WO2021009589A1 - 半導体装置、および半導体装置の作製方法 - Google Patents

半導体装置、および半導体装置の作製方法 Download PDF

Info

Publication number
WO2021009589A1
WO2021009589A1 PCT/IB2020/056149 IB2020056149W WO2021009589A1 WO 2021009589 A1 WO2021009589 A1 WO 2021009589A1 IB 2020056149 W IB2020056149 W IB 2020056149W WO 2021009589 A1 WO2021009589 A1 WO 2021009589A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
insulator
conductor
transistor
region
Prior art date
Application number
PCT/IB2020/056149
Other languages
English (en)
French (fr)
Inventor
大貫達也
松嵜隆徳
山崎舜平
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to CN202080047776.2A priority Critical patent/CN114127932A/zh
Priority to KR1020227001664A priority patent/KR20220031020A/ko
Priority to JP2021532542A priority patent/JPWO2021009589A1/ja
Priority to US17/623,299 priority patent/US20220328486A1/en
Publication of WO2021009589A1 publication Critical patent/WO2021009589A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1207Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with devices in contact with the semiconductor body, i.e. bulk/SOI hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/315DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor with the capacitor higher than a bit line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8258Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using a combination of technologies covered by H01L21/8206, H01L21/8213, H01L21/822, H01L21/8252, H01L21/8254 or H01L21/8256
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout

