WO2023145861A1 - ユビキチンに対する人工抗体 - Google Patents

ユビキチンに対する人工抗体 Download PDF

Info

Publication number
WO2023145861A1
WO2023145861A1 PCT/JP2023/002596 JP2023002596W WO2023145861A1 WO 2023145861 A1 WO2023145861 A1 WO 2023145861A1 JP 2023002596 W JP2023002596 W JP 2023002596W WO 2023145861 A1 WO2023145861 A1 WO 2023145861A1
Authority
WO
WIPO (PCT)
Prior art keywords
ubiquitin
amino acid
acid sequence
seq
polypeptide
Prior art date
Application number
PCT/JP2023/002596
Other languages
English (en)
French (fr)
Inventor
泰 佐伯
彬則 遠藤
泰子 河瀬
裕 村上
剛介 林
淳志 杉原
周也 深井
圭 尾勝
Original Assignee
公益財団法人東京都医学総合研究所
国立大学法人東海国立大学機構
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公益財団法人東京都医学総合研究所, 国立大学法人東海国立大学機構, 国立大学法人京都大学 filed Critical 公益財団法人東京都医学総合研究所
Publication of WO2023145861A1 publication Critical patent/WO2023145861A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present invention relates to artificial antibodies against ubiquitin, including fibronectin type III polypeptides.
  • Ubiquitin is a 76-amino acid highly conserved microglobular protein in eukaryotes, whose C-terminal Gly residue (Gly76) covalently binds to the side chain of the Lys residue of the target protein, thereby determining the fate of the target protein. It functions as a modifier that controls various things (Fig. 1) (Non-Patent Documents 1, 2). This ubiquitination reaction occurs through an enzymatic cascade of ubiquitin activating enzyme E1, ubiquitin transferase E2, and ubiquitin ligase E3, and substrate selectivity is borne by E3, which has about 600 types.
  • ubiquitination is a large-scale post-translational modification comparable to phosphorylation.
  • rice field The most distinctive feature of ubiquitin modification is not only monoubiquitination, in which a single molecule of ubiquitin is bound to a substrate, but also the formation of a beaded polymer (polyubiquitin chain) by further ubiquitination and elongation of ubiquitin on the substrate. is mentioned.
  • Ubiquitin is known to use seven Lys residues (K6, K11, K27, K29, K33, K48, K63) and the initiation Met residue (M1) for polymer formation.
  • the K48 chain functions as a signal for proteasome degradation
  • the K63 chain functions as a signal for membrane protein trafficking, DNA repair, and ubiquitin-selective autophagy
  • the M1 chain functions as a signal for NF- ⁇ B.
  • Non-Patent Document 3 the functional information contained in the higher-order structure of the ubiquitin modification has come to be called the "ubiquitin code" (Non-Patent Document 3).
  • IgG-type monoclonal antibodies against ubiquitin are commonly used to detect ubiquitinated proteins, but it is known that they have low affinity for ubiquitin monomers and differ in reactivity depending on the type of ubiquitin chain.
  • Non-Patent Document 4 Millipore's anti-ubiquitin antibody (clone name FK2) reacts more strongly with M1 chain than K48 and K63 chains, and Cell Signaling Technology's anti-ubiquitin antibody (clone name P4D1) reacts more strongly with K63 chain than with K48 chain.
  • TUBE Tandem ubiquitin binding entity
  • TUBE tandem ubiquitin binding entity
  • Binding affinities (Kd) range from 1 to 9 nM.
  • Kd Binding affinities
  • TUBE can only weakly interact with ubiquitin monomers at about 30-66 uM (Non-Patent Document 5).
  • Non-Patent Document 6 the development of pan ubiquitin probes that can capture and detect all ubiquitinated substrates, including monoubiquitinated substrates, has been delayed.
  • fibronectin type III polypeptide monobodies are known as artificial probes for capturing and detecting polyubiquitinated substrates (Patent Document 1).
  • Patent Document 1 The polypeptide monobody described in Patent Document 1 cannot be said to have a high binding affinity like TUBE, and it is necessary to develop a more excellent monobody.
  • an artificial antibody against ubiquitin comprising a fibronectin type III polypeptide, the artificial antibody comprising the following polypeptides (A), (B) or (C).
  • B the amino acid sequence of the polypeptide of (A) (excluding the amino acid sequence shown in formula (1)), in which one or several amino acids are deleted or substituted or an added amino acid sequence and having ubiquitin-binding activity (C) in the amino acid sequence of the polypeptide of (A) (excluding the amino acid sequence represented by the formula (1)),
  • a polypeptide having at least 80% identity and ubiquitin-binding activity [1-2]
  • the amino acid sequence represented by formula (1) is FWGW (SEQ ID NO: 4), YVYGW (SEQ ID NO: 5), YWWW (SEQ ID NO: 6), YWWYY (SEQ ID NO: 7) or YWMW (SEQ ID NO: 8) , [1] or [1-2].
  • the amino acid sequence of the FG loop is YYGNAFWGWP (SEQ ID NO: 16), GHTGGSYVYGWY (SEQ ID NO: 17), WYAYSYWGWP (SEQ ID NO: 18), EYSYMYWGWP (SEQ ID NO: 20), WEISYWWYYQ (SEQ ID NO: 21) or YYSGYYWMWY (SEQ ID NO: 22 ), the artificial antibody according to [1], [1-2] or [2].
  • the artificial antibody according to any one of [1] to [3], comprising the following polypeptides (P1), (P2) or (P3).
  • polypeptide a polypeptide consisting of any of the amino acid sequences shown in SEQ ID NOs: 24, 26, 28, 30, 32 and 34
  • P2 any of SEQ ID NOs: 24, 26, 28, 30, 32 and 34
  • Any of the amino acid sequences shown in SEQ ID NOs: 24, 26, 28, 30, 32 and 34 (provided that the amino acid sequence shown in formula (1) above is a polypeptide (P3) having ubiquitin-binding activity)
  • the artificial antibody according to any one of [1] to [4], which has a dissociation constant of 5 nM or less for ubiquitin.
  • the amino acid sequence represented by formula (1) is FWGW (SEQ ID NO: 4), YVYGW (SEQ ID NO: 5), YWWW (SEQ ID NO: 6), YWWYY (SEQ ID NO: 7) or YWMW (SEQ ID NO: 8) , [7] or [7-2].
  • the amino acid sequence of the FG loop is YYGNAFWGWP (SEQ ID NO: 16), GHTGGSYVYGWY (SEQ ID NO: 17), WYAYSYWGWP (SEQ ID NO: 18), EYSYMYWGWP (SEQ ID NO: 20), WEISYWWYYQ (SEQ ID NO: 21) or YYSGYYWMWY (SEQ ID NO: 22) ), the DNA of [7], [7-2] or [8].
  • the DNA according to any one of [7] to [9], which encodes the following polypeptides (P1), (P2) or (P3).
  • polypeptide (P1) a polypeptide consisting of any of the amino acid sequences shown in SEQ ID NOs: 24, 26, 28, 30, 32 and 34
  • P2 any of SEQ ID NOs: 24, 26, 28, 30, 32 and 34
  • Any of the amino acid sequences shown in SEQ ID NOs: 24, 26, 28, 30, 32 and 34 (provided that the amino acid sequence shown in formula (1) above is a polypeptide (P3) having ubiquitin-binding activity)
  • the DNA according to any one of [7] to [10] shown in (Q1), (Q2) or (Q3) below.
  • a method for producing an artificial antibody which comprises culturing the transformant according to [13] and collecting the artificial antibody against ubiquitin from the resulting culture.
  • a reagent for detecting ubiquitin or a ubiquitinated substrate comprising the artificial antibody according to any one of [1] to [6].
  • a method for detecting ubiquitin or a ubiquitinated substrate which comprises contacting the artificial antibody according to any one of [1] to [6] with a test sample.
  • a method for producing ubiquitin or a ubiquitinated substrate characterized by: [18] The method of [16], wherein the ubiquitin is polyubiquitin. [19] The method of [17], wherein the ubiquitin is polyubiquitin.
  • the ubiquitin monobody which is an artificial antibody of the present invention, is superior to existing IgG-type anti-ubiquitin antibodies, can be mass-produced in E. coli, and can be easily chemically modified such as fluorescent labeling. It is expected to be an excellent tool for purification and detection of ubiquitinated substrates.
  • FIG. 1 is a diagram showing a ubiquitin modification system and a ubiquitin code
  • Ubiquitin (Ub) is a proteinaceous post-translational modification molecule with a molecular weight of 8.6 kDa, and is catalyzed by a series of enzymes consisting of ubiquitin activating enzyme (E1), ubiquitin conjugating enzyme (E2), and ubiquitin ligase (E3).
  • E1 ubiquitin activating enzyme
  • E2 ubiquitin conjugating enzyme
  • E3 ubiquitin ligase
  • a cascade adds ubiquitin to the substrate (ubiquitination). In many cases, ubiquitin is added to ubiquitin itself to form a polyubiquitin chain.
  • K6 Eight types of polyubiquitin chains with different structures exist in cells (K6, K11, K27, K33, K48, K63 chains linked via different lysine residues (K), and methionine residues at the N-terminus).
  • M1 chains linked via groups (M)) There are M1 chains linked via groups (M)).
  • K48-linked ubiquitin chain linked via the 48th lysine residue is used as a signal for substrate protein degradation by the proteasome.
  • K63-linked ubiquitin chains regulate membrane protein endocytosis, signal transduction, and DNA repair.
  • Ubiquitin-binding proteins which have ubiquitin-binding domains, are important for the functional expression of the ubiquitin code. They are also called decoder molecules because they identify the higher-order structure of the ubiquitin chain and transmit information to downstream molecules.
  • ubiquitin modification is a reversible post-translational modification because ubiquitin chains are cleaved by deubiquitinating enzymes (DUBs). It is a comparison diagram of IgG and an artificial antibody (Monobody).
  • A Human immunoglobulin (IgG) antibody structure. It has a structure in which two heavy chains and two light chains are linked by disulfide bonds (S-S). Both chains are composed of constant domains (CL and CH1-CH3) and variable domains (VL and VH). The variable domain contains the complementarity determining regions (CDRs) that determine the substrate binding specificity of the antibody.
  • CDRs complementarity determining regions
  • Both conventional anti-ubiquitin monoclonal antibody (P4D1) and anti-ubiquitin chain antibody (FK2) are mouse IgG.
  • B Structure of artificial antibody (monobody).
  • Monobodies are artificial antibodies based on human fibronectin type 3 domains. Like the IgG constant domain, it has two CDR-like loops from a seven- ⁇ -sheet barrel-shaped scaffold.
  • a ubiquitin-specific monobody was obtained using an artificial antibody library in which the amino acid sequence of this loop was randomized.
  • C DNA sequence of the monobody. The bold part corresponds to the variable loop, here the sequence of wild-type human fibronectin is shown.
  • FIG. 3 shows in vitro selection of monobodies against ubiquitin.
  • a library (10 3 diversity) in which the two loops of the monobody were randomized was screened by the TRAP (Transcription-translation coupled with association of puromycin linker) method targeting biotin-labeled ubiquitin monomers.
  • FIG. 5 shows the results of Western blot analysis of ubiquitin using cell extracts.
  • FIG. 1 shows immunoprecipitation of ubiquitinated proteins from cell extracts.
  • A Ubiquitin monobody construct used for immunoprecipitation.
  • a recombinant protein fused with a hexahistidine tag (His6) for purification from the N-terminus, a Halo tag for immobilization, and a monobody was prepared in an E. coli expression system.
  • a wild-type monobody (control monobody) and a monobody (Ub monobody, clone C) against ubiquitin were prepared.
  • B Electropherogram of purified Halo-tagged monobody preparation. After separating the purified protein by SDS-PAGE, it was subjected to CBB staining.
  • C Western blot analysis of immunoprecipitates.
  • Mouse control IgG (Control IgG), mouse anti-ubiquitin antibody (FK2, P4D1), control monobody, anti-ubiquitin monobody (Ub monobody) from human colon cancer-derived HCT-116 cell extract (input) was used to immunoprecipitate ubiquitinated substrates and ubiquitin. Immunoprecipitates were then analyzed by Western blot with an anti-ubiquitin antibody (P4D1). Input corresponds to 20% of the extract subjected to immunoprecipitation. The signal intensity of polyubiquitinated substrates was in the order of ubiquitin monobody>FK2>P4D1.
  • FIG. 4 shows the results of quantitative mass spectrometric analysis of immunoprecipitates.
  • A Absolute quantification of ubiquitin chains.
  • Immunoprecipitates provided in FIG. 5C were electrophoresed and high molecular weight regions (>62 kDa) were subjected to quantitative mass spectrometric analysis.
  • Stable isotope-labeled ubiquitin-derived peptides (named EST) and 8 types of ubiquitin chain-derived peptides (names: K6, K11, K27, K29, K33, K48, K63, M1) were used as internal standards, and quantified values (fmol) were Described. Since the EST peptide sequence and the K63 chain peptide sequence overlap, the value of total ubiquitin was calculated by adding the value of the K63 chain-derived peptide to the quantified value of the EST peptide. It was confirmed that the total amount of ubiquitin contained in the ubiquitin monobody immunoprecipitate was larger than that of FK2 and P4D1.
  • TAMRA-labeled ubiquitin monobodies were cleaved off with TEV protease to remove the GST-His6 tag, and the resulting N-terminal GGGS sequence and TAMRA peptide (TAMRA-PEG12-VLLPRTGG) were peptide-ligated using Sortase. Underlined is the target sequence of Sortase. The final product is TAMRA-VLLPRTGGGS-Monobody.
  • B Electropherogram of TAMRA-labeled ubiquitin monobodies. The image on the left is a CBB-stained image, and the image on the right is a fluorescence-detected image.
  • FIG. 4 shows a comparison of ubiquitin antibodies.
  • FIG. 2 shows the structure of a complex between an artificial antibody (Monobody) and ubiquitin (Ub).
  • the figure shows a ribbon model of the X-ray crystal structure of an artificial antibody (Monobody) that recognizes ubiquitin. It formed a complex with ubiquitin on the loop2 side of the complementarity-determining region of the variable domain.
  • FIG. 4 is a diagram showing interaction residues between an artificial antibody (Monobody) and ubiquitin (Ub).
  • ubiquitin I44 and V70 interacted with Monobody W91
  • ubiquitin W89 interacted with Monobody R42.
  • R72 of ubiquitin was hydrogen-bonded to S87 of Monobody
  • Q49 of ubiquitin was hydrogen-bonded to Y84 of Monobody.
  • R42 of ubiquitin was hydrogen-bonded with D33 of Monobody. Hydrogen bonds were found in the main chain from V70 to I73 on the C-terminal side of ubiquitin and from W88 to Y91 in monobody loop2.
  • FIG. 3 shows the results of polyubiquitination inhibition experiments. a) K48 chain, b) K63 chain
  • the present invention relates to artificial antibodies against ubiquitin, including fibronectin type III polypeptides.
  • a polypeptide that specifically binds to ubiquitin is also referred to as "ubiquitin monobody” or simply “monobody”. Since a monobody is an artificial antibody that specifically binds to ubiquitin, the terms "ubiquitin monobody” or “monobody” and “artificial antibody” are synonymous in the present specification.
  • the artificial antibody of the present invention contains the following polypeptides (A), (B) or (C).
  • the amino acid sequence represented by the above formula (1) that is, the amino acid sequence of the ubiquitin-binding region in the FG loop is, for example, FWGW (SEQ ID NO: 4), YVYGW (SEQ ID NO: 5), YWGW (SEQ ID NO: 5) 6), can be represented by YWWYY (SEQ ID NO: 7) or YWMW (SEQ ID NO: 8).
  • amino acid sequence of the FG loop containing these amino acid sequences is, for example, YYGNAFWGWP (SEQ ID NO: 16), GHTGGSYVYGWY (SEQ ID NO: 17), WYAYSYWGWP (SEQ ID NO: 18), EYSYMYWGWP (SEQ ID NO: 20), WEISYWWYYQ (SEQ ID NO: 21) or It can be represented by YYSGYYWMWY (SEQ ID NO: 22).
  • Ubiquitin modification is an essential post-translational modification for living organisms, and regulates various cellular functions such as signal transduction, DNA repair, and transport of membrane proteins, in addition to protein quality control.
  • Anti-ubiquitin antibodies and artificial protein TUBE have been developed to detect ubiquitin modification (ubiquitination) of proteins. There's a problem.
  • a random library of small-molecule artificial antibody monobodies (human fibronectin scaffold, about 9.4 kDa) was used to attempt to obtain ubiquitin-specific monobodies, and clone monobodies with different sequences were obtained.
  • Monobodies are artificial antibodies based on human fibronectin type 3 (FN3) domains, and have two variable loops that act as complementarity-determining regions (CDRs) from a barrel-shaped scaffold consisting of seven ⁇ -sheets (Fig. 2). .
  • the TRAP transcription-translation coupled with association of puromycin linker
  • FIG. 3 A is a schematic diagram of the TRAP presentation method.
  • the immunoprecipitation ability and the immunostaining ability were compared between the anti-ubiquitin monobody and the IgG-type anti-ubiquitin antibody.
  • the interaction between ubiquitin monobodies and ubiquitin monomers has a high affinity with a dissociation constant of several nM, and can immunoprecipitate ubiquitinated substrates more efficiently than conventional IgG-type anti-ubiquitin antibodies.
