用いることが好ましい。
 なお、金属酸化物をスパッタリング法により成膜する場合、上記の原子数比は、成膜された金属酸化物の原子数比に限られず、金属酸化物の成膜に用いるスパッタリングターゲットの原子数比であってもよい。
 酸化物230aおよび酸化物230bを上述の構成とすることで、酸化物230aと酸化物230bとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ200は大きいオン電流、および高い周波数特性を得ることができる。
 絶縁体212、絶縁体214、絶縁体271、絶縁体272、絶縁体275、絶縁体282、絶縁体283、および絶縁体286の少なくとも一は、水、水素などの不純物が、基板側から、または、トランジスタ200の上方からトランジスタ200に拡散するのを抑制するバリア絶縁膜として機能することが好ましい。したがって、絶縁体212、絶縁体214、絶縁体271、絶縁体272、絶縁体275、絶縁体282、絶縁体283、および絶縁体286の少なくとも一は、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい)絶縁性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料を用いることが好ましい。
 なお、本明細書において、バリア絶縁膜とは、バリア性を有する絶縁膜のことを指す。本明細書において、バリア性とは、対応する物質の拡散を抑制する機能(透過性が低いともいう)のことを指す。または、対応する物質を、捕獲、および固着する(ゲッタリングともいう)機能のことを指す。
 絶縁体212、絶縁体214、絶縁体271、絶縁体272、絶縁体275、絶縁体282、絶縁体283、および絶縁体286としては、水、水素などの不純物、および酸素の拡散を抑制する機能を有する絶縁体を用いることが好ましく、例えば、酸化アルミニウム、酸化マグネシウム、酸化ハフニウム、酸化ガリウム、インジウムガリウム亜鉛酸化物、窒化シリコン、または窒化酸化シリコンなどを用いることができる。例えば、絶縁体212、絶縁体272、絶縁体283、および絶縁体286として、より水素バリア性が高い、窒化シリコンなどを用いることが好ましい。また、例えば、絶縁体214、絶縁体271、絶縁体275、および絶縁体282として、水素を捕獲および水素を固着する機能が高い、酸化アルミニウムまたは酸化マグネシウムなどを用いることが好ましい。これにより、水、水素などの不純物が絶縁体212、および絶縁体214を介して、基板側からトランジスタ200側に拡散するのを抑制することができる。または、水、水素などの不純物が絶縁体286よりも外側に配置されている層間絶縁膜などから、トランジスタ200側に拡散するのを抑制することができる。または、絶縁体224などに含まれる酸素が、絶縁体212、および絶縁体214を介して基板側に、拡散するのを抑制することができる。または、絶縁体280などに含まれる酸素が、絶縁体282などを介してトランジスタ200より上方に、拡散するのを抑制することができる。この様に、トランジスタ200を、水、水素などの不純物、および酸素の拡散を抑制する機能を有する絶縁体212、絶縁体214、絶縁体271、絶縁体272、絶縁体275、絶縁体282、絶縁体283、および絶縁体286で取り囲む構造とすることが好ましい。
 ここで、絶縁体212、絶縁体214、絶縁体271、絶縁体272、絶縁体275、絶縁体282、絶縁体283、および絶縁体286として、アモルファス構造を有する酸化物を用いることが好ましい。例えば、AlO(xは0より大きい任意数)、またはMgO(yは0より大きい任意数)などの金属酸化物を用いることが好ましい。このようなアモルファス構造を有する金属酸化物では、酸素原子がダングリングボンドを有しており、当該ダングリングボンドで水素を捕獲または固着する性質を有する場合がある。このようなアモルファス構造を有する金属酸化物をトランジスタ200の構成要素として用いる、またはトランジスタ200の周囲に設けることで、トランジスタ200に含まれる水素、またはトランジスタ200の周囲に存在する水素を捕獲または固着することができる。特にトランジスタ200のチャネル形成領域に含まれる水素を捕獲または固着することが好ましい。アモルファス構造を有する金属酸化物をトランジスタ200の構成要素として用いる、またはトランジスタ200の周囲に設けることで、良好な特性を有し、信頼性の高いトランジスタ200、および半導体装置を作製することができる。
 また、絶縁体212、絶縁体214、絶縁体271、絶縁体272、絶縁体275、絶縁体282、絶縁体283、および絶縁体286は、アモルファス構造であることが好ましいが、一部に多結晶構造の領域が形成されていてもよい。また、絶縁体212、絶縁体214、絶縁体271、絶縁体272、絶縁体275、絶縁体282、絶縁体283、および絶縁体286は、アモルファス構造の層と、多結晶構造の層と、が積層された多層構造であってもよい。例えば、アモルファス構造の層の上に多結晶構造の層が形成された積層構造でもよい。
 絶縁体212、絶縁体214、絶縁体271、絶縁体272、絶縁体275、絶縁体282、絶縁体283、および絶縁体286の成膜は、例えば、スパッタリング法を用いて行えばよい。スパッタリング法は、成膜ガスに水素を用いなくてよいので、絶縁体212、絶縁体214、絶縁体271、絶縁体272、絶縁体275、絶縁体282、絶縁体283、および絶縁体286の水素濃度を低減することができる。なお、成膜方法は、スパッタリング法に限られるものではなく、化学気相成長(CVD:Chemical Vapor Deposition)法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法、パルスレーザ堆積(PLD:Pulsed Laser Deposition)法、原子層堆積(ALD:Atomic Layer Deposition)法などを適宜用いてもよい。
 また、絶縁体212、絶縁体283、および絶縁体286の抵抗率を低くすることが好ましい場合がある。例えば、絶縁体212、絶縁体283、および絶縁体286の抵抗率を概略1×1013Ωcmとすることで、半導体装置作製工程のプラズマ等を用いる処理において、絶縁体212、絶縁体283、および絶縁体286が、導電体205、導電体242、導電体260、または導電体246のチャージアップを緩和することができる場合がある。絶縁体212、絶縁体283、および絶縁体286の抵抗率は、好ましくは、1×1010Ωcm以上1×1015Ωcm以下とする。
 また、絶縁体216、および絶縁体280は、絶縁体214よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体216、および絶縁体280として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンなどを適宜用いればよい。
 導電体205は、酸化物230、および導電体260と、重なるように配置する。ここで、導電体205は、絶縁体216に形成された開口に埋め込まれて設けることが好ましい。なお、導電体205の一部が、絶縁体214に埋め込まれるように設けられてもよい。
 導電体205は、導電体205a、導電体205b、および導電体205cを有する。導電体205aは、当該開口の底面および側壁に接して設けられる。導電体205bは、導電体205aに形成された凹部に埋め込まれるように設けられる。ここで、導電体205bの上面は、導電体205aの上面および絶縁体216の上面より低くなる。導電体205cは、導電体205bの上面、および導電体205aの側面に接して設けられる。ここで、導電体205cの上面の高さは、導電体205aの上面の高さおよび絶縁体216の上面の高さと略一致する。つまり、導電体205bは、導電体205aおよび導電体205cに包み込まれる構成になる。
 ここで、導電体205aおよび導電体205cは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
 導電体205aおよび導電体205cに、水素の拡散を低減する機能を有する導電性材料を用いることにより、導電体205bに含まれる水素などの不純物が、絶縁体224等を介して、酸化物230に拡散するのを防ぐことができる。また、導電体205aおよび導電体205cに、酸素の拡散を抑制する機能を有する導電性材料を用いることにより、導電体205bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、チタン、窒化チタン、タンタル、窒化タンタル、ルテニウム、または酸化ルテニウムなどを用いることが好ましい。したがって、導電体205aとしては、上記導電性材料を単層または積層とすればよい。例えば、導電体205aは、窒化チタンを用いればよい。
 また、導電体205bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。例えば、導電体205bは、タングステンを用いればよい。
 導電体205は、第2のゲート電極として機能する場合がある。その場合、導電体205に印加する電位を、導電体260に印加する電位と、連動させず、独立して変化させることで、トランジスタ200のしきい値電圧(Vth)を制御することができる。特に、導電体205に負の電位を印加することにより、トランジスタ200のVthをより大きくし、オフ電流を低減することが可能となる。したがって、導電体205に負の電位を印加したほうが、印加しない場合よりも、導電体260に印加する電位が0Vのときのドレイン電流を小さくすることができる。
 また、導電体205の電気抵抗率は、上記の導電体205に印加する電位を考慮して設計され、導電体205の膜厚は当該電気抵抗率に合わせて設定される。また、絶縁体216の膜厚は、導電体205とほぼ同じになる。ここで、導電体205の設計が許す範囲で導電体205および絶縁体216の膜厚を薄くすることが好ましい。絶縁体216の膜厚を薄くすることで、絶縁体216中に含まれる水素などの不純物の絶対量を低減することができるので、当該不純物が酸化物230に拡散するのを低減することができる。
 なお、導電体205は、図1Aに示すように、酸化物230の導電体242aおよび導電体242bと重ならない領域の大きさよりも、大きく設けるとよい。特に、図1Cに示すように、導電体205は、酸化物230aおよび酸化物230bのチャネル幅方向と交わる端部よりも外側の領域においても、延伸していることが好ましい。つまり、酸化物230のチャネル幅方向における側面の外側において、導電体205と、導電体260とは、絶縁体を介して重畳していることが好ましい。当該構成を有することで、第1のゲート電極として機能する導電体260の電界と、第2のゲート電極として機能する導電体205の電界によって、酸化物230のチャネル形成領域を電気的に取り囲むことができる。本明細書において、第1のゲート、および第2のゲートの電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S−channel)構造とよぶ。
 なお、本明細書等において、S−channel構造のトランジスタとは、一対のゲート電極の一方および他方の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を表す。また、本明細書等で開示するS−channel構造は、Fin型構造およびプレーナ型構造とは異なる。S−channel構造を採用することで、短チャネル効果に対する耐性を高める、別言すると短チャネル効果が発生し難いトランジスタとすることができる。
 また、図1Cに示すように、導電体205は延伸させて、配線としても機能させている。ただし、これに限られることなく、導電体205の下に、配線として機能する導電体を設ける構成にしてもよい。また、導電体205は、必ずしも各トランジスタに一個ずつ設ける必要はない。例えば、導電体205を複数のトランジスタで共有する構成にしてもよい。
 なお、トランジスタ200では、導電体205は、導電体205a、導電体205b、および導電体205cを積層する構成について示しているが、本発明はこれに限られるものではない。導電体205は、単層、2層または4層以上の積層構造として設ける構成にしてもよい。例えば、導電体205aと導電体205bの2層構造にしてもよい。
 絶縁体222、および絶縁体224は、ゲート絶縁体として機能する。
 絶縁体222は、水素(例えば、水素原子、水素分子などの少なくとも一)の拡散を抑制する機能を有することが好ましい。また、絶縁体222は、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有することが好ましい。例えば、絶縁体222は、絶縁体224よりも水素および酸素の一方または双方の拡散を抑制する機能を有することが好ましい。
 絶縁体222は、絶縁性材料であるアルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を用いるとよい。当該絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。このような材料を用いて絶縁体222を形成した場合、絶縁体222は、酸化物230から基板側への酸素の放出や、トランジスタ200の周辺部から酸化物230への水素等の不純物の拡散を抑制する層として機能する。よって、絶縁体222を設けることで、水素等の不純物が、トランジスタ200の内側へ拡散することを抑制し、酸化物230中の酸素欠損の生成を抑制することができる。また、導電体205が、絶縁体224や、酸化物230が有する酸素と反応することを抑制することができる。
 または、上記絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。または、これらの絶縁体を窒化処理してもよい。また、絶縁体222は、これらの絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
 また、絶縁体222は、例えば、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)、(Ba,Sr)TiO(BST)などのいわゆるhigh−k材料を含む絶縁体を単層または積層で用いてもよい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体にhigh−k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。
 酸化物230と接する絶縁体224は、過剰酸素を含む(加熱により酸素を脱離する)ことが好ましい。例えば、絶縁体224は、酸化シリコン、酸化窒化シリコンなどを適宜用いればよい。酸素を含む絶縁体を酸化物230に接して設けることにより、酸化物230中の酸素欠損を低減し、トランジスタ200の信頼性を向上させることができる。
 絶縁体224として、具体的には、加熱により一部の酸素が脱離する酸化物材料、別言すると、過剰酸素領域を有する絶縁体材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS(Thermal Desorption Spectroscopy)分析にて、酸素分子の脱離量が1.0×1018molecules/cm以上、好ましくは1.0×1019molecules/cm以上、さらに好ましくは2.0×1019molecules/cm以上、または3.0×1020molecules/cm以上である酸化膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上400℃以下の範囲が好ましい。
 また、トランジスタ200の作製工程中において、酸化物230の表面が露出した状態で、加熱処理を行うと好適である。当該加熱処理は、例えば、100℃以上600℃以下、より好ましくは350℃以上550℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、加熱処理は酸素雰囲気で行うことが好ましい。これにより、酸化物230に酸素を供給して、酸素欠損(V)の低減を図ることができる。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で行ってもよい。または、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理した後に、連続して窒素ガスもしくは不活性ガスの雰囲気で加熱処理を行っても良い。
 なお、酸化物230に加酸素化処理を行うことで、酸化物230中の酸素欠損を、供給された酸素により修復させる、別言すると「V+O→null」という反応を促進させることができる。さらに、酸化物230中に残存した水素に供給された酸素が反応することで、当該水素をHOとして除去する(脱水化する)ことができる。これにより、酸化物230中に残存していた水素が酸素欠損に再結合してVHが形成されるのを抑制することができる。
 なお、絶縁体222、および絶縁体224が、2層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。また、絶縁体224は、酸化物230aと重畳して島状に形成してもよい。この場合、絶縁体275が、絶縁体224の側面および絶縁体222の上面に接する構成になる。
 酸化物243a、および酸化物243bが、酸化物230b上に設けられる。酸化物243aと酸化物243bは、導電体260を挟んで離隔して設けられる。
 酸化物243(酸化物243a、および酸化物243b)は、酸素の透過を抑制する機能を有することが好ましい。ソース電極やドレイン電極として機能する導電体242と酸化物230bとの間に酸素の透過を抑制する機能を有する酸化物243を配置することで、導電体242と、酸化物230bとの間の電気抵抗が低減されるので好ましい。このような構成とすることで、トランジスタ200の電気特性およびトランジスタ200の信頼性を向上させることができる。なお、導電体242と酸化物230bの間の電気抵抗を十分低減できる場合、酸化物243を設けない構成にしてもよい。
 酸化物243として、元素Mを有する金属酸化物を用いてもよい。特に、元素Mは、アルミニウム、ガリウム、イットリウム、または錫を用いるとよい。酸化物243は、酸化物230bよりも元素Mの濃度が高いことが好ましい。また、酸化物243として、酸化ガリウムを用いてもよい。また、酸化物243として、In−M−Zn酸化物等の金属酸化物を用いてもよい。具体的には、酸化物243に用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物243の膜厚は、0.5nm以上5nm以下が好ましく、より好ましくは1nm以上3nm以下、さらに好ましくは1nm以上2nm以下である。また、酸化物243は、結晶性を有すると好ましい。酸化物243が結晶性を有する場合、酸化物230中の酸素の放出を好適に抑制することが出来る。例えば、酸化物243としては、六方晶などの結晶構造であれば、酸化物230中の酸素の放出を抑制できる場合がある。
 導電体242aは酸化物243aの上面に接して設けられ、導電体242bは、酸化物243bの上面に接して設けられることが好ましい。導電体242aおよび導電体242bは、それぞれトランジスタ200のソース電極またはドレイン電極として機能する。
 導電体242(導電体242a、および導電体242b)としては、例えば、タンタルを含む窒化物、チタンを含む窒化物、モリブデンを含む窒化物、タングステンを含む窒化物、タンタルおよびアルミニウムを含む窒化物、チタンおよびアルミニウムを含む窒化物などを用いることが好ましい。本発明の一態様においては、タンタルを含む窒化物が特に好ましい。また、例えば、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いてもよい。これらの材料は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。
 なお、酸化物230bなどに含まれる水素が、導電体242aまたは導電体242bに拡散する場合がある。特に、導電体242aおよび導電体242bに、タンタルを含む窒化物を用いることで、酸化物230bなどに含まれる水素は、導電体242aまたは導電体242bに拡散しやすく、拡散した水素は、導電体242aまたは導電体242bが有する窒素と結合することがある。つまり、酸化物230bなどに含まれる水素は、導電体242aまたは導電体242bに吸い取られる場合がある。
 また、導電体242の側面と導電体242の上面との間に、湾曲面が形成されないことが好ましい。当該湾曲面が形成されない導電体242とすることで、図1Dに示すような、チャネル幅方向の断面における、導電体242の断面積を大きくすることができる。これにより、導電体242の導電率を大きくし、トランジスタ200のオン電流を大きくすることができる。
 絶縁体271aは、導電体242aの上面に接して設けられており、絶縁体271bは、導電体242bの上面に接して設けられている。絶縁体271は、少なくとも酸素に対するバリア絶縁膜として機能することが好ましい。したがって、絶縁体271は、酸素の拡散を抑制する機能を有することが好ましい。例えば、絶縁体271は、絶縁体280よりも酸素の拡散を抑制する機能を有することが好ましい。絶縁体271としては、例えば、窒化シリコンなどのシリコンを含む窒化物を用いればよい。また、絶縁体271は、水素などの不純物を捕獲する機能を有することが好ましい。その場合、絶縁体271としては、アモルファス構造を有する金属酸化物、例えば、酸化アルミニウムまたは酸化マグネシウムなどの絶縁体を用いればよい。特に、絶縁体271として、アモルファス構造を有する酸化アルミニウム、またはアモルファス構造の酸化アルミニウムを用いることで、より効果的に水素を捕獲または固着できる場合があるため好ましい。これにより、良好な特性を有し、信頼性の高いトランジスタ200、および半導体装置を作製することができる。
 絶縁体273aは、絶縁体271aの上面に接して設けられており、絶縁体273bは、絶縁体271bの上面に接して設けられている。また、絶縁体273aの上面は絶縁体275に接し、絶縁体273aの側面は絶縁体250に接することが好ましい。また、絶縁体273bの上面は絶縁体275に接し、絶縁体273bの側面は絶縁体250に接することが好ましい。絶縁体273は、絶縁体224と同様に、過剰酸素領域または過剰酸素を有することが好ましい。また、絶縁体273中の水、水素などの不純物濃度は低減されていることが好ましい。例えば、絶縁体273は、酸化シリコン、酸化窒化シリコン、窒化シリコン、窒化酸化シリコンなどのシリコンを含む酸化物または窒化物を適宜用いればよい。過剰酸素を有する絶縁体を絶縁体250に接して設けることにより、絶縁体250を介して酸化物230に拡散した酸素が、酸化物230中の酸素欠損を低減し、トランジスタ200の信頼性を向上させることができる。
 なお、絶縁体224および絶縁体280から酸化物230に十分な酸素を供給できる場合、絶縁体273を設けない構成にしてもよい。
 絶縁体272aは、酸化物230a、酸化物230b、酸化物243a、導電体242a、絶縁体271a、および絶縁体273aの側面に接して設けられており、絶縁体272bは、酸化物230a、酸化物230b、酸化物243b、導電体242b、絶縁体271b、および絶縁体273bの側面に接して設けられる。また、絶縁体272aおよび絶縁体272bは、絶縁体224の上面に接して設けられる。絶縁体272は少なくとも酸素に対するバリア絶縁膜として機能することが好ましい。したがって、絶縁体272は、酸素の拡散を抑制する機能を有することが好ましい。例えば、絶縁体272は、絶縁体280よりも酸素の拡散を抑制する機能を有することが好ましい。絶縁体272としては、例えば、窒化シリコンなどのシリコンを含む窒化物を用いればよい。
 上記のような絶縁体271および絶縁体272を設けることで、酸素に対するバリア性を有する絶縁体で導電体242を包み込むことができる。つまり、絶縁体275成膜時に添加される酸素、または絶縁体273に含まれる酸素が、導電体242に拡散するのを防ぐことができる。これにより、絶縁体275成膜時に添加される酸素、または絶縁体273に含まれる酸素などによって、導電体242が直接酸化されて抵抗率が増大し、オン電流が低減するのを抑制することができる。
 なお、図1Bなどにおいて、絶縁体272が、酸化物230a、酸化物230b、酸化物243、導電体242、絶縁体271、および絶縁体273の側面に接する構成について示したが、絶縁体272は、少なくとも絶縁体271および導電体242の側面に接していればよい。例えば、絶縁体272が酸化物230a、酸化物230b、酸化物243、導電体242、および絶縁体271の側面に接し、絶縁体273に接していない構成になる場合もある。この場合、絶縁体273の側面が絶縁体275に接することになる。
 なお、絶縁体275が酸素などに対して十分なバリア性を有する場合、絶縁体271および絶縁体272の一方または両方を設けない構成にしてもよい。
 絶縁体275は、絶縁体224、絶縁体272、および絶縁体273を覆って設けられており、絶縁体250、および導電体260が設けられる領域に開口が形成されている。絶縁体275は、絶縁体224の上面、絶縁体272の側面、および絶縁体273の上面に接して設けられることが好ましい。また、絶縁体275は、酸素の透過を抑制するバリア絶縁膜として機能することが好ましい。また、絶縁体275は、水、水素などの不純物が、上方から絶縁体224、または絶縁体273に拡散するのを抑制するバリア絶縁膜として機能することが好ましく、水素などの不純物を捕獲する機能を有することが好ましい。その場合、絶縁体275としては、アモルファス構造を有する金属酸化物、例えば、酸化アルミニウムまたは酸化マグネシウムなどの絶縁体を含むことが好ましい。絶縁体275としては、例えば、酸化アルミニウム、および窒化シリコンなどの絶縁体を単層で、または積層して用いればよい。絶縁体275として、酸化アルミニウム、および窒化シリコンを積層して用いる場合、酸化アルミニウムを絶縁体224、絶縁体272、および絶縁体273と接するように設け、該酸化アルミニウム上に窒化シリコンを設けることが好ましい。また、絶縁体272を設けない場合、絶縁体275は、酸化物230a、酸化物230b、酸化物243、導電体242、絶縁体271の側面と接する。また、絶縁体275の少なくとも一部に酸化アルミニウムを用いる場合、該酸化アルミニウムは、アモルファス構造を有する酸化アルミニウム、またはアモルファス構造の酸化アルミニウムであることが好ましい。アモルファス構造を有する金属酸化物、特に、アモルファス構造を有する酸化アルミニウム、およびアモルファス構造の酸化アルミニウムは、周囲に存在する水素を捕獲または固着することができる場合があるため、良好な特性を有し、信頼性の高いトランジスタ200、および半導体装置を作製することができる。
 絶縁体212と絶縁体283に挟まれた領域内で、絶縁体280、絶縁体224、または絶縁体273に接して、水素などの不純物を捕獲する機能を有する、絶縁体275を設けることで、絶縁体280、絶縁体224、または絶縁体273などに含まれる水素などの不純物を捕獲し、当該領域内における、水素の量を一定値にすることができる。この場合は、絶縁体275として、酸化アルミニウムなどを用いることが好ましい。
 絶縁体250は、ゲート絶縁体として機能する。絶縁体250は、酸化物230bの上面に接して配置することが好ましい。絶縁体250は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンなどを用いることができる。特に、酸化シリコン、および酸化窒化シリコンは熱に対し安定であるため好ましい。
 絶縁体250は、絶縁体224と同様に、絶縁体250中の水、水素などの不純物濃度が低減されていることが好ましい。絶縁体250の膜厚は、1nm以上20nm以下とするのが好ましい。
 なお、図1Bおよび図1Cでは、絶縁体250を単層で図示したが、2層以上の積層構造としてもよい。絶縁体250を2層の積層構造とする場合、絶縁体250の下層は、加熱により酸素が放出される絶縁体を用いて形成し、絶縁体250の上層は、酸素の拡散を抑制する機能を有する絶縁体を用いて形成することが好ましい。このような構成にすることで、絶縁体250の下層に含まれる酸素が、導電体260へ拡散するのを抑制することができる。つまり、酸化物230へ供給する酸素量の減少を抑制することができる。また、絶縁体250の下層に含まれる酸素による導電体260の酸化を抑制することができる。例えば、絶縁体250の下層は、上述した絶縁体250に用いることができる材料を用いて設け、絶縁体250の上層は、絶縁体222と同様の材料を用いて設けることができる。
 なお、絶縁体250の下層に酸化シリコンや酸化窒化シリコンなどを用いる場合、絶縁体250の上層は、比誘電率が高いhigh−k材料である絶縁性材料を用いてもよい。ゲート絶縁体を、このような絶縁体250の下層と絶縁体250の上層との積層構造とすることで、熱に対して安定、かつ比誘電率の高い積層構造とすることができる。したがって、ゲート絶縁体の物理膜厚を保持したまま、トランジスタ動作時に印加するゲート電位の低減化が可能となる。また、ゲート絶縁体として機能する絶縁体の等価酸化膜厚(EOT)の薄膜化が可能となる。
 絶縁体250の上層として、具体的には、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、マグネシウムなどから選ばれた一種、もしくは二種以上が含まれた金属酸化物、または酸化物230として用いることができる金属酸化物を用いることができる。特に、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を用いることが好ましい。例えば、絶縁体250として、酸化シリコンと、該酸化シリコン上の酸化ハフニウムを含む積層構造を用いればよい。
 また、絶縁体250と導電体260との間に金属酸化物を設けてもよい。当該金属酸化物は、絶縁体250から導電体260への酸素の拡散を抑制することが好ましい。酸素の拡散を抑制する金属酸化物を設けることで、絶縁体250から導電体260への酸素の拡散が抑制される。つまり、酸化物230へ供給する酸素量の減少を抑制することができる。また、絶縁体250の酸素による導電体260の酸化を抑制することができる。
 なお、上記金属酸化物は、第1のゲート電極の一部としての機能を有する構成にしてもよい。例えば、酸化物230として用いることができる金属酸化物を、上記金属酸化物として用いることができる。その場合、導電体260aをスパッタリング法で成膜することで、上記金属酸化物の電気抵抗値を低下させて導電体とすることができる。これをOC(Oxide Conductor)電極と呼ぶことができる。
 上記金属酸化物を有することで、導電体260からの電界の影響を弱めることなく、トランジスタ200のオン電流の向上を図ることができる。また、絶縁体250と、上記金属酸化物との物理的な厚みにより、導電体260と、酸化物230との間の距離を保つことで、導電体260と酸化物230との間のリーク電流を抑制することができる。また、絶縁体250、および上記金属酸化物との積層構造を設けることで、導電体260と酸化物230との間の物理的な距離、および導電体260から酸化物230へかかる電界強度を、容易に適宜調整することができる。
 導電体260は、トランジスタ200の第1のゲート電極として機能する。導電体260は、導電体260aと、導電体260aの上に配置された導電体260bと、を有することが好ましい。例えば、導電体260aは、導電体260bの底面および側面を包むように配置されることが好ましい。また、図1Bおよび図1Cに示すように、導電体260の上面の最上部は、絶縁体250の上面の最上部と略一致している。なお、図1Bおよび図1Cでは、導電体260は、導電体260aと導電体260bの2層構造として示しているが、単層構造でもよいし、3層以上の積層構造であってもよい。
 導電体260aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
 また、導電体260aが酸素の拡散を抑制する機能を持つことにより、絶縁体250に含まれる酸素により、導電体260bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、チタン、窒化チタン、タンタル、窒化タンタル、ルテニウム、または酸化ルテニウムなどを用いることが好ましい。
 また、導電体260は、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、導電体260bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体260bは積層構造としてもよく、例えば、チタンまたは窒化チタンと上記導電性材料との積層構造としてもよい。
 また、トランジスタ200では、導電体260は、絶縁体280などに形成されている開口を埋めるように自己整合的に形成される。導電体260をこのように形成することにより、導電体242aと導電体242bとの間の領域に、導電体260を位置合わせすることなく確実に配置することができる。
 また、図1Cに示すように、トランジスタ200のチャネル幅方向において、絶縁体222の底面を基準としたときの、導電体260の、導電体260と酸化物230bとが重ならない領域の底面の高さは、酸化物230bの底面の高さより低いことが好ましい。ゲート電極として機能する導電体260が、絶縁体250などを介して、酸化物230bのチャネル形成領域の側面および上面を覆う構成とすることで、導電体260の電界を酸化物230bのチャネル形成領域全体に作用させやすくなる。よって、トランジスタ200のオン電流を増大させ、周波数特性を向上させることができる。絶縁体222の底面を基準としたときの、酸化物230aおよび酸化物230bと、導電体260とが、重ならない領域における導電体260の底面の高さと、酸化物230bの底面の高さと、の差は、0nm以上100nm以下、好ましくは、3nm以上50nm以下、より好ましくは、5nm以上20nm以下とする。
 絶縁体280は、絶縁体275上に設けられ、絶縁体250、および導電体260が設けられる領域に開口が形成されている。また、絶縁体280の上面は、平坦化されていてもよい。
 層間膜として機能する絶縁体280は、誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。絶縁体280は、例えば、絶縁体216と同様の材料を用いて設けることが好ましい。特に、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、酸化窒化シリコン、空孔を有する酸化シリコンなどの材料は、加熱により脱離する酸素を含む領域を容易に形成することができるため好ましい。
 絶縁体280は、絶縁体224と同様に、過剰酸素領域または過剰酸素を有することが好ましい。また、絶縁体280中の水、水素などの不純物濃度は低減されていることが好ましい。例えば、絶縁体280は、酸化シリコン、酸化窒化シリコンなどのシリコンを含む酸化物を適宜用いればよい。過剰酸素を有する絶縁体を酸化物230に接して設けることにより、酸化物230中の酸素欠損を低減し、トランジスタ200の信頼性を向上させることができる。
 絶縁体282は、水、水素などの不純物が、上方から絶縁体280に拡散するのを抑制するバリア絶縁膜として機能することが好ましく、水素などの不純物を捕獲する機能を有することが好ましい。また、絶縁体282は、酸素の透過を抑制するバリア絶縁膜として機能することが好ましい。絶縁体282としては、アモルファス構造を有する金属酸化物、例えば、酸化アルミニウムなどの絶縁体を用いればよい。絶縁体212と絶縁体283に挟まれた領域内で、絶縁体280に接して、水素などの不純物を捕獲する機能を有する、絶縁体282を設けることで、絶縁体280などに含まれる水素などの不純物を捕獲し、当該領域内における、水素の量を一定値にすることができる。特に、絶縁体282として、アモルファス構造を有する酸化アルミニウム、またはアモルファス構造の酸化アルミニウムを用いることで、より効果的に水素を捕獲または固着できる場合があるため好ましい。これにより、良好な特性を有し、信頼性の高いトランジスタ200、および半導体装置を作製することができる。
 絶縁体283は、水、水素などの不純物が、上方から絶縁体280に拡散するのを抑制するバリア絶縁膜として機能する。絶縁体283は、絶縁体282の上に配置される。絶縁体283としては、窒化シリコンまたは窒化酸化シリコンなどの、シリコンを含む窒化物を用いることが好ましい。例えば、絶縁体283としてスパッタリング法で成膜された窒化シリコンを用いればよい。絶縁体283をスパッタリング法で成膜することで、密度が高く、鬆などが形成されにくい窒化シリコン膜を形成することができる。また、絶縁体283として、スパッタリング法で成膜された窒化シリコンの上に、さらに、CVD法で成膜された窒化シリコンを積層してもよい。
 導電体240aおよび導電体240bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体240aおよび導電体240bは積層構造としてもよい。
 また、導電体240を積層構造とする場合、絶縁体283、絶縁体282、絶縁体280、絶縁体275、絶縁体273、および絶縁体271と接する導電体には、水、水素などの不純物の透過を抑制する機能を有する導電性材料を用いることが好ましい。例えば、タンタル、窒化タンタル、チタン、窒化チタン、ルテニウム、または酸化ルテニウムなどを用いることが好ましい。また、水、水素などの不純物の透過を抑制する機能を有する導電性材料は、単層または積層で用いてもよい。また、絶縁体283より上層に含まれる水、水素などの不純物が、導電体240aおよび導電体240bを通じて酸化物230に混入するのを抑制することができる。
 絶縁体241aおよび絶縁体241bとしては、例えば、窒化シリコン、酸化アルミニウム、窒化酸化シリコンなどの絶縁体を用いればよい。絶縁体241aおよび絶縁体241bは、絶縁体283、絶縁体282、絶縁体275、および絶縁体271に接して設けられるので、絶縁体280などに含まれる水、水素などの不純物が、導電体240aおよび導電体240bを通じて酸化物230に混入するのを抑制することができる。特に、窒化シリコンは水素に対するバリア性が高いので好適である。また、絶縁体280に含まれる酸素が導電体240aおよび導電体240bに吸収されるのを防ぐことができる。
 また、導電体240aの上面、および導電体240bの上面に接して配線として機能する導電体246(導電体246a、および導電体246b)を配置してもよい。導電体246は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、当該導電体は、積層構造としてもよく、例えば、チタンまたは窒化チタンと上記導電性材料との積層としてもよい。なお、当該導電体は、絶縁体に設けられた開口に埋め込むように形成してもよい。
 絶縁体286は、導電体246上、および絶縁体283上に設けられる。これにより、導電体246の上面、および導電体246の側面は、絶縁体286と接し、導電体246の下面は、絶縁体283と接する。つまり、導電体246は、絶縁体283、および絶縁体286で包まれる構成とすることができる。この様な構成とすることで、外方からの酸素の透過を抑制し、導電体246の酸化を防止することができる。また、導電体246から、水、水素などの不純物が外部に拡散することを防ぐことができるので好ましい。
<半導体装置の構成材料>
 以下では、半導体装置に用いることができる構成材料について説明する。
<<基板>>
 トランジスタ200を形成する基板としては、例えば、絶縁体基板、半導体基板、または導電体基板を用いればよい。絶縁体基板としては、例えば、ガラス基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)、樹脂基板などがある。また、半導体基板としては、例えば、シリコン、ゲルマニウムを材料とした半導体基板、または炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、酸化ガリウムからなる化合物半導体基板などがある。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えば、SOI(Silicon On Insulator)基板などがある。導電体基板としては、黒鉛基板、金属基板、合金基板、導電性樹脂基板などがある。または、金属の窒化物を有する基板、金属の酸化物を有する基板などがある。さらには、絶縁体基板に導電体または半導体が設けられた基板、半導体基板に導電体または絶縁体が設けられた基板、導電体基板に半導体または絶縁体が設けられた基板などがある。または、これらの基板に素子が設けられたものを用いてもよい。基板に設けられる素子としては、容量素子、抵抗素子、スイッチ素子、発光素子、記憶素子などがある。
<<絶縁体>>
 絶縁体としては、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物などがある。
 例えば、トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体に、high−k材料を用いることで物理膜厚を保ちながら、トランジスタ動作時の低電圧化が可能となる。一方、層間膜として機能する絶縁体には、比誘電率が低い材料を用いることで、配線間に生じる寄生容量を低減することができる。したがって、絶縁体の機能に応じて、材料を選択するとよい。
 また、比誘電率の高い絶縁体としては、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物、またはシリコンおよびハフニウムを有する窒化物などがある。
 また、比誘電率が低い絶縁体としては、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などがある。
 また、金属酸化物を用いたトランジスタは、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体で囲うことによって、トランジスタの電気特性を安定にすることができる。水素などの不純物および酸素の透過を抑制する機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウム、またはタンタルを含む絶縁体を、単層で、または積層で用いればよい。具体的には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体として、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム、酸化タンタルなどの金属酸化物、窒化アルミニウム、窒化酸化シリコン、窒化シリコンなどの金属窒化物を用いることができる。
 また、ゲート絶縁体として機能する絶縁体は、加熱により脱離する酸素を含む領域を有する絶縁体であることが好ましい。例えば、加熱により脱離する酸素を含む領域を有する酸化シリコンまたは酸化窒化シリコンを酸化物230と接する構造とすることで、酸化物230が有する酸素欠損を補償することができる。
<<導電体>>
 導電体としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
 また、上記の材料で形成される導電層を複数積層して用いてもよい。例えば、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、酸素を含む導電性材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。
 なお、トランジスタのチャネル形成領域に酸化物を用いる場合において、ゲート電極として機能する導電体には、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造を用いることが好ましい。この場合は、酸素を含む導電性材料をチャネル形成領域側に設けるとよい。酸素を含む導電性材料をチャネル形成領域側に設けることで、当該導電性材料から離脱した酸素がチャネル形成領域に供給されやすくなる。
 特に、ゲート電極として機能する導電体として、チャネルが形成される金属酸化物に含まれる金属元素および酸素を含む導電性材料を用いることが好ましい。また、前述した金属元素および窒素を含む導電性材料を用いてもよい。例えば、窒化チタンまたは窒化タンタルなどの窒素を含む導電性材料を用いてもよい。また、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、シリコンを添加したインジウム錫酸化物を用いてもよい。また、窒素を含むインジウムガリウム亜鉛酸化物を用いてもよい。このような材料を用いることで、チャネルが形成される金属酸化物に含まれる水素を捕獲することができる場合がある。または、外方の絶縁体などから混入する水素を捕獲することができる場合がある。
<<金属酸化物>>
 酸化物230として、半導体として機能する金属酸化物(酸化物半導体)を用いることが好ましい。以下では、本発明に係る酸化物230および酸化物243に適用可能な金属酸化物について説明する。