Definitions

  • One aspect of the present invention relates to transistors, semiconductor devices, and electronic devices. Alternatively, one aspect of the present invention relates to a method for manufacturing a semiconductor device. Alternatively, one aspect of the present invention relates to a semiconductor wafer and a module.
  • the semiconductor device refers to all devices that can function by utilizing the semiconductor characteristics.
  • a semiconductor device such as a transistor, a semiconductor circuit, an arithmetic unit, and a storage device are one aspect of the semiconductor device. It may be said that a display device (liquid crystal display device, light emission display device, etc.), projection device, lighting device, electro-optical device, power storage device, storage device, semiconductor circuit, image pickup device, electronic device, and the like have a semiconductor device.
  • One aspect of the present invention is not limited to the above technical fields.
  • One aspect of the invention disclosed in the present specification and the like relates to a product, a method, or a manufacturing method.
  • one aspect of the invention relates to a process, machine, manufacture, or composition (composition of matter).
  • a CPU is an aggregate of semiconductor elements having a semiconductor integrated circuit (at least a transistor and a memory) separated from a semiconductor wafer and having electrodes as connection terminals formed therein.
  • IC chips Semiconductor circuits (IC chips) such as LSIs, CPUs, and memories are mounted on circuit boards, for example, printed wiring boards, and are used as one of various electronic device components.
  • a technique for constructing a transistor by using a semiconductor thin film formed on a substrate having an insulating surface is attracting attention.
  • the transistor is widely applied to electronic devices such as integrated circuits (ICs) and image display devices (also simply referred to as display devices).
  • ICs integrated circuits
  • image display devices also simply referred to as display devices.
  • Silicon-based semiconductor materials are widely known as semiconductor thin films applicable to transistors, but oxide semiconductors are attracting attention as other materials.
  • a transistor using an oxide semiconductor has an extremely small leakage current in a non-conducting state.
  • a low power consumption CPU that applies the characteristic that the leakage current of a transistor using an oxide semiconductor is low is disclosed (see Patent Document 1).
  • a storage device capable of holding a storage content for a long period of time by applying the characteristic that a transistor using an oxide semiconductor has a low leakage current is disclosed (see Patent Document 2).
  • One aspect of the present invention is to provide a semiconductor device capable of miniaturization or high integration. Alternatively, one aspect of the present invention is to provide a semiconductor device having a large storage capacity. Alternatively, one aspect of the present invention is to provide a semiconductor device having little variation in transistor characteristics. Alternatively, one aspect of the present invention is to provide a semiconductor device having good reliability. Alternatively, one aspect of the present invention is to provide a semiconductor device having good electrical characteristics. Alternatively, one aspect of the present invention is to provide a semiconductor device having a large on-current. Alternatively, one aspect of the present invention is to provide a semiconductor device having low power consumption. Alternatively, one aspect of the present invention is to provide a novel semiconductor device.
  • One aspect of the present invention includes a first conductor arranged on a substrate, an oxide arranged in contact with the upper surface of the first conductor, and a second conductor arranged on the oxide.
  • a first insulator arranged on a third conductor, a fourth conductor, and a second conductor to a fourth conductor, and formed with a first opening and a second opening.
  • a second insulator placed in the first opening, a fifth conductor placed on top of the second insulator, and a third conductor placed in the second opening.
  • It has an insulator and a sixth conductor arranged on top of the third insulator, the third conductor is arranged superimposed on the first conductor, and the first opening is , The second opening is formed by superimposing on the region between the second conductor and the third conductor, and the second opening is formed by superimposing on the region between the third conductor and the fourth conductor. It is a semiconductor device.
  • the first capacitive element and the second capacitive element are included, the first capacitive element is electrically connected to the second conductor, and the second capacitive element is the fourth. It may be electrically connected to the conductor. Further, in the above, it is preferable that the first capacitive element is arranged on the second conductor and the second capacitive element is arranged on the fourth conductor.
  • the first conductor is connected to the wiring provided under the first conductor.
  • the second insulator is in contact with the upper surface of the oxide and the side surface of the first insulator
  • the third insulator is in contact with the upper surface of the oxide and the side surface of the first insulator. , Is preferable.
  • the oxide has a first oxide and a second oxide on the first oxide, and the first oxide and the second oxide are indium.
  • the element M M is one or more selected from gallium, aluminum, yttrium, and tin
  • the atomic number ratio of indium to the element M of the first oxide is It is preferably smaller than the atomic number ratio of indium to the element M of the second oxide.
  • a first conductor is formed on a substrate, an oxide film is formed in contact with the upper surface of the first conductor, and a first conductive film is formed on the oxide film.
  • the film, the oxide film, and the first conductive film are processed into an island shape to form an oxide and a second conductor, and the oxide and the second conductor are covered with the first insulator.
  • a part of the first insulator is removed, and the first opening and the second opening are formed by superimposing on the second conductor, and the first opening and the second opening are formed.
  • a part of the second conductor superposed on the conductor is removed to form a third conductor, a fourth conductor, and a fifth conductor, and the fourth conductor is the first conductor.
  • the oxide is arranged so as to be superimposed on the third to fifth conductors, and the region not overlapped with the third to fifth conductors is exposed, and is in contact with the upper surface of the oxide to form a first insulating film, which contains oxygen.
  • Microwave treatment is performed in an atmosphere to form a second conductive film on the first insulating film, and the upper surface of the first insulating material is exposed to the first insulating film and the second conductive film.
  • CMP treatment is performed to form a second insulator and a sixth conductor in the first opening, and a third insulator and a seventh conductor are formed in the second opening. This is a method for manufacturing a semiconductor device.
  • one aspect of the present invention it is possible to provide a semiconductor device capable of miniaturization or high integration.
  • one aspect of the present invention can provide a semiconductor device having a large storage capacity.
  • one aspect of the present invention can provide a semiconductor device with good reliability.
  • one aspect of the present invention can provide a semiconductor device having good electrical characteristics.
  • one aspect of the present invention can provide a semiconductor device having a large on-current.
  • one aspect of the present invention can provide a semiconductor device capable of miniaturization or high integration.
  • one aspect of the present invention can provide a low power consumption semiconductor device.
  • one aspect of the present invention can provide a novel semiconductor device.
  • FIG. 1A, 1B, 1C, and 1D are a top view and a cross-sectional view of a semiconductor device according to an aspect of the present invention.
  • FIG. 2 is a cross-sectional view of the semiconductor device according to one aspect of the present invention.
  • FIG. 3A is a diagram illustrating classification of the crystal structure of IGZO.
  • FIG. 3B is a diagram illustrating an XRD spectrum of a CAAC-IGZO film.
  • FIG. 3C is a diagram for explaining the microelectron diffraction pattern of the CAAC-IGZO film.
  • 4A, 4B, 4C, and 4D are a top view and a cross-sectional view showing a method for manufacturing a semiconductor device according to one aspect of the present invention.
  • 5A, 5B, 5C, and 5D are a top view and a cross-sectional view showing a method for manufacturing a semiconductor device according to one aspect of the present invention.
  • 6A, 6B, 6C, and 6D are a top view and a cross-sectional view showing a method for manufacturing a semiconductor device according to one aspect of the present invention.
  • 7A, 7B, 7C, and 7D are a top view and a cross-sectional view showing a method for manufacturing a semiconductor device according to one aspect of the present invention.
  • 8A, 8B, 8C, and 8D are a top view and a cross-sectional view showing a method for manufacturing a semiconductor device according to one aspect of the present invention.
  • 9A, 9B, 9C, and 9D are a top view and a cross-sectional view showing a method for manufacturing a semiconductor device according to one aspect of the present invention.
  • 10A, 10B, 10C, and 10D are a top view and a cross-sectional view showing a method for manufacturing a semiconductor device according to one aspect of the present invention.
  • 11A, 11B, 11C, and 11D are a top view and a cross-sectional view showing a method for manufacturing a semiconductor device according to one aspect of the present invention.
  • 12A, 12B, 12C, and 12D are a top view and a cross-sectional view showing a method for manufacturing a semiconductor device according to one aspect of the present invention.
  • FIG. 13 is a top view illustrating a microwave processing apparatus according to an aspect of the present invention.
  • FIG. 14 is a cross-sectional view illustrating a microwave processing apparatus according to an aspect of the present invention.
  • FIG. 15 is a cross-sectional view illustrating a microwave processing apparatus according to an aspect of the present invention.
  • 16A, 16B, 16C, and 16D are a top view and a cross-sectional view of the semiconductor device according to one aspect of the present invention.
  • 17A and 17B are cross-sectional views of the semiconductor device according to one aspect of the present invention.
  • FIG. 18 is a cross-sectional view showing the configuration of a storage device according to one aspect of the present invention.
  • FIG. 19 is a cross-sectional view showing a configuration of a storage device according to an aspect of the present invention.
  • 20A and 20B are cross-sectional views of the semiconductor device according to one aspect of the present invention.
  • FIG. 21 is a cross-sectional view of the semiconductor device according to one aspect of the present invention.
  • FIG. 22 is a cross-sectional view of the semiconductor device according to one aspect of the present invention.
  • 23A and 23B are block diagrams showing a configuration example of a storage device according to one aspect of the present invention.
  • 24A, 24B, and 24C are circuit diagrams showing a configuration example of a storage device according to one aspect of the present invention.
  • 25A and 25B are schematic views of a semiconductor device according to one aspect of the present invention.
  • 26A and 26B are diagrams illustrating an example of an electronic component according to one aspect of the present invention.
  • 27A and 27B are schematic views of a storage device according to an aspect of the present invention.
  • 28A, 28B, 28C, 28D, 28E, 28F, 28G, and 28H are diagrams showing an electronic device according to an aspect of the present invention.
  • the size, layer thickness, or area may be exaggerated for clarity. Therefore, it is not necessarily limited to that scale.
  • the drawings schematically show ideal examples, and are not limited to the shapes or values shown in the drawings. For example, in an actual manufacturing process, layers, resist masks, and the like may be unintentionally reduced due to processing such as etching, but they may not be reflected in the figure for the sake of easy understanding. Further, in the drawings, the same reference numerals may be used in common between different drawings for the same parts or parts having similar functions, and the repeated description thereof may be omitted. Further, when referring to the same function, the hatch pattern may be the same and no particular sign may be added.
  • a top view also referred to as a "plan view”
  • a perspective view the description of some components may be omitted.
  • some hidden lines may be omitted.
  • the ordinal numbers attached as the first, second, etc. are used for convenience, and do not indicate the process order or the stacking order. Therefore, for example, the "first” can be appropriately replaced with the “second” or “third” for explanation.
  • the ordinal numbers described in the present specification and the like may not match the ordinal numbers used to specify one aspect of the present invention.
  • X and Y are connected, the case where X and Y are electrically connected and the case where X and Y function. It is assumed that the case where X and Y are directly connected and the case where X and Y are directly connected are disclosed in the present specification and the like. Therefore, it is not limited to the predetermined connection relationship, for example, the connection relationship shown in the figure or text, and other than the connection relationship shown in the figure or text, it is assumed that the connection relationship is disclosed in the figure or text.
  • X and Y are assumed to be objects (for example, devices, elements, circuits, wirings, electrodes, terminals, conductive films, layers, etc.).
  • a transistor is an element having at least three terminals including a gate, a drain, and a source. It also has a region (hereinafter, also referred to as a channel forming region) in which a channel is formed between the drain (drain terminal, drain region or drain electrode) and the source (source terminal, source region or source electrode). A current can flow between the source and the drain through the channel formation region.
  • the channel forming region means a region in which a current mainly flows.
  • source and drain functions may be interchanged when transistors with different polarities are used or when the direction of current changes during circuit operation. Therefore, in the present specification and the like, the terms source and drain may be used interchangeably.
  • the channel length is, for example, the source in the top view of the transistor, the region where the semiconductor (or the portion where the current flows in the semiconductor when the transistor is on) and the gate electrode overlap each other, or the channel formation region.
  • the channel length does not always take the same value in all regions. That is, the channel length of one transistor may not be fixed to one value. Therefore, in the present specification, the channel length is set to any one value, the maximum value, the minimum value, or the average value in the channel formation region.
  • the channel width is, for example, the channel length direction in the region where the semiconductor (or the portion where the current flows in the semiconductor when the transistor is on) and the gate electrode overlap each other in the top view of the transistor, or the channel formation region. Refers to the length of the channel formation region in the vertical direction with reference to. In one transistor, the channel width does not always take the same value in all regions. That is, the channel width of one transistor may not be fixed to one value. Therefore, in the present specification, the channel width is set to any one value, the maximum value, the minimum value, or the average value in the channel formation region.
  • the channel width in the region where the channel is actually formed (hereinafter, also referred to as “effective channel width”) and the channel width shown in the top view of the transistor. (Hereinafter, also referred to as “apparent channel width”) and may be different.
  • the effective channel width may be larger than the apparent channel width, and the influence thereof may not be negligible.
  • the proportion of the channel forming region formed on the side surface of the semiconductor may be large. In that case, the effective channel width is larger than the apparent channel width.
  • channel width may refer to the apparent channel width.
  • channel width may refer to an effective channel width.
  • the channel length, channel width, effective channel width, apparent channel width, and the like can be determined by analyzing a cross-sectional TEM image or the like.
  • the semiconductor impurity means, for example, a component other than the main components constituting the semiconductor.
  • an element having a concentration of less than 0.1 atomic% can be said to be an impurity. Due to the inclusion of impurities, for example, the defect level density of the semiconductor may increase or the crystallinity may decrease.
  • the impurities that change the characteristics of the semiconductor include, for example, Group 1 elements, Group 2 elements, Group 13 elements, Group 14 elements, Group 15 elements, and oxide semiconductors.
  • transition metals other than the main component such as hydrogen, lithium, sodium, silicon, boron, phosphorus, carbon, and nitrogen. Water may also function as an impurity.
  • the oxide semiconductor to an oxygen vacancy V O: also referred to as oxygen vacancy
  • silicon oxide nitriding has a higher oxygen content than nitrogen as its composition. Further, silicon nitride has a higher nitrogen content than oxygen in its composition.
  • the term “insulator” can be paraphrased as an insulating film or an insulating layer.
  • the term “conductor” can be rephrased as a conductive film or a conductive layer.
  • semiconductor can be paraphrased as a semiconductor film or a semiconductor layer.
  • parallel means a state in which two straight lines are arranged at an angle of -10 degrees or more and 10 degrees or less. Therefore, the case of -5 degrees or more and 5 degrees or less is also included.
  • approximately parallel means a state in which two straight lines are arranged at an angle of -30 degrees or more and 30 degrees or less.
  • vertical means a state in which two straight lines are arranged at an angle of 80 degrees or more and 100 degrees or less. Therefore, the case of 85 degrees or more and 95 degrees or less is also included.
  • approximately vertical means a state in which two straight lines are arranged at an angle of 60 degrees or more and 120 degrees or less.
  • a metal oxide is a metal oxide in a broad sense. Metal oxides are classified into oxide insulators, oxide conductors (including transparent oxide conductors), oxide semiconductors (also referred to as Oxide Semiconductor or simply OS) and the like. For example, when a metal oxide is used in the semiconductor layer of a transistor, the metal oxide may be referred to as an oxide semiconductor. That is, when it is described as an OS transistor, it can be rephrased as a transistor having a metal oxide or an oxide semiconductor.
  • normally off means that when a potential is not applied to the gate or a ground potential is applied to the gate, the drain current per 1 ⁇ m of the channel width flowing through the transistor is 1 ⁇ 10 ⁇ at room temperature. It means that it is 20 A or less, 1 ⁇ 10 -18 A or less at 85 ° C, or 1 ⁇ 10 -16 A or less at 125 ° C.
  • Embodiment 1 In the present embodiment, an example of a semiconductor device having a transistor 200a and a transistor 200b according to one aspect of the present invention, and a method for manufacturing the same will be described with reference to FIGS. 1 to 17.
  • the transistor 200a and the transistor 200b may be collectively referred to as a transistor 200.
  • FIG. 1A is a top view of the semiconductor device.
  • 1B to 1D are cross-sectional views of the semiconductor device.
  • FIG. 1B is a cross-sectional view of the portion shown by the alternate long and short dash line of A1-A2 in FIG. 1A, and is also a cross-sectional view of the transistor 200a and the transistor 200b in the channel length direction.
  • FIG. 1C is a cross-sectional view of the portion shown by the alternate long and short dash line of A3-A4 in FIG.
  • FIG. 1A is also a cross-sectional view of the transistor 200a in the channel width direction.
  • FIG. 1D is a cross-sectional view of the portion shown by the alternate long and short dash line in FIG. 1A.
  • FIG. 1A In the top view of FIG. 1A, some elements are omitted for the purpose of clarifying the figure.
  • the semiconductor device of one aspect of the present invention includes an insulator 212 on a substrate (not shown), an insulator 214 on the insulator 212, a transistor 200 on the insulator 214, and an insulator 280 on the transistor 200. It has an insulator 282 on an insulator 280 and an insulator 283 on an insulator 282.
  • the insulator 212, the insulator 214, the insulator 280, the insulator 282, and the insulator 283 function as an interlayer film.
  • a conductor 248 (conductor 248a and conductor 248b) is provided so as to be embedded between the insulator 212, the insulator 214, and the transistor 200a and the transistor 200b.
  • the conductor 248 is electrically connected to the transistor 200a and the transistor 200b and functions as a plug. It is preferable to provide the insulator 249 in contact with the side surface of the conductor 248 that functions as a plug.
  • the transistor 200a includes an insulator 216 on the insulator 214 and a conductor 205 (conductor 205a, conductor 205b, and conductor 205) arranged so as to be embedded in the insulator 216. 205c), the insulator 222 on the insulator 216 and the conductor 205, the insulator 224 on the insulator 222, the oxide 230a on the insulator 224, and the oxide 230b on the oxide 230a.
  • the oxide 230b On the oxide 230b, the oxide 243a and the oxide 243b, the conductor 242a on the oxide 243a, the conductor 242b on the oxide 243b, the insulator 250 on the oxide 230b, and the insulator 250. It has a conductor 260 (conductor 260a, and a conductor 260b) that is located and overlaps a part of the oxide 230b.
  • the transistor 200b is on the insulator 216 on the insulator 214, the conductor 205 arranged so as to be embedded in the insulator 214 or the insulator 216, and the insulator 216.
  • oxide 243b and oxide 243c conductor 242b on oxide 243b, conductor 242c on oxide 243c, insulator 250 on oxide 230b, located on insulator 250, one of oxide 230b It has a conductor 260 that overlaps with the portion.
  • the oxide 230a and the oxide 230b may be collectively referred to as the oxide 230.
  • the oxide 243a, the oxide 243b, and the oxide 243c may be collectively referred to as an oxide 243.
  • the conductor 242a, the conductor 242b, and the conductor 242c may be collectively referred to as the conductor 242.
  • the insulator 275 is provided so as to cover the insulator 224, the oxide 230, the oxide 243, and the conductor 242. Further, as shown in FIGS. 1B and 1C, the upper surface of the conductor 260 is arranged so as to substantially coincide with the upper surface of the insulator 250 and the upper surface of the insulator 280. Further, the insulator 282 is in contact with the upper surface of each of the conductor 260 and the insulator 280, and the uppermost portion of the insulator 250.
  • the transistor 200b is provided on the opposite side of the transistor 200a with the conductor 248 interposed therebetween, and has the same structure as the transistor 200a except for the conductor 242 and the oxide 243. Has.
  • the insulator 212, the insulator 214, the insulator 216, the insulator 222, the insulator 224, the oxide 230a, the oxide 230b, the insulator 275, the insulator 280, the insulator 282, and the insulator. 283 is commonly used.
  • the conductor 205, the insulator 250, and the conductor 260 are provided in the transistor 200a and the transistor 200b, respectively.
  • the conductor 205, the insulator 250, and the conductor 260 each have the same structure as the transistor 200a, and are therefore designated by the same reference numerals.
  • the conductors 242a to 242c and the oxides 243a to 243c are linearly arranged in the channel length direction (A1-A2 direction) on the oxide 230.
  • the conductor 242b is arranged so as to superimpose on the conductor 248.
  • openings are provided so as to overlap the region between the conductor 242a and the conductor 242b and the region between the conductor 242b and the conductor 242c. In each of the openings, an insulator 250 and a conductor 260 arranged on the insulator 250 are provided.
  • the insulator 280 and the insulator 275 are provided with two openings reaching the oxide 230b, and the insulator 250 and the conductor 260 are arranged in the openings. That is, in the transistor 200a, the insulator 250 includes the upper surface of the oxide 230b, the side surfaces of the oxide 243a and the oxide 243b, the side surfaces of the conductor 242a and the conductor 242b, the side surface of the insulator 275, and the insulator 280. It is provided in contact with the side surface of.
  • the insulator 250 includes the upper surface of the oxide 230b, the side surfaces of the oxide 243b and the oxide 243c, the side surfaces of the conductor 242b and the conductor 242c, the side surface of the insulator 275, and the insulator 280. It is provided in contact with the side surface of. Further, in the transistor 200a and the transistor 200b, the respective conductors 260 are provided in contact with the upper surface and the side surface of the respective insulator 250.
  • the conductor 260 functions as a first gate (also referred to as a top gate) electrode, and the conductor 205 functions as a second gate (also referred to as a back gate) electrode.
  • the insulator 250 functions as a first gate insulator, and the insulator 222 and the insulator 224 function as a second gate insulator.
  • the conductor 242a functions as one of the source and drain of the transistor 200a.
  • the conductor 242b functions as one of the source or drain of the transistor 200a and one of the source or drain of the transistor 200b.
  • the conductor 242c functions as the source or drain of the transistor 200b.
  • at least a part of the region of the oxide 230 overlapping with the conductor 260 functions as a channel forming region of the transistor 200a or the transistor 200b.
  • the oxide 230 is provided so as to sandwich a region 232d that functions as a channel forming region of the transistor 200a and a region 232d, and functions as a source region or a drain region of the transistor 200a, and the regions 232a and 232b.
  • the region 232d and the region 232e overlaps with the conductor 260.
  • the region 232d is provided so as to overlap the region between the conductors 242a and the conductor 242b
  • the region 232e is provided so as to overlap the region between the conductors 242b and the conductor 242c.
  • the region 232a is provided so as to be superimposed on the conductor 242a
  • the region 232b is provided so as to be superimposed on the conductor 242b
  • the region 232c is provided so as to be superimposed on the conductor 242c.
  • the region 232d and the region 232e that function as the channel formation region are high resistance regions having a low carrier concentration because they have less oxygen deficiency or a lower impurity concentration than the regions 232a, 232b, and 232c. Therefore, it can be said that the region 232d and the region 232e are i-type (intrinsic) or substantially i-type.
  • the carrier concentration increases due to a large amount of oxygen deficiency or a high concentration of impurities such as hydrogen, nitrogen, and metal elements. This is a region with low resistance. That is, the regions 232a, 232b, and 232c are n-type regions having a high carrier concentration and low resistance as compared with the regions 232d and 232e.
  • the carrier concentration of the region 232d and the region 232e that function as the channel forming region is preferably 1 ⁇ 10 18 cm -3 or less, more preferably less than 1 ⁇ 10 17 cm -3. It is more preferably less than 10 16 cm -3 , even more preferably less than 1 ⁇ 10 13 cm -3 , and even more preferably less than 1 ⁇ 10 12 cm -3 .
  • the lower limit of the carrier concentration of the region 232d and the region 232e that function as the channel forming region is not particularly limited, but may be, for example, 1 ⁇ 10 -9 cm -3 .
  • the carrier concentration between the region 232d and the region 232a or the region 232b, or between the region 232e and the region 232b or the region 232c is equal to or equal to the carrier concentration of the region 232a, the region 232b, and the region 232c.
  • Regions may be formed that are lower than that and equal to or higher than the carrier concentrations of regions 232d and 232e. That is, the region functions as a junction region between the region 232d or the region 232e and the region 232a, the region 232b, or the region 232c.
  • the hydrogen concentration may be equal to or lower than the hydrogen concentration in the regions 232a, 232b, and 232c, and equal to or higher than the hydrogen concentration in the regions 232d and 232e. .. Further, when the oxygen deficiency in the junction region is equal to or less than the oxygen deficiency in the regions 232a, 232b, and 232c, and equal to or greater than the oxygen deficiency in the regions 232d and 232e. There is.
  • concentrations of the metal elements detected in each region and the impurity elements such as hydrogen and nitrogen are not limited to the stepwise changes in each region, but may be continuously changed in each region. That is, the closer the region is to the channel formation region, the lower the concentration of metal elements and impurity elements such as hydrogen and nitrogen is sufficient.
  • the region 232b functions as a source region or a drain region of both the transistor 200a and the transistor 200b, and is shared by the transistor 200a and the transistor 200b.
  • the transistor 200a and the transistor 200b have a structure in which the source and the drain are connected in series.
  • the oxide 230 is in contact with at least a part of the upper surface of the conductor 248 in the region 232b.
  • the conductor 242b is arranged so as to be superimposed on at least a part of the conductor 248.
  • the conductor 248 is arranged so as to be exposed from the upper surface of the insulator 224.
  • the conductor 248 may be arranged so as to be embedded in the openings formed in the insulator 212, the insulator 214, the insulator 216, the insulator 222, and the insulator 224. It is preferable that at least a part of the upper surface of the conductor 248 is exposed from the insulator 224, and the upper surface of the conductor 248 and the upper surface of the insulator 224 substantially coincide with each other.
  • the conductor 248 is a wiring, an electrode, a terminal, or a circuit element (switch, a transistor, a capacitive element, an inductor, a resistance element, a diode, etc.) provided below the insulator 212, and the transistor 200a and the transistor 200a. It functions as a plug for electrically connecting the transistor 200b.
  • the conductor 248 may be configured to be connected to a wiring provided below the insulator 212.
  • the conductor 248 and the wiring provided in contact with the conductor 248 are bit wires.
  • the conductor 260 of the transistor 200 corresponds to a word line.
  • the conductor 248 is provided under the oxide 230
  • the parasitic capacitance generated in the conductor 248 and the conductor 260 is compared with the case where the conductor 248 is provided on the oxide 230.
  • the conductor 248 is provided under the oxide 230, the bit wire can be shortened as compared with the case where the conductor 248 is provided on the oxide 230. Therefore, the parasitic capacitance generated in the bit line can be reduced.
  • the capacitance element can be miniaturized, so that the storage device can be miniaturized or highly integrated.
  • the wiring, electrode, terminal, or circuit element electrically connected to the conductor 248 is the oxide 230. It is preferable to superimpose. As a result, the occupied area of the transistor 200, the wiring, the electrodes, the terminals, or the circuit element in the top view can be reduced, so that the semiconductor device according to the present embodiment can be miniaturized or highly integrated. ..
  • the conductor 248 is provided in contact with the lower surface of the region 232b, but the present invention is not limited to this.
  • the conductor 248 may be provided in contact with the lower surface of the region 232a, or the conductor 248 may be provided in contact with the lower surface of the region 232c.
  • the oxide 230 preferably has an oxide 230a arranged on the insulator 224 and an oxide 230b arranged on the oxide 230a.
  • the metal oxide that functions as a semiconductor it is preferable to use a metal oxide having a band gap of 2 eV or more, preferably 2.5 eV or more.
  • the off-current of the transistor can be reduced.
  • the off-current of the transistor 200 can be reduced.
  • the off-current of the transistor 200 it is possible to retain the stored contents for a long period of time when the transistor 200 is used as a memory cell of the storage device. That is, the storage device does not require a refresh operation, or the frequency of the refresh operation may be extremely low. Further, as a result, the power consumption of the storage device can be sufficiently reduced.
  • an In-M-Zn oxide having indium, element M and zinc (element M is aluminum, gallium, yttrium, tin, copper, vanadium, beryllium, boron, titanium, iron, nickel, germanium).
  • Zinc, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, etc. (one or more) and the like may be used.
  • an In-Ga-Zn oxide may be used, or an oxide obtained by adding tin to the In-Ga-Zn oxide may be used.
  • an In-Ga oxide, an In-Zn oxide, or an indium oxide may be used.
  • the metal oxide can be formed on a substrate by using a sputtering method or the like. Therefore, the transistor 200 can be provided on top of a peripheral circuit such as a drive circuit formed on a silicon substrate. Therefore, when the transistor 200 is used as a memory cell of a storage device, the occupied area of the memory cell array that can be provided on one chip can be increased, so that the storage capacity of the storage device can be increased. Further, by laminating a plurality of the metal oxides to form a film, the memory cell array can be laminated and provided. As a result, cells can be integrated and arranged without increasing the occupied area of the memory cell array. That is, a laminated structure of a memory cell array (hereinafter, may be referred to as a 3D cell array) can be constructed. As described above, it is possible to achieve high integration of memory cells and provide a semiconductor device having a large storage capacity.
  • the semiconductor device using the above metal oxide, particularly In-Ga-Zn oxide has very good heat resistance as the temperature range in which the semiconductor device can be operated normally is -40 ° C or higher and 190 ° C or lower. ..
  • This is the heat resistance of phase change memory (PCM: Phase Change Memory) (-40 ° C or more and 150 ° C or less), and the heat resistance of resistance change memory (ReRAM: Resistance Random Access Memory) (-40 ° C or more and 125 ° C or less).
  • PCM Phase Change Memory
  • ReRAM Resistance Random Access Memory
  • MRAM Magnetoresistive Random Access Memory
  • the atomic number ratio of In to the element M in the metal oxide used for the oxide 230b is larger than the atomic number ratio of In to the element M in the metal oxide used for the oxide 230a.
  • the oxide 230a By arranging the oxide 230a under the oxide 230b, it is possible to suppress the diffusion of impurities and oxygen with respect to the oxide 230b from the structure formed below the oxide 230a.
  • the oxide 230 is not limited to a configuration in which two layers of the oxide 230a and the oxide 230b are laminated.
  • a single layer of the oxide 230b or a laminated structure of three or more layers may be provided, or each of the oxide 230a and the oxide 230b may have a laminated structure.
  • the oxide 230 may be composed of a single layer of the oxide 230b so that the region 232b can be easily formed up to the bottom surface of the oxide 230.
  • the oxide 230a and the oxide 230b have a common element (main component) other than oxygen, the defect level density at the interface between the oxide 230a and the oxide 230b can be lowered. Since the defect level density at the interface between the oxide 230a and the oxide 230b can be lowered, the influence of interfacial scattering on carrier conduction is small, and a high on-current can be obtained.
  • each oxide 230b has crystallinity.
  • CAAC-OS c-axis aligned crystalline semiconductor semiconductor
  • CAAC-OS is a metal oxide having a highly crystalline and dense structure and having few impurities and defects (for example, oxygen deficiency ( VO )).
  • the CAAC-OS is subjected to heat treatment at a temperature at which the metal oxide does not undergo polycrystallization (for example, 400 ° C. or higher and 600 ° C. or lower), whereby CAAC-OS has a more crystalline and dense structure. Can be.
  • a temperature at which the metal oxide does not undergo polycrystallization for example, 400 ° C. or higher and 600 ° C. or lower
  • the metal oxide having CAAC-OS has stable physical properties. Therefore, the metal oxide having CAAC-OS is resistant to heat and has high reliability.
  • Transistors using oxide semiconductors may have poor electrical characteristics and poor reliability if impurities and oxygen deficiencies are present in the region where channels are formed in the oxide semiconductor.
  • the hydrogen of oxygen vacancies near defects containing the hydrogen to the oxygen deficiency (hereinafter, may be referred to as V O H.) Was formed, the carrier even when no voltage is applied to the gate electrode of the transistor May generate electrons. Therefore, if oxygen deficiency is contained in the region where the channel is formed in the oxide semiconductor, the transistor has normal-on characteristics (the channel exists even if no voltage is applied to the gate electrode, and the current is applied to the transistor. Flowing characteristics).
  • the carrier concentration is reduced in the state where no voltage is applied to the gate electrode of the transistor, and it is i-type (intrinsic) or substantially i-type. It is preferable to have.
  • excess oxygen an insulator containing oxygen desorbed by heating
  • the oxide semiconductor is separated from the insulator.
  • oxygen is supplied, it is possible to reduce oxygen vacancies, and V O H to.
  • the on-current of the transistor 200 may decrease or the field effect mobility may decrease.
  • the oxygen supplied to the source region or the drain region varies in the surface of the substrate, so that the characteristics of the semiconductor device having the transistor vary.
  • the region 232d and the region 232e that function as the channel forming region preferably have a reduced carrier concentration and are i-type or substantially i-type, but function as a source region or a drain region.
  • the region 232a, the region 232b, and the region 232c have a high carrier concentration and are preferably n-type.
  • the oxygen deficiency in the region 232d and the region 232e of the oxide semiconductor and reduces V O H, region 232a, the region 232b, and it is preferable that an excessive amount of oxygen in the region 232c to not be supplied.
  • microwave treatment is performed in an atmosphere containing oxygen, and oxygen deficiency in the regions 232d and 232e is performed. , and reduced V O H.
  • the microwave processing refers to processing using, for example, a device having a power source that generates high-density plasma using microwaves.
  • oxygen gas By performing microwave treatment in an atmosphere containing oxygen, oxygen gas can be turned into plasma using microwaves or high frequencies such as RF, and the oxygen plasma can be allowed to act. At this time, the region 232d and the region 232e can be irradiated with a high frequency such as a microwave or RF. Plasma, by the action such as a microwave, and divide the V O H region 232d and the region 232 e, the hydrogen H is removed from the region 232d and the region 232 e, it is possible to fill oxygen vacancies V O in oxygen. That is, in the region 232d and the region 232 e, happening reaction of "V O H ⁇ H + V O", it is possible to reduce the hydrogen concentration in the region 232d and the region 232 e. Therefore, to reduce oxygen vacancies, and V O H in the region 232d and the region 232 e, the carrier concentration can be decreased.
  • the action of microwaves, high frequencies such as RF, oxygen plasma, etc. is shielded by the conductors 242a, 242b, and 242c, and the regions 232a and regions. It does not reach 232b and region 232c.
  • the action of the oxygen plasma can be reduced by the insulator 275 and the insulator 280 provided overlying the oxide 230b and the conductor 242.
  • the side surface of the opening in which the conductor 260 and the like are embedded is substantially perpendicular to the surface to be formed of the oxide 230b, including the groove portion of the oxide 230b. It is not limited to this.
  • the bottom of the opening may have a gently curved surface and may have a U-shape.
  • the side surface of the opening may be inclined with respect to the surface to be formed of the oxide 230b.
  • a curved surface may be provided between the side surface of the oxide 230b and the upper surface of the oxide 230b in a cross-sectional view of the transistor 200 in the channel width direction. That is, the end of the side surface and the end of the upper surface may be curved (hereinafter, also referred to as a round shape).
  • the radius of curvature on the curved surface is preferably larger than 0 nm, smaller than the film thickness of the oxide 230b in the region overlapping the conductor 242, or smaller than half the length of the region having no curved surface.
  • the radius of curvature on the curved surface is larger than 0 nm and 20 nm or less, preferably 1 nm or more and 15 nm or less, and more preferably 2 nm or more and 10 nm or less.
  • the oxide 230 preferably has a laminated structure of a plurality of oxide layers having different chemical compositions.
  • the atomic number ratio of the element M to the metal element as the main component is the ratio of the element M to the metal element as the main component in the metal oxide used for the oxide 230b. It is preferably larger than the atomic number ratio.
  • the atomic number ratio of the element M to In is preferably larger than the atomic number ratio of the element M to In in the metal oxide used for the oxide 230b.
  • the atomic number ratio of In to the element M is preferably larger than the atomic number ratio of In to the element M in the metal oxide used for the oxide 230a.
  • the oxide 230b is preferably an oxide having crystallinity such as CAAC-OS.
  • Crystalline oxides such as CAAC-OS have a dense structure with high crystallinity with few impurities and defects (oxygen deficiency, etc.). Therefore, it is possible to suppress the extraction of oxygen from the oxide 230b by the source electrode or the drain electrode. As a result, oxygen can be reduced from being extracted from the oxide 230b even if heat treatment is performed, so that the transistor 200 is stable against a high temperature (so-called thermal budget) in the manufacturing process.
  • the lower end of the conduction band changes gently.
  • the lower end of the conduction band at the junction between the oxide 230a and the oxide 230b is continuously changed or continuously bonded. In order to do so, it is preferable to reduce the defect level density of the mixed layer formed at the interface between the oxide 230a and the oxide 230b.
  • the oxide 230a and the oxide 230b have a common element other than oxygen as a main component, a mixed layer having a low defect level density can be formed.
  • the oxide 230b is an In-M-Zn oxide
  • the oxide 230a is an In-M-Zn oxide, an M-Zn oxide, an element M oxide, an In-Zn oxide, or an indium oxide. Etc. may be used.
  • a metal oxide having a composition in the vicinity thereof may be used.
  • a metal oxide having a composition may be used.
  • the composition in the vicinity includes a range of ⁇ 30% of the desired atomic number ratio.
  • the above atomic number ratio is not limited to the atomic number ratio of the formed metal oxide, but is the atomic number ratio of the sputtering target used for forming the metal oxide. It may be.
  • the defect level density at the interface between the oxide 230a and the oxide 230b can be lowered. Therefore, the influence of interfacial scattering on carrier conduction is reduced, and the transistor 200 can obtain a large on-current and high frequency characteristics.
  • At least one of the insulator 212, the insulator 214, the insulator 275, the insulator 282, and the insulator 283 has impurities such as water and hydrogen diffused into the transistor 200 from the substrate side or from above the transistor 200. It is preferable that it functions as a barrier insulating film that suppresses the above.
  • the insulator 212, the insulator 214, the insulator 275, at least one insulator 282, and the insulator 283 is a hydrogen atom, a hydrogen molecule, a water molecule, a nitrogen atom, a nitrogen molecule, nitric oxide molecule (N 2 O)
  • an insulating material having a function of suppressing the diffusion of impurities such as NO, NO 2
  • copper atoms the above impurities are difficult to permeate
  • it is preferable to use an insulating material having a function of suppressing the diffusion of oxygen for example, at least one oxygen atom, oxygen molecule, etc.) (the oxygen is difficult to permeate).
  • the barrier insulating film refers to an insulating film having a barrier property.
  • the barrier property refers to a function of suppressing the diffusion of the corresponding substance (also referred to as low permeability). Alternatively, it refers to the function of capturing and fixing (also called gettering) the corresponding substance.
  • the insulator 212, the insulator 214, the insulator 275, the insulator 282, and the insulator 283, for example, aluminum oxide, hafnium oxide, gallium oxide, indium gallium zinc oxide, silicon nitride, silicon nitride, or the like is used. be able to.
  • the insulator 214, the insulator 275, and the insulator 282 it is preferable to use aluminum oxide having a high function of capturing hydrogen and fixing hydrogen and having a high oxygen barrier property.
  • the transistor 200 is surrounded by an insulator 212, an insulator 214, an insulator 275, an insulator 282, and an insulator 283 having a function of suppressing the diffusion of impurities such as water and hydrogen, and oxygen. Is preferable.
  • the film formation of the insulator 212, the insulator 214, the insulator 275, the insulator 282, and the insulator 283 may be performed by using, for example, a sputtering method. Since it is not necessary to use hydrogen as the film forming gas in the sputtering method, the hydrogen concentration of the insulator 212, the insulator 214, the insulator 275, the insulator 282, and the insulator 283 can be reduced.
  • the film forming method is not limited to the sputtering method, but is limited to a chemical vapor deposition (CVD) method, a molecular beam epitaxy (MBE) method, and a pulsed laser deposition (PLD: Pulsed Laser Deposition) method. ) Method, atomic layer deposition (ALD: Atomic Layer Deposition) method and the like may be appropriately used.
  • the resistivity of the insulator 212 and the insulator 283 is preferably 1 ⁇ 10 10 ⁇ cm or more and 1 ⁇ 10 15 ⁇ cm or less.
  • the insulator 216 and the insulator 280 have a lower dielectric constant than the insulator 214.
  • a material having a low dielectric constant as an interlayer film, it is possible to reduce the parasitic capacitance generated between the wirings.
  • the conductor 205 is arranged so as to overlap the oxide 230 and the conductor 260. As shown in FIG. 1A, the conductor 205 may be provided so as to extend in the A3-A4 direction. Here, it is preferable that the conductor 205 is embedded in the opening formed in the insulator 216. A part of the conductor 205 may be provided so as to be embedded in the insulator 214.
  • the conductor 205 has a conductor 205a, a conductor 205b, and a conductor 205c.
  • the conductor 205a is provided in contact with the bottom surface and the side wall of the opening.
  • the conductor 205b is provided so as to be embedded in the recess formed in the conductor 205a.
  • the upper surface of the conductor 205b is lower than the upper surface of the conductor 205a and the upper surface of the insulator 216.
  • the conductor 205c is provided in contact with the upper surface of the conductor 205b and the side surface of the conductor 205a.
  • the height of the upper surface of the conductor 205c is substantially the same as the height of the upper surface of the conductor 205a and the height of the upper surface of the insulator 216. That is, the conductor 205b is wrapped in the conductor 205a and the conductor 205c.
  • the conductors 205a and conductors 205c are hydrogen atoms, hydrogen molecules, water molecules, nitrogen atom, a nitrogen molecule, nitric oxide molecule (N 2 O, NO, etc. NO 2), the diffusion of impurities such as copper atoms It is preferable to use a conductive material having a suppressing function. Alternatively, it is preferable to use a conductive material having a function of suppressing the diffusion of oxygen (for example, at least one oxygen atom, oxygen molecule, etc.).
  • the conductor 205a and the conductor 205c By using a conductive material having a function of reducing the diffusion of hydrogen for the conductor 205a and the conductor 205c, impurities such as hydrogen contained in the conductor 205b are transferred to the oxide 230 via the insulator 224 and the like. It can be prevented from spreading. Further, by using a conductive material having a function of suppressing the diffusion of oxygen for the conductor 205a and the conductor 205c, it is possible to prevent the conductor 205b from being oxidized and the conductivity from being lowered.
  • the conductive material having a function of suppressing the diffusion of oxygen for example, titanium, titanium nitride, tantalum, tantalum nitride, ruthenium, ruthenium oxide and the like are preferably used. Therefore, as the conductor 205a and the conductor 205c, the conductive material may be a single layer or a laminate. For example, titanium nitride may be used for the conductor
  • the conductor 205b it is preferable to use a conductive material containing tungsten, copper, or aluminum as a main component.
  • tungsten may be used for the conductor 205b.
  • the conductor 205 may function as a second gate electrode.
  • the threshold voltage (Vth) of the transistor 200 can be controlled by changing the potential applied to the conductor 205 independently of the potential applied to the conductor 260 without interlocking with it.
  • Vth threshold voltage
  • the electrical resistivity of the conductor 205 is designed in consideration of the potential applied to the conductor 205, and the film thickness of the conductor 205 is set according to the electrical resistivity. Further, the film thickness of the insulator 216 is almost the same as that of the conductor 205. Here, it is preferable to reduce the film thickness of the conductor 205 and the insulator 216 within the range allowed by the design of the conductor 205. By reducing the film thickness of the insulator 216, the absolute amount of impurities such as hydrogen contained in the insulator 216 can be reduced, so that the impurities can be reduced from diffusing into the oxide 230. ..
  • the conductor 205 may be provided larger than the size of the region that does not overlap with the conductor 242a and the conductor 242b of the oxide 230.
  • the conductor 205 is also stretched in a region outside the end where the oxide 230a and the oxide 230b intersect in the channel width direction. That is, it is preferable that the conductor 205 and the conductor 260 are superposed on each other via an insulator on the outside of the side surface of the oxide 230 in the channel width direction.
  • the channel forming region of the oxide 230 is electrically surrounded by the electric field of the conductor 260 that functions as the first gate electrode and the electric field of the conductor 205 that functions as the second gate electrode. Can be done.
  • the structure of the transistor that electrically surrounds the channel formation region by the electric fields of the first gate and the second gate is referred to as a surroundd channel (S-channel) structure.
  • the transistor having the S-channel structure represents the structure of the transistor that electrically surrounds the channel formation region by the electric fields of one and the other of the pair of gate electrodes.
  • the S-channel structure disclosed in the present specification and the like is different from the Fin type structure and the planar type structure.
  • the conductor 205 is stretched to function as wiring.
  • the present invention is not limited to this, and a conductor that functions as wiring may be provided under the conductor 205. Further, it is not always necessary to provide one conductor 205 for each transistor. For example, the conductor 205 may be shared by a plurality of transistors.
  • the conductor 205 may be provided as a single-layer, two-layer, or four-layer or higher laminated structure.
  • the conductor 205c may not be provided, and the upper surface of the conductor 205a and the upper surface of the conductor 205b may coincide with each other.
  • the conductor 248 may also have a conductor 248a and a conductor 248b arranged inside the conductor 248a.
  • a conductor that can be used for the conductor 205a may be used, and a conductor that reduces the permeation of impurities such as water or hydrogen and oxygen is preferable.
  • impurities such as water or hydrogen and oxygen
  • titanium, titanium nitride, tantalum, tantalum nitride, ruthenium, ruthenium oxide and the like can be used.
  • a conductor having good adhesion to the conductor 248b may be used.
  • a conductor that can be used for the conductor 205b may be used, and it is preferable to use a conductive material containing tungsten, copper, or aluminum as a main component.
  • the shape of the conductor 248 in FIG. 1A is circular in the top view, but the shape is not limited to this.
  • the conductor 248 may have a substantially circular shape such as an ellipse, a polygonal shape such as a quadrangle, or a polygonal shape such as a quadrangle with rounded corners when viewed from above.
  • the conductor 248 may be provided as a single layer or a laminated structure having three or more layers.
  • a conductor similar to the conductor 205a may be arranged between the upper surface of the conductor 248b and the oxide 230.
  • the insulator 249 is provided in contact with the inner wall of the opening of the insulator 212, the insulator 214, the insulator 216, the insulator 222, and the insulator 224, and the conductor 248 is provided in contact with the side surface of the insulator 249. ing.
  • the insulator 249 it is preferable to use an insulator that reduces the diffusion of impurities such as hydrogen and water and oxygen, and for example, an insulator such as silicon nitride, aluminum oxide, or silicon nitride may be used. As a result, impurities such as water and hydrogen contained in the insulator 216 and the like can be suppressed from being mixed into the oxide 230 through the conductor 248.
  • silicon nitride is suitable because it has a high barrier property against hydrogen. Further, it is possible to prevent oxygen contained in the insulator 216 from being absorbed by the conductor 248.
  • the configuration is not limited to the above, and the insulator 249 may not be provided.
  • the insulator 222 and the insulator 224 function as gate insulators.
  • the insulator 222 has a function of suppressing the diffusion of hydrogen (for example, at least one hydrogen atom, hydrogen molecule, etc.). Further, the insulator 222 preferably has a function of suppressing the diffusion of oxygen (for example, at least one oxygen atom, oxygen molecule, etc.). For example, the insulator 222 preferably has a function of suppressing the diffusion of one or both of hydrogen and oxygen more than the insulator 224.
  • the insulator 222 it is preferable to use an insulator containing oxides of one or both of aluminum and hafnium, which are insulating materials.
  • the insulator it is preferable to use aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate) and the like.
  • the insulator 222 releases oxygen from the oxide 230 to the substrate side and diffuses impurities such as hydrogen from the peripheral portion of the transistor 200 to the oxide 230. Functions as a layer that suppresses.
  • the insulator 222 it is possible to suppress the diffusion of impurities such as hydrogen into the inside of the transistor 200 and suppress the generation of oxygen deficiency in the oxide 230. Further, it is possible to suppress the conductor 205 from reacting with the oxygen contained in the insulator 224 and the oxide 230.
  • aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, and zirconium oxide may be added to the insulator.
  • these insulators may be nitrided.
  • the insulator 222 may be used by laminating silicon oxide, silicon oxide or silicon nitride on these insulators.
  • the insulator 222 includes, for example, aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTIO 3 ), (Ba, Sr) TiO 3 (BST) and the like. Insulators containing so-called high-k materials may be used in single layers or in layers. As the miniaturization and high integration of transistors progress, problems such as leakage current may occur due to the thinning of the gate insulator. By using a high-k material for an insulator that functions as a gate insulator, it is possible to reduce the gate potential during transistor operation while maintaining the physical film thickness.
  • the insulator 224 in contact with the oxide 230 preferably contains excess oxygen (desorbs oxygen by heating).
  • excess oxygen desorbs oxygen by heating
  • silicon oxide, silicon oxide nitride, or the like may be appropriately used for the insulator 224.
  • an oxide material in which a part of oxygen is desorbed by heating in other words, an insulator material having an excess oxygen region.
  • Oxides that desorb oxygen by heating are those in which the amount of desorbed oxygen molecules is 1.0 ⁇ 10 18 molecules / cm 3 or more, preferably 1.0 ⁇ 10 19 molecules, as determined by TDS (Thermal Desorption Spectroscopy) analysis.
  • the surface temperature of the film during the TDS analysis is preferably in the range of 100 ° C. or higher and 700 ° C. or lower, or 100 ° C. or higher and 400 ° C. or lower.
  • the heat treatment may be performed, for example, at 100 ° C. or higher and 600 ° C. or lower, more preferably 350 ° C. or higher and 550 ° C. or lower.
  • the heat treatment is carried out in an atmosphere of nitrogen gas or an inert gas, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas.
  • the heat treatment is preferably performed in an oxygen atmosphere.
  • oxygen can be supplied to the oxide 230 to reduce oxygen deficiency ( VO ).
  • the heat treatment may be performed in a reduced pressure state.
  • the heat treatment may be carried out in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of oxidizing gas in order to supplement the desorbed oxygen after the heat treatment in an atmosphere of nitrogen gas or an inert gas.
  • the heat treatment may be performed in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of the oxidizing gas, and then the heat treatment may be continuously performed in an atmosphere of nitrogen gas or an inert gas.
  • the insulator 222 and the insulator 224 may have a laminated structure of two or more layers.
  • the laminated structure is not limited to the same material, and may be a laminated structure made of different materials.
  • the insulator 224 may be formed in an island shape by superimposing on the oxide 230a. In this case, the insulator 275 is in contact with the side surface of the insulator 224 and the upper surface of the insulator 222.
  • Oxide 243a, oxide 243b and oxide 243c are provided on oxide 230b.
  • the oxide 243a, the oxide 243b, and the oxide 243c are arranged in the A1-A2 direction, and are provided apart from each other with the conductor 260 interposed therebetween.
  • Oxide 243 (oxide 243a, oxide 243b and oxide 243c) preferably has a function of suppressing oxygen permeation.
  • the oxide 243 having a function of suppressing the permeation of oxygen between the conductor 242 functioning as a source electrode or a drain electrode and the oxide 230b, electricity between the conductor 242 and the oxide 230b can be obtained. This is preferable because the resistance is reduced. With such a configuration, the electrical characteristics of the transistor 200 and the reliability of the transistor 200 can be improved. If the electrical resistance between the conductor 242 and the oxide 230b can be sufficiently reduced, the oxide 243 may not be provided.
  • a metal oxide having an element M may be used.
  • the element M aluminum, gallium, yttrium, or tin may be used.
  • Oxide 243 preferably has a higher concentration of element M than oxide 230b.
  • gallium oxide may be used as the oxide 243.
  • a metal oxide such as In—M—Zn oxide may be used.
  • the atomic number ratio of the element M to In is preferably larger than the atomic number ratio of the element M to In in the metal oxide used for the oxide 230b.
  • the film thickness of the oxide 243 is preferably 0.5 nm or more and 5 nm or less, more preferably 1 nm or more and 3 nm or less, and further preferably 1 nm or more and 2 nm or less. Further, the oxide 243 is preferably crystalline. When the oxide 243 has crystallinity, the release of oxygen in the oxide 230 can be suitably suppressed. For example, as the oxide 243, if it has a crystal structure such as a hexagonal crystal, the release of oxygen in the oxide 230 may be suppressed.
  • the conductor 242a is provided in contact with the upper surface of the oxide 243a
  • the conductor 242b is provided in contact with the upper surface of the oxide 243b
  • the conductor 242c is provided in contact with the upper surface of the oxide 243c.
  • the conductor 242a, the conductor 242b, and the conductor 242c are arranged in the A1-A2 direction, and are provided apart from each other with the conductor 260 in between.
  • the conductor 242a, the conductor 242b, and the conductor 242c function as a source electrode or a drain electrode of the transistor 200a or the transistor 200b, respectively.
  • Examples of the conductor 242 include nitrides containing tantalum, nitrides containing titanium, nitrides containing molybdenum, nitrides containing tungsten, tantalum and aluminum. It is preferable to use a nitride containing, a nitride containing titanium and aluminum, and the like. In one aspect of the invention, tantalum-containing nitrides are particularly preferred. Further, for example, ruthenium oxide, ruthenium nitride, an oxide containing strontium and ruthenium, an oxide containing lanthanum and nickel, and the like may be used. These materials are preferable because they are conductive materials that are difficult to oxidize or materials that maintain conductivity even when oxygen is absorbed.
  • hydrogen contained in the oxide 230b or the like may diffuse into the conductor 242a, the conductor 242b, and the conductor 242c.
  • hydrogen contained in the oxide 230b and the like diffuses into the conductor 242a, the conductor 242b, and the conductor 242c.
  • the diffused hydrogen may combine with the nitrogen contained in the conductors 242a, 242b, and 242c. That is, hydrogen contained in the oxide 230b or the like may be absorbed by the conductor 242a, the conductor 242b, and the conductor 242c.
  • a curved surface may not be formed between the side surface of the conductor 242 and the upper surface of the conductor 242.
  • the insulator 275 is provided so as to cover the insulator 224, the oxide 230, the oxide 243, and the conductor 242, and an opening is formed in the region where the insulator 250 and the conductor 260 are provided.
  • the insulator 275 is preferably provided in contact with the upper surface of the insulator 224, the side surface of the oxide 230, the side surface of the oxide 243, the side surface of the conductor 242, and the upper surface of the conductor 242. Further, the insulator 275 preferably functions as a barrier insulating film that suppresses the permeation of oxygen.
  • the insulator 275 preferably functions as a barrier insulating film that suppresses impurities such as water and hydrogen from diffusing into the insulator 224 or the oxide 230 from above, and has a function of capturing impurities such as hydrogen. It is preferable to have.
  • an insulator such as aluminum oxide or silicon nitride may be used.
  • Insulator 280 is provided by providing insulator 275 which has a function of capturing impurities such as hydrogen in contact with insulator 280 and insulator 224 in the region sandwiched between the insulator 212 and the insulator 283. , And impurities such as hydrogen contained in the insulator 224 and the like can be captured, and the amount of hydrogen in the region can be set to a constant value. In this case, it is preferable to use aluminum oxide or the like as the insulator 275.
  • the insulator 250 is provided so as to extend in the A3-A4 direction, and functions as a gate insulator for the transistors 200a and the transistors 200b.
  • the insulator 250 is arranged in contact with the upper surface and the side surface of the oxide 230b, respectively.
  • the insulator 250 includes silicon oxide, silicon oxide, silicon nitride, silicon nitride, silicon oxide added with fluorine, silicon oxide added with carbon, silicon oxide added with carbon and nitrogen, silicon oxide having pores, and the like. Can be used.
  • silicon oxide and silicon nitride nitride are preferable because they are stable against heat.
  • the insulator 250 preferably has a reduced concentration of impurities such as water and hydrogen in the insulator 250.
  • the film thickness of the insulator 250 is preferably 1 nm or more and 20 nm or less.
  • the insulator 250 is shown as a single layer in FIGS. 1B and 1C, it may have a laminated structure of two or more layers.
  • the lower layer of the insulator 250 is formed by using an insulator that releases oxygen by heating, and the upper layer of the insulator 250 has a function of suppressing the diffusion of oxygen. It is preferably formed using an insulator having. With such a configuration, oxygen contained in the lower layer of the insulator 250 can be suppressed from diffusing into the conductor 260. That is, it is possible to suppress a decrease in the amount of oxygen supplied to the oxide 230.
  • the lower layer of the insulator 250 can be provided by using a material that can be used for the insulator 250 described above, and the upper layer of the insulator 250 can be provided by using the same material as the insulator 222.
  • an insulating material which is a high-k material having a high relative permittivity may be used for the upper layer of the insulator 250.
  • the gate insulator By forming the gate insulator into a laminated structure of the lower layer of the insulator 250 and the upper layer of the insulator 250, it is possible to obtain a laminated structure that is stable against heat and has a high relative permittivity. Therefore, it is possible to reduce the gate potential applied during transistor operation while maintaining the physical film thickness of the gate insulator.
  • the equivalent oxide film thickness (EOT) of an insulator that functions as a gate insulator can be thinned.
  • a thing or a metal oxide that can be used as the oxide 230 can be used.
  • hafnium oxide may be used as the upper layer of the insulator 250.
  • a metal oxide may be provided between the insulator 250 and the conductor 260.
  • the metal oxide preferably suppresses the diffusion of oxygen from the insulator 250 to the conductor 260.
  • the diffusion of oxygen from the insulator 250 to the conductor 260 is suppressed. That is, it is possible to suppress a decrease in the amount of oxygen supplied to the oxide 230.
  • the oxidation of the conductor 260 by oxygen of the insulator 250 can be suppressed.
  • the metal oxide may be configured to function as a part of the first gate electrode.
  • a metal oxide that can be used as the oxide 230 can be used as the metal oxide.
  • the electric resistance value of the metal oxide can be lowered to form a conductor. This can be called an OC (Oxide Controller) electrode.
  • the metal oxide By having the metal oxide, it is possible to improve the on-current of the transistor 200 without weakening the influence of the electric field from the conductor 260. Further, by keeping the distance between the conductor 260 and the oxide 230 due to the physical thickness of the insulator 250 and the metal oxide, the leakage current between the conductor 260 and the oxide 230 is maintained. Can be suppressed. Further, by providing the insulator 250 and the laminated structure with the metal oxide, the physical distance between the conductor 260 and the oxide 230 and the electric field strength applied from the conductor 260 to the oxide 230 can be determined. It can be easily adjusted as appropriate.
  • the conductor 260 is provided so as to extend in the A3-A4 direction, and functions as a first gate electrode of the transistor 200a and the transistor 200b.
  • the conductor 260 preferably has a conductor 260a and a conductor 260b arranged on the conductor 260a, respectively.
  • the conductor 260a is preferably arranged so as to wrap the bottom surface and the side surface of the conductor 260b.
  • the upper surface of the conductor 260 substantially coincides with the upper surface of the insulator 250.
  • the conductor 260 is shown as a two-layer structure of the conductor 260a and the conductor 260b in FIGS. 1B and 1C, it may be a single-layer structure or a laminated structure of three or more layers.
  • the conductor 260a it is preferable to use a conductive material having a function of suppressing the diffusion of impurities such as hydrogen atom, hydrogen molecule, water molecule, nitrogen atom, nitrogen molecule, nitrogen oxide molecule and copper atom.
  • impurities such as hydrogen atom, hydrogen molecule, water molecule, nitrogen atom, nitrogen molecule, nitrogen oxide molecule and copper atom.
  • a conductive material having a function of suppressing the diffusion of oxygen for example, at least one oxygen atom, oxygen molecule, etc.
  • the conductor 260a has a function of suppressing the diffusion of oxygen, it is possible to prevent the conductor 260b from being oxidized by the oxygen contained in the insulator 250 to reduce the conductivity.
  • the conductive material having a function of suppressing the diffusion of oxygen for example, titanium, titanium nitride, tantalum, tantalum nitride, ruthenium, ruthenium oxide and the like are preferably used.
  • the conductor 260 also functions as wiring, it is preferable to use a conductor having high conductivity.
  • a conductor having high conductivity for example, as the conductor 260b, a conductive material containing tungsten, copper, or aluminum as a main component can be used.
  • the conductor 260b may have a laminated structure, for example, titanium or a laminated structure of titanium nitride and the conductive material.
  • the conductor 260 is self-aligned so as to fill the opening formed in the insulator 280 or the like.
  • the conductor 260 does not need to be aligned with the region between the conductor 242a and the conductor 242b and the region between the conductor 242b and the conductor 242c. Can be placed.
  • the height is preferably lower than the height of the bottom surface of the oxide 230b.
  • the conductor 260 which functions as a gate electrode, covers the side surface and the upper surface of the channel forming region of the oxide 230b via the insulator 250, so that the electric field of the conductor 260 is applied to the entire channel forming region of the oxide 230b. It becomes easier to act on. Therefore, the on-current of the transistor 200 can be increased and the frequency characteristics can be improved.
  • the difference is 0 nm or more and 100 nm or less, preferably 3 nm or more and 50 nm or less, and more preferably 5 nm or more and 20 nm or less.
  • the insulator 280 is provided on the insulator 275, and an opening is formed in a region where the insulator 250 and the conductor 260 are provided. Further, the upper surface of the insulator 280 may be flattened.
  • the insulator 280 that functions as an interlayer film preferably has a low dielectric constant.
  • a material having a low dielectric constant as an interlayer film, it is possible to reduce the parasitic capacitance generated between the wirings.
  • the insulator 280 is provided by using the same material as the insulator 216, for example.
  • silicon oxide and silicon oxide nitride are preferable because they are thermally stable.
  • materials such as silicon oxide, silicon oxide nitride, and silicon oxide having pores are preferable because a region containing oxygen desorbed by heating can be easily formed.
  • the insulator 280 preferably has an excess oxygen region or excess oxygen. Further, it is preferable that the concentration of impurities such as water and hydrogen in the insulator 280 is reduced.
  • the insulator 280 an oxide containing silicon such as silicon oxide and silicon oxide nitride may be appropriately used. By providing an insulator having excess oxygen in contact with the oxide 230, oxygen deficiency in the oxide 230 can be reduced and the reliability of the transistor 200 can be improved.
  • the insulator 282 is arranged in contact with the upper surfaces of the conductor 260 and the insulator 280, and the uppermost portion of the insulator 250.
  • the insulator 282 preferably functions as a barrier insulating film that suppresses the diffusion of impurities such as water and hydrogen into the insulator 280 from above, and preferably has a function of capturing impurities such as hydrogen. Further, the insulator 282 preferably functions as a barrier insulating film that suppresses the permeation of oxygen.
  • an insulator such as aluminum oxide may be used as the insulator 282, for example.
  • the insulator 282 which has a function of capturing impurities such as hydrogen in contact with the insulator 280 in the region sandwiched between the insulator 212 and the insulator 283, hydrogen contained in the insulator 280 and the like, etc. Impurities can be captured and the amount of hydrogen in the region can be kept constant.
  • the insulator 283 functions as a barrier insulating film that suppresses impurities such as water and hydrogen from diffusing into the insulator 280 from above.
  • the insulator 283 is placed on top of the insulator 282.
  • a nitride containing silicon such as silicon nitride or silicon nitride oxide.
  • silicon nitride formed by a sputtering method may be used as the insulator 283.
  • silicon nitride formed by the CVD method may be further laminated on the silicon nitride formed by the sputtering method.
  • an insulator substrate for example, an insulator substrate, a semiconductor substrate, or a conductor substrate may be used.
  • the insulator substrate include a glass substrate, a quartz substrate, a sapphire substrate, a stabilized zirconia substrate (yttria-stabilized zirconia substrate, etc.), a resin substrate, and the like.
  • the semiconductor substrate include a semiconductor substrate made of silicon and germanium, and a compound semiconductor substrate made of silicon carbide, silicon germanium, gallium arsenide, indium phosphide, zinc oxide, and gallium oxide.
  • the conductor substrate includes a graphite substrate, a metal substrate, an alloy substrate, and a conductive resin substrate.
  • a substrate having a metal nitride a substrate having a metal oxide, and the like.
  • a substrate in which a conductor or a semiconductor is provided in an insulator substrate a substrate in which a conductor or an insulator is provided in a semiconductor substrate, a substrate in which a semiconductor or an insulator is provided in a conductor substrate, and the like.
  • those substrates provided with elements may be used.
  • Elements provided on the substrate include capacitive elements, resistance elements, switch elements, light emitting elements, storage elements, and the like.
  • Insulator examples include oxides, nitrides, oxide nitrides, nitride oxides, metal oxides, metal oxide nitrides, and metal nitride oxides having insulating properties.
  • the material may be selected according to the function of the insulator.
  • Examples of the insulator having a high specific dielectric constant include gallium oxide, hafnium oxide, zirconium oxide, oxides having aluminum and hafnium, nitrides having aluminum and hafnium, oxides having silicon and hafnium, silicon and hafnium. There are nitrides having oxides, or nitrides having silicon and hafnium.
  • Examples of insulators having a low specific dielectric constant include silicon oxide, silicon oxide, silicon nitride, silicon nitride, silicon oxide with fluorine added, silicon oxide with carbon added, silicon oxide with carbon and nitrogen added, and empty. There are silicon oxide having holes, resin, and the like.
  • the electric characteristics of the transistor can be stabilized by surrounding the transistor using the metal oxide with an insulator having a function of suppressing the permeation of impurities such as hydrogen and oxygen.
  • the insulator having a function of suppressing the permeation of impurities such as hydrogen and oxygen include boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, and zirconium. Insulations containing, lanthanum, neodymium, hafnium, or tantalum may be used in single layers or in layers.
  • an insulator having a function of suppressing the permeation of impurities such as hydrogen and oxygen
  • Metal oxides such as tantalum oxide and metal nitrides such as aluminum nitride, silicon nitride and silicon nitride can be used.
  • the insulator that functions as a gate insulator is preferably an insulator having a region containing oxygen that is desorbed by heating.
  • the oxygen deficiency of the oxide 230 can be compensated.
  • Conductors include aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, berylium, indium, ruthenium, iridium, strontium, and lanthanum. It is preferable to use a metal element selected from the above, an alloy containing the above-mentioned metal element as a component, an alloy in which the above-mentioned metal element is combined, or the like.
  • tantalum nitride, titanium nitride, tungsten, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, oxides containing lanthanum and nickel, etc. are used. Is preferable.
  • tantalum nitride, titanium nitride, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, and oxides containing lanthanum and nickel are difficult to oxidize.
  • a plurality of conductive layers formed of the above materials may be laminated and used.
  • a laminated structure may be formed in which the above-mentioned material containing a metal element and a conductive material containing oxygen are combined.
  • a laminated structure may be formed in which the above-mentioned material containing a metal element and a conductive material containing nitrogen are combined.
  • a laminated structure may be formed in which the above-mentioned material containing a metal element, a conductive material containing oxygen, and a conductive material containing nitrogen are combined.
  • the conductor functioning as the gate electrode shall have a laminated structure in which the above-mentioned material containing a metal element and a conductive material containing oxygen are combined. Is preferable.
  • a conductive material containing oxygen may be provided on the channel forming region side.
  • a conductor that functions as a gate electrode it is preferable to use a conductive material containing a metal element and oxygen contained in a metal oxide in which a channel is formed.
  • the above-mentioned conductive material containing a metal element and nitrogen may be used.
  • a conductive material containing nitrogen such as titanium nitride or tantalum nitride may be used.
  • indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, and silicon were added.
  • Indium tin oxide may be used.
  • indium gallium zinc oxide containing nitrogen may be used.
  • Metal Oxide As the oxide 230, it is preferable to use a metal oxide (oxide semiconductor) that functions as a semiconductor.
  • a metal oxide oxide semiconductor
  • the metal oxide applicable to the oxide 230 according to the present invention will be described.
  • the metal oxide preferably contains at least indium or zinc. In particular, it preferably contains indium and zinc. In addition to them, it is preferable that aluminum, gallium, yttrium, tin and the like are contained. Further, one or more kinds selected from boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lantern, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, cobalt and the like may be contained.
  • the metal oxide is an In-M-Zn oxide having indium, the element M, and zinc.
  • the element M may be one or more selected from aluminum, gallium, yttrium, and tin.
  • elements applicable to the other element M include boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, and cobalt.
  • the element M a plurality of the above-mentioned elements may be combined in some cases.
  • a metal oxide having nitrogen may also be collectively referred to as a metal oxide. Further, a metal oxide having nitrogen may be referred to as a metal oxynitride.
  • FIG. 3A is a diagram illustrating the classification of crystal structures of oxide semiconductors, typically IGZO (metal oxides containing In, Ga, and Zn).
  • IGZO metal oxides containing In, Ga, and Zn
  • oxide semiconductors are roughly classified into “Amorphous (amorphous)”, “Crystalline (crystallinity)", and “Crystal (crystal)”.
  • Amorphous includes “completable amorphous”.
  • the "Crystalline” includes CAAC (c-axis-aligned crystalline), nc (nanocrystalline), and CAC (cloud-aligned crystal) (extracting single crystal crystal).
  • single crystal, poly crystal, and single crystal amorphous are excluded from the classification of "Crystalline”.
  • “Crystal” includes single crystal and poly crystal.
  • the structure in the thick frame shown in FIG. 3A is an intermediate state between "Amorphous” and “Crystal", and belongs to a new boundary region (New crystal line phase). .. That is, the structure can be rephrased as a structure completely different from the energetically unstable "Amorphous” and "Crystal".
  • the crystal structure of the film or substrate can be evaluated using an X-ray diffraction (XRD: X-Ray Evaluation) spectrum.
  • XRD X-ray diffraction
  • FIG. 3B the XRD spectrum obtained by GIXD (Glazing-Incidence XRD) measurement of a CAAC-IGZO film classified as "Crystalline" is shown in FIG. 3B.
  • the GIXD method is also referred to as a thin film method or a Seemann-Bohlin method.