  • the ubiquitin chain of Ubiquitin monobodies can also be applied to immunostaining, and were able to detect ubiquitinated substrates in cells with higher sensitivity and accuracy than conventional IgG-type anti-ubiquitin antibodies.
  • this ubiquitin monobody is superior to existing IgG-type anti-ubiquitin antibodies, can be mass-produced in E. coli, and can be easily chemically modified such as fluorescent labeling. It is expected to be an excellent tool for the purification and detection of ubiquitinated substrates.
  • ubiquitin monobodies various screening methods can be used from libraries to obtain ubiquitin monobodies.
  • a construct is prepared by adding a Cys residue for labeling and a tag for purification to the C-terminal region of human-derived ubiquitin, and the construct is purified using an E. coli expression system. A label is then added to the Cys residue.
  • the E. coli expression system is known and can be performed by utilizing a chemical reaction selective for Cys residues on expressed proteins.
  • the label is not particularly limited, and examples thereof include biotin and desthiobiotin.
  • the library used in the present invention is, for example, the small molecule artificial antibody monobody FN3 (fibronectin type III) mRNA library (equivalent to 10 13 ).
  • the library can be obtained by ligating chemically synthesized DNAs to create a DNA library, followed by in vitro transcription using RNA polymerase. From this library, the FN3 protein is translated in vitro, and clones that interact with ubiquitin are selected using biotinylated ubiquitin as a bait.
  • In vitro protein expression is a technique for producing recombinant proteins in lysates or in E. coli using biomolecular translational machinery extracted from cells.
  • the translation technology used in one aspect of the present invention is, for example, a known cell-free translation technology called “reconstructed cell-free translation system” (PURE system).
  • PURE system a known cell-free translation technology
  • a technique called a reconstitution system is employed to express and purify factors necessary for translation (ribosomes and other proteins) in E. coli and then mix them. This screening is repeated multiple times to enrich for clones that bind ubiquitin with high affinity.
  • a next-generation DNA sequencer is used to determine the base sequence of the variable region to obtain an anti-ubiquitin monobody clone.
  • a monobody obtained by the above screening and binding affinity measurement is an artificial antibody having a fibronectin III (FN3) type polypeptide as a backbone.
  • the FN3-type monobody has a BC loop, a CD loop, a DE loop, and an FG loop.
  • the loop involved in affinity with ubiquitin is the FG loop.
  • Ar represents an aromatic amino acid residue
  • Z represents a single bond or any amino acid residue
  • X represents any amino acid residue.
  • “Arbitrary amino acid residue” refers to 20 types of amino acid residues that are protein constituents, and acidic amino acids (aspartic acid (Asp or D) or glutamic acid (Glu or E )), basic amino acids having two or more amino groups (lysine (Lys or K), arginine (Arg or R) or histidine (His or H)), and neutral amino acids.
  • Neutral amino acids are classified as follows according to the side chain group that constitutes the amino acid.
  • glycine Gly or G
  • alanine Al or A
  • valine Val or V
  • leucine Leu or L
  • isoleucine Ile or I having an alkyl chain
  • cysteine Cys or C
  • methionine Metal or M
  • formula (1) becomes formula (2): -Ar-Ar-X-Ar- (2) (SEQ ID NO: 2), and when Z represents any amino acid residue, formula (1) becomes the following formula (3): -Ar-X-Ar-X-Ar- (3) It becomes the amino acid sequence (SEQ ID NO: 3) shown in.
  • Z represents an amino acid residue
  • it is preferably any amino acid residue other than proline and arginine.
  • the "amino acid sequence of the region involved in binding" includes at least two amino acid residues in the amino acid sequence represented by the formulas selected from formulas (1) to (3) above.
  • Ar is an aromatic amino acid residue, phenylalanine (Phe or F), tyrosine (Tyr or Y) or tryptophan (Trp or W).
  • Examples of the amino acid sequence represented by the above formula (2) include FWGW (SEQ ID NO: 4), YWWW (SEQ ID NO: 6), and YWMW (SEQ ID NO: 8). includes, for example, YVYGW (SEQ ID NO: 5) and YWWYY (SEQ ID NO: 7).
  • the amino acid sequence of the FG loop is YYGNAFWGWP (SEQ ID NO: 16), GHTGGSYVYGWY (SEQ ID NO: 17), WYAYSYWGWP (SEQ ID NO: 18), EYSYMYWGWP (SEQ ID NO: 20), WEISYWWYYQ (SEQ ID NO: 21) or YYSGYYWMWY (SEQ ID NO: 22).
  • the monobodies of the present invention are (A) A polypeptide comprising an FG loop containing a binding region with ubiquitin, wherein the amino acid sequence of the binding region is represented by the following formula (1): -Ar-Z-Ar-X-Ar- (1) (Wherein, Ar represents an aromatic amino acid residue, Z represents a single bond or any amino acid residue, and X represents any amino acid residue.) contains the amino acid sequence represented by In one aspect of the invention Z is a single bond or represents any amino acid residue except proline and arginine.
  • Monobodies of the present invention also include the following polypeptides (B) or (C).
  • the following (B) or (C) polypeptide, or the DNA encoding the polypeptide is a variant of (A), and when referring to the aspect (B) or (C), this specification In some cases, it is simply described as “mutant” or “mutant monobody”.
  • B) a polypeptide consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of the polypeptide of (A) above and having ubiquitin-binding activity (C) above
  • a mutation that has ubiquitin-binding activity or a mutation that has at least 80% identity and has ubiquitin-binding activity, for example Among the sequences within the loop, mutations at sites other than amino acid positions essential for binding are included. Therefore, with respect to the amino acid sequence represented by the formula (1) in the FG loop, the amino acid sequence in which one or several amino acids are deleted, substituted or added in the polypeptide of (B) is excluded. In the polypeptide of (C), amino acid sequences with at least 80% identity are excluded. Regions other than the FG loop (fibronectin backbone and other loops) are not necessarily essential for binding to ubiquitin, and thus the sequences of these regions may have the above-described mutations.
  • the polypeptide comprising the FG loop is: (P1) a polypeptide consisting of any of the amino acid sequences shown in SEQ ID NOs: 24, 26, 28, 30, 32 and 34 (P2) any of SEQ ID NOs: 24, 26, 28, 30, 32 and 34 from an amino acid sequence in which one or several amino acids have been deleted, substituted, or added in an amino acid sequence (excluding the amino acid sequence of the ubiquitin-binding region corresponding to the amino acid sequence shown in the formula (1)) Any of the amino acid sequences shown in SEQ ID NOs: 24, 26, 28, 30, 32 and 34 (provided that the amino acid sequence shown in formula (1) above is a polypeptide (P3) having ubiquitin-binding activity) A polypeptide having at least 80% identity with the corresponding amino acid sequence of the ubiquitin-binding region and having ubiquitin-binding activity
  • amino acid sequence in which one or several amino acids are deleted, substituted or added includes, for example, 1 to 10, 1 to 9, 1 to 8, 1 to 7, 1 to Amino acid sequences in which 6, 1 to 5, 1 to 4, 1 to 3, 1 to 2 or 1 amino acids have been deleted, substituted or added.
  • the introduction of mutations such as deletion, substitution, or addition is performed by a mutation introduction kit using site-directed mutagenesis, such as GenEdit Site-Directed Mutagenesis Kit (GenEdit Site-Directed Mutagenesis Kit ( Funakoshi), PrimeSTAR (registered trademark) Mutagenesis Basal Kit (TaKaRa), and the like.
  • site-directed mutagenesis such as GenEdit Site-Directed Mutagenesis Kit (GenEdit Site-Directed Mutagenesis Kit ( Funakoshi), PrimeSTAR (registered trademark) Mutagenesis Basal Kit (TaKaRa), and the like.
  • whether or not a peptide has been introduced with the above deletion, substitution, or addition mutation can be confirmed using various amino acid sequencing methods, structural analysis methods such as mass spectrometry, and the like.
  • the mode of binding of a mutant (mutant monobody) to ubiquitin can be confirmed or predicted by three-dimensional structural analysis of the mutant monobody.
  • any technique such as steric structure analysis by computer, crystal
  • ubiquitin binding activity means that ubiquitin binds to amino acid residues in the FG loop that constitutes a monobody by a non-covalent bond, and the activity is, for example, the biolayer interference It can be measured by a dissociation constant determination method by a method, a surface plasmon resonance method, or the like.
  • the affinity when a monobody binds to ubiquitin can be represented by a dissociation constant (Kd), which is 5 nM or less, for example 0.5-3 nM, 0.8-2. 8 nM.
  • Kd dissociation constant
  • ubiquitin includes not only polyubiquitin but also ubiquitin or polyubiquitin to which a substrate protein is bound.
  • the monobody of the present invention is obtained by the above screening method and the amino acid sequence and nucleotide sequence of the monobody are obtained, the monobody can be obtained by genetic engineering techniques.
  • a mutant polypeptide in which one or several amino acid sequences are deleted, substituted or added in the amino acid sequence of the polypeptide constituting the monobody also referred to as "monobody polypeptide"
  • a polypeptide having ubiquitin-binding activity can be obtained by designing and synthesizing the amino acid sequence of the mutant polypeptide, and then selecting clones that interact with ubiquitin in the same manner as described above.
  • the monobodies of the present invention can be obtained by artificial chemical synthesis.
  • Synthetic methods include, for example, an azide method, an acid chloride method, an acid anhydride method, a mixed acid anhydride method, an active ester method, and a redox method. Moreover, for the synthesis, both solid-phase synthesis method and liquid-phase synthesis method can be applied. A commercially available peptide synthesizer may be used. After the synthesis reaction, the desired monobody can be purified by combining known purification methods such as chromatography.
  • a monobody polypeptide is encoded by known genetic recombination technology (e.g., Sambrook J. et al., Molecular Cloning, A Laboratory Manual (4th edition), Cold Spring Harbor Laboratory Press (2012)) DNA may be incorporated into various expression vectors or the like, introduced into cells, and expressed, and then obtained by known recovery and purification methods.
  • DNAs encoding monobody polypeptides include DNAs encoding the following polypeptides (A), (B) or (C).
  • B the amino acid sequence of the polypeptide of (A) (excluding the amino acid sequence shown in formula (1)), in which one or several amino acids are deleted or substituted or a polypeptide consisting of an added amino acid sequence and having ubiquitin-binding activity (C) in the amino acid sequence of the polypeptide of (A) above (excluding the amino acid sequence shown in formula (1) above), A polypeptide having at least 80% identity and having ubiquitin-binding activity
  • Z is
  • one aspect of the present invention includes DNAs encoding the following polypeptides (P1), (P2) or (P3).
  • P1 a polypeptide consisting of any of the amino acid sequences shown in SEQ ID NOs: 24, 26, 28, 30, 32 and 34
  • P2 any of SEQ ID NOs: 24, 26, 28, 30, 32 and 34 from an amino acid sequence in which one or several amino acids have been deleted, substituted, or added in an amino acid sequence (excluding the amino acid sequence of the ubiquitin-binding region corresponding to the amino acid sequence shown in the formula (1))
  • Any of the amino acid sequences shown in SEQ ID NOs: 24, 26, 28, 30, 32 and 34 (provided that the amino acid sequence shown in formula (1) above is a polypeptide (P3) having ubiquitin-binding activity)
  • DNAs of (Q1), (Q2), or (Q3) include DNAs of (Q1), (Q2), or (Q3) below.
  • (Q1) DNA consisting of any one of the base sequences shown in SEQ ID NOs: 23, 25, 27, 29, 31 and 33 (Q2) Hybridize under stringent conditions and exhibit ubiquitin-binding activity at a nucleotide sequence complementary to any of the nucleotide sequences shown in SEQ ID NOS: 23, 25, 27, 29, 31 and 33; DNA encoding a polypeptide having (Q3) DNA encoding a polypeptide having at least 80% identity with any of the nucleotide sequences shown in SEQ ID NOS: 23, 25, 27, 29, 31 and 33 and having ubiquitin-binding activity
  • regions other than the FG loop are not necessarily essential for binding to ubiquitin, and thus the sequences of these regions may be mutated as described above.
  • the nucleotide sequence encoding the amino acid sequence of the ubiquitin-binding region corresponding to the amino acid sequence shown in the formula (1) is always It is assumed to hybridize as a codon of the amino acid sequence shown in formula (1).
  • the nucleotide sequence encoding the amino acid sequence of the ubiquitin-binding region corresponding to the amino acid sequence shown in the formula (1) always encodes the amino acid sequence shown in the formula (1). It shall be.
  • the framed sequence represents the FG loop.
  • the DNA includes, in addition to DNA consisting of a nucleotide sequence encoding the monobody polypeptide of the present invention, said nucleotide sequence as a part thereof, and other known nucleotide sequences required for gene expression (transcription promoter, SD sequence, Kozak sequence, terminator, etc.) may be used without limitation.
  • the type of codon is not limited. Codons commonly used in microorganisms, plants, etc. may be used, and can be appropriately selected or designed.
  • stringent conditions may be any of low stringent conditions, medium stringent conditions and high stringent conditions
  • low stringent conditions may be, for example, 5 x SSC, 5 x Denhardt's solution, 0.5% SDS, 50% formamide, and 32°C.
  • moderately stringent conditions are, for example, 5 x SSC, 5 x Denhardt's solution, 0.5% SDS, 50% formamide, and 42°C.
  • Highly stringent conditions are, for example, 5x SSC, 5x Denhardt's solution, 0.5% SDS, 50% formamide, and 50°C.
  • DNA with higher homology can be expected to be obtained more efficiently as the temperature is raised.
  • multiple factors such as temperature, probe concentration, probe length, ionic strength, time, and salt concentration can be considered as factors affecting the stringency of hybridization, and those skilled in the art can appropriately select these factors. Similar stringency can be achieved by
  • DNAs that can be hybridized in addition to the above include DNAs encoding monobodies that have about 80% or more homology ( identity), and DNAs with 85% or more, 90% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more homology (identity) can be done.
  • a recombinant vector is obtained by ligating (inserting) the DNA of the present invention into an appropriate vector.
  • Methods for obtaining recombinant vectors are known (Sambrook J. et al., Molecular Cloning, A Laboratory Manual (4th edition), Cold Spring Harbor Laboratory Press (2012)).
  • a vector into which the DNA of the present invention is inserted is not particularly limited as long as it is replicable in a host, and examples thereof include plasmid DNA, phage DNA, viruses and the like.
  • plasmid DNA examples include E. coli-derived plasmids, Bacillus subtilis-derived plasmids, and yeast-derived plasmids, and examples of phage DNA include ⁇ phage.
  • Viruses include adenovirus, baculovirus, retrovirus, and the like.
  • the recombinant vector of the present invention contains a promoter, the DNA of the present invention, and optionally a cis element such as an enhancer, a splicing signal, a polyA addition signal, a ribosome binding sequence (SD sequence), a selectable marker gene, a reporter gene, and the like.
  • a selectable marker gene include dihydrofolate reductase gene, ampicillin resistance gene, neomycin resistance gene and the like.
  • Reporter genes include genes such as green fluorescent protein (GFP) or variants thereof (fluorescent proteins such as EGFP, BFP and YFP), luciferase, alkaline phosphatase and LacZ.
  • the present invention also includes transformants obtained by introducing the recombinant vector of the present invention into a host so that the gene of interest can be expressed.
  • the host used for transformation is not particularly limited as long as it can express the gene of interest. Examples include bacteria (Escherichia coli, Bacillus subtilis, etc.), yeast, animal cells (COS cells, CHO cells, etc.), insect cells or insects. Mammals such as goats can also be used as hosts.
  • a method for introducing a recombinant vector into a host is known (Sambrook J. et al., Molecular Cloning, A Laboratory Manual (4th edition), Cold Spring Harbor Laboratory Press (2012)).
  • the recombinant vector of the present invention can autonomously replicate in the bacterium and can contain a promoter, ribosome binding sequence, DNA of the present invention, and transcription termination sequence.
  • Bacteria include Escherichia coli and the like.
  • a promoter for example, the lac promoter or the like is used.
  • Methods for introducing vectors into bacteria include various known introduction methods, such as the calcium ion method.
  • yeast When using yeast as a host, for example, Saccharomyces cerevisiae is used.
  • the promoter is not particularly limited as long as it can be expressed in yeast, and examples thereof include the gal1 promoter.
  • Methods for introducing vectors into yeast include, for example, the electroporation method and the spheroplast method.
  • the transformant is then cultured and the monobody polypeptide is harvested from the culture.
  • “Culture” means either (a) culture supernatant, (b) cultured cells or cultured cells, or disrupted products thereof.
  • the cells or cells are disrupted to extract the monobody.
  • the culture solution is used as it is, or the bacterial cells or cells are removed by centrifugation or the like.
  • general biochemical methods used for protein isolation and purification such as ammonium sulfate precipitation, gel filtration, ion exchange chromatography, affinity chromatography, hydrophobic chromatography, reversed-phase chromatography, etc., are used alone or in combination as appropriate.
  • the monobody of interest can be isolated and purified by using Monobodies that are isolated and purified and have dissociation constants of 5 nM or less are artificial antibodies against ubiquitin and have high affinity for ubiquitin.
  • the artificial antibody of the present invention can be used as a reagent for detecting ubiquitin or a ubiquitinated substrate.
  • Methods for detecting ubiquitin or ubiquitinated substrates include, for example, (a) reacting the artificial antibody of the present invention with a test sample; and (b) reacting the antibody-test sample complex formed in step (a) with a labeled antibody for detection. include.