 金属酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特に、インジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、錫などが含まれていることが好ましい。また、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルトなどから選ばれた一種、または複数種が含まれていてもよい。
 ここでは、金属酸化物が、インジウム、元素Mおよび亜鉛を有するIn−M−Zn酸化物である場合を考える。なお、元素Mは、アルミニウム、ガリウム、イットリウム、または錫とする。そのほかの元素Mに適用可能な元素としては、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルトなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。
 なお、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸化窒化物(metal oxynitride)と呼称してもよい。
<結晶構造の分類>
 まず、酸化物半導体における、結晶構造の分類について、図3Aを用いて説明を行う。図3Aは、酸化物半導体、代表的にはIGZO(Inと、Gaと、Znと、を含む金属酸化物)の結晶構造の分類を説明する図である。
 図3Aに示すように、酸化物半導体は、大きく分けて「Amorphous(無定形)」と、「Crystalline(結晶性)」と、「Crystal(結晶)」と、に分類される。また、「Amorphous」の中には、completely amorphousが含まれる。また、「Crystalline」の中には、CAAC(c−axis−aligned crystalline)、nc(nanocrystalline)、及びCAC(cloud−aligned composite)が含まれる(excluding single crystal and poly crystal)。なお、「Crystalline」の分類には、single crystal、poly crystal、及びcompletely amorphousは除かれる。また、「Crystal」の中には、single crystal、及びpoly crystalが含まれる。
 なお、図3Aに示す太枠内の構造は、「Amorphous(無定形)」と、「Crystal(結晶)」との間の中間状態であり、新しい境界領域(New crystalline phase)に属する構造である。すなわち、当該構造は、エネルギー的に不安定な「Amorphous(無定形)」や、「Crystal(結晶)」とは全く異なる構造と言い換えることができる。
 なお、膜または基板の結晶構造は、X線回折(XRD:X−Ray Diffraction)スペクトルを用いて評価することができる。ここで、「Crystalline」に分類されるCAAC−IGZO膜のGIXD(Grazing−Incidence XRD)測定で得られるXRDスペクトルを図3Bに示す。なお、GIXD法は、薄膜法またはSeemann−Bohlin法ともいう。以降、図3Bに示すGIXD測定で得られるXRDスペクトルを、単にXRDスペクトルと記す。なお、図3Bに示すCAAC−IGZO膜の組成は、In:Ga:Zn=4:2:3[原子数比]近傍である。また、図3Bに示すCAAC−IGZO膜の厚さは、500nmである。
 図3Bに示すように、CAAC−IGZO膜のXRDスペクトルでは、明確な結晶性を示すピークが検出される。具体的には、CAAC−IGZO膜のXRDスペクトルでは、2θ=31°近傍に、c軸配向を示すピークが検出される。なお、図3Bに示すように、2θ=31°近傍のピークは、ピーク強度が検出された角度を軸に左右非対称である。
 また、膜または基板の結晶構造は、極微電子線回折法(NBED:Nano Beam Electron Diffraction)によって観察される回折パターン(極微電子線回折パターンともいう。)にて評価することができる。CAAC−IGZO膜の回折パターンを、図3Cに示す。図3Cは、電子線を基板に対して平行に入射するNBEDによって観察される回折パターンである。なお、図3Cに示すCAAC−IGZO膜の組成は、In:Ga:Zn=4:2:3[原子数比]近傍である。また、極微電子線回折法では、プローブ径を1nmとして電子線回折が行われる。
 図3Cに示すように、CAAC−IGZO膜の回折パターンでは、c軸配向を示す複数のスポットが観察される。
<<酸化物半導体の構造>>
 なお、酸化物半導体は、結晶構造に着目した場合、図3Aとは異なる分類となる場合がある。例えば、酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、上述のCAAC−OS、及びnc−OSがある。また、非単結晶酸化物半導体には、多結晶酸化物半導体、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、非晶質酸化物半導体、などが含まれる。
 ここで、上述のCAAC−OS、nc−OS、及びa−like OSの詳細について、説明を行う。
[CAAC−OS]
 CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、またはCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。
 なお、上記複数の結晶領域のそれぞれは、1つまたは複数の微小な結晶(最大径が10nm未満である結晶)で構成される。結晶領域が1つの微小な結晶で構成されている場合、当該結晶領域の最大径は10nm未満となる。また、結晶領域が多数の微小な結晶で構成されている場合、当該結晶領域の大きさは、数十nm程度となる場合がある。
 また、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、スズ、チタンなどから選ばれた一種、または複数種)において、CAAC−OSは、インジウム(In)、及び酸素を有する層(以下、In層)と、元素M、亜鉛(Zn)、及び酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能である。よって、(M,Zn)層にはインジウムが含まれる場合がある。また、In層には元素Mが含まれる場合がある。なお、In層にはZnが含まれる場合もある。当該層状構造は、例えば、高分解能TEM像において、格子像として観察される。
 CAAC−OS膜に対し、例えば、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、c軸配向を示すピークが2θ=31°またはその近傍に検出される。なお、c軸配向を示すピークの位置(2θの値)は、CAAC−OSを構成する金属元素の種類、組成などにより変動する場合がある。
 また、例えば、CAAC−OS膜の電子線回折パターンにおいて、複数の輝点(スポット)が観測される。なお、あるスポットと別のスポットとは、試料を透過した入射電子線のスポット(ダイレクトスポットともいう。)を対称中心として、点対称の位置に観測される。
 上記特定の方向から結晶領域を観察した場合、当該結晶領域内の格子配列は、六方格子を基本とするが、単位格子は正六角形とは限らず、非正六角形である場合がある。また、上記歪みにおいて、五角形、七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリー)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属原子が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。
 なお、明確な結晶粒界が確認される結晶構造は、いわゆる多結晶(polycrystal)と呼ばれる。結晶粒界は、再結合中心となり、キャリアが捕獲され、トランジスタのオン電流の低下、電界効果移動度の低下などを引き起こす可能性が高い。よって、明確な結晶粒界が確認されないCAAC−OSは、トランジスタの半導体層に好適な結晶構造を有する結晶性の酸化物の一つである。なお、CAAC−OSを構成するには、Znを有する構成が好ましい。例えば、In−Zn酸化物、及びIn−Ga−Zn酸化物は、In酸化物よりも結晶粒界の発生を抑制できるため好適である。
 CAAC−OSは、結晶性が高く、明確な結晶粒界が確認されない酸化物半導体である。よって、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC−OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。したがって、OSトランジスタにCAAC−OSを用いると、製造工程の自由度を広げることが可能となる。
[nc−OS]
 nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。別言すると、nc−OSは、微小な結晶を有する。なお、当該微小な結晶の大きさは、例えば、1nm以上10nm以下、特に1nm以上3nm以下であることから、当該微小な結晶をナノ結晶ともいう。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。例えば、nc−OS膜に対し、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、結晶性を示すピークが検出されない。また、nc−OS膜に対し、ナノ結晶よりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子線回折(制限視野電子線回折ともいう。)を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OS膜に対し、ナノ結晶の大きさと近いかナノ結晶より小さいプローブ径(例えば1nm以上30nm以下)の電子線を用いる電子線回折(ナノビーム電子線回折ともいう。)を行うと、ダイレクトスポットを中心とするリング状の領域内に複数のスポットが観測される電子線回折パターンが取得される場合がある。
[a−like OS]
 a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆又は低密度領域を有する。即ち、a−like OSは、nc−OS及びCAAC−OSと比べて、結晶性が低い。また、a−like OSは、nc−OS及びCAAC−OSと比べて、膜中の水素濃度が高い。
<<酸化物半導体の構成>>
 次に、上述のCAC−OSの詳細について、説明を行う。なお、CAC−OSは材料構成に関する。
[CAC−OS]
 CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つまたは複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
 さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(クラウド状ともいう。)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
 ここで、In−Ga−Zn酸化物におけるCAC−OSを構成する金属元素に対するIn、Ga、およびZnの原子数比のそれぞれを、[In]、[Ga]、および[Zn]と表記する。例えば、In−Ga−Zn酸化物におけるCAC−OSにおいて、第1の領域は、[In]が、CAC−OS膜の組成における[In]よりも大きい領域である。また、第2の領域は、[Ga]が、CAC−OS膜の組成における[Ga]よりも大きい領域である。または、例えば、第1の領域は、[In]が、第2の領域における[In]よりも大きく、且つ、[Ga]が、第2の領域における[Ga]よりも小さい領域である。また、第2の領域は、[Ga]が、第1の領域における[Ga]よりも大きく、且つ、[In]が、第1の領域における[In]よりも小さい領域である。
 具体的には、上記第1の領域は、インジウム酸化物、インジウム亜鉛酸化物などが主成分である領域である。また、上記第2の領域は、ガリウム酸化物、ガリウム亜鉛酸化物などが主成分である領域である。つまり、上記第1の領域を、Inを主成分とする領域と言い換えることができる。また、上記第2の領域を、Gaを主成分とする領域と言い換えることができる。
 なお、上記第1の領域と、上記第2の領域とは、明確な境界が観察できない場合がある。
 例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
 CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、および良好なスイッチング動作を実現することができる。
 酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
<酸化物半導体を有するトランジスタ>
 続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
 上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
 トランジスタのチャネル形成領域には、キャリア濃度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体のチャネル形成領域のキャリア濃度は1×1017cm−3以下、好ましくは1×1015cm−3以下、さらに好ましくは1×1013cm−3以下、より好ましくは1×1011cm−3以下、さらに好ましくは1×1010cm−3未満であり、1×10−9cm−3以上である。なお、酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性又は実質的に高純度真性と言う。なお、キャリア濃度の低い酸化物半導体を、高純度真性又は実質的に高純度真性な酸化物半導体と呼ぶ場合がある。
 また、高純度真性又は実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
 また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
 従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
<不純物>
 ここで、酸化物半導体中における各不純物の影響について説明する。
 酸化物半導体において、第14族元素の一つであるシリコンや炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体のチャネル形成領域におけるシリコンや炭素の濃度と、酸化物半導体のチャネル形成領域との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
 また、酸化物半導体にアルカリ金属又はアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属又はアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、SIMSにより得られる酸化物半導体のチャネル形成領域中のアルカリ金属又はアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
 また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。または、酸化物半導体において、窒素が含まれると、トラップ準位が形成される場合がある。この結果、トランジスタの電気特性が不安定となる場合がある。このため、SIMSにより得られる酸化物半導体のチャネル形成領域中の窒素濃度を、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下にする。
 また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体のチャネル形成領域における中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体のチャネル形成領域において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは5×1019atoms/cm未満、より好ましくは1×1019atoms/cm未満、さらに好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満にする。
 不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
<<その他の半導体材料>>
 酸化物230に用いることができる半導体材料は、上述の金属酸化物に限られない。酸化物230として、バンドギャップを有する半導体材料(ゼロギャップ半導体ではない半導体材料)を用いてもよい。例えば、シリコンなどの単体元素の半導体、ヒ化ガリウムなどの化合物半導体、半導体として機能する層状物質(原子層物質、2次元材料などともいう。)などを半導体材料に用いることが好ましい。特に、半導体として機能する層状物質を半導体材料に用いると好適である。
 ここで、本明細書等において、層状物質とは、層状の結晶構造を有する材料群の総称である。層状の結晶構造は、共有結合やイオン結合によって形成される層が、ファンデルワールス力のような、共有結合やイオン結合よりも弱い結合を介して積層している構造である。層状物質は、単位層内における電気伝導性が高く、つまり、2次元電気伝導性が高い。半導体として機能し、かつ、2次元電気伝導性の高い材料をチャネル形成領域に用いることで、オン電流の大きいトランジスタを提供することができる。
 層状物質として、グラフェン、シリセン、カルコゲン化物などがある。カルコゲン化物は、カルコゲンを含む化合物である。また、カルコゲンは、第16族に属する元素の総称であり、酸素、硫黄、セレン、テルル、ポロニウム、リバモリウムが含まれる。また、カルコゲン化物として、遷移金属カルコゲナイド、13族カルコゲナイドなどが挙げられる。
 酸化物230として、例えば、半導体として機能する遷移金属カルコゲナイドを用いることが好ましい。酸化物230として適用可能な遷移金属カルコゲナイドとして、具体的には、硫化モリブデン(代表的にはMoS)、セレン化モリブデン(代表的にはMoSe)、モリブデンテルル(代表的にはMoTe)、硫化タングステン(代表的にはWS)、セレン化タングステン(代表的にはWSe)、タングステンテルル(代表的にはWTe)、硫化ハフニウム(代表的にはHfS)、セレン化ハフニウム(代表的にはHfSe)、硫化ジルコニウム(代表的にはZrS)、セレン化ジルコニウム(代表的にはZrSe)などが挙げられる。
<半導体装置の作製方法>
 次に、図1A乃至図1Dに示す、本発明の一態様である半導体装置の作製方法を、図4A乃至図16A、図4B乃至図16B、図4C乃至図16C、および図4D乃至図16Dを用いて説明する。
 図4A乃至図16Aは上面図を示す。また、図4B乃至図16Bは、図4A乃至図16Aに示すA1−A2の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、図4C乃至図16Cは、図4A乃至図16AにA3−A4の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。また、図4D乃至図16Dは、図4A乃至図16AにA5−A6の一点鎖線で示す部位の断面図である。なお、図4A乃至図16Aの上面図では、図の明瞭化のために一部の要素を省いている。
 以下において、絶縁体を形成するための絶縁性材料、導電体を形成するための導電性材料、または半導体を形成するための半導体材料は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを適宜用いて成膜することができる。
 なお、スパッタリング法にはスパッタリング用電源に高周波電源を用いるRFスパッタリング法、直流電源を用いるDCスパッタリング法、さらにパルス的に電極に印加する電圧を変化させるパルスDCスパッタリング法がある。RFスパッタリング法は主に絶縁膜を成膜する場合に用いられ、DCスパッタリング法は主に金属導電膜を成膜する場合に用いられる。また、パルスDCスパッタリング法は、主に、酸化物、窒化物、炭化物などの化合物をリアクティブスパッタリング法で成膜する際に用いられる。
 なお、CVD法は、プラズマを利用するプラズマCVD(PECVD:Plasma Enhanced CVD)法、熱を利用する熱CVD(TCVD:Thermal CVD)法、光を利用する光CVD(Photo CVD)法などに分類できる。さらに用いる原料ガスによって金属CVD(MCVD:Metal CVD)法、有機金属CVD(MOCVD:Metal Organic CVD)法に分けることができる。
 プラズマCVD法は、比較的低温で高品質の膜が得られる。また、熱CVD法は、プラズマを用いないため、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。例えば、半導体装置に含まれる配線、電極、素子(トランジスタ、容量素子など)などは、プラズマから電荷を受け取ることでチャージアップする場合がある。このとき、蓄積した電荷によって、半導体装置に含まれる配線、電極、素子などが破壊される場合がある。一方、プラズマを用いない熱CVD法の場合、こういったプラズマダメージが生じないため、半導体装置の歩留まりを高くすることができる。また、熱CVD法では、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。
 また、ALD法としては、プリカーサ及びリアクタントの反応を熱エネルギーのみで行う熱ALD(Thermal ALD)法、プラズマ励起されたリアクタントを用いるPEALD(Plasma Enhanced ALD)法などを用いることができる。
 また、ALD法は、原子の性質である自己制御性を利用し、一層ずつ原子を堆積することができるので、極薄の成膜が可能、アスペクト比の高い構造への成膜が可能、ピンホールなどの欠陥の少ない成膜が可能、被覆性に優れた成膜が可能、低温での成膜が可能、などの効果がある。PEALD法では、プラズマを利用することで、より低温での成膜が可能となり好ましい場合がある。なお、ALD法で用いるプリカーサには炭素などの不純物を含むものがある。このため、ALD法により設けられた膜は、他の成膜法により設けられた膜と比較して、炭素などの不純物を多く含む場合がある。なお、不純物の定量は、X線光電子分光法(XPS:X−ray Photoelectron Spectroscopy)を用いて行うことができる。
 CVD法およびALD法は、ターゲットなどから放出される粒子が堆積する成膜方法とは異なり、被処理物の表面における反応により膜が形成される成膜方法である。したがって、被処理物の形状の影響を受けにくく、良好な段差被覆性を有する成膜方法である。特に、ALD法は、優れた段差被覆性と、優れた厚さの均一性を有するため、アスペクト比の高い開口部の表面を被覆する場合などに好適である。ただし、ALD法は、比較的成膜速度が遅いため、成膜速度の速いCVD法などの他の成膜方法と組み合わせて用いることが好ましい場合もある。
 CVD法およびALD法は、原料ガスの流量比によって、得られる膜の組成を制御することができる。例えば、CVD法およびALD法では、原料ガスの流量比によって、任意の組成の膜を成膜することができる。また、例えば、CVD法およびALD法では、成膜しながら原料ガスの流量比を変化させることによって、組成が連続的に変化した膜を成膜することができる。原料ガスの流量比を変化させながら成膜する場合、複数の成膜室を用いて成膜する場合と比べて、搬送や圧力調整に掛かる時間を要さない分、成膜に掛かる時間を短くすることができる。したがって、半導体装置の生産性を高めることができる場合がある。
 まず、基板(図示しない。)を準備し、当該基板上に絶縁体212を成膜する(図4A乃至図4D参照。)。絶縁体212の成膜は、スパッタリング法を用いて行うことが好ましい。成膜ガスに水素を用いなくてもよいスパッタリング法を用いることで、絶縁体212中の水素濃度を低減することができる。ただし、絶縁体212の成膜は、スパッタリング法に限られるものではなく、CVD法、MBE法、PLD法、ALD法などを適宜用いてもよい。
 本実施の形態では、絶縁体212として、窒素ガスを含む雰囲気でシリコンターゲットを用いて、パルスDCスパッタリング法で窒化シリコンを成膜する。パルスDCスパッタリング法を用いることで、ターゲット表面のアーキングによるパーティクルの発生を抑制することができるので、膜厚分布をより均一にすることができる。また、パルス電圧を用いることで、高周波電圧より、放電の立ち上がり、立ち下がりを急峻にすることができる。これにより、電極に、電力をより効率的に供給しスパッタレート、および膜質を向上することができる。
 窒化シリコンのように水、水素などの不純物が透過しにくい絶縁体を用いることにより、絶縁体212より下層に含まれる水、水素などの不純物の拡散を抑制することができる。また、絶縁体212として、窒化シリコンなどの銅が透過しにくい絶縁体を用いることにより、絶縁体212より下層(図示しない。)の導電体に銅など拡散しやすい金属を用いても、当該金属が絶縁体212を介して上方に拡散するのを抑制することができる。
 次に、絶縁体212上に絶縁体214を成膜する(図4A乃至図4D参照。)。絶縁体214の成膜は、スパッタリング法を用いて行うことが好ましい。成膜ガスに水素を用いなくてもよいスパッタリング法を用いることで、絶縁体214中の水素濃度を低減することができる。ただし、絶縁体214の成膜は、スパッタリング法に限られるものではなく、CVD法、MBE法、PLD法、ALD法などを適宜用いてもよい。
 本実施の形態では、絶縁体214として、酸素ガスを含む雰囲気でアルミニウムターゲットを用いて、パルスDCスパッタリング法で酸化アルミニウムを成膜する。パルスDCスパッタリング法を用いることで、膜厚分布をより均一にし、スパッタレート、および膜質を向上することができる。
 絶縁体214として、水素を捕獲および水素を固着する機能が高い、アモルファス構造を有する金属酸化物、例えば酸化アルミニウムを用いること好ましい。これにより、絶縁体216などに含まれる水素を捕獲または固着し、当該水素が酸化物230に拡散するのを防ぐことができる。特に、絶縁体214として、アモルファス構造を有する酸化アルミニウム、またはアモルファス構造の酸化アルミニウムを用いることで、より効果的に水素を捕獲または固着できる場合があるため好ましい。これにより、良好な特性を有し、信頼性の高いトランジスタ200、および半導体装置を作製することができる。
 次に、絶縁体214上に絶縁体216を成膜する。絶縁体216の成膜は、スパッタリング法を用いて行うことが好ましい。成膜ガスに水素を用いなくてもよいスパッタリング法を用いることで、絶縁体216中の水素濃度を低減することができる。ただし、絶縁体216の成膜は、スパッタリング法に限られるものではなく、CVD法、MBE法、PLD法、ALD法などを適宜用いてもよい。
 本実施の形態では、絶縁体216として、酸素ガスを含む雰囲気でシリコンターゲットを用いて、パルスDCスパッタリング法で酸化シリコンを成膜する。パルスDCスパッタリング法を用いることで、膜厚分布をより均一にし、スパッタレート、および膜質を向上することができる。
 絶縁体212、絶縁体214、および絶縁体216は、大気に暴露することなく連続して成膜することが好ましい。例えば、マルチチャンバー方式の成膜装置を用いればよい。これにより、絶縁体212、絶縁体214、および絶縁体216を、膜中の水素を低減して成膜し、さらに、各成膜工程の合間に膜中に水素が混入するのを低減することができる。
 次に、絶縁体216に絶縁体214に達する開口を形成する。開口とは、例えば、溝やスリットなども含まれる。また、開口が形成された領域を指して開口部とする場合がある。開口の形成はウェットエッチングを用いてもよいが、ドライエッチングを用いるほうが微細加工には好ましい。また、絶縁体214は、絶縁体216をエッチングして溝を形成する際のエッチングストッパ膜として機能する絶縁体を選択することが好ましい。例えば、溝を形成する絶縁体216に酸化シリコンまたは酸化窒化シリコンを用いた場合は、絶縁体214は窒化シリコン、酸化アルミニウム、酸化ハフニウムを用いるとよい。
 ドライエッチング装置としては、平行平板型電極を有する容量結合型プラズマ(CCP:Capacitively Coupled Plasma)エッチング装置を用いることができる。平行平板型電極を有する容量結合型プラズマエッチング装置は、平行平板型電極の一方の電極に高周波電圧を印加する構成でもよい。または平行平板型電極の一方の電極に複数の異なった高周波電圧を印加する構成でもよい。または平行平板型電極それぞれに同じ周波数の高周波電圧を印加する構成でもよい。または平行平板型電極それぞれに周波数の異なる高周波電圧を印加する構成でもよい。または高密度プラズマ源を有するドライエッチング装置を用いることができる。高密度プラズマ源を有するドライエッチング装置は、例えば、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)エッチング装置などを用いることができる。
 開口の形成後に、導電膜205Aを成膜する(図4A乃至図4D参照。)。導電膜205Aは、酸素の透過を抑制する機能を有する導電体を含むことが望ましい。例えば、窒化タンタル、窒化タングステン、窒化チタンなどを用いることができる。または、酸素の透過を抑制する機能を有する導電体と、タンタル、タングステン、チタン、モリブデン、アルミニウム、銅、モリブデンタングステン合金との積層膜とすることができる。導電膜205Aの成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。
 本実施の形態では、導電膜205Aとして窒化チタンを成膜する。このような金属窒化物を導電体205bの下層に用いることにより、絶縁体216などによって、導電体205bが酸化されるのを抑制することができる。また、導電体205bとして銅などの拡散しやすい金属を用いても、当該金属が導電体205aから外に拡散するのを防ぐことができる。
 次に、導電膜205Bを成膜する(図4A乃至図4D参照。)。導電膜205Bとしては、タンタル、タングステン、チタン、モリブデン、アルミニウム、銅、モリブデンタングステン合金などを用いることができる。該導電膜の成膜は、メッキ法、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。本実施の形態では、導電膜205Bとして、タングステンを成膜する。
 次に、CMP処理を行うことで、導電膜205Aおよび導電膜205Bの一部を除去し、絶縁体216を露出する(図5A乃至図5D参照。)。その結果、開口部のみに、導電体205aおよび導電体205bが残存する。なお、当該CMP処理により、絶縁体216の一部が除去される場合がある。
 次に、エッチングを行って、導電体205bの上部を除去する(図6A乃至図6D参照。)。これにより、導電体205bの上面は、導電体205aの上面および絶縁体216の上面より低くなる。導電体205bのエッチングには、ドライエッチングまたはウェットエッチングを用いればよいが、ドライエッチングを用いるほうが微細加工には好ましい。
 次に、絶縁体216、導電体205a、および導電体205bの上に、導電膜205Cを成膜する(図7A乃至図7D参照。)。導電膜205Cは、導電膜205Aと同様に、酸素の透過を抑制する機能を有する導電体を含むことが望ましい。
 本実施の形態では、導電膜205Cとして窒化チタンを成膜する。このような金属窒化物を導電体205bの上層に用いることにより、絶縁体222などによって、導電体205bが酸化されるのを抑制することができる。また、導電体205bとして銅などの拡散しやすい金属を用いても、当該金属が導電体205cから外に拡散するのを防ぐことができる。
 次に、CMP処理を行うことで、導電膜205Cの一部を除去し、絶縁体216を露出する(図8A乃至図8D参照。)。その結果、開口部のみに、導電体205a、導電体205b、および導電体205cが残存する。これにより、上面が平坦な、導電体205を形成することができる。さらに、導電体205bが、導電体205aおよび導電体205cに包みこまれる構成になる。よって、導電体205bから水素などの不純物が導電体205aおよび導電体205cの外に拡散するのを防ぎ、かつ導電体205aおよび導電体205cの外から酸素が混入し、導電体205bを酸化するのを防ぐことができる。なお、当該CMP処理により、絶縁体216の一部が除去される場合がある。
 次に、絶縁体216、および導電体205上に絶縁体222を成膜する(図9A乃至図9D参照。)。絶縁体222として、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体は、酸素、水素、および水に対するバリア性を有する。絶縁体222が、水素および水に対するバリア性を有することで、トランジスタ200の周辺に設けられた構造体に含まれる水素、および水が、絶縁体222を通じてトランジスタ200の内側へ拡散することが抑制され、酸化物230中の酸素欠損の生成を抑制することができる。
 絶縁体222の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。本実施の形態では、絶縁体222として、スパッタリング法を用いて、酸化ハフニウムを成膜する。成膜ガスに水素を用いなくてもよいスパッタリング法を用いることで、絶縁体222中の水素濃度を低減することができる。
 続いて、加熱処理を行うと好ましい。加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以下、さらに好ましくは320℃以上450℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、窒素ガスと酸素ガスの混合雰囲気で加熱処理をする場合、酸素ガスを20%程度にすればよい。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理を行ってもよい。
 また、上記加熱処理で用いるガスは、高純度化されていることが好ましい。例えば、上記加熱処理で用いるガスに含まれる水分量が1ppb以下、好ましくは0.1ppb以下、より好ましくは0.05ppb以下にすればよい。高純度化されたガスを用いて加熱処理を行うことで、絶縁体222などに水分等が取り込まれることを可能な限り防ぐことができる。
 本実施の形態では、加熱処理として、絶縁体222の成膜後に、窒素ガスと酸素ガスの流量比を4slm:1slmとして、400℃の温度で1時間の処理を行う。当該加熱処理によって、絶縁体222に含まれる水、水素などの不純物を除去することなどができる。また、絶縁体222として、ハフニウムを含む酸化物を用いる場合、当該加熱処理によって、絶縁体222の一部が結晶化する場合がある。また、加熱処理は、絶縁体224の成膜後などのタイミングで行うこともできる。
 次に、絶縁体222上に絶縁体224を成膜する(図9A乃至図9D参照)。絶縁体224の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。本実施の形態では、絶縁体224として、スパッタリング法を用いて、酸化シリコンを成膜する。成膜ガスに水素を用いなくてもよいスパッタリング法を用いることで、絶縁体224中の水素濃度を低減することができる。絶縁体224は、後の工程で酸化物230aと接するので、このように水素濃度が低減されていることが好適である。
 ここで、絶縁体224に過剰酸素領域を形成するために、減圧状態で酸素を含むプラズマ処理を行ってもよい。酸素を含むプラズマ処理は、例えばマイクロ波を用いた高密度プラズマを発生させる電源を有する装置を用いることが好ましい。または、基板側にRF(Radio Frequency)を印加する電源を有してもよい。高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができ、基板側にRFを印加することで、高密度プラズマによって生成された酸素ラジカルを効率よく絶縁体224内に導くことができる。または、この装置を用いて不活性ガスを含むプラズマ処理を行った後に、脱離した酸素を補うために酸素を含むプラズマ処理を行ってもよい。なお、当該プラズマ処理の条件を適宜選択することにより、絶縁体224に含まれる水、水素などの不純物を除去することができる。その場合、加熱処理は行わなくてもよい。
 ここで、絶縁体224上に、例えば、スパッタリング法によって、酸化アルミニウムを成膜した後、絶縁体224に達するまで、CMP処理を行ってもよい。当該CMP処理を行うことで絶縁体224表面の平坦化および平滑化を行うことができる。当該酸化アルミニウムを絶縁体224上に配置してCMP処理を行うことで、CMP処理の終点検出が容易となる。また、CMP処理によって、絶縁体224の一部が研磨されて、絶縁体224の膜厚が薄くなることがあるが、絶縁体224の成膜時に膜厚を調整すればよい。絶縁体224表面の平坦化および平滑化を行うことで、後に成膜する酸化物の被覆率の悪化を防止し、半導体装置の歩留りの低下を防ぐことができる場合がある。また、絶縁体224上に、スパッタリング法によって、酸化アルミニウムを成膜することにより、絶縁体224に酸素を添加することができるので好ましい。
 次に、絶縁体224上に、酸化膜230A、酸化膜230Bを順に成膜する(図9A乃至図9D参照。)。なお、酸化膜230Aおよび酸化膜230Bは、大気環境にさらさずに連続して成膜することが好ましい。大気開放せずに成膜することで、酸化膜230A、および酸化膜230B上に大気環境からの不純物または水分が付着することを防ぐことができ、酸化膜230Aと酸化膜230Bとの界面近傍を清浄に保つことができる。
 酸化膜230A、および酸化膜230Bの成膜はスパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。
 例えば、酸化膜230A、および酸化膜230Bをスパッタリング法によって成膜する場合は、スパッタリングガスとして酸素、または、酸素と希ガスの混合ガスを用いる。スパッタリングガスに含まれる酸素の割合を高めることで、成膜される酸化膜中の過剰酸素を増やすことができる。また、上記の酸化膜をスパッタリング法によって成膜する場合は、上記のIn−M−Zn酸化物ターゲットなどを用いることができる。
 特に、酸化膜230Aの成膜時に、スパッタリングガスに含まれる酸素の一部が絶縁体224に供給される場合がある。したがって、当該スパッタリングガスに含まれる酸素の割合は70%以上、好ましくは80%以上、より好ましくは100%とすればよい。
 また、酸化膜230Bをスパッタリング法で形成する場合、スパッタリングガスに含まれる酸素の割合を、30%を超えて100%以下、好ましくは70%以上100%以下として成膜すると、酸素過剰型の酸化物半導体が形成される。酸素過剰型の酸化物半導体をチャネル形成領域に用いたトランジスタは、比較的高い信頼性が得られる。ただし、本発明の一態様はこれに限定されない。酸化膜230Bをスパッタリング法で形成する場合、スパッタリングガスに含まれる酸素の割合を1%以上30%以下、好ましくは5%以上20%以下として成膜すると、酸素欠乏型の酸化物半導体が形成される。酸素欠乏型の酸化物半導体をチャネル形成領域に用いたトランジスタは、比較的高い電界効果移動度が得られる。また、基板を加熱しながら成膜を行うことによって、当該酸化膜の結晶性を向上させることができる。
 本実施の形態では、酸化膜230Aとして、スパッタリング法によって、In:Ga:Zn=1:3:4[原子数比]の酸化物ターゲットを用いて成膜する。また、酸化膜230Bとして、スパッタリング法によって、In:Ga:Zn=4:2:4:1[原子数比]の酸化物ターゲットを用いて成膜する。なお、各酸化膜は、成膜条件、および原子数比を適宜選択することで、酸化物230a、および酸化物230bに求める特性に合わせて形成するとよい。
 次に、酸化膜230B上に酸化膜243Aを成膜する(図9A乃至図9D参照)。酸化膜243Aの成膜はスパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。酸化膜243Aは、Inに対するGaの原子数比が、酸化膜230BのInに対するGaの原子数比より大きいことが好ましい。本実施の形態では、酸化膜243Aとして、スパッタリング法によって、In:Ga:Zn=1:3:4[原子数比]の酸化物ターゲットを用いて成膜する。
 なお、絶縁体222、絶縁体224、酸化膜230A、酸化膜230B、および酸化膜243Aを、大気に暴露することなく、スパッタリング法で成膜することが好ましい。例えば、マルチチャンバー方式の成膜装置を用いればよい。これにより、絶縁体222、絶縁体224、酸化膜230A、酸化膜230B、および酸化膜243Aを、膜中の水素を低減して成膜し、さらに、各成膜工程の合間に膜中に水素が混入するのを低減することができる。
 次に、加熱処理を行うことが好ましい。加熱処理は、酸化膜230A、酸化膜230B、および酸化膜243Aが多結晶化しない温度範囲で行えばよく、250℃以上650℃以下、好ましくは400℃以上600℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、窒素ガスと酸素ガスの混合雰囲気で加熱処理をする場合、酸素ガスを20%程度にすればよい。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理を行ってもよい。
 また、上記加熱処理で用いるガスは、高純度化されていることが好ましい。例えば、上記加熱処理で用いるガスに含まれる水分量が1ppb以下、好ましくは0.1ppb以下、より好ましくは0.05ppb以下にすればよい。高純度化されたガスを用いて加熱処理を行うことで、酸化膜230A、酸化膜230B、および酸化膜243Aなどに水分等が取り込まれることを可能な限り防ぐことができる。
 本実施の形態では、加熱処理として、窒素雰囲気にて550℃の温度で1時間の処理を行った後に、連続して酸素雰囲気にて550℃の温度で1時間の処理を行う。当該加熱処理によって、酸化膜230A、酸化膜230B、および酸化膜243A中の水、水素などの不純物を除去することなどができる。さらに、当該加熱処理によって、酸化膜230Bの結晶性を向上させ、より密度の高い、緻密な構造にすることができる。これにより、酸化膜230B中における、酸素または不純物の拡散を低減することができる。
 次に、酸化膜243A上に導電膜242Aを成膜する(図9A乃至図9D参照。)。導電膜242Aの成膜はスパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。例えば、導電膜242Aとして、スパッタリング法を用いて窒化タンタルを成膜すればよい。なお、導電膜242Aの成膜前に、加熱処理を行ってもよい。当該加熱処理は、減圧下で行い、大気に暴露することなく、連続して導電膜242Aを成膜してもよい。このような処理を行うことによって、酸化膜243Aの表面などに吸着している水分および水素を除去し、さらに酸化膜230A、酸化膜230B、および酸化膜243A中の水分濃度および水素濃度を低減させることができる。加熱処理の温度は、100℃以上400℃以下が好ましい。本実施の形態では、加熱処理の温度を200℃とする。
 次に、導電膜242A上に絶縁膜271Aを成膜する(図9A乃至図9D参照。)。絶縁膜271Aの成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。絶縁膜271Aは、酸素の透過を抑制する機能を有する絶縁膜を用いることが好ましい。例えば、絶縁膜271Aとして、スパッタリング法によって、酸化アルミニウム、または窒化シリコンを成膜すればよい。
 次に、絶縁膜271A上に絶縁膜273Aを成膜する(図9A乃至図9D参照。)。絶縁膜273Aの成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。例えば、絶縁膜273Aとして、スパッタリング法によって、窒化シリコン、または酸化シリコンを成膜すればよい。
 なお、導電膜242A、絶縁膜271A、および絶縁膜273Aを、大気に暴露することなく、スパッタリング法で成膜することが好ましい。例えば、マルチチャンバー方式の成膜装置を用いればよい。これにより、導電膜242A、絶縁膜271A、および絶縁膜273Aを、膜中の水素を低減して成膜し、さらに、各成膜工程の合間に膜中に水素が混入するのを低減することができる。また、絶縁膜273A上にハードマスクを設ける場合、当該ハードマスクとなる膜も大気に暴露することなく連続して成膜すればよい。
 次に、リソグラフィー法を用いて、酸化膜230A、酸化膜230B、酸化膜243A、導電膜242A、絶縁膜271A、および絶縁膜273Aを島状に加工して、酸化物230a、酸化物230b、酸化物層243B、導電層242B、絶縁層271B、および絶縁層273Bを形成する(図10A乃至図10D参照。)。また、当該加工はドライエッチング法やウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。また、酸化膜230A、酸化膜230B、酸化膜243A、導電膜242A、絶縁膜271A、および絶縁層271Bの加工は、それぞれ異なる条件で加工してもよい。なお、当該工程において、絶縁体224の酸化物230aと重ならない領域の膜厚が薄くなることがある。また、当該工程において、絶縁体224を、酸化物230aと重畳して、島状に加工する構成にしてもよい。
