WO2023146260A1 - 메탄 산화반응용 촉매, 이의 제조방법 및 이를 이용한 메탄 산화방법 - Google Patents

메탄 산화반응용 촉매, 이의 제조방법 및 이를 이용한 메탄 산화방법 Download PDF

Info

Publication number
WO2023146260A1
WO2023146260A1 PCT/KR2023/001115 KR2023001115W WO2023146260A1 WO 2023146260 A1 WO2023146260 A1 WO 2023146260A1 KR 2023001115 W KR2023001115 W KR 2023001115W WO 2023146260 A1 WO2023146260 A1 WO 2023146260A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
zeolite
methane oxidation
hours
methane
Prior art date
Application number
PCT/KR2023/001115
Other languages
English (en)
French (fr)
Inventor
채호정
김영민
박성현
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220013133A external-priority patent/KR102687688B1/ko
Priority claimed from KR1020220017943A external-priority patent/KR102722374B1/ko
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2023146260A1 publication Critical patent/WO2023146260A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange

Definitions

  • the present invention relates to a catalyst for methane oxidation reaction, a method for preparing the same, and a method for oxidizing methane using the same, and more particularly, a catalyst for methane oxidation reaction capable of efficiently oxidizing methane for a long time with stable high catalytic activity, a method for preparing the same, and It relates to a methane oxidation method using the same.
  • Natural gas which contains methane (CH 4 , methane) as its main component, has about 40% more reserves than petroleum, and is a cheap and abundant energy source stored all over the world. Such natural gas is currently widely used as a fuel for cogeneration plants or public transportation.
  • methane which is emitted from incomplete combustion of natural gas, is a major cause of global warming, and since it has a long lifespan, it can have a greater adverse effect on global warming than carbon dioxide.
  • Methane has a very stable C-H bond among VOCs, so it is difficult to completely oxidize at low temperatures below 500 °C. Accordingly, there is a demand for a technology for removing by inputting low energy. Among them, the oxidation reaction of methane using a catalyst is the most spotlighted, and many studies are being conducted.
  • Catalysts applied to this methane oxidation reaction include aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), etc.
  • Catalysts carrying platinum group precious metals are mainly used (Patent Documents 0001 to 0003).
  • Patent Document 1 discloses an exhaust gas oxidation catalyst containing a metal oxide and platinum disposed on a monolith substrate, but the content of platinum is too high, so economical efficiency is low and methane cannot be directly oxidized.
  • Patent Document 2 discloses a palladium (Pd)-supported mesoporous transition metal composite oxide, but the mesoporous transition metal composite oxide manufacturing process has a very complicated problem.
  • Patent Document 3 discloses a catalyst containing cobalt oxide and nickel oxide, but there is a problem of low catalytic activity at a low temperature of 400 ° C. or less. These conventional techniques have been developed as catalysts capable of oxidizing hydrocarbons or carbon monoxide, and have limitations in not being able to characterize methane as a reactant of an oxidation reaction.
  • catalysts containing noble metals of the platinum group are degraded in activity even with a small amount of water vapor present in the introduced reactants.
  • the maintenance time of the methane oxidation reaction is shortened and the catalyst replacement cycle becomes frequent, so there is a problem in that the methane oxidation activity cannot be guaranteed for a desired period of time.
  • Patent Document 1 Korean Patent Registration No. 10-1909303 (Publication date: 2013.12.05.)
  • Patent Document 2 Korean Patent Publication No. 10-2016-0112179 (Publication date: 2016.09.28.)
  • Patent Document 3 Korean Patent Registration No. 10-1598390 (Publication date: 2015.12.30.)
  • the main object of the present invention is to solve the above-mentioned problems, and is relatively inexpensive compared to platinum group noble metals, while containing a specific metal capable of improving the methane oxidation activity of platinum group noble metals to provide stable and excellent catalytic activity for a long time even in a high temperature environment. It is to provide a catalyst for methane oxidation reaction capable of maintaining and a method for preparing the same.
  • an object of the present invention is to provide a methane oxidation method capable of efficiently oxidizing methane even in a high-temperature environment by using the catalyst for methane oxidation reaction.
  • one embodiment of the present invention is characterized in that a metal catalyst containing at least one metal selected from the group consisting of potassium, magnesium and calcium and palladium is supported on a zeolite-type molecular sieve.
  • a catalyst for methane oxidation is provided.
  • the catalyst for methane oxidation is characterized in that one or more metals selected from the group consisting of potassium, magnesium and calcium are supported in an amount of 0.01% to 10.0% by weight based on the total weight of the catalyst. can do.
  • the catalyst for methane oxidation reaction may be characterized in that palladium is supported in an amount of 0.1% to 10.0% by weight based on the total weight of the catalyst.
  • the catalyst for methane oxidation is characterized in that one or more metals selected from the group consisting of potassium, magnesium and calcium are supported in an amount of 0.01% to 10.0% by weight based on the total weight of the catalyst. can do.
  • the zeolite-type molecular sieve may be characterized in that it is selected from the group consisting of SSZ-13, mordenite, ZSM-5 and SAPO-34.
  • Another embodiment of the present invention is (a) supporting at least one metal selected from the group consisting of potassium, magnesium and calcium on a zeolite-type molecular sieve through ion exchange; (b) washing and drying the supported material of step (a), followed by firing; (c) supporting palladium on the fired product of step (b) through wet impregnation; and (d) drying and calcining the supported material of step (c).
  • the catalyst for the methane oxidation reaction is characterized in that at least one metal selected from the group consisting of potassium, magnesium and calcium is supported in an amount of 0.01% to 10.0% by weight based on the total weight of the catalyst.
  • the catalyst for methane oxidation may be characterized in that palladium is supported in an amount of 0.1% to 10.0% by weight based on the total weight of the catalyst.
  • the zeolite-type molecular sieve may be characterized in that it is selected from the group consisting of SSZ-13, mordenite, ZSM-5 and SAPO-34.
  • step (b) may be performed at 200 ° C to 1000 ° C.
  • step (d) may be performed at 300 ° C to 600 ° C.
  • Another embodiment of the present invention provides a methane oxidation method characterized in that methane is completely oxidized in the presence of the above catalyst for methane oxidation reaction.
  • the oxidation may be performed at 300 °C to 600 °C.
  • the methane may be introduced into the methane oxidation reactor in the form of a mixed gas containing oxygen and water vapor.
  • the catalyst for methane oxidation reaction according to the present invention includes a low-priced specific metal as a cocatalyst in a zeolite-type molecular sieve to lower the expensive palladium content, so that the catalyst can be economically manufactured at a low cost and a large amount of water vapor is present It is possible to stably maintain excellent catalytic activity for a long time even in a high-temperature environment where methane is completely oxidized.
  • FIG. 1 is a process flow chart of a method for preparing a catalyst for methane oxidation according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the result of measuring the methane conversion rate at each temperature of the catalyst for methane oxidation according to an embodiment of the present invention.
  • Figure 3 is a graph of the results of measuring the long-term stability of the catalyst for methane oxidation according to an embodiment of the present invention.
  • a description of a positional relationship for example, when the positional relationship of two parts is described with ' ⁇ on', ' ⁇ on top', ' ⁇ below', 'next to', etc., 'right away' Unless ' or 'directly' is used, one or more other parts may be placed between the two parts.
  • a description of a temporal relationship for example, when a temporal precedence relationship is described as 'after', 'continue to', 'after ⁇ ', 'before', etc., 'immediately' or 'directly' As long as ' is not used, non-continuous cases may also be included.
  • the present invention relates to a catalyst for methane oxidation reaction, characterized in that a metal catalyst containing palladium and at least one metal selected from the group consisting of potassium, magnesium and calcium is supported on a zeolite-type molecular sieve.
  • methane is a very stable substance, and it is difficult to process at low temperatures, and methane is removed using oxidation catalysts at high temperatures.
  • methane oxidation catalysts carrying noble metals are effective for high temperature or high pressure methane oxidation.
  • poisoning (inactivation) proceeds rapidly in a high-temperature or high-pressure environment, especially in a mixed gas condition in which moisture (steam) coexists, thereby reducing the performance of the methane oxidation catalyst and having low long-term stability.
  • the catalytic activity as much as time could not be guaranteed. Therefore, high-performance and high-functionalization of catalyst and support material technology is essential.
  • At least one selected from the group consisting of potassium, magnesium, and calcium and palladium are supported on a zeolite-type molecular sieve, so that excellent catalytic activity can be stably maintained for a long time even in a high-temperature environment with water vapor.
  • the catalyst can be economically prepared by containing inexpensive potassium, magnesium and/or calcium to lower the content of expensive platinum group noble metals, and the present invention has been reached.
  • the zeolite-type molecular sieve is a crystalline aluminum silicate mineral, comprising naturally produced zeolite and artificially synthesized zeolite and silicoaluminophosphate (SAPO) substituted with metal and/or P in the framework structure, metalloaluminophosphate ( MeAPO), preferably any one selected from the group consisting of beta zeolite, mordenite, MFI-type zeolite, ferrierite, and CHA-type zeolite.
  • SAPO silicoaluminophosphate
  • MeAPO metalloaluminophosphate
  • the MFI type zeolite is, for example, ZSM-5, [As-Si-O]-MFI, [Fe-Si-O]-MFI, [Ga-Si-O]-MFI, AMS-1B, AZ-1 , Bor-C, Boralite C, Encilite, FZ-1, LZ-105, Mutinaite, NU-4, NU-5, Silicalite, TS-1, TSZ, TSZ-III, TZ-01, USC-4, USI-108, ZBH, ZKQ-1B, ZMQ-TB, organic free ZSM-5, and at least one selected from the group consisting of mixtures of two or more thereof.
  • the CHA type zeolite for example, chabazite, AlP, [Al-As-O] -CHA, [Co-Al-P-O] -CHA, [Mg-Al-P-O] -CHA, [Si-O ]-CHA, [Zn-Al-P-O]-CHA, [Zn-As-O]-CHA,
  • the zeolite-type molecular sieve may include at least one selected from the group consisting of SSZ-13, mordenite, ZSM-5, and SAPO-34.
  • the zeolite-type molecular sieve may include at least one metal selected from the group consisting of potassium, magnesium, and calcium as a cocatalyst to further activate the methane oxidation reaction.
  • At least one metal selected from the group consisting of potassium, magnesium, and calcium may be ion-exchanged and supported on the zeolite-type molecular sieve. At least one metal selected from the group consisting of potassium, magnesium, and calcium for the ion exchange may perform ion exchange with a precursor thereof, and the precursor may be a water-soluble salt compound, for example, nitrate. , carbonates, hydrochlorides, sulfates or hydrates thereof, and the like can be used.
  • the ion exchange is a known technique, a detailed description thereof will be omitted.
  • the content of one or more metals selected from the group consisting of potassium, magnesium and calcium is preferably included in 0.01% to 10% by weight based on the total weight of the catalyst.
  • At least one metal selected from the group consisting of potassium, magnesium, and calcium can be ion-exchanged and supported on the zeolite-type molecular sieve, so that it can be very uniformly distributed inside the zeolite-type molecular sieve.
  • Palladium (Pd) a catalytically active component
  • an impregnation method may be used to support palladium.
  • the palladium content impregnated into the zeolite-type molecular sieve may be 0.1 wt% to 10 wt%, preferably 0.5 wt% to 5 wt%, based on the total weight of the catalyst. When palladium is within the above range, the most economical and highly active catalyst is obtained.
  • the present invention provides (a) supporting at least one metal selected from the group consisting of potassium, magnesium, and calcium on a zeolite-type molecular sieve through ion exchange; (b) washing and drying the supported material of step (a), followed by firing; (c) supporting palladium on the fired product of step (b) through wet impregnation; and (d) drying and calcining the supported material of step (c).
  • a method for producing a catalyst for methane oxidation reaction uses an ion exchange method capable of obtaining a uniform compound with a fast reaction rate in a zeolite-type molecular sieve, and 1 selected from the group consisting of potassium, magnesium and calcium.
  • a catalyst for methane oxidation reaction that exhibits long-term stable catalytic activity even in a high-temperature environment in which water vapor exists in methane oxidation reaction is economically and easily obtained by impregnating palladium on the supported material by a wet impregnation method after supporting more than one kind of metal can be manufactured
  • FIG. 1 is a process flow chart of a method for preparing a catalyst for methane oxidation according to an embodiment of the present invention.