  • the detection method of the present invention can generally be carried out according to an assay using an antibody (immunoglobulin).
  • an antibody immunoglobulin
  • ELISA enzyme-linked immunosorbent assay
  • fluorescence immunoassay fluorescence antibody method
  • western blotting and the like can be mentioned.
  • Samples to be subjected to the detection method of the present invention include protein extracts derived from yeast, eukaryotic cultured cells, zebrafish and mouse tissues containing endogenous ubiquitin, protein extracts derived from prokaryotic cells containing recombinant ubiquitin, and cell-free samples.
  • the sample is not particularly limited as long as it contains ubiquitin, such as a system solution.
  • the labeling substance that can be used in the present invention is not particularly limited as long as it is physically or chemically bound to the artificial antibody so that its presence can be detected.
  • Specific examples of labeling substances include enzymes, fluorescent substances, chemiluminescent substances, biotin, avidin, and radioactive isotopes. More specifically, peroxidase, alkaline phosphatase, ⁇ -D-galactosidase, biotin, avidin, Or a chemiluminescent substance.
  • the ubiquitin or ubiquitinated substrate detection reagent of the present invention is used as a kit containing the artificial antibody of the present invention.
  • the artificial antibody used here may be the above-described immobilized antibody or labeled antibody.
  • the kit of the present invention may contain various adjuvants so that the kit can be used efficiently and conveniently.
  • Auxiliaries include, for example, buffers, substrates for measuring enzyme activity when an enzyme is used as a labeling substance, reaction terminator, and the like, which are commonly used as immunoassay reagent kits.
  • the kit of the invention can also include instructions for use.
  • the present invention provides a method for producing ubiquitin or a ubiquitinated substrate.
  • ubiquitin modifies target proteins by covalently binding to them. Therefore, by using the monobody (artificial antibody) of the present invention, not only ubiquitin and polyubiquitin but also ubiquitinated proteins (ubiquitination substrates) in which the target protein is modified with ubiquitin or polyubiquitin can be obtained.
  • the artificial antibody when ubiquitin is bound to the target protein in the test sample, the artificial antibody is brought into contact with the test sample. Since the artificial antibody binds to ubiquitin, the complex between the artificial antibody and the test sample contains ubiquitin and ubiquitinated proteins (ubiquitinated substrates). Therefore, ubiquitin or ubiquitinated proteins are collected from the complex.
  • Ubiquitin was diluted to 300 ⁇ M, 1.2 ⁇ L of 2.5 mM EZ-Link TM Maleimide-PEG11-Biotin was added to 10 ⁇ L of 300 ⁇ M ubiquitin, and the mixture was allowed to stand at room temperature for 2 hours. After that, 1 ⁇ L of 50 mM ⁇ -mercaptoethanol was added, and the mixture was allowed to stand at 4°C for 1 hour. The obtained biotinylated ubiquitin was confirmed by 20% SDS-PAGE.
  • TRAP presentation method FN3 protein was translated in vitro from the small molecule artificial antibody monobody FN3 mRNA library (equivalent to 10 13 ), and clones interacting with ubiquitin were selected using biotinylated ubiquitin as bait. Multiple rounds of this screening enriched for clones that bound ubiquitin with high affinity. The variable region was then sequenced by next-generation DNA sequencer and seven different anti-ubiquitin monobody clones were obtained.
  • Escherichia coli expression and purification of monobody protein A construct was prepared by fusing a monobody, a Nus tag for solubilization, and a hexahistidine tag (His6) for purification from the N-terminus. The recombinant protein was then expressed in E. coli and purified using a His6 tag. Specifically, it is as follows.
  • the culture solution diluted 10-fold with LB was spread on an LB plate containing 100 ⁇ g/mL ampicillin and allowed to stand overnight in a constant temperature bath at 37°C. Formed colonies were picked, added to 2 mL of LB containing 100 ⁇ g/mL ampicillin, and cultured overnight at 37°C with shaking. The grown cells were collected, and plasmid DNA was extracted using FastGene TM Plasmid Mini Kit (Nippon Genetics). The nucleotide sequence of the obtained plasmid DNA was confirmed by the Sanger method.
  • a plurality of formed colonies were suspended in LB and added to 300 mL of LB containing 100 ⁇ g/mL ampicillin, 20 ⁇ g/mL chloramphenicol and 1 ⁇ ZYP. After shaking this culture solution at 25°C for 24 hours, it was centrifuged at 4°C and 7000 rpm for 3 minutes to collect the cells. The cells were suspended in 30 mL of 1 ⁇ IMAC B1K (-glycerol) at 120 ⁇ g/mL PMSF, dispensed into 15 mL aliquots and stored at -80°C.
  • 1 ⁇ IMAC B1K -glycerol
  • a 15 mL suspension of monobody purified cells was thawed on ice water. The dissolved cells were crushed by applying ultrasonic waves for 1 minute and 30 seconds. 1.6 mL of glycerol was added to the homogenate, mixed by inversion, and then centrifuged at 4°C and 13000 rpm for 10 minutes. The resulting supernatant was filtered through Minisart® GF Syringe Filters (sartorius) and Minisart® high flow Syringe Filters (sartorius). The filtrate was purified using NGC TM Chromatography Systems (BIO-LAD).
  • Bio-Scale TM Mini Profinity TM IMAC Cartridges 1 mL (BIO-LAD) for the column, and after applying the sample, wash 20 CV with 1 ⁇ IMAC B1K (+ATP) and 10 CV with 1 ⁇ IMAC B1. and eluted with 1 ⁇ IMAC B3. Eluted fractions with high absorbance at 280 nm were mixed and 1 M DTT was added to 1 mM DTT. Density determination was then performed by UV-vis.
  • the framed sequence represents the FC loop
  • the underlined sequence represents the C-terminal stabilizing sequence
  • GST-tagged monobody was induced with 0.2 mM IPTG, and purified using the GST tag.
  • GST-tagged monobodies were digested with TEV protease (Promega, ProtTEVPlus). Using the N-terminal sequence GGGS of the monobody generated by protease digestion, a peptide for biotin labeling (Biotin-PEG12-VLLPRTGG, synthesized by Eurofin) was ligated by sortase reaction (20 uM monobody, 1 mM for biotin labeling).
  • Human colon cancer-derived HCT116 cells (ATCC, CCL-247) were prepared with 10% fetal bovine serum (Biowest), 1 mM sodium pyruvate (Thermo Fisher Scientific), non-essential amino acids ( The cells were cultured at 37°C in an incubator containing 5% CO 2 using Dulbecco's Modified Eagle Medium (DMEM) medium (SIGMA) supplemented with Thermo Fisher Scientific). The cells were cultured for 3 hours using DMEM medium containing 1 uM Ubiquitin E1 inhibitor TAK-243 (Active Biochem) and 1 uM proteasome inhibitor bortezomib (LC Laboratories).
  • DMEM Dulbecco's Modified Eagle Medium
  • TAK-243 Active Biochem
  • proteasome inhibitor bortezomib LC Laboratories.
  • Lysis buffer 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% SDS
  • centrifuged (15,000 rpm, 20 min) to obtain a soluble fraction.
  • Protein concentration was determined by BCA assay kit (Thermo Fisher Scientific).
  • LDS sample buffer (containing 2% ⁇ -mercaptoethanol as a reducing agent) was added to 5 ⁇ g per sample, treated at 70° C. for 10 minutes, and subjected to Western blot analysis.
  • HCT116 cells were cultured under the same conditions as in 3(2). After washing semi-confluent HCT116 cells with PBS, TNE buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% NP-40, 0.5 mM EDTA) and centrifuged (15,000 rpm, 20 min) to obtain a soluble fraction. Protein concentration was then determined by BCA assay kit (Thermo Fisher Scientific).
  • IgG is control IgG (Fujifilm Wako Pure Chemical Industries, Ltd., normal mouse IgG, 140-09511), anti-polyubiquitin monoclonal antibody FK2 (Nihon Biotest Co., Ltd., 0918-2), anti-ubiquitin antibody P4D1 (SantaCruz Co., sc-8017 ) was immobilized on Dynabeads Protein G (Thermo Fisher Scientific) at 0.2 nmol each.
  • HCT116 cell extract 200 ul (100 ug) of HCT116 cell extract was then added to each sample and mixed by inversion overnight at 4°C. After washing three times with TNE buffer, 1 ⁇ LDS sample buffer for electrophoresis (containing 2% ⁇ -mercaptoethanol as a reducing agent) was added to the beads, and the beads were heated at 70° C. for 10 minutes to elute immunoprecipitates.
  • TAMRA-labeled anti-ubiquitin monobody 0.1 ug/ml or 1 ug/ml
  • anti-polyubiquitin monoclonal antibody FK2 anti-polyubiquitin monoclonal antibody
  • FK2 antibody staining was performed for 1 hour using Alexa568-labeled anti-mouse IgG antibody (Thermo Fisher Scientific, A-11031) as a secondary antibody.
  • the cells were stained with PBS containing DAPI (Thermo Fisher Scientific) for 15 minutes, added with an antifading reagent (Thermo Fisher Scientific, SlowFade Gold), and sealed with a cover strip glass.
  • the FN3 monobody library used for screening has randomized amino acid sequences of two loops, and is a library composed of 10 13 (10 trillion) different clones.
  • the appearance rate of the same clone was 0.7-2.2%, which means that clones with the same sequence were identified multiple times. Therefore, it is highly likely that all monobodies with affinity for ubiquitin have been obtained from the library (Fig. 3B, right).
  • the obtained anti-ubiquitin monobody has a Kd of around 1 nM, and has a high affinity with a general IgG type antibody, which is equal to or higher than the degree of identification.
  • polyubiquitination substrate smears and ubiquitin monomers were detected for P4D1, and changes due to proteasome inhibitors and E1 inhibitors were also confirmed. Only polyubiquitinated substrates were detected for FK2.
  • the anti-ubiquitin monobody did not detect ubiquitin monomers, but detected smears of polyubiquitinated substrates and bands derived from monoubiquitinated histones with high sensitivity (Fig. 5B, Ub monobody).
  • ubiquitin monomers are not detected by anti-ubiquitin monobodies.
  • the hydrophobic patches of ubiquitin recognized by anti-ubiquitin monobodies are used to interact with the PVDF membrane.
  • the existing IgG-type anti-ubiquitin antibody P4D1 is superior, but you want to detect the dynamics of monoubiquitinated histones and polyubiquitinated substrates. In this case, anti-ubiquitin monobodies have an advantage.
  • composition of each polyubiquitin chain contained in the immunoprecipitate was absolutely quantified using a mass spectrometer (Fig. 7).
  • characteristic peptides produced by tryptic digestion of eight types of polyubiquitin chains are analyzed using a high-resolution mass spectrometer.
  • F. Ohtake, H. Tsuchiya, K. Tanaka, Y. Saeki Methods to measure ubiquitin chain length and linkage. Methods Enzymol 618, 105-133 (2019).
  • the artificial protein TUBE is also commonly used to pull down polyubiquitinated substrates from cells, but in principle, TUBE can interact only weakly with monoubiquitinated substrates (R. Hjerpe et al., Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO reports 10, 1250-1258 (2009).). Therefore, anti-ubiquitin monobodies are superior in pulling down all ubiquitinated substrates, including monoubiquitinated substrates, from cell extracts, and are expected to be used for proteome analysis of monoubiquitinated substrates in the future.
  • EGFP-fused ubiquitin immunostaining of the IgG-type anti-ubiquitin antibody FK2 and anti-ubiquitin monobody was performed (Fig. 8). Since EGFP-fused ubiquitin is uniformly observed in the cytoplasm and the nucleoplasm, puromycin treatment was performed under conditions that induced the formation of ubiquitin-positive aggregates. As a result, the staining image of the anti-ubiquitin monobody almost matched the fluorescence signal of EGFP ubiquitin (Fig. 8C). On the other hand, for FK2, ubiquitin-positive aggregates in the cytoplasm were detected, but fluorescence signals in the nucleus were not detected (Fig. 8D).
  • EGFP-fused ubiquitin accurately reflects the localization of ubiquitinated substrates in cells, partly because of the large size of the EGFP tag. It was suggested that the localization of intracellular ubiquitin and ubiquitinated substrates could be detected more accurately than antibody FK2. This is probably because the anti-ubiquitin monobody has a small size of approximately 10 kDa and a diameter of 2 to 3 nm, which facilitates its penetration into cell structures.
  • Anti-monoubiquitin monobodies are excellent probes that can be used for all of Western blot analysis, immunoprecipitation and immunostaining.
  • it is the only probe that can efficiently capture endogenous ubiquitin monomers and monoubiquitinated substrates, and is also an excellent probe for fluorescent immunostaining.
  • the gene sequence of the anti-ubiquitin monobody has been determined, it is possible to obtain a large amount of the protein in an E. coli expression system, and chemical modification such as fluorescent labeling is easy in vitro.
  • the anti-ubiquitin monobody developed by the present invention is an excellent chemical tool that can be widely applied to future ubiquitin research.
  • PCR primers were designed from the nucleotide sequence of pQCSoHis-FN3, and the FN3 gene was amplified by PCR.
  • the solution after the PCR reaction was separated by electrophoresis using 1% agarose gel, and extracted from the agarose gel using FastGene Gel/PCR Extraction Kit (Nippon Genetics).
  • ⁇ Vector cutting 2 ⁇ g of plasmid DNA pGEX6p1 was mixed with 1 ⁇ K buffer (TAKARA), BamHI and XhoI. The mixture was allowed to stand in a constant temperature bath at 37°C for 3 hours to cleave the plasmid DNA. The cleaved plasmid DNA was separated by electrophoresis using 1% agarose gel and extracted from the agarose gel using FastGene Gel/PCR Extraction Kit (Nippon Genetics).
  • Escherichia coli transformed by the heat shock method was spread on an LB plate containing 100 ⁇ g/mL ampicillin and allowed to stand overnight in a constant temperature bath at 37°C. The formed colonies were picked, added to 5 mL of LB medium containing 100 ⁇ g/mL ampicillin, and cultured overnight at 37°C with shaking. The grown cells were collected, and plasmid DNA was extracted using FastGene TM Plasmid Mini Kit (Nippon Genetics). The nucleotide sequence of the obtained plasmid DNA (pGEX6p1 GST-FN3) was confirmed by the Sanger method.
  • E. coli 0.5 ⁇ L of 100 ng/ ⁇ L plasmid DNA (pGEX6p1 GST-FN3) was added to 20 ⁇ L of BL21 Rosetta (DE3) competent cells, and the plasmid DNA was introduced by electroporation. Escherichia coli into which the plasmid DNA was introduced was spread on an LB plate containing 100 ⁇ g/mL ampicillin and allowed to stand overnight in a constant temperature bath at 37°C. A plurality of formed colonies were suspended in LB, added to 2.5 L of LB containing 100 ⁇ g/mL ampicillin, and cultured with shaking at 37° C. until optical density 600 nm reached 0.8. This culture solution was added with isopropyl thiogalactoside at a final concentration of 0.1 mM, shaken overnight at 15°C, and centrifuged at 4°C and 7000 g for 10 minutes to collect the cells.
  • Lysis buffer 50 mM Tris-HCl pH8.0, 150 mM NaCl, 1 mM DTT, 0.5% Triton-X100
  • the dissolved cells were crushed by applying ultrasonic waves on ice water for 3 minutes and repeating the process 3 times.
  • the homogenate was centrifuged at 4°C and 17000 rpm for 60 minutes.
  • the resulting supernatant was purified with Glutathione Sepharose 4B Fast Flow (GE Healthcare).
  • the concentration of purified protein was measured with a microvolume spectrophotometer Nanodrop2000 (Thermo).
  • Ubiquitin and HRV3C were added to the purified protein and dialyzed overnight at 4°C.
  • the dialyzed sample was passed through an anion exchange column Resource Q and the run-through fraction was concentrated with a centrifugal ultrafiltration filter Amicon Ultra-15 10K (Merck).
  • the concentrated sample was passed through a gel filtration column Superdex 75 Hiload and the conjugate fraction was concentrated to 10 g/L with Amicon Ultra-15 10K (Merck).
  • the concentrated complex protein solution was dispensed into the crystallization solution of the crystallization screening 10 kit (960 conditions) and allowed to stand at 20°C.
  • Crystals were obtained from a crystallization solution consisting of 0.2 M Potassium sodium tartrate tetrahydrate, 20% w/v Polyethylene glycol 3,350 in one week. The crystals obtained were immersed in a cryoprotectant solution containing 30% ethylene glycol and frozen in liquid nitrogen. Diffraction of frozen crystals was measured at SPring-8 BL45XU. Diffraction data were processed with XDS, molecular replacement of ubiquitin and monobodies with Molrep of CCP4, refinement with refmac5 and Phenix.refine, and final structure determined.
  • FIGS. 10 and 11 The results are shown in FIGS. 10 and 11.
  • FIG. 10 and 11 it was shown that the two loops of Monobody recognize the hydrophobic patch centering on I44 of ubiquitin and the C-terminal region.
  • Monobody recognized the ubiquitin loop and residues spanning multiple ⁇ -strands, indicating that Monobody recognizes the three-dimensional structure of ubiquitin.