 なお、リソグラフィー法では、まず、マスクを介してレジストを露光する。次に、露光された領域を、現像液を用いて除去または残存させてレジストマスクを形成する。次に、当該レジストマスクを介してエッチング処理することで導電体、半導体、または絶縁体などを所望の形状に加工することができる。例えば、KrFエキシマレーザ光、ArFエキシマレーザ光、EUV(Extreme Ultraviolet)光などを用いて、レジストを露光することでレジストマスクを形成すればよい。また、基板と投影レンズとの間に液体(例えば水)を満たして露光する、液浸技術を用いてもよい。また、前述した光に代えて、電子ビームやイオンビームを用いてもよい。なお、電子ビームやイオンビームを用いる場合には、マスクは不要となる。なお、レジストマスクは、アッシングなどのドライエッチング処理を行う、ウェットエッチング処理を行う、ドライエッチング処理後にウェットエッチング処理を行う、またはウェットエッチング処理後にドライエッチング処理を行うことで、除去することができる。
 さらに、レジストマスクの下に絶縁体や導電体からなるハードマスクを用いてもよい。ハードマスクを用いる場合、導電膜242A上にハードマスク材料となる絶縁膜や導電膜を形成し、その上にレジストマスクを形成し、ハードマスク材料をエッチングすることで所望の形状のハードマスクを形成することができる。導電膜242Aなどのエッチングは、レジストマスクを除去してから行っても良いし、レジストマスクを残したまま行っても良い。後者の場合、エッチング中にレジストマスクが消失することがある。導電膜242Aなどのエッチング後にハードマスクをエッチングにより除去しても良い。一方、ハードマスクの材料が後工程に影響が無い、あるいは後工程で利用できる場合、必ずしもハードマスクを除去する必要は無い。本実施の形態では、絶縁層271B、および絶縁層273Bをハードマスクとして用いている。一方、絶縁層271Bがハードマスクとして十分機能する場合、絶縁層273Bは、必ずしも設ける必要は無い。その場合、絶縁膜273Aの形成は不要となる。また、絶縁層273Bを設けず、絶縁層271Bをハードマスクとする場合、絶縁層271Bの膜厚を適宜調整し、導電膜242Aなどのエッチング中に絶縁層271Bの消失を抑制することが好ましい。
 ここで、絶縁層271B、および絶縁層273Bが導電層242Bのマスクとして機能するので、図10B乃至図10Dに示すように、導電層242Bは側面と上面の間に湾曲面を有しない。これにより、図1Bおよび図1Dに示す導電体242aおよび導電体242bは、側面と上面が交わる端部が角状になる。導電体242の側面と上面が交わる端部が角状になることで、当該端部が曲面を有する場合に比べて、導電体242の断面積が大きくなる。これにより、導電体242の抵抗が低減されるので、トランジスタ200のオン電流を大きくすることができる。
 また、酸化物230a、酸化物230b、酸化物層243B、導電層242B、絶縁層271B、および絶縁層273Bは、少なくとも一部が導電体205と重なるように形成する。また、酸化物230a、酸化物230b、酸化物層243B、導電層242B、絶縁層271B、および絶縁層273Bの側面は、絶縁体222の上面に対し、概略垂直であることが好ましい。酸化物230a、酸化物230b、酸化物層243B、導電層242B、絶縁層271B、および絶縁層273Bの側面が、絶縁体222の上面に対し、概略垂直であることで、複数のトランジスタ200を設ける際に、小面積化、高密度化が可能となる。または、酸化物230a、酸化物230b、酸化物層243B、導電層242B、絶縁層271B、および絶縁層273Bの側面と、絶縁体222の上面とのなす角が低い角度になる構成にしてもよい。その場合、酸化物230a、酸化物230b、酸化物層243B、導電層242B、絶縁層271B、および絶縁層273Bの側面と、絶縁体222の上面とのなす角は60度以上70度未満が好ましい。この様な形状とすることで、これより後の工程において、絶縁体275などの被覆性が向上し、鬆などの欠陥を低減することができる。
 また、上記エッチング工程で発生した副生成物が、酸化物230a、酸化物230b、酸化物層243B、導電層242B、絶縁層271B、および絶縁層273Bの側面に層状に形成される場合がある。この場合、当該層状の副生成物が、酸化物230a、酸化物230b、酸化物243、導電体242、絶縁体271、および絶縁体273と絶縁体272の間に形成されることになる。また、同様に層状の副生成物が、絶縁体224上に形成される場合がある。当該層状の副生成物が絶縁体224上に形成された状態で、絶縁体275を成膜しても、当該層状の副生成物によって、絶縁体224への酸素の添加が妨害されてしまう。よって、絶縁体224の上面に接して形成された当該層状の副生成物は、除去することが好ましい。
 次に、絶縁体224、酸化物230a、酸化物230b、酸化物層243B、導電層242B、絶縁層271B、および絶縁層273Bの上に、絶縁体272となる絶縁膜を成膜する。絶縁体272となる絶縁膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。本実施の形態では、絶縁体272となる絶縁膜として、スパッタリング法によって、窒化シリコンを成膜する。
 次に、絶縁体272となる絶縁膜を異方性エッチングすることで、絶縁層273B上の当該絶縁膜、および絶縁体224上の当該絶縁膜を除去する(図11A乃至図11D参照。)。また、図10に示す工程で層状の副生成物が残存していた場合、当該異方性エッチングで除去することができる。これにより、酸化物230aの側面、酸化物230bの側面、酸化物層243Bの側面、導電層242Bの側面、絶縁層271Bの側面、および絶縁層273Bの側面に接して、絶縁層272Aが形成される。
 このようにして、酸化物230a、酸化物230b、酸化物層243B、および導電層242Bを、酸素の拡散を抑制する機能を有する、絶縁層272A、および絶縁層271Bで覆うことができる。これにより、のちの工程で絶縁体275の成膜などで、酸化物230a、酸化物230b、酸化物層243B、および導電層242Bに、酸素が拡散するのを低減することができる。
 次に、絶縁体224、絶縁層272A、および絶縁層273B上に、絶縁体275を成膜する。(図11A乃至図11D参照。)。絶縁体275の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。絶縁体275は、酸素の透過を抑制する機能を有する絶縁膜を用いることが好ましい。例えば、絶縁体275として、スパッタリング法によって、酸化アルミニウムを成膜すればよい。
 絶縁体275は、スパッタリング法を用いて形成することが好ましい。スパッタリング法で絶縁体275を成膜することで、絶縁体224および絶縁層273Bに酸素を添加することができる。このとき、導電層242Bの上面に接して絶縁層271Bが設けられ、導電層242Bの側面に接して絶縁層272Aが設けられているので、導電層242Bの酸化を低減することができる。
 次に、絶縁体275上に、絶縁体280となる絶縁膜を成膜する。当該絶縁膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。例えば、当該絶縁膜として、スパッタリング法を用いて酸化シリコン膜を成膜すればよい。絶縁体280となる絶縁膜を、酸素を含む雰囲気で、スパッタリング法で成膜することで、過剰酸素を含む絶縁体280を形成することができる。また、成膜ガスに水素を用いなくてもよいスパッタリング法を用いることで、絶縁体280中の水素濃度を低減することができる。なお、当該絶縁膜の成膜前に、加熱処理を行ってもよい。加熱処理は、減圧下で行い、大気に暴露することなく、連続して当該絶縁膜を成膜してもよい。このような処理を行うことによって、絶縁体275の表面などに吸着している水分および水素を除去し、さらに酸化物230a、酸化物230b、酸化物層243B、および絶縁体224中の水分濃度および水素濃度を低減させることができる。当該加熱処理には、上述した加熱処理条件を用いることができる。
 次に、上記絶縁体280となる絶縁膜にCMP処理を行い、上面が平坦な絶縁体280を形成する(図11A乃至図11D参照。)。なお、絶縁体280上に、例えば、スパッタリング法によって窒化シリコンを成膜し、該窒化シリコンを絶縁体280に達するまで、CMP処理を行ってもよい。
 次に、絶縁体280の一部、絶縁体275の一部、絶縁層273Bの一部、絶縁層271Bの一部、絶縁層272Aの一部、導電層242Bの一部、酸化物層243Bの一部、酸化物230bの一部を加工して、酸化物230bに達する開口を形成する。当該開口は、導電体205と重なるように形成することが好ましい。当該開口の形成によって、絶縁体273a、絶縁体273b、絶縁体271a、絶縁体271b、絶縁体272a、絶縁体272b、導電体242a、導電体242b、酸化物243a、および酸化物243bを形成する(図12A乃至図12D参照。)。
 上記開口を形成する際に、酸化物230bの上部が除去される。酸化物230bの一部が除去されることで、酸化物230bに溝部が形成される。当該溝部の深さによっては、当該溝部を、上記開口の形成工程で形成してもよいし、上記開口の形成工程と異なる工程で形成してもよい。
 また、絶縁体280の一部、絶縁体275の一部、絶縁層273Bの一部、絶縁層271Bの一部、絶縁層272Aの一部、導電層242Bの一部、酸化物層243Bの一部、酸化物230bの一部の加工は、ドライエッチング法、またはウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。また、当該加工は、それぞれ異なる条件で加工してもよい。例えば、絶縁体280の一部をドライエッチング法で加工し、絶縁体275の一部、絶縁層273Bの一部、絶縁層271Bの一部、絶縁層272Aの一部、をウェットエッチング法で加工し、酸化物層243Bの一部、導電層242Bの一部、および酸化物230bの一部をドライエッチング法で加工してもよい。また、酸化物層243Bの一部および導電層242Bの一部の加工と、酸化物230bの一部の加工とは、異なる条件で行ってもよい。
 ここで、酸化物230a、酸化物230bなどの表面に付着または内部に拡散した不純物を除去することが好ましい。また、上記ドライエッチングで酸化物230b表面に形成される、損傷領域を除去することが好ましい。当該不純物としては、絶縁体280、絶縁体275、絶縁層273Bの一部、絶縁層271Bの一部、絶縁層272Aの一部、および導電層242Bに含まれる成分、上記開口を形成する際に用いられる装置に使われている部材に含まれる成分、エッチングに使用するガスまたは液体に含まれる成分などに起因したものが挙げられる。当該不純物としては、例えば、アルミニウム、シリコン、タンタル、フッ素、塩素などがある。
 特に、アルミニウム、またはシリコンなどの不純物は、酸化物230bのCAAC−OS化を阻害する。よって、アルミニウム、またはシリコンなどの、CAAC−OS化を阻害する不純物元素が、低減または除去されていることが好ましい。例えば、酸化物230b、およびその近傍における、アルミニウム原子の濃度が、5.0原子%以下とすればよく、2.0原子%以下が好ましく、1.5原子%以下がより好ましく、1.0原子%以下がさらに好ましく、0.3原子%未満がさらに好ましい。
 なお、アルミニウム、またはシリコンなどの不純物によりCAAC−OS化が阻害され、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)となった金属酸化物の領域を、非CAAC領域と呼ぶ場合がある。非CAAC領域では、結晶構造の緻密さが低下しているため、VHが多量に形成され、トランジスタがノーマリーオン化しやすくなる。よって、酸化物230bの非CAAC化領域は、低減または除去されていることが好ましい。
 これに対して、酸化物230bに層状のCAAC構造を有していることが好ましい。特に、酸化物230bのドレイン下端部までCAAC構造を有することが好ましい。ここで、トランジスタ200において、導電体242aまたは導電体242b、およびその近傍がドレインとして機能する。つまり、導電体242a(導電体242b)の下端部近傍の、酸化物230bが、CAAC構造を有することが好ましい。このように、ドレイン耐圧に顕著に影響するドレイン端部においても、酸化物230bの損傷領域が除去され、CAAC構造を有することで、トランジスタ200の電気特性の変動をさらに抑制することができる。また、トランジスタ200の信頼性を向上させることができる。
 上記の不純物などを除去するために、洗浄処理を行う。洗浄方法としては、洗浄液など用いたウェット洗浄、プラズマを用いたプラズマ処理、熱処理による洗浄などがあり、上記洗浄を適宜組み合わせて行ってもよい。なお、当該洗浄処理によって、上記溝部が深くなる場合がある。
 ウェット洗浄としては、アンモニア水、シュウ酸、リン酸、フッ化水素酸などを炭酸水または純水で希釈した水溶液、純水、炭酸水などを用いて洗浄処理を行ってもよい。または、これらの水溶液、純水、または炭酸水を用いた超音波洗浄を行ってもよい。または、これらの洗浄を適宜組み合わせて行ってもよい。
 なお、本明細書等では、市販のフッ化水素酸を純水で希釈した水溶液を希釈フッ化水素酸と呼び、市販のアンモニア水を純水で希釈した水溶液を希釈アンモニア水と呼ぶ場合がある。また、当該水溶液の濃度、温度などは、除去したい不純物、洗浄される半導体装置の構成などによって、適宜調整すればよい。希釈アンモニア水のアンモニア濃度は0.01%以上5%以下、好ましくは0.1%以上0.5%以下とすればよい。また、希釈フッ化水素酸のフッ化水素濃度は0.01ppm以上100ppm以下、好ましくは0.1ppm以上10ppm以下とすればよい。
 なお、超音波洗浄には、200kHz以上、好ましくは900kHz以上の周波数を用いることが好ましい。当該周波数を用いることで、酸化物230bなどへのダメージを低減することができる。
 また、上記洗浄処理を複数回行ってもよく、洗浄処理毎に洗浄液を変更してもよい。例えば、第1の洗浄処理として希釈フッ化水素酸、または希釈アンモニア水を用いた処理を行い、第2の洗浄処理として純水、または炭酸水を用いた処理を行ってもよい。
 上記洗浄処理として、本実施の形態では、希釈フッ化水素酸を用いてウェット洗浄を行い、続いて純水、または炭酸水を用いてウェット洗浄を行う。当該洗浄処理を行うことで、酸化物230a、酸化物230bなどの表面に付着または内部に拡散した不純物を除去することができる。さらに、酸化物230bの結晶性を高めることができる。
 これまでドライエッチングなどの加工、または上記洗浄処理によって、上記開口と重なり、かつ酸化物230bと重ならない領域の、絶縁体224の膜厚が、酸化物230bと重なる領域の、絶縁体224の膜厚より薄くなる場合がある。
 上記エッチング後、または上記洗浄後に加熱処理を行ってもよい。加熱処理は、100℃以上450℃以下、好ましくは350℃以上400℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、加熱処理は酸素雰囲気で行うことが好ましい。これにより、酸化物230aおよび酸化物230bに酸素を供給して、酸素欠損Vの低減を図ることができる。また、このような熱処理を行うことで、酸化物230bの結晶性を向上させることができる。また、加熱処理は減圧状態で行ってもよい。または、酸素雰囲気で加熱処理した後に、大気に露出せずに連続して窒素雰囲気で加熱処理を行ってもよい。
 次に絶縁膜250Aを成膜する(図13A乃至図13D参照)。絶縁膜250Aの成膜前に加熱処理を行ってもよく、当該加熱処理は、減圧下で行い、大気に暴露することなく、連続して絶縁膜250Aを成膜してもよい。また、当該加熱処理は、酸素を含む雰囲気で行うことが好ましい。このような処理を行うことによって、酸化物230bの表面などに吸着している水分および水素を除去し、さらに酸化物230a、および酸化物230b中の水分濃度および水素濃度を低減させることができる。加熱処理の温度は、100℃以上400℃以下が好ましい。
 絶縁膜250Aは、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて成膜することができる。また、絶縁膜250Aは、水素原子が低減または除去されたガスを用いた成膜方法で成膜することが好ましい。これにより、絶縁膜250Aの水素濃度を低減することができる。絶縁膜250Aは、後の工程で酸化物230bと接する絶縁体250となるので、このように水素濃度が低減されていることが好適である。
 また、絶縁膜250AはALD法を用いて成膜することが好ましい。微細化されたトランジスタ200の、ゲート絶縁膜として機能する絶縁体250の膜厚は、極めて薄く(例えば、5nm以上30nm以下程度。)、且つバラつきが小さくなるようにする必要がある。これに対して、ALD法は、プリカーサと、リアクタント(酸化剤)を交互に導入して行う成膜方法であり、このサイクルを繰り返す回数によって膜厚を調節することができるため、精密な膜厚調節が可能である。よって、微細化されたトランジスタ200が要求するゲート絶縁膜の精度を達成することができる。また、図13B、図13Cに示すように、絶縁膜250Aは、絶縁体280等によって形成される開口の底面および側面に、被覆性良く成膜される必要がある。当該開口の底面および側面において、原子の層を一層ずつ堆積させることができるので、絶縁膜250Aを当該開口に対して良好な被覆性で成膜することができる。
 また、例えば、PECVD法を用いて絶縁膜250Aの成膜を行う場合、水素を含む成膜ガスがプラズマ中で分解されて、大量の水素ラジカルが発生する。水素ラジカルの還元反応によって、酸化物230b中の酸素が引き抜かれてVHが形成されると、酸化物230b中の水素濃度が高くなる。しかしながら、ALD法を用いて絶縁膜250Aを成膜すると、プリカーサの導入時もリアクタントの導入時も、水素ラジカルの発生を抑制することができる。よって、ALD法を用いて絶縁膜250Aを成膜することにより、酸化物230b中の水素濃度が高くなることを防ぐことができる。
 なお、図13B、図13C、図13Dでは、絶縁膜250Aを単層で図示したが、2層以上の積層構造としてもよい。絶縁膜250Aを2層の積層構造とする場合、絶縁膜250Aの下層は、加熱により酸素が放出される絶縁体を用いて形成し、絶縁膜250Aの上層は、酸素の拡散を抑制する機能を有する絶縁体を用いて形成することが好ましい。このような構成にすることで、絶縁体250の下層に含まれる酸素が、導電体260へ拡散するのを抑制することができる。つまり、酸化物230へ供給する酸素量の減少を抑制することができる。また、絶縁体250の下層に含まれる酸素による導電体260の酸化を抑制することができる。例えば、絶縁膜250Aの下層は、上述した絶縁体250に用いることができる材料を用いて設け、絶縁膜250Aの上層は、絶縁体222と同様の材料を用いて設けることができる。
 絶縁膜250Aの上層として、具体的には、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、マグネシウムなどから選ばれた一種、もしくは二種以上が含まれた金属酸化物、または酸化物230として用いることができる金属酸化物を用いることができる。特に、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を用いることが好ましい。
 本実施の形態では、絶縁膜250Aは2層の積層構造とし、下層として酸化シリコンをPEALD法で成膜し、上層として酸化ハフニウムを熱ALD法で成膜する。
 なお、絶縁膜250Aを2層の積層構造とする場合、絶縁膜250Aの下層となる絶縁膜および絶縁膜250Aの上層となる絶縁膜は、大気環境に暴露せずに連続して成膜することが好ましい。大気開放せずに成膜することで、絶縁膜250Aの下層となる絶縁膜、および絶縁膜250Aの上層となる絶縁膜上に大気環境からの水素などの不純物または水分が付着することを防ぐことができ、絶縁膜250Aの下層となる絶縁膜と絶縁膜250Aの上層となる絶縁膜との界面近傍を清浄に保つことができる。
 次に、酸素を含む雰囲気でマイクロ波処理を行う(図13A乃至図13D参照)。ここで、図13B、図13C、図13Dに示す、点線はマイクロ波、RFなどの高周波、酸素プラズマ、または酸素ラジカルなどを示す。マイクロ波処理は、例えばマイクロ波を用いた高密度プラズマを発生させる電源を有する、マイクロ波処理装置を用いることが好ましい。また、マイクロ波処理装置は基板側にRFを印加する電源を有してもよい。高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができる。また、基板側にRFを印加することで、高密度プラズマによって生成された酸素イオンを、効率よく酸化物230b中に導くことができる。また、上記マイクロ波処理は、減圧下で行うことが好ましく、圧力を60Pa以上、好ましくは133Pa以上、より好ましくは200Pa以上、さらに好ましくは400Pa以上とすればよい。また、酸素流量比(O/O+Ar)が50%以下、好ましくは10%以上30%以下で行うとよい。また、処理温度は、750℃以下、好ましくは500℃以下、例えば400℃程度で行えばよい。また、酸素プラズマ処理を行った後に、外気に曝すことなく、連続して熱処理を行ってもよい。
 図13B、図13C、図13Dに示すように、酸素を含む雰囲気でマイクロ波処理を行うことで、マイクロ波、またはRF等の高周波を用いて酸素ガスをプラズマ化し、当該酸素プラズマを酸化物230bの導電体242aと導電体242bの間の領域に作用させることができる。このとき、マイクロ波、またはRF等の高周波を領域230bcに照射することもできる。つまり、図2に示す領域230bcに、マイクロ波、またはRF等の高周波、酸素プラズマなどを作用させることができる。プラズマ、マイクロ波などの作用により、領域230bcのVHを分断し、水素Hを領域230bcから除去することができる。つまり、領域230bcにおいて、「VH→H+V」という反応が起きて、領域230bcの水素濃度を低減することができる。よって、領域230bc中の酸素欠損、およびVHを低減し、キャリア濃度を低下させることができる。また、領域230bcで形成された酸素欠損に、上記酸素プラズマで発生した酸素ラジカル、または絶縁体250に含まれる酸素を供給することで、さらに、領域230bc中の酸素欠損を低減し、キャリア濃度を低下させることができる。
 一方、図2に示す領域230baおよび領域230bb上には、導電体242aおよび導電体242bが設けられている。図13B、図13C、図13Dに示すように、導電体242aおよび導電体242bは、マイクロ波、またはRF等の高周波、酸素プラズマなどの作用を遮蔽するので、これらの作用は領域230baおよび領域230bbには及ばない。これにより、マイクロ波処理によって、領域230baおよび領域230bbで、VHの低減、および過剰な量の酸素供給が発生しないので、キャリア濃度の低下を防ぐことができる。
 このようにして、酸化物半導体の領域230bcで選択的に酸素欠損、およびVHを除去して、領域230bcをi型または実質的にi型とすることができる。さらに、ソース領域またはドレイン領域として機能する領域230baおよび領域230bbに過剰な酸素が供給されるのを抑制し、n型化を維持することができる。これにより、トランジスタ200の電気特性の変動を抑制し、基板面内でトランジスタ200の電気特性がばらつくのを抑制することができる。
 よって、トランジスタ特性のばらつきが少ない半導体装置を提供することができる。また、信頼性が良好な半導体装置を提供することができる。また、良好な電気特性を有する半導体装置を提供することができる。
 図13に示す工程においては、絶縁膜250Aの成膜後にマイクロ波処理を行ったが、本発明はこれに限られるものではない。例えば、絶縁膜250Aの成膜前にマイクロ波処理をおこなってもよいし、絶縁膜250Aの成膜前と成膜後の両方でマイクロ波処理を行ってもよい。
 例えば、絶縁膜250Aを上述の2層構造とする場合、マイクロ波処理を行って、絶縁膜250Aの下層の酸化シリコンをPEALD法で成膜し、絶縁膜250Aの上層の酸化ハフニウムを熱ALD法で成膜すればよい。ここで、上記マイクロ波処理、酸化シリコンのPEALD成膜、および酸化ハフニウムの熱ALD成膜は、大気に暴露することなく、連続処理することが好ましい。例えば、マルチチャンバー方式の処理装置を用いればよい。また、上記マイクロ波処理を、PEALD装置の、プラズマ励起されたリアクタント(酸化剤)の処理で代替してもよい。ここで、リアクタント(酸化剤)としては、酸素ガスを用いればよい。
 また、マイクロ波処理後に減圧状態を保ったままで、加熱処理を行ってもよい。このような処理を行うことで、絶縁膜250A中、酸化物230b中、および酸化物230a中の水素を効率よく除去することができる。また、水素の一部は、導電体242(導電体242a、および導電体242b)にゲッタリングされる場合がある。または、マイクロ波処理後に減圧状態を保ったままで、加熱処理を行うステップを複数回繰り返して行ってもよい。加熱処理を繰り返し行うことで、絶縁膜250A中、酸化物230b中、および酸化物230a中の水素をさらに効率よく除去することができる。なお、加熱処理温度は、300℃以上500℃以下とすることが好ましい。
 また、マイクロ波処理を行って絶縁膜250Aの膜質を改質することで、水素、水、不純物等の拡散を抑制することができる。従って、導電体260となる導電膜の成膜などの後工程、または熱処理などの後処理により、絶縁体250を介して、水素、水、不純物等が、酸化物230b、酸化物230aなどへ拡散することを抑制することができる。
 次に、導電体260aとなる導電膜、導電体260bとなる導電膜を順に成膜する。導電体260aとなる導電膜および導電体260bとなる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。本実施の形態では、ALD法を用いて、導電体260aとなる導電膜を成膜し、CVD法を用いて導電体260bとなる導電膜を成膜する。
 次に、CMP処理によって、絶縁膜250A、導電体260aとなる導電膜、および導電体260bとなる導電膜を絶縁体280が露出するまで研磨することによって、絶縁体250、および導電体260(導電体260a、および導電体260b)を形成する(図14A乃至図14D参照。)。これにより、絶縁体250は、酸化物230bに達する開口および酸化物230bの溝部の内壁(側壁、および底面)を覆うように配置される。また、導電体260は、絶縁体250を介して、上記開口および上記溝部を埋め込むように配置される。
 次に、上記の加熱処理と同様の条件で加熱処理を行ってもよい。本実施の形態では、窒素雰囲気にて400℃の温度で1時間の処理を行う。該加熱処理によって、絶縁体250および絶縁体280中の水分濃度および水素濃度を低減させることができる。なお、上記加熱処理後、大気に曝すことなく連続して、次工程である絶縁体282の成膜を行ってもよい。
 次に、絶縁体250上、導電体260上、および絶縁体280上に、絶縁体282を形成する(図15A乃至図15D参照。)。絶縁体282の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。絶縁体282の成膜は、スパッタリング法を用いて行うことが好ましい。成膜ガスに水素を用いなくてもよいスパッタリング法を用いることで、絶縁体282中の水素濃度を低減することができる。また、スパッタリング法を用いて、酸素を含む雰囲気で絶縁体282の成膜を行うことで、成膜しながら、絶縁体280に酸素を添加することができる。これにより、絶縁体280に過剰酸素を含ませることができる。このとき、基板加熱を行いながら、絶縁体282を成膜することが好ましい。
 本実施の形態では、絶縁体282として、酸素ガスを含む雰囲気でアルミニウムターゲットを用いて、パルスDCスパッタリング法で酸化アルミニウムを成膜する。パルスDCスパッタリング法を用いることで、膜厚分布をより均一にし、スパッタレート、および膜質を向上することができる。
 次に、絶縁体282上に、絶縁体283を形成する(図16A乃至図16D参照。)。絶縁体283の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。絶縁体283の成膜は、スパッタリング法を用いて行うことが好ましい。成膜ガスに水素を用いなくてもよいスパッタリング法を用いることで、絶縁体283中の水素濃度を低減することができる。また、絶縁体283は、多層としてもよい。例えば、スパッタリング法を用いて、窒化シリコンを成膜し、当該窒化シリコン上に、CVD法を用いて窒化シリコンを成膜してもよい。バリア性の高い絶縁体283および絶縁体212でトランジスタ200を包み込むことで、外部から水分、および水素が侵入するのを防止することができる。
 次に、加熱処理を行ってもよい。本実施の形態では、窒素雰囲気にて400℃の温度で1時間の処理を行う。当該加熱処理によって、図2で示したように、絶縁体282の成膜によって添加された酸素を絶縁体280、絶縁体250へ拡散させ、酸化物230のチャネル形成領域へ選択的に供給することができる。なお、当該加熱処理は、絶縁体283の形成後に限らず、絶縁体282の成膜後などに行ってもよい。
 次に、絶縁体271、絶縁体273、絶縁体275、絶縁体280、絶縁体282、および絶縁体283に、導電体242に達する開口を形成する(図16A乃至図16D参照。)。当該開口の形成は、リソグラフィー法を用いて行えばよい。なお、図16Aで当該開口の形状は、上面視において円形状にしているが、これに限られるものではない。例えば、当該開口が、上面視において、楕円などの略円形状、四角形などの多角形状、四角形等の多角形の角部を丸めた形状になっていてもよい。
 次に、絶縁体241となる絶縁膜を成膜し、当該絶縁膜を異方性エッチングして絶縁体241を形成する。(図16A乃至図16D参照。)。絶縁体241となる絶縁膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。絶縁体241となる絶縁膜としては、酸素の透過を抑制する機能を有する絶縁膜を用いることが好ましい。例えば、ALD法を用いて、酸化アルミニウムを成膜することが好ましい。または、PEALD法を用いて、窒化シリコンを成膜することが好ましい。窒化シリコンは水素に対するバリア性が高いので好ましい。
 また、絶縁体241となる絶縁膜の異方性エッチングとしては、例えばドライエッチング法などを用いればよい。開口の側壁部に絶縁体241を設けることで、外方からの酸素の透過を抑制し、次に形成する導電体240aおよび導電体240bの酸化を防止することができる。また、導電体240aおよび導電体240bから、水、水素などの不純物が外部に拡散することを防ぐことができる。
 次に、導電体240aおよび導電体240bとなる導電膜を成膜する。導電体240aおよび導電体240bとなる導電膜は、水、水素など不純物の透過を抑制する機能を有する導電体を含む積層構造とすることが望ましい。例えば、窒化タンタル、窒化チタンなどと、タングステン、モリブデン、銅など、と、の積層とすることができる。導電体240となる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。
 次に、CMP処理を行うことで、導電体240aおよび導電体240bとなる導電膜の一部を除去し、絶縁体283の上面を露出する。その結果、開口のみに、当該導電膜が残存することで上面が平坦な導電体240aおよび導電体240bを形成することができる(図16A乃至図16D参照。)。なお、当該CMP処理により、絶縁体283の上面の一部および絶縁体274の上面の一部が除去される場合がある。
 次に、導電体246となる導電膜を成膜する。導電体246となる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。
 次に、導電体246となる導電膜をリソグラフィー法によって加工し、導電体240aの上面と接する導電体246a、および導電体240bの上面と接する導電体246bを形成する(図1A乃至図1D参照。)。この時、導電体246aおよび導電体246bと、絶縁体283とが重ならない領域の絶縁体283の一部が除去されることがある。
 次に、導電体246上、および絶縁体283上に、絶縁体286を成膜する(図1A乃至図1D参照。)。絶縁体286の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。また、絶縁体286は、多層としてもよい。例えば、スパッタリング法を用いて、窒化シリコンを成膜し、当該窒化シリコン上に、CVD法を用いて窒化シリコンを成膜してもよい。
 以上により、図1A乃至図1Dに示すトランジスタ200を有する半導体装置を作製することができる。図4A乃至図16A、図4B乃至図16B、図4C乃至図16C、および図4D乃至図16Dに示すように、本実施の形態に示す半導体装置の作製方法を用いることで、トランジスタ200を作製することができる。
<マイクロ波処理装置>
 以下では、上記半導体装置の作製方法に用いることができる、マイクロ波処理装置について説明する。
 まずは、半導体装置などの製造時に不純物の混入が少ない製造装置の構成について図17、図18および図19を用いて説明する。
 図17は、枚葉式マルチチャンバーの製造装置2700の上面図を模式的に示している。製造装置2700は、基板を収容するカセットポート2761と、基板のアライメントを行うアライメントポート2762と、を備える大気側基板供給室2701と、大気側基板供給室2701から、基板を搬送する大気側基板搬送室2702と、基板の搬入を行い、かつ室内の圧力を大気圧から減圧、または減圧から大気圧へ切り替えるロードロック室2703aと、基板の搬出を行い、かつ室内の圧力を減圧から大気圧、または大気圧から減圧へ切り替えるアンロードロック室2703bと、真空中の基板の搬送を行う搬送室2704と、チャンバー2706aと、チャンバー2706bと、チャンバー2706cと、チャンバー2706dと、を有する。
 また、大気側基板搬送室2702は、ロードロック室2703aおよびアンロードロック室2703bと接続され、ロードロック室2703aおよびアンロードロック室2703bは、搬送室2704と接続され、搬送室2704は、チャンバー2706a、チャンバー2706b、チャンバー2706cおよびチャンバー2706dと接続する。
 なお、各室の接続部にはゲートバルブGVが設けられており、大気側基板供給室2701と、大気側基板搬送室2702を除き、各室を独立して真空状態に保持することができる。また、大気側基板搬送室2702には搬送ロボット2763aが設けられており、搬送室2704には搬送ロボット2763bが設けられている。搬送ロボット2763aおよび搬送ロボット2763bによって、製造装置2700内で基板を搬送することができる。
 搬送室2704および各チャンバーの背圧(全圧)は、例えば、1×10−4Pa以下、好ましくは3×10−5Pa以下、さらに好ましくは1×10−5Pa以下とする。また、搬送室2704および各チャンバーの質量電荷比(m/z)が18である気体分子(原子)の分圧は、例えば、3×10−5Pa以下、好ましくは1×10−5Pa以下、さらに好ましくは3×10−6Pa以下とする。また、搬送室2704および各チャンバーのm/zが28である気体分子(原子)の分圧は、例えば、3×10−5Pa以下、好ましくは1×10−5Pa以下、さらに好ましくは3×10−6Pa以下とする。また、搬送室2704および各チャンバーのm/zが44である気体分子(原子)の分圧は、例えば、3×10−5Pa以下、好ましくは1×10−5Pa以下、さらに好ましくは3×10−6Pa以下とする。
 なお、搬送室2704および各チャンバー内の全圧および分圧は、質量分析計を用いて測定することができる。例えば、株式会社アルバック製四重極形質量分析計(Q−massともいう。)Qulee CGM−051を用いればよい。
 また、搬送室2704および各チャンバーは、外部リークまたは内部リークが少ない構成とすることが望ましい。例えば、搬送室2704および各チャンバーのリークレートは、3×10−6Pa・m/s以下、好ましくは1×10−6Pa・m/s以下とする。また、例えば、m/zが18である気体分子(原子)のリークレートが1×10−7Pa・m/s以下、好ましくは3×10−8Pa・m/s以下とする。また、例えば、m/zが28である気体分子(原子)のリークレートが1×10−5Pa・m/s以下、好ましくは1×10−6Pa・m/s以下とする。また、例えば、m/zが44である気体分子(原子)のリークレートが3×10−6Pa・m/s以下、好ましくは1×10−6Pa・m/s以下とする。
 なお、リークレートに関しては、前述の質量分析計を用いて測定した全圧および分圧から導出すればよい。リークレートは、外部リークおよび内部リークに依存する。外部リークは、微小な穴やシール不良などによって真空系外から気体が流入することである。内部リークは、真空系内のバルブなどの仕切りからの漏れや内部の部材からの放出ガスに起因する。リークレートを上述の数値以下とするために、外部リークおよび内部リークの両面から対策をとる必要がある。
 例えば、搬送室2704および各チャンバーの開閉部分はメタルガスケットでシールするとよい。メタルガスケットは、フッ化鉄、酸化アルミニウム、または酸化クロムによって被覆された金属を用いると好ましい。メタルガスケットはOリングと比べ密着性が高く、外部リークを低減できる。また、フッ化鉄、酸化アルミニウム、酸化クロムなどによって被覆された金属の不動態を用いることで、メタルガスケットから放出される不純物を含む放出ガスが抑制され、内部リークを低減することができる。
 また、製造装置2700を構成する部材として、不純物を含む放出ガスの少ないアルミニウム、クロム、チタン、ジルコニウム、ニッケルまたはバナジウムを用いる。また、前述の部材を鉄、クロムおよびニッケルなどを含む合金に被覆して用いてもよい。鉄、クロムおよびニッケルなどを含む合金は、剛性があり、熱に強く、また加工に適している。ここで、表面積を小さくするために部材の表面凹凸を研磨などによって低減しておくと、放出ガスを低減できる。
 または、前述の製造装置2700の部材をフッ化鉄、酸化アルミニウム、酸化クロムなどで被覆してもよい。
 製造装置2700の部材は、極力金属のみで構成することが好ましく、例えば石英などで構成される覗き窓などを設置する場合も、放出ガスを抑制するために表面をフッ化鉄、酸化アルミニウム、酸化クロムなどで薄く被覆するとよい。
 搬送室2704および各チャンバーに存在する吸着物は、内壁などに吸着しているために搬送室2704および各チャンバーの圧力に影響しないが、搬送室2704および各チャンバーを排気した際のガス放出の原因となる。そのため、リークレートと排気速度に相関はないものの、排気能力の高いポンプを用いて、搬送室2704および各チャンバーに存在する吸着物をできる限り脱離し、あらかじめ排気しておくことは重要である。なお、吸着物の脱離を促すために、搬送室2704および各チャンバーをベーキングしてもよい。ベーキングすることで吸着物の脱離速度を10倍程度大きくすることができる。ベーキングは100℃以上450℃以下で行えばよい。このとき、不活性ガスを搬送室2704および各チャンバーに導入しながら吸着物の除去を行うと、排気するだけでは脱離しにくい水などの脱離速度をさらに大きくすることができる。なお、導入する不活性ガスをベーキングの温度と同程度に加熱することで、吸着物の脱離速度をさらに高めることができる。ここで不活性ガスとして希ガスを用いると好ましい。
 または、加熱した希ガスなどの不活性ガスまたは酸素などを導入することで搬送室2704および各チャンバー内の圧力を高め、一定時間経過後に再び搬送室2704および各チャンバーを排気する処理を行うと好ましい。加熱したガスの導入により搬送室2704および各チャンバー内の吸着物を脱離させることができ、搬送室2704および各チャンバー内に存在する不純物を低減することができる。なお、この処理は2回以上30回以下、好ましくは5回以上15回以下の範囲で繰り返し行うと効果的である。具体的には、温度が40℃以上400℃以下、好ましくは50℃以上200℃以下である不活性ガスまたは酸素などを導入することで搬送室2704および各チャンバー内の圧力を0.1Pa以上10kPa以下、好ましくは1Pa以上1kPa以下、さらに好ましくは5Pa以上100Pa以下とし、圧力を保つ期間を1分以上300分以下、好ましくは5分以上120分以下とすればよい。その後、搬送室2704および各チャンバーを5分以上300分以下、好ましくは10分以上120分以下の期間排気する。
 次に、チャンバー2706bおよびチャンバー2706cについて図18に示す断面模式図を用いて説明する。
 チャンバー2706bおよびチャンバー2706cは、例えば、被処理物にマイクロ波処理を行うことが可能なチャンバーである。なお、チャンバー2706bと、チャンバー2706cと、はマイクロ波処理を行う際の雰囲気が異なるのみである。そのほかの構成については共通するため、以下ではまとめて説明を行う。
 チャンバー2706bおよびチャンバー2706cは、スロットアンテナ板2808と、誘電体板2809と、基板ホルダ2812と、排気口2819と、を有する。また、チャンバー2706bおよびチャンバー2706cの外などには、ガス供給源2801と、バルブ2802と、高周波発生器2803と、導波管2804と、モード変換器2805と、ガス管2806と、導波管2807と、マッチングボックス2815と、高周波電源2816と、真空ポンプ2817と、バルブ2818と、が設けられる。
 高周波発生器2803は、導波管2804を介してモード変換器2805と接続している。モード変換器2805は、導波管2807を介してスロットアンテナ板2808に接続している。スロットアンテナ板2808は、誘電体板2809と接して配置される。また、ガス供給源2801は、バルブ2802を介してモード変換器2805に接続している。そして、モード変換器2805、導波管2807および誘電体板2809を通るガス管2806によって、チャンバー2706bおよびチャンバー2706cにガスが送られる。また、真空ポンプ2817は、バルブ2818および排気口2819を介して、チャンバー2706bおよびチャンバー2706cからガスなどを排気する機能を有する。また、高周波電源2816は、マッチングボックス2815を介して基板ホルダ2812に接続している。
 基板ホルダ2812は、基板2811を保持する機能を有する。例えば、基板2811を静電チャックまたは機械的にチャックする機能を有する。また、高周波電源2816から電力を供給される電極としての機能を有する。また、内部に加熱機構2813を有し、基板2811を加熱する機能を有する。
 真空ポンプ2817としては、例えば、ドライポンプ、メカニカルブースターポンプ、イオンポンプ、チタンサブリメーションポンプ、クライオポンプまたはターボ分子ポンプなどを用いることができる。また、真空ポンプ2817に加えて、クライオトラップを用いてもよい。クライオポンプおよびクライオトラップを用いると、水を効率よく排気できて特に好ましい。
 また、加熱機構2813としては、例えば、抵抗発熱体などを用いて加熱する加熱機構とすればよい。または、加熱されたガスなどの媒体からの熱伝導または熱輻射によって、加熱する加熱機構としてもよい。例えば、GRTA(Gas Rapid Thermal Annealing)またはLRTA(Lamp Rapid Thermal Annealing)などのRTA(Rapid Thermal Annealing)を用いることができる。GRTAは、高温のガスを用いて加熱処理を行う。ガスとしては、不活性ガスが用いられる。
 また、ガス供給源2801は、マスフローコントローラを介して、精製機と接続されていてもよい。ガスは、露点が−80℃以下、好ましくは−100℃以下であるガスを用いることが好ましい。例えば、酸素ガス、窒素ガス、および希ガス(アルゴンガスなど)を用いればよい。
 誘電体板2809としては、例えば、酸化シリコン(石英)、酸化アルミニウム(アルミナ)または酸化イットリウム(イットリア)などを用いればよい。また、誘電体板2809の表面に、さらに別の保護層が形成されていてもよい。保護層としては、酸化マグネシウム、酸化チタン、酸化クロム、酸化ジルコニウム、酸化ハフニウム、酸化タンタル、酸化シリコン、酸化アルミニウムまたは酸化イットリウムなどを用いればよい。誘電体板2809は、後述する高密度プラズマ2810の特に高密度領域に曝されることになるため、保護層を設けることで損傷を緩和することができる。その結果、処理時のパーティクルの増加などを抑制することができる。
 高周波発生器2803では、例えば、0.3GHz以上3.0GHz以下、0.7GHz以上1.1GHz以下、または2.2GHz以上2.8GHz以下のマイクロ波を発生させる機能を有する。高周波発生器2803で発生させたマイクロ波は、導波管2804を介してモード変換器2805に伝わる。モード変換器2805では、TEモードとして伝わったマイクロ波がTEMモードに変換される。そして、マイクロ波は、導波管2807を介してスロットアンテナ板2808に伝わる。スロットアンテナ板2808は、複数のスロット孔が設けられており、マイクロ波は該スロット孔および誘電体板2809を通過する。そして、誘電体板2809の下方に電界を生じさせ、高密度プラズマ2810を生成することができる。高密度プラズマ2810には、ガス供給源2801から供給されたガス種に応じたイオンおよびラジカルが存在する。例えば、酸素ラジカルなどが存在する。