  • At least one metal selected from the group consisting of potassium, magnesium, and calcium is first supported on a zeolite-type molecular sieve through ion exchange [(a ) step].
  • the zeolite-type molecular sieve includes naturally produced zeolite and artificially synthesized zeolite, and silicoaluminophosphate (SAPO) and metalloaluminophosphate (MeAPO) in which metal and/or P are substituted in the skeleton structure. ), preferably any one selected from the group consisting of beta zeolite, mordenite, MFI-type zeolite, ferrierite, and CHA-type zeolite may be used.
  • the zeolite-type molecular sieve supports one or more metals selected from the group consisting of potassium, magnesium, and calcium through ion exchange in order to stably maintain excellent catalytic activity for a long time.
  • the ion exchange may be performed by contacting the zeolite with the aforementioned metal precursor.
  • Any water-soluble salt compound may be used as the metal precursor, and for example, nitrates, carbonates, hydrochlorides, sulfates, or hydrates thereof may be used.
  • the ion exchange is a known technique, a detailed description thereof will be omitted.
  • one or more metals selected from the group consisting of potassium, magnesium, and calcium may be supported on the zeolite-type molecular sieve by being supported in an amount of 0.01% to 10% by weight based on the total weight of the catalyst.
  • At least one metal selected from the group consisting of potassium, magnesium, and calcium can be ion-exchanged and supported on the zeolite-type molecular sieve, so that it can be very uniformly distributed inside the zeolite-type molecular sieve.
  • the zeolite-type molecular sieve supported material ion-exchanged with at least one metal selected from the group consisting of potassium, magnesium, and calcium is washed, dried, and calcined [step (b)].
  • the washing may be performed one or more times with distilled water, etc. to remove unreacted substances and by-products present in the ion exchange process, and the washed supported material is dried at 80 ° C. to 120 ° C. for 1 hour to 24 hours.
  • firing may be performed at 200 ° C. to 1,000 ° C. for 1 hour to 12 hours.
  • the supported material thus obtained is supported with palladium through an initial wet impregnation method [step (d)].
  • the initial wet impregnation method is a method in which a solution of palladium dissolved in a solvent equal to the pore volume of the zeolite is added to the dried zeolite to be absorbed, and then dried to remove the solvent, and has the advantage of being the simplest of the impregnation methods.
  • the initial wet impregnation method is a known technique and a detailed description thereof will be omitted.
  • the palladium content initially wet-impregnated into the metal-supported zeolite-type molecular sieve may be 0.1 wt% to 10 wt%, preferably 0.5 wt% to 5 wt%, based on the total weight of the catalyst. When palladium is within the above range, the most economical and highly active catalyst is obtained.
  • the palladium-supported material is finally dried and calcined to prepare a catalyst for methane oxidation reaction [step (d)].
  • Drying of the supported material may be performed at 80 °C to 120 °C for 1 hour to 24 hours, and firing of the supported material may be performed at 300 °C to 600 °C for 2 to 12 hours.
  • the method for preparing a catalyst for methane oxidation reaction according to the present invention is a wet chamber that can stably maintain excellent catalytic activity for a long time in a zeolite-type molecular sieve prepared using an ion exchange method capable of producing a uniform compound with a fast reaction rate.
  • the present invention relates to a methane oxidation method characterized in that methane is completely oxidized in a mixed gas containing methane, oxygen and water vapor in the presence of the above catalyst for methane oxidation reaction.
  • the catalyst for methane oxidation according to the present invention can efficiently oxidize methane with stable high catalytic activity even in a high-temperature environment exposed to a large amount of water vapor (moisture).
  • the water vapor content may be 20% by volume or less based on the total volume of the mixed gas.
  • the catalyst for methane oxidation reaction according to the present invention can oxidize and remove methane from a mixed gas through a conventional method.
  • the oxidation reaction of methane has a temperature of 300 ° C. to 600 ° C. at atmospheric pressure and a space velocity of 1,000 cm 3 g -1 h -1 to 200,000 cm 3 g -1 h -1 is preferable in view of suppressing deactivation of the catalyst in a high-temperature environment.
  • the catalyst for methane oxidation reaction according to the present invention may have a methane conversion rate of 90% or more at an oxidation temperature of 300 ° C to 500 ° C.
  • the dried zeolite was heated up to 550 °C at 5 °C/min under air conditions and then calcined at 550 °C for 4 hours to obtain magnesium ion-exchanged zeolite.
  • 0.5 g of the obtained magnesium ion-exchanged zeolite was added to 25 mL of 0.0185 M Pd(NO 3 ) 2 , stirred at room temperature for 6 hours, and then distilled under reduced pressure to evaporate water. After drying in an oven at 100 ° C. for 2 hours, the dried palladium-supported zeolite was raised to 400 ° C. at 5 ° C./min under air conditions, and then calcined at 400 ° C. for 4 hours.
  • a catalyst Pd_Mg/SSZ-13
  • the dried zeolite was heated up to 550 °C at 5 °C/min under air conditions and then calcined at 550 °C for 4 hours to obtain calcium ion-exchanged zeolite.
  • 0.5 g of the obtained calcium ion-exchanged zeolite was added to 25 mL of 0.0185 M Pd(NO 3 ) 2 , stirred at room temperature for 6 hours, and then distilled under reduced pressure to evaporate water. After drying in an oven at 100 ° C. for 2 hours, the dried palladium-supported zeolite was raised to 400 ° C. at 5 ° C./min under air conditions, and then calcined at 400 ° C. for 4 hours.
  • a catalyst Pd_Ca/SSZ-13 was prepared.
  • H-ZSM-5 zeolite (Zeolyst's CBV 2314) having a Si/Al molar ratio of 11.5 was added to 100 mL of 0.5 M KNO 3 , stirred at room temperature for 12 hours, centrifuged to recover the zeolite, It was put into 100 mL of 0.5 M KNO 3 again and stirred at room temperature for 12 hours. Thereafter, the recovered zeolite was washed with distilled water and then dried in an oven at 100 °C for 12 hours. The dried zeolite was heated up to 550 °C at 5 °C/min under air conditions and then calcined at 550 °C for 4 hours to obtain potassium ion-exchanged zeolite.
  • SSZ-13 zeolite ZS 113LH from Chinese catalyst holding company
  • Si/Al molar ratio of 15 was added to 100 mL of 0.5 M NaNO 3 , stirred at room temperature for 12 hours, centrifuged to recover the zeolite, It was put into 100 mL of 0.5 M NaNO 3 again and stirred at room temperature for 12 hours. Thereafter, the recovered zeolite was washed with distilled water and then dried in an oven at 100 °C for 12 hours. The dried zeolite was heated to 550 °C at 5 °C/min under air conditions, and then calcined at 550 °C for 4 hours to obtain sodium ion-exchanged zeolite.
  • SSZ-13 zeolite ZS 113LH from Chinese catalyst holding company
  • Si/Al molar ratio of 15 was added to 100 mL of 0.2 M Zn(NO 3 ) 2 , stirred at room temperature for 12 hours, and centrifuged to separate the zeolite. After recovery, it was put into 100 mL of 0.2 M Zn(NO 3 ) 2 and stirred at room temperature for 12 hours. Thereafter, the recovered zeolite was washed with distilled water and then dried in an oven at 100 °C for 12 hours.
  • the dried zeolite was heated to 550 °C at 5 °C/min under air conditions and then calcined at 550 °C for 4 hours to obtain a zinc ion-exchanged zeolite.
  • 0.5 g of the obtained zinc ion-exchanged zeolite was added to 25 mL of 0.0185 M Pd(NO 3 ) 2 , stirred at room temperature for 6 hours, and then distilled under reduced pressure to evaporate water. After drying in an oven at 100 ° C. for 2 hours, the dried palladium-supported zeolite was raised to 400 ° C. at 5 ° C./min under air conditions, and then calcined at 400 ° C. for 4 hours.
  • Table 1 A catalyst (Pd_Zn/SSZ-13) was prepared.
  • the dried zeolite was heated to 550 °C at 5 °C/min under air conditions and then calcined at 550 °C for 4 hours to obtain tungsten ion-exchanged zeolite.
  • 0.5 g of the obtained tungsten ion-exchanged zeolite was added to 25 mL of 0.0185 M Pd(NO 3 ) 2 , stirred at room temperature for 6 hours, and then distilled under reduced pressure to evaporate water. After drying in an oven at 100 ° C. for 2 hours, the dried palladium-supported zeolite was raised to 400 ° C. at 5 ° C./min under air conditions, and then calcined at 400 ° C. for 4 hours.
  • Table 1 A catalyst (Pd_W/SSZ-13) was prepared.
  • the dried zeolite was heated to 550 °C at 5 °C/min under air conditions, and then calcined at 550 °C for 4 hours to obtain a copper ion-exchanged zeolite.
  • 0.5 g of the obtained copper ion-exchanged zeolite was put in 25 mL of 0.0185 M Pd(NO 3 ) 2 , stirred at room temperature for 6 hours, and then distilled under reduced pressure to evaporate water. After drying in an oven at 100 ° C. for 2 hours, the dried palladium-supported zeolite was raised to 400 ° C. at 5 ° C./min under air conditions, and then calcined at 400 ° C. for 4 hours.
  • a catalyst Pd_Cu/SSZ-13
  • the dried zeolite was heated up to 550 °C at 5 °C/min under air conditions and then calcined at 550 °C for 4 hours to obtain a cerium ion-exchanged zeolite.
  • 0.5 g of the obtained cerium ion-exchanged zeolite was put in 25 mL of 0.0185 M Pd(NO 3 ) 2 , stirred at room temperature for 6 hours, and then distilled under reduced pressure to evaporate water. After drying in an oven at 100 ° C. for 2 hours, the dried palladium-supported zeolite was raised to 400 ° C. at 5 ° C./min under air conditions, and then calcined at 400 ° C. for 4 hours.
  • a catalyst Pd_Ce/SSZ-13
  • the dried zeolite was heated up to 550 °C at 5 °C/min under air conditions, and then calcined at 550 °C for 4 hours to obtain a zeolite in which molybdenum was ion-exchanged.
  • 0.5 g of the obtained molybdenum ion-exchanged zeolite was added to 25 mL of 0.0185 M Pd(NO 3 ) 2 , stirred at room temperature for 6 hours, and then distilled under reduced pressure to evaporate water. After drying in an oven at 100 ° C. for 2 hours, the dried palladium-supported zeolite was raised to 400 ° C. at 5 ° C./min under air conditions, and then calcined at 400 ° C. for 4 hours.
  • a catalyst Pd_Mo/SSZ-13
  • Al 2 O 3 (aluminum oxide from Sigma-Aldrich) 0.5 g, Pd(NO 3 ) 2 0.11 g, KNO 3 0.88 g were simultaneously put into 25 mL distilled water, stirred at room temperature for 6 hours, and then distilled under reduced pressure to evaporate the water. made it After drying in an oven at 100 ° C. for 2 hours, the dried palladium-supported aluminum oxide was heated to 400 ° C. at 5 ° C./min under air conditions, and then calcined at 400 ° C. for 4 hours. Methane oxidation reaction as shown in Table 1 A catalyst for (Pd_K/Al 2 O 3 ) was prepared.
  • H-ZSM-5 zeolite CBV 2314 from Zeolyst
  • Pd(NO 3 ) 2 0.0185 M
  • the dried palladium-supported zeolite was raised to 400 ° C. at 5 ° C./min under air conditions, and then calcined at 400 ° C. for 4 hours.
  • a catalyst Pd_H/SSZ-13 was prepared.
  • SSZ-13 zeolite ZS 113LH from Chinese catalyst holding company
  • Si/Al molar ratio of 15 0.11 g of Pd(NO 3 ) 2 and 0.023 g of KNO 3 were simultaneously put into 25mL distilled water and stirred at room temperature for 6 hours. , distilled under reduced pressure to evaporate water.
  • the dried palladium and metal ion-supported zeolites were raised to 400 ° C. at 5 ° C./min under air conditions, and then calcined at 400 ° C. for 4 hours to obtain methane as shown in Table 1.
  • a catalyst for oxidation reaction (Pd_K_SSZ-13) was prepared.
  • a gas having a molar ratio of 95:5 of an inert gas (He 89.5%) and water vapor was introduced into a reactor (outer diameter 0.7 cm, length 34 cm) filled with 0.1 g of each catalyst prepared in Examples and Comparative Examples, and space velocity (GHSV) ) at 60,000 cm 3 /g/h, followed by catalyst deactivation (aging) at 600 °C for 120 minutes. Thereafter, a mixed gas in which methane, oxygen, and water vapor are mixed at a molar ratio of 0.5:5:5 in the presence of an inert gas is supplied to the reactor at a space velocity (GHSV) of 120,000 cm 3 /g/h, followed by methane oxidation at 400 °C for 15 hours. The reaction was carried out and the results are shown in FIG. 3 .
  • Examples 1 to 6 and Comparative Examples 1 to 8 and 10 to 12 are to see the effect of changing the type of metal.
  • Table 2 and FIGS. 1 and 2 when K, Mg, and Ca according to the present invention are ion-exchanged and Pd is supported, the reactivity for the methane oxidation reaction is high, and the catalyst long-term stability without deterioration even after long-term use of the catalyst You can see this height.
  • Comparative Example 9 is to prepare for the case where the zeolite-type molecular sieve according to the present invention is not used, and the metal catalyst of the same content as Example 1 is supported, but the support is changed to alumina.
  • the methane oxidation activity was lower than that of Example 1, and in particular, looking at FIG. 3, it was found that the long-term stability was also low.
  • Comparative Examples 13 and 14 are to prepare for the case where the catalyst is prepared without following the production method of the present invention, the K or Mg and Pd are supported on SSZ-13, but K and Mg are first supported by ion exchange , Pd is not supported, but Pd and K or Mg are simultaneously supported by the impregnation method. In the case of simultaneous impregnation in this way, it can be confirmed that their methane oxidation activity is significantly lower than that of Examples 1 and 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 메탄 산화반응용 촉매, 이의 제조방법 및 이를 이용한 메탄 산화방법에 관한 것으로, 보다 상세하게는 백금족 귀금속에 비해 상대적으로 가격이 저렴한 동시에 백금족 귀금속의 메탄 산화 활성을 향상시킬 수 있는 특정 금속을 함유시켜 고온 환경에서도 장시간 안정적으로 우수한 촉매활성을 유지시킬 수 있는 메탄 산화반응용 촉매, 이의 제조방법 및 이를 이용한 메탄 산화방법에 관한 것이다.