  • the XRD spectrum obtained by the GIXD measurement shown in FIG. 3B will be simply referred to as an XRD spectrum.
  • the thickness of the CAAC-IGZO film shown in FIG. 3B is 500 nm.
  • a peak showing clear crystallinity is detected in the XRD spectrum of the CAAC-IGZO film.
  • the crystal structure of the film or substrate can be evaluated by a diffraction pattern (also referred to as a microelectron beam diffraction pattern) observed by a micro electron beam diffraction method (NBED: Nano Beam Electron Diffraction).
  • the diffraction pattern of the CAAC-IGZO film is shown in FIG. 3C.
  • FIG. 3C is a diffraction pattern observed by the NBED in which the electron beam is incident parallel to the substrate.
  • electron beam diffraction is performed with the probe diameter set to 1 nm.
  • oxide semiconductors may be classified differently from FIG. 3A.
  • oxide semiconductors are divided into single crystal oxide semiconductors and other non-single crystal oxide semiconductors.
  • the non-single crystal oxide semiconductor include the above-mentioned CAAC-OS and nc-OS.
  • the non-single crystal oxide semiconductor includes a polycrystalline oxide semiconductor, a pseudo-amorphous oxide semiconductor (a-like OS: amorphous-like oxide semiconductor), an amorphous oxide semiconductor, and the like.
  • CAAC-OS CAAC-OS
  • nc-OS nc-OS
  • a-like OS the details of the above-mentioned CAAC-OS, nc-OS, and a-like OS will be described.
  • CAAC-OS is an oxide semiconductor having a plurality of crystal regions, the plurality of crystal regions having the c-axis oriented in a specific direction.
  • the specific direction is the thickness direction of the CAAC-OS film, the normal direction of the surface to be formed of the CAAC-OS film, or the normal direction of the surface of the CAAC-OS film.
  • the crystal region is a region having periodicity in the atomic arrangement. When the atomic arrangement is regarded as a lattice arrangement, the crystal region is also a region in which the lattice arrangement is aligned. Further, the CAAC-OS has a region in which a plurality of crystal regions are connected in the ab plane direction, and the region may have distortion.
  • the strain refers to a region in which a plurality of crystal regions are connected in which the orientation of the lattice arrangement changes between a region in which the lattice arrangement is aligned and a region in which another grid arrangement is aligned.
  • CAAC-OS is an oxide semiconductor that is c-axis oriented and not clearly oriented in the ab plane direction.
  • Each of the plurality of crystal regions is composed of one or a plurality of minute crystals (crystals having a maximum diameter of less than 10 nm).
  • the maximum diameter of the crystal region is less than 10 nm.
  • the size of the crystal region may be about several tens of nm.
  • CAAC-OS has indium (In) and oxygen. It tends to have a layered crystal structure (also referred to as a layered structure) in which a layer (hereinafter, In layer) and a layer having elements M, zinc (Zn), and oxygen (hereinafter, (M, Zn) layer) are laminated. There is. Indium and element M can be replaced with each other. Therefore, the (M, Zn) layer may contain indium. In addition, the In layer may contain the element M. In addition, Zn may be contained in the In layer.
  • the layered structure is observed as a lattice image in, for example, a high-resolution TEM image.
  • the position of the peak indicating the c-axis orientation may vary depending on the type and composition of the metal elements constituting CAAC-OS.
  • a plurality of bright spots are observed in the electron diffraction pattern of the CAAC-OS film. Note that a certain spot and another spot are observed at point-symmetrical positions with the spot of the incident electron beam passing through the sample (also referred to as a direct spot) as the center of symmetry.
  • the lattice arrangement in the crystal region is based on a hexagonal lattice, but the unit lattice is not limited to a regular hexagon and may be a non-regular hexagon. Further, in the above strain, it may have a lattice arrangement such as a pentagon or a heptagon.
  • a clear grain boundary cannot be confirmed even in the vicinity of strain. That is, it can be seen that the formation of grain boundaries is suppressed by the distortion of the lattice arrangement. This is because CAAC-OS can tolerate distortion because the arrangement of oxygen atoms is not dense in the ab plane direction and the bond distance between atoms changes due to the replacement of metal atoms. It is thought that this is the reason.
  • CAAC-OS for which no clear crystal grain boundary is confirmed, is one of the crystalline oxides having a crystal structure suitable for the semiconductor layer of the transistor.
  • a configuration having Zn is preferable.
  • In-Zn oxide and In-Ga-Zn oxide are more suitable than In oxide because they can suppress the generation of grain boundaries.
  • CAAC-OS is an oxide semiconductor with high crystallinity and no clear grain boundaries can be confirmed. Therefore, it can be said that CAAC-OS is unlikely to cause a decrease in electron mobility due to grain boundaries. Further, since the crystallinity of the oxide semiconductor may be lowered due to the mixing of impurities or the generation of defects, CAAC-OS can be said to be an oxide semiconductor having few impurities and defects (oxygen deficiency, etc.). Therefore, the oxide semiconductor having CAAC-OS has stable physical properties. Therefore, the oxide semiconductor having CAAC-OS is resistant to heat and has high reliability. CAAC-OS is also stable against high temperatures in the manufacturing process (so-called thermal budget). Therefore, if CAAC-OS is used for the OS transistor, the degree of freedom in the manufacturing process can be expanded.
  • nc-OS has periodicity in the atomic arrangement in a minute region (for example, a region of 1 nm or more and 10 nm or less, particularly a region of 1 nm or more and 3 nm or less).
  • nc-OS has tiny crystals. Since the size of the minute crystal is, for example, 1 nm or more and 10 nm or less, particularly 1 nm or more and 3 nm or less, the minute crystal is also referred to as a nanocrystal.
  • nc-OS does not show regularity in crystal orientation between different nanocrystals. Therefore, no orientation is observed in the entire film.
  • the nc-OS may be indistinguishable from the a-like OS and the amorphous oxide semiconductor depending on the analysis method.
  • a peak indicating crystallinity is not detected in the Out-of-plane XRD measurement using a ⁇ / 2 ⁇ scan.
  • electron beam diffraction also referred to as limited field electron diffraction
  • a diffraction pattern such as a halo pattern is performed. Is observed.
  • electron beam diffraction also referred to as nanobeam electron diffraction
  • an electron beam having a probe diameter for example, 1 nm or more and 30 nm or less
  • An electron diffraction pattern in which a plurality of spots are observed in a ring-shaped region centered on a direct spot may be acquired.
  • the a-like OS is an oxide semiconductor having a structure between nc-OS and an amorphous oxide semiconductor.
  • the a-like OS has a void or low density region. That is, the a-like OS has lower crystallinity than the nc-OS and CAAC-OS.
  • a-like OS has a higher hydrogen concentration in the membrane than nc-OS and CAAC-OS.
  • CAC-OS relates to the material composition.
  • CAC-OS is, for example, a composition of a material in which the elements constituting the metal oxide are unevenly distributed in a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size close thereto.
  • the metal oxide one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size close thereto.
  • the mixed state is also called a mosaic shape or a patch shape.
  • CAC-OS has a structure in which the material is separated into a first region and a second region to form a mosaic shape, and the first region is distributed in the membrane (hereinafter, also referred to as a cloud shape). It says.). That is, CAC-OS is a composite metal oxide having a structure in which the first region and the second region are mixed.
  • the atomic number ratios of In, Ga, and Zn with respect to the metal elements constituting CAC-OS in the In-Ga-Zn oxide are expressed as [In], [Ga], and [Zn], respectively.
  • the first region is a region in which [In] is larger than [In] in the composition of the CAC-OS film.
  • the second region is a region in which [Ga] is larger than [Ga] in the composition of the CAC-OS film.
  • the first region is a region in which [In] is larger than [In] in the second region and [Ga] is smaller than [Ga] in the second region.
  • the second region is a region in which [Ga] is larger than [Ga] in the first region and [In] is smaller than [In] in the first region.
  • the first region is a region in which indium oxide, indium zinc oxide, or the like is the main component.
  • the second region is a region in which gallium oxide, gallium zinc oxide, or the like is the main component. That is, the first region can be rephrased as a region containing In as a main component. Further, the second region can be rephrased as a region containing Ga as a main component.
  • a region containing In as a main component (No. 1) by EDX mapping acquired by using energy dispersive X-ray spectroscopy (EDX: Energy Dispersive X-ray spectroscopy). It can be confirmed that the region (1 region) and the region containing Ga as a main component (second region) have a structure in which they are unevenly distributed and mixed.
  • EDX Energy Dispersive X-ray spectroscopy
  • CAC-OS When CAC-OS is used for a transistor, the conductivity caused by the first region and the insulating property caused by the second region act in a complementary manner to switch the switching function (On / Off function). Can be added to the CAC-OS. That is, the CAC-OS has a conductive function in a part of the material and an insulating function in a part of the material, and has a function as a semiconductor in the whole material. By separating the conductive function and the insulating function, both functions can be maximized. Therefore, by using CAC-OS as a transistor, high on-current ( Ion ), high field effect mobility ( ⁇ ), and good switching operation can be realized.
  • Ion on-current
  • high field effect mobility
  • Oxide semiconductors have various structures, and each has different characteristics.
  • the oxide semiconductor according to one aspect of the present invention has two or more of amorphous oxide semiconductor, polycrystalline oxide semiconductor, a-like OS, CAC-OS, nc-OS, and CAAC-OS. You may.
  • the oxide semiconductor as a transistor, a transistor with high field effect mobility can be realized. Moreover, a highly reliable transistor can be realized.
  • the carrier concentration in the channel formation region of the oxide semiconductor is preferably 1 ⁇ 10 18 cm -3 or less, more preferably less than 1 ⁇ 10 17 cm -3 , and 1 ⁇ 10 16 cm -3. It is more preferably less than 1 ⁇ 10 13 cm -3 , even more preferably less than 1 ⁇ 10 12 cm -3 .
  • the impurity concentration in the oxide semiconductor film may be lowered to lower the defect level density.
  • a low impurity concentration and a low defect level density is referred to as high-purity intrinsic or substantially high-purity intrinsic.
  • An oxide semiconductor having a low carrier concentration may be referred to as a high-purity intrinsic or substantially high-purity intrinsic oxide semiconductor.
  • the trap level density may also be low.
  • the charge captured at the trap level of the oxide semiconductor takes a long time to disappear, and may behave as if it were a fixed charge. Therefore, a transistor in which a channel forming region is formed in an oxide semiconductor having a high trap level density may have unstable electrical characteristics.
  • Impurities include hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, silicon and the like.
  • the concentration of silicon or carbon in the channel formation region of the oxide semiconductor and the concentration of silicon or carbon near the interface with the channel formation region of the oxide semiconductor is 2 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 17 atoms / cm 3 or less.
  • the oxide semiconductor contains an alkali metal or an alkaline earth metal
  • a defect level may be formed and carriers may be generated. Therefore, a transistor using an oxide semiconductor containing an alkali metal or an alkaline earth metal tends to have a normally-on characteristic. Therefore, the concentration of the alkali metal or alkaline earth metal in the channel formation region of the oxide semiconductor obtained by SIMS is set to 1 ⁇ 10 18 atoms / cm 3 or less, preferably 2 ⁇ 10 16 atoms / cm 3 or less. ..
  • the nitrogen concentration in the channel formation region of the oxide semiconductor obtained by SIMS is less than 5 ⁇ 10 19 atoms / cm 3 , preferably 5 ⁇ 10 18 atoms / cm 3 or less, more preferably 1 ⁇ 10 18 atoms. / Cm 3 or less, more preferably 5 ⁇ 10 17 atoms / cm 3 or less.
  • hydrogen contained in an oxide semiconductor reacts with oxygen bonded to a metal atom to become water, which may form an oxygen deficiency.
  • oxygen deficiency When hydrogen enters the oxygen deficiency, electrons that are carriers may be generated.
  • a part of hydrogen may be combined with oxygen that is bonded to a metal atom to generate an electron as a carrier. Therefore, a transistor using an oxide semiconductor containing hydrogen tends to have a normally-on characteristic. Therefore, it is preferable that hydrogen in the channel forming region of the oxide semiconductor is reduced as much as possible.
  • the hydrogen concentration obtained by SIMS is less than 1 ⁇ 10 20 atoms / cm 3 , preferably less than 5 ⁇ 10 19 atoms / cm 3 , more preferably 1 ⁇ 10. It should be less than 19 atoms / cm 3 , more preferably less than 5 ⁇ 10 18 atoms / cm 3 , and even more preferably less than 1 ⁇ 10 18 atoms / cm 3 .
  • the semiconductor material that can be used for the oxide 230 is not limited to the above-mentioned metal oxide.
  • a semiconductor material having a bandgap (a semiconductor material that is not a zero-gap semiconductor) may be used.
  • a semiconductor of a single element such as silicon, a compound semiconductor such as gallium arsenide, and a layered substance (also referred to as an atomic layer substance or a two-dimensional material) that functions as a semiconductor as a semiconductor material.
  • a layered substance that functions as a semiconductor as a semiconductor material it is preferable to use a layered substance that functions as a semiconductor as a semiconductor material.
  • the layered substance is a general term for a group of materials having a layered crystal structure.
  • a layered crystal structure is a structure in which layers formed by covalent bonds or ionic bonds are laminated via bonds weaker than covalent bonds or ionic bonds, such as van der Waals forces.
  • the layered material has high electrical conductivity in the unit layer, that is, high two-dimensional electrical conductivity.
  • a chalcogenide is a compound containing a chalcogen.
  • chalcogen is a general term for elements belonging to Group 16, and includes oxygen, sulfur, selenium, tellurium, polonium, and livermorium.
  • Examples of chalcogenides include transition metal chalcogenides and group 13 chalcogenides.
  • oxide 230 for example, it is preferable to use a transition metal chalcogenide that functions as a semiconductor.
  • Specific transition metal chalcogenides applicable as oxide 230 include molybdenum sulfide (typically MoS 2 ), molybdenum selenate (typically MoSe 2 ), and molybdenum tellurium (typically MoTe 2 ).
  • Tungsten sulfide typically WS 2
  • Tungsten disulfide typically WSe 2
  • Tungsten tellurium typically WTe 2
  • Hafnium sulfide typically HfS 2
  • Hafnium serene typically typically
  • Typical examples include HfSe 2 ), zirconium sulfide (typically ZrS 2 ), and zirconium selenium (typically ZrSe 2 ).
  • FIGS. 1A to 1D the method of manufacturing the semiconductor device according to one aspect of the present invention shown in FIGS. 1A to 1D is shown in FIGS. 4A to 12A, 4B to 12B, 4C to 12C, and 4D to 12D. It will be described using.
  • FIGS. 4A to 12A shows a top view.
  • each of FIGS. 4B to 12B is a cross-sectional view corresponding to the portion indicated by the alternate long and short dash line of A1-A2 shown in FIGS. 4A to 12A, and is also a cross-sectional view of the transistor 200a and the transistor 200b in the channel length direction.
  • each of FIGS. 4C to 12C is a cross-sectional view corresponding to the portion shown by the alternate long and short dash line in FIGS. 4A to 12A, and is also a cross-sectional view of the transistor 200a in the channel width direction.
  • 4D to 12D is a cross-sectional view of a portion shown by a alternate long and short dash line of A5-A6 in FIGS. 4A to 12A.
  • FIGS. 4A to 12A In the top views of FIGS. 4A to 12A, some elements are omitted for the purpose of clarifying the drawings.
  • the insulating material for forming an insulator, the conductive material for forming a conductor, or the semiconductor material for forming a semiconductor is a sputtering method, a CVD method, an MBE method, a PLD method, or an ALD method. Etc. can be used as appropriate to form a film.
  • the sputtering method includes an RF sputtering method that uses a high-frequency power source as a sputtering power source, a DC sputtering method that uses a DC power source, and a pulse DC sputtering method that changes the voltage applied to the electrodes in a pulsed manner.
  • the RF sputtering method is mainly used when forming an insulating film
  • the DC sputtering method is mainly used when forming a metal conductive film.
  • the pulse DC sputtering method is mainly used when a compound such as an oxide, a nitride, or a carbide is formed into a film by the reactive sputtering method.
  • the CVD method can be classified into a plasma CVD (PECVD: Plasma Enhanced CVD) method using plasma, a thermal CVD (TCVD: Thermal CVD) method using heat, an optical CVD (Photo CVD) method using light, and the like. .. Further, depending on the raw material gas used, it can be divided into a metal CVD (MCVD: Metal CVD) method and an organic metal CVD (MOCVD: Metal organic CVD) method.
  • PECVD Plasma Enhanced CVD
  • TCVD Thermal CVD
  • Photo CVD Photo CVD
  • MCVD Metal CVD
  • the plasma CVD method can obtain a high quality film at a relatively low temperature. Further, since the thermal CVD method does not use plasma, it is a film forming method capable of reducing plasma damage to the object to be processed. For example, wiring, electrodes, elements (transistors, capacitive elements, etc.) and the like included in a semiconductor device may be charged up by receiving electric charges from plasma. At this time, the accumulated electric charge may destroy the wiring, electrodes, elements, and the like included in the semiconductor device. On the other hand, in the case of the thermal CVD method that does not use plasma, such plasma damage does not occur, so that the yield of the semiconductor device can be increased. Further, in the thermal CVD method, plasma damage does not occur during film formation, so that a film having few defects can be obtained.
  • a thermal ALD (Thermal ALD) method in which the reaction of the precursor and the reactor is performed only by thermal energy, a PEALD (Plasma Enhanced ALD) method using a plasma-excited reactor, or the like can be used.
  • the ALD method utilizes the self-regulating properties of atoms and allows atoms to be deposited layer by layer, so ultra-thin film formation is possible, and film formation into structures with a high aspect ratio is possible. It has the effects of being able to form a film with few defects such as holes, being able to form a film with excellent coverage, and being able to form a film at a low temperature.
  • the PEALD method it may be preferable to use plasma because it is possible to form a film at a lower temperature.
  • Some precursors used in the ALD method contain impurities such as carbon. Therefore, the film provided by the ALD method may contain a large amount of impurities such as carbon as compared with the film provided by other film forming methods.
  • the quantification of impurities can be performed by using X-ray photoelectron spectroscopy (XPS: X-ray Photoelectron Spectroscopy).
  • the CVD method and the ALD method are different from the film forming method in which particles emitted from a target or the like are deposited, and are film forming methods in which a film is formed by a reaction on the surface of an object to be treated. Therefore, it is a film forming method that is not easily affected by the shape of the object to be treated and has good step coverage.
  • the ALD method has excellent step covering property and excellent thickness uniformity, and is therefore suitable for covering the surface of an opening having a high aspect ratio.
  • the ALD method since the ALD method has a relatively slow film formation rate, it may be preferable to use it in combination with another film formation method such as a CVD method having a high film formation rate.
  • the composition of the obtained film can be controlled by the flow rate ratio of the raw material gas.
  • a film having an arbitrary composition can be formed depending on the flow rate ratio of the raw material gas.
  • a film having a continuously changed composition can be formed by changing the flow rate ratio of the raw material gas while forming the film.
  • a substrate (not shown) is prepared, and an insulator 212 is formed on the substrate (see FIGS. 4A to 4D).
  • the film formation of the insulator 212 is preferably performed by using a sputtering method.
  • a sputtering method that does not require hydrogen to be used as the film-forming gas, the hydrogen concentration in the insulator 212 can be reduced.
  • the film formation of the insulator 212 is not limited to the sputtering method, and a CVD method, an MBE method, a PLD method, an ALD method, or the like may be appropriately used.
  • silicon nitride is formed as the insulator 212 by the pulse DC sputtering method using a silicon target in an atmosphere containing nitrogen gas.
  • the pulse DC sputtering method it is possible to suppress the generation of particles due to the arcing of the target surface, so that the film thickness distribution can be made more uniform.
  • the pulse voltage the rise and fall of the discharge can be made steeper than the high frequency voltage. As a result, electric power can be supplied to the electrodes more efficiently to improve the sputtering rate and film quality.
  • an insulator such as silicon nitride that is difficult for impurities such as water and hydrogen to permeate it is possible to suppress the diffusion of impurities such as water and hydrogen contained in the layer below the insulator 212. Further, by using an insulator such as silicon nitride that does not easily allow copper to permeate as the insulator 212, even if a metal such as copper that easily diffuses is used for the conductor in the layer below the insulator 212 (not shown), the metal is used. Can be suppressed from diffusing upward through the insulator 212.
  • the insulator 214 is formed on the insulator 212 (see FIGS. 4A to 4D).
  • the film formation of the insulator 214 is preferably performed by using a sputtering method.
  • a sputtering method that does not require hydrogen to be used as the film-forming gas, the hydrogen concentration in the insulator 214 can be reduced.
  • the film formation of the insulator 214 is not limited to the sputtering method, and a CVD method, an MBE method, a PLD method, an ALD method, or the like may be appropriately used.
  • aluminum oxide is formed as the insulator 214 by the pulse DC sputtering method using an aluminum target in an atmosphere containing oxygen gas.
  • the pulse DC sputtering method By using the pulse DC sputtering method, the film thickness distribution can be made more uniform, and the sputtering rate and film quality can be improved.
  • the insulator 216 is formed on the insulator 214.
  • the film formation of the insulator 216 is preferably performed by using a sputtering method.
  • a sputtering method that does not require hydrogen to be used as the film-forming gas, the hydrogen concentration in the insulator 216 can be reduced.
  • the film formation of the insulator 216 is not limited to the sputtering method, and a CVD method, an MBE method, a PLD method, an ALD method, or the like may be appropriately used.
  • silicon oxide is formed as the insulator 216 by a pulse DC sputtering method using a silicon target in an atmosphere containing oxygen gas.
  • the pulse DC sputtering method By using the pulse DC sputtering method, the film thickness distribution can be made more uniform, and the sputtering rate and film quality can be improved.
  • the insulator 212, the insulator 214, and the insulator 216 are continuously formed without being exposed to the atmosphere.
  • a multi-chamber type film forming apparatus may be used.
  • the insulator 212, the insulator 214, and the insulator 216 are formed by reducing the amount of hydrogen in the film, and further, the amount of hydrogen mixed in the film between the film forming steps is reduced. Can be done.
  • the insulator 216 is formed by extending two openings reaching the insulator 214 in the A3-A4 direction.
  • the opening also includes, for example, a groove and a slit.
  • the area where the opening is formed may be referred to as the opening.
  • Wet etching may be used to form the openings, but dry etching is preferable for microfabrication.
  • the insulator 214 it is preferable to select an insulator that functions as an etching stopper film when the insulator 216 is etched to form a groove.
  • silicon oxide or silicon oxide nitride is used for the insulator 216 forming the groove
  • silicon nitride, aluminum oxide, or hafnium oxide may be used for the insulator 214.
  • a capacitively coupled plasma (CCP: Capacitively Coupled Plasma) etching apparatus having parallel plate type electrodes can be used.
  • the capacitively coupled plasma etching apparatus having the parallel plate type electrodes may be configured to apply a high frequency voltage to one of the parallel plate type electrodes.
  • a plurality of different high frequency voltages may be applied to one of the parallel plate type electrodes.
  • a high frequency voltage having the same frequency may be applied to each of the parallel plate type electrodes.
  • a high frequency voltage having a different frequency may be applied to each of the parallel plate type electrodes.
  • a dry etching apparatus having a high-density plasma source can be used.
  • an inductively coupled plasma (ICP: Inductively Coupled Plasma) etching apparatus or the like can be used.
  • the conductive film to be the conductor 205a preferably contains a conductor having a function of suppressing the permeation of oxygen.
  • a conductor having a function of suppressing the permeation of oxygen for example, tantalum nitride, tungsten nitride, titanium nitride and the like can be used. Alternatively, it can be a laminated film of a conductor having a function of suppressing oxygen permeation and a tantalum, tungsten, titanium, molybdenum, aluminum, copper or molybdenum tungsten alloy.
  • the film formation of the conductive film to be the conductor 205a can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • titanium nitride is formed as a conductive film to be the conductor 205a.
  • a metal nitride as the lower layer of the conductor 205b, it is possible to suppress the oxidation of the conductor 205b by the insulator 216 or the like. Further, even if a metal such as copper that easily diffuses is used as the conductor 205b, it is possible to prevent the metal from diffusing out from the conductor 205a.
  • a conductive film to be the conductor 205b is formed.
  • the conductive film serving as the conductor 205b tantalum, tungsten, titanium, molybdenum, aluminum, copper, molybdenum-tungsten alloy or the like can be used.
  • the film formation of the conductive film can be performed by using a plating method, a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • tungsten is formed as a conductive film to be the conductor 205b.
  • a part of the conductive film to be the conductor 205a and a part of the conductive film to be the conductor 205b is removed, and the insulator 216 is exposed.
  • the conductor 205a and the conductor 205b remain only in the opening.
  • a part of the insulator 216 may be removed by the CMP treatment.
  • etching is performed to remove the upper part of the conductor 205b.
  • the upper surface of the conductor 205b becomes lower than the upper surface of the conductor 205a and the upper surface of the insulator 216.
  • Dry etching or wet etching may be used for etching the conductor 205b, but it is preferable to use dry etching for microfabrication.
  • a conductive film to be the conductor 205c is formed on the insulator 216, the conductor 205a, and the conductor 205b. It is desirable that the conductive film to be the conductor 205c contains a conductor having a function of suppressing the permeation of oxygen, similarly to the conductive film to be the conductor 205a.
  • titanium nitride is formed as a conductive film to be the conductor 205c.
  • a metal nitride as the upper layer of the conductor 205b, it is possible to prevent the conductor 205b from being oxidized by the insulator 222 or the like. Further, even if a metal that easily diffuses such as copper is used as the conductor 205b, it is possible to prevent the metal from diffusing out from the conductor 205c.
  • impurities such as hydrogen are prevented from diffusing from the conductor 205b to the outside of the conductor 205a and the conductor 205c, and oxygen is mixed from the outside of the conductor 205a and the conductor 205c to oxidize the conductor 205b. Can be prevented.
  • a part of the insulator 216 may be removed by the CMP treatment.
  • the insulator 222 is formed on the insulator 216 and the conductor 205.
  • an insulator containing an oxide of one or both of aluminum and hafnium may be formed.
  • the insulator containing one or both oxides of aluminum and hafnium it is preferable to use aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), and the like. Insulators containing oxides of one or both of aluminum and hafnium have barrier properties against oxygen, hydrogen, and water.
  • the insulator 222 has a barrier property against hydrogen and water, hydrogen and water contained in the structure provided around the transistor 200 are suppressed from diffusing into the inside of the transistor 200 through the insulator 222. , The formation of oxygen deficiency in the oxide 230 can be suppressed.
  • the film formation of the insulator 222 can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • hafnium oxide is formed as the insulator 222 by using a sputtering method.
  • a sputtering method that does not require hydrogen to be used as the film-forming gas, the hydrogen concentration in the insulator 222 can be reduced.
  • the heat treatment may be carried out at 250 ° C. or higher and 650 ° C. or lower, preferably 300 ° C. or higher and 500 ° C. or lower, and more preferably 320 ° C. or higher and 450 ° C. or lower.
  • the heat treatment is carried out in an atmosphere of nitrogen gas or an inert gas, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas.
  • the oxygen gas may be set to about 20%.
  • the heat treatment may be performed in a reduced pressure state.
  • the heat treatment is performed in an atmosphere of nitrogen gas or an inert gas, and then the heat treatment is performed in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas to supplement the desorbed oxygen. You may.
  • the gas used in the above heat treatment is preferably highly purified.
  • the amount of water contained in the gas used in the heat treatment may be 1 ppb or less, preferably 0.1 ppb or less, and more preferably 0.05 ppb or less.
  • the flow rate ratio of nitrogen gas and oxygen gas is set to 4 slm: 1 slm, and the treatment is performed at a temperature of 400 ° C. for 1 hour.
  • impurities such as water and hydrogen contained in the insulator 222 can be removed.
  • the heat treatment can be performed at a timing such as after the film formation of the insulator 224 is performed.
  • the insulator 224 is formed on the insulator 222.
  • the film formation of the insulator 224 can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • silicon oxide is formed as the insulator 224 by using a sputtering method.
  • a sputtering method that does not require hydrogen to be used as the film-forming gas, the hydrogen concentration in the insulator 224 can be reduced. Since the insulator 224 comes into contact with the oxide 230a in a later step, it is preferable that the hydrogen concentration is reduced in this way.
  • openings are formed in the insulator 224, the insulator 222, the insulator 216, the insulator 214, and the insulator 212.
  • the opening is formed between the two conductors 205. Wet etching may be used to form the openings, but dry etching is preferable for microfabrication.
  • the shape of the opening is circular in the top view, but the shape is not limited to this.
  • the opening may have a substantially circular shape such as an ellipse, a polygonal shape such as a quadrangle, or a polygonal shape such as a quadrangle with rounded corners in a top view.
  • an insulating film to be the insulator 249 is formed, and the insulating film is anisotropically etched to form the insulator 249.
  • the film formation of the insulating film to be the insulator 249 can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • As the insulating film to be the insulator 249 it is preferable to use an insulating film having a function of reducing oxygen permeation. For example, it is preferable to form an aluminum oxide film by using the ALD method. Alternatively, it is preferable to form silicon nitride by using the PEALD method. Silicon nitride is preferable because it has a high barrier property against hydrogen.
  • the anisotropic etching of the insulating film to be the insulator 249 for example, a dry etching method or the like may be used.
  • a dry etching method or the like By providing the insulator 249 on the side wall portion of the opening, it is possible to reduce the permeation of oxygen from the outside and prevent the oxidation of the conductor 248 to be formed next. Further, it is possible to prevent impurities such as water and hydrogen from entering the conductor 248 from the outside.
  • a conductive film to be a conductor 248 is formed.
  • the film formation of the conductive film to be the conductor 248 can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the conductor 248 is formed in the same structure as the conductor 205. Therefore, if the conductive film to be the conductor 248a is formed by the same method as the conductive film to be the conductor 205a, and the conductive film to be the conductor 248b is formed by the same method as the conductive film to be the conductor 205b. Good.
  • plasma treatment containing oxygen may be performed in a reduced pressure state.
  • the plasma treatment containing oxygen for example, it is preferable to use an apparatus having a power source for generating high-density plasma using microwaves.
  • the substrate side may have a power supply for applying RF (Radio Frequency).
  • RF Radio Frequency
  • high-density plasma high-density oxygen radicals can be generated, and by applying RF to the substrate side, oxygen radicals generated by high-density plasma can be efficiently guided into the insulator 224. it can.
  • plasma treatment containing oxygen may be performed to supplement the desorbed oxygen. Impurities such as water and hydrogen contained in the insulator 224 can be removed by appropriately selecting the conditions for the plasma treatment. In that case, the heat treatment does not have to be performed.
  • CMP treatment may be performed until the insulator 224 is reached.
  • the surface of the insulator 224 can be flattened and smoothed.
  • a part of the insulator 224 may be polished by the CMP treatment to reduce the film thickness of the insulator 224, but the film thickness may be adjusted when the insulator 224 is formed.
  • oxygen can be added to the insulator 224 by forming aluminum oxide on the insulator 224 by a sputtering method.
  • the oxide film 230A and the oxide film 230B are formed on the insulator 224 and the conductor 248 in this order (see FIGS. 6A to 6D). It is preferable that the oxide film 230A and the oxide film 230B are continuously formed without being exposed to the atmospheric environment. By forming the film without opening it to the atmosphere, it is possible to prevent impurities or moisture from the atmospheric environment from adhering to the oxide film 230A and the oxide film 230B, and the vicinity of the interface between the oxide film 230A and the oxide film 230B can be prevented. Can be kept clean.
  • the oxide film 230A and the oxide film 230B can be formed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the oxide film 230A and the oxide film 230B are formed by a sputtering method
  • oxygen or a mixed gas of oxygen and a rare gas is used as the sputtering gas.
  • excess oxygen in the oxide film formed can be increased.
  • the above oxide film is formed by a sputtering method
  • the above In—M—Zn oxide target or the like can be used.
  • the proportion of oxygen contained in the sputtering gas may be 70% or more, preferably 80% or more, and more preferably 100%.
  • the oxide film 230B is formed by a sputtering method, if the ratio of oxygen contained in the sputtering gas is more than 30% and 100% or less, preferably 70% or more and 100% or less, the oxygen excess type oxidation A physical semiconductor is formed. Transistors using oxygen-rich oxide semiconductors in the channel formation region can obtain relatively high reliability. However, one aspect of the present invention is not limited to this.
  • the oxide film 230B is formed by a sputtering method and the ratio of oxygen contained in the sputtering gas is 1% or more and 30% or less, preferably 5% or more and 20% or less, an oxygen-deficient oxide semiconductor is formed. To. A transistor using an oxygen-deficient oxide semiconductor in the channel formation region can obtain a relatively high field-effect mobility. Further, the crystallinity of the oxide film can be improved by forming a film while heating the substrate.
  • an oxide film 243A is formed on the oxide film 230B (see FIGS. 6A to 6D).
  • the oxide film 243A can be formed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the atomic number ratio of Ga to In is preferably larger than the atomic number ratio of Ga to In in the oxide film 230B.
  • the insulator 222, the insulator 224, the oxide film 230A, the oxide film 230B, and the oxide film 243A are formed by a sputtering method without being exposed to the atmosphere.
  • a multi-chamber type film forming apparatus may be used.
  • the insulator 222, the insulator 224, the oxide film 230A, the oxide film 230B, and the oxide film 243A are formed by reducing the hydrogen in the film, and further, hydrogen is formed in the film between each film forming step. Can be reduced.
  • the heat treatment may be performed in a temperature range in which the oxide film 230A, the oxide film 230B, and the oxide film 243A do not polycrystallize, and may be performed at 250 ° C. or higher and 650 ° C. or lower, preferably 400 ° C. or higher and 600 ° C. or lower.
  • the heat treatment is performed in an atmosphere of nitrogen gas or an inert gas, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas.
  • the oxygen gas may be set to about 20%.
  • the heat treatment may be performed in a reduced pressure state.
  • the heat treatment is performed in an atmosphere of nitrogen gas or an inert gas, and then the heat treatment is performed in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas to supplement the desorbed oxygen. You may.
  • the gas used in the above heat treatment is preferably highly purified.
  • the amount of water contained in the gas used in the heat treatment may be 1 ppb or less, preferably 0.1 ppb or less, and more preferably 0.05 ppb or less.
  • the treatment after performing the treatment at a temperature of 550 ° C. for 1 hour in a nitrogen atmosphere, the treatment is continuously performed at a temperature of 550 ° C. for 1 hour in an oxygen atmosphere.
  • impurities such as water and hydrogen in the oxide film 230A, the oxide film 230B, and the oxide film 243A can be removed.
  • the heat treatment can improve the crystallinity of the oxide film 230B to obtain a denser and more dense structure. Thereby, the diffusion of oxygen or impurities in the oxide film 230B can be reduced.
  • a conductive film 242A is formed on the oxide film 243A (see FIGS. 6A to 6D).
  • the film formation of the conductive film 242A can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a sputtering method for example, as the conductive film 242A, tantalum nitride may be formed by using a sputtering method.
  • the heat treatment may be performed before the film formation of the conductive film 242A.
  • the heat treatment may be carried out under reduced pressure to continuously form a conductive film 242A without exposing it to the atmosphere.
  • the temperature of the heat treatment is preferably 100 ° C. or higher and 400 ° C. or lower. In the present embodiment, the temperature of the heat treatment is set to 200 ° C.
  • the oxide film 230A, the oxide film 230B, the oxide film 243A, and the conductive film 242A are processed into an island shape by using a lithography method to form an oxide 230a, an oxide 230b, an oxide layer 243B, and a conductive layer 242B.
  • a dry etching method or a wet etching method can be used for the processing. Processing by the dry etching method is suitable for microfabrication.
  • the oxide film 230A, the oxide film 230B, the oxide film 243A, and the conductive film 242A may be processed under different conditions. In this step, the film thickness of the region that does not overlap with the oxide 230a of the insulator 224 may be reduced. Further, in the step, the insulator 224 may be superposed on the oxide 230a and processed into an island shape.
  • the resist is first exposed through a mask. Next, the exposed region is removed or left with a developer to form a resist mask. Next, a conductor, a semiconductor, an insulator, or the like can be processed into a desired shape by etching through the resist mask.
  • a resist mask may be formed by exposing the resist using KrF excimer laser light, ArF excimer laser light, EUV (Extreme Ultraviolet) light, or the like. Further, an immersion technique may be used in which a liquid (for example, water) is filled between the substrate and the projection lens for exposure. Further, instead of the above-mentioned light, an electron beam or an ion beam may be used.
  • the resist mask can be removed by performing a dry etching process such as ashing, performing a wet etching process, performing a wet etching process after the dry etching process, or performing a dry etching process after the wet etching process.
  • a dry etching process such as ashing, performing a wet etching process, performing a wet etching process after the dry etching process, or performing a dry etching process after the wet etching process.
  • a hard mask made of an insulator or a conductor may be used under the resist mask.
  • a hard mask an insulating film or a conductive film to be a hard mask material is formed on the conductive film 242A, a resist mask is formed on the insulating film or a conductive film, and the hard mask material is etched to form a hard mask having a desired shape. can do.
  • Etching of the conductive film 242A or the like may be performed after removing the resist mask, or may be performed while leaving the resist mask. In the latter case, the resist mask may disappear during etching.
  • the hard mask may be removed by etching after etching the conductive film 242A or the like.
  • the material of the hard mask does not affect the post-process or can be used in the post-process, it is not always necessary to remove the hard mask.
  • the hard mask may remain and be used as a barrier insulating film.
  • the oxide 230a, the oxide 230b, the oxide layer 243B, and the conductive layer 242B are formed so that at least a part thereof overlaps with the conductor 248 and the two conductors 205. Further, it is preferable that the side surfaces of the oxide 230a, the oxide 230b, the oxide layer 243B, and the conductive layer 242B are substantially perpendicular to the upper surface of the insulator 222. Since the side surfaces of the oxide 230a, the oxide 230b, the oxide layer 243B, and the conductive layer 242B are substantially perpendicular to the upper surface of the insulator 222, the area is reduced and the height is increased when a plurality of transistors 200 are provided. It is possible to increase the density.
  • the angle formed by the side surfaces of the oxide 230a, the oxide 230b, the oxide layer 243B, and the conductive layer 242B and the upper surface of the insulator 222 may be low.
  • the angle formed by the side surfaces of the oxide 230a, the oxide 230b, the oxide layer 243B, and the conductive layer 242B and the upper surface of the insulator 222 is preferably 60 degrees or more and less than 70 degrees.
  • the by-products generated in the etching step may be formed in layers on the side surfaces of the oxide 230a, the oxide 230b, the oxide layer 243B, and the conductive layer 242B.
  • the layered by-product will be formed between the oxide 230a, the oxide 230b, the oxide 243, and the conductor 242 and the insulator 275.
  • layered by-products may be formed on the insulator 224. Even if the insulator 275 is formed in a state where the layered by-product is formed on the insulator 224, the layered by-product interferes with the addition of oxygen to the insulator 224. Therefore, it is preferable to remove the layered by-product formed in contact with the upper surface of the insulator 224.
  • the insulator 275 is formed on the insulator 224, the oxide 230a, the oxide 230b, the oxide layer 243B, and the conductive layer 242B. (See FIGS. 8A-8D.).
  • the film formation of the insulator 275 can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • As the insulator 275 it is preferable to use an insulating film having a function of suppressing the permeation of oxygen.
  • aluminum oxide may be deposited as the insulator 275 by the ALD method or the sputtering method.
  • silicon nitride may be formed into a film by a sputtering method.
  • Oxygen can be added to the insulator 224 by forming the insulator 275 by the sputtering method.
  • an insulating film to be the insulator 280 is formed on the insulator 275.
  • the film formation of the insulating film can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • a silicon oxide film may be formed by using a sputtering method.
  • An insulator 280 containing excess oxygen can be formed by forming an insulating film to be an insulator 280 by a sputtering method in an atmosphere containing oxygen. Further, by using a sputtering method in which hydrogen does not have to be used as the film forming gas, the hydrogen concentration in the insulator 280 can be reduced.
  • heat treatment may be performed before the film formation of the insulating film.
  • the heat treatment may be carried out under reduced pressure to continuously form the insulating film without exposing it to the atmosphere.
  • water and hydrogen adsorbed on the surface of the insulator 275 and the like are removed, and further, the water concentration and the water concentration in the oxide 230a, the oxide 230b, the oxide layer 243B, and the insulator 224 are obtained.
  • the hydrogen concentration can be reduced.
  • the above-mentioned heat treatment conditions can be used for the heat treatment.
  • the insulating film to be the insulator 280 is subjected to CMP treatment to form an insulator 280 having a flat upper surface (see FIGS. 8A to 8D).
  • silicon nitride may be formed on the insulator 280 by, for example, a sputtering method, and the silicon nitride may be subjected to CMP treatment until it reaches the insulator 280.
  • the insulator 280 two parts of the insulator 280, a part of the insulator 275, a part of the conductive layer 242B, a part of the oxide layer 243B, and a part of the oxide 230b are removed to reach the oxide 230b.
  • Form an opening It is preferable that the two openings are formed so as to overlap the conductor 205.
  • a conductor 242a, a conductor 242b, a conductor 242c, an oxide 243a, an oxide 243b, and an oxide 243c are formed (see FIGS. 9A to 9D).
  • the conductor 242b is preferably formed so as to be superimposed on the conductor 248. Further, the region of the oxide 230b that does not overlap with the conductor 242a, the conductor 242b, and the conductor 242c is exposed.
  • the upper part of the oxide 230b is removed.
  • a groove is formed in the oxide 230b.
  • the groove may be formed in the opening forming step, or may be formed in a step different from the opening forming step.
  • a dry etching method or a wet etching method is used for processing a part of the insulator 280, a part of the insulator 275, a part of the conductive layer 242B, a part of the oxide layer 243B, and a part of the oxide 230b.
  • a dry etching method or a wet etching method is used for processing a part of the insulator 280, a part of the insulator 275, a part of the conductive layer 242B, a part of the oxide layer 243B, and a part of the oxide 230b.
  • a part may be processed by a dry etching method.
  • a dry etching method first, two openings are formed in the insulator 280, and the openings are formed in the insulator 275, the oxide layer 243B, and the conductive layer 242B by superimposing on the two openings. Further, the processing of a part of the oxide layer 243B and a part of the conductive layer 242B and the processing of a part of the oxide 230b may be performed under different conditions.
  • the impurities include the components contained in the insulator 280, the insulator 275 and the conductive layer 242B, the components contained in the member used in the apparatus used for forming the opening, and the gas or liquid used for etching. Examples include those caused by the contained components and the like. Examples of the impurities include aluminum, silicon, tantalum, fluorine, chlorine and the like.
  • impurities such as aluminum or silicon inhibit the conversion of oxide 230b to CAAC-OS. Therefore, it is preferable that impurity elements such as aluminum and silicon that inhibit CAAC-OS conversion are reduced or removed.
  • the concentration of aluminum atoms in the oxide 230b and its vicinity may be 5.0 atomic% or less, preferably 2.0 atomic% or less, more preferably 1.5 atomic% or less, and 1.0. It is more preferably atomic% or less, still more preferably less than 0.3 atomic%.
  • the region of the metal oxide that has become a pseudo-amorphous oxide semiconductor (a-like OS: amorphous-like oxide semiconductor) due to the inhibition of CAAC-OS by impurities such as aluminum or silicon is defined as the non-CAAC region. May be called.
  • the non CAAC region since the compactness of the crystal structure is reduced, V O H has a large amount of formation, the transistor tends to be normally on reduction. Therefore, the non-CAAC region of the oxide 230b is preferably reduced or removed.
  • the oxide 230b has a layered CAAC structure.
  • the conductor 242a, the conductor 242b, or the conductor 242c, and the vicinity thereof function as a drain. That is, it is preferable that the conductor 242a, the conductor 242b, or the oxide 230b near the lower end of the conductor 242c has a CAAC structure.
  • the damaged region of the oxide 230b is removed, and by having the CAAC structure, the fluctuation of the electrical characteristics of the transistor 200 can be further suppressed. Moreover, the reliability of the transistor 200 can be improved.
  • the cleaning method include wet cleaning using a cleaning liquid, plasma treatment using plasma, cleaning by heat treatment, and the like, and the above cleanings may be appropriately combined.
  • the cleaning treatment may deepen the groove.
  • the cleaning treatment may be performed using an aqueous solution obtained by diluting ammonia water, oxalic acid, phosphoric acid, hydrofluoric acid or the like with carbonated water or pure water, pure water, carbonated water or the like.
  • ultrasonic cleaning may be performed using these aqueous solutions, pure water, or carbonated water.
  • these washings may be appropriately combined.
  • a commercially available aqueous solution obtained by diluting hydrofluoric acid with pure water may be referred to as diluted hydrofluoric acid
  • a commercially available aqueous solution obtained by diluting ammonia water with pure water may be referred to as diluted ammonia water.
  • concentration, temperature, etc. of the aqueous solution may be appropriately adjusted depending on the impurities to be removed, the configuration of the semiconductor device to be washed, and the like.
  • the ammonia concentration of the diluted ammonia water may be 0.01% or more and 5% or less, preferably 0.1% or more and 0.5% or less.
  • the hydrogen fluoride concentration of the diluted hydrofluoric acid may be 0.01 ppm or more and 100 ppm or less, preferably 0.1 ppm or more and 10 ppm or less.
  • a frequency of 200 kHz or higher, preferably 900 kHz or higher for ultrasonic cleaning it is preferable to use a frequency of 200 kHz or higher, preferably 900 kHz or higher for ultrasonic cleaning. By using this frequency, damage to the oxide 230b and the like can be reduced.
  • the above cleaning treatment may be performed a plurality of times, and the cleaning liquid may be changed for each cleaning treatment.
  • a treatment using diluted hydrofluoric acid or diluted aqueous ammonia may be performed as the first cleaning treatment
  • a treatment using pure water or carbonated water may be performed as the second cleaning treatment.
  • wet cleaning is performed using diluted hydrofluoric acid, and then wet cleaning is performed using pure water or carbonated water.
  • impurities adhering to or diffused inside the surface such as oxide 230a and oxide 230b can be removed.
  • the crystallinity of the oxide 230b can be enhanced.
  • the heat treatment may be performed after the etching or the cleaning.
  • the heat treatment may be performed at 100 ° C. or higher and 450 ° C. or lower, preferably 350 ° C. or higher and 400 ° C. or lower.
  • the heat treatment is carried out in an atmosphere of nitrogen gas or an inert gas, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas.
  • the heat treatment is preferably performed in an oxygen atmosphere.
  • oxygen is supplied to the oxide 230a and oxides 230b, it is possible to reduce the oxygen vacancies V O. Further, by performing such a heat treatment, the crystallinity of the oxide 230b can be improved.
  • the heat treatment may be performed in a reduced pressure state.
  • the heat treatment may be continuously performed in a nitrogen atmosphere without being exposed to the atmosphere.
  • an insulating film 250A is formed (see FIGS. 10A to 10D).
  • the heat treatment may be performed before the film formation of the insulating film 250A, and the heat treatment may be performed under reduced pressure to continuously form the insulating film 250A without exposure to the atmosphere. Further, the heat treatment is preferably performed in an atmosphere containing oxygen. By performing such a treatment, the water and hydrogen adsorbed on the surface of the oxide 230b and the like can be removed, and the water concentration and the hydrogen concentration in the oxide 230a and the oxide 230b can be further reduced.
  • the temperature of the heat treatment is preferably 100 ° C. or higher and 400 ° C. or lower.
  • the insulating film 250A can be formed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like. Further, the insulating film 250A is preferably formed by a film forming method using a gas in which hydrogen atoms have been reduced or removed. Thereby, the hydrogen concentration of the insulating film 250A can be reduced. Since the insulating film 250A becomes an insulator 250 in contact with the oxide 230b in a later step, it is preferable that the hydrogen concentration is reduced in this way.
  • the insulating film 250A is formed by using the ALD method. It is necessary that the film thickness of the insulator 250 of the miniaturized transistor 200, which functions as the gate insulating film, is extremely thin (for example, about 5 nm or more and 30 nm or less) and the variation is small.
  • the ALD method is a film-forming method in which a precursor and a reactor (oxidizing agent) are alternately introduced, and the film thickness can be adjusted by the number of times this cycle is repeated, so that the film thickness is precise. It can be adjusted. Therefore, the accuracy of the thickness of the gate insulating film required by the miniaturized transistor 200 can be achieved. Further, as shown in FIGS.
  • the insulating film 250A needs to be formed on the bottom surface and the side surface of the opening formed by the insulator 280 or the like with good coverage. Since layers of atoms can be deposited layer by layer on the bottom surface and the side surface of the opening, the insulating film 250A can be formed with good coverage on the opening.
  • the film-forming gas containing hydrogen is decomposed in the plasma and a large amount of hydrogen radicals are generated.
  • the reduction reaction of hydrogen radicals the oxygen is withdrawn by V O H in the oxide 230b is formed, the concentration of hydrogen in the oxide 230b is increased.
  • the insulating film 250A is formed by using the ALD method, the generation of hydrogen radicals can be suppressed both when the precursor is introduced and when the reactor is introduced. Therefore, by forming the insulating film 250A using the ALD method, it is possible to prevent the hydrogen concentration in the oxide 230b from increasing.
  • a silicon oxide film such as silicon oxide may be formed by using the ALD method.
  • the insulating film 250A is shown as a single layer in FIGS. 10B, 10C, and 10D, it may have a laminated structure of two or more layers.
  • the lower layer of the insulating film 250A is formed by using an insulator that releases oxygen by heating, and the upper layer of the insulating film 250A has a function of suppressing the diffusion of oxygen. It is preferable to form using an insulator having. With such a configuration, oxygen contained in the lower layer of the insulator 250 can be suppressed from diffusing into the conductor 260. That is, it is possible to suppress a decrease in the amount of oxygen supplied to the oxide 230.
  • the lower layer of the insulating film 250A can be provided by using a material that can be used for the insulator 250 described above, and the upper layer of the insulating film 250A can be provided by using the same material as the insulator 222.
  • a thing or a metal oxide that can be used as the oxide 230 can be used.
  • the insulating film 250A has a two-layer laminated structure, silicon oxide is formed as a lower layer by the PEALD method, and hafnium oxide is formed as an upper layer by the thermal ALD method.
  • the insulating film that is the lower layer of the insulating film 250A and the insulating film that is the upper layer of the insulating film 250A should be continuously formed without being exposed to the atmospheric environment. Is preferable.
  • impurities such as hydrogen or moisture from the atmospheric environment from adhering to the insulating film that is the lower layer of the insulating film 250A and the insulating film that is the upper layer of the insulating film 250A.
  • the vicinity of the interface between the insulating film that is the lower layer of the insulating film 250A and the insulating film that is the upper layer of the insulating film 250A can be kept clean.
  • microwave treatment is performed in an atmosphere containing oxygen (see FIGS. 10A to 10D).
  • the dotted lines shown in FIGS. 10B, 10C, and 10D indicate microwaves, high frequencies such as RF, oxygen plasma, oxygen radicals, and the like.
  • the microwave processing apparatus may have a power source for applying RF to the substrate side.
  • high-density plasma high-density oxygen radicals can be generated.
  • oxygen ions generated by the high-density plasma can be efficiently guided into the oxide 230b.
  • the microwave treatment is preferably performed under reduced pressure, and the pressure may be 60 Pa or more, preferably 133 Pa or more, more preferably 200 Pa or more, and further preferably 400 Pa or more.
  • the oxygen flow rate ratio (O 2 / O 2 + Ar) is 50% or less, preferably 10% or more and 30% or less.
  • the treatment temperature may be 750 ° C. or lower, preferably 500 ° C. or lower, for example, about 400 ° C.
  • the heat treatment may be continuously performed without exposing to the outside air.
  • oxygen gas is turned into plasma using a high frequency such as microwave or RF, and the oxygen plasma is converted into an oxide. It can act on the region between the conductor 242a and the conductor 242b of 230b and the region between the conductor 242b and the conductor 242c. At this time, it is also possible to irradiate a high frequency such as microwave or RF. That is, microwaves, high frequencies such as RF, oxygen plasma, and the like can be applied to the regions 232d and 232e shown in FIG.
  • Plasma by the action such as a microwave, and divide the V O H region 232d and the region 232 e, hydrogen H can be removed from the region 232d and a region 232 e. That is, in the region 232d and the region 232 e, happening reaction of "V O H ⁇ H + V O", it is possible to reduce the hydrogen concentration in the region 232d and the region 232 e. Therefore, to reduce oxygen vacancies, and V O H in the region 232d and the region 232 e, the carrier concentration can be decreased.
  • the oxygen deficiency in the region 232d and the region 232e is further eliminated. It can be reduced and the carrier concentration can be lowered.
  • a conductor 242a, a conductor 242b, and a conductor 242c are provided on the region 232a, the region 232b, and the region 232c.
  • the conductors 242a, 242b, and 242c shield the action of microwaves, high frequencies such as RF, oxygen plasma, and the like. It does not reach the regions 232a, 232b, and 232c.
  • the microwave treatment, the area 232a, area 232b, and the region 232c, the reduction of V O H, and excessive amount of oxygen supply does not occur, it is possible to prevent a decrease in carrier concentration.
  • the conductor 248 is provided so as to be superimposed on the conductor 242b, the upper surface of the conductor 248 is in contact with the region 232b in a self-aligned manner, so that the transistor 200a and the transistor 200b and the conductor 248 are in good contact with each other. Can be formed.
  • microwave treatment was performed after the insulating film 250A was formed, but the present invention is not limited to this.
  • the microwave treatment may be performed before the film formation of the insulating film 250A, or the microwave treatment may be performed both before and after the film formation of the insulating film 250A.
  • microwave treatment is performed to form silicon oxide in the lower layer of the insulating film 250A by the PEALD method, and hafnium oxide in the upper layer of the insulating film 250A is formed by the thermal ALD method.
  • the film may be formed with.
  • the microwave treatment, the PEALD film formation of silicon oxide, and the thermal ALD film formation of hafnium oxide are continuously treated without being exposed to the atmosphere.
  • a multi-chamber type processing device may be used.
  • the microwave treatment may be replaced by the treatment of the plasma-excited reactor (oxidizer) of the PEALD apparatus.
  • oxygen gas may be used as the reactor (oxidizing agent).
  • the heat treatment may be performed while maintaining the reduced pressure state after the microwave treatment.
  • hydrogen in the insulating film 250A, the oxide 230b, and the oxide 230a can be efficiently removed.
  • a part of hydrogen may be gettered on the conductor 242 (conductor 242a and conductor 242b).
  • the step of performing the heat treatment may be repeated a plurality of times while maintaining the reduced pressure state after the microwave treatment. By repeating the heat treatment, hydrogen in the insulating film 250A, the oxide 230b, and the oxide 230a can be removed more efficiently.
  • the heat treatment temperature is preferably 300 ° C. or higher and 500 ° C. or lower.
  • the diffusion of hydrogen, water, impurities, etc. can be suppressed by modifying the film quality of the insulating film 250A by performing microwave treatment. Therefore, hydrogen, water, impurities, etc. are diffused to the oxide 230b, the oxide 230a, etc. through the insulator 250 by a post-process such as film formation of a conductive film to be a conductor 260 or a post-treatment such as heat treatment. It can be suppressed.
  • a conductive film to be the conductor 260a and a conductive film to be the conductor 260b are formed in this order.
  • the film formation of the conductive film to be the conductor 260a and the conductive film to be the conductor 260b can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the ALD method is used to form a conductive film to be the conductor 260a
  • the CVD method is used to form the conductive film to be the conductor 260b.
  • the insulating film 250A, the conductive film to be the conductor 260a, and the conductive film to be the conductor 260b are polished until the insulator 280 is exposed, thereby insulating the transistor 200a and the transistor 200b.
  • a body 250 and a conductor 260 (conductor 260a and conductor 260b) are formed, respectively (see FIGS. 11A to 11D).
  • the transistor 200a and the insulator 250 of the transistor 200b are arranged so as to cover the inner wall (side wall and bottom surface) of the two openings reaching the oxide 230b and the groove of the oxide 230b.
  • the transistor 200a and the conductor 260 of the transistor 200b are arranged so as to embed the two openings and the groove portion via the insulator 250.
  • the heat treatment may be performed under the same conditions as the above heat treatment.
  • the treatment is carried out in a nitrogen atmosphere at a temperature of 400 ° C. for 1 hour.
  • the heat treatment the water concentration and the hydrogen concentration in the insulator 250 and the insulator 280 can be reduced.
  • the insulator 282 may be continuously formed without being exposed to the atmosphere.
  • the insulator 282 is formed on the insulator 250, the conductor 260, and the insulator 280 (see FIGS. 12A to 12D).
  • the film formation of the insulator 282 can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the film formation of the insulator 282 is preferably performed by using a sputtering method. By using a sputtering method that does not require hydrogen to be used as the film forming gas, the hydrogen concentration in the insulator 282 can be reduced.
  • the insulator 282 in an atmosphere containing oxygen by using the sputtering method, oxygen can be added to the insulator 280 while forming the film. As a result, the insulator 280 can contain excess oxygen. At this time, it is preferable to form the insulator 282 while heating the substrate.
  • aluminum oxide is formed as the insulator 282 by the pulse DC sputtering method using an aluminum target in an atmosphere containing oxygen gas.
  • the pulse DC sputtering method By using the pulse DC sputtering method, the film thickness distribution can be made more uniform, and the sputtering rate and film quality can be improved.
  • the insulator 283 is formed on the insulator 282 (see FIGS. 1A to 1D).
  • the film formation of the insulator 283 can be performed by using a sputtering method, a CVD method, an MBE method, a PLD method, an ALD method, or the like.
  • the film formation of the insulator 283 is preferably performed by using a sputtering method.
  • a sputtering method that does not require hydrogen to be used as the film-forming gas, the hydrogen concentration in the insulator 283 can be reduced.
  • the insulator 283 may have multiple layers.
  • silicon nitride may be deposited by using a sputtering method, and silicon nitride may be deposited on the silicon nitride by a CVD method.
  • a sputtering method silicon nitride may be deposited on the silicon nitride by a CVD method.
  • heat treatment may be performed.
  • the treatment is carried out in a nitrogen atmosphere at a temperature of 400 ° C. for 1 hour.
  • the oxygen added by the film formation of the insulator 282 is diffused into the insulator 280 and the insulator 250, and selectively supplied to the channel forming region of the oxide 230.
  • the heat treatment may be performed not only after the formation of the insulator 283 but also after the film formation of the insulator 282.
  • the semiconductor device having the transistor 200 shown in FIGS. 1A to 1D can be manufactured.
  • the transistor 200 is manufactured by using the method for manufacturing the semiconductor device shown in the present embodiment. be able to.
  • microwave processing device that can be used in the method for manufacturing the semiconductor device will be described.
  • FIG. 13 schematically shows a top view of the single-wafer multi-chamber manufacturing apparatus 2700.
  • the manufacturing apparatus 2700 has an atmosphere-side substrate supply chamber 2701 including a cassette port 2761 for accommodating the substrate and an alignment port 2762 for aligning the substrate, and an atmosphere-side substrate transport for transporting the substrate from the atmosphere-side substrate supply chamber 2701.
  • Room 2702 and load lock chamber 2703a that carries in the substrate and switches the pressure in the room from atmospheric pressure to atmospheric pressure, or from reduced pressure to atmospheric pressure, and carries out the substrate and reduces the pressure in the room from reduced pressure to atmospheric pressure, or It has an unload lock chamber 2703b for switching from atmospheric pressure to depressurization, a transport chamber 2704 for transporting a substrate in vacuum, a chamber 2706a, a chamber 2706b, a chamber 2706c, and a chamber 2706d.
  • atmospheric side substrate transport chamber 2702 is connected to the load lock chamber 2703a and the unload lock chamber 2703b, the load lock chamber 2703a and the unload lock chamber 2703b are connected to the transport chamber 2704, and the transport chamber 2704 is connected to the chamber 2706a. , Connects to chamber 2706b, chamber 2706c and chamber 2706d.
  • a gate valve GV is provided at the connection portion of each chamber, and each chamber can be independently held in a vacuum state except for the atmospheric side substrate supply chamber 2701 and the atmospheric side substrate transport chamber 2702. Further, a transfer robot 2763a is provided in the atmospheric side substrate transfer chamber 2702, and a transfer robot 2763b is provided in the transfer chamber 2704. The transfer robot 2763a and the transfer robot 2763b can transfer the substrate in the manufacturing apparatus 2700.
  • the back pressure (total pressure) of the transport chamber 2704 and each chamber is, for example, 1 ⁇ 10 -4 Pa or less, preferably 3 ⁇ 10 -5 Pa or less, and more preferably 1 ⁇ 10 -5 Pa or less.
  • the partial pressure of gas molecules (atoms) having a mass-to-charge ratio (m / z) of 18 in the transport chamber 2704 and each chamber is, for example, 3 ⁇ 10 -5 Pa or less, preferably 1 ⁇ 10 -5 Pa or less. , More preferably 3 ⁇ 10 -6 Pa or less.
  • the partial pressure of the gas molecules (atoms) having an m / z of 28 in the transport chamber 2704 and each chamber is, for example, 3 ⁇ 10 -5 Pa or less, preferably 1 ⁇ 10 -5 Pa or less, more preferably 3. ⁇ 10-6 Pa or less.
  • the partial pressure of the gas molecules (atoms) having an m / z of 44 in the transport chamber 2704 and each chamber is, for example, 3 ⁇ 10 -5 Pa or less, preferably 1 ⁇ 10 -5 Pa or less, more preferably 3. ⁇ 10-6 Pa or less.
  • the total pressure and partial pressure in the transport chamber 2704 and each chamber can be measured using a mass spectrometer.
  • a mass spectrometer for example, a quadrupole mass spectrometer (also referred to as Q-mass) Qulee CGM-051 manufactured by ULVAC, Inc. may be used.
  • the transport chamber 2704 and each chamber have a configuration in which there are few external leaks or internal leaks.
  • the leakage rate of the transport chamber 2704 and each chamber is 3 ⁇ 10-6 Pa ⁇ m 3 / s or less, preferably 1 ⁇ 10-6 Pa ⁇ m 3 / s or less.
  • the leak rate of the gas molecule (atom) having m / z of 18 is set to 1 ⁇ 10 -7 Pa ⁇ m 3 / s or less, preferably 3 ⁇ 10 -8 Pa ⁇ m 3 / s or less.
  • the leak rate of a gas molecule (atom) having m / z of 28 is 1 ⁇ 10-5 Pa ⁇ m 3 / s or less, preferably 1 ⁇ 10-6 Pa ⁇ m 3 / s or less.
  • the leak rate of the gas molecule (atom) having m / z of 44 is set to 3 ⁇ 10 -6 Pa ⁇ m 3 / s or less, preferably 1 ⁇ 10 -6 Pa ⁇ m 3 / s or less.
  • the leak rate may be derived from the total pressure and partial pressure measured using the above-mentioned mass spectrometer.
  • the leak rate depends on external and internal leaks.
  • An external leak is a gas flowing in from outside the vacuum system due to a minute hole or a defective seal.
  • Internal leaks are caused by leaks from partitions such as valves in the vacuum system and gases released from internal members. In order to keep the leak rate below the above value, it is necessary to take measures from both the external leak and the internal leak.
  • the transport chamber 2704 and the opening and closing parts of each chamber may be sealed with a metal gasket.
  • a metal gasket it is preferable to use a metal coated with iron fluoride, aluminum oxide, or chromium oxide.
  • the metal gasket has higher adhesion than the O-ring and can reduce external leakage. Further, by using the passivation of the metal coated with iron fluoride, aluminum oxide, chromium oxide or the like, the released gas containing impurities released from the metal gasket can be suppressed, and the internal leak can be reduced.
  • a member constituting the manufacturing apparatus 2700 aluminum, chromium, titanium, zirconium, nickel or vanadium containing impurities and having a small amount of emitted gas is used. Further, the above-mentioned member may be used by coating it with an alloy containing iron, chromium, nickel and the like. Alloys containing iron, chromium, nickel, etc. are rigid, heat resistant and suitable for processing. Here, if the surface unevenness of the member is reduced by polishing or the like in order to reduce the surface area, the released gas can be reduced.
  • the members of the manufacturing apparatus 2700 described above may be coated with iron fluoride, aluminum oxide, chromium oxide, or the like.
  • the members of the manufacturing apparatus 2700 are preferably made of only metal as much as possible.
  • the surface thereof is made of iron fluoride, aluminum oxide, or oxide in order to suppress the emitted gas. It is recommended to coat it thinly with chrome or the like.
  • the adsorbents present in the transport chamber 2704 and each chamber do not affect the pressure of the transport chamber 2704 and each chamber because they are adsorbed on the inner wall and the like, but cause gas release when the transport chamber 2704 and each chamber are exhausted. It becomes. Therefore, although there is no correlation between the leak rate and the exhaust speed, it is important to use a pump having a high exhaust capacity to remove the adsorbents existing in the transport chamber 2704 and each chamber as much as possible and exhaust them in advance.
  • the transport chamber 2704 and each chamber may be baked in order to promote the desorption of adsorbed substances. By baking, the desorption rate of the adsorbent can be increased by about 10 times. Baking may be performed at 100 ° C. or higher and 450 ° C. or lower.
  • the desorption rate of water or the like which is difficult to desorb only by exhausting, can be further increased.
  • the desorption rate of the adsorbent can be further increased.
  • an inert gas such as a heated rare gas or oxygen
  • the adsorbents in the transport chamber 2704 and each chamber can be desorbed, and the impurities present in the transport chamber 2704 and each chamber can be reduced. It is effective to repeat this treatment 2 times or more and 30 times or less, preferably 5 times or more and 15 times or less.
  • an inert gas or oxygen having a temperature of 40 ° C. or higher and 400 ° C. or lower, preferably 50 ° C. or higher and 200 ° C.
  • the pressure in the transport chamber 2704 and each chamber is 0.1 Pa or higher and 10 kPa or lower.
  • the pressure may be preferably 1 Pa or more and 1 kPa or less, more preferably 5 Pa or more and 100 Pa or less, and the pressure holding period may be 1 minute or more and 300 minutes or less, preferably 5 minutes or more and 120 minutes or less.
  • the transfer chamber 2704 and each chamber are exhausted for a period of 5 minutes or more and 300 minutes or less, preferably 10 minutes or more and 120 minutes or less.
  • Chambers 2706b and 2706c are, for example, chambers capable of performing microwave treatment on an object to be processed. It should be noted that the chamber 2706b and the chamber 2706c differ only in the atmosphere when microwave processing is performed. Since other configurations are common, they will be described together below.
  • the chamber 2706b and the chamber 2706c have a slot antenna plate 2808, a dielectric plate 2809, a substrate holder 2812, and an exhaust port 2819. Further, outside the chamber 2706b and the chamber 2706c, a gas supply source 2801, a valve 2802, a high frequency generator 2803, a waveguide 2804, a mode converter 2805, a gas tube 2806, and a waveguide 2807 are provided outside the chamber 2706b and the chamber 2706c.
  • a matching box 2815, a high frequency power supply 2816, a vacuum pump 2817, and a valve 2818 are provided.
  • the high frequency generator 2803 is connected to the mode converter 2805 via a waveguide 2804.
  • the mode converter 2805 is connected to the slot antenna plate 2808 via a waveguide 2807.
  • the slot antenna plate 2808 is arranged in contact with the dielectric plate 2809.
  • the gas supply source 2801 is connected to the mode converter 2805 via a valve 2802. Then, gas is sent to the chamber 2706b and the chamber 2706c by the mode converter 2805, the waveguide 2807, and the gas tube 2806 passing through the dielectric plate 2809.
  • the vacuum pump 2817 has a function of exhausting gas or the like from the chamber 2706b and the chamber 2706c via the valve 2818 and the exhaust port 2819.
  • the high frequency power supply 2816 is connected to the substrate holder 2812 via the matching box 2815.
  • the board holder 2812 has a function of holding the board 2811. For example, it has a function of electrostatically chucking or mechanically chucking the substrate 2811. It also functions as an electrode to which power is supplied from the high frequency power supply 2816. Further, it has a heating mechanism 2813 inside and has a function of heating the substrate 2811.
  • the vacuum pump 2817 for example, a dry pump, a mechanical booster pump, an ion pump, a titanium sublimation pump, a cryopump, a turbo molecular pump, or the like can be used. Further, in addition to the vacuum pump 2817, a cryotrap may be used. It is particularly preferable to use a cryopump and a cryotrap because water can be efficiently exhausted.
  • the heating mechanism 2813 may be, for example, a heating mechanism that heats using a resistance heating element or the like. Alternatively, it may be a heating mechanism that heats by heat conduction or heat radiation from a medium such as a heated gas.
  • RTA Rapid Thermal Analing
  • GRTA Gas Rapid Thermal Annealing
  • LRTA Riv Rapid Thermal Annealing
  • GRTA is heat-treated using a high-temperature gas. As the gas, an inert gas is used.
  • the gas supply source 2801 may be connected to the refiner via a mass flow controller.
  • the gas it is preferable to use a gas having a dew point of ⁇ 80 ° C. or lower, preferably ⁇ 100 ° C. or lower.
  • oxygen gas, nitrogen gas, and rare gas argon gas, etc. may be used.
  • the dielectric plate 2809 for example, silicon oxide (quartz), aluminum oxide (alumina), yttrium oxide (itria), or the like may be used. Further, another protective layer may be formed on the surface of the dielectric plate 2809. As the protective layer, magnesium oxide, titanium oxide, chromium oxide, zirconium oxide, hafnium oxide, tantalum oxide, silicon oxide, aluminum oxide, yttrium oxide and the like may be used. Since the dielectric plate 2809 is exposed to a particularly high-density region of the high-density plasma 2810 described later, damage can be mitigated by providing a protective layer. As a result, it is possible to suppress an increase in particles during processing.
  • the high frequency generator 2803 has, for example, a function of generating microwaves of 0.3 GHz or more and 3.0 GHz or less, 0.7 GHz or more and 1.1 GHz or less, or 2.2 GHz or more and 2.8 GHz or less.
  • the microwave generated by the high frequency generator 2803 is transmitted to the mode converter 2805 via the waveguide 2804.
  • the microwave transmitted as the TE mode is converted into the TEM mode.
  • the microwave is transmitted to the slot antenna plate 2808 via the waveguide 2807.
  • the slot antenna plate 2808 is provided with a plurality of slot holes, and microwaves pass through the slot holes and the dielectric plate 2809. Then, an electric field can be generated below the dielectric plate 2809 to generate high-density plasma 2810.
  • ions and radicals corresponding to the gas type supplied from the gas supply source 2801 are present. For example, there are oxygen radicals and the like.
  • the substrate 2811 can modify the film and the like on the substrate 2811 by the ions and radicals generated by the high-density plasma 2810. It may be preferable to apply a bias to the substrate 2811 side by using the high frequency power supply 2816.
  • the high frequency power supply 2816 for example, an RF (Radio Frequency) power supply having a frequency such as 13.56 MHz or 27.12 MHz may be used.
  • the ions in the high-density plasma 2810 can be efficiently reached deep into the openings such as the film on the substrate 2811.
  • oxygen radical treatment using the high-density plasma 2810 can be performed by introducing oxygen from the gas supply source 2801.
  • Chambers 2706a and 2706d are, for example, chambers capable of irradiating an object to be processed with electromagnetic waves. It should be noted that the chamber 2706a and the chamber 2706d differ only in the type of electromagnetic wave. Since there are many common parts about other configurations, they will be explained together below.
  • Chambers 2706a and 2706d have one or more lamps 2820, a substrate holder 2825, a gas inlet 2823, and an exhaust port 2830. Further, a gas supply source 2821, a valve 2822, a vacuum pump 2828, and a valve 2829 are provided outside the chamber 2706a and the chamber 2706d.
  • the gas supply source 2821 is connected to the gas introduction port 2823 via a valve 2822.
  • the vacuum pump 2828 is connected to the exhaust port 2830 via a valve 2829.
  • the lamp 2820 is arranged to face the substrate holder 2825.
  • the substrate holder 2825 has a function of holding the substrate 2824. Further, the substrate holder 2825 has a heating mechanism 2826 inside, and has a function of heating the substrate 2824.
  • a light source having a function of radiating electromagnetic waves such as visible light or ultraviolet light
  • a light source having a function of emitting an electromagnetic wave having a peak at a wavelength of 10 nm or more and 2500 nm or less, 500 nm or more and 2000 nm or less, or 40 nm or more and 340 nm or less may be used.
  • a light source such as a halogen lamp, a metal halide lamp, a xenon arc lamp, a carbon arc lamp, a high-pressure sodium lamp, or a high-pressure mercury lamp may be used.