 このとき、基板2811が高密度プラズマ2810で生成されたイオンおよびラジカルによって、基板2811上の膜などを改質することができる。なお、高周波電源2816を用いて、基板2811側にバイアスを印加すると好ましい場合がある。高周波電源2816には、例えば、13.56MHz、27.12MHzなどの周波数のRF電源を用いればよい。基板側にバイアスを印加することで、高密度プラズマ2810中のイオンを基板2811上の膜などの開口部の奥まで効率よく到達させることができる。
 例えば、チャンバー2706bまたはチャンバー2706cで、ガス供給源2801から酸素を導入することで高密度プラズマ2810を用いた酸素ラジカル処理を行うことができる。
 次に、チャンバー2706aおよびチャンバー2706dについて図19に示す断面模式図を用いて説明する。
 チャンバー2706aおよびチャンバー2706dは、例えば、被処理物に電磁波の照射を行うことが可能なチャンバーである。なお、チャンバー2706aと、チャンバー2706dと、は電磁波の種類が異なるのみである。そのほかの構成については共通する部分が多いため、以下ではまとめて説明を行う。
 チャンバー2706aおよびチャンバー2706dは、一または複数のランプ2820と、基板ホルダ2825と、ガス導入口2823と、排気口2830と、を有する。また、チャンバー2706aおよびチャンバー2706dの外などには、ガス供給源2821と、バルブ2822と、真空ポンプ2828と、バルブ2829と、が設けられる。
 ガス供給源2821は、バルブ2822を介してガス導入口2823に接続している。真空ポンプ2828は、バルブ2829を介して排気口2830に接続している。ランプ2820は、基板ホルダ2825と向かい合って配置されている。基板ホルダ2825は、基板2824を保持する機能を有する。また、基板ホルダ2825は、内部に加熱機構2826を有し、基板2824を加熱する機能を有する。
 ランプ2820としては、例えば、可視光または紫外光などの電磁波を放射する機能を有する光源を用いればよい。例えば、波長10nm以上2500nm以下、500nm以上2000nm以下、または40nm以上340nm以下にピークを有する電磁波を放射する機能を有する光源を用いればよい。
 例えば、ランプ2820としては、ハロゲンランプ、メタルハライドランプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウムランプまたは高圧水銀ランプなどの光源を用いればよい。
 例えば、ランプ2820から放射される電磁波は、その一部または全部が基板2824に吸収されることで基板2824上の膜などを改質することができる。例えば、欠陥の生成もしくは低減、または不純物の除去などができる。なお、基板2824を加熱しながら行うと、効率よく、欠陥の生成もしくは低減、または不純物の除去などができる。
 または、例えば、ランプ2820から放射される電磁波によって、基板ホルダ2825を発熱させ、基板2824を加熱してもよい。その場合、基板ホルダ2825の内部に加熱機構2826を有さなくてもよい。
 真空ポンプ2828は、真空ポンプ2817についての記載を参照する。また、加熱機構2826は、加熱機構2813についての記載を参照する。また、ガス供給源2821は、ガス供給源2801についての記載を参照する。
 以上の製造装置を用いることで、被処理物への不純物の混入を抑制しつつ、膜の改質などが可能となる。
<半導体装置の変形例>
 以下では、図20A乃至図20D、および図21A乃至図21Dを用いて、本発明の一態様である半導体装置の一例について説明する。
 各図Aは半導体装置の上面図を示す。また、各図Bは、各図Aに示すA1−A2の一点鎖線で示す部位に対応する断面図である。また、各図Cは、各図AにA3−A4の一点鎖線で示す部位に対応する断面図である。また、各図Dは、各図AにA5−A6の一点鎖線で示す部位に対応する断面図である。各図Aの上面図では、図の明瞭化のために一部の要素を省いている。
 なお、各図A乃至Dに示す半導体装置において、<半導体装置の構成例>に示した半導体装置を構成する構造と同機能を有する構造には、同符号を付記する。なお、本項目においても、半導体装置の構成材料については<半導体装置の構成例>で詳細に説明した材料を用いることができる。
<半導体装置の変形例1>
 図20A乃至図20Dに示す半導体装置は、図1A乃至図1Dに示した半導体装置の変形例である。図20A乃至図20Dに示す半導体装置は、図1A乃至図1Dに示した半導体装置とは、絶縁体283の形状が異なる。また、絶縁体284および絶縁体274を有することが異なる。
 図20A乃至図20Dに示す半導体装置では、絶縁体214、絶縁体216、絶縁体222、絶縁体224、絶縁体275、絶縁体280、および絶縁体282がパターニングされている。また、絶縁体284は、絶縁体212、絶縁体214、絶縁体216、絶縁体222、絶縁体224、絶縁体275、絶縁体280、および絶縁体282を覆う構造になっている。つまり、絶縁体284は、絶縁体282の上面と、絶縁体214、絶縁体216、絶縁体222、絶縁体224、絶縁体275、および絶縁体280の側面と、絶縁体212の上面と、に接する。さらに、絶縁体284を覆って絶縁体284が配置されている。これにより、酸化物230などを含む、絶縁体214、絶縁体216、絶縁体222、絶縁体224、絶縁体280、および絶縁体282は、絶縁体283、絶縁体284、および絶縁体212によって、外部から隔離される。別言すると、トランジスタ200は、絶縁体284、および絶縁体212で封止された領域内に配置される。
 例えば、絶縁体214、絶縁体271、絶縁体275、絶縁体282、および絶縁体284を、水素を捕獲および水素を固着する機能を有する材料を用いて形成すればよい。なお、絶縁体284は、絶縁体282と同様の絶縁体を用いることができる。また、絶縁体212、および絶縁体283を水素および酸素に対する拡散を抑制する機能を有する材料を用いて形成すればよい。絶縁体214、絶縁体271、絶縁体275、絶縁体282、および絶縁体284としては、アモルファス構造を有する金属酸化物、例えば酸化アルミニウムを用いることができる。また、代表的には、絶縁体212、および絶縁体283としては、窒化シリコンを用いることができる。特に、絶縁体284として、アモルファス構造を有する酸化アルミニウム、またはアモルファス構造の酸化アルミニウムを用いることで、より効果的に水素を捕獲または固着できる場合があるため好ましい。これにより、良好な特性を有し、信頼性の高いトランジスタ200、および半導体装置を作製することができる。
 上記構成にすることで、上記封止された領域外に含まれる水素が、上記封止された領域内に混入することを抑制することができる。
 また、図20A乃至図20Dに示すトランジスタ200では、絶縁体212、および絶縁体283を、単層として設ける構成について示しているが、本発明はこれに限られるものではない。例えば、絶縁体212、および絶縁体283のそれぞれを2層以上の積層構造として設ける構成にしてもよい。
 絶縁体274は、絶縁体283を覆って設けられており、層間膜として機能する。絶縁体274は、絶縁体214よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。絶縁体274は、例えば、絶縁体280と同様の材料を用いて設けることができる。
<半導体装置の変形例2>
 図21A乃至図21Dに示す半導体装置は、図20A乃至図20Dに示した半導体装置の変形例である。図21A乃至図21Dに示す半導体装置は、図20A乃至図20Dに示した半導体装置とは、酸化物230cおよび酸化物230dを有することが異なる。また、絶縁体287を有することが異なる。また、絶縁体271、絶縁体272、絶縁体273、および絶縁体284を有しないことが異なる。
 図21A乃至図21Dに示す半導体装置では、さらに、酸化物230b上の酸化物230cと、酸化物230c上の酸化物230dと、を有する。酸化物230cおよび酸化物230dは、絶縁体280および絶縁体275に形成された開口の中に設けられる。また、酸化物230cは、酸化物243aの側面、酸化物243bの側面、導電体242aの側面、導電体242bの側面、および絶縁体275の側面とそれぞれ接する。また、酸化物230cの上面、および酸化物230dの上面は、絶縁体282に接する。
 酸化物230cの上に、酸化物230dを配置することで、酸化物230dよりも上方に形成された構造物からの、酸化物230bまたは酸化物230cに対する不純物の拡散を抑制することができる。また、酸化物230cの上に、酸化物230dを配置することで、酸化物230bまたは酸化物230cからの酸素の上方拡散を抑制することができる。
 また、トランジスタのチャネル長方向の断面視において、酸化物230bに溝部を設け、当該溝部に、酸化物230cを埋め込むことが好ましい。このとき、酸化物230cは、当該溝部の内壁(側壁、および底面)を覆うように配置される。また、酸化物230cの膜厚は、当該溝部の深さと同程度であることが好ましい。このような構成にすることで、導電体260などを埋め込むための開口を形成する際に、開口の底部にあたる酸化物230bの表面に損傷領域が形成されても、当該損傷領域を除去することができる。これにより、損傷領域に起因するトランジスタ200の電気特性の不良を抑制することができる。
 ここで、酸化物230cに用いる金属酸化物における、元素Mに対するInの原子数比が、酸化物230aまたは酸化物230dに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。
 なお、酸化物230cをキャリアの主たる経路とする場合には、酸化物230cにおいて、主成分である金属元素に対するインジウムの原子数比が、酸化物230bにおける、主成分である金属元素に対するインジウムの原子数比より大きいことが好ましい。また、酸化物230cにおいて、元素Mに対するInの原子数比が、酸化物230bにおける、元素Mに対するInの原子数比より大きいことが好ましい。インジウムの含有量が多い金属酸化物をチャネル形成領域に用いることで、トランジスタのオン電流を増大することができる。よって、酸化物230cにおいて、主成分である金属元素に対するインジウムの原子数比を、酸化物230bにおける、主成分である金属元素に対するインジウムの原子数比よりも大きくすることで、酸化物230cをキャリアの主たる経路とすることができる。また、酸化物230cの伝導帯下端は、酸化物230aおよび酸化物230bの伝導帯下端より真空準位から離れていることが好ましい。言い換えると、酸化物230cの電子親和力は、酸化物230aおよび酸化物230bの電子親和力より大きいことが好ましい。このとき、キャリアの主たる経路は酸化物230cとなる。
 酸化物230cとして、具体的には、In:M:Zn=4:2:3[原子数比]もしくはその近傍の組成、In:M:Zn=5:1:3[原子数比]もしくはその近傍の組成、またはIn:M:Zn=10:1:3[原子数比]もしくはその近傍の組成の金属酸化物、インジウム酸化物などを用いるとよい。
 また、酸化物230cとして、CAAC−OSを用いることが好ましく、酸化物230cが有する結晶のc軸が、酸化物230cの被形成面または上面に概略垂直な方向を向いていることが好ましい。CAAC−OSは、c軸と垂直方向に酸素を移動させやすい性質を有する。したがって、酸化物230cが有する酸素を、酸化物230bに効率的に供給することができる。
 また、酸化物230dは、酸化物230cに用いられる金属酸化物を構成する金属元素の少なくとも一つを含むことが好ましく、当該金属元素を全て含むことがより好ましい。例えば、酸化物230cとして、In−M−Zn酸化物、In−Zn酸化物、またはインジウム酸化物を用い、酸化物230dとして、In−M−Zn酸化物、M−Zn酸化物、または元素Mの酸化物を用いるとよい。これにより、酸化物230cと酸化物230dとの界面における欠陥準位密度を低くすることができる。
 また、酸化物230dの伝導帯下端が、酸化物230cの伝導帯下端より真空準位に近いことが好ましい。言い換えると、酸化物230dの電子親和力は、酸化物230cの電子親和力より小さいことが好ましい。この場合、酸化物230dは、酸化物230aまたは酸化物230bに用いることができる金属酸化物を用いることが好ましい。このとき、キャリアの主たる経路は酸化物230cとなる。
 具体的には、酸化物230cとして、In:M:Zn=4:2:3[原子数比]もしくはその近傍の組成、In:M:Zn=5:1:3[原子数比]もしくはその近傍の組成、またはIn:M:Zn=10:1:3[原子数比]もしくはその近傍の組成の金属酸化物、または、インジウム酸化物を用いればよい。また、酸化物230dとして、In:M:Zn=1:3:4[原子数比]もしくはその近傍の組成、M:Zn=2:1[原子数比]もしくはその近傍の組成、またはM:Zn=2:5[原子数比]もしくはその近傍の組成の金属酸化物、または、元素Mの酸化物を用いればよい。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。また、元素Mとして、ガリウムを用いることが好ましい。
 また、酸化物230dは、酸化物230cより、酸素の拡散または透過を抑制する金属酸化物であることが好ましい。絶縁体250と酸化物230cとの間に酸化物230dを設けることで、酸化物230cを介して、酸化物230bに効率的に酸素を供給することができる。
 また、酸化物230dに用いる金属酸化物において、主成分である金属元素に対するInの原子数比が、酸化物230cに用いる金属酸化物における、主成分である金属元素に対するInの原子数比より小さくすることで、Inが絶縁体250側に拡散するのを抑制することができる。例えば、酸化物230dにおいて、元素Mに対するInの原子数比を、酸化物230cにおける、元素Mに対するInの原子数比より小さくすればよい。絶縁体250は、ゲート絶縁体として機能するため、Inが絶縁体250などに混入した場合、トランジスタの特性不良となる。したがって、酸化物230cと絶縁体250との間に酸化物230dを設けることで、信頼性の高い半導体装置を提供することが可能となる。
 なお、酸化物230cは、トランジスタ200毎に設けてもよい。つまり、トランジスタ200の酸化物230cと、当該トランジスタ200に隣接するトランジスタ200の酸化物230cと、は、接しなくてもよい。また、トランジスタ200の酸化物230cと、当該トランジスタ200に隣接するトランジスタ200の酸化物230cと、を、離隔してもよい。別言すると、酸化物230cが、トランジスタ200と、当該トランジスタ200に隣接するトランジスタ200との間に配置されない構成としてもよい。
 複数のトランジスタ200がチャネル幅方向に並んで配置されている半導体装置において、上記構成にすることで、トランジスタ200に酸化物230cがそれぞれ独立して設けられる。よって、トランジスタ200と、当該トランジスタ200に隣接するトランジスタ200との間に、寄生トランジスタが生じるのを抑制し、上記リークパスが生じるのを抑制することができる。したがって、良好な電気特性を有し、かつ、微細化または高集積化が可能な半導体装置を提供することができる。
 なお、絶縁体287は、絶縁体282または絶縁体284と同様の絶縁体を用いることができる。また、図20に示す絶縁体284を成膜した後で、ドライエッチング法を用いて異方性エッチングすることで、図21に示す、絶縁体214、絶縁体216、絶縁体222、絶縁体224、絶縁体275、絶縁体280、および絶縁体282の側面に接する絶縁体287を形成することができる。
 また、図21に示すように、絶縁体271、および絶縁体273を設けない構成にした場合、導電体242の側面と導電体242の上面との間に、湾曲面を有する場合がある。つまり、側面の端部と上面の端部は、湾曲している場合がある。湾曲面は、例えば、導電体242の端部において、曲率半径が、3nm以上10nm以下、好ましくは、5nm以上6nm以下とする。端部に角を有さないことで、以降の成膜工程における膜の被覆性が向上する。なお、本発明はこれに限られるものではなく、図21に示す構成において、さらに、絶縁体271、絶縁体272、および絶縁体273を設ける構成にしてもよい。
<半導体装置の変形例3>
 図22A乃至図22Dに示す半導体装置は、図20A乃至図20Dに示した半導体装置の変形例である。図22A乃至図22Dに示す半導体装置は、図20A乃至図20Dに示した半導体装置とは、絶縁体214の形状が異なる。また、絶縁体272を有しないことが異なる。また、絶縁体275の構造が異なる。
 また、図22A乃至図22Dに示す半導体装置において、絶縁体214、絶縁体271、絶縁体275a、絶縁体282、および絶縁体284は、それぞれ、アモルファス構造を有する金属酸化物を含むことが好ましい。例えば、絶縁体214、絶縁体271、絶縁体275a、絶縁体282、および絶縁体284は、それぞれアモルファス構造を有する酸化アルミニウム、またはアモルファス構造の酸化アルミニウムであることが好ましい。絶縁体214、絶縁体271、絶縁体275a、絶縁体282、および絶縁体284が、それぞれアモルファス構造を有する金属酸化物を含むことで、トランジスタ200に含まれる水素、またはトランジスタ200の周囲に存在する水素を捕獲または固着することができる。特にトランジスタ200のチャネル形成領域に含まれる水素を捕獲または固着することが好ましい。
 また、図22A乃至図22Cに示す半導体装置において、ゲート絶縁膜として機能する絶縁体250は、絶縁体250a、および絶縁体250bの積層構造を有する。例えば、絶縁体250aとして酸化シリコンを用い、絶縁体250bとして酸化ハフニウムを用いることができる。
 図22B乃至図22Dに示すように、絶縁体214は、絶縁体222と重畳する領域以外にも存在する。また、絶縁体214が絶縁体222と重畳しない領域において、絶縁体214の上面は、絶縁体284の下面と接する。さらに、絶縁体214の下層には絶縁体212が設けられ、絶縁体284の上方には絶縁体283が設けられている。このため、トランジスタ200は、絶縁体214、および絶縁体284により封止され、さらに絶縁体212、および絶縁体283により封止される。別言すると、トランジスタ200は、水素を捕獲または固着する絶縁体214、および絶縁体284により封止され、さらに水素および酸素に対する拡散を抑制する絶縁体212、および絶縁体283により封止される。このような構造とすることで、良好な特性を有し、信頼性の高いトランジスタ200、および半導体装置を作製することができる。
 本変形例に示す半導体装置において、絶縁体275は、絶縁体275a、および絶縁体275bの積層構造を有する。例えば、絶縁体275aとしてアモルファス構造を有する酸化アルミニウムを用い、絶縁体275bとして窒化シリコンを用いることができる。本変形例に示す半導体装置は、絶縁体272を有しないため、絶縁体275aは、酸化物230a、酸化物230b、酸化物243、導電体242、絶縁体271の側面と接する。このため、絶縁体275aにより酸化物230a、酸化物230b、酸化物243などに含まれる水素を捕獲または固着することができる。特にトランジスタ200のチャネル形成領域に含まれる水素を捕獲または固着することが好ましい。
<半導体装置の変形例4>
 図23A乃至図23Dに示す半導体装置は、図22A乃至図22Dに示した半導体装置の変形例である。図23A乃至図23Dに示す半導体装置は、図22A乃至図22Dに示した半導体装置とは、絶縁体271の形状が異なる。また、絶縁体273を有しないことが異なる。
 図23Bに示すように、絶縁体273が設けられていないため、絶縁体275aは、絶縁体271の上面と接するように設けられる。
 絶縁体271は、トランジスタ200の作製工程において、ハードマスクとして用いられる。本変形例では、絶縁体271と同様にハードマスクとして機能し得る絶縁体273が設けられていないため、その分、絶縁体271の厚さを調整し、トランジスタ200の作製工程において絶縁体271の消失を抑制することが好ましい。具体的には、本変形例の絶縁体271を、先に記載した半導体装置、または変形例1乃至変形例3で説明した絶縁体271より厚く形成することが好ましい。
<半導体装置の応用例>
 以下では、図24Aおよび図24Bを用いて、先の<半導体装置の構成例>および先の<半導体装置の変形例>で示したものとは異なる、本発明の一態様に係るトランジスタ200を有する半導体装置の一例について説明する。なお、図24Aおよび図24Bに示す半導体装置において、<<半導体装置の変形例>>に示した半導体装置(図20A乃至図20D参照。)を構成する構造と同機能を有する構造には、同符号を付記する。なお、本項目において、トランジスタ200の構成材料については<半導体装置の構成例>および<半導体装置の変形例>で詳細に説明した材料を用いることができる。
 図24Aおよび図24Bに、複数のトランジスタ200_1乃至トランジスタ200_nを、絶縁体283と絶縁体212で、包括して封止した構成について示す。なお、図24Aおよび図24Bにおいて、トランジスタ200_1乃至トランジスタ200_nは、チャネル長方向に並んでいるように見えるが、これにかぎられるものではない。トランジスタ200_1乃至トランジスタ200_nは、チャネル幅方向に並んでいてもよいし、マトリクス状に配置されていてもよい。また、設計に応じて、規則性を持たずに配置されていてもよい。
 図24Aに示すように、複数のトランジスタ200_1乃至トランジスタ200_nの外側において、絶縁体283と絶縁体212が接する部分(以下、封止部265と呼ぶ場合がある。)が形成されている。封止部265は、複数のトランジスタ200_1乃至トランジスタ200_nを囲むように形成されている。このような構造にすることで、複数のトランジスタ200_1乃至トランジスタ200_nを絶縁体283と絶縁体212で包み込むことができる。よって封止部265に囲まれたトランジスタ群が、基板上に複数設けられることになる。
 また、封止部265に重ねてダイシングライン(スクライブライン、分断ライン、又は切断ラインと呼ぶ場合がある)を設けてもよい。上記基板はダイシングラインにおいて分断されるので、封止部265に囲まれたトランジスタ群が1チップとして取り出されることになる。
 また、図24Aでは、複数のトランジスタ200_1乃至トランジスタ200_nを一つの封止部265で囲む例について示したが、これに限られるものではない。図24Bに示すように、複数のトランジスタ200_1乃至トランジスタ200_nを複数の封止部で囲む構成にしてもよい。図24Bでは、複数のトランジスタ200_1乃至トランジスタ200_nを封止部265aで囲み、さらに外側の封止部265bでも囲む構成にしている。
 このように、複数の封止部で複数のトランジスタ200_1乃至トランジスタ200_nを囲む構成にすることで、絶縁体283と絶縁体212が接する部分が増えるので、絶縁体283と絶縁体212の密着性をより向上させることができる。これにより、より確実に複数のトランジスタ200_1乃至トランジスタ200_nを封止することができる。
 この場合、封止部265aまたは封止部265bに重ねてダイシングラインを設けてもよいし、封止部265aと封止部265bの間にダイシングラインを設けてもよい。
 なお、図24A、図24Bに示すトランジスタでは、図20に示すトランジスタ200と異なり、絶縁体274の上面が、絶縁体283の上面と略一致する構成をとっている。また、絶縁体284を設けない構成としている。本発明はこれに限られるものではなく、例えば、絶縁体274が絶縁体283を覆う構成にしてもよいし、絶縁体284を設ける構成にしてもよい。
 本発明の一態様により、トランジスタ特性のばらつきが少ない半導体装置を提供することができる。または、本発明の一態様により、信頼性が良好な半導体装置を提供することができる。または、本発明の一態様により、良好な電気特性を有する半導体装置を提供することができる。または、本発明の一態様により、オン電流が大きい半導体装置を提供することができる。または、本発明の一態様により、微細化または高集積化が可能な半導体装置を提供することができる。または、本発明の一態様により、低消費電力の半導体装置を提供することができる。
 以上、本実施の形態に示す構成、方法などは、本実施の形態に示す他の構成、方法、他の実施の形態に示す構成、方法、または実施例に示す構成、方法などと適宜組み合わせて用いることができる。
(実施の形態2)
 本実施の形態では、半導体装置の一形態を、図25乃至図30を用いて説明する。
[記憶装置1]
 本発明の一態様に係る半導体装置(記憶装置)の一例を図25に示す。本発明の一態様の半導体装置は、トランジスタ200はトランジスタ300の上方に設けられ、容量素子100はトランジスタ300、およびトランジスタ200の上方に設けられている。なお、トランジスタ200として、先の実施の形態で説明したトランジスタ200を用いることができる。
 トランジスタ200は、酸化物半導体を有する半導体層にチャネルが形成されるトランジスタである。トランジスタ200は、オフ電流が小さいため、これを記憶装置に用いることにより長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作を必要としない、あるいは、リフレッシュ動作の頻度が極めて少ないため、記憶装置の消費電力を十分に低減することができる。
 図25に示す半導体装置において、配線1001はトランジスタ300のソースと電気的に接続され、配線1002はトランジスタ300のドレインと電気的に接続されている。また、配線1003はトランジスタ200のソースおよびドレインの一方と電気的に接続され、配線1004はトランジスタ200の第1のゲートと電気的に接続され、配線1006はトランジスタ200の第2のゲートと電気的に接続されている。そして、トランジスタ300のゲート、およびトランジスタ200のソースおよびドレインの他方は、容量素子100の電極の一方と電気的に接続され、配線1005は容量素子100の電極の他方と電気的に接続されている。
 また、図25に示す記憶装置は、マトリクス状に配置することで、メモリセルアレイを構成することができる。
<トランジスタ300>
 トランジスタ300は、基板311上に設けられ、ゲートとして機能する導電体316、ゲート絶縁体として機能する絶縁体315、基板311の一部からなる半導体領域313、およびソース領域またはドレイン領域として機能する低抵抗領域314a、および低抵抗領域314bを有する。トランジスタ300は、pチャネル型、あるいはnチャネル型のいずれでもよい。
 ここで、図25に示すトランジスタ300はチャネルが形成される半導体領域313(基板311の一部)が凸形状を有する。また、半導体領域313の側面および上面を、絶縁体315を介して、導電体316が覆うように設けられている。なお、導電体316は仕事関数を調整する材料を用いてもよい。このようなトランジスタ300は半導体基板の凸部を利用していることからFIN型トランジスタとも呼ばれる。なお、凸部の上部に接して、凸部を形成するためのマスクとして機能する絶縁体を有していてもよい。また、ここでは半導体基板の一部を加工して凸部を形成する場合を示したが、SOI基板を加工して凸形状を有する半導体膜を形成してもよい。
 なお、図25に示すトランジスタ300は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。
<容量素子100>
 容量素子100は、トランジスタ200の上方に設けられる。容量素子100は、第1の電極として機能する導電体110と、第2の電極として機能する導電体120、および誘電体として機能する絶縁体130とを有する。ここで、絶縁体130は、上記実施の形態に示す絶縁体286として用いることができる絶縁体を用いることが好ましい。
 また、例えば、導電体240上に設けた導電体112と、導電体110は、同時に形成することができる。なお、導電体112は、容量素子100、トランジスタ200、またはトランジスタ300と電気的に接続するプラグ、または配線としての機能を有する。また、導電体112および導電体110は、先の実施の形態に示す導電体246に相当する。
 図25では、導電体112、および導電体110は単層構造を示したが、当該構成に限定されず、2層以上の積層構造でもよい。例えば、バリア性を有する導電体と導電性が高い導電体との間に、バリア性を有する導電体、および導電性が高い導電体に対して密着性が高い導電体を形成してもよい。
 また、絶縁体130は、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウム、酸化ハフニウム、酸化窒化ハフニウム、窒化酸化ハフニウム、窒化ハフニウムなどを用いればよく、積層または単層で設けることができる。
 例えば、絶縁体130には、酸化窒化シリコンなどの絶縁耐力が大きい材料と、高誘電率(high−k)材料との積層構造を用いることが好ましい。当該構成により、容量素子100は、高誘電率(high−k)の絶縁体を有することで、十分な容量を確保でき、絶縁耐力が大きい絶縁体を有することで、絶縁耐力が向上し、容量素子100の静電破壊を抑制することができる。
 なお、高誘電率(high−k)材料(高い比誘電率の材料)の絶縁体としては、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物またはシリコンおよびハフニウムを有する窒化物などがある。
 一方、絶縁耐力が大きい材料(低い比誘電率の材料)としては、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンまたは樹脂などがある。
<配線層>
 各構造体の間には、層間膜、配線、およびプラグ等が設けられた配線層が設けられていてもよい。また、配線層は、設計に応じて複数層設けることができる。ここで、プラグまたは配線としての機能を有する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と電気的に接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。
 例えば、トランジスタ300上には、層間膜として、絶縁体320、絶縁体322、絶縁体324、および絶縁体326が順に積層して設けられている。また、絶縁体320、絶縁体322、絶縁体324、および絶縁体326には容量素子100、またはトランジスタ200と電気的に接続する導電体328、および導電体330等が埋め込まれている。なお、導電体328、および導電体330はプラグ、または配線として機能する。
 また、層間膜として機能する絶縁体は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP)法等を用いた平坦化処理により平坦化されていてもよい。
 絶縁体326、および導電体330上に、配線層を設けてもよい。例えば、図25において、絶縁体350、絶縁体352、及び絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、及び絶縁体354には、導電体356が形成されている。導電体356は、プラグ、または配線として機能する。
 同様に、絶縁体210、絶縁体212、絶縁体214、および絶縁体216には、導電体218、及びトランジスタ200を構成する導電体(導電体205)等が埋め込まれている。なお、導電体218は、容量素子100、またはトランジスタ300と電気的に接続するプラグ、または配線としての機能を有する。さらに、導電体120、および絶縁体130上には、絶縁体150が設けられている。
 ここで、上記実施の形態に示す絶縁体241と同様に、プラグとして機能する導電体218の側面に接して絶縁体217が設けられる。絶縁体217は、絶縁体210、絶縁体212、絶縁体214、および絶縁体216に形成された開口の内壁に接して設けられている。つまり、絶縁体217は、導電体218と、絶縁体210、絶縁体212、絶縁体214、および絶縁体216と、の間に設けられている。なお、導電体205は導電体218と並行して形成することができるので、導電体205の側面に接して絶縁体217が形成される場合もある。
 絶縁体217としては、例えば、窒化シリコン、酸化アルミニウム、または窒化酸化シリコンなどの絶縁体を用いればよい。絶縁体217は、絶縁体210、絶縁体212、絶縁体214、および絶縁体222に接して設けられるので、絶縁体210または絶縁体216などから水または水素などの不純物が、導電体218を通じて酸化物230に混入するのを抑制することができる。特に、窒化シリコンは水素に対するバリア性が高いので好適である。また、絶縁体210または絶縁体216に含まれる酸素が導電体218に吸収されるのを防ぐことができる。
 絶縁体217は、絶縁体241と同様の方法で形成することができる。例えば、PEALD法を用いて、窒化シリコンを成膜し、異方性エッチングを用いて導電体356に達する開口を形成すればよい。
 層間膜として用いることができる絶縁体としては、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物などがある。
 例えば、層間膜として機能する絶縁体には、比誘電率が低い材料を用いることで、配線間に生じる寄生容量を低減することができる。したがって、絶縁体の機能に応じて、材料を選択するとよい。
 例えば、絶縁体150、絶縁体210、絶縁体352、および絶縁体354等には、比誘電率の低い絶縁体を有することが好ましい。例えば、当該絶縁体は、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンまたは樹脂などを有することが好ましい。または、当該絶縁体は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコンまたは空孔を有する酸化シリコンと、樹脂との積層構造を有することが好ましい。酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、樹脂と組み合わせることで、熱的に安定かつ比誘電率の低い積層構造とすることができる。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネートまたはアクリルなどがある。
 また、酸化物半導体を用いたトランジスタは、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体で囲うことによって、トランジスタの電気特性を安定にすることができる。従って、絶縁体214、絶縁体212および絶縁体350等には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体を用いればよい。
 水素などの不純物および酸素の透過を抑制する機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。具体的には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体として、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウムまたは酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いることができる。
 配線、プラグに用いることができる導電体としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウムなどから選ばれた金属元素を1種以上含む材料を用いることができる。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
 例えば、導電体328、導電体330、導電体356、導電体218、および導電体112等としては、上記の材料で形成される金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。または、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
<酸化物半導体が設けられた層の配線、またはプラグ>
 なお、トランジスタ200に、酸化物半導体を用いる場合、酸化物半導体の近傍に過剰酸素領域を有する絶縁体が設けることがある。その場合、該過剰酸素領域を有する絶縁体と、該過剰酸素領域を有する絶縁体に設ける導電体との間に、バリア性を有する絶縁体を設けることが好ましい。
 例えば、図25では、過剰酸素を有する絶縁体224および絶縁体280と、導電体240との間に、絶縁体241を設けるとよい。絶縁体241と、絶縁体222、絶縁体275、絶縁体282、および絶縁体283とが接して設けられることで、絶縁体224、およびトランジスタ200は、バリア性を有する絶縁体により、封止する構造とすることができる。
 つまり、絶縁体241を設けることで、絶縁体224および絶縁体280が有する過剰酸素が、導電体240に吸収されることを抑制することができる。また、絶縁体241を有することで、不純物である水素が、導電体240を介して、トランジスタ200へ拡散することを抑制することができる。
 なお、絶縁体241としては、水または水素などの不純物、および酸素の拡散を抑制する機能を有する絶縁性材料を用いるとよい。例えば、窒化シリコン、窒化酸化シリコン、酸化アルミニウムまたは酸化ハフニウムなどを用いることが好ましい。特に、窒化シリコンは水素に対するバリア性が高いため好ましい。また、他にも、例えば、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジムまたは酸化タンタルなどの金属酸化物などを用いることができる。
 また、上記実施の形態で示したように、トランジスタ200は、絶縁体212、絶縁体214、絶縁体282、および絶縁体283で封止される構成にしてもよい。このような構成とすることで、絶縁体274、絶縁体150などに含まれる水素が絶縁体280などに混入するのを低減することができる。
 ここで絶縁体283、および絶縁体282には導電体240が、絶縁体214、および絶縁体212には導電体218が貫通しているが、上記の通り、絶縁体241が導電体240に接して設けられ、絶縁体217が導電体218に接して設けられている。これにより、導電体240および導電体218を介して、絶縁体212、絶縁体214、絶縁体282、および絶縁体283の内側に混入する水素を低減することができる。このようにして、絶縁体212、絶縁体214、絶縁体282、絶縁体283、絶縁体241、および絶縁体217でトランジスタ200を封止し、絶縁体274等に含まれる水素などの不純物が外側から混入するのを低減することができる。
<ダイシングライン>
 以下では、大面積基板を半導体素子ごとに分断することによって、複数の半導体装置をチップ状で取り出す場合に設けられるダイシングライン(スクライブライン、分断ライン、又は切断ラインと呼ぶ場合がある)について説明する。分断方法としては、例えば、まず、基板に半導体素子を分断するための溝(ダイシングライン)を形成した後、ダイシングラインにおいて切断し、複数の半導体装置に分断(分割)する場合がある。
 ここで、例えば、図25に示すように、絶縁体283と、絶縁体212とが接する領域がダイシングラインと重なるように設計することが好ましい。つまり、複数のトランジスタ200を有するメモリセルの外縁に設けられるダイシングラインとなる領域近傍において、絶縁体282、絶縁体280、絶縁体275、絶縁体224、絶縁体222、絶縁体216、および絶縁体214に開口を設ける。
 つまり、絶縁体282、絶縁体280、絶縁体275、絶縁体224、絶縁体222、絶縁体216、および絶縁体214に設けた開口において、絶縁体212と、絶縁体283とが接する。例えば、このとき、絶縁体212と、絶縁体283とを同材料及び同方法を用いて形成してもよい。絶縁体212、および絶縁体283を、同材料、および同方法で設けることで、密着性を高めることができる。例えば、窒化シリコンを用いることが好ましい。
 当該構造により、絶縁体212、絶縁体214、絶縁体282、および絶縁体283で、トランジスタ200を包み込むことができる。絶縁体212、絶縁体214、絶縁体282、および絶縁体283の少なくとも一は、酸素、水素、及び水の拡散を抑制する機能を有しているため、本実施の形態に示す半導体素子が形成された回路領域ごとに、基板を分断することにより、複数のチップに加工しても、分断した基板の側面方向から、水素又は水などの不純物が混入し、トランジスタ200に拡散することを防ぐことができる。
 また、当該構造により、絶縁体280、および絶縁体224の過剰酸素が外部に拡散することを防ぐことができる。従って、絶縁体280、および絶縁体224の過剰酸素は、効率的にトランジスタ200におけるチャネルが形成される酸化物に供給される。当該酸素により、トランジスタ200におけるチャネルが形成される酸化物の酸素欠損を低減することができる。これにより、トランジスタ200におけるチャネルが形成される酸化物を欠陥準位密度が低い、安定な特性を有する酸化物半導体とすることができる。つまり、トランジスタ200の電気特性の変動を抑制すると共に、信頼性を向上させることができる。
 なお、図25に示す記憶装置では、容量素子100の形状をプレーナ型としたが、本実施の形態に示す記憶装置はこれに限られるものではない。例えば、図26に示すように、容量素子100の形状をシリンダ型にしてもよい。なお、図26に示す記憶装置は、絶縁体150より下の構成は、図25に示す半導体装置と同様である。
 図26に示す容量素子100は、絶縁体130上の絶縁体150と、絶縁体150上の絶縁体142と、絶縁体150および絶縁体142に形成された開口の中に配置された導電体115と、導電体115および絶縁体142上の絶縁体145と、絶縁体145上の導電体125と、導電体125および絶縁体145上の絶縁体152と、を有する。ここで、絶縁体150および絶縁体142に形成された開口の中に導電体115、絶縁体145、および導電体125の少なくとも一部が配置される。また、絶縁体152上に絶縁体154が配置され、絶縁体154上に導電体153と絶縁体156が配置される。ここで、導電体140は、絶縁体130、絶縁体150、絶縁体142、絶縁体145、絶縁体152、および絶縁体154に形成された開口の中に設けられている。
 導電体115は容量素子100の下部電極として機能し、導電体125は容量素子100の上部電極として機能し、絶縁体145は、容量素子100の誘電体として機能する。容量素子100は、絶縁体150および絶縁体142の開口において、底面だけでなく、側面においても上部電極と下部電極とが誘電体を挟んで対向する構成となっており、単位面積当たりの静電容量を大きくすることができる。よって、当該開口の深さを深くするほど、容量素子100の静電容量を大きくすることができる。このように容量素子100の単位面積当たりの静電容量を大きくすることにより、半導体装置の微細化または高集積化を推し進めることができる。
 絶縁体152は、絶縁体280に用いることができる絶縁体を用いればよい。また、絶縁体142は、絶縁体150の開口を形成するときのエッチングストッパとして機能することが好ましく、絶縁体214に用いることができる絶縁体を用いればよい。
 絶縁体150および絶縁体142に形成された開口を上面から見た形状は、四角形としてもよいし、四角形以外の多角形状としてもよいし、多角形状において角部を湾曲させた形状としてもよいし、楕円を含む円形状としてもよい。ここで、上面視において、当該開口とトランジスタ200の重なる面積が多い方が好ましい。このような構成にすることにより、容量素子100とトランジスタ200を有する半導体装置の占有面積を低減することができる。
 導電体115は、絶縁体142、および絶縁体150に形成された開口に接して配置される。導電体115の上面は、絶縁体142の上面と略一致することが好ましい。また、導電体115の下面は、絶縁体130の開口を介して導電体110に接する。導電体115は、ALD法またはCVD法などを用いて成膜することが好ましく、例えば、導電体205に用いることができる導電体を用いればよい。
 絶縁体145は、導電体115および絶縁体142を覆うように配置される。例えば、ALD法またはCVD法などを用いて絶縁体145を成膜することが好ましい。絶縁体145は、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化ジルコニウム、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウム、酸化ハフニウム、酸化窒化ハフニウム、窒化酸化ハフニウム、窒化ハフニウムなどを用いればよく、積層または単層で設けることができる。例えば、絶縁体145として、酸化ジルコニウム、酸化アルミニウム、酸化ジルコニウムの順番で積層された絶縁膜を用いることができる。
 また、絶縁体145には、酸化窒化シリコンなどの絶縁耐力が大きい材料、または高誘電率(high−k)材料を用いることが好ましい。または、絶縁耐力が大きい材料と高誘電率(high−k)材料の積層構造を用いてもよい。
 なお、高誘電率(high−k)材料(高い比誘電率の材料)の絶縁体としては、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する窒化物などがある。このようなhigh−k材料を用いることで、絶縁体145を厚くしても容量素子100の静電容量を十分確保することができる。絶縁体145を厚くすることにより、導電体115と導電体125の間に生じるリーク電流を抑制することができる。