Description

메탄 산화반응용 촉매, 이의 제조방법 및 이를 이용한 메탄 산화방법
본 발명은 메탄 산화반응용 촉매, 이의 제조방법 및 이를 이용한 메탄 산화방법에 관한 것으로, 보다 상세하게는 안정적인 높은 촉매 활성으로 장시간 메탄을 효율적으로 산화시킬 수 있는 메탄 산화반응용 촉매, 이의 제조방법 및 이를 이용한 메탄 산화방법에 관한 것이다.
전 세계적으로 에너지원으로 널리 사용되고 있는 석유는 점차 고갈되어 가고 있고, 최대 산유지인 중동의 정치적 불안 등으로 인해 고유가 상태가 앞으로 지속될 전망이다. 이에 비해 천연가스는 메탄(CH4, methane)이 주성분으로 석유에 비해 매장량이 40 % 정도 풍부하며, 세계 각지에 매장되어 있는 값이 싸고 풍부한 에너지원이다. 이러한 천연가스는 현재 열병합 발전소나 대중교통의 연료로 널리 사용되고 있다.
그러나 천연가스가 불완전 연소되어 배출되는 메탄은 지구 온난화의 주요 원인으로, 이들은 긴 수명을 가지고 있어 이산화탄소보다 지구온난화에 더 큰 악영향을 미칠 수 있다.
메탄은 VOCs 중에서 매우 안정한 C-H 결합을 가지고 있어, 500 ℃ 이하의 저온에서 완전히 산화시키기 어렵다. 이에 따라 낮은 에너지를 투입하여 제거하는 기술이 요구되고 있다. 그 중 촉매를 이용한 메탄의 산화반응이 가장 각광을 받고 있으며, 많은 연구가 이루어지고 있다.
이러한 메탄 산화반응에 적용되는 촉매로는 산화알루미늄(Al2O3), 산화지르코늄(ZrO2), 산화티타늄(TiO2), 산화규소(SiO2) 등 고온에서 안정한 물리화학적 특성을 보이는 담체에 백금족 귀금속 (Pt, Pd, Au 등)을 담지한 촉매가 주로 사용되고 있다(특허문헌 0001 내지 0003).
특허문헌 1은 모노리스 기판 상에 배치된, 금속 산화물과 백금을 포함하는 배기가스 산화 촉매를 개시하나, 백금의 함량이 지나치게 높아 경제성이 낮고 메탄을 직접적으로 산화시킬 수 없는 한계가 있었다. 특허문헌 2는 팔라듐(Pd)이 담지된 메조포러스 전이금속 복합 산화물을 개시하나, 메조포러스 전이금속 복합 산화물 제조 공정이 매우 복잡한 문제가 있었다. 또한, 특허문헌 3은 코발트 산화물과 니켈 산화물을 포함하는 촉매를 개시하나, 400 ℃ 이하의 저온에서 촉매 활성이 낮은 문제가 있었다. 이러한 종래의 기술들은 탄화수소 또는 일산화탄소를 산화시킬 수 있는 촉매로서 개발되었으며, 메탄을 산화 반응의 반응 물질로 특징하지 못하는 한계가 있었다.
한편, 백금족 귀금속이 포함된 촉매는 유입되는 반응물내에 존재하는 소량의 수증기 등에도 활성이 저하된다. 촉매 활성이 저하되면 메탄 산화반응의 유지시간이 단축되어 촉매 교체 주기가 잦아지므로 원하는 시간만큼 메탄 산화 활성을 보장할 수 없는 문제가 있었다.
이러한 촉매 수명 단축 문제를 해결하기 위한 일반적인 방법으로 메탄 산화촉매를 필요 이상으로 투입하여 반응 활성이 유지되는 시간을 연장하는 방법이 있다. 그러나 메탄 산화촉매의 주요 물질이 백금, 팔라듐 등의 귀금속인 점을 고려하면, 촉매를 필요 이상으로 투입하는 경우 비용이 증가되는 문제점이 있었다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국등록특허 제10-1909303호 (공개일: 2013.12.05.)
(특허문헌 2) 한국공개특허 제10-2016-0112179호 (공개일: 2016.09.28.)
(특허문헌 3) 한국등록특허 제10-1598390호 (공개일: 2015.12.30.)
본 발명의 주된 목적은 상술한 문제점을 해결하기 위한 것으로, 백금족 귀금속에 비해 상대적으로 가격이 저렴한 동시에 백금족 귀금속의 메탄 산화 활성을 향상시킬 수 있는 특정 금속을 함유시켜 고온 환경에서도 장시간 안정적으로 우수한 촉매활성을 유지시킬 수 있는 메탄 산화반응용 촉매 및 이의 제조방법을 제공하는데 있다.
또한, 본 발명의 목적은 상기 메탄 산화반응용 촉매를 사용하여 고온 환경에서도 메탄을 효율적으로 산화시킬 수 있는 메탄 산화방법을 제공하는데 있다.
상기와 같은 목적을 달성하기 위하여, 본 발명의 일 구현예는 칼륨, 마그네슘 및 칼슘으로 구성된 군에서 선택되는 1종 이상의 금속과 팔라듐이 포함된 금속 촉매가 제올라이트형 분자체에 담지된 것을 특징으로 하는 메탄 산화반응용 촉매를 제공한다.
본 발명의 바람직한 구현예에서, 상기 메탄 산화반응용 촉매는 칼륨, 마그네슘 및 칼슘으로 구성된 군에서 선택되는 1종 이상의 금속이 촉매 총 중량에 대하여, 0.01 중량 % ~ 10.0 중량%로 담지된 것을 특징으로 할 수 있다.
본 발명의 바람직한 구현예에서, 상기 메탄 산화반응용 촉매는 팔라듐이 촉매 총 중량에 대하여, 0.1 중량% ~ 10.0 중량%로 담지된 것을 특징으로 할 수 있다.
본 발명의 바람직한 구현예에서, 상기 메탄 산화반응용 촉매는 칼륨, 마그네슘 및 칼슘으로 구성된 군에서 선택되는 1종 이상의 금속이 촉매 총 중량에 대하여, 0.01 중량 % ~ 10.0 중량%로 담지된 것을 특징으로 할 수 있다.
본 발명의 바람직한 구현예에서, 상기 제올라이트형 분자체는 SSZ-13, 모데나이트(mordenite), ZSM-5 및 SAPO-34로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명의 다른 구현예는 (a) 제올라이트형 분자체에 칼륨, 마그네슘 및 칼슘으로 구성된 군에서 선택되는 1종 이상의 금속을 이온교환을 통하여 담지시키는 단계; (b) 상기 (a) 단계의 담지물을 세척 및 건조한 다음, 소성시키는 단계; (c) 상기 (b) 단계의 소성물에 팔라듐을 습식 함침법을 통하여 담지시키는 단계; 및 (d) 상기 (c) 단계의 담지물을 건조 및 소성시키는 단계를 포함하는 것을 특징으로 하는 메탄 산화반응용 촉매의 제조방법을 제공한다.
본 발명의 바람직한 다른 구현예에서, 상기 메탄 산화반응용 촉매는 칼륨, 마그네슘 및 칼슘으로 구성된 군에서 선택되는 1종 이상의 금속이 촉매 총 중량에 대하여, 0.01 중량 % ~ 10.0 중량%로 담지된 것을 특징으로 할 수 있다.
본 발명의 바람직한 다른 구현예에서, 상기 메탄 산화반응용 촉매는 팔라듐이 촉매 총 중량에 대하여, 0.1 중량% ~ 10.0 중량%로 담지된 것을 특징으로 할 수 있다.
본 발명의 바람직한 다른 구현예에서, 상기 제올라이트형 분자체는 SSZ-13, 모데나이트(mordenite), ZSM-5 및 SAPO-34로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명의 바람직한 다른 구현예에서, 상기 (b) 단계의 소성은 200 ℃ ~ 1000 ℃로 수행하는 것을 특징으로 할 수 있다.
본 발명의 바람직한 다른 구현예에서, 상기 (d) 단계의 소성은 300 ℃ ~ 600 ℃로 수행하는 것을 특징으로 할 수 있다.
본 발명의 또 다른 구현예는 상기의 메탄 산화반응용 촉매 존재하에 메탄을 완전 산화시키는 것을 특징으로 하는 메탄 산화방법을 제공한다.
본 발명의 바람직한 또 다른 구현예에서, 상기 산화는 300 ℃ ~ 600 ℃에서 수행하는 것을 특징으로 할 수 있다.
본 발명의 바람직한 또 다른 구현예에서, 상기 메탄은 산소 및 수증기가 포함된 혼합가스의 형태로 메탄산화 반응기에 도입되는 것을 특징으로 할 수 있다.
본 발명에 따른 메탄 산화반응용 촉매는 제올라이트형 분자체에 조촉매로 저가의 특정 금속을 포함시켜 고가의 팔라듐 함량을 낮춤으로써 저렴한 비용으로 경제적으로 촉매를 제조할 수 있는 동시에, 다량의 수증기가 존재하는 고온 환경에서도 장시간 안정적으로 우수한 촉매 활성을 유지시킬 수 있어 메탄의 완전산화를 필요로 하는 여러 공정에서 유용하게 적용할 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 메탄 산화반응용 촉매의 제조방법의 공정 순서도이다.
도 2는 본 발명의 일 실시예에 따른 메탄 산화반응용 촉매의 온도별 메탄 전환율을 측정한 결과 그래프이다.
도 3은 본 발명의 일 실시예에 따른 메탄 산화반응용 촉매의 장기 안정성을 측정한 결과 그래프이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.
본 명세서 상에서 언급한 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우 '~만'이 사용되지 않는 이상 다른 부분이 추가될 수 있다. 구성 요소를 단수로 표현한 경우에 특별히 명시적인 기재 사항이 없는 한 복수를 포함하는 경우를 포함한다.
또한 위치 관계에 대한 설명일 경우, 예를 들어, '~상에', '~상부에', '~하부에', '~옆에' 등으로 두 부분의 위치 관계가 설명되는 경우, '바로' 또는 '직접'이 사용되지 않는 이상 두 부분 사이에 하나 이상의 다른 부분이 위치할 수도 있다. 시간 관계에 대한 설명일 경우, 예를 들어, '~후에', '~에 이어서', '~다음에', '~전에' 등으로 시간 적 선후관계가 설명되는 경우, '바로' 또는 '직접'이 사용되지 않는 이상 연속적이지 않은 경우도 포함할 수 있다.
본 발명의 여러 실시예들의 각각 특징들이 부분적으로 또는 전체적으로 서로 결합 또는 조합 가능하고, 기술적으로 다양한 연동 및 구동이 가능하며, 각 실시예들이 서로에 대하여 독립적으로 실시 가능할 수도 있고 연관관계로 함께 실시할 수도 있다.
본 발명은 일 관점에서 칼륨, 마그네슘 및 칼슘으로 구성된 군에서 선택되는 1종 이상의 금속과 팔라듐을 포함하는 금속 촉매가 제올라이트형 분자체에 담지된 것을 특징으로 하는 메탄 산화반응용 촉매에 관한 것이다.
구체적으로 메탄은 매우 안정한 물질로서, 저온에서 처리가 어려우며 고온에서 산화촉매들을 이용하여 메탄을 제거하고 있다. 예를 들어, 귀금속을 담지한 메탄 산화촉매들은 고온 또는 고압의 메탄 산화에는 효과적이다. 그러나, 종래 메탄 산화촉매로는 고온 또는 고압의 환경, 특히 수분(수증기)이 공존하는 혼합가스 조건에서 피독(불활성화)가 빠르게 진행됨으로써, 메탄 산화촉매의 성능을 저하시키고, 장기적 안정성이 낮아 원하는 시간만큼의 촉매 활성을 보장할 수 없는 문제가 있었다. 이에 촉매 및 지지체 소재 기술의 고성능화 고기능화가 필수적이다.
이와 같은 문제점을 해결하기 위해서 본 발명에서는 칼륨, 마그네슘 및 칼슘으로 구성된 군에서 선택된 1종 이상과 팔라듐을 제올라이트형 분자체에 담지시킴으로써, 수증기 존재하는 고온의 환경에서도 장시간 안정적으로 우수한 촉매 활성을 유지할 수 동시에, 저가의 칼륨, 마그네슘 및/또는 칼슘을 함유시켜 고가의 백금족 귀금속의 함량을 낮춤으로써 경제적으로 촉매를 제조할 수 있음을 확인하고, 본 발명에 이르게 되었다.
상기 제올라이트형 분자체는 결정질 알루미늄 규산염광물로, 천연적으로 생산되는 제올라이트 및 인공적으로 합성된 제올라이트와 골격 구조내에 메탈 및/또는 P가 치환된 실리코알루미노포스페이트(SAPO), 메탈로알루미노포스페이트(MeAPO)를 포함할 수 있으며, 바람직하게는 베타 제올라이트, 모데나이트(mordenite), MFI형 제올라이트, 페리에라이트(ferrierite), CHA형 제올라이트로 이루어진 군에서 선택된 어느 하나를 사용할 수 있다.
상기 MFI형 제올라이트는, 예를 들어 ZSM-5, [As-Si-O]-MFI, [Fe-Si-O]-MFI, [Ga-Si-O]-MFI, AMS-1B, AZ-1, Bor-C, 보랄라이트 C, Encilite, FZ-1, LZ-105, 무티나이트(Mutinaite), NU-4, NU-5, 실리카라이트, TS-1, TSZ, TSZ-III, TZ-01, USC-4, USI-108, ZBH, ZKQ-1B, ZMQ-TB, 유기 자유 ZSM-5 및 이들의 2종 이상의 혼합물로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.