  • ubiquitin Since the amino acid sequence of ubiquitin contains an N-terminal methionine residue and seven lysine residues, polymers are formed in various ways during polyubiquitination (Fig. 1). Modes such as uniform chains of various lengths, branched chains, and even mixed chains have been discovered so far. Ubiquitin is known to be involved in various important processes in vivo, such as DNA repair, signal transduction, and autophagy, as well as proteasomal degradation, by selectively using its complex chains. However, the full biological functions of these ubiquitin chains have not yet been elucidated. It has also been pointed out that the ubiquitin system is closely related to many diseases. Therefore, elucidation of the functions of various ubiquitin chains and control of those functions are considered to be extremely important issues in the future development of medicine.
  • SEQ ID NOs: 4-22 Synthetic peptides
  • SEQ ID NOs: 23, 25, 27, 29, 31, 33, 35 Synthetic DNA
  • SEQ ID NOs: 24, 26, 28, 30, 32, 34, 36 synthetic polypeptides

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

フィブロネクチンIII型ポリペプチドモノボディを含む、ユビキチンに対する人工抗体。

Description

ユビキチンに対する人工抗体
 本発明は、フィブロネクチンIII型ポリペプチドを含む、ユビキチンに対する人工抗体に関する。
 ユビキチンは76アミノ酸からなる真核生物に高度に保存された小球状タンパク質で、C末端のGly残基(Gly76)が標的タンパク質のLys残基側鎖に共有結合することで、標的タンパク質の運命をさまざまに制御する修飾子として機能する(図1)(非特許文献1, 2)。このユビキチン化反応はユビキチン活性化酵素E1、ユビキチン転移酵素E2、ユビキチンリガーゼE3の酵素カスケードにより起こり、基質選択性は約600種類存在するE3が担っている。
 最近の大規模解析ではヒトプロテオームの約40%に相当する9,200種類のタンパク質がユビキチン化されることがわかり、ユビキチン化はリン酸化に匹敵する大規模な翻訳後修飾であることが明確となってきた。ユビキチン修飾の最大の特徴として、基質にユビキチンが一分子結合したモノユビキチン化だけではなく、基質上のユビキチンがさらにユビキチン化されて伸長することで数珠状のポリマー(ポリユビキチン鎖)を形成することが挙げられる。
 ユビキチンは7つのLys残基(K6, K11, K27, K29, K33, K48, K63)と開始Met残基(M1)がポリマー形成に用いられることがわかっている。これら8種類のユビキチン鎖のうち、K48鎖はプロテアソームの分解シグナルとして機能すること、K63鎖は膜タンパク質の輸送やDNA修復、ユビキチン選択的オートファジーのシグナルとして機能すること、M1鎖がNF-κBによる炎症シグナルを制御することがわかっている。その他のユビキチン鎖(非典型ユビキチン鎖)はまだ不明な点が多いが、K6鎖のマイトファジーへの関与や、K27鎖の自然免疫応答への関与など、次々と新しい知見が集積している。このように、ポリユビキチン鎖の多様な構造がその機能を規定することから、ユビキチン修飾の高次構造に内包された機能情報は「ユビキチンコード」と称されるに至っている(非特許文献3)。
 ユビキチン化タンパク質の検出には、ユビキチンに対するIgG型のモノクローナル抗体(抗ユビキチン抗体)が汎用されているが、ユビキチン単量体に対する親和性が低く、またユビキチン鎖のタイプによって反応性が異なることが知られている(非特許文献4)。例えば、Millipore社の抗ユビキチン抗体(クローン名FK2)はK48鎖やK63鎖に比しM1鎖に対して強く反応し、Cell Signaling Technology社の抗ユビキチン抗体(クローン名P4D1)はK48鎖よりK63鎖に強く反応する(非特許文献4)。
 一方、ポリユビキチン化基質を捕捉検出するための人工プローブとしてTUBE(Tandem ubiquitin binding entity)が開発された(非特許文献5)。TUBEはユビキチン結合タンパク質UBQLN1やRAD23Aのユビキチン結合ドメイン(UBAドメイン)をタンデムに4つ繋いだ人工タンパク質であり、TUBEとK48連結ユビキチン鎖(4-mer)またはK63ユビキチン鎖(4-mer)との結合親和性(Kd)は 1~9 nMである。しかしTUBEはユビキチン単量体とは30~66 uM程度と弱くしか相互作用できない(非特許文献5)。
 その他、K48鎖やK63鎖に特異的なIgG型抗体やTUBE、ナノボディなどが開発されており、ユビキチンコードに関する研究が発展している(非特許文献6)。しかしながら、モノユビキチン化基質を含む全てのユビキチン化基質を捕捉・検出できるpanユビキチンプローブの開発が遅れている。
 他方、ポリユビキチン化基質を捕捉検出するための人工プローブとして、フィブロネクチンIII型ポリペプチドモノボディが知られている(特許文献1)。
特許第3614866号
D. Komander, M. Rape, The ubiquitin code. Annual review of biochemistry 81, 203-229 (2012). Y. T. Kwon, A. Ciechanover, The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy. Trends in biochemical sciences 42, 873-886 (2017). R. Yau, M. Rape, The increasing complexity of the ubiquitin code. Nature cell biology 18, 579-586 (2016). C. H. Emmerich, P. Cohen, Optimising methods for the preservation, capture and identification of ubiquitin chains and ubiquitylated proteins by immunoblotting. Biochemical and biophysical research communications 466, 1-14 (2015). R. Hjerpe et al., Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO reports 10, 1250-1258 (2009). M. Mattern, J. Sutherland, K. Kadimisetty, R. Barrio, M. S. Rodriguez, Using Ubiquitin Binders to Decipher the Ubiquitin Code. Trends in biochemical sciences 44, 599-615 (2019).
 特許文献1に記載のポリペプチドモノボディは、TUBEと同様に結合親和性が高いとはいえず、さらに優れたモノボディの開発が必要である。
  本発明者は、上記課題を解決するために鋭意検討を行った結果、優れた効果を奏する抗ユビキチン人工抗体を取得することに成功し、本発明を完成するに至った。
 すなわち、本発明は以下の通りである。
[1] フィブロネクチンIII型ポリペプチドを含む、ユビキチンに対する人工抗体であって、以下の(A)、(B)又は(C)のポリペプチドを含む、前記人工抗体。
(A)ユビキチンとの結合領域を含むFGループを含むポリペプチドであって、当該結合領域のアミノ酸配列が、次式(1):
-Ar-Z-Ar-X-Ar- (1)
(式中、Arは芳香族アミノ酸残基を表し、Zは単結合又は任意のアミノ酸残基を表し、Xは任意のアミノ酸残基を表す。)
で示されるアミノ酸配列を含むポリペプチド
(B)前記(A)のポリペプチドのアミノ酸配列(但し、前記式(1)に示すアミノ酸配列を除く)において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列  からなり、かつ、ユビキチンとの結合活性を有するポリペプチド
(C)前記(A)のポリペプチドのアミノ酸配列(但し、前記式(1)に示すアミノ酸配列を除く)において、少なくとも80%の同一性を有し、かつ、ユビキチンとの結合活性を有するポリペプチド
[1-2] Zが、単結合、又はプロリン及びアルギニンを除く任意のアミノ酸残基を表す、[1]に記載の人工抗体。
[2] 式(1)で示されるアミノ酸配列が、FWGW(配列番号4)、YVYGW(配列番号5)、YWGW(配列番号6)、YWWYY(配列番号7)又はYWMW(配列番号8)である、[1]又は[1-2]に記載の人工抗体。
[3] FGループのアミノ酸配列が、YYGNAFWGWP(配列番号16)、GHTGGSYVYGWY(配列番号17)、WYAYSYWGWP(配列番号18)、EYSYMYWGWP(配列番号20)、WEISYWWYYQ(配列番号21)又はYYSGYYWMWY(配列番号22)である、[1]、[1-2]又は[2]に記載の人工抗体。
[4]  以下の(P1)、(P2)又は(P3)のポリペプチドを含む、[1]~[3]のいずれか1項に記載の人工抗体。
(P1)配列番号24、26、28、30、32及び34に示されるいずれかのアミノ酸配列からなるポリペプチド
(P2)配列番号24、26、28、30、32及び34に示されるいずれかのアミノ酸配列(但し、前記式(1)に示すアミノ酸配列に対応する、ユビキチンとの結合領域のアミノ酸配列を除く。)において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列  からなり、かつ、ユビキチンとの結合活性を有するポリペプチド
(P3)配列番号24、26、28、30、32及び34に示されるいずれかのアミノ酸配列(但し、前記式(1)に示すアミノ酸配列に対応する、ユビキチンとの結合領域のアミノ酸配列を除く。)において、少なくとも80%の同一性を有し、かつ、ユビキチンとの結合活性を有するポリペプチド
[5] ユビキチンに対して5nM以下の解離定数を有する、[1]~[4]のいずれか1項に記載の人工抗体。
[6] ユビキチンがポリユビキチンである、[1]~[5]のいずれか1項に記載の人工抗体。
[7] 以下の(A)、(B)又は(C)のポリペプチドをコードするDNA。
(A)ユビキチンとの結合領域を含むFGループを有するフィブロネクチンIII型ポリペプチドであって、当該結合領域のアミノ酸配列が、次式(1):
-Ar-Z-Ar-X-Ar- (1)
(式中、Arは芳香族アミノ酸残基を表し、Zは単結合又は任意のアミノ酸残基を表し、Xは任意のアミノ酸残基を表す。)
で示されるアミノ酸配列を含むポリペプチド
(B)前記(A)のポリペプチドのアミノ酸配列(但し、前記式(1)に示すアミノ酸配列を除く)において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列  からなり、かつ、ユビキチンとの結合活性を有するポリペプチド
(C)前記(A)のポリペプチドのアミノ酸配列(但し、前記式(1)に示すアミノ酸配列を除く)において、少なくとも80%の同一性を有し、かつ、ユビキチンとの結合活性を有するポリペプチド
[7-2] Zが、単結合、又はプロリン及びアルギニンを除く任意のアミノ酸残基を表す、[7]に記載のDNA。
[8] 式(1)で示されるアミノ酸配列が、FWGW(配列番号4)、YVYGW(配列番号5)、YWGW(配列番号6)、YWWYY(配列番号7)又はYWMW(配列番号8)である、[7] 又は[7-2]に記載のDNA。
[9] FGループのアミノ酸配列が、YYGNAFWGWP(配列番号16)、GHTGGSYVYGWY(配列番号17)、WYAYSYWGWP(配列番号18)、EYSYMYWGWP(配列番号20)、WEISYWWYYQ(配列番号21)又はYYSGYYWMWY(配列番号22)である、[7]、[7-2]又は[8]に記載のDNA。
[10]  以下の(P1)、(P2)又は(P3)のポリペプチドをコードする、[7]~[9]のいずれか1項に記載のDNA。
(P1)配列番号24、26、28、30、32及び34に示されるいずれかのアミノ酸配列からなるポリペプチド
(P2)配列番号24、26、28、30、32及び34に示されるいずれかのアミノ酸配列(但し、前記式(1)に示すアミノ酸配列に対応する、ユビキチンとの結合領域のアミノ酸配列を除く。)において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列  からなり、かつ、ユビキチンとの結合活性を有するポリペプチド
(P3)配列番号24、26、28、30、32及び34に示されるいずれかのアミノ酸配列(但し、前記式(1)に示すアミノ酸配列に対応する、ユビキチンとの結合領域のアミノ酸配列を除く。)において、少なくとも80%の同一性を有し、かつ、ユビキチンとの結合活性を有するポリペプチド
[11]  以下の(Q1)、(Q2)又は(Q3)に示す、[7]~[10]のいずれか1項に記載のDNA。
(Q1)配列番号23、25、27、29、31及び33に示されるいずれかの塩基配列からなるDNA
(Q2)配列番号23、25、27、29、31及び33に示されるいずれかの塩基配列に相補的な塩基配列において、ストリンジェントな条件下でハイブリダイズし、かつ、ユビキチンとの結合活性を有するポリペプチドをコードするDNA
(但し、当該ストリンジェントな条件下でハイブリダイズするDNAのうち、前記式(1)に示すアミノ酸配列に対応する、ユビキチンとの結合領域のアミノ酸配列をコードする塩基配列は、常に式(1)に示すアミノ酸配列のコドンとしてハイブリダイズする。)
(Q3)配列番号23、25、27、29、31及び33に示されるいずれかの塩基配列と少なくとも80%の同一性を有し、かつ、ユビキチンとの結合活性を有するポリペプチドをコードするDNA
(但し、当該同一性を有するDNAのうち、前記式(1)に示すアミノ酸配列に対応する、ユビキチンとの結合領域のアミノ酸配列をコードする塩基配列は、常に式(1)に示すアミノ酸配列をコードする。)
[12] [7]~[11]のいずれか1項に記載のDNAを含む発現ベクター。
[13] [12]に記載の発現ベクターを含む形質転換体。
[14] [13]に記載の形質転換体を培養し、得られる培養物からユビキチンに対する人工抗体を採取することを特徴とする、当該人工抗体の製造方法。
[15] [1]~[6]のいずれか1項に記載の人工抗体を含む、ユビキチン又はユビキチン化基質検出用試薬。
[16] [1]~[6]のいずれか1項に記載の人工抗体を、被検試料と接触させることを特徴とする、ユビキチン又はユビキチン化基質の検出方法。
[17] [1]~[6]のいずれか1項に記載の人工抗体を、被検試料と接触させ、当該人工抗体と被検試料との複合体からユビキチン又はユビキチン化基質を採取することを特徴とする、ユビキチン又はユビキチン化基質の製造方法。
[18] ユビキチンがポリユビキチンである[16]に記載の方法。
[19] ユビキチンがポリユビキチンである[17]に記載の方法。
  本発明の人工抗体であるユビキチンモノボディは、既存のIgG型抗ユビキチン抗体より優れており、大腸菌で大量生産が可能であること、蛍光標識などの化学修飾が容易であることなどから、今後、ユビキチン化基質の精製や検出のための優れたツールとなることが期待される。