 一方、絶縁耐力が大きい材料としては、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、樹脂などがある。例えば、ALD法を用いて成膜した窒化シリコン(SiN)、PEALD法を用いて成膜した酸化シリコン(SiO)、ALD法を用いて成膜した窒化シリコン(SiN)の順番で積層された絶縁膜を用いることができる。このような、絶縁耐力が大きい絶縁体を用いることで、絶縁耐力が向上し、容量素子100の静電破壊を抑制することができる。
 導電体125は、絶縁体142および絶縁体150に形成された開口を埋めるように配置される。また、導電体125は、導電体140、および導電体153を介して配線1005と電気的に接続している。導電体125は、ALD法またはCVD法などを用いて成膜することが好ましく、例えば、導電体205に用いることができる導電体を用いればよい。
 また、導電体153は、絶縁体154上に設けられており、絶縁体156に覆われている。導電体153は、導電体112に用いることができる導電体を用いればよく、絶縁体156は、絶縁体152に用いることができる絶縁体を用いればよい。ここで、導電体153は導電体140の上面に接しており、容量素子100、トランジスタ200、またはトランジスタ300の端子として機能する。
[記憶装置2]
 本発明の一態様に係る半導体装置(記憶装置)の一例を図27Aおよび図27Bに示す。
<メモリデバイスの構成例1>
 図27Aは、メモリデバイス290を有する半導体装置の断面図である。図27Aに示すメモリデバイス290は、図1A乃至図1Dに示すトランジスタ200に加えて、容量デバイス292を有する。図27Aは、トランジスタ200のチャネル長方向の断面図に相当する。
 容量デバイス292は、導電体242bと、導電体242b上に設けられた絶縁体271bおよび絶縁体273bと、導電体242bの側面に接して設けられた絶縁体272bと、絶縁体273b、および絶縁体272bを覆って設けられた絶縁体275と、絶縁体275上の導電体294と、を有する。すなわち、容量デバイス292は、MIM(Metal−Insulator−Metal)容量を構成している。なお、容量デバイス292が有する一対の電極の一方、すなわち導電体242bは、トランジスタのソース電極を兼ねることができる。また、容量デバイス292が有する誘電体層は、トランジスタに設けられる保護層、すなわち絶縁体271、絶縁体272、および絶縁体275を兼ねることができる。したがって、容量デバイス292の作製工程において、トランジスタの作製工程の一部を兼用することができるため、生産性の高い半導体装置とすることができる。また、容量デバイス292が有する一対の電極の一方、すなわち導電体242bは、トランジスタのソース電極と兼ねているため、トランジスタと、容量デバイスとが配置される面積を低減させることが可能となる。
 なお、導電体294としては、例えば、導電体242に用いることのできる材料を用いればよい。
<メモリデバイスの構成例2>
 図27Bは、図27Aに示す構造とは異なる、メモリデバイス290を有する半導体装置の断面図である。図27Bに示すメモリデバイス290は、図22A乃至図22Dに示すトランジスタ200に加えて、容量デバイス292を有する。ここで、図27Bに示す容量デバイス292の一部は、図27Aに示す容量デバイス292と異なり、絶縁体280、絶縁体275、絶縁体273b、および絶縁体271bに形成された開口の中に設けられる。なお、図27Bは、トランジスタ200のチャネル長方向の断面図に相当する。
 容量デバイス292は、導電体242bと、導電体242b上に設けられた絶縁体293と、絶縁体293上に設けられた導電体294と、を有する。ここで、絶縁体293および導電体294は、絶縁体280、絶縁体275、絶縁体273b、および絶縁体271bに形成された開口の中に配置されている。絶縁体293は、当該開口の底面および側壁に接して設けられている。つまり、絶縁体293は、導電体242bの上面、絶縁体271bの側面、絶縁体273bの側面、絶縁体275aの側面、絶縁体275bの側面、および絶縁体280の側面に接する。また、絶縁体293は、当該開口の形状に沿って、凹部を形成するように設けられている。導電体294は、当該凹部を埋め込むように、絶縁体293の上面および側面に接して配置される。なお、絶縁体293および導電体294の上面の高さは、絶縁体280、絶縁体250、および導電体260の上面の高さと概略一致する場合がある。
 ここで、導電体242bは容量デバイス292の下部電極として機能し、導電体294は容量デバイス292の上部電極として機能し、絶縁体293は容量デバイス292の誘電体として機能する。このように、容量デバイス292は、MIM容量を構成している。なお、容量デバイス292が有する一対の電極の一方、すなわち導電体242bは、トランジスタのソース電極を兼ねることができる。したがって、容量デバイス292の作製工程において、トランジスタの作製工程の一部を兼用することができるため、生産性の高い半導体装置とすることができる。また、トランジスタ200の構成とは別に絶縁体293を設けることができるので、容量デバイス292に求められる性能に合わせて、絶縁体293の構造および材料を適宜選択することができる。また、容量デバイス292が有する一対の電極の一方、すなわち導電体242bは、トランジスタのソース電極と兼ねているため、トランジスタと、容量デバイスとが配置される面積を低減させることが可能となる。
 絶縁体293は、高誘電率(high−k)材料を用いることが好ましい。高誘電率(high−k)材料(高い比誘電率の材料)の絶縁体としては、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウム、酸化ハフニウム、酸化窒化ハフニウム、窒化酸化ハフニウム、窒化ハフニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物またはシリコンおよびハフニウムを有する窒化物などがある。また、絶縁体293として、これらの高誘電率材料の膜を積層したものを用いてもよい。例えば、絶縁体293として、酸化ジルコニウム、酸化アルミニウム、酸化ジルコニウムの順番で積層された絶縁膜を用いることができる。
 また、導電体294としては、例えば、導電体260に用いることのできる材料を用いればよい。また、導電体294は、導電体260と同様に積層構造にしてもよい。
 なお、絶縁体293、および導電体294の形成は、絶縁体282の成膜前、つまり、図15に示す工程の前に行えばよい。絶縁体293および導電体294の形成は、絶縁体250および導電体260の形成と同様の方法で行うことができる。つまり、絶縁体280、絶縁体275、絶縁体273b、および絶縁体271bに開口を形成し、当該開口の中に埋め込むように絶縁体293および導電体294となる積層膜を成膜し、当該積層膜の一部を、CMP処理を用いて除去して、絶縁体293および導電体294を形成すればよい。
<メモリデバイスの変形例>
 以下では、図28A、図28B、図29、および図30を用いて、先の<メモリデバイスの構成例1>で示したものとは異なる、本発明の一態様に係るトランジスタ200、および容量デバイス292を有する半導体装置の一例について説明する。なお図28A、図28B、図29、および図30に示す半導体装置において、先の実施の形態および<メモリデバイスの構成例1>に示した半導体装置(図27A参照。)を構成する構造と同機能を有する構造には、同符号を付記する。なお、本項目において、トランジスタ200、および容量デバイス292の構成材料については、先の実施の形態および<メモリデバイスの構成例1>で詳細に説明した材料を用いることができる。また、図28A、図28B、図29、および図30などでは、メモリデバイスとして、図27Aに示すメモリデバイスを用いているが、これに限られるものではない。例えば、図27Bに示すメモリデバイスなどを用いてもよい。
<<メモリデバイスの変形例1>>
 以下では、本発明の一態様に係るトランジスタ200a、トランジスタ200b、容量デバイス292a、および容量デバイス292bを有する半導体装置600の一例について図28Aを用いて説明する。
 図28Aは、トランジスタ200a、トランジスタ200b、容量デバイス292a、および容量デバイス292bを有する半導体装置600のチャネル長方向の断面図である。ここで、容量デバイス292aは、導電体242aと、導電体242a上に設けられた絶縁体271a、および導電体242aの側面に接して設けられた絶縁体272aと、絶縁体271a、および絶縁体272aを覆って設けられた導電体294aと、を有する。また、容量デバイス292bは、導電体242bと、導電体242b上に設けられた絶縁体271b、および導電体242bの側面に接して設けられた絶縁体272bと、絶縁体271b、および絶縁体272bを覆って設けられた導電体294bと、を有する。
 半導体装置600は、図28Aに示すように、A3−A4の一点鎖線を対称軸とした線対称の構成となっている。トランジスタ200aのソース電極またはドレイン電極の一方と、トランジスタ200bのソース電極またはドレイン電極の一方は、導電体242cが兼ねる構成となっている。なお、導電体242c上には絶縁体271cが設けられ、絶縁体271c上に絶縁体273cが設けられる。また、配線として機能する導電体246と、トランジスタ200a、およびトランジスタ200bとの接続もプラグとして機能する導電体240が、兼ねる構成となっている。このように、2つのトランジスタと、2つの容量デバイスと、配線とプラグとの接続を上述の構成とすることで、微細化または高集積化が可能な半導体装置を提供することができる。
 トランジスタ200a、トランジスタ200b、容量デバイス292a、および容量デバイス292bのそれぞれの構成および効果については、図1A乃至図1D、および図27Aに示す半導体装置の構成例を参酌することができる。
<<メモリデバイスの変形例2>>
 上記においては、半導体装置の構成例としてトランジスタ200a、トランジスタ200b、容量デバイス292aおよび容量デバイス292bを挙げたが、本実施の形態に示す半導体装置はこれに限られるものではない。例えば、図28Bに示すように半導体装置600と、半導体装置600と同様の構成を有する半導体装置が容量部を介して接続されている構成としてもよい。本明細書では、トランジスタ200a、トランジスタ200b、容量デバイス292a、および容量デバイス292bを有する半導体装置をセルと称する。トランジスタ200a、トランジスタ200b、容量デバイス292aおよび容量デバイス292bの構成については、上述のトランジスタ200a、トランジスタ200b、容量デバイス292aおよび容量デバイス292bに係る記載を参酌することができる。
 図28Bは、トランジスタ200a、トランジスタ200b、容量デバイス292a、および容量デバイス292bを有する半導体装置600と、半導体装置600と同様の構成を有するセルが容量部を介して接続されている断面図である。
 図28Bに示すように、半導体装置600が有する容量デバイス292bの一方の電極として機能する導電体294bは、半導体装置600と同様の構成を有する半導体装置601が有する容量デバイスの一方の電極を兼ねる構成となっている。また、図示しないが、半導体装置600が有する容量デバイス292aの一方の電極として機能する導電体294aが、半導体装置600の左側、つまり図28Bにおいて、A1方向に隣接する半導体装置の容量デバイスの一方の電極を兼ねている。また、半導体装置601の右側、つまり、図28Bにおいて、A2方向のセルについても同様の構成となっている。つまりセルアレイ(メモリデバイス層ともいう。)を構成することができる。この様なセルアレイの構成とすることで、隣り合うセルの間隔を小さくすることができるので、セルアレイの投影面積を小さくすることができ、高集積化が可能となる。また、図28Bに示すセルアレイの構成を、マトリクス状に配置することで、マトリクス状のセルアレイを構成することができる。
 上述のように、本実施の形態に示す構成で、トランジスタ200a、トランジスタ200b、容量デバイス292aおよび容量デバイス292bを形成することにより、セルの面積を低減し、セルアレイを有する半導体装置の微細化または高集積化を図ることができる。
 また、上記セルアレイを平面のみでなく積層する構成としてもよい。図29にセルアレイ610をn層積層する構成の断面図を示す。図29に示すように、複数のセルアレイ(セルアレイ610_1乃至セルアレイ610_n)を積層することにより、セルアレイの占有面積を増やすことなく、セルを集積して配置することができる。つまり、3Dセルアレイを構成することができる。
<メモリデバイスの変形例3>
 図30は、メモリユニット470がトランジスタ200Tを有するトランジスタ層413と、4層のメモリデバイス層415(メモリデバイス層415_1乃至メモリデバイス層415_4)を有する例を示す。
 メモリデバイス層415_1乃至メモリデバイス層415_4は、それぞれ複数のメモリデバイス420を有する。
 メモリデバイス420は、導電体424、および導電体205を介して異なるメモリデバイス層415が有するメモリデバイス420、およびトランジスタ層413が有するトランジスタ200Tと電気的に接続する。
 メモリユニット470は、絶縁体212、絶縁体214、絶縁体282、および絶縁体283により封止される(便宜的に、以下では封止構造と呼ぶ)。絶縁体283の周囲には絶縁体274が設けられる。また、絶縁体274、絶縁体283、および絶縁体212には導電体440が設けられ、素子層411と電気的に接続する。
 また、封止構造の内部には、絶縁体280が設けられる。絶縁体280は、加熱により酸素を放出する機能を有する。または、絶縁体280は、過剰酸素領域を有する。
 なお、絶縁体212、および絶縁体283は、水素に対するバリア性が高い機能を有する材料であると好適である。また、絶縁体214、および絶縁体282は、水素を捕獲、または水素を固着する機能を有する材料であると好適である。
 例えば、上記水素に対するバリア性が高い機能を有する材料は、窒化シリコン、または窒化酸化シリコンなどが挙げられる。また、上記水素を捕獲、または水素を固着する機能を有する材料は、酸化アルミニウム、酸化ハフニウム、並びにアルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などが挙げられる。
 なお、絶縁体212、絶縁体214、絶縁体282、および絶縁体283に用いる材料の結晶構造については、特に限定は無いが、非晶質または結晶性を有する構造とすればよい。例えば、水素を捕獲、または水素を固着する機能を有する材料として、非晶質の酸化アルミニウム膜を用いると好適である。非晶質の酸化アルミニウムは、結晶性の高い酸化アルミニウムよりも、水素の捕獲、および固着する量が大きい場合がある。
 また、トランジスタ層413とメモリデバイス層415の間、または各メモリデバイス層415の間にも、絶縁体282、および絶縁体214が設けられることが好ましい。また、絶縁体282、および絶縁体214の間に絶縁体296が設けられることが好ましい。絶縁体296は、絶縁体283と同様の材料を用いることができる。または、酸化シリコン、酸化窒化シリコンを用いることができる。または、公知の絶縁性材料を用いてもよい。
 ここで、絶縁体280中の過剰酸素は、絶縁体280と接する酸化物半導体中の水素の拡散に対し、下記のようなモデルが考えられる。
 酸化物半導体中に存在する水素は、酸化物半導体に接する絶縁体280を介して、他の構造体へと拡散する。当該水素の拡散により、絶縁体280中の過剰酸素が酸化物半導体中の水素と反応しOH結合となり、絶縁体280中を拡散する。OH結合を有した水素原子は、水素を捕獲、または水素を固着する機能を有する材料(代表的には、絶縁体282)に到達した際に、水素原子は絶縁体282中の原子(例えば、金属原子など)と結合した酸素原子と反応し、絶縁体282中に捕獲、または固着する。一方、OH結合を有していた過剰酸素の酸素原子は、過剰酸素として絶縁体280中に残ると推測される。つまり、当該水素の拡散において、絶縁体280中の過剰酸素が、橋渡し的な役割を担う蓋然性が高い。
 上記のモデルを満たすためには、半導体装置の作製プロセスが重要な要素の一つとなる。
 一例として、酸化物半導体に、過剰酸素を有する絶縁体280を形成し、その後、絶縁体282を形成する。そのあとに、加熱処理を行うことが好ましい。当該加熱処理は、具体的には、酸素を含む雰囲気、窒素を含む雰囲気、または酸素と窒素の混合雰囲気にて、350℃以上、好ましくは400℃以上の温度で行う。加熱処理の時間は、1時間以上、好ましくは4時間以上、さらに好ましくは8時間以上とする。
 上記の加熱処理によって、酸化物半導体中の水素が、絶縁体280、および絶縁体282を介して、外方に拡散することができる。つまり、酸化物半導体、及び当該酸化物半導体近傍に存在する水素の絶対量を低減することができる。
 上記加熱処理のあと、絶縁体283を形成する。絶縁体283は、水素に対するバリア性が高い機能を有する材料であるため、外方に拡散させた水素、または外部に存在する水素を、内部、具体的には、酸化物半導体、または絶縁体280側に入り込むのを抑制することができる。
 なお、上記の加熱処理については、絶縁体282を形成したあとに行う構成について、例示したが、これに限定されない。例えば、トランジスタ層413の形成後、またはメモリデバイス層415_1乃至メモリデバイス層415_3の形成後に、それぞれ上記加熱処理を行っても良い。また、上記加熱処理によって、水素を外方に拡散させる際には、トランジスタ層413の上方または横方向に水素が拡散される。同様に、メモリデバイス層415_1乃至メモリデバイス層415_3形成後に加熱処理をする場合においては、水素は上方または横方向に拡散される。
 なお、上記の作製プロセスとすることで、絶縁体212と、絶縁体283と、が接着することで、上述した封止構造が形成される。
 以上のように、上記の構造、及び上記の作製プロセスとすることで、水素濃度が低減された酸化物半導体を用いた半導体装置を提供することができる。従って、信頼性が良好な半導体装置を提供することができる。また、本発明の一態様により、良好な電気特性を有する半導体装置を提供することができる。
 以上、本実施の形態に示す構成、方法などは、本実施の形態に示す他の構成、方法、他の実施の形態に示す構成、方法、または実施例に示す構成、方法などと適宜組み合わせて用いることができる。
(実施の形態3)
 本実施の形態では、図31A、図31Bおよび図32A乃至図32Hを用いて、本発明の一態様に係る、酸化物を半導体に用いたトランジスタ(以下、OSトランジスタと呼ぶ場合がある。)、および容量素子が適用されている記憶装置(以下、OSメモリ装置と呼ぶ場合がある。)について説明する。OSメモリ装置は、少なくとも容量素子と、容量素子の充放電を制御するOSトランジスタを有する記憶装置である。OSトランジスタのオフ電流は極めて小さいので、OSメモリ装置は優れた保持特性をもち、不揮発性メモリとして機能させることができる。
<記憶装置の構成例>
 図31AにOSメモリ装置の構成の一例を示す。記憶装置1400は、周辺回路1411、およびメモリセルアレイ1470を有する。周辺回路1411は、行回路1420、列回路1430、出力回路1440、およびコントロールロジック回路1460を有する。
 列回路1430は、例えば、列デコーダ、プリチャージ回路、センスアンプ、書き込み回路等を有する。プリチャージ回路は、配線をプリチャージする機能を有する。センスアンプは、メモリセルから読み出されたデータ信号を増幅する機能を有する。なお、上記配線は、メモリセルアレイ1470が有するメモリセルに接続されている配線であり、詳しくは後述する。増幅されたデータ信号は、出力回路1440を介して、データ信号RDATAとして記憶装置1400の外部に出力される。また、行回路1420は、例えば、行デコーダ、ワード線ドライバ回路等を有し、アクセスする行を選択することができる。
 記憶装置1400には、外部から電源電圧として低電源電圧(VSS)、周辺回路1411用の高電源電圧(VDD)、メモリセルアレイ1470用の高電源電圧(VIL)が供給される。また、記憶装置1400には、制御信号(CE、WE、RE)、アドレス信号ADDR、データ信号WDATAが外部から入力される。アドレス信号ADDRは、行デコーダおよび列デコーダに入力され、データ信号WDATAは書き込み回路に入力される。
 コントロールロジック回路1460は、外部から入力される制御信号(CE、WE、RE)を処理して、行デコーダ、列デコーダの制御信号を生成する。制御信号CEは、チップイネーブル信号であり、制御信号WEは、書き込みイネーブル信号であり、制御信号REは、読み出しイネーブル信号である。コントロールロジック回路1460が処理する信号は、これに限定されるものではなく、必要に応じて、他の制御信号を入力すればよい。
 メモリセルアレイ1470は、行列状に配置された、複数個のメモリセルMCと、複数の配線を有する。なお、メモリセルアレイ1470と行回路1420とを接続している配線の数は、メモリセルMCの構成、一列に有するメモリセルMCの数などによって決まる。また、メモリセルアレイ1470と列回路1430とを接続している配線の数は、メモリセルMCの構成、一行に有するメモリセルMCの数などによって決まる。
 なお、図31Aにおいて、周辺回路1411とメモリセルアレイ1470を同一平面上に形成する例について示したが、本実施の形態はこれに限られるものではない。例えば、図31Bに示すように、周辺回路1411の一部の上に、メモリセルアレイ1470が重なるように設けられてもよい。例えば、メモリセルアレイ1470の下に重なるように、センスアンプを設ける構成にしてもよい。
 図32A乃至図32Hに上述のメモリセルMCに適用できるメモリセルの構成例について説明する。
[DOSRAM]
 図32A乃至図32Cに、DRAMのメモリセルの回路構成例を示す。本明細書等において、1OSトランジスタ1容量素子型のメモリセルを用いたDRAMを、DOSRAM(Dynamic Oxide Semiconductor Random Access Memory)と呼ぶ場合がある。図32Aに示す、メモリセル1471は、トランジスタM1と、容量素子CAと、を有する。なお、トランジスタM1は、ゲート(トップゲートと呼ぶ場合がある。)、及びバックゲートを有する。
 トランジスタM1の第1端子は、容量素子CAの第1端子と接続され、トランジスタM1の第2端子は、配線BILと接続され、トランジスタM1のゲートは、配線WOLと接続され、トランジスタM1のバックゲートは、配線BGLと接続されている。容量素子CAの第2端子は、配線CALと接続されている。
 配線BILは、ビット線として機能し、配線WOLは、ワード線として機能する。配線CALは、容量素子CAの第2端子に所定の電位を印加するための配線として機能する。データの書き込み時、及び読み出し時において、配線CALには、低レベル電位を印加するのが好ましい。配線BGLは、トランジスタM1のバックゲートに電位を印加するための配線として機能する。配線BGLに任意の電位を印加することによって、トランジスタM1のしきい値電圧を増減することができる。
 ここで、図32Aに示すメモリセル1471は、図27に示す記憶装置に対応している。つまり、トランジスタM1はトランジスタ200に、容量素子CAは容量デバイス292に対応している。
 また、メモリセルMCは、メモリセル1471に限定されず、回路構成の変更を行うことができる。例えば、メモリセルMCは、図32Bに示すメモリセル1472のように、トランジスタM1のバックゲートが、配線BGLでなく、配線WOLと接続される構成にしてもよい。また、例えば、メモリセルMCは、図32Cに示すメモリセル1473ように、シングルゲート構造のトランジスタ、つまりバックゲートを有さないトランジスタM1で構成されたメモリセルとしてもよい。
 上記実施の形態に示す半導体装置をメモリセル1471等に用いる場合、トランジスタM1としてトランジスタ200を用い、容量素子CAとして容量素子100を用いることができる。トランジスタM1としてOSトランジスタを用いることによって、トランジスタM1のリーク電流を非常に小さくすることができる。つまり、書き込んだデータをトランジスタM1によって長時間保持することができるため、メモリセルのリフレッシュの頻度を少なくすることができる。また、メモリセルのリフレッシュ動作を不要にすることができる。また、リーク電流が非常に小さいため、メモリセル1471、メモリセル1472、メモリセル1473に対して多値データ、又はアナログデータを保持することができる。
 また、DOSRAMにおいて、上記のように、メモリセルアレイ1470の下に重なるように、センスアンプを設ける構成にすると、ビット線を短くすることができる。これにより、ビット線容量が小さくなり、メモリセルの保持容量を低減することができる。
[NOSRAM]
 図32D乃至図32Gに、2トランジスタ1容量素子のゲインセル型のメモリセルの回路構成例を示す。図32Dに示す、メモリセル1474は、トランジスタM2と、トランジスタM3と、容量素子CBと、を有する。なお、トランジスタM2は、トップゲート(単にゲートと呼ぶ場合がある。)、及びバックゲートを有する。本明細書等において、トランジスタM2にOSトランジスタを用いたゲインセル型のメモリセルを有する記憶装置を、NOSRAM(Nonvolatile Oxide Semiconductor RAM)と呼ぶ場合がある。
 トランジスタM2の第1端子は、容量素子CBの第1端子と接続され、トランジスタM2の第2端子は、配線WBLと接続され、トランジスタM2のゲートは、配線WOLと接続され、トランジスタM2のバックゲートは、配線BGLと接続されている。容量素子CBの第2端子は、配線CALと接続されている。トランジスタM3の第1端子は、配線RBLと接続され、トランジスタM3の第2端子は、配線SLと接続され、トランジスタM3のゲートは、容量素子CBの第1端子と接続されている。
 配線WBLは、書き込みビット線として機能し、配線RBLは、読み出しビット線として機能し、配線WOLは、ワード線として機能する。配線CALは、容量素子CBの第2端子に所定の電位を印加するための配線として機能する。データの書き込み時、データ保持の最中、データの読み出し時において、配線CALには、低レベル電位を印加するのが好ましい。配線BGLは、トランジスタM2のバックゲートに電位を印加するための配線として機能する。配線BGLに任意の電位を印加することによって、トランジスタM2のしきい値電圧を増減することができる。
 ここで、図32Dに示すメモリセル1474は、図25に示す記憶装置に対応している。つまり、トランジスタM2はトランジスタ200に、容量素子CBは容量素子100に、トランジスタM3はトランジスタ300に、配線WBLは配線1003に、配線WOLは配線1004に、配線BGLは配線1006に、配線CALは配線1005に、配線RBLは配線1002に、配線SLは配線1001に対応している。
 また、メモリセルMCは、メモリセル1474に限定されず、回路の構成を適宜変更することができる。例えば、メモリセルMCは、図32Eに示すメモリセル1475のように、トランジスタM2のバックゲートが、配線BGLでなく、配線WOLと接続される構成にしてもよい。また、例えば、メモリセルMCは、図32Fに示すメモリセル1476のように、シングルゲート構造のトランジスタ、つまりバックゲートを有さないトランジスタM2で構成されたメモリセルとしてもよい。また、例えば、メモリセルMCは、図32Gに示すメモリセル1477のように、配線WBLと配線RBLを一本の配線BILとしてまとめた構成であってもよい。
 上記実施の形態に示す半導体装置をメモリセル1474等に用いる場合、トランジスタM2としてトランジスタ200を用い、トランジスタM3としてトランジスタ300を用い、容量素子CBとして容量素子100を用いることができる。トランジスタM2としてOSトランジスタを用いることによって、トランジスタM2のリーク電流を非常に小さくすることができる。これにより、書き込んだデータをトランジスタM2によって長時間保持することができるため、メモリセルのリフレッシュの頻度を少なくすることができる。また、メモリセルのリフレッシュ動作を不要にすることができる。また、リーク電流が非常に小さいため、メモリセル1474に多値データ、又はアナログデータを保持することができる。メモリセル1475乃至メモリセル1477も同様である。
 なお、トランジスタM3は、チャネル形成領域にシリコンを有するトランジスタ(以下、Siトランジスタと呼ぶ場合がある)であってもよい。Siトランジスタの導電型は、nチャネル型としてもよいし、pチャネル型としてもよい。Siトランジスタは、OSトランジスタよりも電界効果移動度が高くなる場合がある。よって、読み出しトランジスタとして機能するトランジスタM3として、Siトランジスタを用いてもよい。また、トランジスタM3にSiトランジスタを用いることで、トランジスタM3の上に積層してトランジスタM2を設けることができるので、メモリセルの占有面積を低減し、記憶装置の高集積化を図ることができる。
 また、トランジスタM3はOSトランジスタであってもよい。トランジスタM2およびトランジスタM3にOSトランジスタを用いた場合、メモリセルアレイ1470をn型トランジスタのみを用いて回路を構成することができる。
 また、図32Hに3トランジスタ1容量素子のゲインセル型のメモリセルの一例を示す。図32Hに示すメモリセル1478は、トランジスタM4乃至トランジスタM6、および容量素子CCを有する。容量素子CCは適宜設けられる。メモリセル1478は、配線BIL、配線RWL、配線WWL、配線BGL、および配線GNDLに電気的に接続されている。配線GNDLは低レベル電位を与える配線である。なお、メモリセル1478を、配線BILに代えて、配線RBL、配線WBLに電気的に接続してもよい。
 トランジスタM4は、バックゲートを有するOSトランジスタであり、バックゲートは配線BGLに電気的に接続されている。なお、トランジスタM4のバックゲートとゲートとを互いに電気的に接続してもよい。あるいは、トランジスタM4はバックゲートを有さなくてもよい。
 なお、トランジスタM5、トランジスタM6はそれぞれ、nチャネル型Siトランジスタまたはpチャネル型Siトランジスタでもよい。或いは、トランジスタM4乃至トランジスタM6がOSトランジスタでもよい、この場合、メモリセルアレイ1470をn型トランジスタのみを用いて回路を構成することができる。
 上記実施の形態に示す半導体装置をメモリセル1478に用いる場合、トランジスタM4としてトランジスタ200を用い、トランジスタM5、トランジスタM6としてトランジスタ300を用い、容量素子CCとして容量素子100を用いることができる。トランジスタM4としてOSトランジスタを用いることによって、トランジスタM4のリーク電流を非常に小さくすることができる。
 なお、本実施の形態に示す、周辺回路1411、メモリセルアレイ1470等の構成は、上記に限定されるものではない。これらの回路、および当該回路に接続される配線、回路素子等の、配置または機能は、必要に応じて、変更、削除、または追加してもよい。
 一般に、コンピュータなどの半導体装置では、用途に応じて様々な記憶装置(メモリ)が用いられる。図33に、各種の記憶装置を階層ごとに示す。上層に位置する記憶装置ほど速いアクセス速度が求められ、下層に位置する記憶装置ほど大きな記憶容量と高い記録密度が求められる。図33では、最上層から順に、CPUなどの演算処理装置にレジスタとして混載されるメモリ、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)、3D NANDメモリを示している。
 CPUなどの演算処理装置にレジスタとして混載されるメモリは、演算結果の一時保存などに用いられるため、演算処理装置からのアクセス頻度が高い。よって、記憶容量よりも速い動作速度が求められる。また、レジスタは演算処理装置の設定情報などを保持する機能も有する。
 SRAMは、例えばキャッシュに用いられる。キャッシュは、メインメモリに保持されている情報の一部を複製して保持する機能を有する。使用頻繁が高いデータをキャッシュに複製しておくことで、データへのアクセス速度を高めることができる。
 DRAMは、例えばメインメモリに用いられる。メインメモリは、ストレージから読み出されたプログラムやデータを保持する機能を有する。DRAMの記録密度は、おおよそ0.1乃至0.3Gbit/mmである。
 3D NANDメモリは、例えばストレージに用いられる。ストレージは、長期保存が必要なデータや、演算処理装置で使用する各種のプログラムなどを保持する機能を有する。よって、ストレージには動作速度よりも大きな記憶容量と高い記録密度が求められる。ストレージに用いられる記憶装置の記録密度は、おおよそ0.6乃至6.0Gbit/mmである。
 本発明の一態様の記憶装置は、動作速度が速く、長期間のデータ保持が可能である。本発明の一態様の記憶装置は、キャッシュが位置する階層とメインメモリが位置する階層の双方を含む境界領域901に位置する記憶装置として好適に用いることができる。また、本発明の一態様の記憶装置は、メインメモリが位置する階層とストレージが位置する階層の双方を含む境界領域902に位置する記憶装置として好適に用いることができる。
 以上、本実施の形態に示す構成、方法などは、本実施の形態に示す他の構成、方法、他の実施の形態に示す構成、方法、または実施例に示す構成、方法などと適宜組み合わせて用いることができる。
(実施の形態4)
 本実施の形態では、図34Aおよび図34Bを用いて、本発明の半導体装置が実装されたチップ1200の一例を示す。チップ1200には、複数の回路(システム)が実装されている。このように、複数の回路(システム)を一つのチップに集積する技術を、システムオンチップ(System on Chip:SoC)と呼ぶ場合がある。
 図34Aに示すように、チップ1200は、CPU1211、GPU1212、一または複数のアナログ演算部1213、一または複数のメモリコントローラ1214、一または複数のインターフェース1215、一または複数のネットワーク回路1216等を有する。
 チップ1200には、バンプ(図示しない)が設けられ、図34Bに示すように、プリント基板(Printed Circuit Board:PCB)1201の第1の面と接続する。また、PCB1201の第1の面の裏面には、複数のバンプ1202が設けられており、マザーボード1203と接続する。
 マザーボード1203には、DRAM1221、フラッシュメモリ1222等の記憶装置が設けられていてもよい。例えば、DRAM1221に先の実施の形態に示すDOSRAMを用いることができる。また、例えば、フラッシュメモリ1222に先の実施の形態に示すNOSRAMを用いることができる。
 CPU1211は、複数のCPUコアを有することが好ましい。また、GPU1212は、複数のGPUコアを有することが好ましい。また、CPU1211、およびGPU1212は、それぞれ一時的にデータを格納するメモリを有していてもよい。または、CPU1211、およびGPU1212に共通のメモリが、チップ1200に設けられていてもよい。該メモリには、前述したNOSRAMや、DOSRAMを用いることができる。また、GPU1212は、多数のデータの並列計算に適しており、画像処理や積和演算に用いることができる。GPU1212に、本発明の酸化物半導体を用いた画像処理回路や、積和演算回路を設けることで、画像処理、および積和演算を低消費電力で実行することが可能になる。
 また、CPU1211、およびGPU1212が同一チップに設けられていることで、CPU1211およびGPU1212間の配線を短くすることができ、CPU1211からGPU1212へのデータ転送、CPU1211、およびGPU1212が有するメモリ間のデータ転送、およびGPU1212での演算後に、GPU1212からCPU1211への演算結果の転送を高速に行うことができる。
 アナログ演算部1213はA/D(アナログ/デジタル)変換回路、およびD/A(デジタル/アナログ)変換回路の一、または両方を有する。また、アナログ演算部1213に上記積和演算回路を設けてもよい。
 メモリコントローラ1214は、DRAM1221のコントローラとして機能する回路、およびフラッシュメモリ1222のインターフェースとして機能する回路を有する。
 インターフェース1215は、表示装置、スピーカー、マイクロフォン、カメラ、コントローラなどの外部接続機器とのインターフェース回路を有する。コントローラとは、マウス、キーボード、ゲーム用コントローラなどを含む。このようなインターフェースとして、USB(Universal Serial Bus)、HDMI(登録商標)(High−Definition Multimedia Interface)などを用いることができる。
 ネットワーク回路1216は、LAN(Local Area Network)などとの接続を制御する機能を有する。また、ネットワークセキュリティー用の回路を有してもよい。
 チップ1200には、上記回路(システム)を同一の製造プロセスで形成することが可能である。そのため、チップ1200に必要な回路の数が増えても、製造プロセスを増やす必要が無く、チップ1200を低コストで作製することができる。
 GPU1212を有するチップ1200が設けられたPCB1201、DRAM1221、およびフラッシュメモリ1222が設けられたマザーボード1203は、GPUモジュール1204と呼ぶことができる。
 GPUモジュール1204は、SoC技術を用いたチップ1200を有しているため、そのサイズを小さくすることができる。また、画像処理に優れていることから、スマートフォン、タブレット端末、ラップトップPC、携帯型(持ち出し可能な)ゲーム機などの携帯型電子機器に用いることが好適である。また、GPU1212を用いた積和演算回路により、ディープニューラルネットワーク(DNN)、畳み込みニューラルネットワーク(CNN)、再帰型ニューラルネットワーク(RNN)、自己符号化器、深層ボルツマンマシン(DBM)、深層信念ネットワーク(DBN)などの手法を実行することができるため、チップ1200をAIチップ、またはGPUモジュール1204をAIシステムモジュールとして用いることができる。
 以上、本実施の形態に示す構成、方法などは、本実施の形態に示す他の構成、方法、他の実施の形態に示す構成、方法、または実施例に示す構成、方法などと適宜組み合わせて用いることができる。
(実施の形態5)
 本実施の形態は、上記実施の形態に示す記憶装置などが組み込まれた電子部品および電子機器の一例を示す。
<電子部品>
 まず、記憶装置720が組み込まれた電子部品の例を、図35Aおよび図35Bを用いて説明を行う。
 図35Aに電子部品700および電子部品700が実装された基板(実装基板704)の斜視図を示す。図35Aに示す電子部品700は、モールド711内に記憶装置720を有している。図35Aは、電子部品700の内部を示すために、一部を省略している。電子部品700は、モールド711の外側にランド712を有する。ランド712は電極パッド713と電気的に接続され、電極パッド713は記憶装置720とワイヤ714によって電気的に接続されている。電子部品700は、例えばプリント基板702に実装される。このような電子部品が複数組み合わされて、それぞれがプリント基板702上で電気的に接続されることで実装基板704が完成する。
 記憶装置720は、駆動回路層721と、記憶回路層722と、を有する。
 図35Bに電子部品730の斜視図を示す。電子部品730は、SiP(System in package)またはMCM(Multi Chip Module)の一例である。電子部品730は、パッケージ基板732(プリント基板)上にインターポーザ731が設けられ、インターポーザ731上に半導体装置735、および複数の記憶装置720が設けられている。
 電子部品730では、記憶装置720を広帯域メモリ(HBM:High Bandwidth Memory)として用いる例を示している。また、半導体装置735は、CPU、GPU、FPGAなどの集積回路(半導体装置)を用いることができる。
 パッケージ基板732は、セラミック基板、プラスチック基板、ガラスエポキシ基板などを用いることができる。インターポーザ731は、シリコンインターポーザ、樹脂インターポーザなどを用いることができる。
 インターポーザ731は、複数の配線を有し、端子ピッチの異なる複数の集積回路を電気的に接続する機能を有する。複数の配線は、単層または多層で設けられる。また、インターポーザ731は、インターポーザ731上に設けられた集積回路をパッケージ基板732に設けられた電極と電気的に接続する機能を有する。これらのことから、インターポーザを「再配線基板」または「中間基板」と呼ぶ場合がある。また、インターポーザ731に貫通電極を設けて、当該貫通電極を用いて集積回路とパッケージ基板732を電気的に接続する場合もある。また、シリコンインターポーザでは、貫通電極として、TSV(Through Silicon Via)を用いることも出来る。
 インターポーザ731としてシリコンインターポーザを用いることが好ましい。シリコンインターポーザでは能動素子を設ける必要が無いため、集積回路よりも低コストで作製することができる。一方で、シリコンインターポーザの配線形成は半導体プロセスで行なうことができるため、樹脂インターポーザでは難しい微細配線の形成が容易である。
 HBMでは、広いメモリバンド幅を実現するために多くの配線を接続する必要がある。このため、HBMを実装するインターポーザには、微細かつ高密度の配線形成が求められる。よって、HBMを実装するインターポーザには、シリコンインターポーザを用いることが好ましい。
 また、シリコンインターポーザを用いたSiPやMCMなどでは、集積回路とインターポーザ間の膨張係数の違いによる信頼性の低下が生じにくい。また、シリコンインターポーザは表面の平坦性が高いため、シリコンインターポーザ上に設ける集積回路とシリコンインターポーザ間の接続不良が生じにくい。特に、インターポーザ上に複数の集積回路を横に並べて配置する2.5Dパッケージ(2.5次元実装)では、シリコンインターポーザを用いることが好ましい。
 また、電子部品730と重ねてヒートシンク(放熱板)を設けてもよい。ヒートシンクを設ける場合は、インターポーザ731上に設ける集積回路の高さを揃えることが好ましい。例えば、本実施の形態に示す電子部品730では、記憶装置720と半導体装置735の高さを揃えることが好ましい。
 電子部品730を他の基板に実装するため、パッケージ基板732の底部に電極733を設けてもよい。図35Bでは、電極733を半田ボールで形成する例を示している。パッケージ基板732の底部に半田ボールをマトリクス状に設けることで、BGA(Ball Grid Array)実装を実現できる。また、電極733を導電性のピンで形成してもよい。パッケージ基板732の底部に導電性のピンをマトリクス状に設けることで、PGA(Pin Grid Array)実装を実現できる。
 電子部品730は、BGAおよびPGAに限らず様々な実装方法を用いて他の基板に実装することができる。例えば、SPGA(Staggered Pin Grid Array)、LGA(Land Grid Array)、QFP(Quad Flat Package)、QFJ(Quad Flat J−leaded package)、またはQFN(Quad Flat Non−leaded package)などの実装方法を用いることができる。
 以上、本実施の形態に示す構成、方法などは、本実施の形態に示す他の構成、方法、他の実施の形態に示す構成、方法、または実施例に示す構成、方法などと適宜組み合わせて用いることができる。
(実施の形態6)
 本実施の形態では、先の実施の形態に示す半導体装置を用いた記憶装置の応用例について説明する。先の実施の形態に示す半導体装置は、例えば、各種電子機器(例えば、情報端末、コンピュータ、スマートフォン、電子書籍端末、デジタルカメラ(ビデオカメラも含む)、録画再生装置、ナビゲーションシステムなど)の記憶装置に適用できる。なお、ここで、コンピュータとは、タブレット型のコンピュータ、ノート型のコンピュータ、デスクトップ型のコンピュータの他、サーバシステムのような大型のコンピュータを含むものである。または、先の実施の形態に示す半導体装置は、メモリカード(例えば、SDカード)、USBメモリ、SSD(ソリッド・ステート・ドライブ)等の各種のリムーバブル記憶装置に適用される。図36A乃至図36Eにリムーバブル記憶装置の幾つかの構成例を模式的に示す。例えば、先の実施の形態に示す半導体装置は、パッケージングされたメモリチップに加工され、様々なストレージ装置、リムーバブルメモリに用いられる。
 図36AはUSBメモリの模式図である。USBメモリ1100は、筐体1101、キャップ1102、USBコネクタ1103および基板1104を有する。基板1104は、筐体1101に収納されている。例えば、基板1104には、メモリチップ1105、コントローラチップ1106が取り付けられている。メモリチップ1105などに先の実施の形態に示す半導体装置を組み込むことができる。