또한 상기 CHA형 제올라이트는, 예를 들어 카바자이트, AlP, [Al-As-O]-CHA, [Co-Al-P-O]-CHA, [Mg-Al-P-O]-CHA, [Si-O]-CHA, [Zn-Al-P-O]-CHA, [Zn-As-O]-CHA, |Co|[Be-P-O]-CHA, |Li-Na|[Al-Si-O]-CHAO34, CoAPO-44, CoAPO-47, DAF-5, 탈수 Na-카바자이트, GaPO-34, K-카바자이트, LZ-218, 린데 D, 린데 R, MeAPO-47, MeAPSO-47, Ni(데타)2-UT-6, Phi, SAPO-34, SAPO-47, SSZ-13, SSZ-62, UiO-21, 빌헨데르소나이트(Willhendersonite), ZK-14, ZYT-6 및 이들의 2종 이상의 혼합물로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.
본 발명의 보다 바람직한 실시양태에 따르면, 제올라이트형 분자체는 SSZ-13, 모데나이트(mordenite), ZSM-5 및 SAPO-34로 구성된 군에서 선택되는 1종 이상을 포함할 수 있다.
한편, 상기 제올라이트형 분자체는 메탄 산화반응을 더욱 활성화시키 위해 조촉매 역할로, 칼륨, 마그네슘 및 칼슘으로 구성된 군에서 선택되는 1종 이상의 금속을 포함할 수 있다.
상기 칼륨, 마그네슘 및 칼슘으로 구성된 군에서 선택되는 1종 이상의 금속은 상기 제올라이트형 분자체에 이온 교환되어 담지될 수 있다. 상기 이온교환을 위한 칼륨, 마그네슘 및 칼슘으로 구성된 군에서 선택되는 1종 이상의 금속은 이들의 전구체로 이온교환을 수행할 수 있으며, 상기 이들의 전구체로는 수용성 염 화합물이면 가능하고, 일 예로, 질산염, 탄산염, 염산염, 황산염 또는 이들의 수화물 등을 사용할 수 있다. 여기서, 상기 이온 교환은 이미 공지된 기술로써 이에 대한 상세한 설명은 생략한다.
이때, 상기 칼륨, 마그네슘 및 칼슘으로 구성된 군에서 선택되는 1종 이상의 금속 함량은 촉매 총 중량에 대하여, 0.01 중량% ~ 10 중량%로 포함하는 것이 바람직하다.
본 발명에서는 칼륨, 마그네슘 및 칼슘으로 구성된 군에서 선택되는 1종 이상의 금속을 제올라이트형 분자체에 이온 교환시켜 담지시킴으로써, 제올라이트형 분자체 내부에 아주 균일하게 분포시킬 수 있다.
상기 칼륨, 마그네슘 및 칼슘으로 구성된 군에서 선택되는 1종 이상의 금속으로 이온 교환된 제올라이트형 분자체에는 촉매 활성성분인 팔라듐(Pd)을 담지시킨다. 이때 팔라듐을 담지하기 위해 함침법을 사용할 수 있다.
상기 제올라이트형 분자체에 함침시키는 팔라듐 함량은 촉매 총 중량에 대하여, 0.1 중량% ~ 10 중량%, 바람직하게는 0.5 중량% ~ 5 중량%로 포함할 수 있다. 팔라듐이 상기 범위 안에 있을 경우, 가장 경제적이며 활성이 우수한 촉매가 얻어진다.
본 발명은 다른 관점에서 (a) 제올라이트형 분자체에 칼륨, 마그네슘 및 칼슘으로 구성된 군에서 선택되는 1종 이상의 금속을 이온교환을 통하여 담지시키는 단계; (b) 상기 (a) 단계의 담지물을 세척 및 건조한 다음, 소성시키는 단계; (c) 상기 (b) 단계의 소성물에 팔라듐을 습식 함침법을 통하여 담지시키는 단계; 및 (d) 상기 (c) 단계의 담지물을 건조 및 소성시키는 단계를 포함하는 것을 특징으로 하는 메탄 산화반응용 촉매의 제조방법에 관한 것이다.
본 발명의 일 실시예에 따른 메탄 산화반응용 촉매의 제조방법은 제올라이트형 분자체에 반응속도가 빠르고 균일한 화합물을 얻을 수 있는 이온 교환법을 이용하여 칼륨, 마그네슘 및 칼슘으로 구성된 군에서 선택되는 1종 이상의 금속을 담지시킨 다음, 상기 담지물상에 팔라듐을 습식 함침법으로 함침시킴으로써, 메탄 산화반응에 있어서 수증기가 존재하는 고온 환경에서도 장기적으로 안정적인 촉매 활성을 나타내는 메탄 산화반응용 촉매를 경제적이면서 용이하게 제조할 수 있다.
이하, 본 발명의 일 실시예에 따른 메탄 산화반응용 촉매를 제조하는 방법을 설명한다. 도 1은 본 발명의 일 실시예에 따른 메탄 산화반응용 촉매의 제조방법의 공정 순서도이다.
도 1을 참조하면, 본 발명에 따른 메탄 산화반응용 촉매의 제조방법은 먼저 제올라이트형 분자체에 칼륨, 마그네슘 및 칼슘으로 구성된 군에서 선택되는 1종 이상의 금속을 이온 교환을 통하여 담지시킨다[(a) 단계].
상기 제올라이트형 분자체는 전술된 바와 같이, 천연적으로 생산되는 제올라이트 및 인공적으로 합성된 제올라이트와 골격 구조내에 메탈 및/또는 P가 치환된 실리코알루미노포스페이트(SAPO), 메탈로알루미노포스페이트(MeAPO)를 포함할 수 있으며, 바람직하게는 베타 제올라이트, 모데나이트(mordenite), MFI형 제올라이트, 페리에라이트(ferrierite), CHA형 제올라이트로 이루어진 군에서 선택된 어느 하나를 사용할 수 있다.
또한 상기 제올라이트형 분자체는 장시간 안정적으로 우수한 촉매활성을 유지시키기 위해 칼륨, 마그네슘 및 칼슘으로 구성된 군에서 선택되는 1종 이상의 금속을 이온 교환을 통하여 담지시킨다. 상기 이온 교환은 제올라이트를 전술된 금속의 전구체와 접촉시켜 수행할 수 있다. 상기 금속 전구체로는 수용성 염 화합물이면 가능하고, 일 예로, 질산염, 탄산염, 염산염, 황산염 또는 이들의 수화물 등을 사용할 수 있다. 여기서, 상기 이온교환은 이미 공지된 기술로써 이에 대한 상세한 설명은 생략한다.
이때, 상기 칼륨, 마그네슘 및 칼슘으로 구성된 군에서 선택되는 1종 이상의 금속은 촉매 총 중량에 대하여, 0.01 중량% ~ 10 중량%로 담지되어 제올라이트형 분자체에 담지시킬 수 있다.
본 발명에서는 칼륨, 마그네슘 및 칼슘으로 구성된 군에서 선택되는 1종 이상의 금속을 제올라이트형 분자체에 이온 교환시켜 담지시킴으로써, 제올라이트형 분자체 내부에 아주 균일하게 분포시킬 수 있다.
이후, 상기 칼륨, 마그네슘 및 칼슘으로 구성된 군에서 선택되는 1종 이상의 금속으로 이온 교환된 제올라이트형 분자체 담지물은 세척 및 건조한 다음, 소성시킨다[(b) 단계].
상기 세척은 이온 교환과정에서 존재하는 미반응물, 부생성물 등을 제거하기 위해 증류수 등으로 1회 이상 세척을 수행할 수 있고, 세척된 담지물은 80 ℃ ~ 120 ℃에서 1 시간 ~ 24 시간 동안 건조한 다음, 200 ℃ ~ 1,000 ℃에서 1 시간 ~ 12 시간 동안 소성을 수행할 수 있다.
이와 같이 수득된 담지물은 초기 습식 함침법을 통하여 팔라듐을 담지시킨다[(d) 단계].
상기 초기 습식 함침법은 팔라듐을 제올라이트의 세공 부피만큼 용매에 녹인 용액을 건조된 제올라이트에 가하여 흡수시킨 후 건조시켜 용매를 제거하는 방법으로, 함침법 중에 가장 간단하다는 장점이 있다.
본 발명에서는 장시간 안정적으로 우수한 촉매활성을 유지시키기 위해 함침법 중에서 초기 습식 함침법을 이용하여 팔라듐을 제올라이트형 분자체에 담지시킬 수 있다. 이때, 상기 초기 습식 함침법은 이미 공지된 기술로써 이에 대한 상세한 설명은 생략한다.
상기 금속이 담지된 제올라이트형 분자체에 초기 습식 함침시키는 팔라듐 함량은 촉매 총 중량에 대하여, 0.1 중량% ~ 10 중량%, 바람직하게는 0.5 중량% ~ 5 중량%로 포함할 수 있다. 팔라듐이 상기 범위 안에 있을 경우, 가장 경제적이며 활성이 우수한 촉매가 얻어진다.
상기 팔라듐이 담지된 담지물은 최종적으로 건조 및 소성시켜 메탄 산화반응용 촉매를 제조한다[(d) 단계].
상기 담지물의 건조는 80 ℃ ~ 120 ℃에서 1시간 ~ 24시간 동안 수행할 수 있고, 상기 담지물의 소성은 300 ℃ ~ 600 ℃에서 2시간 ~ 12시간 동안 수행할 수 있다.
본 발명에 따른 메탄 산화반응용 촉매의 제조방법은 반응속도가 빠르며 균일한 화합물을 제조할 수 있는 이온 교환법을 이용하여 제조된 제올라이트형 분자체에 장시간 안정적으로 우수한 촉매활성을 유지시킬 수 있는 습식 함침법으로 팔라듐을 담지시켜 메탄 산화반응용 촉매를 제조함으로써, 수증기 성분이 없는 건조 상태는 물론, 다량의 수증기(수분)이 노출된 고온 환경에서도 안정적인 높은 촉매활성으로 메탄을 효율적으로 산화시킬 수 있다.
본 발명은 다른 관점에서, 상기의 메탄 산화반응용 촉매 존재하에 메탄, 산소 및 수증기가 함유된 혼합가스 내에서 메탄을 완전 산화시키는 것을 특징으로 하는 메탄 산화방법에 관한 것이다.
본 발명에 따른 메탄 산화반응용 촉매는 다량의 수증기(수분)이 노출된 고온 환경에서도 안정적인 높은 촉매활성으로 메탄을 효율적으로 산화시킬 수 있다. 이때 상기 수증기 함량은 혼합가스 총 부피에 대하여, 20 부피% 이하일 수 있다.
본 발명에 따른 메탄 산화반응용 촉매는 통상의 방법을 통해 혼합가스로부터 메탄을 산화반응시켜 제거할 수 있으며, 이때, 메탄의 산화반응은 상압에서 온도가 300 ℃ ~ 600 ℃이고, 공간속도는 1,000 cm3g-1h-1 ~ 200,000 cm3g-1h-1인 것이 고온 환경에서 촉매의 비활성화가 억제된다는 측면에서 바람직하다.
또한, 본 발명에 따른 메탄 산화반응용 촉매는 산화 온도가 300 ℃ ~ 500 ℃에서 메탄의 전환율이 90 % 이상일 수 있다.
이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 하기 실시예는 본 발명의 이해를 돕기 위한 예시에 불과하며, 본 발명의 범위가 이에 한정되는 것은 아니다.
<실시예 1>
Si/Al의 몰비가 15인 SSZ-13 제올라이트(중국 catalyst holding사의 ZS 113LH) 1 g을 0.5 M의 KNO3 100 mL에 넣어 상온에서 12시간 동안 교반하고, 원심분리를 이용해 제올라이트를 회수한 다음, 다시 0.5 M의 KNO3 100 mL에 넣고 상온에서 12시간 동안 교반하였다. 이후 회수한 제올라이트를 증류수로 세척한 다음, 100 ℃ 오븐에서 12시간 동안 건조하였다. 상기 건조된 제올라이트를 공기(air) 조건하에서 5 ℃/min로 550 ℃까지 승온시킨 후에 550 ℃에서 4시간 동안 소성하여 칼륨이 이온 교환된 제올라이트를 수득하였다. 상기 수득된 칼륨이 이온 교환된 제올라이트 0.5 g을 0.0185 M의 Pd(NO3)2 25 mL에 넣고 상온에서 6시간 동안 교반시킨 다음, 감압증류하여 물을 증발시켰다. 이후 100 ℃ 오븐에서 2시간 동안 건조시킨 다음, 건조된 팔라듐 담지 제올라이트를 공기조건 하에서 5 ℃/min로 400 ℃까지 승온시킨 후에 400 ℃에서 4시간 동안 소성하여 표 1에 나타난 바와 같은 메탄 산화반응용 촉매(Pd_K/SSZ-13)를 제조하였다.
<실시예 2>
Si/Al의 몰비가 15인 SSZ-13 제올라이트(중국 catalyst holding사의 ZS 113LH) 1 g을 0.2 M의 Mg(NO3)2 100 mL에 넣어 상온에서 12시간 동안 교반하고, 원심분리를 이용해 제올라이트를 회수한 다음, 다시 0.2 M의 Mg(NO3)2 100 mL에 넣고 상온에서 12시간 동안 교반하였다. 이후 회수한 제올라이트를 증류수로 세척한 다음, 100 ℃ 오븐에서 12시간 동안 건조하였다. 상기 건조된 제올라이트를 공기(air) 조건하에서 5 ℃/min로 550 ℃까지 승온시킨 후에 550 ℃에서 4시간 동안 소성하여 마그네슘이 이온 교환된 제올라이트를 수득하였다. 상기 수득된 마그네슘이 이온 교환된 제올라이트 0.5 g을 0.0185 M의 Pd(NO3)2 25 mL에 넣고 상온에서 6시간 동안 교반시킨 다음, 감압증류하여 물을 증발시켰다. 이후 100 ℃ 오븐에서 2시간 동안 건조시킨 다음, 건조된 팔라듐 담지 제올라이트를 공기조건 하에서 5 ℃/min로 400 ℃까지 승온시킨 후에 400 ℃에서 4시간 동안 소성하여 표 1에 나타난 바와 같은 메탄 산화반응용 촉매(Pd_Mg/SSZ-13)를 제조하였다.