ユビキチン修飾系とユビキチンコードを示す図である。 ユビキチン(Ub)は 分子量8.6 kDaのタンパク質性の翻訳後修飾分子であり、ユビキチン活性化酵素(E1)、ユビキチン結合酵素(E2)、ユビキチンリガーゼ(E3)から構成される一連の酵素群が触媒するカスケードにより、基質にユビキチンが付加される(ユビキチン化)。多くの場合、ユビキチン自身にユビキチンが付加され、ポリユビキチン鎖が形成される。細胞内には8種類の異なる構造のポリユビキチン鎖 (異なるリジン残基(K)を介して連結したK6鎖、K11鎖、K27鎖、K33鎖、 K48鎖、 K63鎖及び、N末端のメチオニン残基(M)を介して連結したM1鎖)が存在する。そのうち、48番目のリジン残基を介して連結した、K48連結型ユビキチン鎖は、プロテアソームによる基質タンパク質の分解シグナルとして用いられる。一方、K63連結型ユビキチン鎖は膜タンパク質のエンドサイトーシスやシグナル伝達、DNA修復などを制御する。その他のユビキチン鎖も固有の機能を持つことが示唆されており、さらに最近、異なる連結式で連なった混合鎖や枝分かれした分岐鎖、さらにユビキチンがリン酸化やアセチル化されることがわかった。そのため、多種多様なユビキチン修飾に内包された機能情報はユビキチンコードと呼ばれるに至っている。ユビキチンコードの機能発現にはユビキチン結合ドメインをもつユビキチン結合タンパク質(UBD)が重要であり、ユビキチン鎖の高次構造を識別し、下流の分子に情報を伝達することから、デコーダー分子とも呼ばれる。また、ユビキチン鎖は脱ユビキチン化酵素(DUB)によって切断されるため、ユビキチン修飾は可逆的な翻訳後修飾である。 IgGと人工抗体(Monobody)の比較図である。(A)ヒト免疫グロブリン(IgG)抗体の構造。2本の重鎖と2本の軽鎖がジスルフィド結合(S-S)で繋がった構造をもつ。両鎖は定常ドメイン(CLとCH1-CH3)と可変ドメイン(VLとVH)から構成される。可変ドメインには抗体の基質結合特異性を決定する相補性決定領域(CDR)が含まれる。従来型の抗ユビキチンモノクローナル抗体(P4D1)および抗ユビキチン鎖抗体(FK2)はいずれもマウスIgGである。(B)人工抗体(モノボディ)の構造。モノボディはヒトフィブロネクチン3型ドメインを骨格とした人工抗体である。IgG定常ドメインと同様に7つのβシートからなる樽状の足場から2つのCDR様ループをもつ。本発明ではこのループのアミノ酸配列をランダム化した人工抗体ライブラリを用いてユビキチン特異的なモノボディを取得した。(C)モノボディのDNA配列。太字部分が可変ループに相当し、ここでは野生型ヒトフィブロネクチンの配列を示した。野生型ヒトフィブロネクチンをコードする塩基配列を配列番号37に、野生型ヒトフィブロネクチンのアミノ酸配列を配列番号38に示す。なお、ランダムライブラリでは可変ループの長さも幅をもたせており、ループ1は8アミノ酸または10アミノ酸、ループ2は10アミノ酸または12アミノ酸である。 ユビキチンに対するモノボディの試験管内セレクションを示す図である。(A)モノボディの2つのループをランダム化したライブラリ(103の多様性)からビオチン標識ユビキチン単量体を標的としてTRAP(Transcription-translation coupled with association of puromycin linker)法によりスクリーニングした。(B)ユビキチンを標的としたスクリーニングは計5ラウンド実施することで、ユビキチンに対するモノボディクローンを濃縮した。5ラウンド目のモノボディクローン混合物のDNA配列を次世代シーケンサー(NGD)により決定し、2つのループに異なる配列をもつ計7クローンを得た。図B右パネルにおいて、loop 1はBCループ、loop 2はFGループを示す。loop 1のクローンA~Gのアミノ酸配列をそれぞれ配列番号9~15に示す。またloop 2のクローンA~Gのアミノ酸配列をそれぞれ配列番号16~22に示す。 モノボディとユビキチンの結合親和性測定結果を示す図である。(A)結合実験に用いたコンストラクト。N末端からモノボディ、可溶化タグのNusタグ、精製用のヘキサヒスチジンタグ(His6)を融合したリコンビナントタンパク質を大腸菌発現系で調製した。モノボディは図3Bの7つのクローンを作製した。(B)バイオレイヤー干渉法(Bio-Layer Interferometry:BLI)による解離定数決定。ビオチン化ユビキチンを固定化し、Aの6つのリコンビナントタンパク質をアナライトとして相互作用を解析した。いずれも解離定数(Kd)が約1nMであった。 図5 細胞抽出液を用いたユビキチンのウェスタンブロット解析の結果を示す図である。(A)ユビキチンモノボディのビオチン標識。GST-His6-MonobodyをTEVプロテアーゼでGST-His6タグを切断除去し、生じたN末端GGGS配列とビオチン標識用ペプチド(Biotin-PEG12-VLLPRTGG)をSortaseを用いてペプチドライゲーションした。下線はSortaseの標的配列。最終産物はBiotin-VLLPRTGGGS-Monobodyである。(B)ヒト大腸がん由来HCT-116細胞をユビキチン活性化酵素E1阻害剤(TAK-243、1 uM)またはプロテアソーム阻害剤(Btz、1 uM)で3時間処理した後、タンパク質を抽出してウェスタンブロット解析に供した。なお、プロテアソーム阻害によりポリユビキチン化基質が増加し、ユビキチン化ヒストンが減少すること、E1阻害によりポリユビキチン化基質が減少し、ユビキチン単量体が増加することがしられている。ユビキチン又はユビキチン化基質検出用の抗体として、ビオチン標識抗ユビキチンモノボディ(Ub monobody)と既存のIgG型抗ユビキチン抗体(FK2またはP4D1)を用いてバンドパターンを比較した。また、ネガティブコントロールとして野生型モノボディ(control monobody)を用いた。抗体によって反応性は異なるものの、いずれもポリユビキチン化基質を検出できた。また、ユビキチン単量体はP4D1でのみ検出可能であった。一方、抗ユビキチンモノボディはユビキチン単量体を検出できないものの、ユビキチン化ヒストン(モノユビキチン化H2A)に対して反応性が高かった。 細胞抽出液からのユビキチン化タンパク質の免疫沈降を示す図である。(A)免疫沈降に用いたユビキチンモノボディのコンストラクト。N末端から精製用のヘキサヒスチジンタグ(His6)、固相化用のHaloタグ、モノボディを融合したリコンビナントタンパク質を大腸菌発現系で調製した。モノボディは野生型(control monobody)とユビキチンに対するモノボディ(Ub monobody、クローンC)を作製した。(B)Haloタグ融合モノボディ精製標品の電気泳動像。精製タンパク質をSDS-PAGEで分離後、CBB染色に供した。(C)免疫沈降物のウェスタンブロット解析。ヒト大腸がん由来HCT-116細胞の抽出液(input)からマウスコントロールIgG(Control IgG)、マウス抗ユビキチン抗体(FK2、P4D1)、コントロールモノボディ(Control monobody)、抗ユビキチンモノボディ(Ub monobody)を用いてユビキチン化基質およびユビキチンを免疫沈降した。次いで、免疫沈降物を抗ユビキチン抗体(P4D1)によるウェスタンブロットにより解析した。Inputは免疫沈降に供した抽出液の20%に相当する。ポリユビキチン化基質のシグナル強度としてはユビキチンモノボディ>FK2>P4D1の順であった。また、ユビキチンモノボディではユビキチン化ヒストン(モノユビキチン化H2A)およびユビキチン単量体が検出された。 免疫沈降物の定量質量分析解析結果を示す図である。(A)ユビキチン鎖の絶対定量。図5Cに供した免疫沈降物を電気泳動し、高分子量領域(62 kDa以上)を定量質量分析解析に供した。内部標準として安定同位体標識ユビキチン由来ペプチド(名称EST)および8種類のユビキチン鎖由来ペプチド(名称:K6, K11, K27, K29, K33, K48, K63, M1)を用い、定量値(fmol)を記載した。なお、総ユビキチンの値は、ESTペプチド配列とK63鎖ペプチド配列が重複するため、ESTペプチドの定量値にK63鎖由来ペプチドの値を加え算出した。ユビキチンモノボディ免疫沈降物に含まれる総ユビキチン量はFK2、P4D1に比し多いことが確認された。(B)8種類のユビキチン鎖の組成。各抗体の値からコントロールの値を減じ、8種類のユビキチン鎖由来ペプチドを合計した値を100%として、各ユビキチン鎖の割合を円グラフで表示した。細胞抽出液(Input)の各ユビキチン鎖の割合と、FK2およびユビキチンモノボディ免疫沈降物中の各ユビキチン鎖の割合がほぼ一致することから、FK2とユビキチンモノボディは主要なユビキチン鎖とバイアス無く結合できることが示唆された。 免疫染色の結果を示す図である。(A)ユビキチンモノボディの蛍光標識。図5AのGST-MonobodyをTEVプロテアーゼでGST-His6タグを切断除去し、生じたN末端GGGS配列とTAMRAペプチド(TAMRA-PEG12-VLLPRTGG)をSortaseを用いてペプチドライゲーションした。下線はSortaseの標的配列。最終産物はTAMRA-VLLPRTGGGS-Monobodyである。(B)TAMRA標識ユビキチンモノボディの電気泳動像。左はCBB染色像、右は蛍光検出像。(C)ピューロマイシン処理EGFP-ユビキチン安定発現細胞を用いたユビキチンモノボディ染色像。EGFP-ユビキチンを安定発現するヒト大腸がん由来HCT116細胞を使用した。EGFP-ユビキチンのシグナルは主に核質と細胞質に検出されるが、ピューロマイシン処理すると新生不良タンパク質が細胞質にユビキチン陽性fociを形成する(左パネル)。TAMRA標識ユビキチンモノボディ(1ug/mlおよび0.1ug/ml)を用いて細胞染色を行ったところ、EGFP-ユビキチンの蛍光シグナルとほぼ完全に一致した。(D)抗ユビキチン抗体FK2を用いたピューロマイシン処理EGFP-ユビキチン安定発現細胞の蛍光染色像。汎用されるIgG型抗ユビキチン抗体FK2(10 ug/ml)を1次抗体として、Alexa568標識抗マウスIgG抗体を2次抗体としてCと同条件の細胞、露光時間で蛍光画像を取得した。その結果、FK2抗体は細胞質のfociは検出されたが、核内ユビキチンは検出されなかった。 各ユビキチン抗体の比較を示す図である。 ウェスタンブロット(WB)および免疫沈降/プルダウンはユビキチン単量体、モノユビキチン化ヒストン、ポリユビキチン鎖(ポリユビキチン化基質を含む)を区分して記入した。反応性の強度を+の数で示した。TUBEはウェスタブロット解析は適用外である(N.A. not applicapable)。 人工抗体(Monobody)とユビキチン(Ub)との複合体の構造を示す図である。 図は、ユビキチンを認識した人工抗体(Monobody)のX線結晶構造のリボンモデルを示す。可変ドメインの相補性決定領域のloop2側でユビキチンと複合体を形成していた。loop1およびloop2、並びにMonobodyに認識されるユビキチンの側鎖をスティック表示した。 人工抗体(Monobody)とユビキチン(Ub)との相互作用残基を示す図である。loop2について、ユビキチンのI44とV70がMonobodyのW91と、ユビキチンのW89がMonobodyのR42と、それぞれ疎水性相互作用していた。また、ユビキチンのR72がMonobodyのS87、ユビキチンのQ49がMonobodyのY84とそれぞれ水素結合していた。loop1について、ユビキチンのR42がMonobodyのD33と水素結合していた。ユビキチンのC末端側のV70からI73まで、及びMonobodyのloop2のW88からY91までの主鎖に水素結合が見られた。 ポリユビキチン化の阻害実験結果を示す図である。 a) K48鎖、b) K63鎖
  本発明は、フィブロネクチンIII型ポリペプチドを含む、ユビキチンに対する人工抗体に関する。本発明において、ユビキチンに特異的に結合するポリペプチドを「ユビキチンモノボディ」、又は単に「モノボディ」ともいう。モノボディはユビキチンに特異的に結合する人工抗体であるから、本明細書において、「ユビキチンモノボディ」又は「モノボディ」と「人工抗体」とは同義である。
 本発明の人工抗体は、以下の(A)、(B)又は(C)のポリペプチドを含むものである。
(A)ユビキチンとの結合領域を含むFGループを有するポリペプチドであって、当該結合領域のアミノ酸配列が、次式(1):
-Ar-Z-Ar-X-Ar- (1)
(式中、Arは芳香族アミノ酸残基を表し、Zは単結合又は任意のアミノ酸残基を表し、Xは任意のアミノ酸残基を表す。)
で示されるアミノ酸配列を含むポリペプチド
(B)前記(A)のポリペプチドモノボディのアミノ酸配列(但し、前記式(1)に示すアミノ酸配列を除く)において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、ユビキチンとの結合活性を有するポリペプチド
(C)前記(A)のポリペプチドモノボディのアミノ酸配列(但し、前記式(1)に示すアミノ酸配列を除く)において、少なくとも80%の同一性を有し、かつ、ユビキチンとの結合活性を有するポリペプチド
 ここで、Zは、単結合であるか、又はプロリン及びアルギニンを除く任意のアミノ酸残基であることが好ましい。
 本発明の一態様において、上記式(1)に示すアミノ酸配列、すなわちFGループにおけるユビキチンとの結合領域のアミノ酸配列は、例えばFWGW(配列番号4)、YVYGW(配列番号5)、YWGW(配列番号6)、YWWYY(配列番号7)又はYWMW(配列番号8)で表すことができる。そしてこれらのアミノ酸配列を含むFGループのアミノ酸配列は、例えばYYGNAFWGWP(配列番号16)、GHTGGSYVYGWY(配列番号17)、WYAYSYWGWP(配列番号18)、EYSYMYWGWP(配列番号20)、WEISYWWYYQ(配列番号21)又はYYSGYYWMWY(配列番号22)で表すことができる。
1.概要
 ユビキチン修飾は生体に必須の翻訳後修飾であり、タンパク質の品質管理に加えて、シグナル伝達やDNA修復、膜タンパク質の輸送など、多彩な細胞機能を調節している。これまでタンパク質のユビキチン修飾(ユビキチン化)を検出するために、抗ユビキチン抗体や人工タンパク質TUBEなどが開発されてきたが、ユビキチン単量体に対する親和性が低く、またプローブとしてのサイズが大きいなどの問題がある。
 そこで、本発明では、小分子型人工抗体モノボディ(ヒトフィブロネクチン骨格、約9.4 kDa)のランダムライブラリを用いて、ユビキチンに特異的なモノボディの取得を試み、配列の異なるクローンのモノボディを得た。モノボディはヒトフィブロネクチン3型(FN3)ドメインを骨格とした人工抗体であり、7つのβシートからなる樽状の足場から相補性決定領域(CDR)となる2つの可変ループをもつ(図2)。
 本発明では、この2つのループのアミノ酸配列をランダム化した人工抗体ライブラリを用いてTRAP(transcription-translation coupled with association of puromycin linker)提示法(T. Kondo et al., Antibody-like proteins that capture and neutralize SARS-CoV-2. Sci Adv 6 (2020).)によりユビキチン特異的なモノボディを取得した(図3)。図3において、Aは、TRAP提示法の概要図である。ついで、免疫沈降能と免疫染色能について、抗ユビキチンモノボディとIgG型抗ユビキチン抗体を比較検討した。
 その結果、ユビキチンモノボディとユビキチン単量体の相互作用は解離定数が数nMの高親和性であり、従来のIgG型の抗ユビキチン抗体より効率良くユビキチン化基質を免疫沈降できること、様々な連結様式のユビキチン鎖を捕捉できることを確認した。ユビキチンモノボディは免疫染色にも適用でき、従来のIgG型抗ユビキチン抗体より高感度かつ高精度に細胞内のユビキチン化基質を検出できた。このように、本ユビキチンモノボディは既存のIgG型抗ユビキチン抗体より優れており、大腸菌で大量生産が可能であること、蛍光標識などの化学修飾が容易であることなどから、抗ユビキチン人工抗体として使用することができ、ユビキチン化基質の精製や検出のための優れたツールとなることが期待される。
2.ユビキチンモノボディのスクリーニング
 本発明においては、ユビキチンモノボディを取得する際に、ライブラリから各種スクリーニング法を利用することができる。
(1)ビオチン化ユビキチンの調製
 まず、ヒト由来ユビキチンのC末端領域に標識用のCys残基及び精製用のタグを付加したコンストラクトを作製し、大腸菌発現系により精製する。次いで、Cys残基に標識を付加する。
 大腸菌発現系は公知であり、発現タンパク質に対してCys残基選択的な化学反応を利用することにより行うことができる。また標識としては、特に限定されるものではなく、ビオチンやデスチオビオチンなどが挙げられる。
(2)TRAP提示法
 本発明において使用されるライブラリは、例えば小分子型人工抗体モノボディFN3(フィブロネクチンIII型)mRNAライブラリ(1013相当)である。ライブラリは、化学合成DNAを連結してDNAライブラリを作製後、RNAポリメラーゼを用いて試験管内転写することにより入手することができる。このライブラリから試験管内でFN3タンパク質を翻訳し、ビオチン化ユビキチンをベイトとしてユビキチンと相互作用するクローンを選別する。試験管内でのタンパク質発現(In vitroタンパク質発現)は、細胞から抽出される生体分子翻訳機構を活用して溶解液中又は大腸菌で組換えタンパク質を産出する手法である。タンパク質合成は培養細胞内でなく細胞溶解物中又は大腸菌で起こることから、この手法は無細胞タンパク質発現とも呼ばれる。
 本発明の一態様において使用される翻訳技術は、例えば「再構成無細胞翻訳系」(PURE system)という公知の無細胞翻訳技術である。本発明においては、再構成系と呼ばれる手法を採用し、翻訳に必要な因子(リボソームや他のタンパク質)を大腸菌で発現及び精製してその後混合する。
 このスクリーニングを複数回繰り返すことで、ユビキチンに高親和性で結合するクローンを濃縮する。次いで、次世代DNAシーケンサーにより、可変領域の塩基配列を決定し、抗ユビキチンモノボディークローンを得る。
3.モノボディとユビキチンの結合親和性測定
(1)モノボディタンパク質の大腸菌発現・精製
 N末端からモノボディ、可溶化タグのNusタグ、精製用のヘキサヒスチジンタグ(His6)を融合したコンストラクトを作製した。次いで、大腸菌でリコンビナントタンパク質を発現させ、His6タグを用いて精製した。
(2)バイオレイヤー干渉法(Bio-Layer Interferometry:BLI)による解離定数決定
 ビオチン化ユビキチン(5 nM)をストレプトアビジンセンサーに固定化し、抗ユビキチンモノボディ(0.625~10 nMの2倍希釈系列)をアナライトとして結合解離をモニターした。専用のソフトウェアForteBio Data Analysis ver 10.0を用いてカーブフィッティングし、算出した一次反応近似曲線から解離定数(Kd)を算出した。
4.モノボディ
(1)モノボディポリペプチド及びDNA
 上記スクリーニング及び結合親和性測定によって得られたモノボディは、フィブロネクチンIII(FN3)型ポリペプチドを骨格とする人工抗体である。FN3型モノボディにはBCループ、CDループ、DEループ、FGループが存在する。本発明において、ユビキチンとの親和性に関与するループはFGループである。
 本発明において、BCループ及びFGループのアミノ酸配列を解析した結果、ユビキチンとの結合に関与する領域のアミノ酸配列として、FGループに共通のモチーフが存在することが判明した。そのアミノ酸配列は、次式(1):
-Ar-Z-Ar-X-Ar- (1)
で示すことができる(配列番号1)。
 式(1)において、Arは芳香族アミノ酸残基を表し、Zは単結合又は任意のアミノ酸残基を表し、Xは任意のアミノ酸残基を表す。「任意のアミノ酸残基」とは、タンパク質の構成成分である20種類のアミノ酸残基を表し、構造内に2つのカルボキシル基を持つ酸性アミノ酸(アスパラギン酸(Asp又はD)又はグルタミン酸(Glu又はE))、2つ以上のアミノ基を持つ塩基性アミノ酸(リシン(Lys又はK)、アルギニン(Arg又はR)又はヒスチジン(His又はH))、及び中性アミノ酸を意味する。中性アミノ酸は、アミノ酸を構成する側鎖の基によって、以下の通り分類される。すなわち、(i)アルキル鎖を持つグリシン(Gly又はG)、アラニン(Ala又はA)、バリン(Val又はV)、ロイシン(Leu又はL)又はイソロイシン(Ile又はI)、(ii)ヒドロキシ基を持つセリン(Ser又はS)又はスレオニン(Thr又はT)、(iii)硫黄を含むシステイン(Cys又はC)又はメチオニン(Met又はM)、(iv)アミド基を持つアスパラギン(Asn又はN)又はグルタミン(Gln又はQ)、(v)イミノ基を持つプロリン(Pro又はP)、(vi)芳香族基を持つフェニルアラニン(Phe又はF)、チロシン(Tyr又はY)又はトリプトファン(Trp又はW)に分類される。