 図36BはSDカードの外観の模式図であり、図36Cは、SDカードの内部構造の模式図である。SDカード1110は、筐体1111、コネクタ1112および基板1113を有する。基板1113は筐体1111に収納されている。例えば、基板1113には、メモリチップ1114、コントローラチップ1115が取り付けられている。基板1113の裏面側にもメモリチップ1114を設けることで、SDカード1110の容量を増やすことができる。また、無線通信機能を備えた無線チップを基板1113に設けてもよい。これによって、ホスト装置とSDカード1110間の無線通信によって、メモリチップ1114のデータの読み出し、書き込みが可能となる。メモリチップ1114などに先の実施の形態に示す半導体装置を組み込むことができる。
 図36DはSSDの外観の模式図であり、図36Eは、SSDの内部構造の模式図である。SSD1150は、筐体1151、コネクタ1152および基板1153を有する。基板1153は筐体1151に収納されている。例えば、基板1153には、メモリチップ1154、メモリチップ1155、コントローラチップ1156が取り付けられている。メモリチップ1155はコントローラチップ1156のワークメモリであり、例えばDOSRAMチップを用いればよい。基板1153の裏面側にもメモリチップ1154を設けることで、SSD1150の容量を増やすことができる。メモリチップ1154などに先の実施の形態に示す半導体装置を組み込むことができる。
 以上、本実施の形態に示す構成、方法などは、本実施の形態に示す他の構成、方法、他の実施の形態に示す構成、方法、または実施例に示す構成、方法などと適宜組み合わせて用いることができる。
(実施の形態7)
 本発明の一態様に係る半導体装置は、CPUやGPUなどのプロセッサ、またはチップに用いることができる。図37A乃至図37Hに、本発明の一態様に係るCPUやGPUなどのプロセッサ、またはチップを備えた電子機器の具体例を示す。
<電子機器・システム>
 本発明の一態様に係るGPUまたはチップは、様々な電子機器に搭載することができる。電子機器の例としては、例えば、テレビジョン装置、デスクトップ型またはノート型の情報端末用などのモニタ、デジタルサイネージ(Digital Signage:電子看板)、パチンコ機などの大型ゲーム機、などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、電子書籍端末、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。これらの電子機器に、本発明の一態様に係る半導体装置を設けることで、信頼性が良好な電子機器を提供することができる。また、本発明の一態様に係るGPUまたはチップを電子機器に設けることにより、電子機器にAIを搭載することができる。
 本発明の一態様の電子機器は、アンテナを有していてもよい。アンテナで信号を受信することで、表示部で映像や情報等の表示を行うことができる。また、電子機器がアンテナ及び二次電池を有する場合、アンテナを、非接触電力伝送に用いてもよい。
 本発明の一態様の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)を有していてもよい。
 本発明の一態様の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。図37A乃至図37Hに、電子機器の例を示す。
[情報端末]
 図37Aには、情報端末の一種である携帯電話(スマートフォン)が図示されている。情報端末5100は、筐体5101と、表示部5102と、を有しており、入力用インターフェースとして、タッチパネルが表示部5102に備えられ、ボタンが筐体5101に備えられている。
 情報端末5100は、本発明の一態様のチップを適用することで、AIを利用したアプリケーションを実行することができる。AIを利用したアプリケーションとしては、例えば、会話を認識してその会話内容を表示部5102に表示するアプリケーション、表示部5102に備えるタッチパネルに対してユーザが入力した文字、図形などを認識して、表示部5102に表示するアプリケーション、指紋や声紋などの生体認証を行うアプリケーションなどが挙げられる。
 図37Bには、ノート型情報端末5200が図示されている。ノート型情報端末5200は、情報端末の本体5201と、表示部5202と、キーボード5203と、を有する。
 ノート型情報端末5200は、先述した情報端末5100と同様に、本発明の一態様のチップを適用することで、AIを利用したアプリケーションを実行することができる。AIを利用したアプリケーションとしては、例えば、設計支援ソフトウェア、文章添削ソフトウェア、献立自動生成ソフトウェアなどが挙げられる。また、ノート型情報端末5200を用いることで、新規のAIの開発を行うことができる。
 なお、上述では、電子機器としてスマートフォン、およびノート型情報端末を例として、それぞれ図37A、図37Bに図示したが、スマートフォン、およびノート型情報端末以外の情報端末を適用することができる。スマートフォン、およびノート型情報端末以外の情報端末としては、例えば、PDA(Personal Digital Assistant)、デスクトップ型情報端末、ワークステーションなどが挙げられる。
[ゲーム機]
 図37Cは、ゲーム機の一例である携帯ゲーム機5300を示している。携帯ゲーム機5300は、筐体5301、筐体5302、筐体5303、表示部5304、接続部5305、操作キー5306等を有する。筐体5302、および筐体5303は、筐体5301から取り外すことが可能である。筐体5301に設けられている接続部5305を別の筐体(図示せず)に取り付けることで、表示部5304に出力される映像を、別の映像機器(図示せず)に出力することができる。このとき、筐体5302、および筐体5303は、それぞれ操作部として機能することができる。これにより、複数のプレイヤーが同時にゲームを行うことができる。筐体5301、筐体5302、および筐体5303の基板に設けられているチップなどに先の実施の形態に示すチップを組み込むことができる。
 また、図37Dは、ゲーム機の一例である据え置き型ゲーム機5400を示している。据え置き型ゲーム機5400には、無線または有線でコントローラ5402が接続されている。
 携帯ゲーム機5300、据え置き型ゲーム機5400などのゲーム機に本発明の一態様のGPUまたはチップを適用することによって、低消費電力のゲーム機を実現することができる。また、低消費電力により、回路からの発熱を低減することができるため、発熱によるその回路自体、周辺回路、およびモジュールへの影響を少なくすることができる。
 更に、携帯ゲーム機5300に本発明の一態様のGPUまたはチップを適用することによって、AIを有する携帯ゲーム機5300を実現することができる。
 本来、ゲームの進行、ゲーム上に登場する生物の言動、ゲーム上で発生する現象などの表現は、そのゲームが有するプログラムによって定められているが、携帯ゲーム機5300にAIを適用することにより、ゲームのプログラムに限定されない表現が可能になる。例えば、プレイヤーが問いかける内容、ゲームの進行状況、時刻、ゲーム上に登場する人物の言動が変化するといった表現が可能となる。
 また、携帯ゲーム機5300で複数のプレイヤーが必要なゲームを行う場合、AIによって擬人的にゲームプレイヤーを構成することができるため、対戦相手をAIによるゲームプレイヤーとすることによって、1人でもゲームを行うことができる。
 図37C、図37Dでは、ゲーム機の一例として携帯ゲーム機、および据え置き型ゲーム機を図示しているが、本発明の一態様のGPUまたはチップを適用するゲーム機はこれに限定されない。本発明の一態様のGPUまたはチップを適用するゲーム機としては、例えば、娯楽施設(ゲームセンター、遊園地など)に設置されるアーケードゲーム機、スポーツ施設に設置されるバッティング練習用の投球マシンなどが挙げられる。
[大型コンピュータ]
 本発明の一態様のGPUまたはチップは、大型コンピュータに適用することができる。
 図37Eは、大型コンピュータの一例である、スーパーコンピュータ5500を示す図である。図37Fは、スーパーコンピュータ5500が有するラックマウント型の計算機5502を示す図である。
 スーパーコンピュータ5500は、ラック5501と、複数のラックマウント型の計算機5502と、を有する。なお、複数の計算機5502は、ラック5501に格納されている。また、計算機5502には、複数の基板5504が設けられ、当該基板上に上記実施の形態で説明したGPUまたはチップを搭載することができる。
 スーパーコンピュータ5500は、主に科学技術計算に利用される大型コンピュータである。科学技術計算では、膨大な演算を高速に処理する必要があるため、消費電力が高く、チップの発熱が大きい。スーパーコンピュータ5500に本発明の一態様のGPUまたはチップを適用することによって、低消費電力のスーパーコンピュータを実現することができる。また、低消費電力により、回路からの発熱を低減することができるため、発熱によるその回路自体、周辺回路、およびモジュールへの影響を少なくすることができる。
 図37E、図37Fでは、大型コンピュータの一例としてスーパーコンピュータを図示しているが、本発明の一態様のGPUまたはチップを適用する大型コンピュータはこれに限定されない。本発明の一態様のGPUまたはチップを適用する大型コンピュータとしては、例えば、サービスを提供するコンピュータ(サーバー)、大型汎用コンピュータ(メインフレーム)などが挙げられる。
[移動体]
 本発明の一態様のGPUまたはチップは、移動体である自動車、および自動車の運転席周辺に適用することができる。
 図37Gは、移動体の一例である自動車の室内におけるフロントガラス周辺を示す図である。図37Gでは、ダッシュボードに取り付けられた表示パネル5701、表示パネル5702、表示パネル5703の他、ピラーに取り付けられた表示パネル5704を図示している。
 表示パネル5701乃至表示パネル5703は、スピードメーターやタコメーター、走行距離、燃料計、ギア状態、エアコンの設定などを表示することで、その他様々な情報を提供することができる。また、表示パネルに表示される表示項目やレイアウトなどは、ユーザの好みに合わせて適宜変更することができ、デザイン性を高めることが可能である。表示パネル5701乃至表示パネル5703は、照明装置として用いることも可能である。
 表示パネル5704には、自動車に設けられた撮像装置(図示しない。)からの映像を映し出すことによって、ピラーで遮られた視界(死角)を補完することができる。すなわち、自動車の外側に設けられた撮像装置からの画像を表示することによって、死角を補い、安全性を高めることができる。また、見えない部分を補完する映像を映すことによって、より自然に違和感なく安全確認を行うことができる。表示パネル5704は、照明装置として用いることもできる。
 本発明の一態様のGPUまたはチップはAIの構成要素として適用できるため、例えば、当該チップを自動車の自動運転システムに用いることができる。また、当該チップを道路案内、危険予測などを行うシステムに用いることができる。表示パネル5701乃至表示パネル5704には、道路案内、危険予測などの情報を表示する構成としてもよい。
 なお、上述では、移動体の一例として自動車について説明しているが、移動体は自動車に限定されない。例えば、移動体としては、電車、モノレール、船、飛行体(ヘリコプター、無人航空機(ドローン)、飛行機、ロケット)なども挙げることができ、これらの移動体に本発明の一態様のチップを適用して、AIを利用したシステムを付与することができる。
[電化製品]
 図37Hは、電化製品の一例である電気冷凍冷蔵庫5800を示している。電気冷凍冷蔵庫5800は、筐体5801、冷蔵室用扉5802、冷凍室用扉5803等を有する。
 電気冷凍冷蔵庫5800に本発明の一態様のチップを適用することによって、AIを有する電気冷凍冷蔵庫5800を実現することができる。AIを利用することによって電気冷凍冷蔵庫5800は、電気冷凍冷蔵庫5800に保存されている食材、その食材の消費期限などを基に献立を自動生成する機能や、電気冷凍冷蔵庫5800に保存されている食材に合わせた温度に自動的に調節する機能などを有することができる。
 電化製品の一例として電気冷凍冷蔵庫について説明したが、その他の電化製品としては、例えば、掃除機、電子レンジ、電子オーブン、炊飯器、湯沸かし器、IH調理器、ウォーターサーバ、エアーコンディショナーを含む冷暖房器具、洗濯機、乾燥機、オーディオビジュアル機器などが挙げられる。
 本実施の形態で説明した電子機器、その電子機器の機能、AIの応用例、その効果などは、他の電子機器の記載と適宜組み合わせることができる。
 以上、本実施の形態に示す構成、方法などは、本実施の形態に示す他の構成、方法、他の実施の形態に示す構成、方法、または実施例に示す構成、方法などと適宜組み合わせて用いることができる。
 本実施例では、先の実施の形態に示すトランジスタを作製し、電気特性の測定と、データ保持時間および動作周波数の見積もりを行った。データ保持時間および動作周波数の見積もりは、当該トランジスタに容量素子を設けたDOSRAMを想定して行った。
 本実施例では、図22に示す、トランジスタ200と同様の構成を有するトランジスタを2.0個/μmの密度で配置したサンプルを作製し、サンプルの電気特性を測定した。さらに、電気特性からデータ保持時間および動作周波数の見積もりを行った。
 まず、サンプルの構成について説明する。図22に示すように、サンプルは、基板(図示せず)の上に配置された絶縁体212と、絶縁体212上の絶縁体214と、絶縁体214の上に配置された絶縁体216と、絶縁体216に埋め込まれるように配置された導電体205と、絶縁体216および導電体205の上に配置された絶縁体222と、絶縁体222の上に配置された絶縁体224と、絶縁体224の上に配置された酸化物230aと、酸化物230aの上に配置された酸化物230bと、酸化物230bの上に離間して配置された酸化物243aおよび酸化物243bと、酸化物243aの上に配置された導電体242aと、酸化物243bの上に配置された導電体242bと、導電体242a、導電体242b、および絶縁体224の上に配置された絶縁体275と、絶縁体275の上に配置された絶縁体280と、酸化物230bの上に配置された絶縁体250aと、絶縁体250aの上に配置された絶縁体250bと、絶縁体250bの上に配置された導電体260と、絶縁体280および導電体260の上に配置された絶縁体282と、絶縁体214の上面と接し、かつ、絶縁体216、絶縁体222、絶縁体224、絶縁体275、絶縁体280、および絶縁体282の側面に接して配置された絶縁体284と、絶縁体284を覆って配置された絶縁体283と、絶縁体283覆って配置された絶縁体274と、を有する。
 絶縁体212として膜厚60nmの窒化シリコンを用いた。絶縁体212は、シリコンターゲットを用いて、パルスDCスパッタリング法で成膜した。絶縁体212の成膜には、成膜ガスとして、アルゴンガス30sccm(第1のガス供給口から25sccm、第2のガス供給口から5sccm)、窒素ガス85sccmを用い、成膜圧力を0.5Paとし、基板温度を200℃とし、ターゲットと基板との間隔を62mmとした。パルスDC電源は、電力1kW、周波数100kHz、一周期中のオフ時間を4016nsecとした。
 絶縁体214として膜厚40nmの酸化アルミニウムを用いた。絶縁体214は、アルミニウムターゲットを用いて、パルスDCスパッタリング法で成膜した。絶縁体214の成膜には、成膜ガスとして、アルゴンガス14sccm(第1のガス供給口から9sccm、第2のガス供給口から5sccm)、酸素ガス69sccmを用い、成膜圧力を0.4Paとし、基板温度を200℃とし、ターゲットと基板との間隔を62mmとした。パルスDC電源は、電力5kW、周波数100kHz、一周期中のオフ時間を976nsecとした。
 絶縁体216として膜厚130nmの酸化シリコンを用いた。絶縁体216は、シリコンターゲットを用いて、パルスDCスパッタリング法で成膜した。絶縁体216の成膜には、成膜ガスとして、アルゴンガス30sccm(第1のガス供給口から25sccm、第2のガス供給口から5sccm)、酸素ガス100sccmを用い、成膜圧力を0.6Paとし、基板温度を200℃とし、ターゲットと基板との間隔を62mmとした。パルスDC電源は、電力3kW、周波数100kHz、一周期中のオフ時間を4016nsecとした。
 上記、絶縁体212、絶縁体214、および絶縁体216は、マルチチャンバー型のスパッタ装置を用いて、外気にさらさず、連続して成膜を行った。
 導電体205は、絶縁体216の開口の底面および側壁に接して導電体205aが配置され、導電体205aの上に導電体205bが配置され、導電体205bの上に導電体205cが配置される。ここで、導電体205cの側面は、導電体205aに接して配置されている。つまり、導電体205bは、導電体205aおよび導電体205cに包み込まれるように設けられている。
 導電体205aおよび導電体205cは、メタルCVD法で成膜された窒化チタンであり、導電体205bは、メタルCVD法で成膜されたタングステンである。導電体205は、上記実施の形態において、図4乃至図8を用いて説明した方法で形成した。
 絶縁体222として、ALD法で成膜した、膜厚20nmの酸化ハフニウムを用いた。絶縁体224として、スパッタリング法で成膜した、膜厚30nmの酸化シリコンを用いた。
 酸化物230aとして、DCスパッタリング法で成膜した、膜厚が5nmのIn−Ga−Zn酸化物を用いた。なお、酸化物230aの成膜には、In:Ga:Zn=1:3:4[原子数比]のターゲットを用い、成膜ガスとして酸素ガス45sccmを用い、成膜圧力を0.7Paとし、成膜電力を500Wとし、基板温度を200℃とし、ターゲットと基板との間隔を60mmとした。
 酸化物230bとして、DCスパッタリング法で成膜した、膜厚が15nmのIn−Ga−Zn酸化物を用いた。なお、酸化物230bの成膜には、In:Ga:Zn=4:2:4.1[原子数比]のターゲットを用い、成膜ガスとして酸素ガス45sccmを用い、成膜圧力を0.7Paとし、成膜電力を500Wとし、基板温度を200℃とし、ターゲットと基板との間隔を60mmとした。
 酸化物243となる酸化物として、DCスパッタリング法で成膜した、膜厚が2nmのIn−Ga−Zn酸化物を用いた。なお、酸化物243となる酸化物の成膜には、In:Ga:Zn=1:3:4[原子数比]のターゲットを用い、成膜ガスとして酸素ガス45sccmを用い、成膜圧力を0.7Paとし、成膜電力を500Wとし、基板温度を200℃とし、ターゲットと基板との間隔を60mmとした。
 なお、酸化物243となる酸化膜を成膜した後で、窒素雰囲気で500℃、1時間の熱処理を行い、連続して、酸素雰囲気で500℃1時間の熱処理を行った。
 導電体242aおよび導電体242bは、膜厚20nmの窒化タンタルを用いた。また、絶縁体271は、スパッタリング法で成膜した膜厚10nmの酸化アルミニウムを用いた。また、絶縁体275は、スパッタリング法で成膜した膜厚5nmの酸化アルミニウムと、その上にスパッタリング法で成膜した膜厚5nmの酸化アルミニウムの積層膜とした。
 絶縁体280は、スパッタリング法で成膜した、膜厚が125nmの酸化シリコンを用いた。絶縁体280の成膜には、Siターゲットを用い、成膜ガスとして、酸素ガス100sccm、およびArガス20sccmを用い、成膜圧力を0.6Paとし、成膜電力を3000Wとし、基板温度を200℃とし、ターゲットと基板との間隔を62mmとした。上記、絶縁体275、絶縁体280は、マルチチャンバー型のスパッタ装置を用いて、外気にさらさず、連続して成膜を行った。
 絶縁体250aとして、CVD法で成膜した、膜厚が10nmの酸化窒化シリコンを用いた。次に絶縁体250bとして、ALD法で成膜した、膜厚が1.5nmの酸化ハフニウムを用いた。絶縁体250bの成膜後、マイクロ波処理を行った。マイクロ波処理は、処理ガスとしてアルゴンガス150sccmおよび酸素ガス50sccmを用い、電力を4000Wとし、圧力を400Paとし、処理温度を400℃とし、処理時間を600秒とした。
 導電体260aとして、膜厚5nmの窒化チタンを用いた。また、導電体260bとして、タングステンを用いた。
 絶縁体282として、膜厚20nmの酸化アルミニウムを用いた。絶縁体282は、アルミニウムターゲットを用いて、パルスDCスパッタリング法を用いて成膜した。
 絶縁体284として、スパッタリング法で成膜した酸化アルミニウムを用いた。また、絶縁体283として、スパッタリング法で成膜した窒化シリコンを用いた。
 絶縁体274として、CVD法で成膜した、酸化窒化シリコンを用いた。
 以上のような構成を有するサンプルは、設計値が、チャネル長60nm、チャネル幅60nmのトランジスタである。なお、サンプルは、トランジスタ200と同様に、上記構成に加えて、さらに、導電体240、絶縁体241、および導電体246等を有する。また、サンプルは、作製後に、窒素雰囲気で、温度400℃、8時間の熱処理を行った。
 上記のように作製したサンプルの27素子について、キーサイトテクノロジー製半導体パラメータアナライザーを用いて、I−V特性(ドレイン電流−ゲート電圧特性)を測定した。I−V特性の測定は、ドレイン電位Vを0.1Vまたは1.2Vとし、ソース電位Vを0Vとし、ボトムゲート電位VBGを0Vとし、トップゲート電位Vを−4.0Vから4.0Vまで0.1Vステップで掃引させた。
 図39にサンプルのI−V特性の測定結果を示す。図39は、横軸にトップゲート電位V(V)、第1の縦軸にドレイン電流I(V)、第2の縦軸にV=0.1Vにおける電界効果移動度μFE(cm/Vs)をとる。また、V=0.1Vのドレイン電流を実線で示し、V=1.2Vのドレイン電流を破線で示し、V=0.1Vの電界効果移動度を細い点線で示している。図39に示すように、本実施例のサンプルのトランジスタは、27素子全部で良好な電気特性を示した。
 また、上記のI−V測定の結果から、27素子のシフト電圧Vshをそれぞれ算出し、その中央値および標準偏差σを求めた。ここで、シフト電圧Vshは、トランジスタのI−Vカーブにおいて、カーブ上の傾きが最大である点における接線が、I=1pAの直線と交差するVで定義される。シフト電圧Vshの中央値は、−0.36V、シフト電圧Vshの標準偏差は130mVと良好な値が得られた。
 また、上記のI−V測定の結果から、27素子のサブスレッショルドスイング値(S値)をそれぞれ算出した。S値は、V=1.2Vに設定し、サブスレッショルド領域において、Iが一桁変化するのに要するVの値を求めることで得られる。S値の中央値は107(mV/dec)と良好な値が得られた。また、電界効果移動度μFEの中央値は14.0(cm/Vs)と良好な値が得られた。このように、本実施例に示すサンプルは、電気特性のばらつきが少ないトランジスタであった。つまり、上記実施の形態に示す構造にすることで、トランジスタ特性のばらつきが少ない半導体装置を提供することができる。
 次に、サンプルのトランジスタに容量素子(保持容量3.5fF)を設けたDOSRAMを想定して、データ保持時間および動作周波数の見積もりを行った。DOSRAMのメモリセルとしては、図32Aに示す回路を想定した。ここで、サンプルは図32Aに示すトランジスタM1に相当する。
 DOSRAMの「データ保持時間」とは、DOSRAMが有する容量素子にかかる電圧の変動量が変動許容電圧に達するまでに要する時間と言える。ここで、「変動許容電圧」とは、DOSRAMの容量素子にかかる電圧がデータ書き込み後から変動する量の許容値である。本実施例では、「変動許容電圧」を0.2Vとし、「データ保持時間」を容量素子(保持容量3.5fF)にかかる電圧がデータ書き込み後の状態から0.2V低下するまでに要する時間とした。例えば、本実施例でDOSRAMのデータ保持が1時間という場合、DOSRAMが有する容量素子にかかる電位が、データ書き込み後から0.2V低下するまでの時間が1時間であることを意味する。
 DOSRAMのデータ保持時間は、DOSRAMが有するトランジスタのオフ電流(Ioffと記す)の大きさに依存する。例えば、DOSRAMのデータ保持特性が、DOSRAMが有するトランジスタのIoffのみに依存する場合、DOSRAMのデータ保持時間は、DOSRAMが有するトランジスタのIoffに反比例する。
 DOSRAMが有するトランジスタのIoffが既知である場合、DOSRAMのデータ保持時間は、データ保持中に容量素子から失われる電荷量(容量素子の保持容量(3.5fF)と容量素子にかかる電圧の低下分(0.2V)との積に相当する0.7fC)をIoffで割ることによって算出することができる。また、目標とするDOSRAMの保持時間を設定し、前述した電荷量0.7fCを当該保持時間で割ることで、DOSRAMが有するトランジスタに求められるIoffを見積ることもできる。保持時間の目標を1時間とする場合、トランジスタに求められるIoffは約200zA(200×10−21A)となった。Ioffが200zAとなるようにゲート電圧(Vg(off)と記す)を調整することで、広い温度範囲で高い動作周波数を有するDOSRAMとすることができる。
 まず、サンプルにおいて、トランジスタのI−V測定を行った。I−V測定は、トランジスタのドレイン電位Vを+1.2Vに、ソース電位Vを0Vに、ゲート電位Vを−1.0Vから+3.3Vまで掃引することで行った。ボトムゲート電位VBGは−5.5V固定で行った。なお、ボトムゲート電位VBG=−5.5Vは、85℃の測定において、サンプルのトランジスタの保持時間が1時間以上になるように見積もったものである。測定温度は、−40℃、27℃、85℃の3水準で行った。
 サンプルは、測定対象となるトランジスタが形成された5インチ角基板を上記各温度に設定したサーモチャック上に固定した状態でトランジスタのI−V測定を実施した。また、それぞれの設定温度に対し、18素子ずつ測定を行った。
 得られたI−Vカーブから、トランジスタのVsh及びS値を算出した。本トランジスタは、実施の形態1の<半導体装置の作製方法>で示したように、チャネル形成領域に金属酸化物を用いている。チャネル形成領域に金属酸化物を用いたトランジスタは、例えば、チャネル形成領域にSiを用いたトランジスタと比べて、非導通状態におけるリーク電流が極めて小さい。そのため、チャネル形成領域に金属酸化物を用いたトランジスタは、実測によりIoffを検出することが困難な場合がある。本トランジスタにおいてもIoffの実測は困難であったため、前述のI−Vカーブから得られたVsh及びS値から、式(1)を用いた外挿によってIoffが200zAとなるVg(off)を見積もった。サンプルについては、Vg(off)=−0.72Vとなった。なお、式(1)に示すように、トランジスタのオフ電流がV=Vg(off)に達するまで、S値に従ってIが単調減少すると仮定した。
Figure JPOXMLDOC01-appb-M000001
 ここで、DOSRAM動作周波数の見積り方法について説明する。DOSRAM動作周波数とは、DOSRAMのデータ書き込みサイクルの逆数とする。DOSRAMのデータ書き込みサイクルは、DOSRAMが有する容量素子の充電時間などによって設定されるパラメータである。本実施例では、DOSRAMのデータ書き込みサイクル(DOSRAM動作周波数の逆数)の40%に相当する時間を、DOSRAMが有する容量素子の充電時間とする設定とした。
 DOSRAM動作周波数は、DOSRAMが有する容量素子の充電時間に依存する。したがって、DOSRAM動作周波数を見積るに際して、まずDOSRAMが有する容量素子の充電時間を事前に知る必要がある。本実施例では、DOSRAMが有する容量素子(保持容量3.5fF)に0.52V以上の電位がかかった状態を、当該容量素子が「充電された状態」と定義した。したがって、本実施例では、DOSRAMのデータ書き込み動作を開始してから、当該容量素子にかかる電位が0.52Vに達するまでの時間が、DOSRAMが有する容量素子の充電時間に相当する。
 DOSRAMが有する容量素子の充電時間は、DOSRAMデータ書き込み時における、DOSRAMが有するトランジスタのIの大きさに依存する。そこで本実施例では、DOSRAMデータ書き込み時にDOSRAMが有するトランジスタにかかることが想定される電位(図38A参照)を、本発明の一態様に係るトランジスタに実際に印加することでDOSRAMデータ書き込み動作を再現し、このときのトランジスタのIを測定した。図38Aは、容量素子CsにトランジスタTr1を介してデータを書き込む場合を想定している。それぞれDはドレイン、Gはゲート、Sはソースを表している。トランジスタTr1のソースの電位(容量素子Csに印加される電圧)をVとする。トランジスタTr1をオンにすることで、電流Iが流れ、容量素子Csが充電される。サンプルについては、トランジスタがオンとなるゲート電位Vg(on)をVg(off)+2.97Vとした。つまり、ゲート電位Vg(on)を−0.72V+2.97V=+2.25Vとし、ドレイン電位Vを+1.08Vに、ソース電位Vを0Vから+0.52Vまで掃引することでトランジスタのI測定を行った。バックゲート電圧VBGは−5.5V固定とした。測定温度は、−40℃、27℃、85℃の3水準で行った。
 DOSRAMの充電が開始されてVが書き込み判定電圧VCSに達した時に充電完了とする。この時の時間を充電時間tとする(図38B参照)。DOSRAMが有する保持容量Cs[F]の容量素子に充電される電荷をQ[C]、充電時間をt[sec]、充電によって容量素子にかかる電位をVcs(=Vs)[V]、DOSRAMが有するトランジスタのドレイン電流をI[A]とした場合、各パラメータの間には以下の式(2)の関係が成り立つ。
Figure JPOXMLDOC01-appb-M000002
 式(2)を変形することで、DOSRAMが有する容量素子の充電時間tを以下の式(3)で表すことができる(図38C参照)。
Figure JPOXMLDOC01-appb-M000003
 本実施例では、式(3)のCsに3.5fF、Vcsに+0.52V、前述のI−V測定で得られたIを代入し、DOSRAMが有する容量素子の充電時間tを算出した。
 DOSRAMの動作周波数fと充電時間tの関係を式(4)で表すことができる。
Figure JPOXMLDOC01-appb-M000004
 式(4)においてAは係数である。DOSRAMにおいて、1回の動作時間のうち、書き込みに要する時間は4割と想定されることから、本実施例では係数Aをtが2.0nsecを超える場合は0.4固定とした。また、tが2.0nsec以下となると、メモリの周辺回路の信号遅延の影響が無視できなくなるために、その影響を考慮して、係数Aを設定する必要がある。メモリの周辺回路の信号遅延の影響を考慮して算出した結果を表1に示す。なお、周辺回路は、2.5GHzのクロックで動作する想定とした。
Figure JPOXMLDOC01-appb-T000005
 以上の方法にて、サンプルを測定し、動作周波数を算出した。図39Bにサンプルにおける、動作周波数とデータ保持時間の相関を示す。図39Bでは、横軸にデータ保持時間[sec]を、縦軸に動作周波数[MHz]をとる。ここで、図39Bの太い点線(縦線)は保持時間1時間を示し、図39Bの細い点線(横線)は動作周波数200MHzを示す。図39Bに示すように、サンプルの18素子全部で、27℃、および85℃測定におけるデータ保持時間が一時間以上であり、かつ動作周波数が200MHz以上であった。また、サンプルの18素子中15素子が、−40℃測定におけるデータ保持時間が一時間以上であり、かつ動作周波数が200MHz以上であった。
 本実施例に示す構成、方法などは、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
 本実施例では、先の実施例で用いたサンプルから選択した2つの素子について、信頼性評価を行い、ストレス時間依存性を調査した結果について説明する。信頼性の評価は、ストレス温度150℃の+GBT(Gate Bias Temperature)ストレス試験により行った。設定温度を150℃とし、ドレイン電位V、ソース電位V、およびボトムゲート電位VBG、を0Vとし、トップゲート電位Vを+3.63Vとし、ストレス時間によるVshの変動であるΔVshを評価した。
 図40A、図40Bに+GBTストレス試験の結果を示す。図40Aにおいて、横軸はストレス時間(時間)をログスケールにて示し、縦軸はΔVsh(mV)を示す。また、図40Bは、横軸はストレス時間(時間)をリニアスケールにて示し、縦軸はΔVsh(mV)を示す。図40A、図40Bに示すように、一方のサンプルは、ストレス時間とともにΔVshは+側に変動し、ストレス時間70時間で、ΔVshは、140mVとなった。また、他方のサンプルは、ストレス時間とともにΔVshは+側に変動し、ストレス時間70時間で、ΔVshは、79mVとなった。
 本実施例に示す構成、方法などは、少なくともその一部を、本明細書中に記載する実施の形態、他の実施例などと適宜組み合わせて実施することができる。
 本実施例では、図41に示す構造を有する、サンプルA乃至サンプルCを作製し、これらのサンプルについて、透過型電子顕微鏡(TEM:Transmission Electron Microscope)を用いた観察と、SIMS分析による重水素濃度の評価を行った結果について説明する。
 図41に示す構造は、シリコン基板10と、シリコン基板10上の酸化シリコン膜12と、酸化シリコン膜12上の窒化シリコン膜14と、窒化シリコン膜14上の酸化窒化シリコン膜16と、酸化窒化シリコン膜16上の酸化シリコン膜18と、酸化シリコン膜18上の酸化アルミニウム膜20と、酸化アルミニウム膜20上の窒化シリコン膜22と、を有する。
 まず、図41に示す構造の、サンプルA乃至サンプルCの作製方法について説明する。
 最初に、シリコン基板10に、HCl雰囲気で950℃の熱処理を行い、膜厚100nmの酸化シリコン膜12を形成した。
 次に、シリコンターゲットを用いて、RFスパッタリング法で、膜厚20nmの窒化シリコン膜14を成膜した。
 次に、PECVD法で膜厚50nmの酸化窒化シリコン膜16を成膜した。ここで、酸化窒化シリコン膜の成膜は、成膜ガスとして、重水素Dガス200sccm、SiHガス2.0sccm、NOガス800sccmを用いた。
 次に、シリコンターゲットを用いて、パルスDCスパッタリング法で、膜厚110nmの酸化シリコン膜18を成膜した。
 次に、アルミニウムターゲットを用いて、パルスDCスパッタリング法で、膜厚40nmの酸化アルミニウム膜20を成膜した。酸化アルミニウム膜20の成膜では、成膜圧力を0.4Paとし、基板温度を200℃とし、ターゲットと基板との間隔を62mmとした。パルスDC電源は、電力5kW、周波数100kHzとした。
 ここで、サンプルAでは、成膜ガスとして、アルゴンガス42sccm(第1のガス供給口から37sccm、第2のガス供給口から5sccm)、酸素ガス42sccmを用い、サンプルBおよびサンプルCでは、成膜ガスとして、アルゴンガス14sccm(第1のガス供給口から9sccm、第2のガス供給口から5sccm)、酸素ガス69sccmを用いた。つまり、サンプルAでは、酸化アルミニウム膜20の成膜ガス中の酸素の割合を50体積%とし、サンプルBおよびサンプルCでは、酸化アルミニウム膜20の成膜ガス中の酸素の割合を83体積%とした。
 また、酸化アルミニウム膜20の成膜時に、サンプルAでは、基板バイアス電力を100Wとし、サンプルBでは、基板バイアス電力を200Wとし、サンプルCでは、基板バイアス電力を0Wとした。
 次に、シリコンターゲットを用いて、パルスDCスパッタリング法で、膜厚20nmの窒化シリコン膜22を成膜した。ここで、窒化シリコン膜22は、酸化アルミニウム膜20の成膜後、外気にさらさず、連続で成膜を行った。
 次に、窒素雰囲気で、400℃、1時間熱処理を行った。
 以上のように作製したサンプルA乃至サンプルCの酸化アルミニウム膜20およびその近傍について、日立ハイテクノロジーズ製「H−9500」を用いて、断面TEM像の撮影を行った。図42AにサンプルAの断面TEM像を、図43AにサンプルBの断面TEM像を、図44AにサンプルCの断面TEM像を、それぞれ示す。
 さらに、図42Aに示すTEM像の領域A、図43Aに示すTEM像の領域B、図44Aに示すTEM像の領域CについてFFT(Fast Fourier Transform)解析を行った。TEM像にFFT解析を行うことで、電子線回折パターンと同様の逆格子空間情報を反映したパターンを有する、FFT像を得ることができる。例えば、結晶性を有する酸化アルミニウム膜の断面TEM像の場合、FFT像には強い強度のスポットが見られる場合がある。
 FFT解析の結果を図42B、図43B、および図44Bに示す。図42Bは領域AのFFT像であり、図43Bは領域BのFFT像であり、図44Bは領域CのFFT像である。
 図43Bおよび図44Bでは、強い強度のスポットの存在が確認できるが、図42Bでは、明確なスポットが確認できない。よって、サンプルBおよびサンプルCでは、酸化アルミニウム膜20が結晶性を有するが、サンプルAでは、酸化アルミニウム膜20がアモルファス構造であることが確認できた。
 また、サンプルA乃至サンプルCについて、SIMS分析装置を用いて、重水素濃度の評価を行った。つまり、各サンプルにおいて、酸化窒化シリコン膜16に含まれる重水素がどのように拡散するか分析を行った。なお、分析は各サンプルの表面側より行っている。サンプルA乃至サンプルCのSIMS分析の結果を図45に示す。
 図45は、各サンプルの深さ方向の重水素濃度プロファイルである。図45では、横軸は、窒化シリコン膜22の上面からの深さ[nm]を示し、縦軸は、膜中の重水素Dの濃度[atoms/cm]を示す。
 図45に示すように、深さ50nm近傍から深さ20nmにかけて、サンプルAは、サンプルBおよびサンプルCよりも、重水素濃度が高い。これは、サンプルAは、サンプルBおよびサンプルCよりも、酸化窒化シリコン膜に含まれていた重水素が、酸化アルミニウム膜20に拡散しやすいことが示されている。
 図42乃至図44を用いて示したように、サンプルBおよびサンプルCの酸化アルミニウム膜20は結晶性を有しているが、サンプルAの酸化アルミニウム膜20はアモルファス構造である。つまり、図45は、サンプルAにおいて、アモルファス構造を有する酸化アルミニウム膜20によって、重水素が捕獲されていることを示唆している。
 よって、本実施例により、酸化アルミニウムなどのアモルファス構造を有する金属酸化物を、トランジスタの構成要素として用いる、またはトランジスタの周囲に設けることで、トランジスタに含まれる水素、またはトランジスタの周囲に存在する水素を、捕獲または固着できることが示された。
 本実施例に示す構成、方法などは、少なくともその一部を、本明細書中に記載する実施の形態、他の実施例などと適宜組み合わせて実施することができる。
BGL:配線、BIL:配線、CA:容量素子、CB:容量素子、CC:容量素子、CAL:配線、GNDL:配線、MC:メモリセル、M1:トランジスタ、M2:トランジスタ、M3:トランジスタ、M4:トランジスタ、M5:トランジスタ、M6:トランジスタ、RBL:配線、RWL:配線、SL:配線、WBL:配線、WOL:配線、WWL:配線、Tr1:トランジスタ、10:シリコン基板、12:酸化シリコン膜、14:窒化シリコン膜、16:酸化窒化シリコン膜、18:酸化シリコン膜、20:酸化アルミニウム膜、22:窒化シリコン膜、100:容量素子、110:導電体、112:導電体、115:導電体、120:導電体、125:導電体、130:絶縁体、140:導電体、142:絶縁体、145:絶縁体、150:絶縁体、152:絶縁体、153:導電体、154:絶縁体、156:絶縁体、200:トランジスタ、200_n:トランジスタ、200_1:トランジスタ、200a:トランジスタ、200b:トランジスタ、200T:トランジスタ、205:導電体、205a:導電体、205A:導電膜、205b:導電体、205B:導電膜、205c:導電体、205C:導電膜、210:絶縁体、212:絶縁体、214:絶縁体、216:絶縁体、217:絶縁体、218:導電体、222:絶縁体、224:絶縁体、230:酸化物、230a:酸化物、230A:酸化膜、230b:酸化物、230B:酸化膜、230ba:領域、230bb:領域、230bc:領域、230c:酸化物、230d:酸化物、240:導電体、240a:導電体、240b:導電体、241:絶縁体、241a:絶縁体、241b:絶縁体、242:導電体、242a:導電体、242A:導電膜、242b:導電体、242B:導電層、242c:導電体、243:酸化物、243a:酸化物、243A:酸化膜、243b:酸化物、243B:酸化物層、246:導電体、246a:導電体、246b:導電体、250:絶縁体、250a:絶縁体、250A:絶縁膜、250b:絶縁体、260:導電体、260a:導電体、260b:導電体、265:封止部、265a:封止部、265b:封止部、271:絶縁体、271a:絶縁体、271A:絶縁膜、271b:絶縁体、271B:絶縁層、271c:絶縁体、272:絶縁体、272a:絶縁体、272A:絶縁層、272b:絶縁体、273:絶縁体、273a:絶縁体、273A:絶縁膜、273b:絶縁体、273B:絶縁層、273c:絶縁体、274:絶縁体、275:絶縁体、275a:絶縁体、275b:絶縁体、280:絶縁体、282:絶縁体、283:絶縁体、284:絶縁体、286:絶縁体、287:絶縁体、290:メモリデバイス、292:容量デバイス、292a:容量デバイス、292b:容量デバイス、293:絶縁体、294:導電体、294a:導電体、294b:導電体、296:絶縁体、300:トランジスタ、311:基板、313:半導体領域、314a:低抵抗領域、314b:低抵抗領域、315:絶縁体、316:導電体、320:絶縁体、322:絶縁体、324:絶縁体、326:絶縁体、328:導電体、330:導電体、350:絶縁体、352:絶縁体、354:絶縁体、356:導電体、411:素子層、413:トランジスタ層、415:メモリデバイス層、415_1:メモリデバイス層、415_3:メモリデバイス層、415_4:メモリデバイス層、420:メモリデバイス、424:導電体、440:導電体、470:メモリユニット、600:半導体装置、601:半導体装置、610:セルアレイ、610_n:セルアレイ、610_1:セルアレイ、700:電子部品、702:プリント基板、704:実装基板、711:モールド、712:ランド、713:電極パッド、714:ワイヤ、720:記憶装置、721:駆動回路層、722:記憶回路層、730:電子部品、731:インターポーザ、732:パッケージ基板、733:電極、735:半導体装置、901:境界領域、902:境界領域、1001:配線、1002:配線、1003:配線、1004:配線、1005:配線、1006:配線、1100:USBメモリ、1101:筐体、1102:キャップ、1103:USBコネクタ、1104:基板、1105:メモリチップ、1106:コントローラチップ、1110:SDカード、1111:筐体、1112:コネクタ、1113:基板、1114:メモリチップ、1115:コントローラチップ、1150:SSD、1151:筐体、1152:コネクタ、1153:基板、1154:メモリチップ、1155:メモリチップ、1156:コントローラチップ、1200:チップ、1201:PCB、1202:バンプ、1203:マザーボード、1204:GPUモジュール、1211:CPU、1212:GPU、1213:アナログ演算部、1214:メモリコントローラ、1215:インターフェース、1216:ネットワーク回路、1221:DRAM、1222:フラッシュメモリ、1400:記憶装置、1411:周辺回路、1420:行回路、1430:列回路、1440:出力回路、1460:コントロールロジック回路、1470:メモリセルアレイ、1471:メモリセル、1472:メモリセル、1473:メモリセル、1474:メモリセル、1475:メモリセル、1476:メモリセル、1477:メモリセル、1478:メモリセル、2700:製造装置、2701:大気側基板供給室、2702:大気側基板搬送室、2703a:ロードロック室、2703b:アンロードロック室、2704:搬送室、2706a:チャンバー、2706b:チャンバー、2706c:チャンバー、2706d:チャンバー、2761:カセットポート、2762:アライメントポート、2763a:搬送ロボット、2763b:搬送ロボット、2801:ガス供給源、2802:バルブ、2803:高周波発生器、2804:導波管、2805:モード変換器、2806:ガス管、2807:導波管、2808:スロットアンテナ板、2809:誘電体板、2810:高密度プラズマ、2811:基板、2812:基板ホルダ、2813:加熱機構、2815:マッチングボックス、2816:高周波電源、2817:真空ポンプ、2818:バルブ、2819:排気口、2820:ランプ、2821:ガス供給源、2822:バルブ、2823:ガス導入口、2824:基板、2825:基板ホルダ、2826:加熱機構、2828:真空ポンプ、2829:バルブ、2830:排気口、5100:情報端末、5101:筐体、5102:表示部、5200:ノート型情報端末、5201:本体、5202:表示部、5203:キーボード、5300:携帯ゲーム機、5301:筐体、5302:筐体、5303:筐体、5304:表示部、5305:接続部、5306:操作キー、5400:据え置き型ゲーム機、5402:コントローラ、5500:スーパーコンピュータ、5501:ラック、5502:計算機、5504:基板、5701:表示パネル、5702:表示パネル、5703:表示パネル、5704:表示パネル、5800:電気冷凍冷蔵庫、5801:筐体、5802:冷蔵室用扉、5803:冷凍室用扉