<실시예 3>
Si/Al의 몰비가 15인 SSZ-13 제올라이트(중국 catalyst holding사의 ZS 113LH) 1 g을 0.2 M의 Ca(NO3)2 100 mL에 넣어 상온에서 12시간 동안 교반하고, 원심분리를 이용해 제올라이트를 회수한 다음, 다시 0.2 M의 Ca(NO3)2 100 mL에 넣고 상온에서 12시간 동안 교반하였다. 이후 회수한 제올라이트를 증류수로 세척한 다음, 100 ℃ 오븐에서 12시간 동안 건조하였다. 상기 건조된 제올라이트를 공기(air) 조건하에서 5 ℃/min로 550 ℃까지 승온시킨 후에 550 ℃에서 4시간 동안 소성하여 칼슘이 이온 교환된 제올라이트를 수득하였다. 상기 수득된 칼슘이 이온 교환된 제올라이트 0.5 g을 0.0185 M의 Pd(NO3)2 25 mL에 넣고 상온에서 6시간 동안 교반시킨 다음, 감압증류하여 물을 증발시켰다. 이후 100 ℃ 오븐에서 2시간 동안 건조시킨 다음, 건조된 팔라듐 담지 제올라이트를 공기조건 하에서 5 ℃/min로 400 ℃까지 승온시킨 후에 400 ℃에서 4시간 동안 소성하여 표 1에 나타난 바와 같은 메탄 산화반응용 촉매(Pd_Ca/SSZ-13)를 제조하였다.
<실시예 4>
Si/Al의 몰비가 10인 모데나이트 제올라이트(Zeolyst사의 CBV 21A) 1 g을 0.5 M의 KNO3 100 mL에 넣어 상온에서 12시간 동안 교반하고, 원심분리를 이용해 제올라이트를 회수한 다음, 다시 0.5 M의 KNO3 100 mL에 넣고 상온에서 12시간 동안 교반하였다. 이후 회수한 제올라이트를 증류수로 세척한 다음, 100 ℃ 오븐에서 12시간 동안 건조하였다. 상기 건조된 제올라이트를 공기(air) 조건하에서 5 ℃/min로 550 ℃까지 승온시킨 후에 550 ℃에서 4시간 동안 소성하여 칼륨이 이온 교환된 제올라이트를 수득하였다. 상기 수득된 칼륨이 이온 교환된 제올라이트 0.5 g을 0.0185 M의 Pd(NO3)2 25 mL에 넣고 상온에서 6시간 동안 교반시킨 다음, 감압증류하여 물을 증발시켰다. 이후 100 ℃ 오븐에서 2시간 동안 건조시킨 다음, 건조된 팔라듐 담지 제올라이트를 공기조건 하에서 5 ℃/min로 400 ℃까지 승온시킨 후에 400 ℃에서 4시간 동안 소성하여 표 1에 나타난 바와 같은 메탄 산화반응용 촉매(Pd_K/MOR)를 제조하였다.
<실시예 5>
Si/Al의 몰비가 11.5인 H-ZSM-5 제올라이트(Zeolyst사의 CBV 2314) 1 g을 0.5 M의 KNO3 100 mL에 넣어 상온에서 12시간 동안 교반하고, 원심분리를 이용해 제올라이트를 회수한 다음, 다시 0.5 M의 KNO3 100 mL에 넣고 상온에서 12시간 동안 교반하였다. 이후 회수한 제올라이트를 증류수로 세척한 다음, 100 ℃ 오븐에서 12시간 동안 건조하였다. 상기 건조된 제올라이트를 공기(air) 조건하에서 5 ℃/min로 550 ℃까지 승온시킨 후에 550 ℃에서 4시간 동안 소성하여 칼륨이 이온 교환된 제올라이트를 수득하였다. 상기 수득된 칼륨이 이온 교환된 제올라이트 0.5 g을 0.0185 M의 Pd(NO3)2 25 mL에 넣고 상온에서 6시간 동안 교반시킨 다음, 감압증류하여 물을 증발시켰다. 이후 100 ℃ 오븐에서 2시간 동안 건조시킨 다음, 건조된 팔라듐 담지 제올라이트를 공기조건 하에서 5 ℃/min로 400 ℃까지 승온시킨 후에 400 ℃에서 4시간 동안 소성하여 표 1에 나타난 바와 같은 메탄 산화반응용 촉매(Pd_K/ZSM-5)를 제조하였다.
<실시예 6>
Si/Al의 몰비가 0.3인 SAPO-34(Zeolyst사) 1 g을 0.5 M의 KNO3 100 mL에 넣어 상온에서 12시간 동안 교반하고, 원심분리를 이용해 제올라이트를 회수한 다음, 다시 0.5 M의 KNO3 100 mL에 넣고 상온에서 12시간 동안 교반하였다. 이후 회수한 제올라이트를 증류수로 세척한 다음, 100 ℃ 오븐에서 12시간 동안 건조하였다. 상기 건조된 제올라이트를 공기(air) 조건하에서 5 ℃/min로 550 ℃까지 승온시킨 후에 550 ℃에서 4시간 동안 소성하여 칼륨이 이온 교환된 제올라이트를 수득하였다. 상기 수득된 칼륨이 이온 교환된 제올라이트 0.5 g을 0.0185 M의 Pd(NO3)2 25 mL에 넣고 상온에서 6시간 동안 교반시킨 다음, 감압증류하여 물을 증발시켰다. 이후 100 ℃ 오븐에서 2시간 동안 건조시킨 다음, 건조된 팔라듐 담지 제올라이트를 공기조건 하에서 5 ℃/min로 400 ℃까지 승온시킨 후에 400 ℃에서 4시간 동안 소성하여 표 1에 나타난 바와 같은 메탄 산화반응용 촉매(Pd_K/SAPO-34)를 제조하였다.
<비교예 1>
Si/Al의 몰비가 15인 SSZ-13 제올라이트(중국 catalyst holding사의 ZS 113LH) 0.5 g을 0.0185 M의 Pd(NO3)2 25 mL에 넣고 상온에서 6시간 동안 교반시킨 다음, 감압증류하여 물을 증발시켰다. 이후 100 ℃ 오븐에서 2시간 동안 건조시킨 다음, 건조된 팔라듐 담지 제올라이트를 공기 조건 하에서 5 ℃/min로 400 ℃까지 승온시킨 후에 400 ℃에서 4시간 동안 소성하여 표 1에 나타난 바와 같은 메탄 산화반응용 촉매(Pd_H/SSZ-13)를 제조하였다.
<비교예 2>
Si/Al의 몰비가 15인 SSZ-13 제올라이트(중국 catalyst holding사의 ZS 113LH) 1 g을 0.5 M의 NaNO3 100 mL에 넣어 상온에서 12시간 동안 교반하고, 원심분리를 이용해 제올라이트를 회수한 다음, 다시 0.5 M의 NaNO3 100 mL에 넣고 상온에서 12시간 동안 교반하였다. 이후 회수한 제올라이트를 증류수로 세척한 다음, 100 ℃ 오븐에서 12시간 동안 건조하였다. 상기 건조된 제올라이트를 공기(air) 조건하에서 5 ℃/min로 550 ℃까지 승온시킨 후에 550 ℃에서 4시간 동안 소성하여 나트륨이 이온 교환된 제올라이트를 수득하였다. 상기 수득된 나트륨이 이온 교환된 제올라이트 0.5 g을 0.0185 M의 Pd(NO3)2 25 mL에 넣고 상온에서 6시간 동안 교반시킨 다음, 감압증류하여 물을 증발시켰다. 이후 100 ℃ 오븐에서 2시간 동안 건조시킨 다음, 건조된 팔라듐 담지 제올라이트를 공기조건 하에서 5 ℃/min로 400 ℃까지 승온시킨 후에 400 ℃에서 4시간 동안 소성하여 표 1에 나타난 바와 같은 메탄 산화반응용 촉매(Pd_Na/SSZ-13)를 제조하였다.
<비교예 3>
Si/Al의 몰비가 15인 SSZ-13 제올라이트(중국 catalyst holding사의 ZS 113LH) 1 g을 0.2 M의 Zn(NO3)2 100 mL에 넣어 상온에서 12시간 동안 교반하고, 원심분리를 이용해 제올라이트를 회수한 다음, 다시 0.2 M의 Zn(NO3)2 100 mL에 넣고 상온에서 12시간 동안 교반하였다. 이후 회수한 제올라이트를 증류수로 세척한 다음, 100 ℃ 오븐에서 12시간 동안 건조하였다. 상기 건조된 제올라이트를 공기(air) 조건하에서 5 ℃/min로 550 ℃까지 승온시킨 후에 550 ℃에서 4시간 동안 소성하여 아연이 이온 교환된 제올라이트를 수득하였다. 상기 수득된 아연이 이온 교환된 제올라이트 0.5 g을 0.0185 M의 Pd(NO3)2 25 mL에 넣고 상온에서 6시간 동안 교반시킨 다음, 감압증류하여 물을 증발시켰다. 이후 100 ℃ 오븐에서 2시간 동안 건조시킨 다음, 건조된 팔라듐 담지 제올라이트를 공기조건 하에서 5 ℃/min로 400 ℃까지 승온시킨 후에 400 ℃에서 4시간 동안 소성하여 표 1에 나타난 바와 같은 메탄 산화반응용 촉매(Pd_Zn/SSZ-13)를 제조하였다.
<비교예 4>
Si/Al의 몰비가 15인 SSZ-13 제올라이트(중국 catalyst holding사의 ZS 113LH) 1 g을 0.2 M의 Na2WO4 100 mL에 넣어 상온에서 12시간 동안 교반하고, 원심분리를 이용해 제올라이트를 회수한 다음, 다시 0.2 M의 Na2WO4 100 mL에 넣고 상온에서 12시간 동안 교반하였다. 이후 회수한 제올라이트를 증류수로 세척한 다음, 100 ℃ 오븐에서 12시간 동안 건조하였다. 상기 건조된 제올라이트를 공기(air) 조건하에서 5 ℃/min로 550 ℃까지 승온시킨 후에 550 ℃에서 4시간 동안 소성하여 텅스텐이 이온 교환된 제올라이트를 수득하였다. 상기 수득된 텅스텐이 이온 교환된 제올라이트 0.5 g을 0.0185 M의 Pd(NO3)2 25 mL에 넣고 상온에서 6시간 동안 교반시킨 다음, 감압증류하여 물을 증발시켰다. 이후 100 ℃ 오븐에서 2시간 동안 건조시킨 다음, 건조된 팔라듐 담지 제올라이트를 공기조건 하에서 5 ℃/min로 400 ℃까지 승온시킨 후에 400 ℃에서 4시간 동안 소성하여 표 1에 나타난 바와 같은 메탄 산화반응용 촉매(Pd_W/SSZ-13)를 제조하였다.
<비교예 5>
Si/Al의 몰비가 15인 SSZ-13 제올라이트(중국 catalyst holding사의 ZS 113LH) 1 g을 0.5 M의 LiNO3 100 mL에 넣어 상온에서 12시간 동안 교반하고, 원심분리를 이용해 제올라이트를 회수한 다음, 다시 0.5 M의 LiNO3 100 mL에 넣고 상온에서 12시간 동안 교반하였다. 이후 회수한 제올라이트를 증류수로 세척한 다음, 100 ℃ 오븐에서 12시간 동안 건조하였다. 상기 건조된 제올라이트를 공기(air) 조건하에서 5 ℃/min로 550 ℃까지 승온시킨 후에 550 ℃에서 4시간 동안 소성하여 리튬이 이온 교환된 제올라이트를 수득하였다. 상기 수득된 리튬이 이온 교환된 제올라이트 0.5 g을 0.0185 M의 Pd(NO3)2 25 mL에 넣고 상온에서 6시간 동안 교반시킨 다음, 감압증류하여 물을 증발시켰다. 이후 100 ℃ 오븐에서 2시간 동안 건조시킨 다음, 건조된 팔라듐 담지 제올라이트를 공기조건 하에서 5 ℃/min로 400 ℃까지 승온시킨 후에 400 ℃에서 4시간 동안 소성하여 표 1에 나타난 바와 같은 메탄 산화반응용 촉매(Pd_Li/SSZ-13)를 제조하였다.
<비교예 6>
Si/Al의 몰비가 15인 SSZ-13 제올라이트(중국 catalyst holding사의 ZS 113LH) 1 g을 0.2 M의 Cu(NO3)2 100 mL에 넣어 상온에서 12시간 동안 교반하고, 원심분리를 이용해 제올라이트를 회수한 다음, 다시 0.2 M의 Cu(NO3)2 100 mL에 넣고 상온에서 12시간 동안 교반하였다. 이후 회수한 제올라이트를 증류수로 세척한 다음, 100 ℃ 오븐에서 12시간 동안 건조하였다. 상기 건조된 제올라이트를 공기(air) 조건하에서 5 ℃/min로 550 ℃까지 승온시킨 후에 550 ℃에서 4시간 동안 소성하여 구리가 이온 교환된 제올라이트를 수득하였다. 상기 수득된 구리가 이온 교환된 제올라이트 0.5 g을 0.0185 M의 Pd(NO3)2 25 mL에 넣고 상온에서 6시간 동안 교반시킨 다음, 감압증류하여 물을 증발시켰다. 이후 100 ℃ 오븐에서 2시간 동안 건조시킨 다음, 건조된 팔라듐 담지 제올라이트를 공기조건 하에서 5 ℃/min로 400 ℃까지 승온시킨 후에 400 ℃에서 4시간 동안 소성하여 표 1에 나타난 바와 같은 메탄 산화반응용 촉매(Pd_Cu/SSZ-13)를 제조하였다.
<비교예 7>