 Zが単結合の場合は、式(1)は次式(2):
 -Ar-Ar-X-Ar- (2)
で示されるアミノ酸配列となり(配列番号2)、Zが任意のアミノ酸残基を表すときは、式(1)は次式(3):-Ar-X-Ar-X-Ar- (3)
で示されるアミノ酸配列(配列番号3)となる。
 但し、本発明において、Zがアミノ酸残基を表す場合は、プロリン及びアルギニン以外の任意のアミノ酸残基であることが好ましい。
 ここで、「結合に関与する領域のアミノ酸配列」は、前記式(1)~(3)から選ばれる式に示すアミノ酸配列のうち少なくとも2アミノ酸残基を含む。
 式(1)~(3)において、Arは芳香族アミノ酸残基であり、フェニルアラニン(Phe又はF)、チロシン(Tyr又はY)又はトリプトファン(Trp又はW)である。
 上記式(2)で示されるアミノ酸配列としては、例えばFWGW(配列番号4)、YWGW(配列番号6)、又はYWMW(配列番号8)が挙げられ、上記式(3)で示されるアミノ酸配列としては、例えばYVYGW(配列番号5)、YWWYY(配列番号7)が挙げられる。
 また本発明の一態様において、FGループのアミノ酸配列は、YYGNAFWGWP(配列番号16)、GHTGGSYVYGWY(配列番号17)、WYAYSYWGWP(配列番号18)、EYSYMYWGWP(配列番号20)、WEISYWWYYQ(配列番号21)又はYYSGYYWMWY(配列番号22)である。
 従って、本発明のモノボディは、
(A)ユビキチンとの結合領域を含むFGループを含むポリペプチドであって、当該結合領域のアミノ酸配列が、次式(1):
-Ar-Z-Ar-X-Ar- (1)
(式中、Arは芳香族アミノ酸残基を表し、Zは単結合又は任意のアミノ酸残基を表し、Xは任意のアミノ酸残基を表す。)
で示されるアミノ酸配列を含む。
 本発明の一態様において、Zは、単結合であるか、あるいはプロリン及びアルギニンを除く任意のアミノ酸残基を表す。
 また本発明のモノボディは、以下の(B)又は(C)のポリペプチドを含む。なお、以下の(B)若しくは(C)のポリペプチド、又は当該ポリペプチドをコードするDNAは(A)の変異型であり、(B)又は(C)の態様を指すときは、本明細書において単に「変異体」又は「変異型モノボディ」のように表記することもある。
(B)前記(A)のポリペプチドのアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、ユビキチンとの結合活性を有するポリペプチド
(C)前記(A)のポリペプチドのアミノ酸配列において、少なくとも80%の同一性を有し、かつ、ユビキチンとの結合活性を有するポリペプチド
 但し、欠失、置換、付加等が入った場合でもユビキチンとの結合活性を有する態様の変異、あるいは、少なくとも80%の同一性を有し、ユビキチンとの結合活性を有する態様の変異として、例えばループ内の配列の中でも結合に必須のアミノ酸の位置以外の部位における変異が挙げられる。従って、FGループ内の前記式(1)に示すアミノ酸配列については、上記(B)のポリペプチドにおいては、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列は除外され、上記(C)のポリペプチドにおいては、少なくとも80%の同一性を有するアミノ酸配列は除外する。
 FGループ以外(フィブロネクチン骨格及び他のループ)の領域ではユビキチンとの結合に必ずしも必須ではないため、これらの領域の配列には、上記態様の変異があってもよい。
 本発明のモノボディの一態様において、FGループを含むポリペプチドは以下の通りである。
(P1)配列番号24、26、28、30、32及び34に示されるいずれかのアミノ酸配列からなるポリペプチド
(P2)配列番号24、26、28、30、32及び34に示されるいずれかのアミノ酸配列(但し、前記式(1)に示すアミノ酸配列に対応する、ユビキチンとの結合領域のアミノ酸配列を除く。)において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、ユビキチンとの結合活性を有するポリペプチド
(P3)配列番号24、26、28、30、32及び34に示されるいずれかのアミノ酸配列(但し、前記式(1)に示すアミノ酸配列に対応する、ユビキチンとの結合領域のアミノ酸配列を除く。)において、少なくとも80%の同一性を有し、かつ、ユビキチンとの結合活性を有するポリペプチド
 ここで、上記「1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列」としては、例えば、1~10個、1~9個、1~8個、1~7個、1~6個、1~5個、1~4個、1~3個、1~2個又は1個のアミノ酸が欠失、置換又は付加されたアミノ酸配列が挙げられる。
  前記欠失、置換又は付加等の変異の導入は、ペプチドを遺伝子工学的に作製する場合には、部位特異的突然変異誘発法を利用した変異導入用キット、例えば、GenEdit Site-Directed Mutagenesis Kit(フナコシ)、PrimeSTAR(登録商標)Mutagenesis Basal Kit(TaKaRa)等を用いて行うことができる。また、上記欠失、置換又は付加の変異が導入されたペプチドであるかどうかは、各種アミノ酸配列決定法、並びに質量分析等による構造解析法などを用いて確認することができる。
 さらに本発明においては、変異体(変異型モノボディ)のユビキチンとの結合の態様は、当該変異体モノボディの立体構造解析によって確認又は予測をすることができる。立体構造解析は、コンピュータによる立体構造解析、結晶構造解析など、任意の手法を採用することができる。
  本発明において、「ユビキチンとの結合活性」とは、ユビキチンがモノボディを構成するFGループ内のアミノ酸残基に非共有結合により結合することを意味し、当該活性は、例えば、前記バイオレイヤー干渉法による解離定数決定法や、表面プラズモン共鳴法等により測定することができる。
 本発明において、モノボディがユビキチンと結合するときの親和性は、解離定数(Kd)で表すことができ、その値は、5nM以下であり、例えば0.5~3nM、0.8~2.8nMである。
 ここで、ユビキチンには、ポリユビキチンのほか、基質タンパク質が結合したユビキチン又はポリユビキチンも含む。
 上記スクリーニング法により本発明のモノボディが得られ、一旦モノボディのアミノ酸配列及び塩基配列が得られた後は、モノボディは遺伝子工学的手法により取得することができる。また、当該モノボディを構成するポリペプチド(「モノボディポリペプチド」ともいう)のアミノ酸配列において、1個又は数個のアミノ酸配列が欠失、置換又は付加された変異型ポリペプチドであって、ユビキチンとの結合活性活性を有するポリペプチドは、当該変異型ポリペプチドのアミノ酸配列を設計及び合成した後、前記と同様にしてユビキチンと相互作用するクローンを選別することにより得ることができる。
   本発明のモノボディは、人工的に化学合成して得ることができる。合成方法としては、例えば、アジド法、酸クロライド法、酸無水物法、混合酸無水物法、活性エステル法、酸化還元法等が挙げられる。また、その合成は、固相合成法及び液相合成法のいずれをも適用することができる。市販のペプチド合成装置を使用してもよい。合成反応後は、クロマトグラフィー等の公知の精製法を組み合わせて目的のモノボディを精製することができる。
 また本発明においては、公知の遺伝子組換え技術(例えばSambrook J. et al., Molecular Cloning, A Laboratory Manual (4th edition), Cold Spring Harbor Laboratory Press (2012))により、モノボディポリペプチドをコードするDNAを各種発現ベクター等に組込んで細胞に導入し、発現させた後、公知の回収法及び精製法により得てもよい。
 本発明の一態様において、モノボディポリペプチドをコードするDNAとしては、以下の(A)、(B)又は(C)のポリペプチドをコードするDNAが挙げられる。
(A)ユビキチンとの結合領域を含むFGループを有するポリペプチドであって、当該結合領域のアミノ酸配列が、次式(1):
-Ar-Z-Ar-X-Ar- (1)
(式中、Arは芳香族アミノ酸残基を表し、Zは単結合又は任意のアミノ酸残基を表し、Xは任意のアミノ酸残基を表す。)
で示されるアミノ酸配列を含むポリペプチド
(B)前記(A)のポリペプチドのアミノ酸配列(但し、前記式(1)に示すアミノ酸配列を除く)において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、ユビキチンとの結合活性を有するポリペプチド
(C)前記(A)のポリペプチドのアミノ酸配列(但し、前記式(1)に示すアミノ酸配列を除く)において、少なくとも80%の同一性を有し、かつ、ユビキチンとの結合活性を有するポリペプチド
 前記(A)において、Zは、単結合であるか、あるいはプロリン及びアルギニンを除く任意のアミノ酸残基であることが好ましい。
 さらに、本発明の一態様においては、以下の(P1)、(P2)又は(P3)のポリペプチドをコードするDNAが挙げられる。
(P1)配列番号24、26、28、30、32及び34に示されるいずれかのアミノ酸配列からなるポリペプチド
(P2)配列番号24、26、28、30、32及び34に示されるいずれかのアミノ酸配列(但し、前記式(1)に示すアミノ酸配列に対応する、ユビキチンとの結合領域のアミノ酸配列を除く。)において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、ユビキチンとの結合活性を有するポリペプチド
(P3)配列番号24、26、28、30、32及び34に示されるいずれかのアミノ酸配列(但し、前記式(1)に示すアミノ酸配列に対応する、ユビキチンとの結合領域のアミノ酸配列を除く。)において、少なくとも80%の同一性を有し、かつ、ユビキチンとの結合活性を有するポリペプチド
  本発明の一態様において、このようなDNAの具体例としては、以下の(Q1)、(Q2)又は(Q3)のDNAが例示される。
(Q1)配列番号23、25、27、29、31及び33に示されるいずれかの塩基配列からなるDNA
(Q2)配列番号23、25、27、29、31及び33に示されるいずれかの塩基配列に相補的な塩基配列において、ストリンジェントな条件下でハイブリダイズし、かつ、ユビキチンとの結合活性を有するポリペプチドをコードするDNA
(Q3)配列番号23、25、27、29、31及び33に示されるいずれかの塩基配列と少なくとも80%の同一性を有し、かつ、ユビキチンとの結合活性を有するポリペプチドをコードするDNA
 前記の通り、FGループ以外(フィブロネクチン骨格及び他のループ)ではユビキチンとの結合に必ずしも必須ではないため、これらの領域の配列には、上記態様の変異があってもよい。
 但し、本発明においては、前記ストリンジェントな条件下でハイブリダイズするDNAのうち、前記式(1)に示すアミノ酸配列に対応する、ユビキチンとの結合領域のアミノ酸配列をコードする塩基配列は、常に式(1)に示すアミノ酸配列のコドンとしてハイブリダイズするものとする。
 また、当該同一性を有するDNAのうち、前記式(1)に示すアミノ酸配列に対応する、ユビキチンとの結合領域のアミノ酸配列をコードする塩基配列は、常に式(1)に示すアミノ酸配列をコードするものとする。
 上記ユビキチン結合モノボディのDNA及びアミノ酸配列を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1に記載の塩基配列及びアミノ酸配列中、枠で囲った部分の配列はFGループを表す。
  本発明において、前記DNAは、本発明のモノボディポリペプチドをコードする塩基配列からなるDNAのほか、当該塩基配列を一部に含み、その他に遺伝子発現に必要な公知の塩基配列(転写プロモーター、SD配列、Kozak配列、ターミネーター等)を含むDNAであってもよく、限定はされない。なお、本発明のモノボディポリペプチドをコードする塩基配列では、コドンの種類は限定されず、例えば、一般にフィブロネクチンに使用されているコドンを用いたものであってもよいし、大腸菌や酵母等の微生物や、植物等において一般的に使用されているコドンを用いたものであってもよく、適宜選択又は設計することができる。
 ここで、「ストリンジェントな条件」とは、低ストリンジェントな条件、中ストリンジェントな条件及び高ストリンジェントな条件のいずれでもよく、「低ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、32℃の条件である。また、「中ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、42℃の条件である。「高ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、50℃の条件である。
 これらの条件において、温度を上げるほど高い相同性を有するDNAが効率的に得られることが期待できる。ただし、ハイブリダイゼーションのストリンジェンシーに影響する要素としては温度、プローブ濃度、プローブの長さ、イオン強度、時間、塩濃度等の複数の要素が考えられ、当業者であればこれらの要素を適宜選択することで同様のストリンジェンシーを実現することが可能である。
 上記以外にハイブリダイズが可能なDNAとしては、FASTA、BLASTなどの相同性検索ソフトウェアにより、デフォルトのパラメーターを用いて計算したときに、モノボディをコードするDNAと、約80%以上の相同性(同一性)を有するDNAや、さらには85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上の相同性(同一性)を有するDNAを挙げることができる。
(2)組換えベクター
  本発明においては、適当なベクターに上記本発明のDNAを連結(挿入)することにより組換えベクターを得る。組換えベクターを得る方法は公知である(Sambrook J. et al., Molecular Cloning, A Laboratory Manual (4th edition), Cold Spring Harbor Laboratory Press (2012))。本発明のDNAを挿入するためのベクターは、宿主中で複製可能なものであれば特に限定されず、例えば、プラスミドDNA、ファージDNA、ウイルス等が挙げられる。
  プラスミドDNAとしては、大腸菌由来のプラスミド、枯草菌由来のプラスミド、酵母由来のプラスミドなどが挙げられ、ファージDNAとしてはλファージ等が挙げられる。またウイルスとしてはアデノウイルス、バキュロウイルス、レトロウイルスなどが挙げられる。
 本発明の組換えベクターには、プロモーター、本発明のDNAのほか、所望によりエンハンサーなどのシスエレメント、スプライシングシグナル、ポリA付加シグナル、リボソーム結合配列(SD配列)、選択マーカー遺伝子、レポーター遺伝子などを連結することができる。なお、選択マーカー遺伝子としては、例えばジヒドロ葉酸還元酵素遺伝子、アンピシリン耐性遺伝子、ネオマイシン耐性遺伝子等が挙げられる。レポーター遺伝子としては、緑色蛍光タンパク質(GFP)又はその変異体(EGFP、BFP、YFP等の蛍光タンパク質)、ルシフェラーゼ、アルカリフォスファターゼ、LacZ等の遺伝子が挙げられる。
(3)形質転換体及び培養
  本発明においては、上記本発明の組換えベクターを、目的遺伝子が発現し得るように宿主中に導入して得ることができる形質転換体も包含される。
  形質転換に使用する宿主としては、目的の遺伝子を発現できるものであれば特に限定されるものではない。例えば、細菌(大腸菌、枯草菌等)、酵母、動物細胞(COS細胞、CHO細胞等)、昆虫細胞又は昆虫が挙げられる。ヤギ等の哺乳動物を宿主として使用することも可能である。宿主への組換えベクターの導入方法は公知である(Sambrook J. et al., Molecular Cloning, A Laboratory Manual (4th edition), Cold Spring Harbor Laboratory Press (2012))。
 細菌を宿主とする場合は、本発明の組換えベクターが該細菌中で自律複製可能であると同時に、プロモーター、リボゾーム結合配列、本発明のDNA、転写終結配列を含めることができる。細菌としては、大腸菌などが挙げられる。プロモーターとしては、例えばlacプロモーターなどが用いられる。細菌へのベクター導入法としては、公知の各種導入方法、例えばカルシウムイオン法等が挙げられる。
 酵母を宿主とする場合は、例えばサッカロミセス・セレビシエ(Saccharomyces cerevisiae)などが用いられる。この場合、プロモーターとしては酵母中で発現できるものであれば特に限定されず、例えばgal1プロモーター等が挙げられる。酵母へのベクター導入法としては、例えばエレクトロポレーション法、スフェロプラスト法等が挙げられる。
そして、前記形質転換体を培養し、その培養物からモノボディポリペプチドを採取する。「培養物」とは、(a)培養上清、(b)培養細胞若しくは培養菌体又はその破砕物のいずれをも意味するものである。
 培養後、目的のモノボディが菌体内又は細胞内に生産される場合には、菌体又は細胞を破砕することによりモノボディを抽出する。また、目的のモノボディが菌体外又は細胞外に生産される場合には、培養液をそのまま使用するか、遠心分離等により菌体又は細胞を除去する。その後、タンパク質の単離精製に用いられる一般的な生化学的方法、例えば硫酸アンモニウム沈殿、ゲル濾過、イオン交換クロマトグラフィー、アフィニティークロマトグラフィー、疎水性クロマトグラフィー、逆相クロマトグラフィー等を単独で又は適宜組み合わせて用いることにより、目的のモノボディを単離精製することができる。
 単離精製され5nM以下の解離定数を有するモノボディは、ユビキチンに対する人工抗体であり、ユビキチンに対して高い親和性を有する。
5.検出方法及び検出用試薬
 本発明の人工抗体は、ユビキチン又はユビキチン化基質を検出するための試薬として用いることができる。