Claims (10)

  1.  酸化物半導体と、
     前記酸化物半導体上の、第1の導電体、および第2の導電体と、
     前記第1の導電体の上面に接する、第1の絶縁体と、
     前記第2の導電体の上面に接する、第2の絶縁体と、
     前記第1の絶縁体および前記第2の絶縁体の上に配置され、前記第1の導電体と前記第2の導電体の間の領域に重畳して開口が形成された、第3の絶縁体と、
     前記酸化物半導体上、かつ、前記第1の導電体と前記第2の導電体の間の領域に配置された第4の絶縁体と、
     前記第4の絶縁体上の第3の導電体と、を有し、
     前記第1の絶縁体、および前記第2の絶縁体は、アモルファス構造を有する金属酸化物である、半導体装置。
  2.  酸化物半導体と、
     前記酸化物半導体上の、第1の導電体、および第2の導電体と、
     前記第1の導電体および前記第2の導電体を覆い、前記第1の導電体と前記第2の導電体の間の領域に重畳して開口が形成された、第1の絶縁体と、
     前記第1の絶縁体の上に配置され、前記第1の導電体と前記第2の導電体の間の領域に重畳して開口が形成された、第2の絶縁体と、
     前記酸化物半導体上、かつ、前記第1の導電体と前記第2の導電体の間の領域に配置された第3の絶縁体と、
     前記第3の絶縁体上の第3の導電体と、を有し、
     前記第1の絶縁体は、アモルファス構造を有する金属酸化物である、半導体装置。
  3.  酸化物半導体と、
     前記酸化物半導体上の、第1の導電体、および第2の導電体と、
     前記第1の導電体の上面に接する、第1の絶縁体と、
     前記第2の導電体の上面に接する、第2の絶縁体と、
     前記第1の絶縁体および前記第2の絶縁体を覆い、前記第1の導電体と前記第2の導電体の間の領域に重畳して開口が形成された、第3の絶縁体と、
     前記第3の絶縁体の上に配置され、前記第1の導電体と前記第2の導電体の間の領域に重畳して開口が形成された、第4の絶縁体と、
     前記酸化物半導体上、かつ、前記第1の導電体と前記第2の導電体の間の領域に配置された第5の絶縁体と、
     前記第5の絶縁体上の第3の導電体と、を有し、
     前記第1の絶縁体、前記第2の絶縁体、および前記第3の絶縁体は、アモルファス構造を有する金属酸化物である、半導体装置。
  4.  請求項3において、
     前記酸化物半導体の下の、第6の絶縁体と、
     前記第4の絶縁体、および前記第3の導電体の上面に接する第7の絶縁体と、を有し、
     前記第6の絶縁体、および前記第7の絶縁体は、アモルファス構造を有する金属酸化物である、半導体装置。
  5.  請求項4において、
     前記第7の絶縁体を覆い、かつ、前記第5の絶縁体と重畳しない領域において、前記第6の絶縁体の上面に接する、第8の絶縁体を有し、
     前記第8の絶縁体は、アモルファス構造を有する金属酸化物である、半導体装置。
  6.  請求項5において、
     前記第6の絶縁体の下面に接する第9の絶縁体と、
     前記第7の絶縁体の上面に接する第10の絶縁体と、を有し、
     前記第9の絶縁体、および前記第10の絶縁体は、窒化シリコンである、半導体装置。
  7.  請求項3乃至請求項6のいずれか一項において、
     誘電体と、第4の導電体と、を有し、
     前記第2の絶縁体、前記第3の絶縁体、および前記第4の絶縁体に、前記第2の導電体に達する開口が形成され、
     前記誘電体は、当該開口の中に配置され、前記第2の導電体の上面、前記第2の絶縁体の側面、前記第3の絶縁体の側面、および前記第4の絶縁体の側面に接し、
     前記第4の導電体は、当該開口の中に配置され、前記誘電体の上面に接する、半導体装置。
  8.  請求項3乃至請求項7のいずれか一項において、
     前記第1の絶縁体と前記第3の絶縁体の間に配置された第1の窒化物絶縁体と、
     前記第2の絶縁体と前記第3の絶縁体の間に配置された第2の窒化物絶縁体と、を有し、
     前記第1の窒化物絶縁体、および前記第2の窒化物絶縁体は、窒化シリコンである、半導体装置。
  9.  請求項3乃至請求項7のいずれか一項において、
     前記第1の絶縁体の上面、および前記第2の絶縁体の上面は、前記第3の絶縁体に接する、半導体装置。
  10.  請求項1乃至請求項9のいずれか一項において、
     前記金属酸化物は、AlO(xは0より大きい任意数)である、半導体装置。
PCT/IB2020/056540 2019-07-26 2020-07-13 半導体装置 WO2021019334A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/628,296 US20220271168A1 (en) 2019-07-26 2020-07-13 Semiconductor device
JP2021536436A JPWO2021019334A1 (ja) 2019-07-26 2020-07-13
CN202080052839.3A CN114144894A (zh) 2019-07-26 2020-07-13 半导体装置
KR1020227004632A KR20220039740A (ko) 2019-07-26 2020-07-13 반도체 장치