Si/Al의 몰비가 15인 SSZ-13 제올라이트(중국 catalyst holding사의 ZS 113LH) 1 g을 0.2 M의 Ce(NO3)2 100 mL에 넣어 상온에서 12시간 동안 교반하고, 원심분리를 이용해 제올라이트를 회수한 다음, 다시 0.2 M의 Ce(NO3)2 100 mL에 넣고 상온에서 12시간 동안 교반하였다. 이후 회수한 제올라이트를 증류수로 세척한 다음, 100 ℃ 오븐에서 12시간 동안 건조하였다. 상기 건조된 제올라이트를 공기(air) 조건하에서 5 ℃/min로 550 ℃까지 승온시킨 후에 550 ℃에서 4시간 동안 소성하여 세륨이 이온 교환된 제올라이트를 수득하였다. 상기 수득된 세륨이 이온 교환된 제올라이트 0.5 g을 0.0185 M의 Pd(NO3)2 25 mL에 넣고 상온에서 6시간 동안 교반시킨 다음, 감압증류하여 물을 증발시켰다. 이후 100 ℃ 오븐에서 2시간 동안 건조시킨 다음, 건조된 팔라듐 담지 제올라이트를 공기조건 하에서 5 ℃/min로 400 ℃까지 승온시킨 후에 400 ℃에서 4시간 동안 소성하여 표 1에 나타난 바와 같은 메탄 산화반응용 촉매(Pd_Ce/SSZ-13)를 제조하였다.
<비교예 8>
Si/Al의 몰비가 15인 SSZ-13 제올라이트(중국 catalyst holding사의 ZS 113LH) 1 g을 0.2 M의 MoCl2 100 mL에 넣어 상온에서 12시간 동안 교반하고, 원심분리를 이용해 제올라이트를 회수한 다음, 다시 0.2 M의 MoCl2 100 mL에 넣고 상온에서 12시간 동안 교반하였다. 이후 회수한 제올라이트를 증류수로 세척한 다음, 100 ℃ 오븐에서 12시간 동안 건조하였다. 상기 건조된 제올라이트를 공기(air) 조건하에서 5 ℃/min로 550 ℃까지 승온시킨 후에 550 ℃에서 4시간 동안 소성하여 몰리브덴이 이온 교환된 제올라이트를 수득하였다. 상기 수득된 몰리브덴이 이온 교환된 제올라이트 0.5 g을 0.0185 M의 Pd(NO3)2 25 mL에 넣고 상온에서 6시간 동안 교반시킨 다음, 감압증류하여 물을 증발시켰다. 이후 100 ℃ 오븐에서 2시간 동안 건조시킨 다음, 건조된 팔라듐 담지 제올라이트를 공기조건 하에서 5 ℃/min로 400 ℃까지 승온시킨 후에 400 ℃에서 4시간 동안 소성하여 표 1에 나타난 바와 같은 메탄 산화반응용 촉매(Pd_Mo/SSZ-13)를 제조하였다.
<비교예 9>
Al2O3(Sigma-Aldrich사의 Aluminum oxide) 0.5 g, Pd(NO3)2 0.11 g, KNO3 0.88 g을 동시에 25 mL 증류수에 넣고 상온에서 6시간 동안 교반시킨 다음, 감압증류하여 물을 증발시켰다. 이후 100 ℃ 오븐에서 2시간 동안 건조시킨 다음, 건조된 팔라듐 담지 알루미늄 산화물을 공기 조건하에서 5 ℃/min로 400 ℃까지 승온시킨 후에 400 ℃에서 4시간 동안 소성하여 표 1에 나타난 바와 같은 메탄 산화반응용 촉매(Pd_K/Al2O3)를 제조하였다.
<비교예 10>
Si/Al의 몰비가 10인 모데나이트 제올라이트(Zeolyst사의 CBV 21A) 0.5 g을 0.0185 M의 Pd(NO3)2 25 mL에 넣고 상온에서 6시간 동안 교반시킨 다음, 감압증류하여 물을 증발시켰다. 이후 100 ℃ 오븐에서 2시간 동안 건조시킨 다음, 건조된 팔라듐 담지 제올라이트를 공기 조건하에서 5 ℃/min로 400 ℃까지 승온시킨 후에 400 ℃에서 4시간 동안 소성하여 표 1에 나타난 바와 같은 메탄 산화반응용 촉매(Pd_H/SSZ-13)를 제조하였다.
<비교예 11>
Si/Al의 몰비가 11.5 인 H-ZSM-5 제올라이트(Zeolyst사의 CBV 2314) 0.5 g을 0.0185 M의 Pd(NO3)2 25 mL에 넣고 상온에서 6시간 동안 교반시킨 다음, 감압증류하여 물을 증발시켰다. 이후 100 ℃ 오븐에서 2시간 동안 건조시킨 다음, 건조된 팔라듐 담지 제올라이트를 공기조건 하에서 5 ℃/min로 400 ℃까지 승온시킨 후에 400 ℃에서 4시간 동안 소성하여 표 1에 나타난 바와 같은 메탄 산화반응용 촉매(Pd_H/SSZ-13)를 제조하였다.
<비교예 12>
Si/Al의 몰비가 0.3인 SAPO-34 (Zeolyst사) 0.5 g을 0.0185 M의 Pd(NO3)2 25 mL에 넣고 상온에서 6시간 동안 교반시킨 다음, 감압증류하여 물을 증발시켰다. 이후 100 ℃ 오븐에서 2시간 동안 건조시킨 다음, 건조된 팔라듐 담지 제올라이트를 공기조건 하에서 5 ℃/min로 400 ℃까지 승온시킨 후에 400 ℃에서 4시간 동안 소성하여 표 1에 나타난 바와 같은 메탄 산화반응용 촉매(Pd_H/SSZ-13)를 제조하였다.
<비교예 13>
Si/Al의 몰비가 15인 SSZ-13 제올라이트(중국 catalyst holding사의 ZS 113LH) 0.5 g, Pd(NO3)2 0.11 g 및 KNO3 0.023 g을 동시에 25mL 증류수에 넣고 상온에서 6시간 동안 교반시킨 다음, 감압증류하여 물을 증발시켰다. 이후 100 ℃ 오븐에서 2시간 동안 건조시킨 다음, 건조된 팔라듐 및 금속이온 담지 제올라이트를 공기 조건하에서 5 ℃/min로 400 ℃까지 승온시킨 후에 400 ℃에서 4시간 동안 소성하여 표 1에 나타난 바와 같은 메탄 산화반응용 촉매(Pd_K_SSZ-13)를 제조하였다.
<비교예 14>
Si/Al의 몰비가 15인 SSZ-13 제올라이트(중국 catalyst holding사의 ZS 113LH) 0.5 g, Pd(NO3)2 0.11 g, 0.01M Mg(NO3)2·6H2O 용액 0.8 mL를 동시에 25 mL 증류수에 넣고 상온에서 6시간 동안 교반시킨 다음, 감압증류하여 물을 증발시켰다. 이후 100 ℃ 오븐에서 2시간 동안 건조시킨 다음, 건조된 팔라듐 및 금속이온 담지 제올라이트를 공기 조건하에서 5 ℃/min로 400 ℃까지 승온시킨 후에 400 ℃에서 4시간 동안 소성하여 표 1에 나타난 바와 같은 메탄 산화반응용 촉매(Pd_Mg_SSZ-13)를 제조하였다.
구분 지지체 금속
팔라듐
금속종류 담지량
(wt%)
담지방법 담지량
(wt%)
담지방법
실시예 1 SSZ-13 K 1.76 이온 교환 4 습식 함침
실시예 2 SSZ-13 Mg 0.03 이온 교환 4 습식 함침
실시예 3 SSZ-13 Ca 0.32 이온 교환 4 습식 함침
실시예 4 mordenite K 1.98 이온 교환 4 습식 함침
실시예 5 ZSM-5 K 1.49 이온 교환 4 습식 함침
실시예 6 SAPO-34 K 2.10 이온 교환 4 습식 함침
비교예 1 SSZ-13 - - - 4 습식 함침
비교예 2 SSZ-13 Na 1.36 이온 교환 4 습식 함침
비교예 3 SSZ-13 Zn 0.45 이온 교환 4 습식 함침
비교예 4 SSZ-13 W 0.14 이온 교환 4 습식 함침
비교예 5 SSZ-13 Li 0.31 이온 교환 4 습식 함침
비교예 6 SSZ-13 Cu 1.51 이온 교환 4 습식 함침
비교예 7 SSZ-13 Ce 6.51 이온 교환 4 습식 함침
비교예 8 SSZ-13 Mo 0.47 이온 교환 4 습식 함침
비교예 9 Al2O3 K 1.76 이온 교환 4 습식 함침
비교예 10 mordenite - - - 4 습식 함침
비교예 11 ZSM-5 - - - 4 습식 함침
비교예 12 SAPO-34 - - - 4 습식 함침
비교예 13 SSZ-13 K 1.76 습식 함침 4 습식 함침
비교예 14 SSZ-13 Mg 0.04 습식 함침 4 습식 함침
<실험예 1 : 메탄 제거 효율 측정>
상기 실시예 및 비교예에서 제조된 각각의 촉매 0.1 g을 충전시킨 반응기(외경 0.7 ㎝, 길이 34 ㎝)에 비활성 기체(N2 89.5 %) 존재하에 메탄, 산소 및 수증기가 0.5 : 5 : 5 몰비로 혼합된 혼합가스를 공간속도(GHSV) 120,000 cm3/g/h로 공급한 다음, 300 ℃에서 500 ℃까지 50 ℃ 간격으로 60분 동안 메탄 산화반응을 실시하고, 그 결과를 표 2 및 도 1에 나타내었다. 이때 표 2 및 도 1의 T50와 T90는 메탄 전환율이 각각 50 %와 90 %로 도달될 때 온도를 나타낸 것이다.
구분 메탄 전환율 (%) T50 (℃) T90 (℃)
350 ℃ 400 ℃ 450 ℃ 500 ℃
실시예 1 39.7 79.3 89.1 87.3 363 450
실시예 2 28.2 83.6 96.1 99.0 370 426
실시예 3 29.1 76.5 93.6 97.9 372 439
실시예 4 56.6 96.9 99.7 99.9 342 391
실시예 5 42.4 88.7 96.6 98.6 358 406
실시예 6 45.9 94.8 99.5 99.9 354 395
비교예 1 22.7 81.1 97.9 96.2 373 426
비교예 2 23.8 73.3 91.7 89.6 376 445
비교예 3 18.5 50.2 84.6 94.1 400 478
비교예 4 53.5 87.0 94.7 96.8 346 419
비교예 5 33.6 69.8 86.1 93.4 373 477
비교예 6 9.0 28.7 55.0 82.1 440 -
비교예 7 1.1 4.5 19.5 75.3 477 -
비교예 8 0.4 2.3 9.1 25.3 - -
비교예 9 16.6 64.6 89.1 94.9 385 458
비교예 10 21.5 55.9 71.0 78.6 391 -
비교예 11 19.7 60.6 87.4 96.3 387 464
비교예 12 33.9 79.8 97.4 99.6 368 429
비교예 13 26.7 57.1 79.3 80.9 388 -
비교예 14 15.8 61.6 85.9 95.0 387 472
<실험예 2 : 촉매의 장기 안정성 측정>
상기 실시예 및 비교예에서 제조된 각각의 촉매 0.1 g를 충전시킨 반응기(외경 0.7 ㎝, 길이 34 ㎝)에 비활성 기체(He 89.5 %)와 수증기의 몰비가 95 : 5인 기체를 공간속도(GHSV) 60,000 cm3/g/h로 공급한 다음, 600 ℃에서 120분 동안 촉매 비활성화(aging) 과정을 실시하였다. 이후 반응기에 비활성 기체 존재하에 메탄, 산소 및 수증기가 0.5 : 5 : 5 몰비로 혼합된 혼합가스를 공간속도(GHSV) 120,000 cm3/g/h로 공급한 다음, 400 ℃에서 15 시간 동안 메탄 산화반응을 실시하고 그 결과를 도 3에 나타내었다.
실시예 1 내지 6 및 비교예 1 내지 8, 10 내지 12는 금속의 종류를 변경에 따른 효과를 보기 위한 것이다. 표 2 및 도 1,2에서와 같이 본 발명에 따른 K, Mg, Ca를 이온교환 시키고 Pd를 담지한 경우, 메탄 산화반응에 대한 반응성이 높으며, 촉매의 장기간 사용에도 활성 저하가 없는 촉매 장기안정성이 높음을 볼 수 있다.
또한, 비교예 9는 본 발명에 따른 제올라이트형 분자체를 사용하지 않은 경우를 대비하기 위한 것으로, 실시예 1과 동일한 함량의 금속촉매를 담지하나, 지지체를 알루미나를 변경한 것이다. 이 경우, 메탄산화활성이 실시예1에 비교하여 낮게 나타나며, 특히 도 3을 보면 장기 안정성 또한 낮게 나타남을 알 수 있었다.
비교예 13 및 14는 본 발명의 제조방법을 따르지 않고 촉매를 제조한 경우를 대비하기 위한 것으로, 상기 K 또는 Mg와 Pd를 SSZ-13에 담지시키되, K, Mg를 먼저 이온교환으로 담지한 뒤, Pd를 담지한 것이 아니라, Pd와 K 또는 Mg를 동시에 함침법으로 담지한 것이다. 이와 같이 동시 함침한 경우 이들의 메탄 산화활성은 실시예 1 및 2와 비교하여 상당히 낮게 나타남을 확인할 수 있다.
본 발명의 단순한 변형 또는 변경은 모두 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (13)