  • the electromagnetic wave radiated from the lamp 2820 can be partially or completely absorbed by the substrate 2824 to modify the film or the like on the substrate 2824.
  • defects can be created or reduced, or impurities can be removed. If the substrate 2824 is heated, defects can be efficiently generated or reduced, or impurities can be removed.
  • the substrate holder 2825 may be heated by the electromagnetic waves radiated from the lamp 2820 to heat the substrate 2824.
  • the heating mechanism 2826 does not have to be provided inside the substrate holder 2825.
  • the vacuum pump 2828 refers to the description about the vacuum pump 2817.
  • the heating mechanism 2826 refers to the description about the heating mechanism 2813.
  • the gas supply source 2821 refers to the description about the gas supply source 2801.
  • FIG. 16A shows a top view of the semiconductor device.
  • FIG. 16B is a cross-sectional view corresponding to the portion indicated by the alternate long and short dash line of A1-A2 shown in FIG. 16A.
  • FIG. 16C is a cross-sectional view corresponding to the portion shown by the alternate long and short dash line in FIG. 16A.
  • FIG. 16D is a cross-sectional view corresponding to the portion shown by the alternate long and short dash line in FIG. 16A.
  • some elements are omitted for the sake of clarity.
  • the same reference numerals are added to the structures having the same functions as the structures constituting the semiconductor devices shown in ⁇ Semiconductor device configuration example>.
  • the constituent material of the semiconductor device the material described in detail in ⁇ Semiconductor device configuration example> can be used.
  • the semiconductor device shown in FIGS. 16A to 16D is a modification of the semiconductor device shown in FIGS. 1A to 1D.
  • the semiconductor device shown in FIGS. 16A to 16D is different from the semiconductor device shown in FIGS. 1A to 1D in that it has an oxide 230c and an oxide 230d. It is also different in that it has an insulator 271, an insulator 272, and an insulator 273.
  • the transistor 200a and the transistor 200b have an oxide 230c on the oxide 230b and an oxide 230d on the oxide 230c, respectively.
  • the oxide 230c and the oxide 230d are provided in the openings formed in the insulator 280 and the insulator 275.
  • the oxide 230c is the upper surface of the insulator 224, the side surface of the oxide 230a, the upper surface and the side surface of the oxide 230b, the side surface of the oxide 243, the side surface of the conductor 242, the side surface of the insulator 271, and the side surface of the insulator 273.
  • the side surface of the insulator 275, and the side surface of the insulator 280 respectively.
  • the uppermost portion of the oxide 230c and the uppermost portion of the oxide 230d are in contact with the insulator 282.
  • the oxide 230d By arranging the oxide 230d on the oxide 230c, it is possible to suppress the diffusion of impurities to the oxide 230b or the oxide 230c from the structure formed above the oxide 230d. Further, by arranging the oxide 230d on the oxide 230c, the upward diffusion of oxygen from the oxide 230b or the oxide 230c can be suppressed.
  • the oxide 230c is arranged so as to cover the inner wall (side wall and bottom surface) of the groove.
  • the film thickness of the oxide 230c is preferably about the same as the depth of the groove.
  • the atomic number ratio of In to the element M in the metal oxide used for the oxide 230c is larger than the atomic number ratio of In to the element M in the metal oxide used for the oxide 230a or the oxide 230d. ..
  • the atomic number ratio of indium to the main component metal element in the oxide 230c is the indium atom to the main component metal element in the oxide 230b. It is preferably larger than the number ratio. Further, it is preferable that the atomic number ratio of In to the element M in the oxide 230c is larger than the atomic number ratio of In to the element M in the oxide 230b.
  • the atomic number ratio of indium to the metal element which is the main component is made larger than the atomic number ratio of indium to the metal element which is the main component in the oxide 230b, so that the oxide 230c is carried. Can be the main route of. Further, it is preferable that the lower end of the conduction band of the oxide 230c is separated from the vacuum level from the lower end of the conduction band of the oxide 230a and the oxide 230b. In other words, the electron affinity of the oxide 230c is preferably larger than the electron affinity of the oxides 230a and 230b. At this time, the main path of the carrier is the oxide 230c.
  • M: Zn 4: 2: 3 [atomic number ratio] or a composition in the vicinity thereof
  • M: Zn 5: 1: 3 [atomic number ratio] or its vicinity.
  • CAAC-OS As the oxide 230c, and it is preferable that the c-axis of the crystal of the oxide 230c is oriented substantially perpendicular to the surface to be formed or the upper surface of the oxide 230c.
  • CAAC-OS has the property of easily moving oxygen in the direction perpendicular to the c-axis. Therefore, the oxygen contained in the oxide 230c can be efficiently supplied to the oxide 230b.
  • the oxide 230d preferably contains at least one of the metal elements constituting the metal oxide used in the oxide 230c, and more preferably contains all the metal elements.
  • the oxide 230c In-M-Zn oxide, In-Zn oxide, or indium oxide is used as the oxide 230c, and In-M-Zn oxide, M-Zn oxide, or element M is used as the oxide 230d. It is advisable to use the oxide of. As a result, the defect level density at the interface between the oxide 230c and the oxide 230d can be lowered.
  • the lower end of the conduction band of the oxide 230d is closer to the vacuum level than the lower end of the conduction band of the oxide 230c.
  • the electron affinity of the oxide 230d is preferably smaller than the electron affinity of the oxide 230c.
  • the oxide 230d it is preferable to use a metal oxide that can be used for the oxide 230a or the oxide 230b.
  • the main path of the carrier is the oxide 230c.
  • the composition in the vicinity includes a range of ⁇ 30% of the desired atomic number ratio.
  • gallium it is preferable to use gallium as the element M.
  • the oxide 230d is more preferably a metal oxide that suppresses the diffusion or permeation of oxygen than the oxide 230c.
  • the atomic number ratio of In to the metal element as the main component is smaller than the atomic number ratio of In to the metal element as the main component in the metal oxide used for the oxide 230c.
  • the atomic number ratio of In to the element M may be smaller than the atomic number ratio of In to the element M in the oxide 230c.
  • the insulator 250 functions as a gate insulator, if In is mixed in the insulator 250 or the like, the characteristics of the transistor become poor. Therefore, by providing the oxide 230d between the oxide 230c and the insulator 250, it is possible to provide a highly reliable semiconductor device.
  • the oxide 230c may be provided for each transistor 200. That is, the oxide 230c of the transistor 200 and the oxide 230c of the transistor 200 adjacent to the transistor 200 in the channel width direction do not have to be in contact with each other. Further, the oxide 230c of the transistor 200 and the oxide 230c of the transistor 200 adjacent to the transistor 200 in the channel width direction may be separated from each other. In other words, the oxide 230c may not be arranged between the transistor 200 and the transistor 200 adjacent to the transistor 200 in the channel width direction.
  • the oxide 230c is independently provided on the transistors 200 by the above configuration. Therefore, it is possible to suppress the occurrence of a parasitic transistor between the transistor 200 and the transistor 200 adjacent to the transistor 200 in the channel width direction, and to suppress the occurrence of the leak path. Therefore, it is possible to provide a semiconductor device having good electrical characteristics and capable of miniaturization or high integration.
  • the semiconductor devices shown in FIGS. 16A to 16D include an insulator 271 on the conductor 242, an insulator 273 on the insulator 271, a side surface of the oxide 230b, a side surface of the oxide 243, and the conductor 242. It has an insulator 272 in contact with the side surface.
  • the insulator 271 functions at least as a barrier insulating film against oxygen. Therefore, it is preferable that the insulator 271 has a function of suppressing the diffusion of oxygen.
  • the insulator 271 preferably has a function of suppressing the diffusion of oxygen more than the insulator 280.
  • the insulator 271 for example, a nitride containing silicon such as silicon nitride may be used.
  • the insulator 273 preferably has an excess oxygen region or excess oxygen. Further, it is preferable that the concentration of impurities such as water and hydrogen in the insulator 273 is reduced.
  • an oxide containing silicon such as silicon oxide and silicon oxide nitride may be appropriately used.
  • the insulator 272 functions at least as a barrier insulating film against oxygen. Therefore, the insulator 272 preferably has a function of suppressing the diffusion of oxygen. For example, the insulator 272 preferably has a function of suppressing the diffusion of oxygen more than the insulator 280.
  • a nitride containing silicon such as silicon nitride may be used.
  • the conductor 242 can be wrapped with an insulator having a barrier property against oxygen. That is, it is possible to prevent oxygen added at the time of forming the insulator 275 or oxygen contained in the insulator 273 from diffusing into the conductor 242. As a result, the conductor 242 is directly oxidized by oxygen added at the time of forming the insulator 275 or oxygen contained in the insulator 273 to increase the resistivity and suppress the decrease in the on-current. it can.
  • FIG. 1B and the like show the configuration in which the insulator 272 is in contact with the side surfaces of the oxide 230a, the oxide 230b, the oxide 243, the conductor 242, the insulator 271, and the insulator 273, the insulator 272 is shown. , At least in contact with the side surfaces of the insulator 271 and the conductor 242.
  • the insulator 272 may be in contact with the side surfaces of the oxide 230a, the oxide 230b, the oxide 243, the conductor 242, and the insulator 271 and not in contact with the insulator 273. In this case, the side surface of the insulator 273 comes into contact with the insulator 275.
  • one aspect of the present invention it is possible to provide a semiconductor device capable of miniaturization or high integration.
  • one aspect of the present invention can provide a semiconductor device having a large storage capacity.
  • one aspect of the present invention can provide a semiconductor device with good reliability.
  • one aspect of the present invention can provide a semiconductor device having good electrical characteristics.
  • one aspect of the present invention can provide a semiconductor device having a large on-current.
  • one aspect of the present invention can provide a semiconductor device capable of miniaturization or high integration.
  • one aspect of the present invention can provide a low power consumption semiconductor device.
  • one aspect of the present invention can provide a novel semiconductor device.
  • FIG. 17A An example of a semiconductor device (storage device) according to one aspect of the present invention is shown in FIG. 17A.
  • the capacitive element 100a is arranged on the transistor 200a, and the capacitive element 100b is arranged on the transistor 200b.
  • the capacitive element 100a and the capacitive element 100b may be collectively referred to as the capacitive element 100.
  • the transistor 200a and the transistor 200b the transistor 200a and the transistor 200b described in the previous embodiment can be used. That is, the semiconductor device shown in FIG. 17A has a configuration in which the capacitance element 100a and the capacitance element 100b are provided on the semiconductor device shown in FIG. Regarding the configurations of the transistor 200a and the transistor 200b, the description relating to the transistor 200a and the transistor 200b shown in the previous embodiment can be referred to.
  • one of the source and drain of the transistor 200a is electrically connected to the first electrode of the capacitive element 100a
  • the other of the source and drain of the transistor 200a is electrically connected to one of the source and drain of the transistor 200b.
  • the other of the source and drain of the transistor 200b is electrically connected to the first electrode of the capacitive element 100b.
  • the transistor 200a and the capacitive element 100a and the transistor 200b and the capacitive element 100b connected in this way can each function as a memory cell of the storage device. Therefore, in the following, a semiconductor device having a transistor 200a, a transistor 200b, a capacitance element 100a, and a capacitance element 100b as shown in FIG. 17A may be referred to as a memory unit 400.
  • the capacitance element 100 By providing the conductor 248 under the oxide 230 in the memory unit 400, it is possible to reduce the parasitic capacitance of the conductor 248 and the bit wire provided in contact with the conductor 248. As a result, the capacitance required for the capacitive element 100 is reduced, and the capacitive element 100 can be miniaturized.
  • the capacitance element 100a may be superimposed on the transistor 200a, and the capacitance element 100b may be superimposed on the transistor 200b.
  • the memory unit 400 can be miniaturized or highly integrated. Further, by miniaturizing or highly integrating the memory unit 400, it is possible to provide a semiconductor device having a large storage capacity.
  • the capacitance of the capacitance element 100a and the capacitance element 100b can be increased without increasing the occupied area of the memory unit 400.
  • the capacitance element 100 is provided on the insulator 283.
  • the capacitive element 100 has a conductor 110 that functions as a first electrode, a conductor 120 that functions as a second electrode, and an insulator 130 that functions as a dielectric.
  • a conductor that can be used for the conductor 205 or the like may be used.
  • the conductor 110 and the conductor 120 show a single-layer structure in FIG. 17, the structure is not limited to this, and a laminated structure of two or more layers may be used.
  • a conductor having a barrier property and a conductor having a high adhesion to a conductor having a high conductivity may be formed between a conductor having a barrier property and a conductor having a high conductivity.
  • the insulator 130 includes, for example, silicon oxide, silicon oxide, silicon nitride, silicon nitride, aluminum oxide, aluminum nitride, aluminum nitride, aluminum nitride, hafnium oxide, hafnium oxide, hafnium oxide, hafnium nitride. Etc. may be used, and it can be provided in a laminated or single layer.
  • the capacitive element 100 can secure a sufficient capacitance by having an insulator having a high dielectric constant (high-k), and by having an insulator having a large dielectric strength, the dielectric strength is improved and the capacitance is improved. Electrostatic destruction of the element 100 can be suppressed.
  • gallium oxide As an insulator of a high dielectric constant (high-k) material (material having a high specific dielectric constant), gallium oxide, hafnium oxide, zirconium oxide, oxides having aluminum and hafnium, and nitrides having aluminum and hafnium. , Oxides with silicon and hafnium, nitrides with silicon and hafnium or nitrides with silicon and hafnium.
  • silicon oxide, silicon oxide nitride, silicon nitride oxide, silicon nitride, silicon oxide with fluorine added, silicon oxide with carbon added, carbon and nitrogen are used as materials with high dielectric strength (materials with low dielectric strength).
  • silicon oxide, silicon oxide nitride, silicon nitride oxide, silicon nitride, silicon oxide with fluorine added, silicon oxide with carbon added, carbon and nitrogen are used as materials with high dielectric strength (materials with low dielectric strength).
  • silicon oxide, silicon oxide nitride, silicon nitride oxide, silicon nitride, silicon oxide with fluorine added, silicon oxide with carbon added, carbon and nitrogen are used as materials with high dielectric strength (materials with low dielectric strength).
  • a conductor 240 that functions as a plug that electrically connects the transistor 200a and the capacitance element 100a and a plug that electrically connects the transistor 200b and the capacitance element 100b is provided.
  • the lower surface of the conductor 240 provided between the transistor 200a and the capacitive element 100a is in contact with the conductor 242a, and the upper surface is in contact with the conductor 110 of the capacitive element 100a.
  • the conductor 240 provided between the transistor 200b and the capacitance element 100b has a lower surface in contact with the conductor 242c and an upper surface in contact with the conductor 110 of the capacitance element 100b.
  • the insulator 241 is provided in contact with the side surface of the conductor 240 that functions as a plug.
  • the insulator 241 is provided in contact with the inner wall of the opening of the insulator 275, the insulator 280, the insulator 282, and the insulator 283, and the first conductor of the conductor 240 is provided in contact with the side surface of the insulator 241. Further, a second conductor of the conductor 240 is provided inside. Note that FIG. 17 shows a configuration in which the first conductor of the conductor 240 and the second conductor of the conductor 240 are laminated, but the present invention is not limited to this.
  • the conductor 240 may be provided as a single layer or a laminated structure having three or more layers.
  • the conductor 240 it is preferable to use a conductive material containing tungsten, copper, or aluminum as a main component. Further, the conductor 240 may have a laminated structure. When the conductor 240 has a laminated structure, the conductor in contact with the insulator 283, the insulator 282, the insulator 280, and the insulator 275 is a conductive material having a function of suppressing the permeation of impurities such as water and hydrogen. Is preferably used. For example, tantalum, tantalum nitride, titanium, titanium nitride, ruthenium, ruthenium oxide and the like are preferably used.
  • the conductive material having a function of suppressing the permeation of impurities such as water and hydrogen may be used in a single layer or in a laminated state. As a result, impurities such as water and hydrogen contained in the layer above the insulator 283 can be suppressed from being mixed into the oxide 230 through the conductor 240.
  • an insulator such as silicon nitride, aluminum oxide, or silicon nitride may be used. Since the insulator 241 is provided in contact with the insulator 283, the insulator 282, and the insulator 275, impurities such as water and hydrogen contained in the insulator 280 and the like are mixed into the oxide 230 through the conductor 240. Can be suppressed.
  • silicon nitride is suitable because it has a high barrier property against hydrogen. Further, it is possible to prevent oxygen contained in the insulator 280 from being absorbed by the conductor 240.
  • the memory unit 400 and the memory unit 401 having the same configuration as the memory unit 400 may be arranged in the channel length direction.
  • an insulator 210 is provided under the insulator 212, and a conductor 288 is provided under the insulator 210.
  • the upper surface of the conductor 288 is in contact with the lower surface of the memory unit 400 and the conductor 248 of the memory unit 401.
  • an insulator that can be used for the insulator 280 may be used.
  • the conductor 288, a conductor that can be used for the conductor 205 may be used as the conductor 288, a conductor that can be used for the conductor 205 may be used.
  • the conductor 288 functions as wiring. That is, the memory unit 400 and the memory unit 401 are electrically connected to the conductor 288, which functions as wiring, via the conductor 248, respectively.
  • the conductor 288 that functions as a bit line and the conductor 260 that functions as a word line are arranged orthogonally to each other.
  • a transistor 200 and a capacitance element 100 are formed in a region where the conductor 288 and the conductor 260 intersect, and memory cells including the transistor 200 and the capacitance element 100 are arranged in a matrix.
  • a cell array (also referred to as a memory unit layer) can be configured.
  • the distance between adjacent cells can be reduced, so that the projected area of the cell array can be reduced, and high integration is possible.
  • FIG. 17A an example of a semiconductor device (storage device) according to one aspect of the present invention is shown in FIG.
  • the memory unit 400 shown in FIG. 17A is provided above the transistor 300. That is, the transistor 200a and the transistor 200b are provided above the transistor 300, and the capacitive element 100a and the capacitive element 100b are provided above the transistor 200a and the transistor 200b.
  • the capacitive element 100 and the transistor 200 the above-mentioned capacitive element 100 and the transistor 200 can be used, and a detailed structure can be taken into consideration.
  • the transistor 200 is a transistor in which a channel is formed in a semiconductor layer having an oxide semiconductor. Since the transistor 200 has a small off-current, it is possible to retain the stored contents for a long period of time by using the transistor 200 as a storage device. That is, since the refresh operation is not required or the frequency of the refresh operation is extremely low, the power consumption of the storage device can be sufficiently reduced.
  • the metal oxide such as In-M-Zn oxide can be formed on the substrate by using a sputtering method or the like. Therefore, the memory unit 400 formed of the transistor 200 and the capacitance element 100 can be provided on the drive circuit or the like formed of the transistor 300 or the like formed on the silicon substrate. As a result, the occupied area of the peripheral circuit provided on one chip can be reduced and the occupied area of the memory cell array can be increased, so that the storage capacity of the semiconductor device can be increased.
  • the storage devices shown in FIG. 18 can form a memory cell array by arranging them in a matrix.
  • the transistor 300 is provided on the substrate 311 and functions as a conductor 316 that functions as a gate, an insulator 315 that functions as a gate insulator, a semiconductor region 313 that is a part of the substrate 311 and a low that functions as a source region or a drain region. It has a resistance region 314a and a low resistance region 314b.
  • the transistor 300 may be either a p-channel type or an n-channel type.
  • the semiconductor region 313 (a part of the substrate 311) on which the channel is formed has a convex shape. Further, the side surface and the upper surface of the semiconductor region 313 are provided so as to be covered with the conductor 316 via the insulator 315.
  • the conductor 316 may be made of a material that adjusts the work function. Since such a transistor 300 utilizes a convex portion of a semiconductor substrate, it is also called a FIN type transistor. It should be noted that an insulator that is in contact with the upper portion of the convex portion and functions as a mask for forming the convex portion may be provided. Further, although the case where a part of the semiconductor substrate is processed to form a convex portion is shown here, the SOI substrate may be processed to form a semiconductor film having a convex shape.
  • transistor 300 shown in FIG. 18 is an example, and the transistor 300 is not limited to the structure thereof, and an appropriate transistor may be used according to the circuit configuration and the driving method.
  • a wiring layer provided with an interlayer film, wiring, a plug, etc. may be provided between the structures. Further, a plurality of wiring layers can be provided according to the design.
  • the conductor having a function as a plug or wiring may collectively give a plurality of structures the same reference numerals. Further, in the present specification and the like, the wiring and the plug electrically connected to the wiring may be integrated. That is, a part of the conductor may function as a wiring, and a part of the conductor may function as a plug.
  • an insulator 320, an insulator 322, an insulator 324, and an insulator 326 are laminated in this order on the transistor 300 as an interlayer film. Further, the insulator 320, the insulator 322, the insulator 324, and the insulator 326 are embedded with a capacitance element 100, a conductor 328 electrically connected to the transistor 200, a conductor 330, and the like. The conductor 328 and the conductor 330 function as plugs or wirings.
  • the insulator that functions as an interlayer film may function as a flattening film that covers the uneven shape below the insulator.
  • the upper surface of the insulator 322 may be flattened by a flattening treatment using a chemical mechanical polishing (CMP) method or the like in order to improve the flatness.
  • CMP chemical mechanical polishing
  • a wiring layer may be provided on the insulator 326 and the conductor 330.
  • the insulator 350, the insulator 352, and the insulator 354 are laminated in this order.
  • a conductor 356 is formed on the insulator 350, the insulator 352, and the insulator 354. The conductor 356 functions as a plug or wiring.
  • An insulator 358 is provided on the insulator 354 and the conductor 356, and a conductor 288 that functions as wiring is provided on the insulator 358. Further, an insulator 210 is provided on the conductor 288. On the insulator 210, the insulator 212, the insulator 214, the insulator 216, the insulator 222, the insulator 224, the insulator 280, the insulator 282, and the insulator 283, which are shown in the previous embodiment, are provided. A transistor 200a and a transistor 200b are formed in these insulators.
  • a conductor 248 and an insulator 249 are embedded in the insulator 210, the insulator 212, the insulator 214, the insulator 216, the insulator 222, and the insulator 224.
  • the conductor 248 is provided in contact with the conductor 288 in contact with the upper surface.
  • the conductor 240 that functions as a plug is provided in contact with the upper surface of the conductor 242.
  • An insulator 241 is provided in contact with the side surface of the conductor 240 that functions as a plug.
  • the conductor 110 is provided on the insulator 283 and on the conductor 240 in contact with the conductor 240.
  • the insulator 274 is provided on the insulator 283 in a region that does not overlap with the insulator 280.
  • the above-mentioned capacitance element 100a and capacitance element 100b are formed on the insulator 283. Further, an insulator 150 is provided on the conductor 120 and the insulator 130 forming the capacitance element 100.
  • Examples of the insulator that can be used as the interlayer film include oxides, nitrides, oxide nitrides, nitride oxides, metal oxides, metal oxide nitrides, and metal nitride oxides having insulating properties.
  • the material may be selected according to the function of the insulator.
  • the insulator 150, the insulator 274, the insulator 210, the insulator 358, the insulator 352, the insulator 354, and the like preferably have an insulator having a low relative permittivity.
  • the insulator may have silicon nitride, silicon nitride, silicon oxide to which fluorine has been added, silicon oxide to which carbon has been added, silicon oxide to which carbon and nitrogen have been added, silicon oxide or resin having pores, and the like. preferable.
  • the insulator may be silicon oxide, silicon oxide, silicon nitride, silicon nitride, silicon oxide added with fluorine, silicon oxide added with carbon, silicon oxide added with carbon and nitrogen, or silicon oxide having pores.
  • silicon oxide and silicon oxide nitride are thermally stable, they can be combined with a resin to form a laminated structure that is thermally stable and has a low relative permittivity.
  • the resin include polyester, polyolefin, polyamide (nylon, aramid, etc.), polyimide, polycarbonate, acrylic, and the like.
  • a transistor using an oxide semiconductor can stabilize the electrical characteristics of the transistor by surrounding it with an insulator having a function of suppressing the permeation of impurities such as hydrogen and oxygen. Therefore, as the insulator 283, the insulator 282, the insulator 214, the insulator 212, the insulator 350, and the like, an insulator having a function of suppressing the permeation of impurities such as hydrogen and oxygen may be used.
  • Examples of the insulator having a function of suppressing the permeation of impurities such as hydrogen and oxygen include boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, tantalum, and zirconium. Insulations containing, lanthanum, neodymium, hafnium or tantalum may be used in single layers or in layers.
  • an insulator having a function of suppressing the permeation of impurities such as hydrogen and oxygen aluminum oxide, magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide or Metal oxides such as tantalum oxide, silicon nitride oxide, silicon nitride and the like can be used.
  • Conductors that can be used for wiring and plugs include aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, and indium.
  • a material containing one or more metal elements selected from ruthenium and the like can be used.
  • a semiconductor having high electric conductivity typified by polycrystalline silicon containing an impurity element such as phosphorus, and silicide such as nickel silicide may be used.
  • the conductor 328, the conductor 330, the conductor 356, the conductor 288, the conductor 110, the conductor 120, and the like include a metal material, an alloy material, a metal nitride material, or a metal formed of the above materials.
  • Conductive materials such as oxide materials can be used in a single layer or in layers. It is preferable to use a refractory material such as tungsten or molybdenum that has both heat resistance and conductivity, and it is preferable to use tungsten.
  • it is preferably formed of a low resistance conductive material such as aluminum or copper. Wiring resistance can be reduced by using a low resistance conductive material.
  • an insulator having an excess oxygen region may be provided in the vicinity of the oxide semiconductor. In that case, it is preferable to provide an insulator having a barrier property between the insulator having the excess oxygen region and the conductor provided in the insulator having the excess oxygen region.
  • an insulator 241 between the insulator 280 having excess oxygen and the conductor 240.
  • the insulator 241 in contact with the insulator 275, the insulator 282, and the insulator 283, the insulator 224 and the transistor 200 are configured to be sealed by an insulator having a barrier property. Can be done.
  • the insulator 241 it is possible to suppress the excess oxygen contained in the insulator 280 from being absorbed by the conductor 240. Further, by having the insulator 241, it is possible to suppress the diffusion of hydrogen, which is an impurity, to the transistor 200 via the conductor 240.
  • an insulating material having a function of suppressing the diffusion of impurities such as water and hydrogen and oxygen it is preferable to use silicon nitride, silicon nitride oxide, aluminum oxide or hafnium oxide.
  • silicon nitride is preferable because it has a high barrier property against hydrogen.
  • metal oxides such as magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, and tantalum oxide can be used.
  • the insulator 280 or the like may be patterned so that the insulator 212 and the insulator 283 are in contact with each other. That is, the transistor 200 may be configured to be sealed with an insulator 212, an insulator 214, an insulator 282, and an insulator 283. With such a configuration, it is possible to reduce the mixing of hydrogen contained in the insulator 274, the insulator 150 and the like into the insulator 280 and the like.
  • the conductor 240 penetrates through the insulator 283 and the insulator 282, and as described above, the insulator 241 is provided in contact with the conductor 240. Thereby, hydrogen mixed in the insulator 212, the insulator 214, the insulator 282, and the insulator 283 can be reduced through the conductor 240. In this way, the transistor 200 is sealed with the insulator 212, the insulator 214, the insulator 282, the insulator 283, and the insulator 241, and impurities such as hydrogen contained in the insulator 274 and the like are mixed from the outside. Can be reduced.
  • a dicing line (sometimes referred to as a scribe line, a division line, or a cutting line) provided when a plurality of semiconductor devices are taken out in a chip shape by dividing a large-area substrate into semiconductor elements will be described. ..
  • a dividing method for example, there is a case where a groove (dicing line) for dividing a semiconductor element is first formed on a substrate, then the dicing line is cut, and the semiconductor device is divided (divided) into a plurality of semiconductor devices.
  • the region where the insulator 283 and the insulator 212 are in contact overlap with the dicing line it is preferable to design so that the region where the insulator 283 and the insulator 212 are in contact overlap with the dicing line. That is, in the vicinity of the region serving as the dicing line provided on the outer edge of the plurality of memory units 400, the insulator 282, the insulator 280, the insulator 275, the insulator 224, the insulator 222, the insulator 216, and the insulator 214 are opened. Is provided.
  • the insulator 212 and the insulator 283 come into contact with each other at the openings provided in the insulator 282, the insulator 280, the insulator 275, the insulator 224, the insulator 222, the insulator 216, and the insulator 214.
  • the insulator 212 and the insulator 283 may be formed by using the same material and the same method.
  • the adhesion can be improved. For example, it is preferable to use silicon nitride.
  • the transistor 200 can be wrapped by the insulator 212, the insulator 214, the insulator 282, and the insulator 283. Since at least one of the insulator 212, the insulator 214, the insulator 282, and the insulator 283 has a function of suppressing the diffusion of oxygen, hydrogen, and water, the semiconductor element shown in the present embodiment is formed. By dividing the substrate for each circuit region, even if it is processed into a plurality of chips, impurities such as hydrogen or water are prevented from being mixed in from the side surface direction of the divided substrate and diffused to the transistor 200. Can be done.
  • the structure can prevent the excess oxygen of the insulator 280 and the insulator 224 from diffusing to the outside. Therefore, the excess oxygen of the insulator 280 and the insulator 224 is efficiently supplied to the oxide in which the channel is formed in the transistor 200.
  • the oxygen can reduce the oxygen deficiency of the oxide in which the channel is formed in the transistor 200.
  • the oxide in which the channel is formed in the transistor 200 can be made into an oxide semiconductor having a low defect level density and stable characteristics. That is, it is possible to suppress fluctuations in the electrical characteristics of the transistor 200 and improve reliability.
  • the shapes of the capacitance element 100a and the capacitance element 100b are planar types, but the storage device shown in the present embodiment is not limited to this.
  • the shape of the capacitance element 100a and the capacitance element 100b may be a cylinder type.
  • the storage device shown in FIG. 19 has the same configuration as the semiconductor device shown in FIG. 18 in the configuration below the insulator 150.
  • the capacitive element 100a and the capacitive element 100b shown in FIG. 19 are arranged in the insulator 150 on the insulator 130, the insulator 142 on the insulator 150, and the openings formed in the insulator 150 and the insulator 142. It has a conductor 115, an insulator 145 on the insulator 115 and the insulator 142, a conductor 125 on the insulator 145, and an insulator 152 on the insulator 125 and the insulator 145, respectively.
  • at least a part of the conductor 115, the insulator 145, and the conductor 125 is arranged in the two openings formed in the insulator 150 and the insulator 142.
  • the insulator 154 is arranged on the insulator 152, and the conductor 153 and the insulator 156 are arranged on the insulator 154. Further, the conductor 140 is provided in the openings formed in the insulator 152 and the insulator 154.
  • the conductor 115 functions as a lower electrode of the capacitance element 100
  • the conductor 125 functions as an upper electrode of the capacitance element 100
  • the insulator 145 functions as a dielectric of the capacitance element 100.
  • the capacitance element 100 has a configuration in which the upper electrode and the lower electrode face each other with a dielectric sandwiched not only on the bottom surface but also on the side surface at the openings of the insulator 150 and the insulator 142, and the capacitance per unit area.
  • the capacity can be increased. Therefore, the deeper the depth of the opening, the larger the capacitance of the capacitance element 100 can be.
  • an insulator that can be used for the insulator 280 may be used.
  • the insulator 142 preferably functions as an etching stopper when forming an opening of the insulator 150, and an insulator that can be used for the insulator 214 may be used.
  • the shape of the openings formed in the insulator 150 and the insulator 142 as viewed from the upper surface may be a quadrangle, a polygonal shape other than the quadrangle, or a polygonal shape with curved corners. , It may be a circular shape including an ellipse.
  • it is preferable that the area where the opening and the transistor 200 overlap is large. With such a configuration, the occupied area of the semiconductor device having the capacitance element 100 and the transistor 200 can be reduced.
  • the conductor 115 is arranged in contact with the insulator 142 and the opening formed in the insulator 150. It is preferable that the upper surface of the conductor 115 substantially coincides with the upper surface of the insulator 142. Further, the lower surface of the conductor 115 is in contact with the conductor 110 through the opening of the insulator 130.
  • the conductor 115 is preferably formed by using an ALD method, a CVD method, or the like, and for example, a conductor that can be used for the conductor 205 may be used.
  • the insulator 145 is arranged so as to cover the conductor 115 and the insulator 142.
  • the insulator 145 includes, for example, silicon oxide, silicon nitride, silicon nitride, silicon nitride, zirconium oxide, aluminum oxide, aluminum oxide, aluminum nitride, aluminum nitride, hafnium oxide, hafnium oxide, hafnium oxide, and nitride.
  • Hafnium or the like may be used, and it can be provided in a laminated or single layer.
  • an insulating film in which zirconium oxide, aluminum oxide, and zirconium oxide are laminated in this order can be used.
  • a material having a large dielectric strength such as silicon oxide or a material having a high dielectric constant (high-k) for the insulator 145.
  • a laminated structure of a material having a large dielectric strength and a high dielectric constant (high-k) material may be used.
  • insulator of a high dielectric constant (high-k) material material having a high specific dielectric constant
  • silicon oxide, silicon oxide, silicon nitride, silicon nitride, silicon oxide added with fluorine, silicon oxide added with carbon, silicon oxide added with carbon and nitrogen, and pores are used as materials having high insulation strength.
  • silicon oxide, resin, etc. laminated in the order of silicon nitride was deposited using ALD (SiN x), silicon oxide was deposited using PEALD method (SiO x), silicon nitride was deposited using ALD (SiN x) Insulation film can be used.
  • the conductor 125 is arranged so as to fill the openings formed in the insulator 142 and the insulator 150. Further, the conductor 125 is electrically connected to the conductor 153 that functions as a wiring via the conductor 140.
  • the conductor 125 is preferably formed by using an ALD method, a CVD method, or the like, and for example, a conductor that can be used for the conductor 205 may be used.
  • the conductor 153 is provided on the insulator 154 and is covered with the insulator 156.
  • a conductor that can be used for the conductor 110 may be used, and as the insulator 156, an insulator that can be used for the insulator 152 may be used.
  • the conductor 153 is in contact with the upper surface of the conductor 140.
  • FIGS. 20 and 21 An example of a semiconductor device (storage device) according to one aspect of the present invention is shown in FIGS. 20 and 21.
  • the memory unit 400 shown in FIG. 20A differs from the memory unit 400 shown in FIG. 17A in the shapes of the capacitance element 100a and the capacitance element 100b.
  • the capacitive element 100a has a conductor 242a, an insulator 275 provided so as to cover the conductor 242a, and a conductor 294a on the insulator 275.
  • the capacitive element 100b has a conductor 242c, an insulator 275 provided so as to cover the conductor 242c, and a conductor 294b on the insulator 275. That is, the capacitive element 100a and the capacitive element 100b constitute a MIM (Metal-Insulator-Metal) capacitance.
  • MIM Metal-Insulator-Metal
  • one of the pair of electrodes of the capacitive element 100 can also serve as the source electrode or the drain electrode of the transistor 200.
  • the dielectric layer of the capacitive element 100 can also serve as a protective layer provided on the transistor 200, that is, an insulator 275. Therefore, in the manufacturing process of the capacitive element 100, a part of the manufacturing process of the transistor can also be used, so that the semiconductor device can be highly productive. Further, since one of the pair of electrodes of the capacitance element 100, that is, the conductor 242 also serves as the source electrode or the drain electrode of the transistor 200, the area where the transistor 200 and the capacitance element 100 are arranged can be reduced. Is possible.
  • conductor 294a and the conductor 294b for example, materials that can be used for the conductor 242 may be used.
  • the memory unit 400 and the memory unit 401 having the same configuration as the memory unit 400 may be connected via the capacitance unit.
  • the memory unit 400 and the memory unit 401 shown in FIG. 20B have the same structure as the memory unit 400 shown in FIG. 20A. Therefore, the details of the structures of the memory unit 400 and the memory unit 401 shown in FIG. 20B can refer to the description relating to the memory unit 400 shown in FIG. 20A.
  • FIG. 20B is a cross-sectional view in which a memory unit 400 having a transistor 200a, a transistor 200b, a capacitance element 100a, and a capacitance element 100b and a memory unit 401 having the same configuration as the memory unit 400 are connected via a capacitance section. is there.
  • the conductor 294b that functions as one electrode of the capacitance element 100b included in the memory unit 400 also serves as one electrode of the capacitance device included in the memory unit 401 having the same configuration as the memory unit 400. It has become.
  • the conductor 294a, which functions as one electrode of the capacitance element 100a of the memory unit 400 is on the left side of the memory unit 400, that is, one of the capacitance devices of the semiconductor device adjacent to the memory unit 400 in the A1 direction. Also serves as an electrode.
  • the cell on the right side of the memory unit 401, that is, in FIG. 20B has the same configuration for the cell in the A2 direction.
  • the array can be configured by arranging the memory units in a matrix on the same layer.
  • the distance between adjacent cells can be reduced, so that the projected area of the cell array can be reduced, and high integration is possible.
  • an insulator 210 is provided under the insulator 212, and a conductor 288 is provided under the insulator 210.
  • the upper surface of the conductor 288 is in contact with the lower surface of the memory unit 400 and the conductor 248 of the memory unit 401. Therefore, the memory unit 400 and the memory unit 401 are electrically connected to the conductor 288, which functions as wiring, via the conductor 248, respectively.
  • the conductor 288 that functions as a bit line and the conductor 260 that functions as a word line are arranged orthogonally to each other.
  • FIG. 21 shows a cross-sectional view of a configuration in which n layers of cell array 610 having a memory unit 400 are stacked.
  • FIG. 21 by stacking a plurality of cell cells (series cell array 610_1 to cell array 610_n), cells can be integrated and arranged without increasing the occupied area of the cell array. That is, a 3D cell array can be constructed. Further, since the capacitance element 100 having the structure shown in FIGS.
  • each cell array 20A and 20B can be formed at a position lower than the upper surface of the conductor 260, the height of each cell array is higher than that when the capacitance element having a cylinder structure is used. Can be lowered. As a result, a plurality of cell arrays can be laminated relatively easily. In this way, it is possible to achieve high integration of memory cells and provide a semiconductor device having a large storage capacity.
  • FIG. 22 shows an example of a semiconductor device (storage device) according to one aspect of the present invention.
  • FIG. 22 shows an example in which the memory 470 has a transistor layer 413 having a transistor 200T and four memory unit layers 415 (memory unit layer 415_1 to memory unit layer 415_4).
  • the transistor 200T has the same structure as the transistor 200 shown in the previous embodiment.
  • the memory unit layer 415_1 to the memory unit layer 415_1 each have a plurality of memory units 400.
  • the memory unit 400 included in the memory unit layer 415_1 to the memory unit layer 415_1 has a structure similar to that of the memory unit 400 shown in FIG. 20A. Therefore, for the details of the memory unit 400, the description related to FIG. 20A and the like can be referred to.
  • the conductor 248_1 provided in the memory unit layer 415_1 is electrically connected to the transistor 200T, and the conductor 248_2 provided in the memory unit layer 415_2 is connected to the conductor 242b provided in the memory unit layer 415_1.
  • the conductor 248_3 connected and provided in the memory unit layer 415_3 is connected to the conductor 242b provided in the memory unit layer 415_2, and the conductor 248_4 provided in the memory unit layer 415_4 is provided in the memory unit layer 415_3. It is connected to the conductor 242b.
  • the conductor 248_1 is connected to the gate electrode of the transistor 200T, but the present invention is not limited to this, and the connection of the conductor 248_1 is appropriately adapted to the circuit configuration of the memory 470 and the like. You can set it.
  • the region 232b of the oxide 230b overlaps with the conductor 242b, the carrier concentration is high and the region 232b has electrical conductivity. Therefore, with the above configuration, the region 232b of the memory unit 400 provided in each memory unit layer 415 and the transistor 200T can be electrically connected via the conductor 248.
  • memory cells can be integrated and arranged without increasing the occupied area of the cell array. Therefore, it is possible to provide a semiconductor device having a large storage capacity by increasing the integration of memory cells.
  • the memory 470 is sealed by the insulator 212, the insulator 214, the insulator 282, and the insulator 283 (for convenience, hereinafter referred to as a sealing structure).
  • An insulator 274 is provided around the insulator 283. Further, the insulator 274, the insulator 283, and the insulator 212 are provided with a conductor 440, which is electrically connected to the element layer 411.
  • an insulator 280 is provided inside the sealing structure.
  • the insulator 280 has a function of releasing oxygen by heating.
  • the insulator 280 has an excess oxygen region.
  • the insulator 212 and the insulator 283 are preferably materials having a function of having a high barrier property against hydrogen. Further, the insulator 214 and the insulator 282 are preferably materials having a function of capturing hydrogen or fixing hydrogen.
  • the material having a function of having a high barrier property against hydrogen includes silicon nitride, silicon nitride, and the like.
  • Examples of the material having a function of capturing hydrogen or fixing hydrogen include aluminum oxide, hafnium oxide, and oxides containing aluminum and hafnium (hafnium aluminate).
  • the crystal structure of the materials used for the insulator 212, the insulator 214, the insulator 282, and the insulator 283 is not particularly limited, but may be an amorphous or crystalline structure.
  • Amorphous aluminum oxide may capture and adhere more hydrogen than highly crystalline aluminum oxide.
  • the insulator 282 and the insulator 214 are provided between the transistor layer 413 and the memory unit layer 415, or also between each memory unit layer 415. Further, it is preferable that the insulator 296 is provided between the insulator 282 and the insulator 214.
  • the excess oxygen in the insulator 280 can be considered as the following model for the diffusion of hydrogen in the oxide semiconductor in contact with the insulator 280.
  • Hydrogen present in the oxide semiconductor diffuses into other structures via the insulator 280 in contact with the oxide semiconductor. Due to the diffusion of the hydrogen, the excess oxygen in the insulator 280 reacts with the hydrogen in the oxide semiconductor to form an OH bond, and diffuses in the insulator 280.
  • a hydrogen atom having an OH bond reaches a material having a function of capturing hydrogen or fixing hydrogen (typically, an insulator 282)
  • the hydrogen atom becomes an atom in the insulator 282 (for example, an insulator 282). It reacts with oxygen atoms bonded to metal atoms, etc.) and is captured or fixed in the insulator 282.
  • an insulator 280 having excess oxygen is formed on an oxide semiconductor, and then an insulator 282 is formed. After that, it is preferable to perform heat treatment. Specifically, the heat treatment is carried out in an atmosphere containing oxygen, an atmosphere containing nitrogen, or a mixed atmosphere of oxygen and nitrogen at a temperature of 350 ° C. or higher, preferably 400 ° C. or higher.
  • the heat treatment time is 1 hour or longer, preferably 4 hours or longer, and more preferably 8 hours or longer.
  • hydrogen in the oxide semiconductor can be diffused to the outside through the insulator 280 and the insulator 282. That is, the absolute amount of the oxide semiconductor and hydrogen existing in the vicinity of the oxide semiconductor can be reduced.
  • an insulator 283 is formed. Since the insulator 283 is a material having a function of having a high barrier property against hydrogen, hydrogen diffused to the outside or hydrogen existing on the outside is transferred to the inside, specifically, an oxide semiconductor or the insulator 280. It can be suppressed from entering the side.
  • the configuration performed after forming the insulator 282 has been illustrated, but the present invention is not limited to this.
  • the above heat treatment may be performed after the transistor layer 413 is formed or after the memory unit layer 415_1 to the memory unit layer 415_3 are formed.
  • hydrogen is diffused outward by the above heat treatment, hydrogen is diffused above or in the lateral direction of the transistor layer 413.
  • hydrogen is diffused upward or laterally.
  • the insulator 212 and the insulator 283 are adhered to each other to form the above-mentioned sealing structure.
  • a transistor using an oxide as a semiconductor (hereinafter, may be referred to as an OS transistor) according to one aspect of the present invention.
  • a storage device to which a capacitive element is applied (hereinafter, may be referred to as an OS memory device) will be described.
  • the OS memory device is a storage device having at least a capacitance element and an OS transistor that controls charging / discharging of the capacitance element. Since the off-current of the OS transistor is extremely small, the OS memory device has excellent holding characteristics and can function as a non-volatile memory.
  • FIG. 23A shows an example of the configuration of the OS memory device.
  • the storage device 1400 has a peripheral circuit 1411 and a memory cell array 1470.
  • the peripheral circuit 1411 includes a row circuit 1420, a column circuit 1430, an output circuit 1440, and a control logic circuit 1460.
  • the column circuit 1430 includes, for example, a column decoder, a precharge circuit, a sense amplifier, a writing circuit, and the like.
  • the precharge circuit has a function of precharging the wiring.
  • the sense amplifier has a function of amplifying a data signal read from a memory cell.
  • the wiring is the wiring connected to the memory cell of the memory cell array 1470, and will be described in detail later.
  • the amplified data signal is output to the outside of the storage device 1400 as a data signal RDATA via the output circuit 1440.
  • the row circuit 1420 has, for example, a row decoder, a word line driver circuit, and the like, and can select a row to be accessed.
  • a low power supply voltage (VSS), a high power supply voltage (VDD) for the peripheral circuit 1411, and a high power supply voltage (VIL) for the memory cell array 1470 are supplied to the storage device 1400 from the outside as power supply voltages. Further, a control signal (CE, WE, RE), an address signal ADDR, and a data signal WDATA are input to the storage device 1400 from the outside.
  • the address signal ADDR is input to the row decoder and column decoder, and the data signal WDATA is input to the write circuit.
  • the control logic circuit 1460 processes control signals (CE, WE, RE) input from the outside to generate control signals for row decoders and column decoders.
  • the control signal CE is a chip enable signal
  • the control signal WE is a write enable signal
  • the control signal RE is a read enable signal.
  • the signal processed by the control logic circuit 1460 is not limited to this, and other control signals may be input as needed.
  • the memory cell array 1470 has a plurality of memory cells MCa and memory cells MCb arranged in a matrix, and a plurality of wirings.
  • the memory cell MCa and the memory cell MCb are combined to form one memory unit.
  • the memory cell MCa and the memory cell MCb may be collectively referred to as a memory cell MC.
  • the number of wires connecting the memory cell array 1470 and the row circuit 1420 is determined by the configuration of the memory cell MC, the number of memory cell MCs in a row, and the like.
  • the number of wirings connecting the memory cell array 1470 and the column circuit 1430 is determined by the configuration of the memory cell MC, the number of memory cell MCs in one row, and the like.
  • FIG. 23A shows an example in which the peripheral circuit 1411 and the memory cell array 1470 are formed on the same plane
  • the present embodiment is not limited to this.
  • the memory cell array 1470 may be provided so as to overlap a part of the peripheral circuit 1411.
  • a sense amplifier may be provided so as to overlap under the memory cell array 1470.
  • the metal oxide such as In-M-Zn oxide can be formed on the substrate by using a sputtering method or the like. Therefore, the memory cell array 1470 can be provided on the peripheral circuit 1411 formed on the silicon substrate. As a result, the occupied area of the memory cell array that can be provided on one chip can be increased, so that the storage capacity of the semiconductor device can be increased.
  • a plurality of memory cell array 1470s may be stacked. By stacking a plurality of memory cell arrays 1470, memory cells can be integrated and arranged without increasing the occupied area of the memory cell array 1470. That is, a 3D cell array can be constructed. In this way, it is possible to achieve high integration of memory cells and provide a semiconductor device having a large storage capacity.
  • 24A to 24C show a configuration example of a memory cell applicable to the above-mentioned memory cell MCa and memory cell MCb.
  • [DOSRAM] 24A to 24C show an example of a circuit configuration of a DRAM memory cell.
  • a DRAM using a memory cell of a 1OS transistor and 1 capacitance element type may be referred to as a DOSRAM (Dynamic Oxide Semiconductor Random Access Memory).
  • the memory unit 1471 shown in FIG. 24A has a memory cell MCa and a memory cell MCb.
  • the memory cell MCa has a transistor M1a and a capacitance element CAa
  • the memory cell MCb has a transistor M1b and a capacitance element CAb.
  • the transistor M1a and the transistor M1b have a gate (sometimes called a top gate) and a back gate.
  • the first terminal of the transistor M1a is connected to the first terminal of the capacitive element CAa, the second terminal of the transistor M1a is connected to the wiring BIL, the gate of the transistor M1a is connected to the wiring WOLa, and the back gate of the transistor M1a. Is connected to the wiring BGLa.
  • the second terminal of the capacitive element CAa is connected to the wiring CAL.
  • the first terminal of the transistor M1b is connected to the first terminal of the capacitive element CAb
  • the second terminal of the transistor M1b is connected to the wiring BIL
  • the gate of the transistor M1b is connected to the wiring WOLb
  • the transistor M1b The back gate of is connected to the wiring BGLb.
  • the second terminal of the capacitive element CAb is connected to the wiring CAL.
  • the wiring BIL functions as a bit line
  • the wiring WOLa and the wiring WOLb function as a word line.
  • the wiring CAL functions as wiring for applying a predetermined potential to the second terminal of the capacitance element CAa and the capacitance element CAb. It is preferable to apply a low level potential to the wiring CAL when writing and reading data.
  • the wiring BGLa functions as a wiring for applying a potential to the back gate of the transistor M1a
  • the wiring BGLb functions as a wiring for applying a potential to the back gate of the transistor M1b.
  • the threshold voltage of the transistor M1a (transistor M1b) can be increased or decreased by applying an arbitrary potential to the wiring BGLa (wiring BGLb).
  • the memory unit 1471 shown in FIG. 24A corresponds to the memory unit 400 shown in FIG. 17A and the like. That is, the transistor M1a corresponds to the transistor 200a, the capacitive element CAa corresponds to the capacitive element 100a, the transistor M1b corresponds to the transistor 200b, and the capacitive element CAb corresponds to the capacitive element 100b. Further, the wiring WOLa corresponds to the conductor 260 of the transistor 200a, the wiring WOLb corresponds to the conductor 260 of the transistor 200b, and the wiring BIL corresponds to the conductor 248 and the conductor 288.
  • the storage device according to the present embodiment is not limited to the memory unit 1471, and the circuit configuration can be changed.
  • the back gate of the transistor M1a is not the wiring BGLa, but the back gate of the transistor M1b is not the wiring BGLb.
  • the storage device according to the present embodiment may be composed of a transistor having a single gate structure, that is, a transistor M1a having no back gate and a transistor M1b, as in the memory unit 1473 shown in FIG. 24C.
  • the transistor 200a is used as the transistor M1a
  • the transistor 200b is used as the transistor M1b
  • the capacitance element 100a is used as the capacitance element CAa
  • the capacitance element 100b is used as the capacitance element CAb.
  • an OS transistor as the transistor M1a and the transistor M1b
  • the leakage current of the transistor M1a and the transistor M1b can be made very small. That is, since the written data can be held by the transistors M1a and M1b for a long time, the frequency of refreshing the memory cells can be reduced. Moreover, the refresh operation of the memory cell can be eliminated. Further, since the leak current is very small, multi-valued data or analog data can be held in the memory unit 1471, the memory unit 1472, and the memory unit 1473.
  • the bit line can be shortened.
  • the bit wire can be made shorter than by providing the conductor 248 on the oxide 230. As a result, the bit line capacity is reduced, and the holding capacity of the memory cell can be reduced.
  • the configurations of the peripheral circuit 1411, the memory cell array 1470, and the like shown in the present embodiment are not limited to the above.
  • the arrangement or function of these circuits and the wiring, circuit elements, etc. connected to the circuits may be changed, deleted, or added as necessary.
  • FIGS. 25A and 25B An example of a chip 1200 on which the semiconductor device of the present invention is mounted is shown with reference to FIGS. 25A and 25B.
  • a plurality of circuits (systems) are mounted on the chip 1200.
  • SoC system on chip
  • the chip 1200 has a CPU 1211, GPU 1212, one or more analog arithmetic units 1213, one or more memory controllers 1214, one or more interfaces 1215, one or more network circuits 1216, and the like.
  • a bump (not shown) is provided on the chip 1200, and as shown in FIG. 25B, it is connected to the first surface of the printed circuit board (Printed Circuit Board: PCB) 1201. Further, a plurality of bumps 1202 are provided on the back surface of the first surface of the PCB 1201 and are connected to the motherboard 1203.
  • PCB printed Circuit Board
  • the motherboard 1203 may be provided with a storage device such as a DRAM 1221 and a flash memory 1222.
  • a storage device such as a DRAM 1221 and a flash memory 1222.
  • the DOSRAM shown in the previous embodiment can be used for the DRAM 1221.
  • the storage capacity of the DRAM 1221 can be increased.
  • the CPU 1211 preferably has a plurality of CPU cores.
  • the GPU 1212 preferably has a plurality of GPU cores.
  • the CPU 1211 and the GPU 1212 may each have a memory for temporarily storing data.
  • a memory common to the CPU 1211 and the GPU 1212 may be provided on the chip 1200.
  • the memory the above-mentioned DOSRAM or the like can be used.
  • GPU1212 is suitable for parallel calculation of a large amount of data, and can be used for image processing and product-sum calculation. By providing the GPU 1212 with an image processing circuit using the oxide semiconductor according to the present invention and a product-sum calculation circuit, image processing and product-sum calculation can be executed with low power consumption.
  • the wiring between the CPU 1211 and the GPU 1212 can be shortened, and the data transfer from the CPU 1211 to the GPU 1212, the data transfer between the memory of the CPU 1211 and the GPU 1212, And after the calculation on the GPU 1212, the calculation result can be transferred from the GPU 1212 to the CPU 1211 at high speed.
  • the analog arithmetic unit 1213 has one or both of an A / D (analog / digital) conversion circuit and a D / A (digital / analog) conversion circuit. Further, the product-sum calculation circuit may be provided in the analog calculation unit 1213.
  • the memory controller 1214 has a circuit that functions as a controller of the DRAM 1221 and a circuit that functions as an interface of the flash memory 1222.
  • the interface 1215 has an interface circuit with an externally connected device such as a display device, a speaker, a microphone, a camera, and a controller.
  • the controller includes a mouse, a keyboard, a game controller, and the like.
  • USB Universal Serial Bus
  • HDMI registered trademark
  • High-Definition Multimedia Interface High-Definition Multimedia Interface
  • the network circuit 1216 has a function of controlling a connection with a LAN (Local Area Network) or the like. It may also have a circuit for network security.
  • LAN Local Area Network
  • the above circuit (system) can be formed on the chip 1200 by the same manufacturing process. Therefore, even if the number of circuits required for the chip 1200 increases, it is not necessary to increase the manufacturing process, and the chip 1200 can be manufactured at low cost.
  • the PCB 1201, the DRAM 1221 provided with the chip 1200 having the GPU 1212, and the motherboard 1203 provided with the flash memory 1222 can be referred to as the GPU module 1204.
  • the GPU module 1204 Since the GPU module 1204 has a chip 1200 using SoC technology, its size can be reduced. Further, since it is excellent in image processing, it is suitable for use in portable electronic devices such as smartphones, tablet terminals, laptop PCs, and portable (take-out) game machines.
  • a deep neural network (DNN), a convolutional neural network (CNN), a recurrent neural network (RNN), a self-encoder, a deep Boltzmann machine (DBM), and a deep belief network (DEM) are provided by a product-sum calculation circuit using GPU1212. Since a method such as DBN) can be executed, the chip 1200 can be used as an AI chip, or the GPU module 1204 can be used as an AI system module.
  • the present embodiment shows an example of an electronic component and an electronic device in which the storage device and the like shown in the above embodiment are incorporated.
  • FIG. 26A shows a perspective view of the electronic component 700 and the substrate on which the electronic component 700 is mounted (mounting substrate 704).
  • the electronic component 700 shown in FIG. 26A has a storage device 720 in the mold 711. In FIG. 26A, a part is omitted in order to show the inside of the electronic component 700.
  • the electronic component 700 has a land 712 on the outside of the mold 711. The land 712 is electrically connected to the electrode pad 713, and the electrode pad 713 is electrically connected to the storage device 720 by a wire 714.
  • the electronic component 700 is mounted on, for example, the printed circuit board 702. A plurality of such electronic components are combined and each is electrically connected on the printed circuit board 702 to complete the mounting board 704.
  • the storage device 720 has a drive circuit layer 721 and a storage circuit layer 722.
  • the storage circuit layer 722 can be formed by using the 3D cell array shown in the previous embodiment.
  • FIG. 26B shows a perspective view of the electronic component 730.
  • the electronic component 730 is an example of SiP (System in package) or MCM (Multi Chip Module).
  • the electronic component 730 is provided with an interposer 731 on a package substrate 732 (printed circuit board), and a semiconductor device 735 and a plurality of storage devices 720 are provided on the interposer 731.
  • the electronic component 730 shows an example in which the storage device 720 is used as a wideband memory (HBM: High Bandwidth Memory). Further, as the semiconductor device 735, an integrated circuit (semiconductor device) such as a CPU, GPU, or FPGA can be used.
  • HBM High Bandwidth Memory
  • the package substrate 732 a ceramic substrate, a plastic substrate, a glass epoxy substrate, or the like can be used.
  • the interposer 731 a silicon interposer, a resin interposer, or the like can be used.
  • the interposer 731 has a plurality of wirings and has a function of electrically connecting a plurality of integrated circuits having different terminal pitches.
  • the plurality of wirings are provided in a single layer or multiple layers.
  • the interposer 731 has a function of electrically connecting the integrated circuit provided on the interposer 731 to the electrode provided on the package substrate 732.
  • the interposer may be referred to as a "rewiring board” or an "intermediate board”.
  • a through electrode may be provided on the interposer 731, and the integrated circuit and the package substrate 732 may be electrically connected using the through electrode.
  • TSV Three Silicon Via
  • interposer 731 It is preferable to use a silicon interposer as the interposer 731. Since it is not necessary to provide an active element in the silicon interposer, it can be manufactured at a lower cost than an integrated circuit. On the other hand, since the wiring of the silicon interposer can be formed by a semiconductor process, it is easy to form fine wiring, which is difficult with a resin interposer.
  • the interposer on which the HBM is mounted is required to form fine and high-density wiring. Therefore, it is preferable to use a silicon interposer as the interposer on which the HBM is mounted.
  • the reliability is unlikely to decrease due to the difference in the expansion coefficient between the integrated circuit and the interposer. Further, since the surface of the silicon interposer is high, poor connection between the integrated circuit provided on the silicon interposer and the silicon interposer is unlikely to occur. In particular, in a 2.5D package (2.5-dimensional mounting) in which a plurality of integrated circuits are arranged side by side on an interposer, it is preferable to use a silicon interposer.
  • a heat sink may be provided so as to be overlapped with the electronic component 730.
  • the heat sink it is preferable that the heights of the integrated circuits provided on the interposer 731 are the same.
  • the heights of the storage device 720 and the semiconductor device 735 are the same.
  • an electrode 733 may be provided on the bottom of the package substrate 732.
  • FIG. 26B shows an example in which the electrode 733 is formed of solder balls. By providing solder balls in a matrix on the bottom of the package substrate 732, BGA (Ball Grid Array) mounting can be realized. Further, the electrode 733 may be formed of a conductive pin. By providing conductive pins in a matrix on the bottom of the package substrate 732, PGA (Pin Grid Array) mounting can be realized.
  • the electronic component 730 can be mounted on another substrate by using various mounting methods, not limited to BGA and PGA.
  • BGA Band-GPU
  • PGA Stimble Pin Grid Array
  • LGA Land Grid Array
  • QFP Quad Flat Package
  • QFJ Quad Flat J-leaded package
  • QFN QuadFNeged
  • the semiconductor device shown in the above embodiment is, for example, a storage device for various electronic devices (for example, information terminals, computers, smartphones, electronic book terminals, digital cameras (including video cameras), recording / playback devices, navigation systems, etc.).
  • the computer includes a tablet computer, a notebook computer, a desktop computer, and a large computer such as a server system.
  • the semiconductor device shown in the above embodiment can be applied to various removable storage devices such as SSD (Solid State Drive).
  • 27A and 27B schematically show a configuration example of the removable storage device.
  • the semiconductor device shown in the above embodiment can be processed into a packaged memory chip and used for various storage devices and removable memories.
  • FIG. 27A is a schematic view of the appearance of the SSD
  • FIG. 27B is a schematic view of the internal structure of the SSD.
  • the SSD 1150 has a housing 1151, a connector 1152 and a substrate 1153.
  • the substrate 1153 is housed in the housing 1151.
  • a memory chip 1154, a memory chip 1155, and a controller chip 1156 are attached to the substrate 1153.
  • the memory chip 1155 is a work memory of the controller chip 1156, and for example, the DOSRAM chip shown in the previous embodiment may be used.
  • the capacity of the SSD 1150 can be increased.
  • the semiconductor device according to one aspect of the present invention can be used for a processor such as a CPU or GPU, or a chip.
  • 28A to 28H show specific examples of electronic devices including a processor such as a CPU or GPU, or a chip according to one aspect of the present invention.
  • the GPU or chip according to one aspect of the present invention can be mounted on various electronic devices.
  • electronic devices include relatively large screens such as television devices, monitors for desktop or notebook information terminals, digital signage (electronic signage), and large game machines such as pachinko machines.
  • digital cameras, digital video cameras, digital photo frames, electronic book readers, mobile phones, portable game machines, personal digital assistants, sound reproduction devices, and the like can be mentioned.
  • artificial intelligence can be mounted on the electronic device.
  • the electronic device of one aspect of the present invention may have an antenna.
  • the display unit can display images, information, and the like.
  • the antenna may be used for non-contact power transmission.
  • the electronic device of one aspect of the present invention includes sensors (force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, voice, time, hardness, electric field, current, It may have the ability to measure voltage, power, radiation, flow rate, humidity, gradient, vibration, odor or infrared rays).
  • the electronic device of one aspect of the present invention can have various functions. For example, a function to display various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function to display a calendar, date or time, a function to execute various software (programs), wireless communication. It can have a function, a function of reading a program or data recorded on a recording medium, and the like.
  • 28A to 28H show examples of electronic devices.
  • FIG. 28A illustrates a mobile phone (smartphone) which is a kind of information terminal.
  • the information terminal 5100 has a housing 5101 and a display unit 5102, and as an input interface, a touch panel is provided in the display unit 5102 and buttons are provided in the housing 5101.
  • the information terminal 5100 can execute an application using artificial intelligence by applying the chip of one aspect of the present invention.
  • Examples of the application using artificial intelligence include an application that recognizes a conversation and displays the conversation content on the display unit 5102, and recognizes characters and figures input by the user on the touch panel provided in the display unit 5102.
  • Examples include an application displayed on the display unit 5102, an application for performing biometric authentication such as a fingerprint and a voice print, and the like.
  • FIG. 28B illustrates the notebook type information terminal 5200.
  • the notebook-type information terminal 5200 includes a main body 5201 of the information terminal, a display unit 5202, and a keyboard 5203.
  • the notebook-type information terminal 5200 can execute an application using artificial intelligence by applying the chip of one aspect of the present invention.
  • applications using artificial intelligence include design support software, text correction software, and menu automatic generation software. Further, by using the notebook type information terminal 5200, it is possible to develop a new artificial intelligence.
  • a smartphone and a notebook-type information terminal are taken as examples of electronic devices, which are shown in FIGS. 28A and 28B, respectively, but information terminals other than the smartphone and the notebook-type information terminal can be applied.
  • information terminals other than smartphones and notebook-type information terminals include PDAs (Personal Digital Assistants), desktop-type information terminals, workstations, and the like.
  • FIG. 28C shows a portable game machine 5300, which is an example of a game machine.
  • the portable game machine 5300 has a housing 5301, a housing 5302, a housing 5303, a display unit 5304, a connection unit 5305, an operation key 5306, and the like.
  • the housing 5302 and the housing 5303 can be removed from the housing 5301.
  • the connection unit 5305 provided in the housing 5301 to another housing (not shown)
  • the video output to the display unit 5304 can be output to another video device (not shown). it can.
  • the housing 5302 and the housing 5303 can each function as operation units. This allows a plurality of players to play the game at the same time.
  • the chips shown in the previous embodiment can be incorporated into the chips provided on the substrates of the housing 5301, the housing 5302, and the housing 5303.
  • FIG. 28D shows a stationary game machine 5400, which is an example of a game machine.
  • a controller 5402 is connected to the stationary game machine 5400 wirelessly or by wire.
  • a low power consumption game machine can be realized by applying the GPU or chip of one aspect of the present invention to a game machine such as a portable game machine 5300 or a stationary game machine 5400. Further, since the heat generation from the circuit can be reduced due to the low power consumption, the influence of the heat generation on the circuit itself, the peripheral circuit, and the module can be reduced.
  • the portable game machine 5300 having artificial intelligence can be realized.
  • expressions such as the progress of the game, the behavior of creatures appearing in the game, and the phenomena that occur in the game are defined by the program that the game has, but by applying artificial intelligence to the handheld game machine 5300.
  • Expressions that are not limited to game programs are possible. For example, it is possible to express what the player asks, the progress of the game, the time, and the behavior of the characters appearing in the game.
  • the game player can be constructed anthropomorphically by artificial intelligence. Therefore, by setting the opponent as a game player by artificial intelligence, even one player can play the game. You can play the game.
  • FIGS. 28C and 28D a portable game machine and a stationary game machine are illustrated as examples of the game machine, but the game machine to which the GPU or chip of one aspect of the present invention is applied is not limited to this.
  • Examples of the game machine to which the GPU or chip of one aspect of the present invention is applied include an arcade game machine installed in an entertainment facility (game center, amusement park, etc.), a throwing machine for batting practice installed in a sports facility, and the like. Can be mentioned.
  • the GPU or chip of one aspect of the present invention can be applied to a large computer.
  • FIG. 28E is a diagram showing a supercomputer 5500, which is an example of a large computer.
  • FIG. 28F is a diagram showing a rack-mounted computer 5502 included in the supercomputer 5500.
  • the supercomputer 5500 has a rack 5501 and a plurality of rack mount type computers 5502.
  • the plurality of computers 5502 are stored in the rack 5501. Further, the computer 5502 is provided with a plurality of substrates 5504, and the GPU or chip described in the above embodiment can be mounted on the substrate.
  • the supercomputer 5500 is a large computer mainly used for scientific and technological calculations. In scientific and technological calculations, it is necessary to process a huge amount of calculations at high speed, so power consumption is high and the heat generated by the chip is large.
  • the GPU or chip of one aspect of the present invention to the supercomputer 5500, a supercomputer having low power consumption can be realized. Further, since the heat generation from the circuit can be reduced due to the low power consumption, the influence of the heat generation on the circuit itself, the peripheral circuit, and the module can be reduced.
  • a supercomputer is illustrated as an example of a large computer, but the large computer to which the GPU or chip of one aspect of the present invention is applied is not limited to this.
  • Examples of the large computer to which the GPU or chip of one aspect of the present invention is applied include a computer (server) that provides services, a large general-purpose computer (mainframe), and the like.
  • the GPU or chip of one aspect of the present invention can be applied to a moving vehicle and around the driver's seat of the vehicle.
  • FIG. 28G is a diagram showing the periphery of the windshield in the interior of an automobile, which is an example of a moving body.
  • the display panel 5701 attached to the dashboard, the display panel 5702, the display panel 5703, and the display panel 5704 attached to the pillar are shown.
  • the display panel 5701 to the display panel 5703 can provide various other information by displaying a speedometer, a tachometer, a mileage, a fuel gauge, a gear status, an air conditioner setting, and the like.
  • the display items and layout displayed on the display panel can be appropriately changed according to the user's preference, and the design can be improved.
  • the display panel 5701 to 5703 can also be used as a lighting device.
  • the display panel 5704 can supplement the field of view (blind spot) blocked by the pillars by projecting an image from an imaging device (not shown) provided in the automobile. That is, by displaying the image from the image pickup device provided on the outside of the automobile, the blind spot can be supplemented and the safety can be enhanced. In addition, by projecting an image that complements the invisible part, safety confirmation can be performed more naturally and without discomfort.
  • the display panel 5704 can also be used as a lighting device.
  • the GPU or chip of one aspect of the present invention can be applied as a component of artificial intelligence
  • the chip can be used, for example, in an automatic driving system of an automobile.
  • the chip can be used in a system for road guidance, danger prediction, and the like.
  • the display panel 5701 to the display panel 5704 may be configured to display information such as road guidance and danger prediction.
  • moving objects include trains, monorails, ships, flying objects (helicopters, unmanned aerial vehicles (drones), airplanes, rockets), etc., and the chip of one aspect of the present invention is applied to these moving objects. Therefore, a system using artificial intelligence can be provided.
  • FIG. 28H shows an electric refrigerator / freezer 5800, which is an example of an electric appliance.
  • the electric refrigerator / freezer 5800 has a housing 5801, a refrigerator door 5802, a freezer door 5803, and the like.
  • the electric refrigerator / freezer 5800 having artificial intelligence can be realized.
  • the electric freezer / refrigerator 5800 has a function of automatically generating a menu based on the foodstuffs stored in the electric freezer / refrigerator 5800 and the expiration date of the foodstuffs, and is stored in the electric freezer / refrigerator 5800. It can have a function of automatically adjusting the temperature according to the food.
  • electric refrigerators and freezers have been described as an example of electric appliances
  • other electric appliances include, for example, vacuum cleaners, microwave ovens, microwave ovens, rice cookers, water heaters, IH cookers, water servers, and air conditioners including air conditioners. Examples include washing machines, dryers, and audiovisual equipment.
  • the electronic device described in the present embodiment the function of the electronic device, the application example of artificial intelligence, its effect, etc. can be appropriately combined with the description of other electronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)