 ユビキチン又はユビキチン化基質を検出する方法は、例えば、
(a)本発明の人工抗体と被検試料とを反応させる工程、及び
(b)工程(a)で形成した抗体-被検試料複合体と、検出のための標識抗体とを反応させる工程を含む。
 反応後、標識抗体から発するシグナルを検出する。
 本発明の検出方法は、一般に抗体(免疫グロブリン)を用いるアッセイに準じて行うことができる。例えば、酵素免疫測定法(ELISA)、蛍光免疫測定法、蛍光抗体法、ウエスタンブロット法等が挙げられる。
 本発明の検出方法に供される試料は、内在性ユビキチンを含む酵母、真核培養細胞、ゼブラフィッシュやマウス組織由来のタンパク質抽出物や組換体ユビキチンを含む原核細胞由来のタンパク質抽出物や無細胞系溶液など、ユビキチンを含有する試料であれば特に限定されるものではない。
 本発明で用いることができる標識物質は、人工抗体に物理的結合又は化学的結合等により結合させることによりそれらの存在を検出可能にするものであれば特に限定されない。標識物質の具体例としては、酵素、蛍光物質、化学発光物質、ビオチン、アビジンあるいは放射性同位体等が挙げられ、より具体的には、ペルオキシダーゼ、アルカリフォスファターゼ、β-D-ガラクトシダーゼ、ビオチン、アビジン、または化学発光物質が挙げられる。
 本発明のユビキチン又はユビキチン化基質検出用試薬は、本発明の人工抗体を含むキットとして使用される。ここで用いる人工抗体は、上記した固定化抗体や標識抗体でもよい。本発明のキットには、当該キットを効率的かつ簡便に利用できるようにするために、これら抗体以外に種々の補助剤を含めてもよい。補助剤としては、例えば緩衝液、標識物質として酵素を使用した場合に酵素活性を測定するための基質、その反応停止剤などの免疫学的測定試薬のキットとして通常使用されるものが挙げられる。また、本発明のキットには使用説明書を含めることができる。
6.ユビキチン又はユビキチン化基質の製造方法
 本発明は、ユビキチン又はユビキチン化基質の製造方法を提供する。
 前記の通り、ユビキチンは標的タンパク質に共有結合することで標的タンパク質を修飾する。従って、本発明のモノボディ(人工抗体)を用いることにより、ユビキチンやポリユビキチンのみならず、標的タンパク質がユビキチン又はポリユビキチンで修飾されたユビキチン化タンパク質(ユビキチン化基質)も得ることができる。
 例えば、被検試料中でユビキチンが標的タンパク質と結合している場合、前記人工抗体を被検試料と接触させる。人工抗体はユビキチンと結合するため、当該人工抗体と被検試料との複合体にはユビキチンやユビキチン化タンパク質(ユビキチン化基質)が含まれる。従って、当該複合体からユビキチン又はユビキチン化タンパク質を採取する。
 複合体からユビキチン又はユビキチン化タンパク質を採取するには、免疫沈降、SDS-ポリアクリルアミドゲル電気泳動、ウエスタンブロッティングなど、公知の手法を単独で、又は適宜組み合わせて採用することで精製又は濃縮することができ、特に限定されるものではない。
  実施例
 以下、実施例により本発明をさらに具体的に説明する。但し、本発明の範囲はこれらの実施例により限定されるものではない。
Methods
1.TRAP提示法を用いた抗ユビキチン人工抗体のスクリーニング
(1)ビオチン化ユビキチンの調製
ヒト由来ユビキチンのC末端領域にビオチン標識用のCys残基および精製用の6xHisタグを付加したコンストラクト(pET21a-hUb-Cys-His6)を作製し、大腸菌発現系により精製した。次いで、EZ-LinkTMMaleimide-PEG11-Biotin(Thermo Fisher Scientific社)を用いて、Cys残基にビオチンタグを付加した。
具体的には、576 μMユビキチン30 μLに対して0.1 M TCEPを3 μL加え、室温で30分間静置した。(TCEP : f.c. 10 mM) HBSTでゲル濾過を行ってTCEPを除き、20% SDS-PAGEで濃度決定を行った。ユビキチンを300 μMに希釈し、300 μMユビキチン10 μLに対して2.5 mM EZ-LinkTM Maleimide-PEG11-Biotinを1.2 μL加えて室温で2時間静置した。その後、50 mM β-メルカプトエタノールを1 μL加え、4℃で1時間静置した。得られたビオチン化ユビキチンを20% SDS-PAGEによって確認した。
(2)TRAP提示法
 小分子型人工抗体モノボディFN3 mRNAライブラリ(1013相当)から試験管内でFN3タンパク質を翻訳し、ビオチン化ユビキチンをベイトとしてユビキチンと相互作用するクローンを選別した。このスクリーニングを複数回繰り返すことで、ユビキチンに高親和性で結合するクローンを濃縮した。次いで、次世代DNAシーケンサーにより、可変領域の塩基配列を決定し、7つの異なる抗ユビキチンモノボディークローンを得た。
2.モノボディとユビキチンの結合親和性測定
(1)モノボディタンパク質の大腸菌発現・精製
 N末端からモノボディ、可溶化タグのNusタグ、精製用のヘキサヒスチジンタグ(His6)を融合したコンストラクトを作製した。次いで、大腸菌でリコンビナントタンパク質を発現させ、His6タグを用いて精製した。具体的には、以下の通りである。
大腸菌発現用プラスミドDNAのクローニング
・インサートの作製
各標的タンパク質に対して選択されたモノボディの第1ループと第3ループの配列からPCRプライマーを設計し、koffセレクションで得られたDNAプールから目的のクローンのみをPCR法により増幅した。1×PfSH buffer, 0.2 mM dNTPs, 0.375 μM each Primer, 2.5 nM DNA pool, 2% DMSO 1/100 (v/v), 1/60 PfSH (1406)のPCR反応溶液を標的タンパク質ごとに80 μL調製し、94℃ (1分) - [94℃ (20秒) - 65℃ (20秒) - 72℃ (45秒) ]×15サイクルのPCRを行った。PCR反応後の液をフェノール/クロロホルムで処理後、iProOH沈殿を行った。得られた沈殿物を8 μLの10 mM Tris-AcOH pH7.8に溶解後、8 % Native PAGE(1:37.5)で解析し、濃度を決定した。
・ベクターの切断
 1×Cut Smart buffer, 1/100 BspQI, 1/100 CIPの溶液45μL中に100 ng/μLのpQCNus2-FN3B1del溶液を5 μL入れて混合し、37℃の水浴で30分間反応を行った。チューブを交換して、再び37℃の水浴で30分間反応を行った。制限酵素処理後の溶液をフェノール/クロロホルムで処理後、iProOH沈殿を行った。得られた沈殿物を5 μLの10 mM Tris-AcOH pH7.8に溶解後、1% Agalose電気泳動で解析し、濃度決定を行った。
・クローニング
MuPaC法45により各インサートを制限酵素処理済みのpQCNus2-FN3B1delに組み込んだ。MuPaC後の溶液2 μLを20 μLのケミカルコンピテントセル (High 108 HIT-JM109 J80 (Scitrove) )に加え、氷上で10分間静置した。42 ℃の水浴で1分間ヒートショックをした後、再び氷上で10分間静置した。400 μLのLBで希釈を行い、37℃, 1時間振盪培養した。さらにLBで10倍希釈した培養液を、100 μg/mLアンピシリンを含むLBプレートに散布し、37℃の恒温槽で一晩静置した。形成されたコロニーを突き、100 μg/mLアンピシリンを含むLB 2 mLに加え、37℃で一晩振盪培養した。増殖した菌体を回収し、FastGeneTM Plasmid Mini Kit (日本ジェネティクス)を用いてプラスミドDNAを抽出した。得られたプラスミドDNAはサンガー法により塩基配列を確認した。
大腸菌を用いたモノボディの発現
BL21(DE3)LysSコンピテントセル20 μLに50 ng/μL プラスミドDNA (pQCNus2-FN3)を0.5 μL加え、氷上で10分間静置した。42℃の水浴で1分間ヒートショックをした後、再び氷上で10分間静置した。400 μLのLBで希釈を行い、37℃, 1時間振盪培養した。その後、培養液を100 μg/mLアンピシリン, 20 μg/mL クロラムフェニコール, 2%グルコースを含むLBプレートに散布し、37℃の恒温槽で一晩静置した。形成されたコロニーを複数個LBで懸濁し、100 μg/mLアンピシリン, 20 μg/mL クロラムフェニコール, 1×ZYPを含む300 mLのLBに加えた。この培養液を25℃で24時間振盪した後、4℃, 7000 rpmで3分間遠心して菌体を回収した。この菌体を120 μg/mL PMSFを1×IMAC B1K (-グリセロール) 30 mLで懸濁し、15 mLずつ分注して-80℃で保存した。
モノボディの精製
 菌体の懸濁液15 mLを氷水上で溶かした。溶けた菌体を超音波に1分30秒間当て、破砕した。破砕液に1.6 mLのグリセロールを加え、転倒混合した後、4℃, 13000 rpmで10分間遠心した。得られた上清をMinisart(登録商標) GF Syringe Filters (sartorius)とMinisart(登録商標) high flow Syringe Filters (sartorius)で濾過した。濾過液をNGCTM Chromatography Systems (BIO-LAD)を用いて精製した。この時、カラムはBio-ScaleTM Mini ProfinityTM IMAC Cartridges, 1 mL(BIO-LAD)を用い、サンプルアプライ後、1×IMAC B1K (+ATP) で20 CV、1×IMAC B1で10 CVの洗浄を行い、1×IMAC B3で溶出した。280 nmの吸光度の高かった溶出画分を混合し、1 mM DTTとなるように1 M DTTを加えた。その後、UV-visにより濃度決定を行った。
(2)バイオレイヤー干渉法(Bio-Layer Interferometry:BLI)による解離定数決定
 ビオチン化ユビキチン(5 nM)をストレプトアビジンセンサーに固定化し、抗ユビキチンモノボディ(0.625~10 nMの2倍希釈系列)をアナライトとして結合解離をモニターした。専用のソフトウェアForteBio Data Analysis ver 10.0を用いてカーブフィッティングし、算出した一次反応近似曲線から解離定数(Kd)を算出した。
3.細胞抽出液を用いたユビキチン化基質のウェスタンブロット解析
(1)GSTモノボディの精製とビオチン標識
 N末端からグルタチオン-S-トランスフェラーゼタグ(GST)、TEVプロテアーゼ認識配列、GGGSリンカー、モノボディを融合したコンストラクト(pGST-TEV-GGGS-monobody)を作製し、大腸菌株BL21(DE3)に形質転換した。
 ビオチンおよびTAMRA標識用のモノボディ(ウエスタンブロット解析(図5)および免疫染色(図8)に使用)のDNA配列及びアミノ酸配列を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 上記配列中、枠で囲った部分の配列はFCループ、下線部の配列はC末端安定化配列を表す。
 次いで、100 uMアンピシリンを含むLB培地で37℃で培養し、0.2 mM IPTGでGSTタグ融合モノボディを発現誘導し、GSTタグを用いて精製した。GSTタグ融合モノボディをTEVプロテアーゼ(Promega社、ProtTEVPlus)で消化した。プロテアーゼ消化により生じたモノボディのN末端配列GGGSを利用し、ビオチン標識用ペプチド(Biotin-PEG12-VLLPRTGG、Eurofin社で合成)をソルターゼ反応によりペプチドライゲーションした(20 uM モノボディ、1 mM ビオチン標識用ペプチド、8.3 uM Sortase 5Y、50 mM Tris-HCl, pH 7.5、150 mM NaCl、5 mM CaCl2;37℃、1時間)。次いで、脱塩カラム(Cytiva社、Sephadex G50)を用いて、未反応ペプチドを除去すると同時にPBSにバッファーを置換した。なお、コントロールとして野生型のモノボディを用いた。
(2)細胞抽出液の調製
 ヒト大腸がん由来HCT116細胞(ATCC、CCL-247)は、10% 牛胎児血清(Biowest社)、1 mMピルビン酸ナトリウム(Thermo Fisher Scientific社)、非必須アミノ酸(Thermo Fisher Scientific社)を添加したDulbecco's Modified Eagle Medium(DMEM)培地(SIGMA社)を用いて、5% CO2を含むインキュベーターで37℃で培養した。1 uM Ubiquitin E1 阻害剤TAK-243(Active Biochem社)および1 uMプロテアソーム阻害剤bortezomib (LC Laboratories社)を含むDMEM培地を用いて3 時間培養した。次いで、細胞をPBSで洗浄後、Lysisバッファー(50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1%SDS)で溶解し、遠心分離(15,000 rpm, 20 min)により可溶性画分を得た。BCAアッセイキット(Thermo Fisher Scientific社)によりタンパク質濃度を決定した。1サンプル当たり 5 ugとなるようにLDSサンプルバッファー(還元剤として2%のβメルカプトエタノールを含む)を加え、70℃で10分処理し、ウェスタンブロット解析に供した。
(3)ウェスタンブロット解析
 上記サンプルを4-12% NuPAGE Bis-Trisゲル(Thermo Fisher Scientific社)を用いて、MESバッファー(Thermo Fisher Scientific社)で電気泳動した。分子量マーカーはSee Blue2(Thermo Fisher Scientific社)を用いた。電気泳動後、XCell II Blot Module(Thermo Fisher Scientific社)を用いて、タンパク質をPVDF膜(Millipore社)に転写した。転写後のPVDF膜をポンソ―Sで染色し、各レーンのタンパク質量が揃っていることを確認した。次いで、ビオチン化モノボディ用のブロットについては3% BSAを含むPBSTで、IgG型抗ユビキチン抗体用のブロットについては5%脱脂乳入りのTBSTで30分間ブロッキングした。一次抗体はビオチン標識抗ユビキチンモノボディ(上記 (2))、ユビキチン抗体P4D1(SantaCruz社、sc-8017)、ポリユビキチンモノクローナル抗体FK2(日本バイオテスト社、0918-2)を用いて室温で2時間インキュベートした。二次抗体として、Streptavidin-HRP conjugate (Invitrogen, SA10001)または Mouse IgG HRP Conjugate (Promega, W402B)を用いた。TBSTで数回洗浄した後、ECL Prime 検出試薬(Cytiva社)で化学発光させ、FUSION FX7イメージングシステム(Vilber-Lourmat 社)で撮影した。
4.細胞抽出液を用いたユビキチン化基質の免疫沈降
(1)Haloタグ融合モノボディの精製
 N末端からヘキサヒスチジンタグ(His6)、Haloタグ、TEVプロテアーゼ認識配列、GGGSリンカー、モノボディを融合したコンストラクト(pHalo-TEV-GGGS-monobody)を作製し、大腸菌株BL21(DE3)に形質転換した。次いで、100 uMアンピシリンを含むLB培地で37℃で培養し、0.2 mM IPTGでHaloタグ融合モノボディを発現誘導し、His6タグを用いて精製した。なお、抗ユビキチンモノボディはクローンCを選択し、コントロールとして野生型のモノボディを用いた。
(2)細胞抽出液の調製
 HCT116細胞を3(2)と同条件で培養した。
 セミコンフレントのHCT116細胞をPBSで洗浄後、各種プロテアーゼ阻害剤(10 μM MG132、10 μM PR619、10 mM iodoacetamide、1 x complete protease inhibitor cocktail (Roche, EDTA-free))を含むTNEバッファー(50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% NP-40, 0.5 mM EDTA)で溶解し、遠心分離(15,000 rpm, 20 min)により可溶性画分を得た。次いで、BCAアッセイキット(Thermo Fisher Scientific社)によりタンパク質濃度を決定した。
(3)免疫沈降
 Haloタグ融合モノボディは1サンプル当たり0.2 nmolをMagne HaloTag Beads(Promega社)に固定化した。IgGは、コントロールIgG(富士フィルム和光純薬社、正常マウスIgG、140-09511)、抗ポリユビキチンモノクローナル抗体FK2(日本バイオテスト社、0918-2)、抗ユビキチン抗体P4D1(SantaCruz社、sc-8017)について各0.2 nmolをDynabeads Protein G(Thermo Fisher Scientific社)に固定化した。次いで、HCT116細胞抽出液200 ul(100 ug)を各サンプルに加え、4 ℃で一晩転倒混和した。TNEバッファーで3回洗浄後、ビーズに電気泳動用の1xLDSサンプルバッファー(還元剤として2%のβメルカプトエタノールを含む)を加え、70℃で10分加熱することにより、免疫沈降物を溶出した。
(4)ウェスタンブロット解析
 3(3)項に記載のウエスタンブロット解析と同様に操作した。抗体はHRP標識抗ユビキチン抗体P4D1-HRP(SantaCruz社、sc-8017 HRP)を用いた。
5.質量分析を用いたユビキチン鎖の絶対定量
(1)ゲル内消化
 上記の免疫沈降物を4-12% NuPAGE Bis-Trisゲル(Thermo Fisher Scientific社)を用いて、MESバッファー(Thermo Fisher Scientific社)で約2 cm電気泳動し、CBB(Bio-Rad社、Bio-Safe Commassie)で染色した。ゲルをmilliQ水で洗浄後、分子量マーカーを指標に62 kDa以上を切り出し、1 mm角にゲルを切断した。ゲル片はエペンドルフチューブに回収し、50 mM 重炭酸アンモニウム、30%アセトニトリル(ACN)で2時間、50 mM 重炭酸アンモニウム、50% ACNで1時間洗浄し、100% ACNで15分間脱水した。次いで、トリプシン溶液(20 ng/ml Trypsin Gold、Promega社、50 mM重炭酸アンモニウム、5%ACN)を加え、37℃で一晩消化した。消化したペプチドを0.1%トリフルオロ酢酸、70%アセトニトリルで2回抽出した。