  1. 칼륨, 마그네슘 및 칼슘으로 구성된 군에서 선택되는 1종 이상의 금속과 팔라듐이 포함된 금속 촉매가 제올라이트형 분자체에 담지된 것을 특징으로 하는 메탄 산화반응용 촉매.
  2. 제1항에 있어서,
    상기 칼륨, 마그네슘 및 칼슘으로 구성된 군에서 선택되는 1종 이상의 금속은 촉매 총 중량에 대하여, 0.01 중량% ~ 10.0 중량%로 포함하는 것을 특징으로 하는 메탄 산화반응용 촉매.
  3. 제1항에 있어서,
    상기 팔라듐은 촉매 총 중량에 대하여, 0.1 중량% ~ 10.0 중량%로 포함하는 것을 특징으로 하는 메탄 산화반응용 촉매.
  4. 제1항에 있어서,
    상기 제올라이트형 분자체는 SSZ-13, 모데나이트(mordenite), ZSM-5 및 SAPO-34로 구성된 군에서 선택되는 것을 특징으로 하는 메탄 산화반응용 촉매.
  5. (a) 제올라이트형 분자체에 칼륨, 마그네슘 및 칼슘으로 구성된 군에서 선택되는 1종 이상의 금속을 이온교환을 통하여 담지시키는 단계;
    (b) 상기 (a) 단계의 담지물을 세척 및 건조한 다음, 소성시키는 단계;
    (c) 상기 (b) 단계의 소성물에 팔라듐을 습식 함침법을 통하여 담지시키는 단계; 및
    (d) 상기 (c) 단계의 담지물을 건조 및 소성시키는 단계를 포함하는 것을 특징으로 하는 메탄 산화반응용 촉매의 제조방법.
  6. 제5항에 있어서,
    상기 메탄 산화반응용 촉매는 칼륨, 마그네슘 및 칼슘으로 구성된 군에서 선택되는 1종 이상의 금속이 촉매 총 중량에 대하여, 0.01 중량 % ~ 10.0 중량%로 담지된 것을 특징으로 하는 메탄 산화반응용 촉매의 제조방법.
  7. 제5항에 있어서,
    상기 메탄 산화반응용 촉매는 팔라듐이 촉매 총 중량에 대하여, 0.1 중량% ~ 10.0 중량%로 담지된 것을 특징으로 하는 메탄 산화반응용 촉매의 제조방법.
  8. 제5항에 있어서,
    상기 제올라이트형 분자체는 SSZ-13, 모데나이트(mordenite), ZSM-5 및 SAPO-34로 구성된 군에서 선택되는 것을 특징으로 하는 메탄 산화반응용 촉매의 제조방법.
  9. 제5항에 있어서,
    상기 (b) 단계의 소성은 200 ℃ ~ 1000 ℃로 수행하는 것을 특징으로 하는 메탄 산화반응용 촉매의 제조방법.
  10. 제5항에 있어서,
    상기 (d) 단계의 소성은 300 ℃ ~ 600 ℃로 수행하는 것을 특징으로 하는 메탄 산화반응용 촉매의 제조방법.
  11. 제1항 내지 제4항 중 어느 한 항의 메탄 산화반응용 촉매 존재하에 메탄을 완전 산화시키는 것을 특징으로 하는 메탄 산화방법.
  12. 제11항에 있어서,
    상기 산화는 300 ℃ ~ 600 ℃에서 수행하는 것을 특징으로 하는 메탄 산화방법.
  13. 제11항에 있어서,
    상기 메탄은 산소 및 수증기가 포함된 혼합가스의 형태로 메탄산화 반응기에 도입되는 것을 특징으로 하는 메탄 산화방법.
PCT/KR2023/001115 2022-01-28 2023-01-25 메탄 산화반응용 촉매, 이의 제조방법 및 이를 이용한 메탄 산화방법 WO2023146260A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0013133 2022-01-28
KR1020220013133A KR102687688B1 (ko) 2022-01-28 2022-01-28 메탄 산화반응용 촉매 및 이를 이용한 메탄 산화방법
KR10-2022-0017943 2022-02-11
KR1020220017943A KR102722374B1 (ko) 2022-02-11 메탄 산화반응용 촉매 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2023146260A1 true WO2023146260A1 (ko) 2023-08-03