Abstract

微細化または高集積化が可能な半導体装置を提供する。 基板上に配置された第1の導電体と、 第1の導電体の上面に接して配置された酸化物と、 酸化物上に 配置された第2の導電体、 第3の導電体、 および第4の導電体と、 第2の導電体乃至第4の導電体の 上に配置され、 第1の開口、 および第2の開口が形成された第1の絶縁体と、 第1の開口の中に配置 された第2の絶縁体と、 第2の絶縁体の上に配置された第5の導電体と、 第2の開口の中に配置され た第3の絶縁体と、 第3の絶縁体の上に配置された第6の導電体と、 を有し、 第3の導電体は、 第1 の導電体に重畳して配置され、 第1の開口は、 第2の導電体と第3の導電体の間の領域に重畳して形 成され、第2の開口は、第3の導電体と第4の導電体の間の領域に重畳して形成される。

Description

半導体装置、および半導体装置の作製方法
 本発明の一態様は、トランジスタ、半導体装置、および電子機器に関する。または、本発明の一態様は、半導体装置の作製方法に関する。または、本発明の一態様は、半導体ウエハ、およびモジュールに関する。
 なお、本明細書等において半導体装置とは、半導体特性を利用することで機能し得る装置全般を指す。トランジスタなどの半導体素子をはじめ、半導体回路、演算装置、記憶装置は、半導体装置の一態様である。表示装置(液晶表示装置、発光表示装置など)、投影装置、照明装置、電気光学装置、蓄電装置、記憶装置、半導体回路、撮像装置、電子機器などは、半導体装置を有すると言える場合がある。
 なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。
 近年、半導体装置の開発が進められ、特にLSIやCPUやメモリの開発が顕著に進められている。CPUは、半導体ウエハから切り離された半導体集積回路(少なくともトランジスタ及びメモリ)を有し、接続端子である電極が形成された半導体素子の集合体である。
 LSIやCPUやメモリなどの半導体回路(ICチップ)は、回路基板、例えばプリント配線板に実装され、様々な電子機器の部品の一つとして用いられる。
 また、絶縁表面を有する基板上に形成された半導体薄膜を用いてトランジスタを構成する技術が注目されている。該トランジスタは集積回路(IC)や画像表示装置(単に表示装置とも表記する)のような電子デバイスに広く応用されている。トランジスタに適用可能な半導体薄膜としてシリコン系半導体材料が広く知られているが、その他の材料として酸化物半導体が注目されている。
 また、酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さいことが知られている。例えば、酸化物半導体を用いたトランジスタのリーク電流が低いという特性を応用した低消費電力のCPUなどが開示されている(特許文献1参照。)。また、例えば、酸化物半導体を用いたトランジスタのリーク電流が低いという特性を応用して、長期にわたり記憶内容を保持することができる記憶装置などが、開示されている(特許文献2参照。)。
 また、近年では電子機器の小型化、軽量化に伴い、集積回路のさらなる高密度化への要求が高まっている。また、集積回路を含む半導体装置の生産性の向上が求められている。
特開2012−257187号公報 特開2011−151383号公報
 本発明の一態様は、微細化または高集積化が可能な半導体装置を提供することを課題の一つとする。または、本発明の一態様は、記憶容量の大きい半導体装置を提供することを課題の一つとする。または、本発明の一態様は、トランジスタ特性のばらつきが少ない半導体装置を提供することを課題の一つとする。または、本発明の一態様は、信頼性が良好な半導体装置を提供することを課題の一つとする。または、本発明の一態様は、良好な電気特性を有する半導体装置を提供することを課題の一つとする。または、本発明の一態様は、オン電流が大きい半導体装置を提供することを課題の一つとする。または、本発明の一態様は、低消費電力の半導体装置を提供することを課題の一つとする。または、本発明の一態様は、新規な半導体装置を提供することを課題の一つとする。
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
 本発明の一態様は、基板上に配置された第1の導電体と、第1の導電体の上面に接して配置された酸化物と、酸化物上に配置された第2の導電体、第3の導電体、および第4の導電体と、第2の導電体乃至第4の導電体の上に配置され、第1の開口、および第2の開口が形成された第1の絶縁体と、第1の開口の中に配置された第2の絶縁体と、第2の絶縁体の上に配置された第5の導電体と、第2の開口の中に配置された第3の絶縁体と、第3の絶縁体の上に配置された第6の導電体と、を有し、第3の導電体は、第1の導電体に重畳して配置され、第1の開口は、第2の導電体と第3の導電体の間の領域に重畳して形成され、第2の開口は、第3の導電体と第4の導電体の間の領域に重畳して形成される、半導体装置である。
 上記において、第1の容量素子と、第2の容量素子と、を有し、第1の容量素子は、第2の導電体と電気的に接続され、第2の容量素子は、第4の導電体と電気的に接続されてもよい。また、上記において、第1の容量素子は、第2の導電体の上に配置され、第2の容量素子は、第4の導電体の上に配置される、ことが好ましい。
 また、上記において、第1の導電体は、当該第1の導電体の下に設けられた配線に接続される、ことが好ましい。また、上記において、第2の絶縁体は、酸化物の上面、および第1の絶縁体の側面に接し、第3の絶縁体は、酸化物の上面、および第1の絶縁体の側面に接する、ことが好ましい。
 また、上記において、酸化物は、第1の酸化物と、当該第1の酸化物上の第2の酸化物と、を有し、第1の酸化物、および第2の酸化物は、インジウムと、元素M(Mは、ガリウム、アルミニウム、イットリウム、および錫の中から選ばれる一または複数)と、亜鉛と、を有し、第1の酸化物の元素Mに対するインジウムの原子数比は、第2の酸化物の元素Mに対するインジウムの原子数比より小さい、ことが好ましい。
 本発明の他の一態様は、基板上に第1の導電体を形成し、第1の導電体の上面に接して酸化膜を成膜し、酸化膜の上に第1の導電膜を成膜し、酸化膜、および第1の導電膜を島状に加工して、酸化物、および第2の導電体を形成し、酸化物、および第2の導電体を覆って第1の絶縁体を形成し、第1の絶縁体の一部を除去して、第2の導電体に重畳して第1の開口、および第2の開口を形成し、第1の開口、および第2の開口に重畳する第2の導電体の一部を除去し、第3の導電体、第4の導電体、および第5の導電体を形成し、当該第4の導電体は、第1の導電体に重畳して配置され、酸化物は、第3乃至第5の導電体と重畳していない領域が露出され、酸化物の上面に接して、第1の絶縁膜を成膜し、酸素を含む雰囲気でマイクロ波処理を行い、第1の絶縁膜の上に第2の導電膜を成膜し、第1の絶縁膜、および第2の導電膜に、第1の絶縁体の上面が露出するまで、CMP処理を行って、第1の開口の中に第2の絶縁体および第6の導電体を形成し、第2の開口の中に第3の絶縁体および第7の導電体を形成する、半導体装置の作製方法である。
 本発明の一態様により、微細化または高集積化が可能な半導体装置を提供することができる。または、本発明の一態様により、記憶容量の大きい半導体装置を提供することができる。または、本発明の一態様により、トランジスタ特性のばらつきが少ない半導体装置を提供することができる。または、本発明の一態様により、信頼性が良好な半導体装置を提供することができる。または、本発明の一態様により、良好な電気特性を有する半導体装置を提供することができる。または、本発明の一態様により、オン電流が大きい半導体装置を提供することができる。または、本発明の一態様により、微細化または高集積化が可能な半導体装置を提供することができる。または、本発明の一態様により、低消費電力の半導体装置を提供することができる。または、本発明の一態様により、新規な半導体装置を提供することができる。
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
図1A、図1B、図1C、図1Dは本発明の一態様に係る半導体装置の上面図、および断面図である。
図2は本発明の一態様に係る半導体装置の断面図である。
図3AはIGZOの結晶構造の分類を説明する図である。図3BはCAAC−IGZO膜のXRDスペクトルを説明する図である。図3CはCAAC−IGZO膜の極微電子線回折パターンを説明する図である。
図4A、図4B、図4C、図4Dは本発明の一態様に係る半導体装置の作製方法を示す上面図、および断面図である。
図5A、図5B、図5C、図5Dは本発明の一態様に係る半導体装置の作製方法を示す上面図、および断面図である。
図6A、図6B、図6C、図6Dは本発明の一態様に係る半導体装置の作製方法を示す上面図、および断面図である。
図7A、図7B、図7C、図7Dは本発明の一態様に係る半導体装置の作製方法を示す上面図、および断面図である。
図8A、図8B、図8C、図8Dは本発明の一態様に係る半導体装置の作製方法を示す上面図、および断面図である。
図9A、図9B、図9C、図9Dは本発明の一態様に係る半導体装置の作製方法を示す上面図、および断面図である。
図10A、図10B、図10C、図10Dは本発明の一態様に係る半導体装置の作製方法を示す上面図、および断面図である。
図11A、図11B、図11C、図11Dは本発明の一態様に係る半導体装置の作製方法を示す上面図、および断面図である。
図12A、図12B、図12C、図12Dは本発明の一態様に係る半導体装置の作製方法を示す上面図、および断面図である。
図13は本発明の一態様に係るマイクロ波処理装置を説明する上面図である。
図14は本発明の一態様に係るマイクロ波処理装置を説明する断面図である。
図15は本発明の一態様に係るマイクロ波処理装置を説明する断面図である。
図16A、図16B、図16C、図16Dは本発明の一態様に係る半導体装置の上面図、および断面図である。
図17A、図17Bは本発明の一態様に係る半導体装置の断面図である。
図18は本発明の一態様に係る記憶装置の構成を示す断面図である。
図19は本発明の一態様に係る記憶装置の構成を示す断面図である。
図20A、図20Bは本発明の一態様に係る半導体装置の断面図である。
図21は本発明の一態様に係る半導体装置の断面図である。
図22は本発明の一態様に係る半導体装置の断面図である。
図23A、図23Bは本発明の一態様に係る記憶装置の構成例を示すブロック図である。
図24A、図24B、図24Cは本発明の一態様に係る記憶装置の構成例を示す回路図である。
図25A、図25Bは本発明の一態様に係る半導体装置の模式図である。
図26A、図26Bは本発明の一態様に係る電子部品の一例を説明する図である。
図27A、図27Bは本発明の一態様に係る記憶装置の模式図である。
図28A、図28B、図28C、図28D、図28E、図28F、図28G、図28Hは本発明の一態様に係る電子機器を示す図である。
 以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの異なる態様で実施することが可能であり、趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。したがって、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
 また、図面において、大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお、図面は、理想的な例を模式的に示したものであり、図面に示す形状または値などに限定されない。例えば、実際の製造工程において、エッチングなどの処理により層やレジストマスクなどが意図せずに目減りすることがあるが、理解を容易とするため、図に反映しないことがある。また、図面において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する場合がある。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
 また、特に上面図(「平面図」ともいう。)や斜視図などにおいて、発明の理解を容易とするため、一部の構成要素の記載を省略する場合がある。また、一部の隠れ線などの記載を省略する場合がある。
 また、本明細書等において、第1、第2等として付される序数詞は便宜上用いるものであり、工程順または積層順を示すものではない。そのため、例えば、「第1の」を「第2の」または「第3の」などと適宜置き換えて説明することができる。また、本明細書等に記載されている序数詞と、本発明の一態様を特定するために用いられる序数詞は一致しない場合がある。
 また、本明細書等において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。したがって、明細書で説明した語句に限定されず、状況に応じて適切に言い換えることができる。
 例えば、本明細書等において、XとYとが接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合と、XとYとが直接的に接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関係以外のものも、図または文章に開示されているものとする。ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
 また、本明細書等において、トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの端子を有する素子である。そして、ドレイン(ドレイン端子、ドレイン領域またはドレイン電極)とソース(ソース端子、ソース領域またはソース電極)の間にチャネルが形成される領域(以下、チャネル形成領域ともいう。)を有しており、チャネル形成領域を介して、ソースとドレインとの間に電流を流すことができるものである。なお、本明細書等において、チャネル形成領域とは、電流が主として流れる領域をいう。
 また、ソースやドレインの機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書等においては、ソースやドレインの用語は、入れ替えて用いることができる場合がある。
 なお、チャネル長とは、例えば、トランジスタの上面図において、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが互いに重なる領域、またはチャネル形成領域における、ソース(ソース領域またはソース電極)とドレイン(ドレイン領域またはドレイン電極)との間の距離をいう。なお、一つのトランジスタにおいて、チャネル長が全ての領域で同じ値をとるとは限らない。すなわち、一つのトランジスタのチャネル長は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル長は、チャネル形成領域における、いずれか一の値、最大値、最小値または平均値とする。
 チャネル幅とは、例えば、トランジスタの上面図において、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが互いに重なる領域、またはチャネル形成領域における、チャネル長方向を基準として垂直方向のチャネル形成領域の長さをいう。なお、一つのトランジスタにおいて、チャネル幅がすべての領域で同じ値をとるとは限らない。すなわち、一つのトランジスタのチャネル幅は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル幅は、チャネル形成領域における、いずれか一の値、最大値、最小値または平均値とする。
 なお、本明細書等において、トランジスタの構造によっては、実際にチャネルの形成される領域におけるチャネル幅(以下、「実効的なチャネル幅」ともいう。)と、トランジスタの上面図において示されるチャネル幅(以下、「見かけ上のチャネル幅」ともいう。)と、が異なる場合がある。例えば、ゲート電極が半導体の側面を覆う場合、実効的なチャネル幅が、見かけ上のチャネル幅よりも大きくなり、その影響が無視できなくなる場合がある。例えば、微細かつゲート電極が半導体の側面を覆うトランジスタでは、半導体の側面に形成されるチャネル形成領域の割合が大きくなる場合がある。その場合は、見かけ上のチャネル幅よりも、実効的なチャネル幅の方が大きくなる。
 このような場合、実効的なチャネル幅の、実測による見積もりが困難となる場合がある。例えば、設計値から実効的なチャネル幅を見積もるためには、半導体の形状が既知という仮定が必要である。したがって、半導体の形状が正確にわからない場合には、実効的なチャネル幅を正確に測定することは困難である。
 本明細書では、単にチャネル幅と記載した場合には、見かけ上のチャネル幅を指す場合がある。または、本明細書では、単にチャネル幅と記載した場合には、実効的なチャネル幅を指す場合がある。なお、チャネル長、チャネル幅、実効的なチャネル幅、見かけ上のチャネル幅などは、断面TEM像などを解析することなどによって、値を決定することができる。
 なお、半導体の不純物とは、例えば、半導体を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物と言える。不純物が含まれることにより、例えば、半導体の欠陥準位密度が高くなることや、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導体である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第13族元素、第14族元素、第15族元素、酸化物半導体の主成分以外の遷移金属などがあり、例えば、水素、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、窒素などがある。なお、水も不純物として機能する場合がある。また、例えば不純物の混入によって、酸化物半導体に酸素欠損(V:oxygen vacancyともいう)が形成される場合がある。
 なお、本明細書等において、酸化窒化シリコンとは、その組成として、窒素よりも酸素の含有量が多いものである。また、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多いものである。
 また、本明細書等において、「絶縁体」という用語を、絶縁膜または絶縁層と言い換えることができる。また、「導電体」という用語を、導電膜または導電層と言い換えることができる。また、「半導体」という用語を、半導体膜または半導体層と言い換えることができる。
 また、本明細書等において、「平行」とは、二つの直線が−10度以上10度以下の角度で配置されている状態をいう。したがって、−5度以上5度以下の場合も含まれる。また、「概略平行」とは、二つの直線が−30度以上30度以下の角度で配置されている状態をいう。また、「垂直」とは、二つの直線が80度以上100度以下の角度で配置されている状態をいう。したがって、85度以上95度以下の場合も含まれる。また、「概略垂直」とは、二つの直線が60度以上120度以下の角度で配置されている状態をいう。
 本明細書等において、金属酸化物(metal oxide)とは、広い意味での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む。)、酸化物半導体(Oxide Semiconductorまたは単にOSともいう。)などに分類される。例えば、トランジスタの半導体層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、OSトランジスタと記載する場合においては、金属酸化物または酸化物半導体を有するトランジスタと換言することができる。
 また、本明細書等において、ノーマリーオフとは、ゲートに電位を印加しない、またはゲートに接地電位を与えたときに、トランジスタに流れるチャネル幅1μmあたりのドレイン電流が、室温において1×10−20A以下、85℃において1×10−18A以下、または125℃において1×10−16A以下であることをいう。
(実施の形態1)
 本実施の形態では、図1乃至図17を用いて、本発明の一態様に係るトランジスタ200aおよびトランジスタ200bを有する半導体装置の一例、およびその作製方法について説明する。なお、以下において、トランジスタ200aとトランジスタ200bをまとめてトランジスタ200と呼ぶ場合がある。
<半導体装置の構成例>
 図1A乃至図1Dを用いて、トランジスタ200aとトランジスタ200bを有する半導体装置の構成を説明する。図1Aは、当該半導体装置の上面図である。また、図1B乃至図1Dは、当該半導体装置の断面図である。ここで、図1Bは、図1AにA1−A2の一点鎖線で示す部位の断面図であり、トランジスタ200aおよびトランジスタ200bのチャネル長方向の断面図でもある。また、図1Cは、図1AにA3−A4の一点鎖線で示す部位の断面図であり、トランジスタ200aのチャネル幅方向の断面図でもある。また、図1Dは、図1AにA5−A6の一点鎖線で示す部位の断面図である。なお、図1Aの上面図では、図の明瞭化のために一部の要素を省いている。
 本発明の一態様の半導体装置は、基板(図示せず)上の絶縁体212と、絶縁体212上の絶縁体214と、絶縁体214上のトランジスタ200と、トランジスタ200上の絶縁体280と、絶縁体280上の絶縁体282と、絶縁体282上の絶縁体283と、を有する。絶縁体212、絶縁体214、絶縁体280、絶縁体282、および絶縁体283は層間膜として機能する。また、絶縁体212、絶縁体214、およびトランジスタ200aとトランジスタ200bの間に埋め込まれるように、導電体248(導電体248a、および導電体248b)が設けられる。導電体248は、トランジスタ200aおよびトランジスタ200bと電気的に接続し、プラグとして機能する。なお、プラグとして機能する導電体248の側面に接して絶縁体249を設けることが好ましい。
[トランジスタ200]
 図1A乃至図1Dに示すように、トランジスタ200aは、絶縁体214上の絶縁体216と、絶縁体216に埋め込まれるように配置された導電体205(導電体205a、導電体205b、および導電体205c)と、絶縁体216上、および導電体205上の絶縁体222と、絶縁体222上の絶縁体224と、絶縁体224上の酸化物230aと、酸化物230a上の酸化物230bと、酸化物230b上の、酸化物243aおよび酸化物243bと、酸化物243a上の導電体242aと、酸化物243b上の導電体242bと、酸化物230b上の絶縁体250と、絶縁体250上に位置し、酸化物230bの一部と重なる導電体260(導電体260a、および導電体260b)と、を有する。
 また、図1A乃至図1Dに示すように、トランジスタ200bは、絶縁体214上の絶縁体216と、絶縁体214または絶縁体216に埋め込まれるように配置された導電体205と、絶縁体216上、および導電体205上の絶縁体222と、絶縁体222上の絶縁体224と、絶縁体224上の酸化物230aと、酸化物230a上の酸化物230bと、酸化物230b上の、酸化物243bおよび酸化物243cと、酸化物243b上の導電体242bと、酸化物243c上の導電体242cと、酸化物230b上の絶縁体250と、絶縁体250上に位置し、酸化物230bの一部と重なる導電体260と、を有する。
 なお、以下において、酸化物230aと酸化物230bをまとめて酸化物230と呼ぶ場合がある。また、酸化物243a、酸化物243b、および酸化物243cをまとめて酸化物243と呼ぶ場合がある。また、導電体242a、導電体242b、および導電体242cをまとめて導電体242と呼ぶ場合がある。
 また、絶縁体224、酸化物230、酸化物243、および導電体242を覆って、絶縁体275が設けられている。また、図1Bおよび図1Cに示すように、導電体260の上面は、絶縁体250の上面、および絶縁体280の上面と略一致して配置される。また、絶縁体282は、導電体260および絶縁体280のそれぞれの上面、ならびに絶縁体250の最上部と接する。
 ここで、図1A乃至図1Dに示すように、トランジスタ200bは、導電体248を挟んでトランジスタ200aと反対側に設けられており、導電体242および酸化物243を除いてトランジスタ200aと同様の構造を有する。
 トランジスタ200aおよびトランジスタ200bにおいて、絶縁体212、絶縁体214、絶縁体216、絶縁体222、絶縁体224、酸化物230a、酸化物230b、絶縁体275、絶縁体280、絶縁体282、および絶縁体283は、共通して用いられている。一方で、導電体205、絶縁体250、および導電体260は、トランジスタ200aおよびトランジスタ200bにそれぞれ設けられている。なお、トランジスタ200bにおいて、導電体205、絶縁体250、および導電体260は、それぞれトランジスタ200aと同様の構造を有するので、同様の符号を付して表す。
 また、酸化物230上に、導電体242a乃至導電体242c、および酸化物243a乃至酸化物243cが、チャネル長方向(A1−A2方向)に直線状に配列して設けられている。ここで、導電体242bは、導電体248に重畳して配置されている。また、導電体242aと導電体242bの間の領域、および導電体242bと導電体242cの間の領域に重畳して、開口がそれぞれ設けられている。それぞれの開口の中に、絶縁体250と、および絶縁体250上に配置された導電体260と、が設けられている。
 絶縁体280および絶縁体275に、酸化物230bに達する2個の開口が設けられ、当該開口内に、絶縁体250、および導電体260が配置されている。つまり、トランジスタ200aにおいて、絶縁体250は、酸化物230bの上面と、酸化物243aおよび酸化物243bの側面と、導電体242aおよび導電体242bの側面と、絶縁体275の側面と、絶縁体280の側面に接して設けられる。また、トランジスタ200bにおいて、絶縁体250は、酸化物230bの上面と、酸化物243bおよび酸化物243cの側面と、導電体242bおよび導電体242cの側面と、絶縁体275の側面と、絶縁体280の側面に接して設けられる。また、トランジスタ200aおよびトランジスタ200bにおいて、それぞれの導電体260は、それぞれの絶縁体250の上面および側面に接して設けられる。
 トランジスタ200aおよびトランジスタ200bそれぞれにおいて、導電体260は、第1のゲート(トップゲートともいう。)電極として機能し、導電体205は、第2のゲート(バックゲートともいう。)電極として機能する。また、トランジスタ200aおよびトランジスタ200bそれぞれにおいて、絶縁体250は、第1のゲート絶縁体として機能し、絶縁体222および絶縁体224は、第2のゲート絶縁体として機能する。
 導電体242aは、トランジスタ200aのソースまたはドレインの一方として機能する。また、導電体242bは、トランジスタ200aのソースまたはドレインの他方、およびトランジスタ200bのソースまたはドレインの一方として機能する。また、導電体242cは、トランジスタ200bのソースまたはドレインの他方として機能する。また、酸化物230の導電体260と重畳する領域の少なくとも一部は、トランジスタ200aまたはトランジスタ200bのチャネル形成領域として機能する。
 ここで、図1Bにおけるチャネル形成領域近傍の拡大図を図2に示す。図2に示すように、酸化物230は、トランジスタ200aのチャネル形成領域として機能する領域232dと、領域232dを挟むように設けられ、トランジスタ200aのソース領域またはドレイン領域として機能する領域232aおよび領域232bと、トランジスタ200bのチャネル形成領域として機能する領域232eと、領域232bとともに、領域232eを挟むように設けられ、トランジスタ200bのソース領域またはドレイン領域として機能する領域232cと、を有する。
 領域232dおよび領域232eは、少なくとも一部が導電体260と重畳している。言い換えると、領域232dは、導電体242aと導電体242bの間の領域に重畳して設けられ、領域232eは、導電体242bと導電体242cの間の領域に重畳して設けられている。領域232aは、導電体242aに重畳して設けられており、領域232bは、導電体242bに重畳して設けられており、領域232cは、導電体242cに重畳して設けられている。
 チャネル形成領域として機能する領域232dおよび領域232eは、領域232a、領域232b、および領域232cよりも、酸素欠損が少なく、または不純物濃度が低いため、キャリア濃度が低い高抵抗領域である。よって領域232dおよび領域232eは、i型(真性)または実質的にi型であるということができる。
 また、ソース領域またはドレイン領域として機能する領域232a、領域232b、および領域232cは、酸素欠損が多く、または水素や、窒素や、金属元素などの不純物濃度が高いことで、キャリア濃度が増加し、低抵抗化した領域である。すなわち、領域232a、領域232b、および領域232cは、領域232dおよび領域232eと比較して、キャリア濃度が高く、低抵抗なn型の領域である。
 ここで、チャネル形成領域として機能する領域232dおよび領域232eのキャリア濃度は、1×1018cm−3以下であることが好ましく、1×1017cm−3未満であることがより好ましく、1×1016cm−3未満であることがさらに好ましく、1×1013cm−3未満であることがさらに好ましく、1×1012cm−3未満であることがさらに好ましい。なお、チャネル形成領域として機能する領域232dおよび領域232eのキャリア濃度の下限値については、特に限定は無いが、例えば、1×10−9cm−3とすることができる。
 また、領域232dと領域232a、もしくは領域232bとの間、または領域232eと領域232b、もしくは領域232cとの間に、キャリア濃度が、領域232a、領域232b、および領域232cのキャリア濃度と同等、またはそれよりも低く、領域232dおよび領域232eのキャリア濃度と同等、またはそれよりも高い、領域が形成されていてもよい。つまり、当該領域は、領域232d、または領域232eと領域232a、領域232b、または領域232cとの接合領域として機能する。当該接合領域は、水素濃度が、領域232a、領域232b、および領域232cの水素濃度と同等、またはそれよりも低く、領域232dおよび領域232eの水素濃度と同等、またはそれよりも高くなる場合がある。また、当該接合領域は、酸素欠損が、領域232a、領域232b、および領域232cの酸素欠損と同等、またはそれよりも少なく、領域232dおよび領域232eの酸素欠損と同等、またはそれよりも多くなる場合がある。
 また、酸化物230において、各領域の境界を明確に検出することが困難な場合がある。各領域内で検出される金属元素、ならびに水素、および窒素などの不純物元素の濃度は、領域ごとの段階的な変化に限らず、各領域内でも連続的に変化していてもよい。つまり、チャネル形成領域に近い領域であるほど、金属元素、ならびに水素、および窒素などの不純物元素の濃度が減少していればよい。
 ここで、領域232bは、トランジスタ200aおよびトランジスタ200b両方の、ソース領域またはドレイン領域として機能しており、トランジスタ200aとトランジスタ200bで共有されている、ということができる。このように、トランジスタ200aおよびトランジスタ200bは、ソースとドレインが直列に接続された構造になっている。
 また、図1Bおよび図1Dに示すように、酸化物230は、領域232bにおいて、導電体248の上面の少なくとも一部と接する。このように、酸化物230の領域232bと導電体248を接続することで、トランジスタ200aおよびトランジスタ200bのソースまたはドレインと導電体248の間の電気抵抗を低減することができる。また、領域232bは導電体242bに重畳して形成されるので、導電体242bは導電体248の少なくとも一部に重畳して配置される。
 また、導電体248は、絶縁体224の上面から露出して配置される。例えば、絶縁体212、絶縁体214、絶縁体216、絶縁体222、および絶縁体224に形成された開口に埋め込まれるように、導電体248を配置すればよい。導電体248の上面の少なくとも一部は、絶縁体224から露出しており、導電体248の上面と絶縁体224の上面が略一致することが好ましい。
 ここで、導電体248は、絶縁体212より下層に設けられた、配線、電極、端子、または、回路素子(スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、またはダイオードなど)と、トランジスタ200aおよびトランジスタ200bと、を電気的に接続するためのプラグとして機能する。例えば、導電体248は、絶縁体212より下層に設けられた配線に接続する構成にすればよい。
 例えば、トランジスタ200を記憶装置のメモリセルとして用い、当該メモリセルを基板に形成された周辺回路などの上に配置する場合、導電体248、および導電体248に接して設けられる配線はビット線に相当し、トランジスタ200の導電体260はワード線に相当する。図1Bなどに示すように、導電体248を酸化物230の下に設けると、導電体248を酸化物230上に設けたときと比較して、導電体248と導電体260に発生する寄生容量を低減することができる。つまり、上記記憶装置において、ワード線とビット線に発生する寄生容量を低減することができる。また、導電体248を酸化物230の下に設けると、導電体248を酸化物230上に設けたときと比較して、ビット線を短くすることができる。よって、ビット線に発生する寄生容量を低減することができる。
 このように、上記記憶装置のビット線の寄生容量を低減することで、上記メモリセルの容量素子に求められる静電容量の設計値を小さくすることができる。これにより、当該容量素子を小型化することができるため、上記記憶装置を微細化または高集積化させることができる。
 また、導電体248に電気的に接続する、配線、電極、端子、または、回路素子(スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、またはダイオードなど)は、少なくとも一部が、酸化物230と重畳することが好ましい。これにより、トランジスタ200、上記配線、電極、端子、または、回路素子の上面視における占有面積を低減することができるので、本実施の形態に係る半導体装置を微細化または高集積化させることができる。
 また、図1A、図1B、図1Dにおいては、領域232bの下面に接して導電体248を設ける構成にしたが、本発明はこれに限られるものではない。例えば、領域232aの下面に接して導電体248を設ける構成にしてもよいし、領域232cの下面に接して導電体248を設ける構成にしてもよい。
 トランジスタ200は、チャネル形成領域を含む酸化物230に、半導体として機能する金属酸化物(以下、酸化物半導体ともいう。)を用いることが好ましい。酸化物230は、絶縁体224の上に配置された酸化物230aと、酸化物230aの上に配置された酸化物230bと、を有することが好ましい。
 また、半導体として機能する金属酸化物は、バンドギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。バンドギャップの大きい金属酸化物を用いることで、トランジスタ200のオフ電流を低減することができる。このようにトランジスタ200のオフ電流を低減することで、トランジスタ200を記憶装置のメモリセルとして用いた場合に、長期にわたり記憶内容を保持することが可能である。つまり、当該記憶装置は、リフレッシュ動作を必要としない、あるいは、リフレッシュ動作の頻度が極めて少なくてよい。またこれにより、当該記憶装置の消費電力を十分に低減することができる。
 酸化物230として、例えば、インジウム、元素Mおよび亜鉛を有するIn−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、錫、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種)等の金属酸化物を用いるとよい。例えば、酸化物230として、In−Ga−Zn酸化物を用いればよく、In−Ga−Zn酸化物に錫を添加した酸化物を用いてもよい。また、酸化物230として、In−Ga酸化物、In−Zn酸化物、インジウム酸化物を用いてもよい。
 上記金属酸化物は、スパッタリング法などを用いて基板上に成膜することができる。よって、シリコン基板に形成した駆動回路などの周辺回路の上に重ねてトランジスタ200を設けることができる。よって、トランジスタ200を、記憶装置のメモリセルとして用いた場合に、1チップに設けることができるメモリセルアレイの占有面積を増やすことができるので、当該記憶装置の記憶容量を大きくすることができる。さらに、上記金属酸化物を複数積層して成膜することで、メモリセルアレイを積層して設けることができる。これにより、メモリセルアレイの占有面積を増やすことなく、セルを集積して配置することができる。つまり、メモリセルアレイの積層構造体(以下、3Dセルアレイと呼ぶ場合がある。)を構成することができる。以上により、メモリセルの高集積化を図り、記憶容量の大きい半導体装置を提供することができる。
 また、上記金属酸化物、特にIn−Ga−Zn酸化物を用いた半導体装置は、正常に半導体装置を動作させることができる温度範囲が−40℃以上190℃以下と、耐熱性が非常に良い。これは、相変化メモリ(PCM:Phase Change Memory)の耐熱性(−40℃以上150℃以下)、抵抗変化型メモリ(ReRAM:Resistance Random Access Memory)の耐熱性(−40℃以上125℃以下)、磁気抵抗メモリ(MRAM:Magnetoresistive Random Access Memory)の耐熱性(−40℃以上105℃以下)、などと比較しても、良好な耐熱性である。
 ここで、酸化物230bに用いる金属酸化物における、元素Mに対するInの原子数比が、酸化物230aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。
 酸化物230bの下に酸化物230aを配置することで、酸化物230aよりも下方に形成された構造物からの、酸化物230bに対する、不純物および酸素の拡散を抑制することができる。
 ただし、酸化物230は、酸化物230aと酸化物230bの2層を積層する構成に限られるものではない。例えば、酸化物230bの単層、または3層以上の積層構造を設ける構成にしてもよいし、酸化物230a、および酸化物230bのそれぞれが積層構造を有していてもよい。例えば、酸化物230を酸化物230b単層で構成し、領域232bが酸化物230の底面まで形成されやすくなる構成にしてもよい。
 また、酸化物230aおよび酸化物230bが、酸素以外に共通の元素を有する(主成分とする)ことで、酸化物230aと酸化物230bの界面における欠陥準位密度が低くすることができる。酸化物230aと酸化物230bとの界面における欠陥準位密度を低くすることができるため、界面散乱によるキャリア伝導への影響が小さく、高いオン電流が得られる。
 酸化物230bは、それぞれ結晶性を有することが好ましい。特に、酸化物230bとして、CAAC−OS(c−axis aligned crystalline oxide semiconductor)を用いることが好ましい。
 CAAC−OSは、結晶性の高い、緻密な構造を有しており、不純物や欠陥(例えば、酸素欠損(V)など)が少ない金属酸化物である。特に、金属酸化物の形成後に、金属酸化物が多結晶化しない程度の温度(例えば、400℃以上600℃以下)で加熱処理することで、CAAC−OSをより結晶性の高い、緻密な構造にすることができる。このようにして、CAAC−OSの密度をより高めることで、当該CAAC−OS中の不純物または酸素の拡散をより低減することができる。
 一方、CAAC−OSは、明確な結晶粒界を確認することが難しいため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。したがって、CAAC−OSを有する金属酸化物は、物理的性質が安定する。そのため、CAAC−OSを有する金属酸化物は熱に強く、信頼性が高い。
 酸化物半導体を用いたトランジスタは、酸化物半導体中のチャネルが形成される領域に不純物および酸素欠損が存在すると、電気特性が変動しやすく、信頼性が悪くなる場合がある。また、酸素欠損近傍の水素が、酸素欠損に水素が入った欠陥(以下、VHと呼ぶ場合がある。)を形成し、トランジスタのゲート電極に電圧が印加されていない状態でもキャリアとなる電子を生成する場合がある。このため、酸化物半導体中のチャネルが形成される領域に酸素欠損が含まれていると、トランジスタはノーマリーオン特性(ゲート電極に電圧を印加しなくてもチャネルが存在し、トランジスタに電流が流れる特性)となりやすい。したがって、酸化物半導体中のチャネルが形成される領域では、不純物、酸素欠損、およびVHはできる限り低減されていることが好ましい。言い換えると、酸化物半導体中のチャネルが形成される領域は、トランジスタのゲート電極に電圧が印加されていない状態でキャリア濃度が低減されており、i型(真性化)または実質的にi型であることが好ましい。
 これに対して、酸化物半導体の近傍に、加熱により脱離する酸素(以下、過剰酸素と呼ぶ場合がある。)を含む絶縁体を設け、熱処理を行うことで、当該絶縁体から酸化物半導体に酸素を供給し、酸素欠損、およびVHを低減することができる。ただし、ソース領域またはドレイン領域に過剰な量の酸素が供給されると、トランジスタ200のオン電流の低下、または電界効果移動度の低下を引き起こすおそれがある。さらに、ソース領域またはドレイン領域に供給される酸素が基板面内でばらつくことで、トランジスタを有する半導体装置の特性にばらつきが出ることになる。
 よって、酸化物半導体中において、チャネル形成領域として機能する領域232dおよび領域232eは、キャリア濃度が低減され、i型または実質的にi型であることが好ましいが、ソース領域またはドレイン領域として機能する領域232a、領域232b、および領域232cは、キャリア濃度が高く、n型であることが好ましい。つまり、酸化物半導体の領域232dおよび領域232eの酸素欠損、およびVHを低減し、領域232a、領域232b、および領域232cには過剰な量の酸素が供給されないようにすることが好ましい。
 そこで、本実施の形態では、酸化物230b上に導電体242a、導電体242b、および導電体242cを設けた状態で、酸素を含む雰囲気でマイクロ波処理を行い、領域232dおよび領域232eの酸素欠損、およびVHの低減を図る。ここで、マイクロ波処理とは、例えばマイクロ波を用いて高密度プラズマを発生させる電源を有する装置を用いた処理のことを指す。
 酸素を含む雰囲気でマイクロ波処理を行うことで、マイクロ波、またはRF等の高周波を用いて酸素ガスをプラズマ化し、当該酸素プラズマを作用させることができる。このとき、マイクロ波、またはRF等の高周波を領域232dおよび領域232eに照射することもできる。プラズマ、マイクロ波などの作用により、領域232dおよび領域232eのVHを分断し、水素Hを領域232dおよび領域232eから除去し、酸素欠損Vを酸素で補填することができる。つまり、領域232dおよび領域232eにおいて、「VH→H+V」という反応が起きて、領域232dおよび領域232eの水素濃度を低減することができる。よって、領域232dおよび領域232e中の酸素欠損、およびVHを低減し、キャリア濃度を低下させることができる。
 また、酸素を含む雰囲気でマイクロ波処理を行う際、マイクロ波、またはRF等の高周波、酸素プラズマなどの作用は、導電体242a、導電体242b、および導電体242cに遮蔽され、領域232a、領域232b、および領域232cには及ばない。さらに、酸素プラズマの作用は、酸化物230b、および導電体242を覆って設けられている、絶縁体275、および絶縁体280によって、低減することができる。これにより、マイクロ波処理の際に、領域232a、領域232b、および領域232cで、VHの低減、および過剰な量の酸素供給が発生しないので、キャリア濃度の低下を防ぐことができる。
 このようにして、酸化物半導体の領域232dおよび領域232eで選択的に酸素欠損、およびVHを除去して、領域232dおよび領域232eをi型または実質的にi型とすることができる。さらに、ソース領域またはドレイン領域として機能する領域232a、領域232b、および領域232cに過剰な酸素が供給されるのを抑制し、n型を維持することができる。これにより、トランジスタ200の電気特性の変動を抑制し、基板面内でトランジスタ200の電気特性がばらつくのを抑制することができる。また、領域232bが低抵抗なn型の領域になることで、導電体248と良好なコンタクトを形成することができる。
 以上のような構成にすることで、トランジスタ特性のばらつきが少ない半導体装置を提供することができる。また、良好な電気特性を有する半導体装置を提供することができる。また、信頼性が良好な半導体装置を提供することができる。
 なお、図1などにおいて、導電体260等を埋め込む開口の側面が、酸化物230bの溝部も含めて、酸化物230bの被形成面に対して概略垂直となっているが、本実施の形態はこれに限られるものではない。例えば、当該開口の底部が緩やかな曲面を有する、U字型の形状となってもよい。また、例えば、当該開口の側面が酸化物230bの被形成面に対して傾斜していてもよい。
 また、図1Cに示すように、トランジスタ200のチャネル幅方向の断面視において、酸化物230bの側面と酸化物230bの上面との間に、湾曲面を有してもよい。つまり、当該側面の端部と当該上面の端部は、湾曲してもよい(以下、ラウンド状ともいう。)。
 上記湾曲面での曲率半径は、0nmより大きく、導電体242と重なる領域の酸化物230bの膜厚より小さい、または、上記湾曲面を有さない領域の長さの半分より小さいことが好ましい。上記湾曲面での曲率半径は、具体的には、0nmより大きく20nm以下、好ましくは1nm以上15nm以下、さらに好ましくは2nm以上10nm以下とする。このような形状にすることで、絶縁体250および導電体260の、酸化物230bへの被覆性を高めることができる。
 酸化物230は、化学組成が異なる複数の酸化物層の積層構造を有することが好ましい。具体的には、酸化物230aに用いる金属酸化物において、主成分である金属元素に対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、主成分である金属元素に対する元素Mの原子数比より、大きいことが好ましい。また、酸化物230aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物230bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物230aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。
 また、酸化物230bは、CAAC−OSなどの結晶性を有する酸化物であることが好ましい。CAAC−OSなどの結晶性を有する酸化物は、不純物や欠陥(酸素欠損など)が少なく、結晶性の高い、緻密な構造を有している。よって、ソース電極またはドレイン電極による、酸化物230bからの酸素の引き抜きを抑制することができる。これにより、熱処理を行っても、酸化物230bから酸素が引き抜かれることを低減できるので、トランジスタ200は、製造工程における高い温度(所謂サーマルバジェット)に対して安定である。
 ここで、酸化物230aと酸化物230bの接合部において、伝導帯下端はなだらかに変化する。換言すると、酸化物230aと酸化物230bの接合部における伝導帯下端は、連続的に変化または連続接合するともいうことができる。このようにするためには、酸化物230aと酸化物230bとの界面に形成される混合層の欠陥準位密度を低くするとよい。
 具体的には、酸化物230aと酸化物230bが、酸素以外に共通の元素を主成分として有することで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物230bがIn−M−Zn酸化物の場合、酸化物230aとして、In−M−Zn酸化物、M−Zn酸化物、元素Mの酸化物、In−Zn酸化物、インジウム酸化物などを用いてもよい。
 具体的には、酸化物230aとして、In:M:Zn=1:3:4[原子数比]もしくはその近傍の組成、またはIn:M:Zn=1:1:0.5[原子数比]もしくはその近傍の組成の金属酸化物を用いればよい。また、酸化物230bとして、In:M:Zn=1:1:1[原子数比]もしくはその近傍の組成、またはIn:M:Zn=4:2:3[原子数比]もしくはその近傍の組成の金属酸化物を用いればよい。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。また、元素Mとして、ガリウムを用いることが好ましい。
 なお、金属酸化物をスパッタリング法により成膜する場合、上記の原子数比は、成膜された金属酸化物の原子数比に限られず、金属酸化物の成膜に用いるスパッタリングターゲットの原子数比であってもよい。
 酸化物230aおよび酸化物230bを上述の構成とすることで、酸化物230aと酸化物230bとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ200は大きいオン電流、および高い周波数特性を得ることができる。
 絶縁体212、絶縁体214、絶縁体275、絶縁体282、および絶縁体283の少なくとも一は、水、水素などの不純物が、基板側から、または、トランジスタ200の上方からトランジスタ200に拡散するのを抑制するバリア絶縁膜として機能することが好ましい。したがって、絶縁体212、絶縁体214、絶縁体275、絶縁体282、および絶縁体283の少なくとも一は、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい)絶縁性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料を用いることが好ましい。
 なお、本明細書において、バリア絶縁膜とは、バリア性を有する絶縁膜のことを指す。本明細書において、バリア性とは、対応する物質の拡散を抑制する機能(透過性が低いともいう)のことを指す。または、対応する物質を、捕獲、および固着する(ゲッタリングともいう)機能のことを指す。
 絶縁体212、絶縁体214、絶縁体275、絶縁体282、および絶縁体283としては、例えば、酸化アルミニウム、酸化ハフニウム、酸化ガリウム、インジウムガリウム亜鉛酸化物、窒化シリコン、または窒化酸化シリコンなどを用いることができる。例えば、絶縁体212、および絶縁体283として、より水素バリア性が高い、窒化シリコンなどを用いることが好ましい。また、例えば、絶縁体214、絶縁体275、および絶縁体282として、水素を捕獲および水素を固着する機能が高く、酸素バリア性が高い酸化アルミニウムなどを用いることが好ましい。これにより、水、水素などの不純物が絶縁体212、および絶縁体214を介して、基板側からトランジスタ200側に拡散するのを抑制することができる。または、水、水素などの不純物が絶縁体283よりも外側に配置されている層間絶縁膜などから、トランジスタ200側に拡散するのを抑制することができる。または、絶縁体224などに含まれる酸素が、絶縁体212、および絶縁体214を介して基板側に、拡散するのを抑制することができる。または、絶縁体280などに含まれる酸素が、絶縁体282などを介してトランジスタ200より上方に、拡散するのを抑制することができる。この様に、トランジスタ200を、水、水素などの不純物、および酸素の拡散を抑制する機能を有する絶縁体212、絶縁体214、絶縁体275、絶縁体282、および絶縁体283で取り囲む構造とすることが好ましい。
 絶縁体212、絶縁体214、絶縁体275、絶縁体282、および絶縁体283の成膜は、例えば、スパッタリング法を用いて行えばよい。スパッタリング法は、成膜ガスに水素を用いなくてよいので、絶縁体212、絶縁体214、絶縁体275、絶縁体282、および絶縁体283の水素濃度を低減することができる。なお、成膜方法は、スパッタリング法に限られるものではなく、化学気相成長(CVD:Chemical Vapor Deposition)法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法、パルスレーザ堆積(PLD:Pulsed Laser Deposition)法、原子層堆積(ALD:Atomic Layer Deposition)法などを適宜用いてもよい。
 また、絶縁体212、および絶縁体283の抵抗率を低くすることが好ましい場合がある。例えば、絶縁体212、および絶縁体283の抵抗率を概略1×1013Ωcmとすることで、半導体装置作製工程のプラズマ等を用いる処理において、絶縁体212、および絶縁体283が、導電体205、導電体242、または導電体260のチャージアップを緩和することができる場合がある。絶縁体212、および絶縁体283の抵抗率は、好ましくは、1×1010Ωcm以上1×1015Ωcm以下とする。
 また、絶縁体216、および絶縁体280は、絶縁体214よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体216、および絶縁体280として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンなどを適宜用いればよい。
 トランジスタ200aおよびトランジスタ200bにおいて、導電体205は、酸化物230および導電体260と、重なるように配置される。導電体205は、図1Aに示すように、A3−A4方向に伸長して設ければよい。ここで、導電体205は、絶縁体216に形成された開口に埋め込まれて設けることが好ましい。なお、導電体205の一部が、絶縁体214に埋め込まれるように設けられてもよい。
 導電体205は、導電体205a、導電体205b、および導電体205cを有する。導電体205aは、当該開口の底面および側壁に接して設けられる。導電体205bは、導電体205aに形成された凹部に埋め込まれるように設けられる。ここで、導電体205bの上面は、導電体205aの上面および絶縁体216の上面より低くなる。導電体205cは、導電体205bの上面、および導電体205aの側面に接して設けられる。ここで、導電体205cの上面の高さは、導電体205aの上面の高さおよび絶縁体216の上面の高さと略一致する。つまり、導電体205bは、導電体205aおよび導電体205cに包み込まれる構成になる。
 ここで、導電体205aおよび導電体205cは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
 導電体205aおよび導電体205cに、水素の拡散を低減する機能を有する導電性材料を用いることにより、導電体205bに含まれる水素などの不純物が、絶縁体224等を介して、酸化物230に拡散するのを防ぐことができる。また、導電体205aおよび導電体205cに、酸素の拡散を抑制する機能を有する導電性材料を用いることにより、導電体205bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、チタン、窒化チタン、タンタル、窒化タンタル、ルテニウム、酸化ルテニウムなどを用いることが好ましい。したがって、導電体205aおよび導電体205cとしては、上記導電性材料を単層または積層とすればよい。例えば、導電体205aおよび導電体205cは、窒化チタンを用いればよい。
 また、導電体205bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。例えば、導電体205bは、タングステンを用いればよい。
 導電体205は、第2のゲート電極として機能する場合がある。その場合、導電体205に印加する電位を、導電体260に印加する電位と、連動させず、独立して変化させることで、トランジスタ200のしきい値電圧(Vth)を制御することができる。特に、導電体205に負の電位を印加することにより、トランジスタ200のVthをより大きくし、オフ電流を低減することが可能となる。したがって、導電体205に負の電位を印加したほうが、印加しない場合よりも、導電体260に印加する電位が0Vのときのドレイン電流を小さくすることができる。
 また、導電体205の電気抵抗率は、上記の導電体205に印加する電位を考慮して設計され、導電体205の膜厚は当該電気抵抗率に合わせて設定される。また、絶縁体216の膜厚は、導電体205とほぼ同じになる。ここで、導電体205の設計が許す範囲で導電体205および絶縁体216の膜厚を薄くすることが好ましい。絶縁体216の膜厚を薄くすることで、絶縁体216中に含まれる水素などの不純物の絶対量を低減することができるので、当該不純物が酸化物230に拡散するのを低減することができる。
 なお、導電体205は、図1Aに示すように、酸化物230の導電体242aおよび導電体242bと重ならない領域の大きさよりも、大きく設けるとよい。特に、図1Cに示すように、導電体205は、酸化物230aおよび酸化物230bのチャネル幅方向と交わる端部よりも外側の領域においても、延伸していることが好ましい。つまり、酸化物230のチャネル幅方向における側面の外側において、導電体205と、導電体260とは、絶縁体を介して重畳していることが好ましい。当該構成を有することで、第1のゲート電極として機能する導電体260の電界と、第2のゲート電極として機能する導電体205の電界によって、酸化物230のチャネル形成領域を電気的に取り囲むことができる。本明細書において、第1のゲート、および第2のゲートの電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S−channel)構造とよぶ。
 なお、本明細書等において、S−channel構造のトランジスタとは、一対のゲート電極の一方および他方の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を表す。また、本明細書等で開示するS−channel構造は、Fin型構造およびプレーナ型構造とは異なる。S−channel構造を採用することで、短チャネル効果に対する耐性を高める、別言すると短チャネル効果が発生し難いトランジスタとすることができる。
 また、図1Cに示すように、導電体205は延伸させて、配線としても機能させている。ただし、これに限られることなく、導電体205の下に、配線として機能する導電体を設ける構成にしてもよい。また、導電体205は、必ずしも各トランジスタに一個ずつ設ける必要はない。例えば、導電体205を複数のトランジスタで共有する構成にしてもよい。
 なお、導電体205として、導電体205a、導電体205b、および導電体205cを積層する構成について示しているが、本発明はこれに限られるものではない。導電体205は、単層、2層または4層以上の積層構造として設ける構成にしてもよい。例えば、導電体205を2層の積層構造にする場合、導電体205cを設けず、導電体205aの上面と導電体205bの上面が一致する構造にすればよい。
 導電体248も、導電体205と同様に、導電体248aと、導電体248aの内側に配置された導電体248bと、を有する構成にしてもよい。導電体248aとしては、導電体205aに用いることができる導電体を用いればよく、水または水素などの不純物および酸素の透過を低減する導電体が好ましい。例えば、チタン、窒化チタン、タンタル、窒化タンタル、ルテニウム、酸化ルテニウムなどを用いることができる。また、導電体248aは、導電体248bと密着性が良好な導電体を用いればよい。また、導電体248bとしては、導電体205bに用いることができる導電体を用いればよく、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。
 なお、図1Aで導電体248の形状は、上面視において円形状にしているが、これに限られるものではない。例えば、導電体248が、上面視において、楕円などの略円形状、四角形などの多角形状、四角形等の多角形の角部を丸めた形状になっていてもよい。
 なお、導電体248として、導電体248a、および導電体248bを積層する構成について示しているが、本発明はこれに限られるものではない。導電体248は、単層、または3層以上の積層構造として設ける構成にしてもよい。例えば、導電体205cと同様に、導電体248bの上面と酸化物230の間に、導電体205aと同様の導電体を配置してもよい。
 また、絶縁体212、絶縁体214、絶縁体216、絶縁体222、および絶縁体224の開口の内壁に接して絶縁体249が設けられ、絶縁体249の側面に接して導電体248が設けられている。絶縁体249としては、水素や水などの不純物および酸素の拡散を低減する絶縁体を用いることが好ましく、例えば、窒化シリコン、酸化アルミニウム、窒化酸化シリコンなどの絶縁体を用いればよい。これにより、絶縁体216などに含まれる水、水素などの不純物が、導電体248を通じて酸化物230に混入するのを抑制することができる。特に、窒化シリコンは水素に対するバリア性が高いので好適である。また、絶縁体216に含まれる酸素が導電体248に吸収されるのを防ぐことができる。なお、上記に限られず、絶縁体249を設けない構成にしてもよい。
 絶縁体222、および絶縁体224は、ゲート絶縁体として機能する。
 絶縁体222は、水素(例えば、水素原子、水素分子などの少なくとも一)の拡散を抑制する機能を有することが好ましい。また、絶縁体222は、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有することが好ましい。例えば、絶縁体222は、絶縁体224よりも水素および酸素の一方または双方の拡散を抑制する機能を有することが好ましい。
 絶縁体222は、絶縁性材料であるアルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を用いるとよい。当該絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。このような材料を用いて絶縁体222を形成した場合、絶縁体222は、酸化物230から基板側への酸素の放出や、トランジスタ200の周辺部から酸化物230への水素等の不純物の拡散を抑制する層として機能する。よって、絶縁体222を設けることで、水素等の不純物が、トランジスタ200の内側へ拡散することを抑制し、酸化物230中の酸素欠損の生成を抑制することができる。また、導電体205が、絶縁体224や、酸化物230が有する酸素と反応することを抑制することができる。
 または、上記絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。または、これらの絶縁体を窒化処理してもよい。また、絶縁体222は、これらの絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
 また、絶縁体222は、例えば、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)、(Ba,Sr)TiO(BST)などのいわゆるhigh−k材料を含む絶縁体を単層または積層で用いてもよい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体にhigh−k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。
 酸化物230と接する絶縁体224は、過剰酸素を含む(加熱により酸素を脱離する)ことが好ましい。例えば、絶縁体224は、酸化シリコン、酸化窒化シリコンなどを適宜用いればよい。酸素を含む絶縁体を酸化物230に接して設けることにより、酸化物230中の酸素欠損を低減し、トランジスタ200の信頼性を向上させることができる。
 絶縁体224として、具体的には、加熱により一部の酸素が脱離する酸化物材料、別言すると、過剰酸素領域を有する絶縁体材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS(Thermal Desorption Spectroscopy)分析にて、酸素分子の脱離量が1.0×1018molecules/cm以上、好ましくは1.0×1019molecules/cm以上、さらに好ましくは2.0×1019molecules/cm以上、または3.0×1020molecules/cm以上である酸化膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上400℃以下の範囲が好ましい。
 また、トランジスタ200の作製工程中において、酸化物230の表面が露出した状態で、加熱処理を行うと好適である。当該加熱処理は、例えば、100℃以上600℃以下、より好ましくは350℃以上550℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、加熱処理は酸素雰囲気で行うことが好ましい。これにより、酸化物230に酸素を供給して、酸素欠損(V)の低減を図ることができる。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で行ってもよい。または、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理した後に、連続して窒素ガスもしくは不活性ガスの雰囲気で加熱処理を行っても良い。
 なお、酸化物230に加酸素化処理を行うことで、酸化物230中の酸素欠損を、供給された酸素により修復させる、別言すると「V+O→null」という反応を促進させることができる。さらに、酸化物230中に残存した水素に供給された酸素が反応することで、当該水素をHOとして除去する(脱水化する)ことができる。これにより、酸化物230中に残存していた水素が酸素欠損に再結合してVHが形成されるのを抑制することができる。
 なお、絶縁体222、および絶縁体224が、2層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。また、絶縁体224は、酸化物230aと重畳して島状に形成してもよい。この場合、絶縁体275が、絶縁体224の側面および絶縁体222の上面に接する構成になる。
 酸化物243a、酸化物243bおよび酸化物243cが、酸化物230b上に設けられる。酸化物243a、酸化物243bおよび酸化物243cは、A1−A2方向に配列しており、それぞれ導電体260を挟んで離隔して設けられる。
 酸化物243(酸化物243a、酸化物243bおよび酸化物243c)は、酸素の透過を抑制する機能を有することが好ましい。ソース電極やドレイン電極として機能する導電体242と酸化物230bとの間に酸素の透過を抑制する機能を有する酸化物243を配置することで、導電体242と、酸化物230bとの間の電気抵抗が低減されるので好ましい。このような構成とすることで、トランジスタ200の電気特性およびトランジスタ200の信頼性を向上させることができる。なお、導電体242と酸化物230bの間の電気抵抗を十分低減できる場合、酸化物243を設けない構成にしてもよい。
 酸化物243として、元素Mを有する金属酸化物を用いてもよい。特に、元素Mは、アルミニウム、ガリウム、イットリウム、または錫を用いるとよい。酸化物243は、酸化物230bよりも元素Mの濃度が高いことが好ましい。また、酸化物243として、酸化ガリウムを用いてもよい。また、酸化物243として、In−M−Zn酸化物等の金属酸化物を用いてもよい。具体的には、酸化物243に用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物243の膜厚は、0.5nm以上5nm以下が好ましく、より好ましくは1nm以上3nm以下、さらに好ましくは1nm以上2nm以下である。また、酸化物243は、結晶性を有すると好ましい。酸化物243が結晶性を有する場合、酸化物230中の酸素の放出を好適に抑制することが出来る。例えば、酸化物243としては、六方晶などの結晶構造であれば、酸化物230中の酸素の放出を抑制できる場合がある。
 導電体242aは酸化物243aの上面に接して設けられ、導電体242bは酸化物243bの上面に接して設けられ、導電体242cは酸化物243cの上面に接して設けられることが好ましい。導電体242a、導電体242b、および導電体242cは、A1−A2方向に配列しており、それぞれ導電体260を挟んで離隔して設けられる。導電体242a、導電体242b、および導電体242cは、それぞれトランジスタ200aまたはトランジスタ200bのソース電極またはドレイン電極として機能する。
 導電体242(導電体242a、導電体242b、および導電体242c)としては、例えば、タンタルを含む窒化物、チタンを含む窒化物、モリブデンを含む窒化物、タングステンを含む窒化物、タンタルおよびアルミニウムを含む窒化物、チタンおよびアルミニウムを含む窒化物などを用いることが好ましい。本発明の一態様においては、タンタルを含む窒化物が特に好ましい。また、例えば、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いてもよい。これらの材料は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。
 なお、酸化物230bなどに含まれる水素が、導電体242a、導電体242b、および導電体242cに拡散する場合がある。特に、導電体242a、導電体242b、および導電体242cに、タンタルを含む窒化物を用いることで、酸化物230bなどに含まれる水素は、導電体242a、導電体242b、および導電体242cに拡散しやすく、拡散した水素は、導電体242a、導電体242b、および導電体242cが有する窒素と結合することがある。つまり、酸化物230bなどに含まれる水素は、導電体242a、導電体242b、および導電体242cに吸い取られる場合がある。
 また、導電体242の側面と導電体242の上面との間に、湾曲面が形成されない構成にしてもよい。当該湾曲面が形成されない導電体242とすることで、図1Dに示すような、チャネル幅方向の断面における、導電体242の断面積を大きくすることができる。これにより、導電体242の導電率を大きくし、トランジスタ200のオン電流を大きくすることができる。
 絶縁体275は、絶縁体224、酸化物230、酸化物243および導電体242を覆って設けられており、絶縁体250、および導電体260が設けられる領域に開口が形成されている。絶縁体275は、絶縁体224の上面、酸化物230の側面、酸化物243の側面、導電体242の側面、および導電体242の上面に接して設けられることが好ましい。また、絶縁体275は、酸素の透過を抑制するバリア絶縁膜として機能することが好ましい。また、絶縁体275は、水、水素などの不純物が、上方から絶縁体224、または酸化物230に拡散するのを抑制するバリア絶縁膜として機能することが好ましく、水素などの不純物を捕獲する機能を有することが好ましい。絶縁体275としては、例えば、酸化アルミニウム、または窒化シリコンなどの絶縁体を用いればよい。
 絶縁体212と絶縁体283に挟まれた領域内で、絶縁体280、および絶縁体224、に接して、水素などの不純物を捕獲する機能を有する、絶縁体275を設けることで、絶縁体280、および絶縁体224などに含まれる水素などの不純物を捕獲し、当該領域内における、水素の量を一定値にすることができる。この場合は、絶縁体275として、酸化アルミニウムなどを用いることが好ましい。
 絶縁体250は、図1Aに示すように、A3−A4方向に伸長して設けられており、トランジスタ200aおよびトランジスタ200bのゲート絶縁体として機能する。トランジスタ200aおよびトランジスタ200bにおいて、絶縁体250は、それぞれ酸化物230bの上面および側面に接して配置することが好ましい。絶縁体250は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンなどを用いることができる。特に、酸化シリコン、および酸化窒化シリコンは熱に対し安定であるため好ましい。
 絶縁体250は、絶縁体224と同様に、絶縁体250中の水、水素などの不純物濃度が低減されていることが好ましい。絶縁体250の膜厚は、1nm以上20nm以下とするのが好ましい。
 なお、図1Bおよび図1Cでは、絶縁体250を単層で図示したが、2層以上の積層構造としてもよい。絶縁体250を2層の積層構造とする場合、絶縁体250の下層は、加熱により酸素が放出される絶縁体を用いて形成し、絶縁体250の上層は、酸素の拡散を抑制する機能を有する絶縁体を用いて形成することが好ましい。このような構成にすることで、絶縁体250の下層に含まれる酸素が、導電体260へ拡散するのを抑制することができる。つまり、酸化物230へ供給する酸素量の減少を抑制することができる。また、絶縁体250の下層に含まれる酸素による導電体260の酸化を抑制することができる。例えば、絶縁体250の下層は、上述した絶縁体250に用いることができる材料を用いて設け、絶縁体250の上層は、絶縁体222と同様の材料を用いて設けることができる。
 なお、絶縁体250の下層に酸化シリコンや酸化窒化シリコンなどを用いる場合、絶縁体250の上層は、比誘電率が高いhigh−k材料である絶縁性材料を用いてもよい。ゲート絶縁体を、絶縁体250の下層と絶縁体250の上層との積層構造とすることで、熱に対して安定、かつ比誘電率の高い積層構造とすることができる。したがって、ゲート絶縁体の物理膜厚を保持したまま、トランジスタ動作時に印加するゲート電位の低減化が可能となる。また、ゲート絶縁体として機能する絶縁体の等価酸化膜厚(EOT)の薄膜化が可能となる。
 絶縁体250の上層として、具体的には、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、マグネシウムなどから選ばれた一種、もしくは二種以上が含まれた金属酸化物、または酸化物230として用いることができる金属酸化物を用いることができる。特に、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を用いることが好ましい。例えば、絶縁体250の上層として酸化ハフニウムを用いればよい。
 また、絶縁体250と導電体260との間に金属酸化物を設けてもよい。当該金属酸化物は、絶縁体250から導電体260への酸素の拡散を抑制することが好ましい。酸素の拡散を抑制する金属酸化物を設けることで、絶縁体250から導電体260への酸素の拡散が抑制される。つまり、酸化物230へ供給する酸素量の減少を抑制することができる。また、絶縁体250の酸素による導電体260の酸化を抑制することができる。
 なお、上記金属酸化物は、第1のゲート電極の一部としての機能を有する構成にしてもよい。例えば、酸化物230として用いることができる金属酸化物を、上記金属酸化物として用いることができる。その場合、導電体260aをスパッタリング法で成膜することで、上記金属酸化物の電気抵抗値を低下させて導電体とすることができる。これをOC(Oxide Conductor)電極と呼ぶことができる。
 上記金属酸化物を有することで、導電体260からの電界の影響を弱めることなく、トランジスタ200のオン電流の向上を図ることができる。また、絶縁体250と、上記金属酸化物との物理的な厚みにより、導電体260と、酸化物230との間の距離を保つことで、導電体260と酸化物230との間のリーク電流を抑制することができる。また、絶縁体250、および上記金属酸化物との積層構造を設けることで、導電体260と酸化物230との間の物理的な距離、および導電体260から酸化物230へかかる電界強度を、容易に適宜調整することができる。
 導電体260は、図1Aに示すように、A3−A4方向に伸長して設けられており、トランジスタ200aおよびトランジスタ200bの第1のゲート電極として機能する。トランジスタ200aおよびトランジスタ200bにおいて、導電体260は、導電体260aと、導電体260aの上に配置された導電体260bと、をそれぞれ有することが好ましい。例えば、導電体260aは、導電体260bの底面および側面を包むように配置されることが好ましい。また、図1Bおよび図1Cに示すように、導電体260の上面は、絶縁体250の上面と略一致している。なお、図1Bおよび図1Cでは、導電体260は、導電体260aと導電体260bの2層構造として示しているが、単層構造でもよいし、3層以上の積層構造であってもよい。
 導電体260aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
 また、導電体260aが酸素の拡散を抑制する機能を持つことにより、絶縁体250に含まれる酸素により、導電体260bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、チタン、窒化チタン、タンタル、窒化タンタル、ルテニウム、酸化ルテニウムなどを用いることが好ましい。
 また、導電体260は、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、導電体260bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体260bは積層構造としてもよく、例えば、チタン、または窒化チタンと上記導電性材料との積層構造としてもよい。
 また、トランジスタ200では、導電体260は、絶縁体280などに形成されている開口を埋めるように自己整合的に形成される。導電体260をこのように形成することにより、導電体242aと導電体242bとの間の領域、および導電体242bと導電体242cとの間の領域に、位置合わせをしなくても導電体260を配置することができる。
 また、図1Cに示すように、トランジスタ200のチャネル幅方向において、絶縁体222の底面を基準としたときの、導電体260の、導電体260と酸化物230bとが重ならない領域の底面の高さは、酸化物230bの底面の高さより低いことが好ましい。ゲート電極として機能する導電体260が、絶縁体250を介して、酸化物230bのチャネル形成領域の側面および上面を覆う構成とすることで、導電体260の電界を酸化物230bのチャネル形成領域全体に作用させやすくなる。よって、トランジスタ200のオン電流を増大させ、周波数特性を向上させることができる。絶縁体222の底面を基準としたときの、酸化物230aおよび酸化物230bと、導電体260とが、重ならない領域における導電体260の底面の高さと、酸化物230bの底面の高さと、の差は、0nm以上100nm以下、好ましくは、3nm以上50nm以下、より好ましくは、5nm以上20nm以下とする。
 絶縁体280は、絶縁体275上に設けられ、絶縁体250、および導電体260が設けられる領域に開口が形成されている。また、絶縁体280の上面は、平坦化されていてもよい。
 層間膜として機能する絶縁体280は、誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。絶縁体280は、例えば、絶縁体216と同様の材料を用いて設けることが好ましい。特に、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、酸化窒化シリコン、空孔を有する酸化シリコンなどの材料は、加熱により脱離する酸素を含む領域を容易に形成することができるため好ましい。
 絶縁体280は、絶縁体224と同様に、過剰酸素領域または過剰酸素を有することが好ましい。また、絶縁体280中の水、水素などの不純物濃度は低減されていることが好ましい。例えば、絶縁体280は、酸化シリコン、酸化窒化シリコンなどのシリコンを含む酸化物を適宜用いればよい。過剰酸素を有する絶縁体を酸化物230に接して設けることにより、酸化物230中の酸素欠損を低減し、トランジスタ200の信頼性を向上させることができる。
 絶縁体282は、導電体260および絶縁体280のそれぞれの上面、ならびに絶縁体250の最上部と接して配置される。絶縁体282は、水、水素などの不純物が、上方から絶縁体280に拡散するのを抑制するバリア絶縁膜として機能することが好ましく、水素などの不純物を捕獲する機能を有することが好ましい。また、絶縁体282は、酸素の透過を抑制するバリア絶縁膜として機能することが好ましい。絶縁体282としては、例えば、酸化アルミニウムなどの絶縁体を用いればよい。絶縁体212と絶縁体283に挟まれた領域内で、絶縁体280に接して、水素などの不純物を捕獲する機能を有する、絶縁体282を設けることで、絶縁体280などに含まれる水素などの不純物を捕獲し、当該領域内における、水素の量を一定値にすることができる。
 絶縁体283は、水、水素などの不純物が、上方から絶縁体280に拡散するのを抑制するバリア絶縁膜として機能する。絶縁体283は、絶縁体282の上に配置される。絶縁体283としては、窒化シリコンまたは窒化酸化シリコンなどの、シリコンを含む窒化物を用いることが好ましい。例えば、絶縁体283としてスパッタリング法で成膜された窒化シリコンを用いればよい。絶縁体283をスパッタリング法で成膜することで、密度が高く、鬆などが形成されにくい窒化シリコン膜を形成することができる。また、絶縁体283として、スパッタリング法で成膜された窒化シリコンの上に、さらに、CVD法で成膜された窒化シリコンを積層してもよい。
<半導体装置の構成材料>
 以下では、半導体装置に用いることができる構成材料について説明する。
<<基板>>
 トランジスタ200を形成する基板としては、例えば、絶縁体基板、半導体基板、または導電体基板を用いればよい。絶縁体基板としては、例えば、ガラス基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)、樹脂基板などがある。また、半導体基板としては、例えば、シリコン、ゲルマニウムを材料とした半導体基板、または炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、酸化ガリウムからなる化合物半導体基板などがある。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えば、SOI(Silicon On Insulator)基板などがある。導電体基板としては、黒鉛基板、金属基板、合金基板、導電性樹脂基板などがある。または、金属の窒化物を有する基板、金属の酸化物を有する基板などがある。さらには、絶縁体基板に導電体または半導体が設けられた基板、半導体基板に導電体または絶縁体が設けられた基板、導電体基板に半導体または絶縁体が設けられた基板などがある。または、これらの基板に素子が設けられたものを用いてもよい。基板に設けられる素子としては、容量素子、抵抗素子、スイッチ素子、発光素子、記憶素子などがある。
<<絶縁体>>
 絶縁体としては、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物などがある。
 例えば、トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体に、high−k材料を用いることで物理膜厚を保ちながら、トランジスタ動作時の低電圧化が可能となる。一方、層間膜として機能する絶縁体には、比誘電率が低い材料を用いることで、配線間に生じる寄生容量を低減することができる。したがって、絶縁体の機能に応じて、材料を選択するとよい。
 また、比誘電率の高い絶縁体としては、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物、またはシリコンおよびハフニウムを有する窒化物などがある。
 また、比誘電率が低い絶縁体としては、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などがある。
 また、金属酸化物を用いたトランジスタは、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体で囲うことによって、トランジスタの電気特性を安定にすることができる。水素などの不純物および酸素の透過を抑制する機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウム、またはタンタルを含む絶縁体を、単層で、または積層で用いればよい。具体的には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体として、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム、酸化タンタルなどの金属酸化物、窒化アルミニウム、窒化酸化シリコン、窒化シリコンなどの金属窒化物を用いることができる。
 また、ゲート絶縁体として機能する絶縁体は、加熱により脱離する酸素を含む領域を有する絶縁体であることが好ましい。例えば、加熱により脱離する酸素を含む領域を有する酸化シリコンまたは酸化窒化シリコンを酸化物230と接する構造とすることで、酸化物230が有する酸素欠損を補償することができる。
<<導電体>>
 導電体としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
 また、上記の材料で形成される導電層を複数積層して用いてもよい。例えば、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、酸素を含む導電性材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。
 なお、トランジスタのチャネル形成領域に酸化物を用いる場合において、ゲート電極として機能する導電体には、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造を用いることが好ましい。この場合は、酸素を含む導電性材料をチャネル形成領域側に設けるとよい。酸素を含む導電性材料をチャネル形成領域側に設けることで、当該導電性材料から離脱した酸素がチャネル形成領域に供給されやすくなる。
 特に、ゲート電極として機能する導電体として、チャネルが形成される金属酸化物に含まれる金属元素および酸素を含む導電性材料を用いることが好ましい。また、前述した金属元素および窒素を含む導電性材料を用いてもよい。例えば、窒化チタン、または窒化タンタルなどの窒素を含む導電性材料を用いてもよい。また、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、シリコンを添加したインジウム錫酸化物を用いてもよい。また、窒素を含むインジウムガリウム亜鉛酸化物を用いてもよい。このような材料を用いることで、チャネルが形成される金属酸化物に含まれる水素を捕獲することができる場合がある。または、外方の絶縁体などから混入する水素を捕獲することができる場合がある。
<<金属酸化物>>
 酸化物230として、半導体として機能する金属酸化物(酸化物半導体)を用いることが好ましい。以下では、本発明に係る酸化物230に適用可能な金属酸化物について説明する。
 金属酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特に、インジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、錫などが含まれていることが好ましい。また、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルトなどから選ばれた一種、または複数種が含まれていてもよい。
 ここでは、金属酸化物が、インジウム、元素Mおよび亜鉛を有するIn−M−Zn酸化物である場合を考える。なお、元素Mは、アルミニウム、ガリウム、イットリウム、および錫の中から選ばれる一または複数とする。そのほかの元素Mに適用可能な元素としては、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルトなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。
 なお、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。
<結晶構造の分類>
 まず、酸化物半導体における、結晶構造の分類について、図3Aを用いて説明を行う。図3Aは、酸化物半導体、代表的にはIGZO(Inと、Gaと、Znと、を含む金属酸化物)の結晶構造の分類を説明する図である。
 図3Aに示すように、酸化物半導体は、大きく分けて「Amorphous(無定形)」と、「Crystalline(結晶性)」と、「Crystal(結晶)」と、に分類される。また、「Amorphous」の中には、completely amorphousが含まれる。また、「Crystalline」の中には、CAAC(c−axis−aligned crystalline)、nc(nanocrystalline)、及びCAC(cloud−aligned composite)が含まれる(excluding single crystal and poly crystal)。なお、「Crystalline」の分類には、single crystal、poly crystal、及びcompletely amorphousは除かれる。また、「Crystal」の中には、single crystal、及びpoly crystalが含まれる。