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2019138038 2019-07-26
JP2019-138038 2019-07-26
JP2019-141556 2019-07-31
JP2019141556 2019-07-31
JP2019-170999 2019-09-20
JP2019170999 2019-09-20
JP2020-081763 2020-05-07
JP2020081763 2020-05-07

Publications (1)

Publication Number Publication Date
WO2021019334A1 true WO2021019334A1 (ja) 2021-02-04

Family

ID=74230166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/056540 WO2021019334A1 (ja) 2019-07-26 2020-07-13 半導体装置

Country Status (5)

Country Link
US (1) US20220271168A1 (ja)
JP (1) JPWO2021019334A1 (ja)
KR (1) KR20220039740A (ja)
CN (1) CN114144894A (ja)
WO (1) WO2021019334A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023156877A1 (ja) * 2022-02-18 2023-08-24 株式会社半導体エネルギー研究所 半導体装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7352058B2 (ja) * 2017-11-01 2023-09-28 セントラル硝子株式会社 炭化ケイ素単結晶の製造方法
US20230013047A1 (en) * 2021-07-16 2023-01-19 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit device and method for fabricating the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171056A1 (ja) * 2013-04-19 2014-10-23 パナソニック株式会社 薄膜半導体装置、有機el表示装置、及びそれらの製造方法
WO2016189425A1 (ja) * 2015-05-28 2016-12-01 株式会社半導体エネルギー研究所 半導体装置の作製方法
WO2018178793A1 (ja) * 2017-03-29 2018-10-04 株式会社半導体エネルギー研究所 半導体装置、半導体装置の作製方法
JP2019087677A (ja) * 2017-11-08 2019-06-06 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
JP2019096856A (ja) * 2017-11-17 2019-06-20 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101473684B1 (ko) 2009-12-25 2014-12-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
CN103069717B (zh) 2010-08-06 2018-01-30 株式会社半导体能源研究所 半导体集成电路
JP6402017B2 (ja) * 2013-12-26 2018-10-10 株式会社半導体エネルギー研究所 半導体装置
TWI663733B (zh) * 2014-06-18 2019-06-21 日商半導體能源研究所股份有限公司 電晶體及半導體裝置
KR102548001B1 (ko) * 2015-07-08 2023-06-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171056A1 (ja) * 2013-04-19 2014-10-23 パナソニック株式会社 薄膜半導体装置、有機el表示装置、及びそれらの製造方法
WO2016189425A1 (ja) * 2015-05-28 2016-12-01 株式会社半導体エネルギー研究所 半導体装置の作製方法
WO2018178793A1 (ja) * 2017-03-29 2018-10-04 株式会社半導体エネルギー研究所 半導体装置、半導体装置の作製方法
JP2019087677A (ja) * 2017-11-08 2019-06-06 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
JP2019096856A (ja) * 2017-11-17 2019-06-20 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023156877A1 (ja) * 2022-02-18 2023-08-24 株式会社半導体エネルギー研究所 半導体装置

Also Published As

Publication number Publication date
TW202105660A (zh) 2021-02-01
JPWO2021019334A1 (ja) 2021-02-04
US20220271168A1 (en) 2022-08-25
KR20220039740A (ko) 2022-03-29
CN114144894A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
WO2021140407A1 (ja) 半導体装置、および半導体装置の作製方法
WO2021144666A1 (ja) 半導体装置、および半導体装置の作製方法
WO2021198836A1 (ja) 半導体装置、および半導体装置の作製方法
WO2021019334A1 (ja) 半導体装置
WO2021009589A1 (ja) 半導体装置、および半導体装置の作製方法
WO2020250083A1 (ja) 半導体装置、および半導体装置の作製方法
WO2021038361A1 (ja) 半導体装置
WO2022038453A1 (ja) 絶縁膜の改質方法、および半導体装置の作製方法
WO2021090104A1 (ja) 半導体装置およびその作製方法
WO2021084369A1 (ja) 半導体装置
WO2021070007A1 (ja) 半導体装置
WO2021090116A1 (ja) 半導体装置およびその作製方法
WO2021130600A1 (ja) 半導体装置、半導体装置の作製方法
WO2021090106A1 (ja) トランジスタ、および電子機器
WO2020229914A1 (ja) 半導体装置、および半導体装置の作製方法
WO2021090115A1 (ja) 半導体装置
WO2021048696A1 (ja) 半導体装置
WO2022038456A1 (ja) 半導体装置の作製方法
WO2022043811A1 (ja) 半導体装置の作製方法
WO2022043809A1 (ja) 半導体装置の作製方法
WO2021186297A1 (ja) 半導体装置、半導体装置の作製方法
WO2021130592A1 (ja) 半導体装置、および半導体装置の作製方法
WO2022043810A1 (ja) 半導体装置およびその作製方法
WO2022038450A1 (ja) 金属酸化物の製造方法
WO2021009619A1 (ja) 半導体装置、および半導体装置の作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848166

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021536436

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227004632

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20848166

Country of ref document: EP

Kind code of ref document: A1