Family

ID=87471983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/001115 WO2023146260A1 (ko) 2022-01-28 2023-01-25 메탄 산화반응용 촉매, 이의 제조방법 및 이를 이용한 메탄 산화방법

Country Status (1)

Country Link
WO (1) WO2023146260A1 (ko)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004313971A (ja) * 2003-04-17 2004-11-11 Ict:Kk 排ガス浄化用触媒及びその触媒を用いた排ガスの浄化方法
KR20080044764A (ko) * 2006-11-17 2008-05-21 에스케이에너지 주식회사 자일렌 이성화 촉매 및 그 제조방법
KR101598390B1 (ko) 2014-06-18 2016-03-02 현대중공업 주식회사 배기가스 정화용 촉매 및 그 제조방법
KR20160112179A (ko) 2015-03-18 2016-09-28 현대중공업 주식회사 천연가스 엔진 배기가스 정화용 촉매
KR20170079054A (ko) * 2015-12-30 2017-07-10 충북대학교 산학협력단 메탄 산화용 복합산화물 촉매 및 그 제조방법
KR101909303B1 (ko) 2010-12-21 2018-10-17 존슨 맛쎄이 퍼블릭 리미티드 컴파니 산화 촉매를 포함하는 희박 연소 내연기관의 배기가스 처리 장치 및 산화 촉매의 산화 활성 회복 방법
KR20190009421A (ko) * 2016-06-17 2019-01-28 바스프 코포레이션 팔라듐 디젤 산화 촉매
KR20210014509A (ko) * 2019-07-30 2021-02-09 한국조선해양 주식회사 저온 메탄 산화 반응용 촉매

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004313971A (ja) * 2003-04-17 2004-11-11 Ict:Kk 排ガス浄化用触媒及びその触媒を用いた排ガスの浄化方法
KR20080044764A (ko) * 2006-11-17 2008-05-21 에스케이에너지 주식회사 자일렌 이성화 촉매 및 그 제조방법
KR101909303B1 (ko) 2010-12-21 2018-10-17 존슨 맛쎄이 퍼블릭 리미티드 컴파니 산화 촉매를 포함하는 희박 연소 내연기관의 배기가스 처리 장치 및 산화 촉매의 산화 활성 회복 방법
KR101598390B1 (ko) 2014-06-18 2016-03-02 현대중공업 주식회사 배기가스 정화용 촉매 및 그 제조방법
KR20160112179A (ko) 2015-03-18 2016-09-28 현대중공업 주식회사 천연가스 엔진 배기가스 정화용 촉매
KR20170079054A (ko) * 2015-12-30 2017-07-10 충북대학교 산학협력단 메탄 산화용 복합산화물 촉매 및 그 제조방법
KR20190009421A (ko) * 2016-06-17 2019-01-28 바스프 코포레이션 팔라듐 디젤 산화 촉매
KR20210014509A (ko) * 2019-07-30 2021-02-09 한국조선해양 주식회사 저온 메탄 산화 반응용 촉매

Similar Documents

Publication Publication Date Title
ES2291106B2 (es) Catalizador de aromatizacion y metodos para la preparacion y el uso del mismo.
US8729331B2 (en) Method for electrochemically removing hydrogen from a reaction mixture
RU2307117C2 (ru) Катализатор для ароматизации алканов, способ его получения и способ ароматизации углеводородов с применением катализатора
JP5623503B2 (ja) 水素の電気化学的分離によって天然ガスを芳香族化合物に変換する方法および水素を水に電気化学的に変換する方法
JP5415610B2 (ja) 水素を電気化学的に除去することによって、電流及び水素を発生させながら天然ガスを芳香族化合物に変換する方法
JP2012522899A (ja) 電気化学的に水素を除去することによって、天然ガスを芳香族化合物に変換する方法
WO2016108434A1 (ko) 제올라이트 pst-20 및 그 제조방법, 이를 이용한 이산화탄소의 선택적 분리방법
NO882508L (no) Fremgangsmaate for overfoering av ethan til flytende aromatiske hydrocarboner.
WO2023146260A1 (ko) 메탄 산화반응용 촉매, 이의 제조방법 및 이를 이용한 메탄 산화방법
WO2019039749A1 (ko) 메탄 및 프로판 공동 반응물의 직접 탈수소방향족화 반응을 위한 중형기공성 hzsm-11에 담지된 금속 산화물 촉매의 제조 방법 및 상기 촉매를 이용한 btx 제조 방법
WO2010110502A1 (ko) 철이온이 담지된 제올라이트 촉매 및 그 제조방법과 그 촉매를 이용한 암모니아 환원제에 의한 아산화질소 단독 혹은 아산화질소와 일산화질소의 동시 저감방법
Kotera γ-And δ-lycorane
EP0202000A1 (en) Aromatisation of paraffins
FI112473B (fi) Menetelmä 3-metyylipiperidiinin ja 3-metyylipyridiinin valmistamiseksi syklisoimalla 2-metyyli-1,5-diaminopentaani katalyyttisesti
Kusakabe et al. Development of supported thin palladium membrane and application to enhancement of propane aromatization on Ga-silicate catalyst
KR102687688B1 (ko) 메탄 산화반응용 촉매 및 이를 이용한 메탄 산화방법
US20100056836A1 (en) Integrated process for preparing benzene and ammonia from aliphatic hydrocarbons and nitrogen
KR20230121281A (ko) 메탄 산화반응용 촉매 및 이의 제조방법
KR102722374B1 (ko) 메탄 산화반응용 촉매 및 이의 제조방법
KR20030080215A (ko) 알루미늄 원자의 일부가 철로 대체되어있는 제올라이트촉매를 사용한 나프탈렌계 화합물의 메틸화 방법, 상기촉매, 및 상기 촉매의 제조 방법
WO2010090386A1 (ko) 나트로라이트계 제올라이트에 의한 수소 또는 헬륨의 선택적 분리방법 및 새로운 나트로라이트계 제올라이트
JP4302954B2 (ja) 低級炭化水素の芳香族化合物化触媒の製造方法
Ito et al. Shape-selective alkylation of biphenyl over H-[Al]-SSZ-24 zeolites with AFI topology
CN111099609A (zh) beta分子筛的合成方法
WO2024177217A1 (ko) 암모니아 탈수소용 촉매, 이의 제조방법 및 이를 이용한 수소 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23747301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2023747301

Country of ref document: EP

Effective date: 20240828