 なお、図3Aに示す太枠内の構造は、「Amorphous(無定形)」と、「Crystal(結晶)」との間の中間状態であり、新しい境界領域(New crystalline phase)に属する構造である。すなわち、当該構造は、エネルギー的に不安定な「Amorphous(無定形)」や、「Crystal(結晶)」とは全く異なる構造と言い換えることができる。
 なお、膜または基板の結晶構造は、X線回折(XRD:X−Ray Diffraction)スペクトルを用いて評価することができる。ここで、「Crystalline」に分類されるCAAC−IGZO膜のGIXD(Grazing−Incidence XRD)測定で得られるXRDスペクトルを図3Bに示す。なお、GIXD法は、薄膜法またはSeemann−Bohlin法ともいう。以降、図3Bに示すGIXD測定で得られるXRDスペクトルを、単にXRDスペクトルと記す。なお、図3Bに示すCAAC−IGZO膜の組成は、In:Ga:Zn=4:2:3[原子数比]近傍である。また、図3Bに示すCAAC−IGZO膜の厚さは、500nmである。
 図3Bに示すように、CAAC−IGZO膜のXRDスペクトルでは、明確な結晶性を示すピークが検出される。具体的には、CAAC−IGZO膜のXRDスペクトルでは、2θ=31°近傍に、c軸配向を示すピークが検出される。なお、図3Bに示すように、2θ=31°近傍のピークは、ピーク強度が検出された角度を軸に左右非対称である。
 また、膜または基板の結晶構造は、極微電子線回折法(NBED:Nano Beam Electron Diffraction)によって観察される回折パターン(極微電子線回折パターンともいう。)にて評価することができる。CAAC−IGZO膜の回折パターンを、図3Cに示す。図3Cは、電子線を基板に対して平行に入射するNBEDによって観察される回折パターンである。なお、図3Cに示すCAAC−IGZO膜の組成は、In:Ga:Zn=4:2:3[原子数比]近傍である。また、極微電子線回折法では、プローブ径を1nmとして電子線回折が行われる。
 図3Cに示すように、CAAC−IGZO膜の回折パターンでは、c軸配向を示す複数のスポットが観察される。
<<酸化物半導体の構造>>
 なお、酸化物半導体は、結晶構造に着目した場合、図3Aとは異なる分類となる場合がある。例えば、酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、上述のCAAC−OS、及びnc−OSがある。また、非単結晶酸化物半導体には、多結晶酸化物半導体、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、非晶質酸化物半導体、などが含まれる。
 ここで、上述のCAAC−OS、nc−OS、及びa−like OSの詳細について、説明を行う。
[CAAC−OS]
 CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、またはCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。
 なお、上記複数の結晶領域のそれぞれは、1つまたは複数の微小な結晶(最大径が10nm未満である結晶)で構成される。結晶領域が1つの微小な結晶で構成されている場合、当該結晶領域の最大径は10nm未満となる。また、結晶領域が多数の微小な結晶で構成されている場合、当該結晶領域の大きさは、数十nm程度となる場合がある。
 また、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、スズ、チタンなどから選ばれた一種、または複数種)において、CAAC−OSは、インジウム(In)、及び酸素を有する層(以下、In層)と、元素M、亜鉛(Zn)、及び酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能である。よって、(M,Zn)層にはインジウムが含まれる場合がある。また、In層には元素Mが含まれる場合がある。なお、In層にはZnが含まれる場合もある。当該層状構造は、例えば、高分解能TEM像において、格子像として観察される。
 CAAC−OS膜に対し、例えば、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、c軸配向を示すピークが2θ=31°またはその近傍に検出される。なお、c軸配向を示すピークの位置(2θの値)は、CAAC−OSを構成する金属元素の種類、組成などにより変動する場合がある。
 また、例えば、CAAC−OS膜の電子線回折パターンにおいて、複数の輝点(スポット)が観測される。なお、あるスポットと別のスポットとは、試料を透過した入射電子線のスポット(ダイレクトスポットともいう。)を対称中心として、点対称の位置に観測される。
 上記特定の方向から結晶領域を観察した場合、当該結晶領域内の格子配列は、六方格子を基本とするが、単位格子は正六角形とは限らず、非正六角形である場合がある。また、上記歪みにおいて、五角形、七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリー)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属原子が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。
 なお、明確な結晶粒界が確認される結晶構造は、いわゆる多結晶(polycrystal)と呼ばれる。結晶粒界は、再結合中心となり、キャリアが捕獲され、トランジスタのオン電流の低下、電界効果移動度の低下などを引き起こす可能性が高い。よって、明確な結晶粒界が確認されないCAAC−OSは、トランジスタの半導体層に好適な結晶構造を有する結晶性の酸化物の一つである。なお、CAAC−OSを構成するには、Znを有する構成が好ましい。例えば、In−Zn酸化物、及びIn−Ga−Zn酸化物は、In酸化物よりも結晶粒界の発生を抑制できるため好適である。
 CAAC−OSは、結晶性が高く、明確な結晶粒界が確認されない酸化物半導体である。よって、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC−OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。したがって、OSトランジスタにCAAC−OSを用いると、製造工程の自由度を広げることが可能となる。
[nc−OS]
 nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。別言すると、nc−OSは、微小な結晶を有する。なお、当該微小な結晶の大きさは、例えば、1nm以上10nm以下、特に1nm以上3nm以下であることから、当該微小な結晶をナノ結晶ともいう。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。例えば、nc−OS膜に対し、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、結晶性を示すピークが検出されない。また、nc−OS膜に対し、ナノ結晶よりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子線回折(制限視野電子線回折ともいう。)を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OS膜に対し、ナノ結晶の大きさと近いかナノ結晶より小さいプローブ径(例えば1nm以上30nm以下)の電子線を用いる電子線回折(ナノビーム電子線回折ともいう。)を行うと、ダイレクトスポットを中心とするリング状の領域内に複数のスポットが観測される電子線回折パターンが取得される場合がある。
[a−like OS]
 a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆又は低密度領域を有する。即ち、a−like OSは、nc−OS及びCAAC−OSと比べて、結晶性が低い。また、a−like OSは、nc−OS及びCAAC−OSと比べて、膜中の水素濃度が高い。
<<酸化物半導体の構成>>
 次に、上述のCAC−OSの詳細について、説明を行う。なお、CAC−OSは材料構成に関する。
[CAC−OS]
 CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つまたは複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
 さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう。)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
 ここで、In−Ga−Zn酸化物におけるCAC−OSを構成する金属元素に対するIn、Ga、およびZnの原子数比のそれぞれを、[In]、[Ga]、および[Zn]と表記する。例えば、In−Ga−Zn酸化物におけるCAC−OSにおいて、第1の領域は、[In]が、CAC−OS膜の組成における[In]よりも大きい領域である。また、第2の領域は、[Ga]が、CAC−OS膜の組成における[Ga]よりも大きい領域である。または、例えば、第1の領域は、[In]が、第2の領域における[In]よりも大きく、且つ、[Ga]が、第2の領域における[Ga]よりも小さい領域である。また、第2の領域は、[Ga]が、第1の領域における[Ga]よりも大きく、且つ、[In]が、第1の領域における[In]よりも小さい領域である。
 具体的には、上記第1の領域は、インジウム酸化物、インジウム亜鉛酸化物などが主成分である領域である。また、上記第2の領域は、ガリウム酸化物、ガリウム亜鉛酸化物などが主成分である領域である。つまり、上記第1の領域を、Inを主成分とする領域と言い換えることができる。また、上記第2の領域を、Gaを主成分とする領域と言い換えることができる。
 なお、上記第1の領域と、上記第2の領域とは、明確な境界が観察できない場合がある。
 例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
 CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、および良好なスイッチング動作を実現することができる。
 酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
<酸化物半導体を有するトランジスタ>
 続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
 上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
 トランジスタのチャネル形成領域には、キャリア濃度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体のチャネル形成領域のキャリア濃度は、1×1018cm−3以下であることが好ましく、1×1017cm−3未満であることがより好ましく、1×1016cm−3未満であることがさらに好ましく、1×1013cm−3未満であることがさらに好ましく、1×1012cm−3未満であることがさらに好ましい。なお、酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性又は実質的に高純度真性と言う。なお、キャリア濃度の低い酸化物半導体を、高純度真性又は実質的に高純度真性な酸化物半導体と呼ぶ場合がある。
 また、高純度真性又は実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
 また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
 従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
<不純物>
 ここで、酸化物半導体中における各不純物の影響について説明する。
 酸化物半導体において、第14族元素の一つであるシリコンや炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体のチャネル形成領域におけるシリコンや炭素の濃度と、酸化物半導体のチャネル形成領域との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
 また、酸化物半導体にアルカリ金属又はアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属又はアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、SIMSにより得られる酸化物半導体のチャネル形成領域中のアルカリ金属又はアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
 また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。または、酸化物半導体において、窒素が含まれると、トラップ準位が形成される場合がある。この結果、トランジスタの電気特性が不安定となる場合がある。このため、SIMSにより得られる酸化物半導体のチャネル形成領域中の窒素濃度を、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下にする。
 また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体のチャネル形成領域における中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体のチャネル形成領域において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは5×1019atoms/cm未満、より好ましくは1×1019atoms/cm未満、さらに好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満にする。
 不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
<<その他の半導体材料>>
 酸化物230に用いることができる半導体材料は、上述の金属酸化物に限られない。酸化物230として、バンドギャップを有する半導体材料(ゼロギャップ半導体ではない半導体材料)を用いてもよい。例えば、シリコンなどの単体元素の半導体、ヒ化ガリウムなどの化合物半導体、半導体として機能する層状物質(原子層物質、2次元材料などともいう。)などを半導体材料に用いることが好ましい。特に、半導体として機能する層状物質を半導体材料に用いると好適である。
 ここで、本明細書等において、層状物質とは、層状の結晶構造を有する材料群の総称である。層状の結晶構造は、共有結合やイオン結合によって形成される層が、ファンデルワールス力のような、共有結合やイオン結合よりも弱い結合を介して積層している構造である。層状物質は、単位層内における電気伝導性が高く、つまり、2次元電気伝導性が高い。半導体として機能し、かつ、2次元電気伝導性の高い材料をチャネル形成領域に用いることで、オン電流の大きいトランジスタを提供することができる。
 層状物質として、グラフェン、シリセン、カルコゲン化物などがある。カルコゲン化物は、カルコゲンを含む化合物である。また、カルコゲンは、第16族に属する元素の総称であり、酸素、硫黄、セレン、テルル、ポロニウム、リバモリウムが含まれる。また、カルコゲン化物として、遷移金属カルコゲナイド、13族カルコゲナイドなどが挙げられる。
 酸化物230として、例えば、半導体として機能する遷移金属カルコゲナイドを用いることが好ましい。酸化物230として適用可能な遷移金属カルコゲナイドとして、具体的には、硫化モリブデン(代表的にはMoS)、セレン化モリブデン(代表的にはMoSe)、モリブデンテルル(代表的にはMoTe)、硫化タングステン(代表的にはWS)、セレン化タングステン(代表的にはWSe)、タングステンテルル(代表的にはWTe)、硫化ハフニウム(代表的にはHfS)、セレン化ハフニウム(代表的にはHfSe)、硫化ジルコニウム(代表的にはZrS)、セレン化ジルコニウム(代表的にはZrSe)などが挙げられる。
<半導体装置の作製方法>
 次に、図1A乃至図1Dに示す、本発明の一態様である半導体装置の作製方法を、図4A乃至図12A、図4B乃至図12B、図4C乃至図12C、および図4D乃至図12Dを用いて説明する。
 図4A乃至図12Aのそれぞれは上面図を示す。また、図4B乃至図12Bのそれぞれは、図4A乃至図12Aに示すA1−A2の一点鎖線で示す部位に対応する断面図であり、トランジスタ200aおよびトランジスタ200bのチャネル長方向の断面図でもある。また、図4C乃至図12Cのそれぞれは、図4A乃至図12AにA3−A4の一点鎖線で示す部位に対応する断面図であり、トランジスタ200aのチャネル幅方向の断面図でもある。また、図4D乃至図12Dのそれぞれは、図4A乃至図12AにA5−A6の一点鎖線で示す部位の断面図である。なお、図4A乃至図12Aのそれぞれの上面図では、図の明瞭化のために一部の要素を省いている。
 以下において、絶縁体を形成するための絶縁性材料、導電体を形成するための導電性材料、または半導体を形成するための半導体材料は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを適宜用いて成膜することができる。
 なお、スパッタリング法にはスパッタリング用電源に高周波電源を用いるRFスパッタリング法、直流電源を用いるDCスパッタリング法、さらにパルス的に電極に印加する電圧を変化させるパルスDCスパッタリング法がある。RFスパッタリング法は主に絶縁膜を成膜する場合に用いられ、DCスパッタリング法は主に金属導電膜を成膜する場合に用いられる。また、パルスDCスパッタリング法は、主に、酸化物、窒化物、炭化物などの化合物をリアクティブスパッタリング法で成膜する際に用いられる。
 なお、CVD法は、プラズマを利用するプラズマCVD(PECVD:Plasma Enhanced CVD)法、熱を利用する熱CVD(TCVD:Thermal CVD)法、光を利用する光CVD(Photo CVD)法などに分類できる。さらに用いる原料ガスによって金属CVD(MCVD:Metal CVD)法、有機金属CVD(MOCVD:Metal Organic CVD)法に分けることができる。
 プラズマCVD法は、比較的低温で高品質の膜が得られる。また、熱CVD法は、プラズマを用いないため、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。例えば、半導体装置に含まれる配線、電極、素子(トランジスタ、容量素子など)などは、プラズマから電荷を受け取ることでチャージアップする場合がある。このとき、蓄積した電荷によって、半導体装置に含まれる配線、電極、素子などが破壊される場合がある。一方、プラズマを用いない熱CVD法の場合、こういったプラズマダメージが生じないため、半導体装置の歩留まりを高くすることができる。また、熱CVD法では、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。
 また、ALD法としては、プリカーサ及びリアクタントの反応を熱エネルギーのみで行う熱ALD(Thermal ALD)法、プラズマ励起されたリアクタントを用いるPEALD(Plasma Enhanced ALD)法などを用いることができる。
 また、ALD法は、原子の性質である自己制御性を利用し、一層ずつ原子を堆積することができるので、極薄の成膜が可能、アスペクト比の高い構造への成膜が可能、ピンホールなどの欠陥の少ない成膜が可能、被覆性に優れた成膜が可能、低温での成膜が可能、などの効果がある。PEALD法では、プラズマを利用することで、より低温での成膜が可能となり好ましい場合がある。なお、ALD法で用いるプリカーサには炭素などの不純物を含むものがある。このため、ALD法により設けられた膜は、他の成膜法により設けられた膜と比較して、炭素などの不純物を多く含む場合がある。なお、不純物の定量は、X線光電子分光法(XPS:X−ray Photoelectron Spectroscopy)を用いて行うことができる。
 CVD法およびALD法は、ターゲットなどから放出される粒子が堆積する成膜方法とは異なり、被処理物の表面における反応により膜が形成される成膜方法である。したがって、被処理物の形状の影響を受けにくく、良好な段差被覆性を有する成膜方法である。特に、ALD法は、優れた段差被覆性と、優れた厚さの均一性を有するため、アスペクト比の高い開口部の表面を被覆する場合などに好適である。ただし、ALD法は、比較的成膜速度が遅いため、成膜速度の速いCVD法などの他の成膜方法と組み合わせて用いることが好ましい場合もある。
 CVD法およびALD法は、原料ガスの流量比によって、得られる膜の組成を制御することができる。例えば、CVD法およびALD法では、原料ガスの流量比によって、任意の組成の膜を成膜することができる。また、例えば、CVD法およびALD法では、成膜しながら原料ガスの流量比を変化させることによって、組成が連続的に変化した膜を成膜することができる。原料ガスの流量比を変化させながら成膜する場合、複数の成膜室を用いて成膜する場合と比べて、搬送や圧力調整に掛かる時間を要さない分、成膜に掛かる時間を短くすることができる。したがって、半導体装置の生産性を高めることができる場合がある。
 まず、基板(図示しない。)を準備し、当該基板上に絶縁体212を成膜する(図4A乃至図4D参照。)。絶縁体212の成膜は、スパッタリング法を用いて行うことが好ましい。成膜ガスに水素を用いなくてもよいスパッタリング法を用いることで、絶縁体212中の水素濃度を低減することができる。ただし、絶縁体212の成膜は、スパッタリング法に限られるものではなく、CVD法、MBE法、PLD法、ALD法などを適宜用いてもよい。
 本実施の形態では、絶縁体212として、窒素ガスを含む雰囲気でシリコンターゲットを用いて、パルスDCスパッタリング法で窒化シリコンを成膜する。パルスDCスパッタリング法を用いることで、ターゲット表面のアーキングによるパーティクルの発生を抑制することができるので、膜厚分布をより均一にすることができる。また、パルス電圧を用いることで、高周波電圧より、放電の立ち上がり、立ち下がりを急峻にすることができる。これにより、電極に、電力をより効率的に供給しスパッタレート、および膜質を向上することができる。
 窒化シリコンのように水、水素などの不純物が透過しにくい絶縁体を用いることにより、絶縁体212より下層に含まれる水、水素などの不純物の拡散を抑制することができる。また、絶縁体212として、窒化シリコンなどの銅が透過しにくい絶縁体を用いることにより、絶縁体212より下層(図示しない。)の導電体に銅など拡散しやすい金属を用いても、当該金属が絶縁体212を介して上方に拡散するのを抑制することができる。
 次に、絶縁体212上に絶縁体214を成膜する(図4A乃至図4D参照。)。絶縁体214の成膜は、スパッタリング法を用いて行うことが好ましい。成膜ガスに水素を用いなくてもよいスパッタリング法を用いることで、絶縁体214中の水素濃度を低減することができる。ただし、絶縁体214の成膜は、スパッタリング法に限られるものではなく、CVD法、MBE法、PLD法、ALD法などを適宜用いてもよい。
 本実施の形態では、絶縁体214として、酸素ガスを含む雰囲気でアルミニウムターゲットを用いて、パルスDCスパッタリング法で酸化アルミニウムを成膜する。パルスDCスパッタリング法を用いることで、膜厚分布をより均一にし、スパッタレート、および膜質を向上することができる。
 絶縁体214として、水素を捕獲および水素を固着する機能が高い、酸化アルミニウムを用いることで、絶縁体216などに含まれる水素を捕獲または固着し、当該水素が酸化物230に拡散するのを防ぐことができる。
 次に、絶縁体214上に絶縁体216を成膜する。絶縁体216の成膜は、スパッタリング法を用いて行うことが好ましい。成膜ガスに水素を用いなくてもよいスパッタリング法を用いることで、絶縁体216中の水素濃度を低減することができる。ただし、絶縁体216の成膜は、スパッタリング法に限られるものではなく、CVD法、MBE法、PLD法、ALD法などを適宜用いてもよい。
 本実施の形態では、絶縁体216として、酸素ガスを含む雰囲気でシリコンターゲットを用いて、パルスDCスパッタリング法で酸化シリコンを成膜する。パルスDCスパッタリング法を用いることで、膜厚分布をより均一にし、スパッタレート、および膜質を向上することができる。
 絶縁体212、絶縁体214、および絶縁体216は、大気に暴露することなく連続して成膜することが好ましい。例えば、マルチチャンバー方式の成膜装置を用いればよい。これにより、絶縁体212、絶縁体214、および絶縁体216を、膜中の水素を低減して成膜し、さらに、各成膜工程の合間に膜中に水素が混入するのを低減することができる。
 次に、絶縁体216に絶縁体214に達する二つの開口を、A3−A4方向に延伸して形成する。なお、開口とは、例えば、溝やスリットなども含まれる。また、開口が形成された領域を指して開口部とする場合がある。開口の形成はウェットエッチングを用いてもよいが、ドライエッチングを用いるほうが微細加工には好ましい。また、絶縁体214は、絶縁体216をエッチングして溝を形成する際のエッチングストッパ膜として機能する絶縁体を選択することが好ましい。例えば、溝を形成する絶縁体216に酸化シリコンまたは酸化窒化シリコンを用いた場合は、絶縁体214は窒化シリコン、酸化アルミニウム、酸化ハフニウムを用いるとよい。
 ドライエッチング装置としては、平行平板型電極を有する容量結合型プラズマ(CCP:Capacitively Coupled Plasma)エッチング装置を用いることができる。平行平板型電極を有する容量結合型プラズマエッチング装置は、平行平板型電極の一方の電極に高周波電圧を印加する構成でもよい。または平行平板型電極の一方の電極に複数の異なった高周波電圧を印加する構成でもよい。または平行平板型電極それぞれに同じ周波数の高周波電圧を印加する構成でもよい。または平行平板型電極それぞれに周波数の異なる高周波電圧を印加する構成でもよい。または高密度プラズマ源を有するドライエッチング装置を用いることができる。高密度プラズマ源を有するドライエッチング装置は、例えば、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)エッチング装置などを用いることができる。
 開口の形成後に、導電体205aとなる導電膜を成膜する。導電体205aとなる導電膜は、酸素の透過を抑制する機能を有する導電体を含むことが望ましい。例えば、窒化タンタル、窒化タングステン、窒化チタンなどを用いることができる。または、酸素の透過を抑制する機能を有する導電体と、タンタル、タングステン、チタン、モリブデン、アルミニウム、銅、モリブデンタングステン合金との積層膜とすることができる。導電体205aとなる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。
 本実施の形態では、導電体205aとなる導電膜として窒化チタンを成膜する。このような金属窒化物を導電体205bの下層に用いることにより、絶縁体216などによって、導電体205bが酸化されるのを抑制することができる。また、導電体205bとして銅などの拡散しやすい金属を用いても、当該金属が導電体205aから外に拡散するのを防ぐことができる。
 次に、導電体205bとなる導電膜を成膜する。導電体205bとなる導電膜としては、タンタル、タングステン、チタン、モリブデン、アルミニウム、銅、モリブデンタングステン合金などを用いることができる。該導電膜の成膜は、メッキ法、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。本実施の形態では、導電体205bとなる導電膜として、タングステンを成膜する。
 次に、CMP処理を行うことで、導電体205aとなる導電膜および導電体205bとなる導電膜の一部を除去し、絶縁体216を露出する。その結果、開口部のみに、導電体205aおよび導電体205bが残存する。なお、当該CMP処理により、絶縁体216の一部が除去される場合がある。
 次に、エッチングを行って、導電体205bの上部を除去する。これにより、導電体205bの上面は、導電体205aの上面および絶縁体216の上面より低くなる。導電体205bのエッチングには、ドライエッチングまたはウェットエッチングを用いればよいが、ドライエッチングを用いるほうが微細加工には好ましい。
 次に、絶縁体216、導電体205a、および導電体205bの上に、導電体205cとなる導電膜を成膜する。導電体205cとなる導電膜は、導電体205aとなる導電膜と同様に、酸素の透過を抑制する機能を有する導電体を含むことが望ましい。
 本実施の形態では、導電体205cとなる導電膜として窒化チタンを成膜する。このような金属窒化物を導電体205bの上層に用いることにより、絶縁体222などによって、導電体205bが酸化されるのを抑制することができる。また、導電体205bとして銅などの拡散しやすい金属を用いても、当該金属が導電体205cから外に拡散するのを防ぐことができる。
 次に、CMP処理を行うことで、導電体205cとなる導電膜の一部を除去し、絶縁体216を露出する(図4A乃至図4D参照。)。その結果、開口部のみに、導電体205a、導電体205b、および導電体205cが残存する。これにより、上面が平坦な、導電体205を形成することができる。さらに、導電体205bが、導電体205aおよび導電体205cに包みこまれる構成になる。よって、導電体205bから水素などの不純物が導電体205aおよび導電体205cの外に拡散するのを防ぎ、かつ導電体205aおよび導電体205cの外から酸素が混入し、導電体205bを酸化するのを防ぐことができる。なお、当該CMP処理により、絶縁体216の一部が除去される場合がある。
 次に、絶縁体216、および導電体205上に絶縁体222を成膜する。絶縁体222として、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体は、酸素、水素、および水に対するバリア性を有する。絶縁体222が、水素および水に対するバリア性を有することで、トランジスタ200の周辺に設けられた構造体に含まれる水素、および水が、絶縁体222を通じてトランジスタ200の内側へ拡散することが抑制され、酸化物230中の酸素欠損の生成を抑制することができる。
 絶縁体222の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。本実施の形態では、絶縁体222として、スパッタリング法を用いて、酸化ハフニウムを成膜する。成膜ガスに水素を用いなくてもよいスパッタリング法を用いることで、絶縁体222中の水素濃度を低減することができる。
 続いて、加熱処理を行うと好ましい。加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以下、さらに好ましくは320℃以上450℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、窒素ガスと酸素ガスの混合雰囲気で加熱処理をする場合、酸素ガスを20%程度にすればよい。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理を行ってもよい。
 また、上記加熱処理で用いるガスは、高純度化されていることが好ましい。例えば、上記加熱処理で用いるガスに含まれる水分量が1ppb以下、好ましくは0.1ppb以下、より好ましくは0.05ppb以下にすればよい。高純度化されたガスを用いて加熱処理を行うことで、絶縁体222などに水分等が取り込まれることを可能な限り防ぐことができる。
 本実施の形態では、加熱処理として、絶縁体222の成膜後に、窒素ガスと酸素ガスの流量比を4slm:1slmとして、400℃の温度で1時間の処理を行う。当該加熱処理によって、絶縁体222に含まれる水、水素などの不純物を除去することなどができる。また、絶縁体222として、ハフニウムを含む酸化物を用いる場合、当該加熱処理によって、絶縁体222の結晶性を向上させることができる。また、加熱処理は、絶縁体224の成膜後などのタイミングで行うこともできる。
 次に、絶縁体222上に絶縁体224を成膜する。絶縁体224の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。本実施の形態では、絶縁体224として、スパッタリング法を用いて、酸化シリコンを成膜する。成膜ガスに水素を用いなくてもよいスパッタリング法を用いることで、絶縁体224中の水素濃度を低減することができる。絶縁体224は、後の工程で酸化物230aと接するので、このように水素濃度が低減されていることが好適である。
 次に、絶縁体224、絶縁体222、絶縁体216、絶縁体214および絶縁体212に開口を形成する。当該開口は、2つの導電体205の間に形成する。開口の形成はウェットエッチングを用いてもよいが、ドライエッチングを用いるほうが微細加工には好ましい。なお、図5Aで当該開口の形状は、上面視において円形状にしているが、これに限られるものではない。例えば、当該開口が、上面視において、楕円などの略円形状、四角形などの多角形状、四角形等の多角形の角部を丸めた形状になっていてもよい。
 次に、絶縁体249となる絶縁膜を成膜し、当該絶縁膜を異方性エッチングして絶縁体249を形成する。絶縁体249となる絶縁膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。絶縁体249となる絶縁膜としては、酸素の透過を低減する機能を有する絶縁膜を用いることが好ましい。例えば、ALD法を用いて、酸化アルミニウムを成膜することが好ましい。または、PEALD法を用いて、窒化シリコンを成膜することが好ましい。窒化シリコンは水素に対するバリア性が高いので好ましい。
 また、絶縁体249となる絶縁膜の異方性エッチングとしては、例えばドライエッチング法などを用いればよい。開口の側壁部に絶縁体249を設けることで、外方からの酸素の透過を低減し、次に形成する導電体248の酸化を防止することができる。また、導電体248に、水、水素などの不純物が外部から侵入することを防ぐことができる。
 開口の形成後に、導電体248となる導電膜を成膜する。導電体248となる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。本実施の形態では、導電体248を導電体205と同様の構造に形成する。よって、導電体248aとなる導電膜を導電体205aとなる導電膜と同様の方法で成膜し、導電体248bとなる導電膜を導電体205bとなる導電膜と同様の方法で成膜すればよい。
 次に、CMP処理を行うことで、導電体248となる導電膜の一部を除去し、絶縁体224を露出する。その結果、開口部のみに、導電体248となる導電膜が残存する。これにより、上面が平坦な、導電体248(導電体248a、および導電体248b)を形成することができる(図5A乃至図5D参照。)。なお、当該CMP処理により、絶縁体224の一部が除去される場合がある。
 ここで、絶縁体224に過剰酸素領域を形成するために、減圧状態で酸素を含むプラズマ処理を行ってもよい。酸素を含むプラズマ処理は、例えばマイクロ波を用いた高密度プラズマを発生させる電源を有する装置を用いることが好ましい。または、基板側にRF(Radio Frequency)を印加する電源を有してもよい。高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができ、基板側にRFを印加することで、高密度プラズマによって生成された酸素ラジカルを効率よく絶縁体224内に導くことができる。または、この装置を用いて不活性ガスを含むプラズマ処理を行った後に、脱離した酸素を補うために酸素を含むプラズマ処理を行ってもよい。なお、当該プラズマ処理の条件を適宜選択することにより、絶縁体224に含まれる水、水素などの不純物を除去することができる。その場合、加熱処理は行わなくてもよい。
 ここで、絶縁体224上に、例えば、スパッタリング法によって、酸化アルミニウムを成膜した後、絶縁体224に達するまで、CMP処理を行ってもよい。当該CMP処理を行うことで絶縁体224表面の平坦化および平滑化を行うことができる。当該酸化アルミニウムを絶縁体224上に配置してCMP処理を行うことで、CMP処理の終点検出が容易となる。また、CMP処理によって、絶縁体224の一部が研磨されて、絶縁体224の膜厚が薄くなることがあるが、絶縁体224の成膜時に膜厚を調整すればよい。絶縁体224表面の平坦化および平滑化を行うことで、後に成膜する酸化物の被覆率の悪化を防止し、半導体装置の歩留りの低下を防ぐことができる場合がある。また、絶縁体224上に、スパッタリング法によって、酸化アルミニウムを成膜することにより、絶縁体224に酸素を添加することができるので好ましい。
 次に、絶縁体224および導電体248上に、酸化膜230A、酸化膜230Bを順に成膜する(図6A乃至図6D参照。)。なお、酸化膜230Aおよび酸化膜230Bは、大気環境にさらさずに連続して成膜することが好ましい。大気開放せずに成膜することで、酸化膜230A、および酸化膜230B上に大気環境からの不純物または水分が付着することを防ぐことができ、酸化膜230Aと酸化膜230Bとの界面近傍を清浄に保つことができる。
 酸化膜230A、および酸化膜230Bの成膜はスパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。
 例えば、酸化膜230A、および酸化膜230Bをスパッタリング法によって成膜する場合は、スパッタリングガスとして酸素、または、酸素と希ガスの混合ガスを用いる。スパッタリングガスに含まれる酸素の割合を高めることで、成膜される酸化膜中の過剰酸素を増やすことができる。また、上記の酸化膜をスパッタリング法によって成膜する場合は、上記のIn−M−Zn酸化物ターゲットなどを用いることができる。
 特に、酸化膜230Aの成膜時に、スパッタリングガスに含まれる酸素の一部が絶縁体224に供給される場合がある。したがって、当該スパッタリングガスに含まれる酸素の割合は70%以上、好ましくは80%以上、より好ましくは100%とすればよい。
 また、酸化膜230Bをスパッタリング法で形成する場合、スパッタリングガスに含まれる酸素の割合を、30%を超えて100%以下、好ましくは70%以上100%以下として成膜すると、酸素過剰型の酸化物半導体が形成される。酸素過剰型の酸化物半導体をチャネル形成領域に用いたトランジスタは、比較的高い信頼性が得られる。ただし、本発明の一態様はこれに限定されない。酸化膜230Bをスパッタリング法で形成する場合、スパッタリングガスに含まれる酸素の割合を1%以上30%以下、好ましくは5%以上20%以下として成膜すると、酸素欠乏型の酸化物半導体が形成される。酸素欠乏型の酸化物半導体をチャネル形成領域に用いたトランジスタは、比較的高い電界効果移動度が得られる。また、基板を加熱しながら成膜を行うことによって、当該酸化膜の結晶性を向上させることができる。
 本実施の形態では、酸化膜230Aとして、スパッタリング法によって、In:Ga:Zn=1:3:4[原子数比]の酸化物ターゲットを用いて成膜する。また、酸化膜230Bとして、スパッタリング法によって、In:Ga:Zn=4:2:4.1[原子数比]の酸化物ターゲットを用いて成膜する。なお、各酸化膜は、成膜条件、および原子数比を適宜選択することで、酸化物230a、および酸化物230bに求める特性に合わせて形成するとよい。
 次に、酸化膜230B上に酸化膜243Aを成膜する(図6A乃至図6D参照)。酸化膜243Aの成膜はスパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。酸化膜243Aは、Inに対するGaの原子数比が、酸化膜230BのInに対するGaの原子数比より大きいことが好ましい。本実施の形態では、酸化膜243Aとして、スパッタリング法によって、In:Ga:Zn=1:3:4[原子数比]の酸化物ターゲットを用いて成膜する。
 なお、絶縁体222、絶縁体224、酸化膜230A、酸化膜230B、および酸化膜243Aを、大気に暴露することなく、スパッタリング法で成膜することが好ましい。例えば、マルチチャンバー方式の成膜装置を用いればよい。これにより、絶縁体222、絶縁体224、酸化膜230A、酸化膜230B、および酸化膜243Aを、膜中の水素を低減して成膜し、さらに、各成膜工程の合間に膜中に水素が混入するのを低減することができる。
 次に、加熱処理を行うことが好ましい。加熱処理は、酸化膜230A、酸化膜230B、および酸化膜243Aが多結晶化しない温度範囲で行えばよく、250℃以上650℃以下、好ましくは400℃以上600℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、窒素ガスと酸素ガスの混合雰囲気で加熱処理をする場合、酸素ガスを20%程度にすればよい。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理を行ってもよい。
 また、上記加熱処理で用いるガスは、高純度化されていることが好ましい。例えば、上記加熱処理で用いるガスに含まれる水分量が1ppb以下、好ましくは0.1ppb以下、より好ましくは0.05ppb以下にすればよい。高純度化されたガスを用いて加熱処理を行うことで、酸化膜230A、酸化膜230B、および酸化膜243Aなどに水分等が取り込まれることを可能な限り防ぐことができる。
 本実施の形態では、加熱処理として、窒素雰囲気にて550℃の温度で1時間の処理を行った後に、連続して酸素雰囲気にて550℃の温度で1時間の処理を行う。当該加熱処理によって、酸化膜230A、酸化膜230B、および酸化膜243A中の水、水素などの不純物を除去することなどができる。さらに、当該加熱処理によって、酸化膜230Bの結晶性を向上させ、より密度の高い、緻密な構造にすることができる。これにより、酸化膜230B中における、酸素または不純物の拡散を低減することができる。
 次に、酸化膜243A上に導電膜242Aを成膜する(図6A乃至図6D参照。)。導電膜242Aの成膜はスパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。例えば、導電膜242Aとして、スパッタリング法を用いて窒化タンタルを成膜すればよい。なお、導電膜242Aの成膜前に、加熱処理を行ってもよい。当該加熱処理は、減圧下で行い、大気に暴露することなく、連続して導電膜242Aを成膜してもよい。このような処理を行うことによって、酸化膜243Aの表面などに吸着している水分および水素を除去し、さらに酸化膜230A、酸化膜230B、および酸化膜243A中の水分濃度および水素濃度を低減させることができる。加熱処理の温度は、100℃以上400℃以下が好ましい。本実施の形態では、加熱処理の温度を200℃とする。
 次に、リソグラフィー法を用いて、酸化膜230A、酸化膜230B、酸化膜243A、および導電膜242Aを島状に加工して、酸化物230a、酸化物230b、酸化物層243B、および導電層242Bを形成する(図7A乃至図7D参照。)。また、当該加工はドライエッチング法やウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。また、酸化膜230A、酸化膜230B、酸化膜243A、および導電膜242Aの加工は、それぞれ異なる条件で加工してもよい。なお、当該工程において、絶縁体224の酸化物230aと重ならない領域の膜厚が薄くなることがある。また、当該工程において、絶縁体224を、酸化物230aと重畳して、島状に加工する構成にしてもよい。
 なお、リソグラフィー法では、まず、マスクを介してレジストを露光する。次に、露光された領域を、現像液を用いて除去または残存させてレジストマスクを形成する。次に、当該レジストマスクを介してエッチング処理することで導電体、半導体、または絶縁体などを所望の形状に加工することができる。例えば、KrFエキシマレーザ光、ArFエキシマレーザ光、EUV(Extreme Ultraviolet)光などを用いて、レジストを露光することでレジストマスクを形成すればよい。また、基板と投影レンズとの間に液体(例えば水)を満たして露光する、液浸技術を用いてもよい。また、前述した光に代えて、電子ビームやイオンビームを用いてもよい。なお、電子ビームやイオンビームを用いる場合には、マスクは不要となる。なお、レジストマスクは、アッシングなどのドライエッチング処理を行う、ウェットエッチング処理を行う、ドライエッチング処理後にウェットエッチング処理を行う、またはウェットエッチング処理後にドライエッチング処理を行うことで、除去することができる。
 さらに、レジストマスクの下に絶縁体や導電体からなるハードマスクを用いてもよい。ハードマスクを用いる場合、導電膜242A上にハードマスク材料となる絶縁膜や導電膜を形成し、その上にレジストマスクを形成し、ハードマスク材料をエッチングすることで所望の形状のハードマスクを形成することができる。導電膜242Aなどのエッチングは、レジストマスクを除去してから行っても良いし、レジストマスクを残したまま行っても良い。後者の場合、エッチング中にレジストマスクが消失することがある。導電膜242Aなどのエッチング後にハードマスクをエッチングにより除去しても良い。一方、ハードマスクの材料が後工程に影響が無い、あるいは後工程で利用できる場合、必ずしもハードマスクを除去する必要は無い。例えば、ハードマスクを絶縁膜で形成した場合、当該ハードマスクを残存させて、バリア絶縁膜として用いてもよい。
 また、酸化物230a、酸化物230b、酸化物層243B、および導電層242Bは、少なくとも一部が、導電体248、および二つの導電体205と重なるように形成する。また、酸化物230a、酸化物230b、酸化物層243B、および導電層242Bの側面は、絶縁体222の上面に対し、概略垂直であることが好ましい。酸化物230a、酸化物230b、酸化物層243B、および導電層242Bの側面が、絶縁体222の上面に対し、概略垂直であることで、複数のトランジスタ200を設ける際に、小面積化、高密度化が可能となる。または、酸化物230a、酸化物230b、酸化物層243B、および導電層242Bの側面と、絶縁体222の上面とのなす角が低い角度になる構成にしてもよい。その場合、酸化物230a、酸化物230b、酸化物層243B、および導電層242Bの側面と、絶縁体222の上面とのなす角は60度以上70度未満が好ましい。この様な形状とすることで、これより後の工程において、絶縁体275などの被覆性が向上し、鬆などの欠陥を低減することができる。
 また、上記エッチング工程で発生した副生成物が、酸化物230a、酸化物230b、酸化物層243B、および導電層242Bの側面に層状に形成される場合がある。この場合、当該層状の副生成物が、酸化物230a、酸化物230b、酸化物243、および導電体242と絶縁体275の間に形成されることになる。また、同様に層状の副生成物が、絶縁体224上に形成される場合がある。当該層状の副生成物が絶縁体224上に形成された状態で、絶縁体275を成膜しても、当該層状の副生成物によって、絶縁体224への酸素の添加が妨害されてしまう。よって、絶縁体224の上面に接して形成された当該層状の副生成物は、除去することが好ましい。
 次に、絶縁体224、酸化物230a、酸化物230b、酸化物層243B、および導電層242B上に、絶縁体275を成膜する。(図8A乃至図8D参照。)。絶縁体275の成膜は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて行うことができる。絶縁体275は、酸素の透過を抑制する機能を有する絶縁膜を用いることが好ましい。例えば、絶縁体275として、ALD法またはスパッタリング法によって、酸化アルミニウムを成膜すればよい。また、絶縁体275として、スパッタリング法によって、窒化シリコンを成膜してもよい。
 なお、スパッタリング法で絶縁体275を成膜することで、絶縁体224に酸素を添加することができる。
 次に、絶縁体275上に、絶縁体280となる絶縁膜を成膜する。当該絶縁膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。例えば、当該絶縁膜として、スパッタリング法を用いて酸化シリコン膜を成膜すればよい。絶縁体280となる絶縁膜を、酸素を含む雰囲気で、スパッタリング法で成膜することで、過剰酸素を含む絶縁体280を形成することができる。また、成膜ガスに水素を用いなくてもよいスパッタリング法を用いることで、絶縁体280中の水素濃度を低減することができる。なお、当該絶縁膜の成膜前に、加熱処理を行ってもよい。加熱処理は、減圧下で行い、大気に暴露することなく、連続して当該絶縁膜を成膜してもよい。このような処理を行うことによって、絶縁体275の表面などに吸着している水分および水素を除去し、さらに酸化物230a、酸化物230b、酸化物層243B、および絶縁体224中の水分濃度および水素濃度を低減させることができる。当該加熱処理には、上述した加熱処理条件を用いることができる。
 次に、上記絶縁体280となる絶縁膜にCMP処理を行い、上面が平坦な絶縁体280を形成する(図8A乃至図8D参照。)。なお、絶縁体280上に、例えば、スパッタリング法によって窒化シリコンを成膜し、絶縁体280に達するまで、該窒化シリコンにCMP処理を行ってもよい。
 次に、絶縁体280の一部、絶縁体275の一部、導電層242Bの一部、酸化物層243Bの一部、酸化物230bの一部を除去して、酸化物230bに達する二つの開口を形成する。当該二つの開口は、それぞれ導電体205と重なるように形成することが好ましい。当該開口の形成によって、導電体242a、導電体242b、導電体242c、酸化物243a、酸化物243b、および酸化物243cを形成する(図9A乃至図9D参照。)。ここで、導電体242bは、導電体248に重畳して形成されることが好ましい。また、酸化物230bの導電体242a、導電体242b、および導電体242cと重畳していない領域が露出される。
 上記開口を形成する際に、酸化物230bの上部が除去される。酸化物230bの一部が除去されることで、酸化物230bに溝部が形成される。当該溝部の深さによっては、当該溝部を、上記開口の形成工程で形成してもよいし、上記開口の形成工程と異なる工程で形成してもよい。
 また、絶縁体280の一部、絶縁体275の一部、導電層242Bの一部、酸化物層243Bの一部、酸化物230bの一部の加工は、ドライエッチング法、またはウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。また、当該加工は、それぞれ異なる条件で加工してもよい。例えば、絶縁体280の一部をドライエッチング法で加工し、絶縁体275の一部をウェットエッチング法で加工し、酸化物層243Bの一部、導電層242Bの一部、および酸化物230bの一部をドライエッチング法で加工してもよい。この場合、まず、絶縁体280に二つの開口が形成され、当該二つの開口に重畳して、絶縁体275、酸化物層243B、導電層242Bに開口が形成される。また、酸化物層243Bの一部および導電層242Bの一部の加工と、酸化物230bの一部の加工とは、異なる条件で行ってもよい。
 ここで、酸化物230a、酸化物230bなどの表面に付着または内部に拡散した不純物を除去することが好ましい。また、上記ドライエッチングで酸化物230b表面に形成される、損傷領域を除去することが好ましい。当該不純物としては、絶縁体280、絶縁体275および導電層242Bに含まれる成分、上記開口を形成する際に用いられる装置に使われている部材に含まれる成分、エッチングに使用するガスまたは液体に含まれる成分などに起因したものが挙げられる。当該不純物としては、例えば、アルミニウム、シリコン、タンタル、フッ素、塩素などがある。
 特に、アルミニウム、またはシリコンなどの不純物は、酸化物230bのCAAC−OS化を阻害する。よって、アルミニウム、またはシリコンなどの、CAAC−OS化を阻害する不純物元素が、低減または除去されていることが好ましい。例えば、酸化物230b、およびその近傍における、アルミニウム原子の濃度が、5.0原子%以下とすればよく、2.0原子%以下が好ましく、1.5原子%以下がより好ましく、1.0原子%以下がさらに好ましく、0.3原子%未満がさらに好ましい。
 なお、アルミニウム、またはシリコンなどの不純物によりCAAC−OS化が阻害され、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)となった金属酸化物の領域を、非CAAC領域と呼ぶ場合がある。非CAAC領域では、結晶構造の緻密さが低下しているため、VHが多量に形成され、トランジスタがノーマリーオン化しやすくなる。よって、酸化物230bの非CAAC化領域は、低減または除去されていることが好ましい。
 これに対して、酸化物230bに層状のCAAC構造を有していることが好ましい。特に、酸化物230bのドレイン下端部までCAAC構造を有することが好ましい。ここで、トランジスタ200において、導電体242a、導電体242b、または導電体242c、およびその近傍がドレインとして機能する。つまり、導電体242a、導電体242b、または導電体242cの下端部近傍の、酸化物230bが、CAAC構造を有することが好ましい。このように、ドレイン耐圧に顕著に影響するドレイン端部においても、酸化物230bの損傷領域が除去され、CAAC構造を有することで、トランジスタ200の電気特性の変動をさらに抑制することができる。また、トランジスタ200の信頼性を向上させることができる。
 上記の不純物などを除去するために、洗浄処理を行う。洗浄方法としては、洗浄液など用いたウェット洗浄、プラズマを用いたプラズマ処理、熱処理による洗浄などがあり、上記洗浄を適宜組み合わせて行ってもよい。なお、当該洗浄処理によって、上記溝部が深くなる場合がある。
 ウェット洗浄としては、アンモニア水、シュウ酸、リン酸、フッ化水素酸などを炭酸水または純水で希釈した水溶液、純水、炭酸水などを用いて洗浄処理を行ってもよい。または、これらの水溶液、純水、または炭酸水を用いた超音波洗浄を行ってもよい。または、これらの洗浄を適宜組み合わせて行ってもよい。
 なお、本明細書等では、市販のフッ化水素酸を純水で希釈した水溶液を希釈フッ化水素酸と呼び、市販のアンモニア水を純水で希釈した水溶液を希釈アンモニア水と呼ぶ場合がある。また、当該水溶液の濃度、温度などは、除去したい不純物、洗浄される半導体装置の構成などによって、適宜調整すればよい。希釈アンモニア水のアンモニア濃度は0.01%以上5%以下、好ましくは0.1%以上0.5%以下とすればよい。また、希釈フッ化水素酸のフッ化水素濃度は0.01ppm以上100ppm以下、好ましくは0.1ppm以上10ppm以下とすればよい。
 なお、超音波洗浄には、200kHz以上、好ましくは900kHz以上の周波数を用いることが好ましい。当該周波数を用いることで、酸化物230bなどへのダメージを低減することができる。
 また、上記洗浄処理を複数回行ってもよく、洗浄処理毎に洗浄液を変更してもよい。例えば、第1の洗浄処理として希釈フッ化水素酸、または希釈アンモニア水を用いた処理を行い、第2の洗浄処理として純水、または炭酸水を用いた処理を行ってもよい。
 上記洗浄処理として、本実施の形態では、希釈フッ化水素酸を用いてウェット洗浄を行い、続いて純水、または炭酸水を用いてウェット洗浄を行う。当該洗浄処理を行うことで、酸化物230a、酸化物230bなどの表面に付着または内部に拡散した不純物を除去することができる。さらに、酸化物230bの結晶性を高めることができる。
 これまでドライエッチングなどの加工、または上記洗浄処理によって、上記開口と重なり、かつ酸化物230bと重ならない領域の、絶縁体224の膜厚が、酸化物230bと重なる領域の、絶縁体224の膜厚より薄くなる場合がある。
 上記エッチング後、または上記洗浄後に加熱処理を行ってもよい。加熱処理は、100℃以上450℃以下、好ましくは350℃以上400℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、加熱処理は酸素雰囲気で行うことが好ましい。これにより、酸化物230aおよび酸化物230bに酸素を供給して、酸素欠損Vの低減を図ることができる。また、このような熱処理を行うことで、酸化物230bの結晶性を向上させることができる。また、加熱処理は減圧状態で行ってもよい。または、酸素雰囲気で加熱処理した後に、大気に露出せずに連続して窒素雰囲気で加熱処理を行ってもよい。
 次に絶縁膜250Aを成膜する(図10A乃至図10D参照)。絶縁膜250Aの成膜前に加熱処理を行ってもよく、当該加熱処理は、減圧下で行い、大気に暴露することなく、連続して絶縁膜250Aを成膜してもよい。また、当該加熱処理は、酸素を含む雰囲気で行うことが好ましい。このような処理を行うことによって、酸化物230bの表面などに吸着している水分および水素を除去し、さらに酸化物230a、および酸化物230b中の水分濃度および水素濃度を低減させることができる。加熱処理の温度は、100℃以上400℃以下が好ましい。
 絶縁膜250Aは、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて成膜することができる。また、絶縁膜250Aは、水素原子が低減または除去されたガスを用いた成膜方法で成膜することが好ましい。これにより、絶縁膜250Aの水素濃度を低減することができる。絶縁膜250Aは、後の工程で酸化物230bと接する絶縁体250となるので、このように水素濃度が低減されていることが好適である。
 また、絶縁膜250AはALD法を用いて成膜することが好ましい。微細化されたトランジスタ200の、ゲート絶縁膜として機能する絶縁体250の膜厚は、極めて薄く(例えば、5nm以上30nm以下程度。)、且つバラつきが小さくなるようにする必要がある。これに対して、ALD法は、プリカーサと、リアクタント(酸化剤)を交互に導入して行う成膜方法であり、このサイクルを繰り返す回数によって膜厚を調節することができるため、精密な膜厚調節が可能である。よって、微細化されたトランジスタ200が要求するゲート絶縁膜の膜厚の精度を達成することができる。また、図10B、図10Cに示すように、絶縁膜250Aは、絶縁体280等によって形成される開口の底面および側面に、被覆性良く成膜される必要がある。当該開口の底面および側面において、原子の層を一層ずつ堆積させることができるので、絶縁膜250Aを当該開口に対して良好な被覆性で成膜することができる。
 また、例えば、PECVD法を用いて絶縁膜250Aの成膜を行う場合、水素を含む成膜ガスがプラズマ中で分解されて、大量の水素ラジカルが発生する。水素ラジカルの還元反応によって、酸化物230b中の酸素が引き抜かれてVHが形成されると、酸化物230b中の水素濃度が高くなる。しかしながら、ALD法を用いて絶縁膜250Aを成膜すると、プリカーサの導入時もリアクタントの導入時も、水素ラジカルの発生を抑制することができる。よって、ALD法を用いて絶縁膜250Aを成膜することにより、酸化物230b中の水素濃度が高くなることを防ぐことができる。例えば、絶縁膜250Aとして、ALD法を用いて、酸化シリコンなどのシリコン酸化膜を成膜すればよい。
 なお、図10B、図10C、図10Dでは、絶縁膜250Aを単層で図示したが、2層以上の積層構造としてもよい。絶縁膜250Aを2層の積層構造とする場合、絶縁膜250Aの下層は、加熱により酸素が放出される絶縁体を用いて形成し、絶縁膜250Aの上層は、酸素の拡散を抑制する機能を有する絶縁体を用いて形成することが好ましい。このような構成にすることで、絶縁体250の下層に含まれる酸素が、導電体260へ拡散するのを抑制することができる。つまり、酸化物230へ供給する酸素量の減少を抑制することができる。また、絶縁体250の下層に含まれる酸素による導電体260の酸化を抑制することができる。例えば、絶縁膜250Aの下層は、上述した絶縁体250に用いることができる材料を用いて設け、絶縁膜250Aの上層は、絶縁体222と同様の材料を用いて設けることができる。
 絶縁膜250Aの上層として、具体的には、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、マグネシウムなどから選ばれた一種、もしくは二種以上が含まれた金属酸化物、または酸化物230として用いることができる金属酸化物を用いることができる。特に、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を用いることが好ましい。
 本実施の形態では、絶縁膜250Aは2層の積層構造とし、下層として酸化シリコンをPEALD法で成膜し、上層として酸化ハフニウムを熱ALD法で成膜する。
 なお、絶縁膜250Aを2層の積層構造とする場合、絶縁膜250Aの下層となる絶縁膜および絶縁膜250Aの上層となる絶縁膜は、大気環境に暴露せずに連続して成膜することが好ましい。大気開放せずに成膜することで、絶縁膜250Aの下層となる絶縁膜、および絶縁膜250Aの上層となる絶縁膜上に大気環境からの水素などの不純物または水分が付着することを防ぐことができ、絶縁膜250Aの下層となる絶縁膜と絶縁膜250Aの上層となる絶縁膜との界面近傍を清浄に保つことができる。
 次に、酸素を含む雰囲気でマイクロ波処理を行う(図10A乃至図10D参照)。ここで、図10B、図10C、図10Dに示す、点線はマイクロ波、RFなどの高周波、酸素プラズマ、または酸素ラジカルなどを示す。マイクロ波処理は、例えばマイクロ波を用いた高密度プラズマを発生させる電源を有する、マイクロ波処理装置を用いることが好ましい。また、マイクロ波処理装置は基板側にRFを印加する電源を有してもよい。高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができる。また、基板側にRFを印加することで、高密度プラズマによって生成された酸素イオンを、効率よく酸化物230b中に導くことができる。また、上記マイクロ波処理は、減圧下で行うことが好ましく、圧力を60Pa以上、好ましくは133Pa以上、より好ましくは200Pa以上、さらに好ましくは400Pa以上とすればよい。また、酸素流量比(O/O+Ar)が50%以下、好ましくは10%以上30%以下で行うとよい。また、処理温度は、750℃以下、好ましくは500℃以下、例えば400℃程度で行えばよい。また、酸素プラズマ処理を行った後に、外気に曝すことなく、連続して熱処理を行ってもよい。
 図10B、図10C、図10Dに示すように、酸素を含む雰囲気でマイクロ波処理を行うことで、マイクロ波、またはRF等の高周波を用いて酸素ガスをプラズマ化し、当該酸素プラズマを、酸化物230bの導電体242aと導電体242bの間の領域、および導電体242bと導電体242cの間の領域に作用させることができる。このとき、マイクロ波、またはRF等の高周波を照射することもできる。つまり、図2に示す領域232dおよび領域232eに、マイクロ波、またはRF等の高周波、酸素プラズマなどを作用させることができる。プラズマ、マイクロ波などの作用により、領域232dおよび領域232eのVHを分断し、水素Hを領域232dおよび領域232eから除去することができる。つまり、領域232dおよび領域232eにおいて、「VH→H+V」という反応が起きて、領域232dおよび領域232eの水素濃度を低減することができる。よって、領域232dおよび領域232e中の酸素欠損、およびVHを低減し、キャリア濃度を低下させることができる。また、領域232dおよび領域232eで形成された酸素欠損に、上記酸素プラズマで発生した酸素ラジカル、または絶縁体250に含まれる酸素を供給することで、さらに、領域232dおよび領域232e中の酸素欠損を低減し、キャリア濃度を低下させることができる。
 一方、領域232a、領域232b、領域232c上には、導電体242a、導電体242b、導電体242cが設けられている。図10B、図10C、図10Dに示すように、導電体242a、導電体242b、および導電体242cは、マイクロ波、またはRF等の高周波、酸素プラズマなどの作用を遮蔽するので、これらの作用は領域232a、領域232b、および領域232cには及ばない。これにより、マイクロ波処理によって、領域232a、領域232b、および領域232cで、VHの低減、および過剰な量の酸素供給が発生しないので、キャリア濃度の低下を防ぐことができる。
 このようにして、酸化物半導体の領域232dおよび領域232eで選択的に酸素欠損、およびVHを除去して、領域232dおよび領域232eをi型または実質的にi型とすることができる。さらに、ソース領域またはドレイン領域として機能する領域232a、領域232b、および領域232cに過剰な酸素が供給されるのを抑制し、n型化を維持することができる。これにより、トランジスタ200の電気特性の変動を抑制し、基板面内でトランジスタ200の電気特性がばらつくのを抑制することができる。また、導電体242bに重畳して導電体248が設けられていることで、導電体248の上面が自己整合的に領域232bに接するので、トランジスタ200aおよびトランジスタ200bと、導電体248は良好なコンタクトを形成することができる。
 このようにして、トランジスタ特性のばらつきが少ない半導体装置を提供することができる。また、良好な電気特性を有する半導体装置を提供することができる。また、信頼性が良好な半導体装置を提供することができる。
 図10に示す工程においては、絶縁膜250Aの成膜後にマイクロ波処理を行ったが、本発明はこれに限られるものではない。例えば、絶縁膜250Aの成膜前にマイクロ波処理をおこなってもよいし、絶縁膜250Aの成膜前と成膜後の両方でマイクロ波処理を行ってもよい。
 例えば、絶縁膜250Aを上述の2層構造とする場合、マイクロ波処理を行って、絶縁膜250Aの下層の酸化シリコンをPEALD法で成膜し、絶縁膜250Aの上層の酸化ハフニウムを熱ALD法で成膜すればよい。ここで、上記マイクロ波処理、酸化シリコンのPEALD成膜、および酸化ハフニウムの熱ALD成膜は、大気に暴露することなく、連続処理することが好ましい。例えば、マルチチャンバー方式の処理装置を用いればよい。また、上記マイクロ波処理を、PEALD装置の、プラズマ励起されたリアクタント(酸化剤)の処理で代替してもよい。ここで、リアクタント(酸化剤)としては、酸素ガスを用いればよい。
 また、マイクロ波処理後に減圧状態を保ったままで、加熱処理を行ってもよい。このような処理を行うことで、絶縁膜250A中、酸化物230b中、および酸化物230a中の水素を効率よく除去することができる。また、水素の一部は、導電体242(導電体242a、および導電体242b)にゲッタリングされる場合がある。または、マイクロ波処理後に減圧状態を保ったままで、加熱処理を行うステップを複数回繰り返して行ってもよい。加熱処理を繰り返し行うことで、絶縁膜250A中、酸化物230b中、および酸化物230a中の水素をさらに効率よく除去することができる。なお、加熱処理温度は、300℃以上500℃以下とすることが好ましい。
 また、マイクロ波処理を行って絶縁膜250Aの膜質を改質することで、水素、水、不純物等の拡散を抑制することができる。従って、導電体260となる導電膜の成膜などの後工程、または熱処理などの後処理により、絶縁体250を介して、水素、水、不純物等が、酸化物230b、酸化物230aなどへ拡散することを抑制することができる。
 次に、導電体260aとなる導電膜、導電体260bとなる導電膜を順に成膜する。導電体260aとなる導電膜および導電体260bとなる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。本実施の形態では、ALD法を用いて、導電体260aとなる導電膜を成膜し、CVD法を用いて導電体260bとなる導電膜を成膜する。
 次に、CMP処理によって、絶縁膜250A、導電体260aとなる導電膜、および導電体260bとなる導電膜を絶縁体280が露出するまで研磨することによって、トランジスタ200aおよびトランジスタ200bに対応する、絶縁体250、および導電体260(導電体260a、および導電体260b)をそれぞれ形成する(図11A乃至図11D参照。)。これにより、トランジスタ200aおよびトランジスタ200bの絶縁体250は、酸化物230bに達する2つの開口および酸化物230bの溝部の内壁(側壁、および底面)を覆うように配置される。また、トランジスタ200aおよびトランジスタ200bの導電体260は、絶縁体250を介して、上記2つの開口および上記溝部を埋め込むように配置される。
 次に、上記の加熱処理と同様の条件で加熱処理を行ってもよい。本実施の形態では、窒素雰囲気にて400℃の温度で1時間の処理を行う。該加熱処理によって、絶縁体250および絶縁体280中の水分濃度および水素濃度を低減させることができる。なお、上記加熱処理後、大気に曝すことなく連続して、絶縁体282の成膜を行ってもよい。
 次に、絶縁体250上、導電体260上、および絶縁体280上に、絶縁体282を形成する(図12A乃至図12D参照。)。絶縁体282の成膜は、スパッタリング法、CVD法、MBE法、PLD法、ALD法などを用いて行うことができる。絶縁体282の成膜は、スパッタリング法を用いて行うことが好ましい。成膜ガスに水素を用いなくてもよいスパッタリング法を用いることで、絶縁体282中の水素濃度を低減することができる。また、スパッタリング法を用いて、酸素を含む雰囲気で絶縁体282の成膜を行うことで、成膜しながら、絶縁体280に酸素を添加することができる。これにより、絶縁体280に過剰酸素を含ませることができる。このとき、基板加熱を行いながら、絶縁体282を成膜することが好ましい。
 本実施の形態では、絶縁体282として、酸素ガスを含む雰囲気でアルミニウムターゲットを用いて、パルスDCスパッタリング法で酸化アルミニウムを成膜する。パルスDCスパッタリング法を用いることで、膜厚分布をより均一にし、スパッタレート、および膜質を向上することができる。
 次に、絶縁体282上に、絶縁体283を形成する(図1A乃至図1D参照。)。絶縁体283の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。絶縁体283の成膜は、スパッタリング法を用いて行うことが好ましい。成膜ガスに水素を用いなくてもよいスパッタリング法を用いることで、絶縁体283中の水素濃度を低減することができる。また、絶縁体283は、多層としてもよい。例えば、スパッタリング法を用いて、窒化シリコンを成膜し、当該窒化シリコン上に、CVD法を用いて窒化シリコンを成膜してもよい。バリア性の高い絶縁体283および絶縁体212でトランジスタ200を包み込むことで、外部から水分、および水素が侵入するのを防止することができる。
 次に、加熱処理を行ってもよい。本実施の形態では、窒素雰囲気にて400℃の温度で1時間の処理を行う。当該加熱処理によって、図2で示したように、絶縁体282の成膜によって添加された酸素を絶縁体280、絶縁体250へ拡散させ、酸化物230のチャネル形成領域へ選択的に供給することができる。なお、当該加熱処理は、絶縁体283の形成後に限らず、絶縁体282の成膜後などに行ってもよい。
 以上により、図1A乃至図1Dに示すトランジスタ200を有する半導体装置を作製することができる。図4A乃至図12A、図4B乃至図12B、図4C乃至図12C、および図4D乃至図12Dに示すように、本実施の形態に示す半導体装置の作製方法を用いることで、トランジスタ200を作製することができる。
<マイクロ波処理装置>
 以下では、上記半導体装置の作製方法に用いることができる、マイクロ波処理装置について説明する。
 まずは、半導体装置などの製造時に不純物の混入が少ない製造装置の構成について図13、図14および図15を用いて説明する。
 図13は、枚葉式マルチチャンバーの製造装置2700の上面図を模式的に示している。製造装置2700は、基板を収容するカセットポート2761と、基板のアライメントを行うアライメントポート2762と、を備える大気側基板供給室2701と、大気側基板供給室2701から、基板を搬送する大気側基板搬送室2702と、基板の搬入を行い、かつ室内の圧力を大気圧から減圧、または減圧から大気圧へ切り替えるロードロック室2703aと、基板の搬出を行い、かつ室内の圧力を減圧から大気圧、または大気圧から減圧へ切り替えるアンロードロック室2703bと、真空中の基板の搬送を行う搬送室2704と、チャンバー2706aと、チャンバー2706bと、チャンバー2706cと、チャンバー2706dと、を有する。
 また、大気側基板搬送室2702は、ロードロック室2703aおよびアンロードロック室2703bと接続され、ロードロック室2703aおよびアンロードロック室2703bは、搬送室2704と接続され、搬送室2704は、チャンバー2706a、チャンバー2706b、チャンバー2706cおよびチャンバー2706dと接続する。
 なお、各室の接続部にはゲートバルブGVが設けられており、大気側基板供給室2701と、大気側基板搬送室2702を除き、各室を独立して真空状態に保持することができる。また、大気側基板搬送室2702には搬送ロボット2763aが設けられており、搬送室2704には搬送ロボット2763bが設けられている。搬送ロボット2763aおよび搬送ロボット2763bによって、製造装置2700内で基板を搬送することができる。
 搬送室2704および各チャンバーの背圧(全圧)は、例えば、1×10−4Pa以下、好ましくは3×10−5Pa以下、さらに好ましくは1×10−5Pa以下とする。また、搬送室2704および各チャンバーの質量電荷比(m/z)が18である気体分子(原子)の分圧は、例えば、3×10−5Pa以下、好ましくは1×10−5Pa以下、さらに好ましくは3×10−6Pa以下とする。また、搬送室2704および各チャンバーのm/zが28である気体分子(原子)の分圧は、例えば、3×10−5Pa以下、好ましくは1×10−5Pa以下、さらに好ましくは3×10−6Pa以下とする。また、搬送室2704および各チャンバーのm/zが44である気体分子(原子)の分圧は、例えば、3×10−5Pa以下、好ましくは1×10−5Pa以下、さらに好ましくは3×10−6Pa以下とする。
 なお、搬送室2704および各チャンバー内の全圧および分圧は、質量分析計を用いて測定することができる。例えば、株式会社アルバック製四重極形質量分析計(Q−massともいう。)Qulee CGM−051を用いればよい。
 また、搬送室2704および各チャンバーは、外部リークまたは内部リークが少ない構成とすることが望ましい。例えば、搬送室2704および各チャンバーのリークレートは、3×10−6Pa・m/s以下、好ましくは1×10−6Pa・m/s以下とする。また、例えば、m/zが18である気体分子(原子)のリークレートが1×10−7Pa・m/s以下、好ましくは3×10−8Pa・m/s以下とする。また、例えば、m/zが28である気体分子(原子)のリークレートが1×10−5Pa・m/s以下、好ましくは1×10−6Pa・m/s以下とする。また、例えば、m/zが44である気体分子(原子)のリークレートが3×10−6Pa・m/s以下、好ましくは1×10−6Pa・m/s以下とする。
 なお、リークレートに関しては、前述の質量分析計を用いて測定した全圧および分圧から導出すればよい。リークレートは、外部リークおよび内部リークに依存する。外部リークは、微小な穴やシール不良などによって真空系外から気体が流入することである。内部リークは、真空系内のバルブなどの仕切りからの漏れや内部の部材からの放出ガスに起因する。リークレートを上述の数値以下とするために、外部リークおよび内部リークの両面から対策をとる必要がある。
 例えば、搬送室2704および各チャンバーの開閉部分はメタルガスケットでシールするとよい。メタルガスケットは、フッ化鉄、酸化アルミニウム、または酸化クロムによって被覆された金属を用いると好ましい。メタルガスケットはOリングと比べ密着性が高く、外部リークを低減できる。また、フッ化鉄、酸化アルミニウム、酸化クロムなどによって被覆された金属の不動態を用いることで、メタルガスケットから放出される不純物を含む放出ガスが抑制され、内部リークを低減することができる。
 また、製造装置2700を構成する部材として、不純物を含む放出ガスの少ないアルミニウム、クロム、チタン、ジルコニウム、ニッケルまたはバナジウムを用いる。また、前述の部材を鉄、クロムおよびニッケルなどを含む合金に被覆して用いてもよい。鉄、クロムおよびニッケルなどを含む合金は、剛性があり、熱に強く、また加工に適している。ここで、表面積を小さくするために部材の表面凹凸を研磨などによって低減しておくと、放出ガスを低減できる。
 または、前述の製造装置2700の部材をフッ化鉄、酸化アルミニウム、酸化クロムなどで被覆してもよい。
 製造装置2700の部材は、極力金属のみで構成することが好ましく、例えば石英などで構成される覗き窓などを設置する場合も、放出ガスを抑制するために表面をフッ化鉄、酸化アルミニウム、酸化クロムなどで薄く被覆するとよい。
 搬送室2704および各チャンバーに存在する吸着物は、内壁などに吸着しているために搬送室2704および各チャンバーの圧力に影響しないが、搬送室2704および各チャンバーを排気した際のガス放出の原因となる。そのため、リークレートと排気速度に相関はないものの、排気能力の高いポンプを用いて、搬送室2704および各チャンバーに存在する吸着物をできる限り脱離し、あらかじめ排気しておくことは重要である。なお、吸着物の脱離を促すために、搬送室2704および各チャンバーをベーキングしてもよい。ベーキングすることで吸着物の脱離速度を10倍程度大きくすることができる。ベーキングは100℃以上450℃以下で行えばよい。このとき、不活性ガスを搬送室2704および各チャンバーに導入しながら吸着物の除去を行うと、排気するだけでは脱離しにくい水などの脱離速度をさらに大きくすることができる。なお、導入する不活性ガスをベーキングの温度と同程度に加熱することで、吸着物の脱離速度をさらに高めることができる。ここで不活性ガスとして希ガスを用いると好ましい。
 または、加熱した希ガスなどの不活性ガスまたは酸素などを導入することで搬送室2704および各チャンバー内の圧力を高め、一定時間経過後に再び搬送室2704および各チャンバーを排気する処理を行うと好ましい。加熱したガスの導入により搬送室2704および各チャンバー内の吸着物を脱離させることができ、搬送室2704および各チャンバー内に存在する不純物を低減することができる。なお、この処理は2回以上30回以下、好ましくは5回以上15回以下の範囲で繰り返し行うと効果的である。具体的には、温度が40℃以上400℃以下、好ましくは50℃以上200℃以下である不活性ガスまたは酸素などを導入することで搬送室2704および各チャンバー内の圧力を0.1Pa以上10kPa以下、好ましくは1Pa以上1kPa以下、さらに好ましくは5Pa以上100Pa以下とし、圧力を保つ期間を1分以上300分以下、好ましくは5分以上120分以下とすればよい。その後、搬送室2704および各チャンバーを5分以上300分以下、好ましくは10分以上120分以下の期間排気する。
 次に、チャンバー2706bおよびチャンバー2706cについて図14に示す断面模式図を用いて説明する。
 チャンバー2706bおよびチャンバー2706cは、例えば、被処理物にマイクロ波処理を行うことが可能なチャンバーである。なお、チャンバー2706bと、チャンバー2706cと、はマイクロ波処理を行う際の雰囲気が異なるのみである。そのほかの構成については共通するため、以下ではまとめて説明を行う。
 チャンバー2706bおよびチャンバー2706cは、スロットアンテナ板2808と、誘電体板2809と、基板ホルダ2812と、排気口2819と、を有する。また、チャンバー2706bおよびチャンバー2706cの外などには、ガス供給源2801と、バルブ2802と、高周波発生器2803と、導波管2804と、モード変換器2805と、ガス管2806と、導波管2807と、マッチングボックス2815と、高周波電源2816と、真空ポンプ2817と、バルブ2818と、が設けられる。
 高周波発生器2803は、導波管2804を介してモード変換器2805と接続している。モード変換器2805は、導波管2807を介してスロットアンテナ板2808に接続している。スロットアンテナ板2808は、誘電体板2809と接して配置される。また、ガス供給源2801は、バルブ2802を介してモード変換器2805に接続している。そして、モード変換器2805、導波管2807および誘電体板2809を通るガス管2806によって、チャンバー2706bおよびチャンバー2706cにガスが送られる。また、真空ポンプ2817は、バルブ2818および排気口2819を介して、チャンバー2706bおよびチャンバー2706cからガスなどを排気する機能を有する。また、高周波電源2816は、マッチングボックス2815を介して基板ホルダ2812に接続している。
 基板ホルダ2812は、基板2811を保持する機能を有する。例えば、基板2811を静電チャックまたは機械的にチャックする機能を有する。また、高周波電源2816から電力を供給される電極としての機能を有する。また、内部に加熱機構2813を有し、基板2811を加熱する機能を有する。
 真空ポンプ2817としては、例えば、ドライポンプ、メカニカルブースターポンプ、イオンポンプ、チタンサブリメーションポンプ、クライオポンプまたはターボ分子ポンプなどを用いることができる。また、真空ポンプ2817に加えて、クライオトラップを用いてもよい。クライオポンプおよびクライオトラップを用いると、水を効率よく排気できて特に好ましい。
 また、加熱機構2813としては、例えば、抵抗発熱体などを用いて加熱する加熱機構とすればよい。または、加熱されたガスなどの媒体からの熱伝導または熱輻射によって、加熱する加熱機構としてもよい。例えば、GRTA(Gas Rapid Thermal Annealing)またはLRTA(Lamp Rapid Thermal Annealing)などのRTA(Rapid Thermal Annealing)を用いることができる。GRTAは、高温のガスを用いて加熱処理を行う。ガスとしては、不活性ガスが用いられる。
 また、ガス供給源2801は、マスフローコントローラを介して、精製機と接続されていてもよい。ガスは、露点が−80℃以下、好ましくは−100℃以下であるガスを用いることが好ましい。例えば、酸素ガス、窒素ガス、および希ガス(アルゴンガスなど)を用いればよい。
 誘電体板2809としては、例えば、酸化シリコン(石英)、酸化アルミニウム(アルミナ)または酸化イットリウム(イットリア)などを用いればよい。また、誘電体板2809の表面に、さらに別の保護層が形成されていてもよい。保護層としては、酸化マグネシウム、酸化チタン、酸化クロム、酸化ジルコニウム、酸化ハフニウム、酸化タンタル、酸化シリコン、酸化アルミニウムまたは酸化イットリウムなどを用いればよい。誘電体板2809は、後述する高密度プラズマ2810の特に高密度領域に曝されることになるため、保護層を設けることで損傷を緩和することができる。その結果、処理時のパーティクルの増加などを抑制することができる。
 高周波発生器2803では、例えば、0.3GHz以上3.0GHz以下、0.7GHz以上1.1GHz以下、または2.2GHz以上2.8GHz以下のマイクロ波を発生させる機能を有する。高周波発生器2803で発生させたマイクロ波は、導波管2804を介してモード変換器2805に伝わる。モード変換器2805では、TEモードとして伝わったマイクロ波がTEMモードに変換される。そして、マイクロ波は、導波管2807を介してスロットアンテナ板2808に伝わる。スロットアンテナ板2808は、複数のスロット孔が設けられており、マイクロ波は該スロット孔および誘電体板2809を通過する。そして、誘電体板2809の下方に電界を生じさせ、高密度プラズマ2810を生成することができる。高密度プラズマ2810には、ガス供給源2801から供給されたガス種に応じたイオンおよびラジカルが存在する。例えば、酸素ラジカルなどが存在する。
 このとき、基板2811が高密度プラズマ2810で生成されたイオンおよびラジカルによって、基板2811上の膜などを改質することができる。なお、高周波電源2816を用いて、基板2811側にバイアスを印加すると好ましい場合がある。高周波電源2816には、例えば、13.56MHz、27.12MHzなどの周波数のRF(Radio Frequency)電源を用いればよい。基板側にバイアスを印加することで、高密度プラズマ2810中のイオンを基板2811上の膜などの開口部の奥まで効率よく到達させることができる。
 例えば、チャンバー2706bまたはチャンバー2706cで、ガス供給源2801から酸素を導入することで高密度プラズマ2810を用いた酸素ラジカル処理を行うことができる。
 次に、チャンバー2706aおよびチャンバー2706dについて図15に示す断面模式図を用いて説明する。
 チャンバー2706aおよびチャンバー2706dは、例えば、被処理物に電磁波の照射を行うことが可能なチャンバーである。なお、チャンバー2706aと、チャンバー2706dと、は電磁波の種類が異なるのみである。そのほかの構成については共通する部分が多いため、以下ではまとめて説明を行う。
 チャンバー2706aおよびチャンバー2706dは、一または複数のランプ2820と、基板ホルダ2825と、ガス導入口2823と、排気口2830と、を有する。また、チャンバー2706aおよびチャンバー2706dの外などには、ガス供給源2821と、バルブ2822と、真空ポンプ2828と、バルブ2829と、が設けられる。
 ガス供給源2821は、バルブ2822を介してガス導入口2823に接続している。真空ポンプ2828は、バルブ2829を介して排気口2830に接続している。ランプ2820は、基板ホルダ2825と向かい合って配置されている。基板ホルダ2825は、基板2824を保持する機能を有する。また、基板ホルダ2825は、内部に加熱機構2826を有し、基板2824を加熱する機能を有する。
 ランプ2820としては、例えば、可視光または紫外光などの電磁波を放射する機能を有する光源を用いればよい。例えば、波長10nm以上2500nm以下、500nm以上2000nm以下、または40nm以上340nm以下にピークを有する電磁波を放射する機能を有する光源を用いればよい。
 例えば、ランプ2820としては、ハロゲンランプ、メタルハライドランプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウムランプまたは高圧水銀ランプなどの光源を用いればよい。
 例えば、ランプ2820から放射される電磁波は、その一部または全部が基板2824に吸収されることで基板2824上の膜などを改質することができる。例えば、欠陥の生成もしくは低減、または不純物の除去などができる。なお、基板2824を加熱しながら行うと、効率よく、欠陥の生成もしくは低減、または不純物の除去などができる。
 または、例えば、ランプ2820から放射される電磁波によって、基板ホルダ2825を発熱させ、基板2824を加熱してもよい。その場合、基板ホルダ2825の内部に加熱機構2826を有さなくてもよい。
 真空ポンプ2828は、真空ポンプ2817についての記載を参照する。また、加熱機構2826は、加熱機構2813についての記載を参照する。また、ガス供給源2821は、ガス供給源2801についての記載を参照する。
 以上の製造装置を用いることで、被処理物への不純物の混入を抑制しつつ、膜の改質などが可能となる。
<半導体装置の変形例>
 以下では、図16A乃至図16Dを用いて、本発明の一態様である半導体装置の一例について説明する。
 図16Aは半導体装置の上面図を示す。また、図16Bは、図16Aに示すA1−A2の一点鎖線で示す部位に対応する断面図である。また、図16Cは、図16AにA3−A4の一点鎖線で示す部位に対応する断面図である。また、図16Dは、図16AにA5−A6の一点鎖線で示す部位に対応する断面図である。図16Aの上面図では、図の明瞭化のために一部の要素を省いている。
 なお、図16A乃至図16Dに示す半導体装置において、<半導体装置の構成例>に示した半導体装置を構成する構造と同機能を有する構造には、同符号を付記する。なお、本項目においても、半導体装置の構成材料については<半導体装置の構成例>で詳細に説明した材料を用いることができる。
 図16A乃至図16Dに示す半導体装置は、図1A乃至図1Dに示した半導体装置の変形例である。図16A乃至図16Dに示す半導体装置は、図1A乃至図1Dに示した半導体装置とは、酸化物230cおよび酸化物230dを有することが異なる。また、絶縁体271、絶縁体272、および絶縁体273を有することが異なる。
 図16A乃至図16Dに示す半導体装置では、トランジスタ200aおよびトランジスタ200bにおいて、酸化物230b上の酸化物230cと、酸化物230c上の酸化物230dと、をそれぞれ有する。酸化物230cおよび酸化物230dは、絶縁体280および絶縁体275に形成された開口の中に設けられる。また、酸化物230cは、絶縁体224の上面、酸化物230aの側面、酸化物230bの上面および側面、酸化物243の側面、導電体242の側面、絶縁体271の側面、絶縁体273の側面、絶縁体275の側面、および絶縁体280の側面とそれぞれ接する。また、酸化物230cの最上部、および酸化物230dの最上部は、絶縁体282に接する。
 酸化物230cの上に、酸化物230dを配置することで、酸化物230dよりも上方に形成された構造物からの、酸化物230bまたは酸化物230cに対する不純物の拡散を抑制することができる。また、酸化物230cの上に、酸化物230dを配置することで、酸化物230bまたは酸化物230cからの酸素の上方拡散を抑制することができる。
 また、トランジスタのチャネル長方向の断面視において、酸化物230bに溝部を設け、当該溝部に、酸化物230cを埋め込むことが好ましい。このとき、酸化物230cは、当該溝部の内壁(側壁、および底面)を覆うように配置される。また、酸化物230cの膜厚は、当該溝部の深さと同程度であることが好ましい。このような構成にすることで、導電体260などを埋め込むための開口を形成する際に、開口の底部にあたる酸化物230bの表面に損傷領域が形成されても、当該損傷領域を除去することができる。これにより、損傷領域に起因するトランジスタ200の電気特性の不良を抑制することができる。
 ここで、酸化物230cに用いる金属酸化物における、元素Mに対するInの原子数比が、酸化物230aまたは酸化物230dに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。
 なお、酸化物230cをキャリアの主たる経路とする場合には、酸化物230cにおいて、主成分である金属元素に対するインジウムの原子数比が、酸化物230bにおける、主成分である金属元素に対するインジウムの原子数比より大きいことが好ましい。また、酸化物230cにおいて、元素Mに対するInの原子数比が、酸化物230bにおける、元素Mに対するInの原子数比より大きいことが好ましい。インジウムの含有量が多い金属酸化物をチャネル形成領域に用いることで、トランジスタのオン電流を増大することができる。よって、酸化物230cにおいて、主成分である金属元素に対するインジウムの原子数比を、酸化物230bにおける、主成分である金属元素に対するインジウムの原子数比よりも大きくすることで、酸化物230cをキャリアの主たる経路とすることができる。また、酸化物230cの伝導帯下端は、酸化物230aおよび酸化物230bの伝導帯下端より真空準位から離れていることが好ましい。言い換えると、酸化物230cの電子親和力は、酸化物230aおよび酸化物230bの電子親和力より大きいことが好ましい。このとき、キャリアの主たる経路は酸化物230cとなる。
 酸化物230cとして、具体的には、In:M:Zn=4:2:3[原子数比]もしくはその近傍の組成、In:M:Zn=5:1:3[原子数比]もしくはその近傍の組成、またはIn:M:Zn=10:1:3[原子数比]もしくはその近傍の組成の金属酸化物、インジウム酸化物などを用いるとよい。
 また、酸化物230cとして、CAAC−OSを用いることが好ましく、酸化物230cが有する結晶のc軸が、酸化物230cの被形成面または上面に概略垂直な方向を向いていることが好ましい。CAAC−OSは、c軸と垂直方向に酸素を移動させやすい性質を有する。したがって、酸化物230cが有する酸素を、酸化物230bに効率的に供給することができる。
 また、酸化物230dは、酸化物230cに用いられる金属酸化物を構成する金属元素の少なくとも一つを含むことが好ましく、当該金属元素を全て含むことがより好ましい。例えば、酸化物230cとして、In−M−Zn酸化物、In−Zn酸化物、またはインジウム酸化物を用い、酸化物230dとして、In−M−Zn酸化物、M−Zn酸化物、または元素Mの酸化物を用いるとよい。これにより、酸化物230cと酸化物230dとの界面における欠陥準位密度を低くすることができる。
 また、酸化物230dの伝導帯下端が、酸化物230cの伝導帯下端より真空準位に近いことが好ましい。言い換えると、酸化物230dの電子親和力は、酸化物230cの電子親和力より小さいことが好ましい。この場合、酸化物230dは、酸化物230aまたは酸化物230bに用いることができる金属酸化物を用いることが好ましい。このとき、キャリアの主たる経路は酸化物230cとなる。
 具体的には、酸化物230cとして、In:M:Zn=4:2:3[原子数比]もしくはその近傍の組成、In:M:Zn=5:1:3[原子数比]もしくはその近傍の組成、またはIn:M:Zn=10:1:3[原子数比]もしくはその近傍の組成の金属酸化物、または、インジウム酸化物を用いればよい。また、酸化物230dとして、In:M:Zn=1:3:4[原子数比]もしくはその近傍の組成、M:Zn=2:1[原子数比]もしくはその近傍の組成、またはM:Zn=2:5[原子数比]もしくはその近傍の組成の金属酸化物、または、元素Mの酸化物を用いればよい。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。また、元素Mとして、ガリウムを用いることが好ましい。
 また、酸化物230dは、酸化物230cより、酸素の拡散または透過を抑制する金属酸化物であることが好ましい。絶縁体250と酸化物230cとの間に酸化物230dを設けることで、酸化物230cを介して、酸化物230bに効率的に酸素を供給することができる。
 また、酸化物230dに用いる金属酸化物において、主成分である金属元素に対するInの原子数比が、酸化物230cに用いる金属酸化物における、主成分である金属元素に対するInの原子数比より小さくすることで、Inが絶縁体250側に拡散するのを抑制することができる。例えば、酸化物230dにおいて、元素Mに対するInの原子数比を、酸化物230cにおける、元素Mに対するInの原子数比より小さくすればよい。絶縁体250は、ゲート絶縁体として機能するため、Inが絶縁体250などに混入した場合、トランジスタの特性不良となる。したがって、酸化物230cと絶縁体250との間に酸化物230dを設けることで、信頼性の高い半導体装置を提供することが可能となる。
 なお、酸化物230cは、トランジスタ200毎に設けてもよい。つまり、トランジスタ200の酸化物230cと、当該トランジスタ200にチャネル幅方向に隣接するトランジスタ200の酸化物230cとは接しなくてもよい。また、トランジスタ200の酸化物230cと、当該トランジスタ200にチャネル幅方向に隣接するトランジスタ200の酸化物230cと、を、離隔してもよい。別言すると、酸化物230cが、トランジスタ200と、当該トランジスタ200にチャネル幅方向に隣接するトランジスタ200との間に配置されない構成としてもよい。
 複数のトランジスタ200がチャネル幅方向に配置されている半導体装置において、上記構成にすることで、トランジスタ200に酸化物230cがそれぞれ独立して設けられる。よって、トランジスタ200と、当該トランジスタ200にチャネル幅方向に隣接するトランジスタ200との間に、寄生トランジスタが生じるのを抑制し、上記リークパスが生じるのを抑制することができる。したがって、良好な電気特性を有し、かつ、微細化または高集積化が可能な半導体装置を提供することができる。
 また、図16A乃至図16Dに示す半導体装置は、導電体242上の絶縁体271と、絶縁体271上の絶縁体273と、酸化物230bの側面、酸化物243の側面、および導電体242の側面に接する絶縁体272と、を有する。
 絶縁体271は、少なくとも酸素に対するバリア絶縁膜として機能することが好ましい。したがって、絶縁体271は、酸素の拡散を抑制する機能を有することが好ましい。例えば、絶縁体271は、絶縁体280よりも酸素の拡散を抑制する機能を有することが好ましい。絶縁体271としては、例えば、窒化シリコンなどのシリコンを含む窒化物を用いればよい。
 絶縁体273は、絶縁体224と同様に、過剰酸素領域または過剰酸素を有することが好ましい。また、絶縁体273中の水、水素などの不純物濃度は低減されていることが好ましい。例えば、絶縁体273は、酸化シリコン、酸化窒化シリコンなどのシリコンを含む酸化物を適宜用いればよい。過剰酸素を有する絶縁体を絶縁体250に接して設けることにより、絶縁体250を介して酸化物230に拡散した酸素が、酸化物230中の酸素欠損を低減し、トランジスタ200の信頼性を向上させることができる。
 絶縁体272は少なくとも酸素に対するバリア絶縁膜として機能することが好ましい。したがって、絶縁体272は、酸素の拡散を抑制する機能を有することが好ましい。例えば、絶縁体272は、絶縁体280よりも酸素の拡散を抑制する機能を有することが好ましい。絶縁体272としては、例えば、窒化シリコンなどのシリコンを含む窒化物を用いればよい。
 上記のような絶縁体271および絶縁体272を設けることで、酸素に対するバリア性を有する絶縁体で導電体242を包み込むことができる。つまり、絶縁体275成膜時に添加される酸素、または絶縁体273に含まれる酸素が、導電体242に拡散するのを防ぐことができる。これにより、絶縁体275成膜時に添加される酸素、または絶縁体273に含まれる酸素などによって、導電体242が直接酸化されて抵抗率が増大し、オン電流が低減するのを抑制することができる。
 なお、図1Bなどにおいて、絶縁体272が、酸化物230a、酸化物230b、酸化物243、導電体242、絶縁体271、および絶縁体273の側面に接する構成について示したが、絶縁体272は、少なくとも絶縁体271および導電体242の側面に接していればよい。例えば、絶縁体272が酸化物230a、酸化物230b、酸化物243、導電体242、および絶縁体271の側面に接し、絶縁体273に接していない構成になる場合もある。この場合、絶縁体273の側面が絶縁体275に接することになる。
 本発明の一態様により、微細化または高集積化が可能な半導体装置を提供することができる。または、本発明の一態様により、記憶容量の大きい半導体装置を提供することができる。または、本発明の一態様により、トランジスタ特性のばらつきが少ない半導体装置を提供することができる。または、本発明の一態様により、信頼性が良好な半導体装置を提供することができる。または、本発明の一態様により、良好な電気特性を有する半導体装置を提供することができる。または、本発明の一態様により、オン電流が大きい半導体装置を提供することができる。または、本発明の一態様により、微細化または高集積化が可能な半導体装置を提供することができる。または、本発明の一態様により、低消費電力の半導体装置を提供することができる。または、本発明の一態様により、新規な半導体装置を提供することができる。
 以上、本実施の形態に示す構成、方法などは、本実施の形態に示す他の構成、方法、他の実施の形態に示す構成、方法などと適宜組み合わせて用いることができる。
(実施の形態2)
 本実施の形態では、記憶装置として用いることができる半導体装置の一形態を、図17乃至図22を用いて説明する。
[記憶装置1]
 本発明の一態様に係る半導体装置(記憶装置)の一例を図17Aに示す。図17Aに示す半導体装置は、トランジスタ200aの上に容量素子100aが配置され、トランジスタ200bの上に容量素子100bが配置される。なお、以下において、容量素子100aおよび容量素子100bをまとめて容量素子100とよぶ場合がある。
 トランジスタ200aおよびトランジスタ200bとして、先の実施の形態で説明したトランジスタ200aおよびトランジスタ200bを用いることができる。つまり、図17Aに示す半導体装置は、図1に示す半導体装置の上に容量素子100aおよび容量素子100bを設けた構成である。なお、トランジスタ200a、およびトランジスタ200b、の構成については、先の実施の形態に示すトランジスタ200a、およびトランジスタ200bに係る記載を参酌することができる。
 ここで、トランジスタ200aのソースおよびドレインの一方は、容量素子100aの第1の電極に電気的に接続され、トランジスタ200aのソースおよびドレインの他方は、トランジスタ200bのソースおよびドレインの一方に電気的に接続され、トランジスタ200bのソースおよびドレインの他方は、容量素子100bの第1の電極に電気的に接続される。このように接続された、トランジスタ200aと容量素子100a、およびトランジスタ200bと容量素子100bは、それぞれ記憶装置のメモリセルとして機能させることができる。よって、以下において、図17Aに示すような、トランジスタ200a、トランジスタ200b、容量素子100a、および容量素子100bを有する半導体装置をメモリユニット400とよぶ場合がある。
 メモリユニット400において、導電体248を酸化物230の下に設けることで、導電体248、および導電体248に接して設けられるビット線の寄生容量を低減することができる。これにより、容量素子100に求められる静電容量が低減され、容量素子100を小型化することができる。例えば、容量素子100aがトランジスタ200aに重畳し、容量素子100bがトランジスタ200bに重畳すればよい。このように、容量素子100を小型化することで、メモリユニット400を微細化または高集積化させることができる。さらに、メモリユニット400を微細化または高集積化することで、記憶容量の大きい半導体装置を提供することができる。
 また、メモリユニット400において、導電体248を酸化物230の下に設けることで、容量素子100aおよび容量素子100bと、メモリユニット400の取り出しプラグが干渉するのを防ぐことができる。これにより、メモリユニット400の占有面積を増加させずに、容量素子100aおよび容量素子100bの静電容量を大きくすることができる。
 容量素子100は、絶縁体283の上に設けられる。容量素子100は、第1の電極として機能する導電体110と、第2の電極として機能する導電体120、および誘電体として機能する絶縁体130とを有する。
 導電体110、および導電体120としては、導電体205などに用いることができる、導電体を用いればよい。なお、図17では、導電体110、および導電体120は単層構造を示したが、当該構成に限定されず、2層以上の積層構造でもよい。例えば、バリア性を有する導電体と導電性が高い導電体との間に、バリア性を有する導電体、および導電性が高い導電体に対して密着性が高い導電体を形成してもよい。
 また、絶縁体130は、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウム、酸化ハフニウム、酸化窒化ハフニウム、窒化酸化ハフニウム、窒化ハフニウムなどを用いればよく、積層または単層で設けることができる。
 例えば、絶縁体130には、酸化窒化シリコンなどの絶縁耐力が大きい材料と、高誘電率(high−k)材料との積層構造を用いることが好ましい。当該構成により、容量素子100は、高誘電率(high−k)の絶縁体を有することで、十分な容量を確保でき、絶縁耐力が大きい絶縁体を有することで、絶縁耐力が向上し、容量素子100の静電破壊を抑制することができる。
 なお、高誘電率(high−k)材料(高い比誘電率の材料)の絶縁体としては、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物またはシリコンおよびハフニウムを有する窒化物などがある。
 一方、絶縁耐力が大きい材料(低い比誘電率の材料)としては、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンまたは樹脂などがある。
 また、トランジスタ200aと容量素子100aを電気的に接続するプラグ、およびトランジスタ200bと容量素子100bを電気的に接続するプラグとして機能する導電体240が設けられる。
 図17Aに示すように、トランジスタ200aと容量素子100aの間に設けられる導電体240は、下面が導電体242aに接し、上面が容量素子100aの導電体110に接する。また、トランジスタ200bと容量素子100bの間に設けられる導電体240は、下面が導電体242cに接し、上面が容量素子100bの導電体110に接する。さらに、プラグとして機能する導電体240の側面に接して絶縁体241が設けられることが好ましい。
 絶縁体275、絶縁体280、絶縁体282、および絶縁体283の開口の内壁に接して絶縁体241が設けられ、絶縁体241の側面に接して導電体240の第1の導電体が設けられ、さらに内側に導電体240の第2の導電体が設けられている。なお、図17では、導電体240の第1の導電体および導電体240の第2の導電体を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体240を単層、または3層以上の積層構造として設ける構成にしてもよい。
 導電体240は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体240は積層構造としてもよい。導電体240を積層構造とする場合、絶縁体283、絶縁体282、絶縁体280、および絶縁体275と接する導電体には、水、水素などの不純物の透過を抑制する機能を有する導電性材料を用いることが好ましい。例えば、タンタル、窒化タンタル、チタン、窒化チタン、ルテニウム、酸化ルテニウムなどを用いることが好ましい。また、水、水素などの不純物の透過を抑制する機能を有する導電性材料は、単層または積層で用いてもよい。これにより、絶縁体283より上層に含まれる水、水素などの不純物が、導電体240を通じて酸化物230に混入するのを抑制することができる。
 絶縁体241としては、例えば、窒化シリコン、酸化アルミニウム、窒化酸化シリコンなどの絶縁体を用いればよい。絶縁体241は、絶縁体283、絶縁体282、および絶縁体275に接して設けられるので、絶縁体280などに含まれる水、水素などの不純物が、導電体240を通じて酸化物230に混入するのを抑制することができる。特に、窒化シリコンは水素に対するバリア性が高いので好適である。また、絶縁体280に含まれる酸素が導電体240に吸収されるのを防ぐことができる。
 また、図17Bに示すように、メモリユニット400と、メモリユニット400と同様の構成を有するメモリユニット401を、チャネル長方向に配列してもよい。
 図17Bに示す半導体装置は、絶縁体212の下に絶縁体210が設けられ、絶縁体210の下に導電体288が設けられている。導電体288の上面は、メモリユニット400およびメモリユニット401の導電体248の下面に接している。ここで、絶縁体212は、絶縁体280に用いることができる絶縁体を用いればよい。また、導電体288は、導電体205に用いることができる導電体を用いればよい。
 導電体288は配線として機能する。つまり、メモリユニット400およびメモリユニット401は、それぞれ導電体248を介して、配線として機能する導電体288に電気的に接続されている。
 ここで、ビット線として機能する導電体288と、ワード線として機能する導電体260は、直交して配列されることが好ましい。導電体288と導電体260の交わる領域にトランジスタ200および容量素子100が形成されており、トランジスタ200および容量素子100からなるメモリセルがマトリクス状に配置される。
 このように、同じ層にメモリユニットをマトリクス状に配列することで、セルアレイ(メモリユニット層ともいう。)を構成することができる。この様なセルアレイの構成とすることで、隣り合うセルの間隔を小さくすることができるので、セルアレイの投影面積を小さくすることができ、高集積化が可能となる。
[記憶装置2]
 次に、本発明の一態様に係る半導体装置(記憶装置)の一例を図18に示す。本発明の一態様の半導体装置は、図17Aに示したメモリユニット400がトランジスタ300の上方に設けられている。つまり、トランジスタ300の上方に、トランジスタ200aおよびトランジスタ200bが設けられ、トランジスタ200aおよびトランジスタ200bの上方に容量素子100aおよび容量素子100bが設けられている。なお、容量素子100、およびトランジスタ200として、上述した容量素子100、およびトランジスタ200を用いることができ、詳細な構造を参酌することができる。
 トランジスタ200は、酸化物半導体を有する半導体層にチャネルが形成されるトランジスタである。トランジスタ200は、オフ電流が小さいため、これを記憶装置に用いることにより長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作を必要としない、あるいは、リフレッシュ動作の頻度が極めて少ないため、記憶装置の消費電力を十分に低減することができる。
 また、先の実施の形態で述べたように、In−M−Zn酸化物などの金属酸化物は、スパッタリング法などを用いて基板上に成膜することができる。よって、シリコン基板に形成したトランジスタ300などで構成される駆動回路などの上に重ねて、トランジスタ200および容量素子100などで形成されるメモリユニット400を設けることができる。これにより、1チップに設けられる周辺回路の占有面積を低減し、メモリセルアレイの占有面積を増やすことができるので、半導体装置の記憶容量を大きくすることができる。
 また、図18に示す記憶装置は、マトリクス状に配置することで、メモリセルアレイを構成することができる。
<トランジスタ300>
 トランジスタ300は、基板311上に設けられ、ゲートとして機能する導電体316、ゲート絶縁体として機能する絶縁体315、基板311の一部からなる半導体領域313、およびソース領域またはドレイン領域として機能する低抵抗領域314a、および低抵抗領域314bを有する。トランジスタ300は、pチャネル型、あるいはnチャネル型のいずれでもよい。
 ここで、図18に示すトランジスタ300はチャネルが形成される半導体領域313(基板311の一部)が凸形状を有する。また、半導体領域313の側面および上面を、絶縁体315を介して、導電体316が覆うように設けられている。なお、導電体316は仕事関数を調整する材料を用いてもよい。このようなトランジスタ300は半導体基板の凸部を利用していることからFIN型トランジスタとも呼ばれる。なお、凸部の上部に接して、凸部を形成するためのマスクとして機能する絶縁体を有していてもよい。また、ここでは半導体基板の一部を加工して凸部を形成する場合を示したが、SOI基板を加工して凸形状を有する半導体膜を形成してもよい。
 なお、図18に示すトランジスタ300は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。
<配線層>
 各構造体の間には、層間膜、配線、およびプラグ等が設けられた配線層が設けられていてもよい。また、配線層は、設計に応じて複数層設けることができる。ここで、プラグまたは配線としての機能を有する導電体は、複数の構造をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と電気的に接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。
 例えば、トランジスタ300上には、層間膜として、絶縁体320、絶縁体322、絶縁体324、および絶縁体326が順に積層して設けられている。また、絶縁体320、絶縁体322、絶縁体324、および絶縁体326には容量素子100、またはトランジスタ200と電気的に接続する導電体328、および導電体330等が埋め込まれている。なお、導電体328、および導電体330はプラグ、または配線として機能する。
 また、層間膜として機能する絶縁体は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP)法等を用いた平坦化処理により平坦化されていてもよい。
 絶縁体326、および導電体330上に、配線層を設けてもよい。例えば、図18において、絶縁体350、絶縁体352、及び絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、及び絶縁体354には、導電体356が形成されている。導電体356は、プラグ、または配線として機能する。
 絶縁体354および導電体356上には絶縁体358が設けられ、絶縁体358の上には、配線として機能する導電体288が設けられる。さらに、導電体288の上には、絶縁体210が設けられる。絶縁体210上には、先の実施の形態に示す、絶縁体212、絶縁体214、絶縁体216、絶縁体222、絶縁体224、絶縁体280、絶縁体282および絶縁体283が設けられ、これらの絶縁体の中にトランジスタ200a、およびトランジスタ200bが形成される。
 絶縁体210、絶縁体212、絶縁体214、絶縁体216、絶縁体222および絶縁体224には、導電体248および絶縁体249が埋め込まれている。ここで、導電体248は、導電体288に上面に接して設けられる。
 また、上述のように導電体242の上面に接して、プラグとして機能する導電体240が設けられる。なお、プラグとして機能する導電体240の側面に接して絶縁体241が設けられる。また、絶縁体283上、および導電体240上には、導電体240に接して導電体110が設けられる。また、絶縁体283上の、絶縁体280と重畳しない領域に絶縁体274が設けられる。
 絶縁体283の上には、上述した容量素子100aおよび容量素子100bが形成される。さらに、容量素子100を形成する、導電体120、および絶縁体130上には、絶縁体150が設けられている。
 層間膜として用いることができる絶縁体としては、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物などがある。
 例えば、層間膜として機能する絶縁体には、比誘電率が低い材料を用いることで、配線間に生じる寄生容量を低減することができる。したがって、絶縁体の機能に応じて、材料を選択するとよい。
 例えば、絶縁体150、絶縁体274、絶縁体210、絶縁体358、絶縁体352、および絶縁体354等には、比誘電率の低い絶縁体を有することが好ましい。例えば、当該絶縁体は、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンまたは樹脂などを有することが好ましい。または、当該絶縁体は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコンまたは空孔を有する酸化シリコンと、樹脂との積層構造を有することが好ましい。酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、樹脂と組み合わせることで、熱的に安定かつ比誘電率の低い積層構造とすることができる。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネートまたはアクリルなどがある。
 また、酸化物半導体を用いたトランジスタは、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体で囲うことによって、トランジスタの電気特性を安定にすることができる。従って、絶縁体283、絶縁体282、絶縁体214、絶縁体212および絶縁体350等には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体を用いればよい。
 水素などの不純物および酸素の透過を抑制する機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。具体的には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体として、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウムまたは酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いることができる。
 配線、プラグに用いることができる導電体としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウムなどから選ばれた金属元素を1種以上含む材料を用いることができる。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
 例えば、導電体328、導電体330、導電体356、導電体288、導電体110、および導電体120等としては、上記の材料で形成される金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。または、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
<酸化物半導体が設けられた層の配線、またはプラグ>
 なお、トランジスタ200に、酸化物半導体を用いる場合、酸化物半導体の近傍に過剰酸素領域を有する絶縁体が設けることがある。その場合、該過剰酸素領域を有する絶縁体と、該過剰酸素領域を有する絶縁体に設ける導電体との間に、バリア性を有する絶縁体を設けることが好ましい。
 例えば、図18では、過剰酸素を有する絶縁体280と、導電体240との間に、絶縁体241を設けるとよい。絶縁体241と、絶縁体275、絶縁体282、および絶縁体283とが接して設けられることで、絶縁体224、およびトランジスタ200は、バリア性を有する絶縁体によって封止される構造とすることができる。
 つまり、絶縁体241を設けることで、絶縁体280が有する過剰酸素が、導電体240に吸収されることを抑制することができる。また、絶縁体241を有することで、不純物である水素が、導電体240を介して、トランジスタ200へ拡散することを抑制することができる。
 なお、絶縁体241としては、水または水素などの不純物、および酸素の拡散を抑制する機能を有する絶縁性材料を用いるとよい。例えば、窒化シリコン、窒化酸化シリコン、酸化アルミニウムまたは酸化ハフニウムなどを用いることが好ましい。特に、窒化シリコンは水素に対するバリア性が高いため好ましい。また、他にも、例えば、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジムまたは酸化タンタルなどの金属酸化物などを用いることができる。
 また、図18に示すように、絶縁体280などがパターニングされ、絶縁体212と絶縁体283が接する構造にしてもよい。つまり、トランジスタ200が、絶縁体212、絶縁体214、絶縁体282、および絶縁体283で封止される構成にしてもよい。このような構成とすることで、絶縁体274、絶縁体150などに含まれる水素が絶縁体280などに混入するのを低減することができる。
 ここで絶縁体283、および絶縁体282には導電体240が貫通しているが、上記の通り、絶縁体241が導電体240に接して設けられている。これにより、導電体240を介して、絶縁体212、絶縁体214、絶縁体282、および絶縁体283の内側に混入する水素を低減することができる。このようにして、絶縁体212、絶縁体214、絶縁体282、絶縁体283、および絶縁体241でトランジスタ200を封止し、絶縁体274等に含まれる水素などの不純物が外側から混入するのを低減することができる。
<ダイシングライン>
 以下では、大面積基板を半導体素子ごとに分断することによって、複数の半導体装置をチップ状で取り出す場合に設けられるダイシングライン(スクライブライン、分断ライン、又は切断ラインと呼ぶ場合がある)について説明する。分断方法としては、例えば、まず、基板に半導体素子を分断するための溝(ダイシングライン)を形成した後、ダイシングラインにおいて切断し、複数の半導体装置に分断(分割)する場合がある。
 ここで、例えば、図18に示すように、絶縁体283と、絶縁体212とが接する領域がダイシングラインと重なるように設計することが好ましい。つまり、複数のメモリユニット400の外縁に設けられるダイシングラインとなる領域近傍において、絶縁体282、絶縁体280、絶縁体275、絶縁体224、絶縁体222、絶縁体216、および絶縁体214に開口を設ける。
 つまり、絶縁体282、絶縁体280、絶縁体275、絶縁体224、絶縁体222、絶縁体216、および絶縁体214に設けた開口において、絶縁体212と、絶縁体283とが接する。例えば、このとき、絶縁体212と、絶縁体283とを同材料及び同方法を用いて形成してもよい。絶縁体212、および絶縁体283を、同材料、および同方法で設けることで、密着性を高めることができる。例えば、窒化シリコンを用いることが好ましい。
 当該構造により、絶縁体212、絶縁体214、絶縁体282、および絶縁体283で、トランジスタ200を包み込むことができる。絶縁体212、絶縁体214、絶縁体282、および絶縁体283の少なくとも一は、酸素、水素、及び水の拡散を抑制する機能を有しているため、本実施の形態に示す半導体素子が形成された回路領域ごとに、基板を分断することにより、複数のチップに加工しても、分断した基板の側面方向から、水素又は水などの不純物が混入し、トランジスタ200に拡散することを防ぐことができる。
 また、当該構造により、絶縁体280、および絶縁体224の過剰酸素が外部に拡散することを防ぐことができる。従って、絶縁体280、および絶縁体224の過剰酸素は、効率的にトランジスタ200におけるチャネルが形成される酸化物に供給される。当該酸素により、トランジスタ200におけるチャネルが形成される酸化物の酸素欠損を低減することができる。これにより、トランジスタ200におけるチャネルが形成される酸化物を欠陥準位密度が低い、安定な特性を有する酸化物半導体とすることができる。つまり、トランジスタ200の電気特性の変動を抑制すると共に、信頼性を向上させることができる。
 なお、図17、および図18に示す記憶装置では、容量素子100aおよび容量素子100bの形状をプレーナ型としたが、本実施の形態に示す記憶装置はこれに限られるものではない。たとえば、図19に示すように、容量素子100aおよび容量素子100bの形状をシリンダ型にしてもよい。なお、図19に示す記憶装置は、絶縁体150より下の構成は、図18に示す半導体装置と同様である。
 図19に示す容量素子100aおよび容量素子100bは、絶縁体130上の絶縁体150と、絶縁体150上の絶縁体142と、絶縁体150および絶縁体142に形成された開口の中に配置された導電体115と、導電体115および絶縁体142上の絶縁体145と、絶縁体145上の導電体125と、導電体125および絶縁体145上の絶縁体152と、をそれぞれ有する。ここで、絶縁体150および絶縁体142に形成された二つの開口の中に導電体115、絶縁体145、および導電体125の少なくとも一部が配置される。また、絶縁体152上に絶縁体154が配置され、絶縁体154上に導電体153と絶縁体156が配置される。また、絶縁体152および絶縁体154に形成された開口の中に導電体140が設けられている。
 導電体115は容量素子100の下部電極として機能し、導電体125は容量素子100の上部電極として機能し、絶縁体145は、容量素子100の誘電体として機能する。容量素子100は、絶縁体150および絶縁体142の開口において、底面だけでなく、側面においても上部電極と下部電極とが誘電体を挟んで対向する構成となっており、単位面積当たりの静電容量を大きくすることができる。よって、当該開口の深さを深くするほど、容量素子100の静電容量を大きくすることができる。このように容量素子100の単位面積当たりの静電容量を大きくすることにより、半導体装置の微細化または高集積化を推し進めることができる。
 絶縁体152は、絶縁体280に用いることができる絶縁体を用いればよい。また、絶縁体142は、絶縁体150の開口を形成するときのエッチングストッパとして機能することが好ましく、絶縁体214に用いることができる絶縁体を用いればよい。
 絶縁体150および絶縁体142に形成された開口を上面から見た形状は、四角形としてもよいし、四角形以外の多角形状としてもよいし、多角形状において角部を湾曲させた形状としてもよいし、楕円を含む円形状としてもよい。ここで、上面視において、当該開口とトランジスタ200の重なる面積が多い方が好ましい。このような構成にすることにより、容量素子100とトランジスタ200を有する半導体装置の占有面積を低減することができる。
 導電体115は、絶縁体142、および絶縁体150に形成された開口に接して配置される。導電体115の上面は、絶縁体142の上面と略一致することが好ましい。また、導電体115の下面は、絶縁体130の開口を介して導電体110に接する。導電体115は、ALD法またはCVD法などを用いて成膜することが好ましく、例えば、導電体205に用いることができる導電体を用いればよい。
 絶縁体145は、導電体115および絶縁体142を覆うように配置される。例えば、ALD法またはCVD法などを用いて絶縁体145を成膜することが好ましい。絶縁体145は、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化ジルコニウム、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウム、酸化ハフニウム、酸化窒化ハフニウム、窒化酸化ハフニウム、窒化ハフニウムなどを用いればよく、積層または単層で設けることができる。例えば、絶縁体145として、酸化ジルコニウム、酸化アルミニウム、酸化ジルコニウムの順番で積層された絶縁膜を用いることができる。
 また、絶縁体145には、酸化窒化シリコンなどの絶縁耐力が大きい材料、または高誘電率(high−k)材料を用いることが好ましい。または、絶縁耐力が大きい材料と高誘電率(high−k)材料の積層構造を用いてもよい。
 なお、高誘電率(high−k)材料(高い比誘電率の材料)の絶縁体としては、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する窒化物などがある。このようなhigh−k材料を用いることで、絶縁体145を厚くしても容量素子100の静電容量を十分確保することができる。絶縁体145を厚くすることにより、導電体115と導電体125の間に生じるリーク電流を抑制することができる。
 一方、絶縁耐力が大きい材料としては、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、樹脂などがある。例えば、ALD法を用いて成膜した窒化シリコン(SiN)、PEALD法を用いて成膜した酸化シリコン(SiO)、ALD法を用いて成膜した窒化シリコン(SiN)の順番で積層された絶縁膜を用いることができる。このような、絶縁耐力が大きい絶縁体を用いることで、絶縁耐力が向上し、容量素子100の静電破壊を抑制することができる。
 導電体125は、絶縁体142および絶縁体150に形成された開口を埋めるように配置される。また、導電体125は、導電体140、を介して配線として機能する導電体153と電気的に接続されている。導電体125は、ALD法またはCVD法などを用いて成膜することが好ましく、例えば、導電体205に用いることができる導電体を用いればよい。
 また、導電体153は、絶縁体154上に設けられており、絶縁体156に覆われている。導電体153は、導電体110に用いることができる導電体を用いればよく、絶縁体156は、絶縁体152に用いることができる絶縁体を用いればよい。ここで、導電体153は導電体140の上面に接している。
[記憶装置3]
 本発明の一態様に係る半導体装置(記憶装置)の一例を図20、および図21に示す。
 図20Aに示すメモリユニット400は、容量素子100aおよび容量素子100bの形状が、図17Aに示すメモリユニット400と異なる。
 容量素子100aは、導電体242aと、導電体242aを覆って設けられた絶縁体275と、絶縁体275上の導電体294aと、を有する。また、容量素子100bは、導電体242cと、導電体242cを覆って設けられた絶縁体275と、絶縁体275上の導電体294bと、を有する。すなわち、容量素子100aおよび容量素子100bは、MIM(Metal−Insulator−Metal)容量を構成している。
 ここで、容量素子100が有する一対の電極の一方、すなわち導電体242は、トランジスタ200のソース電極またはドレイン電極を兼ねることができる。また、容量素子100が有する誘電体層は、トランジスタ200に設けられる保護層、すなわち絶縁体275を兼ねることができる。したがって、容量素子100の作製工程において、トランジスタの作製工程の一部を兼用することができるため、生産性の高い半導体装置とすることができる。また、容量素子100が有する一対の電極の一方、すなわち導電体242は、トランジスタ200のソース電極またはドレイン電極を兼ねているため、トランジスタ200と、容量素子100とが配置される面積を低減させることが可能となる。
 なお、導電体294aおよび導電体294bとしては、例えば、導電体242に用いることのできる材料を用いればよい。
 また、例えば、図20Bに示すようにメモリユニット400と、メモリユニット400と同様の構成を有するメモリユニット401が容量部を介して接続されている構成としてもよい。ここで、図20Bに示す、メモリユニット400およびメモリユニット401は、図20Aに示すメモリユニット400と同様の構造を有する。よって、図20Bに示す、メモリユニット400およびメモリユニット401の構造の詳細は、図20Aに示すメモリユニット400に係る記載を参酌することができる。
 図20Bは、トランジスタ200a、トランジスタ200b、容量素子100a、および容量素子100bを有するメモリユニット400と、メモリユニット400と同様の構成を有するメモリユニット401が容量部を介して接続されている断面図である。
 図20Bに示すように、メモリユニット400が有する容量素子100bの一方の電極として機能する導電体294bは、メモリユニット400と同様の構成を有するメモリユニット401が有する容量デバイスの一方の電極を兼ねる構成となっている。また、図示しないが、メモリユニット400が有する容量素子100aの一方の電極として機能する導電体294aが、メモリユニット400の左側、つまり図20Bにおいて、A1方向に隣接する半導体装置の容量デバイスの一方の電極を兼ねている。また、メモリユニット401の右側、つまり、図20Bにおいて、A2方向のセルについても同様の構成となっている。
 このように、同じ層にメモリユニットをマトリクス状に配列することで、セルアレイを構成することができる。この様なセルアレイの構成とすることで、隣り合うセルの間隔を小さくすることができるので、セルアレイの投影面積を小さくすることができ、高集積化が可能となる。
 また、図17Bと同様に、図20Bに示す半導体装置も、絶縁体212の下に絶縁体210を設けられ、絶縁体210の下に導電体288を設けられている。また、導電体288の上面は、メモリユニット400およびメモリユニット401の導電体248の下面に接している。よって、メモリユニット400およびメモリユニット401は、それぞれ導電体248を介して、配線として機能する導電体288に電気的に接続されている。また、ビット線として機能する導電体288と、ワード線として機能する導電体260は、直交して配列されることが好ましい。
 また、図20A、図20Bに示す構造のメモリユニット400を有するセルアレイを1層のみでなく、積層する構成としてもよい。図21に、メモリユニット400を有するセルアレイ610をn層積層する構成の断面図を示す。図21に示すように、複数のセルアレイ(セルアレイ610_1乃至セルアレイ610_n)を積層することにより、セルアレイの占有面積を増やすことなく、セルを集積して配置することができる。つまり、3Dセルアレイを構成することができる。また、図20A、図20Bに示す構造の容量素子100は、導電体260の上面より低い位置に形成することができるので、シリンダ構造の容量素子を用いた場合と比較して、各セルアレイの高さを低くすることができる。これにより、比較的容易に複数のセルアレイを積層することができる。このようにして、メモリセルの高集積化を図り、記憶容量の大きい半導体装置を提供することができる。
[記憶装置4]
 本発明の一態様に係る半導体装置(記憶装置)の一例を図22に示す。
 図22は、メモリ470がトランジスタ200Tを有するトランジスタ層413と、4層のメモリユニット層415(メモリユニット層415_1乃至メモリユニット層415_4)を有する例を示す。なお、トランジスタ200Tは、先の実施の形態に示すトランジスタ200と同様の構造を有する。
 メモリユニット層415_1乃至メモリユニット層415_4は、それぞれ複数のメモリユニット400を有する。メモリユニット層415_1乃至メモリユニット層415_4が有するメモリユニット400は、図20Aに示すメモリユニット400と同様の構造を有する。よって、メモリユニット400の詳細は、図20Aに係る記載などを参酌することができる。
 ここで、メモリユニット層415_1に設けられた導電体248_1は、トランジスタ200Tと電気的に接続され、メモリユニット層415_2に設けられた導電体248_2は、メモリユニット層415_1に設けられた導電体242bに接続され、メモリユニット層415_3に設けられた導電体248_3は、メモリユニット層415_2に設けられた導電体242bに接続され、メモリユニット層415_4に設けられた導電体248_4は、メモリユニット層415_3に設けられた導電体242bに接続される。なお、図22では、導電体248_1がトランジスタ200Tのゲート電極に接続されているが、本発明はこれに限られるものではなく、導電体248_1の接続は、メモリ470の回路構成などに合わせて適宜設定すればよい。
 先の実施の形態で示したように、酸化物230bの領域232bは、導電体242bと重畳しているため、キャリア濃度が高く、電気伝導性を有する。よって、上記の構成にすることで、各メモリユニット層415に設けられた、メモリユニット400の領域232bと、トランジスタ200Tを、導電体248を介して電気的に接続することができる。
 以上のようにして、複数のメモリユニット層を積層することができるので、セルアレイの占有面積を増やすことなく、メモリセルを集積して配置することができる。よって、メモリセルの高集積化を図り、記憶容量の大きい半導体装置を提供することができる。
 メモリ470は、絶縁体212、絶縁体214、絶縁体282、および絶縁体283により封止される(便宜的に、以下では封止構造と呼ぶ)。絶縁体283の周囲には絶縁体274が設けられる。また、絶縁体274、絶縁体283、および絶縁体212には導電体440が設けられ、素子層411と電気的に接続する。
 また、封止構造の内部には、絶縁体280が設けられる。絶縁体280は、加熱により酸素を放出する機能を有する。または、絶縁体280は、過剰酸素領域を有する。
 なお、絶縁体212、および絶縁体283は、水素に対するバリア性が高い機能を有する材料であると好適である。また、絶縁体214、および絶縁体282は、水素を捕獲、または水素を固着する機能を有する材料であると好適である。
 例えば、上記水素に対するバリア性が高い機能を有する材料は、窒化シリコン、または窒化酸化シリコンなどが挙げられる。また、上記水素を捕獲、または水素を固着する機能を有する材料は、酸化アルミニウム、酸化ハフニウム、並びにアルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などが挙げられる。
 なお、絶縁体212、絶縁体214、絶縁体282、および絶縁体283に用いる材料の結晶構造については、特に限定は無いが、非晶質または結晶性を有する構造とすればよい。例えば、水素を捕獲、または水素を固着する機能を有する材料として、非晶質の酸化アルミニウム膜を用いると好適である。非晶質の酸化アルミニウムは、結晶性の高い酸化アルミニウムよりも、水素の捕獲、および固着する量が大きい場合がある。
 また、トランジスタ層413とメモリユニット層415の間、または各メモリユニット層415の間にも、絶縁体282、および絶縁体214が設けられることが好ましい。また、絶縁体282、および絶縁体214の間に絶縁体296が設けられることが好ましい。絶縁体296は、絶縁体283と同様の材料を用いることができる。または、酸化シリコン、酸化窒化シリコンを用いることができる。または、公知の絶縁性材料を用いてもよい。
 ここで、絶縁体280中の過剰酸素は、絶縁体280と接する酸化物半導体中の水素の拡散に対し、下記のようなモデルが考えられる。
 酸化物半導体中に存在する水素は、酸化物半導体に接する絶縁体280を介して、他の構造体へと拡散する。当該水素の拡散により、絶縁体280中の過剰酸素が酸化物半導体中の水素と反応しOH結合となり、絶縁体280中を拡散する。OH結合を有した水素原子は、水素を捕獲、または水素を固着する機能を有する材料(代表的には、絶縁体282)に到達した際に、水素原子は絶縁体282中の原子(例えば、金属原子など)と結合した酸素原子と反応し、絶縁体282中に捕獲、または固着する。一方、OH結合を有していた過剰酸素の酸素原子は、過剰酸素として絶縁体280中に残ると推測される。つまり、当該水素の拡散において、絶縁体280中の過剰酸素が、橋渡し的な役割を担う蓋然性が高い。
 上記のモデルを満たすためには、半導体装置の作製プロセスが重要な要素の一つとなる。
 一例として、酸化物半導体に、過剰酸素を有する絶縁体280を形成し、その後、絶縁体282を形成する。そのあとに、加熱処理を行うことが好ましい。当該加熱処理は、具体的には、酸素を含む雰囲気、窒素を含む雰囲気、または酸素と窒素の混合雰囲気にて、350℃以上、好ましくは400℃以上の温度で行う。加熱処理の時間は、1時間以上、好ましくは4時間以上、さらに好ましくは8時間以上とする。
 上記の加熱処理によって、酸化物半導体中の水素が、絶縁体280、および絶縁体282を介して、外方に拡散することができる。つまり、酸化物半導体、及び当該酸化物半導体近傍に存在する水素の絶対量を低減することができる。
 上記加熱処理のあと、絶縁体283を形成する。絶縁体283は、水素に対するバリア性が高い機能を有する材料であるため、外方に拡散させた水素、または外部に存在する水素を、内部、具体的には、酸化物半導体、または絶縁体280側に入り込むのを抑制することができる。
 なお、上記の加熱処理については、絶縁体282を形成したあとに行う構成について、例示したが、これに限定されない。例えば、トランジスタ層413の形成後、またはメモリユニット層415_1乃至メモリユニット層415_3の形成後に、それぞれ上記加熱処理を行っても良い。また、上記加熱処理によって、水素を外方に拡散させる際には、トランジスタ層413の上方または横方向に水素が拡散される。同様に、メモリユニット層415_1乃至メモリユニット層415_3形成後に加熱処理をする場合においては、水素は上方または横方向に拡散される。
 なお、上記の作製プロセスとすることで、絶縁体212と、絶縁体283と、が接着し、上述した封止構造が形成される。
 以上のように、上記の構造、及び上記の作製プロセスとすることで、水素濃度が低減された酸化物半導体を用いた半導体装置を提供することができる。従って、信頼性が良好な半導体装置を提供することができる。また、本発明の一態様により、良好な電気特性を有する半導体装置を提供することができる。
 本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、構造、方法などと適宜組み合わせて用いることができる。
(実施の形態3)
 本実施の形態では、図23A、図23Bおよび図24A乃至図24Cを用いて、本発明の一態様に係る、酸化物を半導体に用いたトランジスタ(以下、OSトランジスタと呼ぶ場合がある。)、および容量素子が適用されている記憶装置(以下、OSメモリ装置と呼ぶ場合がある。)について説明する。OSメモリ装置は、少なくとも容量素子と、容量素子の充放電を制御するOSトランジスタを有する記憶装置である。OSトランジスタのオフ電流は極めて小さいので、OSメモリ装置は優れた保持特性をもち、不揮発性メモリとして機能させることができる。
<記憶装置の構成例>
 図23AにOSメモリ装置の構成の一例を示す。記憶装置1400は、周辺回路1411、およびメモリセルアレイ1470を有する。周辺回路1411は、行回路1420、列回路1430、出力回路1440、およびコントロールロジック回路1460を有する。
 列回路1430は、例えば、列デコーダ、プリチャージ回路、センスアンプ、書き込み回路等を有する。プリチャージ回路は、配線をプリチャージする機能を有する。センスアンプは、メモリセルから読み出されたデータ信号を増幅する機能を有する。なお、上記配線は、メモリセルアレイ1470が有するメモリセルに接続されている配線であり、詳しくは後述する。増幅されたデータ信号は、出力回路1440を介して、データ信号RDATAとして記憶装置1400の外部に出力される。また、行回路1420は、例えば、行デコーダ、ワード線ドライバ回路等を有し、アクセスする行を選択することができる。
 記憶装置1400には、外部から電源電圧として低電源電圧(VSS)、周辺回路1411用の高電源電圧(VDD)、メモリセルアレイ1470用の高電源電圧(VIL)が供給される。また、記憶装置1400には、制御信号(CE、WE、RE)、アドレス信号ADDR、データ信号WDATAが外部から入力される。アドレス信号ADDRは、行デコーダおよび列デコーダに入力され、データ信号WDATAは書き込み回路に入力される。
 コントロールロジック回路1460は、外部から入力される制御信号(CE、WE、RE)を処理して、行デコーダ、列デコーダの制御信号を生成する。制御信号CEは、チップイネーブル信号であり、制御信号WEは、書き込みイネーブル信号であり、制御信号REは、読み出しイネーブル信号である。コントロールロジック回路1460が処理する信号は、これに限定されるものではなく、必要に応じて、他の制御信号を入力すればよい。
 メモリセルアレイ1470は、行列状に配置された、複数個のメモリセルMCaおよびメモリセルMCbと、複数の配線を有する。なお、本実施の形態に示す記憶装置は、図23Aに示すように、メモリセルMCa、およびメモリセルMCbが組になって、1個のメモリユニットを形成している。また、以下において、メモリセルMCaとメモリセルMCbをまとめてメモリセルMCとよぶ場合がある。また、メモリセルアレイ1470と行回路1420とを接続している配線の数は、メモリセルMCの構成、一列に有するメモリセルMCの数などによって決まる。また、メモリセルアレイ1470と列回路1430とを接続している配線の数は、メモリセルMCの構成、一行に有するメモリセルMCの数などによって決まる。
 なお、図23Aにおいて、周辺回路1411とメモリセルアレイ1470を同一平面上に形成する例について示したが、本実施の形態はこれに限られるものではない。例えば、図23Bに示すように、周辺回路1411の一部の上に、メモリセルアレイ1470が重なるように設けられてもよい。例えば、メモリセルアレイ1470の下に重なるように、センスアンプを設ける構成にしてもよい。
 先の実施の形態で述べたように、In−M−Zn酸化物などの金属酸化物は、スパッタリング法などを用いて基板上に成膜することができる。よって、シリコン基板に形成した周辺回路1411の上に重ねて、メモリセルアレイ1470を設けることができる。これにより、1チップに設けることができるメモリセルアレイの占有面積を増やすことができるので、半導体装置の記憶容量を大きくすることができる。
 また、メモリセルアレイ1470を複数積層する構成にしてもよい。複数のメモリセルアレイ1470を積層することにより、メモリセルアレイ1470の占有面積を増やすことなく、メモリセルを集積して配置することができる。つまり、3Dセルアレイを構成することができる。このようにして、メモリセルの高集積化を図り、記憶容量の大きい半導体装置を提供することができる。
 図24A乃至図24Cに上述のメモリセルMCaおよびメモリセルMCbに適用できるメモリセルの構成例について説明する。
[DOSRAM]
 図24A乃至図24Cに、DRAMのメモリセルの回路構成例を示す。本明細書等において、1OSトランジスタ1容量素子型のメモリセルを用いたDRAMを、DOSRAM(Dynamic Oxide Semiconductor Random Access Memory)と呼ぶ場合がある。図24Aに示す、メモリユニット1471は、メモリセルMCaおよびメモリセルMCbを有する。ここで、メモリセルMCaはトランジスタM1aと、容量素子CAaと、を有し、メモリセルMCbは、トランジスタM1bと、容量素子CAbと、を有する。なお、トランジスタM1aおよびトランジスタM1bは、ゲート(トップゲートと呼ぶ場合がある。)、及びバックゲートを有する。
 トランジスタM1aの第1端子は、容量素子CAaの第1端子と接続され、トランジスタM1aの第2端子は、配線BILと接続され、トランジスタM1aのゲートは、配線WOLaと接続され、トランジスタM1aのバックゲートは、配線BGLaと接続されている。容量素子CAaの第2端子は、配線CALと接続されている。同様に、トランジスタM1bの第1端子は、容量素子CAbの第1端子と接続され、トランジスタM1bの第2端子は、配線BILと接続され、トランジスタM1bのゲートは、配線WOLbと接続され、トランジスタM1bのバックゲートは、配線BGLbと接続されている。容量素子CAbの第2端子は、配線CALと接続されている。
 配線BILは、ビット線として機能し、配線WOLaおよび配線WOLbは、ワード線として機能する。配線CALは、容量素子CAaおよび容量素子CAbの第2端子に所定の電位を印加するための配線として機能する。データの書き込み時、及び読み出し時において、配線CALには、低レベル電位を印加するのが好ましい。配線BGLaは、トランジスタM1aのバックゲートに電位を印加するための配線として機能し、配線BGLbは、トランジスタM1bのバックゲートに電位を印加するための配線として機能する。配線BGLa(配線BGLb)に任意の電位を印加することによって、トランジスタM1a(トランジスタM1b)のしきい値電圧を増減することができる。
 ここで、図24Aに示すメモリユニット1471は、図17Aなどに示すメモリユニット400に対応している。つまり、トランジスタM1aはトランジスタ200aに、容量素子CAaは容量素子100aに、トランジスタM1bはトランジスタ200bに、容量素子CAbは容量素子100bに、対応している。また、配線WOLaはトランジスタ200aの導電体260に、配線WOLbはトランジスタ200bの導電体260に、配線BILは、導電体248および導電体288に、対応している。
 また、本実施の形態に係る記憶装置は、メモリユニット1471に限定されず、回路構成の変更を行うことができる。例えば、本実施の形態に係る記憶装置は、図24Bに示すメモリユニット1472のように、トランジスタM1aのバックゲートが、配線BGLaでなく、配線WOLaに、トランジスタM1bのバックゲートが、配線BGLbでなく、配線WOLbに、接続される構成にしてもよい。また、例えば、本実施の形態に係る記憶装置は、図24Cに示すメモリユニット1473ように、シングルゲート構造のトランジスタ、つまりバックゲートを有さないトランジスタM1a、およびトランジスタM1bで構成されてもよい。
 上記実施の形態に示す半導体装置をメモリユニット1471等に用いる場合、トランジスタM1aとしてトランジスタ200aを用い、トランジスタM1bとしてトランジスタ200bを用い、容量素子CAaとして容量素子100aを用い、容量素子CAbとして容量素子100bを用いることができる。トランジスタM1aおよびトランジスタM1bとしてOSトランジスタを用いることによって、トランジスタM1aおよびトランジスタM1bのリーク電流を非常に小さくすることができる。つまり、書き込んだデータをトランジスタM1aおよびトランジスタM1bによって長時間保持することができるため、メモリセルのリフレッシュの頻度を少なくすることができる。また、メモリセルのリフレッシュ動作を不要にすることができる。また、リーク電流が非常に小さいため、メモリユニット1471、メモリユニット1472、メモリユニット1473に対して多値データ、又はアナログデータを保持することができる。
 また、DOSRAMにおいて、上記のように、メモリセルアレイ1470の下に重なるように、センスアンプを設ける構成にすると、ビット線を短くすることができる。特に、先の実施の形態に示すように、酸化物230の下に導電体248を設けることで、酸化物230の上に導電体248を設けるよりも、ビット線を短くすることができる。これにより、ビット線容量が小さくなり、メモリセルの保持容量を低減することができる。
 なお、本実施の形態に示す、周辺回路1411、メモリセルアレイ1470等の構成は、上記に限定されるものではない。これらの回路、および当該回路に接続される配線、回路素子等の、配置または機能は、必要に応じて、変更、削除、または追加してもよい。
 本実施の形態に示す構成は、他の実施の形態などに示す構成と適宜組み合わせて用いることができる。
(実施の形態4)
 本実施の形態では、図25Aおよび図25Bを用いて、本発明の半導体装置が実装されたチップ1200の一例を示す。チップ1200には、複数の回路(システム)が実装されている。このように、複数の回路(システム)を一つのチップに集積する技術を、システムオンチップ(System on Chip:SoC)と呼ぶ場合がある。
 図25Aに示すように、チップ1200は、CPU1211、GPU1212、一または複数のアナログ演算部1213、一または複数のメモリコントローラ1214、一または複数のインターフェース1215、一または複数のネットワーク回路1216等を有する。
 チップ1200には、バンプ(図示しない)が設けられ、図25Bに示すように、プリント基板(Printed Circuit Board:PCB)1201の第1の面と接続する。また、PCB1201の第1の面の裏面には、複数のバンプ1202が設けられており、マザーボード1203と接続する。
 マザーボード1203には、DRAM1221、フラッシュメモリ1222等の記憶装置が設けられていてもよい。例えば、DRAM1221に先の実施の形態に示すDOSRAMを用いることができる。先の実施の形態に示すDOSRAMをDRAM1221に用いることで、DRAM1221の記憶容量を大きくすることができる。
 CPU1211は、複数のCPUコアを有することが好ましい。また、GPU1212は、複数のGPUコアを有することが好ましい。また、CPU1211、およびGPU1212は、それぞれ一時的にデータを格納するメモリを有していてもよい。または、CPU1211、およびGPU1212に共通のメモリが、チップ1200に設けられていてもよい。該メモリには、前述したDOSRAMなどを用いることができる。また、GPU1212は、多数のデータの並列計算に適しており、画像処理や積和演算に用いることができる。GPU1212に、本発明に係る酸化物半導体を用いた画像処理回路や、積和演算回路を設けることで、画像処理、および積和演算を低消費電力で実行することが可能になる。
 また、CPU1211、およびGPU1212が同一チップに設けられていることで、CPU1211およびGPU1212間の配線を短くすることができ、CPU1211からGPU1212へのデータ転送、CPU1211、およびGPU1212が有するメモリ間のデータ転送、およびGPU1212での演算後に、GPU1212からCPU1211への演算結果の転送を高速に行うことができる。
 アナログ演算部1213はA/D(アナログ/デジタル)変換回路、およびD/A(デジタル/アナログ)変換回路の一、または両方を有する。また、アナログ演算部1213に上記積和演算回路を設けてもよい。
 メモリコントローラ1214は、DRAM1221のコントローラとして機能する回路、およびフラッシュメモリ1222のインターフェースとして機能する回路を有する。
 インターフェース1215は、表示装置、スピーカー、マイクロフォン、カメラ、コントローラなどの外部接続機器とのインターフェース回路を有する。コントローラとは、マウス、キーボード、ゲーム用コントローラなどを含む。このようなインターフェースとして、USB(Universal Serial Bus)、HDMI(登録商標)(High−Definition Multimedia Interface)などを用いることができる。
 ネットワーク回路1216は、LAN(Local Area Network)などとの接続を制御する機能を有する。また、ネットワークセキュリティー用の回路を有してもよい。
 チップ1200には、上記回路(システム)を同一の製造プロセスで形成することが可能である。そのため、チップ1200に必要な回路の数が増えても、製造プロセスを増やす必要が無く、チップ1200を低コストで作製することができる。
 GPU1212を有するチップ1200が設けられたPCB1201、DRAM1221、およびフラッシュメモリ1222が設けられたマザーボード1203は、GPUモジュール1204と呼ぶことができる。
 GPUモジュール1204は、SoC技術を用いたチップ1200を有しているため、そのサイズを小さくすることができる。また、画像処理に優れていることから、スマートフォン、タブレット端末、ラップトップPC、携帯型(持ち出し可能な)ゲーム機などの携帯型電子機器に用いることが好適である。また、GPU1212を用いた積和演算回路により、ディープニューラルネットワーク(DNN)、畳み込みニューラルネットワーク(CNN)、再帰型ニューラルネットワーク(RNN)、自己符号化器、深層ボルツマンマシン(DBM)、深層信念ネットワーク(DBN)などの手法を実行することができるため、チップ1200をAIチップ、またはGPUモジュール1204をAIシステムモジュールとして用いることができる。
 本実施の形態に示す構成は、他の実施の形態などに示す構成と適宜組み合わせて用いることができる。
(実施の形態5)
 本実施の形態は、上記実施の形態に示す記憶装置などが組み込まれた電子部品および電子機器の一例を示す。
<電子部品>
 まず、記憶装置720が組み込まれた電子部品の例を、図26Aおよび図26Bを用いて説明を行う。
 図26Aに電子部品700および電子部品700が実装された基板(実装基板704)の斜視図を示す。図26Aに示す電子部品700は、モールド711内に記憶装置720を有している。図26Aは、電子部品700の内部を示すために、一部を省略している。電子部品700は、モールド711の外側にランド712を有する。ランド712は電極パッド713と電気的に接続され、電極パッド713は記憶装置720とワイヤ714によって電気的に接続されている。電子部品700は、例えばプリント基板702に実装される。このような電子部品が複数組み合わされて、それぞれがプリント基板702上で電気的に接続されることで実装基板704が完成する。
 記憶装置720は、駆動回路層721と、記憶回路層722と、を有する。例えば、先の実施の形態に示す3Dセルアレイを用いることで、記憶回路層722を形成することができる。
 図26Bに電子部品730の斜視図を示す。電子部品730は、SiP(System in package)またはMCM(Multi Chip Module)の一例である。電子部品730は、パッケージ基板732(プリント基板)上にインターポーザ731が設けられ、インターポーザ731上に半導体装置735、および複数の記憶装置720が設けられている。
 電子部品730では、記憶装置720を広帯域メモリ(HBM:High Bandwidth Memory)として用いる例を示している。また、半導体装置735は、CPU、GPU、FPGAなどの集積回路(半導体装置)を用いることができる。
 パッケージ基板732は、セラミック基板、プラスチック基板、ガラスエポキシ基板などを用いることができる。インターポーザ731は、シリコンインターポーザ、樹脂インターポーザなどを用いることができる。
 インターポーザ731は、複数の配線を有し、端子ピッチの異なる複数の集積回路を電気的に接続する機能を有する。複数の配線は、単層または多層で設けられる。また、インターポーザ731は、インターポーザ731上に設けられた集積回路をパッケージ基板732に設けられた電極と電気的に接続する機能を有する。これらのことから、インターポーザを「再配線基板」または「中間基板」と呼ぶ場合がある。また、インターポーザ731に貫通電極を設けて、当該貫通電極を用いて集積回路とパッケージ基板732を電気的に接続する場合もある。また、シリコンインターポーザでは、貫通電極として、TSV(Through Silicon Via)を用いることも出来る。
 インターポーザ731としてシリコンインターポーザを用いることが好ましい。シリコンインターポーザでは能動素子を設ける必要が無いため、集積回路よりも低コストで作製することができる。一方で、シリコンインターポーザの配線形成は半導体プロセスで行なうことができるため、樹脂インターポーザでは難しい微細配線の形成が容易である。
 HBMでは、広いメモリバンド幅を実現するために多くの配線を接続する必要がある。このため、HBMを実装するインターポーザには、微細かつ高密度の配線形成が求められる。よって、HBMを実装するインターポーザには、シリコンインターポーザを用いることが好ましい。
 また、シリコンインターポーザを用いたSiPやMCMなどでは、集積回路とインターポーザ間の膨張係数の違いによる信頼性の低下が生じにくい。また、シリコンインターポーザは表面の平坦性が高いため、シリコンインターポーザ上に設ける集積回路とシリコンインターポーザ間の接続不良が生じにくい。特に、インターポーザ上に複数の集積回路を横に並べて配置する2.5Dパッケージ(2.5次元実装)では、シリコンインターポーザを用いることが好ましい。
 また、電子部品730と重ねてヒートシンク(放熱板)を設けてもよい。ヒートシンクを設ける場合は、インターポーザ731上に設ける集積回路の高さを揃えることが好ましい。例えば、本実施の形態に示す電子部品730では、記憶装置720と半導体装置735の高さを揃えることが好ましい。
 電子部品730を他の基板に実装するため、パッケージ基板732の底部に電極733を設けてもよい。図26Bでは、電極733を半田ボールで形成する例を示している。パッケージ基板732の底部に半田ボールをマトリクス状に設けることで、BGA(Ball Grid Array)実装を実現できる。また、電極733を導電性のピンで形成してもよい。パッケージ基板732の底部に導電性のピンをマトリクス状に設けることで、PGA(Pin Grid Array)実装を実現できる。
 電子部品730は、BGAおよびPGAに限らず様々な実装方法を用いて他の基板に実装することができる。例えば、SPGA(Staggered Pin Grid Array)、LGA(Land Grid Array)、QFP(Quad Flat Package)、QFJ(Quad Flat J−leaded package)、またはQFN(Quad Flat Non−leaded package)などの実装方法を用いることができる。
 本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態6)
 本実施の形態では、先の実施の形態に示す半導体装置を用いた記憶装置の応用例について説明する。先の実施の形態に示す半導体装置は、例えば、各種電子機器(例えば、情報端末、コンピュータ、スマートフォン、電子書籍端末、デジタルカメラ(ビデオカメラも含む)、録画再生装置、ナビゲーションシステムなど)の記憶装置に適用できる。なお、ここで、コンピュータとは、タブレット型のコンピュータ、ノート型のコンピュータ、デスクトップ型のコンピュータの他、サーバシステムのような大型のコンピュータを含むものである。または、先の実施の形態に示す半導体装置は、SSD(ソリッド・ステート・ドライブ)等の各種のリムーバブル記憶装置に適用することができる。図27Aおよび図27Bにリムーバブル記憶装置の構成例を模式的に示す。例えば、先の実施の形態に示す半導体装置は、パッケージングされたメモリチップに加工され、様々なストレージ装置、リムーバブルメモリに用いることができる。
 図27AはSSDの外観の模式図であり、図27Bは、SSDの内部構造の模式図である。SSD1150は、筐体1151、コネクタ1152および基板1153を有する。基板1153は筐体1151に収納されている。例えば、基板1153には、メモリチップ1154、メモリチップ1155、コントローラチップ1156が取り付けられている。メモリチップ1155はコントローラチップ1156のワークメモリであり、例えば、先の実施の形態に示すDOSRAMチップを用いればよい。基板1153の裏面側にもメモリチップ1154を設けることで、SSD1150の容量を増やすことができる。
 本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
(実施の形態7)
 本発明の一態様に係る半導体装置は、CPUやGPUなどのプロセッサ、またはチップに用いることができる。図28A乃至図28Hに、本発明の一態様に係るCPUやGPUなどのプロセッサ、またはチップを備えた電子機器の具体例を示す。
<電子機器・システム>
 本発明の一態様に係るGPUまたはチップは、様々な電子機器に搭載することができる。電子機器の例としては、例えば、テレビジョン装置、デスクトップ型またはノート型の情報端末用などのモニタ、デジタルサイネージ(Digital Signage:電子看板)、パチンコ機などの大型ゲーム機、などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、電子ブックリーダー、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。また、本発明の一態様に係るGPUまたはチップを電子機器に設けることにより、電子機器に人工知能を搭載することができる。
 本発明の一態様の電子機器は、アンテナを有していてもよい。アンテナで信号を受信することで、表示部で映像や情報等の表示を行うことができる。また、電子機器がアンテナ及び二次電池を有する場合、アンテナを、非接触電力伝送に用いてもよい。
 本発明の一態様の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)を有していてもよい。
 本発明の一態様の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。図28A乃至図28Hに、電子機器の例を示す。
[情報端末]
 図28Aには、情報端末の一種である携帯電話(スマートフォン)が図示されている。情報端末5100は、筐体5101と、表示部5102と、を有しており、入力用インターフェースとして、タッチパネルが表示部5102に備えられ、ボタンが筐体5101に備えられている。
 情報端末5100は、本発明の一態様のチップを適用することで、人工知能を利用したアプリケーションを実行することができる。人工知能を利用したアプリケーションとしては、例えば、会話を認識してその会話内容を表示部5102に表示するアプリケーション、表示部5102に備えるタッチパネルに対してユーザが入力した文字、図形などを認識して、表示部5102に表示するアプリケーション、指紋や声紋などの生体認証を行うアプリケーションなどが挙げられる。
 図28Bには、ノート型情報端末5200が図示されている。ノート型情報端末5200は、情報端末の本体5201と、表示部5202と、キーボード5203と、を有する。
 ノート型情報端末5200は、先述した情報端末5100と同様に、本発明の一態様のチップを適用することで、人工知能を利用したアプリケーションを実行することができる。人工知能を利用したアプリケーションとしては、例えば、設計支援ソフトウェア、文章添削ソフトウェア、献立自動生成ソフトウェアなどが挙げられる。また、ノート型情報端末5200を用いることで、新規の人工知能の開発を行うことができる。
 なお、上述では、電子機器としてスマートフォン、およびノート型情報端末を例として、それぞれ図28A、図28Bに図示したが、スマートフォン、およびノート型情報端末以外の情報端末を適用することができる。スマートフォン、およびノート型情報端末以外の情報端末としては、例えば、PDA(Personal Digital Assistant)、デスクトップ型情報端末、ワークステーションなどが挙げられる。
[ゲーム機]
 図28Cは、ゲーム機の一例である携帯ゲーム機5300を示している。携帯ゲーム機5300は、筐体5301、筐体5302、筐体5303、表示部5304、接続部5305、操作キー5306等を有する。筐体5302、および筐体5303は、筐体5301から取り外すことが可能である。筐体5301に設けられている接続部5305を別の筐体(図示せず)に取り付けることで、表示部5304に出力される映像を、別の映像機器(図示せず)に出力することができる。このとき、筐体5302、および筐体5303は、それぞれ操作部として機能することができる。これにより、複数のプレイヤーが同時にゲームを行うことができる。筐体5301、筐体5302、および筐体5303の基板に設けられているチップなどに先の実施の形態に示すチップを組み込むことができる。
 また、図28Dは、ゲーム機の一例である据え置き型ゲーム機5400を示している。据え置き型ゲーム機5400には、無線または有線でコントローラ5402が接続されている。
 携帯ゲーム機5300、据え置き型ゲーム機5400などのゲーム機に本発明の一態様のGPUまたはチップを適用することによって、低消費電力のゲーム機を実現することができる。また、低消費電力により、回路からの発熱を低減することができるため、発熱によるその回路自体、周辺回路、およびモジュールへの影響を少なくすることができる。
 更に、携帯ゲーム機5300に本発明の一態様のGPUまたはチップを適用することによって、人工知能を有する携帯ゲーム機5300を実現することができる。
 本来、ゲームの進行、ゲーム上に登場する生物の言動、ゲーム上で発生する現象などの表現は、そのゲームが有するプログラムによって定められているが、携帯ゲーム機5300に人工知能を適用することにより、ゲームのプログラムに限定されない表現が可能になる。例えば、プレイヤーが問いかける内容、ゲームの進行状況、時刻、ゲーム上に登場する人物の言動が変化するといった表現が可能となる。
 また、携帯ゲーム機5300で複数のプレイヤーが必要なゲームを行う場合、人工知能によって擬人的にゲームプレイヤーを構成することができるため、対戦相手を人工知能によるゲームプレイヤーとすることによって、1人でもゲームを行うことができる。
 図28C、図28Dでは、ゲーム機の一例として携帯ゲーム機、および据え置き型ゲーム機を図示しているが、本発明の一態様のGPUまたはチップを適用するゲーム機はこれに限定されない。本発明の一態様のGPUまたはチップを適用するゲーム機としては、例えば、娯楽施設(ゲームセンター、遊園地など)に設置されるアーケードゲーム機、スポーツ施設に設置されるバッティング練習用の投球マシンなどが挙げられる。
[大型コンピュータ]
 本発明の一態様のGPUまたはチップは、大型コンピュータに適用することができる。
 図28Eは、大型コンピュータの一例である、スーパーコンピュータ5500を示す図である。図28Fは、スーパーコンピュータ5500が有するラックマウント型の計算機5502を示す図である。
 スーパーコンピュータ5500は、ラック5501と、複数のラックマウント型の計算機5502と、を有する。なお、複数の計算機5502は、ラック5501に格納されている。また、計算機5502には、複数の基板5504が設けられ、当該基板上に上記実施の形態で説明したGPUまたはチップを搭載することができる。
 スーパーコンピュータ5500は、主に科学技術計算に利用される大型コンピュータである。科学技術計算では、膨大な演算を高速に処理する必要があるため、消費電力が高く、チップの発熱が大きい。スーパーコンピュータ5500に本発明の一態様のGPUまたはチップを適用することによって、低消費電力のスーパーコンピュータを実現することができる。また、低消費電力により、回路からの発熱を低減することができるため、発熱によるその回路自体、周辺回路、およびモジュールへの影響を少なくすることができる。
 図28E、図28Fでは、大型コンピュータの一例としてスーパーコンピュータを図示しているが、本発明の一態様のGPUまたはチップを適用する大型コンピュータはこれに限定されない。本発明の一態様のGPUまたはチップを適用する大型コンピュータとしては、例えば、サービスを提供するコンピュータ(サーバー)、大型汎用コンピュータ(メインフレーム)などが挙げられる。
[移動体]
 本発明の一態様のGPUまたはチップは、移動体である自動車、および自動車の運転席周辺に適用することができる。
 図28Gは、移動体の一例である自動車の室内におけるフロントガラス周辺を示す図である。図28Gでは、ダッシュボードに取り付けられた表示パネル5701、表示パネル5702、表示パネル5703の他、ピラーに取り付けられた表示パネル5704を図示している。
 表示パネル5701乃至表示パネル5703は、スピードメーターやタコメーター、走行距離、燃料計、ギア状態、エアコンの設定などを表示することで、その他様々な情報を提供することができる。また、表示パネルに表示される表示項目やレイアウトなどは、ユーザの好みに合わせて適宜変更することができ、デザイン性を高めることが可能である。表示パネル5701乃至表示パネル5703は、照明装置として用いることも可能である。
 表示パネル5704には、自動車に設けられた撮像装置(図示しない。)からの映像を映し出すことによって、ピラーで遮られた視界(死角)を補完することができる。すなわち、自動車の外側に設けられた撮像装置からの画像を表示することによって、死角を補い、安全性を高めることができる。また、見えない部分を補完する映像を映すことによって、より自然に違和感なく安全確認を行うことができる。表示パネル5704は、照明装置として用いることもできる。
 本発明の一態様のGPUまたはチップは人工知能の構成要素として適用できるため、例えば、当該チップを自動車の自動運転システムに用いることができる。また、当該チップを道路案内、危険予測などを行うシステムに用いることができる。表示パネル5701乃至表示パネル5704には、道路案内、危険予測などの情報を表示する構成としてもよい。
 なお、上述では、移動体の一例として自動車について説明しているが、移動体は自動車に限定されない。例えば、移動体としては、電車、モノレール、船、飛行体(ヘリコプター、無人航空機(ドローン)、飛行機、ロケット)なども挙げることができ、これらの移動体に本発明の一態様のチップを適用して、人工知能を利用したシステムを付与することができる。
[電化製品]
 図28Hは、電化製品の一例である電気冷凍冷蔵庫5800を示している。電気冷凍冷蔵庫5800は、筐体5801、冷蔵室用扉5802、冷凍室用扉5803等を有する。
 電気冷凍冷蔵庫5800に本発明の一態様のチップを適用することによって、人工知能を有する電気冷凍冷蔵庫5800を実現することができる。人工知能を利用することによって電気冷凍冷蔵庫5800は、電気冷凍冷蔵庫5800に保存されている食材、その食材の消費期限などを基に献立を自動生成する機能や、電気冷凍冷蔵庫5800に保存されている食材に合わせた温度に自動的に調節する機能などを有することができる。
 電化製品の一例として電気冷凍冷蔵庫について説明したが、その他の電化製品としては、例えば、掃除機、電子レンジ、電子オーブン、炊飯器、湯沸かし器、IH調理器、ウォーターサーバ、エアーコンディショナーを含む冷暖房器具、洗濯機、乾燥機、オーディオビジュアル機器などが挙げられる。
 本実施の形態で説明した電子機器、その電子機器の機能、人工知能の応用例、その効果などは、他の電子機器の記載と適宜組み合わせることができる。
 本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
BGLa:配線、BGLb:配線、BIL:配線、CAa:容量素子、CAb:容量素子、CAL:配線、MCa:メモリセル、MCb:メモリセル、M1a:トランジスタ、M1b:トランジスタ、WOLa:配線、WOLb:配線、100:容量素子、100a:容量素子、100b:容量素子、110:導電体、115:導電体、120:導電体、125:導電体、130:絶縁体、140:導電体、142:絶縁体、145:絶縁体、150:絶縁体、152:絶縁体、153:導電体、154:絶縁体、156:絶縁体、200:トランジスタ、200a:トランジスタ、200b:トランジスタ、200T:トランジスタ、205:導電体、205a:導電体、205b:導電体、205c:導電体、210:絶縁体、212:絶縁体、214:絶縁体、216:絶縁体、222:絶縁体、224:絶縁体、230:酸化物、230a:酸化物、230A:酸化膜、230b:酸化物、230B:酸化膜、230c:酸化物、230d:酸化物、232a:領域、232b:領域、232c:領域、232d:領域、232e:領域、240:導電体、241:絶縁体、242:導電体、242a:導電体、242A:導電膜、242b:導電体、242B:導電層、242c:導電体、243:酸化物、243a:酸化物、243A:酸化膜、243b:酸化物、243B:酸化物層、243c:酸化物、248:導電体、248_1:導電体、248_2:導電体、248_3:導電体、248_4:導電体、248a:導電体、248b:導電体、249:絶縁体、250:絶縁体、250A:絶縁膜、260:導電体、260a:導電体、260b:導電体、271:絶縁体、272:絶縁体、273:絶縁体、274:絶縁体、275:絶縁体、280:絶縁体、282:絶縁体、283:絶縁体、288:導電体、294a:導電体、294b:導電体、296:絶縁体、300:トランジスタ、311:基板、313:半導体領域、314a:低抵抗領域、314b:低抵抗領域、315:絶縁体、316:導電体、320:絶縁体、322:絶縁体、324:絶縁体、326:絶縁体、328:導電体、330:導電体、350:絶縁体、352:絶縁体、354:絶縁体、356:導電体、358:絶縁体、400:メモリユニット、401:メモリユニット、411:素子層、413:トランジスタ層、415:メモリユニット層、415_1:メモリユニット層、415_2:メモリユニット層、415_3:メモリユニット層、415_4:メモリユニット層、440:導電体、470:メモリ、610:セルアレイ、610_n:セルアレイ、610_1:セルアレイ、700:電子部品、702:プリント基板、704:実装基板、711:モールド、712:ランド、713:電極パッド、714:ワイヤ、720:記憶装置、721:駆動回路層、722:記憶回路層、730:電子部品、731:インターポーザ、732:パッケージ基板、733:電極、735:半導体装置、1150:SSD、1151:筐体、1152:コネクタ、1153:基板、1154:メモリチップ、1155:メモリチップ、1156:コントローラチップ、1200:チップ、1201:PCB、1202:バンプ、1203:マザーボード、1204:GPUモジュール、1211:CPU、1212:GPU、1213:アナログ演算部、1214:メモリコントローラ、1215:インターフェース、1216:ネットワーク回路、1221:DRAM、1222:フラッシュメモリ、1400:記憶装置、1411:周辺回路、1420:行回路、1430:列回路、1440:出力回路、1460:コントロールロジック回路、1470:メモリセルアレイ、1471:メモリユニット、1472:メモリユニット、1473:メモリユニット、2700:製造装置、2701:大気側基板供給室、2702:大気側基板搬送室、2703a:ロードロック室、2703b:アンロードロック室、2704:搬送室、2706a:チャンバー、2706b:チャンバー、2706c:チャンバー、2706d:チャンバー、2761:カセットポート、2762:アライメントポート、2763a:搬送ロボット、2763b:搬送ロボット、2801:ガス供給源、2802:バルブ、2803:高周波発生器、2804:導波管、2805:モード変換器、2806:ガス管、2807:導波管、2808:スロットアンテナ板、2809:誘電体板、2810:高密度プラズマ、2811:基板、2812:基板ホルダ、2813:加熱機構、2815:マッチングボックス、2816:高周波電源、2817:真空ポンプ、2818:バルブ、2819:排気口、2820:ランプ、2821:ガス供給源、2822:バルブ、2823:ガス導入口、2824:基板、2825:基板ホルダ、2826:加熱機構、2828:真空ポンプ、2829:バルブ、2830:排気口、5100:情報端末、5101:筐体、5102:表示部、5200:ノート型情報端末、5201:本体、5202:表示部、5203:キーボード、5300:携帯ゲーム機、5301:筐体、5302:筐体、5303:筐体、5304:表示部、5305:接続部、5306:操作キー、5400:据え置き型ゲーム機、5402:コントローラ、5500:スーパーコンピュータ、5501:ラック、5502:計算機、5504:基板、5701:表示パネル、5702:表示パネル、5703:表示パネル、5704:表示パネル、5800:電気冷凍冷蔵庫、5801:筐体、5802:冷蔵室用扉、5803:冷凍室用扉

Claims (7)

  1.  基板上に配置された第1の導電体と、
     前記第1の導電体の上面に接して配置された酸化物と、
     前記酸化物上に配置された第2の導電体、第3の導電体、および第4の導電体と、
     前記第2の導電体乃至前記第4の導電体の上に配置され、第1の開口、および第2の開口が形成された第1の絶縁体と、
     前記第1の開口の中に配置された第2の絶縁体と、
     前記第2の絶縁体の上に配置された第5の導電体と、
     前記第2の開口の中に配置された第3の絶縁体と、
     前記第3の絶縁体の上に配置された第6の導電体と、を有し、
     前記第3の導電体は、前記第1の導電体に重畳して配置され、
     前記第1の開口は、前記第2の導電体と前記第3の導電体の間の領域に重畳して形成され、
     前記第2の開口は、前記第3の導電体と前記第4の導電体の間の領域に重畳して形成される、半導体装置。
  2.  請求項1において、
     第1の容量素子と、第2の容量素子と、を有し、
     前記第1の容量素子は、前記第2の導電体と電気的に接続され、
     前記第2の容量素子は、前記第4の導電体と電気的に接続される、半導体装置。
  3.  請求項2において、
     前記第1の容量素子は、前記第2の導電体の上に配置され、
     前記第2の容量素子は、前記第4の導電体の上に配置される、半導体装置。
  4.  請求項1乃至請求項3のいずれか一項において、
     前記第1の導電体は、当該第1の導電体の下に設けられた配線に接続される、半導体装置。
  5.  請求項1乃至請求項4のいずれか一項において、
     前記第2の絶縁体は、前記酸化物の上面、および前記第1の絶縁体の側面に接し、
     前記第3の絶縁体は、前記酸化物の上面、および前記第1の絶縁体の側面に接する、半導体装置。
  6.  請求項1乃至請求項5のいずれか一項において、
     前記酸化物は、第1の酸化物と、当該第1の酸化物上の第2の酸化物と、を有し、
     前記第1の酸化物、および前記第2の酸化物は、インジウムと、元素M(Mは、ガリウム、アルミニウム、イットリウム、および錫の中から選ばれる一または複数)と、亜鉛と、を有し、
     前記第1の酸化物の元素Mに対するインジウムの原子数比は、前記第2の酸化物の元素Mに対するインジウムの原子数比より小さい、半導体装置。
  7.  基板上に第1の導電体を形成し、
     前記第1の導電体の上面に接して酸化膜を成膜し、
     前記酸化膜の上に第1の導電膜を成膜し、
     前記酸化膜、および前記第1の導電膜を島状に加工して、酸化物、および第2の導電体を形成し、
     前記酸化物、および前記第2の導電体を覆って第1の絶縁体を形成し、
     前記第1の絶縁体の一部を除去して、前記第2の導電体に重畳して第1の開口、および第2の開口を形成し、
     前記第1の開口、および前記第2の開口に重畳する前記第2の導電体の一部を除去し、第3の導電体、第4の導電体、および第5の導電体を形成し、
     前記第4の導電体は、前記第1の導電体に重畳して配置され、
     前記酸化物は、前記第3乃至第5の導電体と重畳していない領域が露出され、
     前記酸化物の上面に接して、第1の絶縁膜を成膜し、
     酸素を含む雰囲気でマイクロ波処理を行い、
     前記第1の絶縁膜の上に第2の導電膜を成膜し、
     前記第1の絶縁膜、および前記第2の導電膜に、前記第1の絶縁体の上面が露出するまで、CMP処理を行って、前記第1の開口の中に第2の絶縁体および第6の導電体を形成し、前記第2の開口の中に第3の絶縁体および第7の導電体を形成する、半導体装置の作製方法。
PCT/IB2020/056149 2019-07-12 2020-06-30 半導体装置、および半導体装置の作製方法 WO2021009589A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080047776.2A CN114127932A (zh) 2019-07-12 2020-06-30 半导体装置及半导体装置的制造方法
KR1020227001664A KR20220031020A (ko) 2019-07-12 2020-06-30 반도체 장치 및 반도체 장치의 제작 방법
JP2021532542A JPWO2021009589A1 (ja) 2019-07-12 2020-06-30
US17/623,299 US20220328486A1 (en) 2019-07-12 2020-06-30 Semiconductor device and method of manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019129905 2019-07-12
JP2019-129905 2019-07-12

Publications (1)

Publication Number Publication Date
WO2021009589A1 true WO2021009589A1 (ja) 2021-01-21

Family

ID=74210232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/056149 WO2021009589A1 (ja) 2019-07-12 2020-06-30 半導体装置、および半導体装置の作製方法

Country Status (6)

Country Link
US (1) US20220328486A1 (ja)
JP (1) JPWO2021009589A1 (ja)
KR (1) KR20220031020A (ja)
CN (1) CN114127932A (ja)
TW (1) TW202121691A (ja)
WO (1) WO2021009589A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023148571A1 (ja) * 2022-02-04 2023-08-10 株式会社半導体エネルギー研究所 半導体装置
WO2023161754A1 (ja) * 2022-02-25 2023-08-31 株式会社半導体エネルギー研究所 半導体装置、記憶装置、及び電子機器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI818428B (zh) * 2022-01-27 2023-10-11 友達光電股份有限公司 通訊裝置及其通訊元件與此通訊元件的製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018178806A1 (ja) * 2017-03-31 2018-10-04 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
JP2018181890A (ja) * 2017-04-03 2018-11-15 株式会社半導体エネルギー研究所 半導体装置
JP2018195814A (ja) * 2017-05-12 2018-12-06 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104716139B (zh) 2009-12-25 2018-03-30 株式会社半导体能源研究所 半导体装置
CN103069717B (zh) 2010-08-06 2018-01-30 株式会社半导体能源研究所 半导体集成电路
US9773919B2 (en) * 2015-08-26 2017-09-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9773792B1 (en) * 2016-03-25 2017-09-26 Taiwan Semiconductor Manufacturing Co., Ltd. One-time programming cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018178806A1 (ja) * 2017-03-31 2018-10-04 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
JP2018181890A (ja) * 2017-04-03 2018-11-15 株式会社半導体エネルギー研究所 半導体装置
JP2018195814A (ja) * 2017-05-12 2018-12-06 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023148571A1 (ja) * 2022-02-04 2023-08-10 株式会社半導体エネルギー研究所 半導体装置
WO2023161754A1 (ja) * 2022-02-25 2023-08-31 株式会社半導体エネルギー研究所 半導体装置、記憶装置、及び電子機器

Also Published As

Publication number Publication date
JPWO2021009589A1 (ja) 2021-01-21
CN114127932A (zh) 2022-03-01
KR20220031020A (ko) 2022-03-11
TW202121691A (zh) 2021-06-01
US20220328486A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
WO2021009589A1 (ja) 半導体装置、および半導体装置の作製方法
WO2021140407A1 (ja) 半導体装置、および半導体装置の作製方法
WO2020229919A1 (ja) 半導体装置、および半導体装置の作製方法
WO2021198836A1 (ja) 半導体装置、および半導体装置の作製方法
WO2021144666A1 (ja) 半導体装置、および半導体装置の作製方法
WO2021171136A1 (ja) 金属酸化物、金属酸化物の成膜方法、および金属酸化物の成膜装置
WO2020250083A1 (ja) 半導体装置、および半導体装置の作製方法
WO2021019334A1 (ja) 半導体装置
WO2021090106A1 (ja) トランジスタ、および電子機器
WO2021038361A1 (ja) 半導体装置
WO2021130600A1 (ja) 半導体装置、半導体装置の作製方法
WO2021090104A1 (ja) 半導体装置およびその作製方法
WO2021070007A1 (ja) 半導体装置
WO2021090116A1 (ja) 半導体装置およびその作製方法
WO2021084369A1 (ja) 半導体装置
WO2020229914A1 (ja) 半導体装置、および半導体装置の作製方法
WO2021053450A1 (ja) 半導体装置
WO2021090115A1 (ja) 半導体装置
WO2021048696A1 (ja) 半導体装置
WO2022043811A1 (ja) 半導体装置の作製方法
WO2022043809A1 (ja) 半導体装置の作製方法
WO2022038450A1 (ja) 金属酸化物の製造方法
WO2021186297A1 (ja) 半導体装置、半導体装置の作製方法
WO2022043810A1 (ja) 半導体装置およびその作製方法
WO2021130592A1 (ja) 半導体装置、および半導体装置の作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021532542

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227001664

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20840573

Country of ref document: EP

Kind code of ref document: A1