(2)ユビキチン鎖の絶対定量
上記の抽出したペプチドに、内部標準となる安定同位体標識ユビキチン鎖由来ペプチド混合物(25 fmol/測定)(F. Ohtake, H. Tsuchiya, K. Tanaka, Y. Saeki, Methods to measure ubiquitin chain length and linkage. Methods Enzymol 618, 105-133 (2019).)を混合し、真空遠心分離で濃縮し、0.05%の過酸化水素を含む0.1% TFAを20 ul加え、4℃で一晩インキュベートした。なお、過酸化水素はペプチド中のメチオニン残基を完全酸化させるために加えている。
 次いで、液体クロマトグラフィー・タンデム質量分析装置(Easy nLC 1200・Orbitrap Fusion LUMOS、Thermo Fisher Scientific社)により解析した。C18分析カラム(IonOpticks社、Aurora Series Emitter Column、AUR2-25075C18A)を用いて、50分間のグラジエント(溶媒A, 0.1% ギ酸; 溶媒B, 80% ACN/0.1% ギ酸)で分離した。ユビキチン鎖由来ペプチドのMS/MSスペクトルをターゲット取得し、PinPointソフトウェア1.3(Thermo Fisher Scientific)を用いて、選択したフラグメントイオンの積分曲線下面積(AUC)に基づきプチドの存在量を算出した。なお、標的としたペプチド配列は図6Aに示した。
6.免疫蛍光染色
(1)モノボディの蛍光標識
 3項で作製したGSTタグ融合モノボディをTEVプロテアーゼ(Promega社、ProtTEVPlus)で消化した。プロテアーゼ消化により生じたモノボディのN末端配列GGGSを利用し、TAMRA標識ペプチド(TAMRA-PEG12-VLLPRTGG、Eurofin社で合成)をソルターゼ反応によりペプチドライゲーションした(10 uM モノボディ, 500 uM TAMRA標識ペプチド, 8.3 uM Sortase 5Y, 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 5 mM CaCl2;37℃、1時間)。次いで、脱塩カラム(Cytiva社、Sephadex G50)を用いて、未反応ペプチドを除去すると同時にTBSTにバッファーを置換した。
(2)免疫染色
 EGFP融合ユビキチンを安定発現するHCT116細胞(S. Yasuda et al., Stress- and ubiquitylation-dependent phase separation of the proteasome. Nature 578, 296-300 (2020).)を35mmガラスボトムdish(MatTek社)で培養し、ピューロマイシン処理(5 ug/ml、2時間)によりユビキチン陽性凝集体の形成を誘導した。4%パラホルムアルデヒド(Thermo Fisher Scientific社)を含むPBSで15分間固定した後,-20℃でMeOH(Wako)を用いて5分間処理した。次いで、1% FBS を含むPBS中でブロッキングした後、TAMRA標識抗ユビキチンモノボディ(0.1 ug/mlまたは1 ug/ml)または抗ポリユビキチンモノクローナル抗体FK2(日本バイオテスト社、0918-2、10 ug/ml)で1時間染色した。FK2抗体の場合は2次抗体としてAlexa568標識抗マウスIgG抗体(Thermo Fisher Scientific社、A-11031)を用い1時間染色した。次いで、DAPI(Thermo Fisher Scientific社)を含むPBSで15分間染色し、抗褪色試薬(Thermo Fisher Scientific社、SlowFade Gold)を添加しカバーストリップガラスで封入した。
(3)蛍光顕微鏡解析
 CSU-X1スピニングディスク蛍光スキャナー(横河電機)、PlanApo100 × OTIRF 1.45NA(オリンパス社)、ORCA-Flash4.0 V3 Digital CMOSカメラ(浜松ホトニクス社)を搭載した倒立型蛍光顕微鏡IX73(オリンパス社)で画像を取得した。MetaMorphソフトウェア(Molecular Devices社)を用いて、Z方向に0.2 umずつ16枚の蛍光画像(DAPI、EGFP、TAMRA/Alexa568チャネル)を取得し、重ね合わせてMaximumプロジェクション画像を得た。
Results and Discussion
1.抗ユビキチンモノボディの取得
 ユビキチン単量体と高親和性で結合する人工抗体モノボディの取得を目指し、人工抗体モノボディ(FN3)ランダムライブラリを用いてTRAP提示法によるスクリーニングを実施した(T. Kondo et al., Antibody-like proteins that capture and neutralize SARS-CoV-2. Sci Adv 6 (2020).)。本スクリーニングは合計5サイクル繰り返し、濃縮されたモノボディmRNAクローンを次世代DNAシーケンサーで解析することで、計7つの抗ユビキチンモノボディクローンを得た(図3)。
 次いで、大腸菌発現系により抗ユビキチンモノボディのリコンビナントタンパク質を調製し、バイオレイヤー干渉法(Bio-Layer Interferometry:BLI)によりユビキチンとの相互作用を解析したところ、クローンD以外の6つのクローンにおいて解離定数(Kd)が0.88 nM~2.8 nMと決定され、いずれのクローンも非常に強く結合することが明らかとなった(図4)。
 スクリーニングに使用したFN3モノボディライブラリは2つのループのアミノ酸配列をランダム化したものであり、1013種類(10兆種類)の異なるクローンから構成されるライブラリである。5ラウンド目のNGD解析では、同じクローンの出現率が0.7~2.2%となっており、これは同じ配列をもつクローンが複数回同定されていることを意味している。よって、ライブラリからユビキチンに親和性をもつモノボディは漏れなく取得できている可能性が高い(図3B右)。
 既存のIgG型抗ユビキチンマウスモノクローナル抗体としてP4D1とFK2がウェスタンブロット解析や免疫沈降実験に汎用されるが、ユビキチンのどの配列をエピトープとして認識しているか、また、ユビキチンとの結合親和性は評価されていない。取得した抗ユビキチンモノボディはKdが1nM前後であり、一般的なIgG型抗体と同定度またはそれ以上に親和性が高いことは特筆に値する。
2.抗ユビキチンモノボディを用いたウェスタンブロット解析
 細胞内ではユビキチンは単量体、ユビキチン化酵素(E1、E2)にチオエステル結合した状態、モノユビキチン化基質、ポリユビキチン化基質のいずれかの状態で存在する(図1)。モノユビキチン化基質が細胞内にどの程度存在するのかは不明であるが、ヒストンH2Aが高度にモノユビキチン化されていることが知られている。そのため、還元剤で処理した細胞抽出液のウェスタンブロット解析では、通常、ポリユビキチン化基質のスメア、ユビキチン単量体、およびモノユビキチン化ヒストンH2Aが検出される。
 また、プロテアソームを阻害するとポリユビキチン化タンパク質が分解されず蓄積すること、ユビキチン化ヒストンが脱ユビキチン化されて減少することが知られており、一方で、ユビキチン活性化酵素E1を阻害すると、脱ユビキチン化反応が優勢となり、ポリユビキチン化基質が減少すること、ユビキチン単量体が増加することが知られている。
 そこで、通常培養条件、プロテアソーム阻害剤処理、またはE1阻害剤処理をしたヒト大腸がん由来HCT-116細胞の抽出液を用いて、抗ユビキチンモノボディがウェスタンブロット解析に適用可能か、既存のIgG型抗体P4D1、FK2と共に比較検討した(図5)。
 その結果、P4D1はポリユビキチン化基質のスメアおよびユビキチン単量体が検出され、プロテアソーム阻害剤およびE1阻害剤による変動も確認された。FK2ではポリユビキチン化基質のみが検出された。一方、抗ユビキチンモノボディはユビキチン単量体は検出されなかったが、ポリユビキチン化基質のスメア、モノユビキチン化ヒストンに由来するバンドが高感度に検出された(図5B、Ub monobody)。
 抗ユビキチンモノボディでユビキチン単量体が検出されない理由としては、抗ユビキチンモノボディが認識するユビキチンの疎水性パッチがPVDF膜との相互作用に用いられている可能性があげられる。結論として、ウェスタンブロット解析によりユビキチン単量体とポリユビキチン化基質を検出したい場合は既存のIgG型抗ユビキチン抗体P4D1に優位性があるものの、モノユビキチン化ヒストンとポリユビキチン化基質の動態を検出したい場合は抗ユビキチンモノボディに優位性がある。
3.抗ユビキチンモノボディによる免疫沈降
 Haloタグ融合抗ユビキチンモノボディおよびIgG型抗ユビキチンモノクローナル抗体を用いて、細胞抽出液中のユビキチンの免疫沈降を実施した(図6C)。免疫沈降物のウェスタンブロット解析の結果、FK2、P4D1は共にポリユビキチン化基質を免疫沈降することができたが、抗ユビキチンモノボディの免疫沈降量が最も多かった。さらに、ユビキチン単量体およびモノユビキチン化ヒストンについては抗ユビキチンモノボディが唯一免疫沈降可能であった。
 次に、免疫沈降物に含まれる各ポリユビキチン鎖の組成を質量分析計により絶対定量した(図7)。本方法は、8種類のポリユビキチン鎖をトリプシン消化することで生じる特徴的なペプチドを高分解能質量分析計を用いて解析するものであり、内部標準として安定同位体標識ペプチドをスパイクすることで絶対定量するものである(F. Ohtake, H. Tsuchiya, K. Tanaka, Y. Saeki, Methods to measure ubiquitin chain length and linkage. Methods Enzymol 618, 105-133 (2019).)。
 その結果、抗ユビキチンモノボディの免疫沈降物に含まれる総ユビキチン量はFK2、P4D1に比し多いことが確認された(図7A)。
 次に、含まれる8種類のユビキチン鎖の組成を解析したところ、細胞抽出液中の割合と、FK2および抗ユビキチンモノボディ免疫沈降物のユビキチン鎖の割合がほぼ一致した(図7B)。つまり、FK2と抗ユビキチンモノボディは主要なユビキチン鎖とバイアス無く結合できること、免疫沈降用のプローブとして優れていることがわかった。
 細胞からのポリユビキチン化基質のプルダウンにはIgG型抗ユビキチン抗体の他に人工タンパク質であるTUBEも汎用されているが、TUBEは原理上モノユビキチン化基質とは弱くしか相互作用できない(R. Hjerpe et al., Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO reports 10, 1250-1258 (2009).)。そのため、細胞抽出液からモノユビキチン化基質を含む全てのユビキチン化基質をプルダウンするには抗ユビキチンモノボディに優位性があり、今後モノユビキチン化基質のプロテオーム解析などへの利用が想定される。
4.抗ユビキチンモノボディによる免疫蛍光染色
 抗ユビキチン抗体の主な用途として、免疫沈降以外にも免疫染色による空間的なユビキチン検出が挙げられる。しかし、固定法や用いる抗体によってユビキチンおよびユビキチン化基質への反応性が異なるため、ユビキチンの正確な細胞内局在は明確ではない。
 そこで、EGFP融合ユビキチンを安定発現する培養細胞を用いて、IgG型抗ユビキチン抗体FK2および抗ユビキチンモノボディの免疫染色を実施した(図8)。なお、EGFP融合ユビキチンは細胞質および核質に一様に観察されるため、ピューロマイシン処理によりユビキチン陽性凝集体の形成を誘導した条件で行った。その結果、抗ユビキチンモノボディはEGFPユビキチンの蛍光シグナルと染色像がほぼ一致した(図8C)。一方、FK2では細胞質のユビキチン陽性凝集体は検出されるものの、核内の蛍光シグナルが検出されなかった(図8D)。
 EGFP融合ユビキチンはEGFPタグのサイズが大きいこともあり、細胞内のユビキチン化基質の局在を正確に反映しているか不明であるが、少なくとも本解析においては、抗ユビキチンモノボディはIgG型抗ユビキチン抗体FK2に較べ、細胞内のユビキチンおよびユビキチン化基質の局在を正確に検出できていることが示唆された。これは、抗ユビキチンモノボディのサイズが約10 kDa、直径2~3 nmと小さいため、細胞構造内への浸潤が容易であるためと考えられる。
Conclusion
 最後に、各ユビキチン抗体およびプローブを用いた使用用途について表としてまとめた(図9)。
 抗モノユビキチンモノボディはウェスタンブロット解析、免疫沈降、免疫染色の全てに用いることができる優れたプローブである。特に、免疫沈降実験では、細胞内在性のユビキチン単量体およびモノユビキチン化基質を効率良く捕捉できる唯一のプローブであり、また、蛍光免疫染色のプローブとして秀でている。また、抗ユビキチンモノボディは遺伝子配列が決定されているため、大腸菌発現系で大量にタンパク質を得ることが可能であり、試験管内で蛍光標識などの化学修飾も容易である。モノボディはサイズが小さいため、ヒト組織切片の組織染色も十分可能であることが期待される。さらに、細胞内での発現によるユビキチン修飾の機能阻害なども興味深い。よって、本発明により開発された抗ユビキチンモノボディは今後のユビキチン研究に広く適用できる優れた化学ツールであると言える。
大腸菌発現用プラスミドDNAのクローニング
・インサートの作製
pQCSoHis-FN3の塩基配列からPCRプライマーを設計し、FN3遺伝子をPCR法により増幅した。1×KOD one muster mix, 0.5 μM each primer, 2.5 μg/μL プラスミドDNAのPCR反応溶液を調製し、[95℃ (10秒) - 55℃ (5秒) - 68℃ (5秒) ]×35サイクルのPCRを行った。PCR反応後の液を1% Agaroseゲルを用いた電気泳動で分離し、FastGene Gel/PCR Extraction Kit (日本ジェネティクス) でAgaroseゲルから抽出した。
・ベクターの切断
2 μgのプラスミドDNA pGEX6p1を1×K buffer(TAKARA), BamHI, XhoIと混合した。混合液を37℃の恒温槽で3時間静置し、プラスミドDNAを切断した。切断したプラスミドDNAを1% Agaroseゲルを用いた電気泳動で分離し、FastGene Gel/PCR Extraction Kit (日本ジェネティクス) でAgaroseゲルから抽出した。
・サブクローニング
PCRにより増幅したインサート、BamHIとXhoIで制限酵素処理済みのプラスミドDNA pGEX6p1、1×Gibson assembly muster mix(NEB)を混合し、2 μL の反応液を調製した。反応液を50℃で1時間反応させた後、20 μLのケミカルコンピテントセル (DH5α)を加え、氷上で10分間静置した。42 ℃の水浴で45秒間ヒートショックをした後、再び氷上で10分間静置した。ヒートショック法により形質転換した大腸菌を、100 μg/mLアンピシリンを含むLBプレートに散布し、37℃の恒温槽で一晩静置した。形成されたコロニーを突き、100 μg/mLアンピシリンを含むLB培地 5 mLに加え、37℃で一晩振盪培養した。増殖した菌体を回収し、FastGeneTMPlasmid Mini Kit (日本ジェネティクス)を用いてプラスミドDNAを抽出した。得られたプラスミドDNA (pGEX6p1 GST-FN3) はサンガー法により塩基配列を確認した。
大腸菌を用いたモノボディの発現
BL21 Rosetta (DE3) コンピテントセル20 μLに100 ng/μL プラスミドDNA (pGEX6p1 GST-FN3) を0.5 μL加え、エレクトロポレーション法でプラスミドDNAを導入した。プラスミドDNAを導入した大腸菌を100 μg/mLアンピシリンを含むLBプレートに散布し、37℃の恒温槽で一晩静置した。形成されたコロニーを複数個LBで懸濁し、100 μg/mLアンピシリンを含む2.5 LのLBに加え、optical density 600 nmが0.8になるまで37℃で震盪培養した。この培養液に終濃度0.1 mMのisopropyl thiogalactosideを加え、15℃で一晩振盪した後、4℃, 7000 gで10分間遠心して菌体を回収した。
モノボディ-ユビキチン複合体の精製
 沈殿として回収した菌体に80 mLのLysis buffer (50 mM Tris-HCl pH8.0, 150 mM NaCl, 1 mM DTT, 0.5% Triton-X100)を加えて氷水上で懸濁した。溶けた菌体に氷水上で超音波を3分間当て、3回繰り返すことで破砕した。破砕液を、4℃, 17000 rpmで60分間遠心した。得られた上清をGlutathione Sepharose 4B Fast Flow (GE Healthcare)で精製した。精製タンパク質の濃度を微量吸光光度計Nanodrop2000(Thermo)で測定した。精製タンパク質にユビキチンとHRV3Cを加え、4℃で一晩透析した。透析したサンプルを陰イオン交換カラムResource Qに通し、通り抜け画分を遠心式限外濾過フィルター Amicon Ultra-15 10K(Merck)で濃縮した。濃縮サンプルをゲルろ過カラム Superdex 75 Hiloadに通し、複合体の画分をAmicon Ultra-15 10K(Merck)で10 g/Lまで濃縮した。濃縮した複合体タンパク質の溶液を結晶化スクリーニング 10 kit (960条件)の結晶化溶液に分注し、20℃で静置した。1週間で0.2 M Potassium sodium tartrate tetrahydrate, 20% w/v Polyethylene glycol 3,350の組成の結晶化溶液から結晶が得られた。得られた結晶を、30%エチレングリコールを含むクライオプロテクタント溶液に浸し、液体窒素で凍結した。凍結した結晶はSPring-8 BL45XUで回折を測定した。回折データはXDSで処理し、CCP4のMolrepでユビキチンとモノボディを分子置換、refmac5とPhenix.refineで精密化し、最終構造を決定した。
 結果を図10、図11に示す。
 図10、図11より、Monobodyの2つのループが、ユビキチンのI44を中心とする疎水性パッチとC末端領域を認識していることが示された。また、ユビキチンのloopや複数のβストランドにまたがる残基をMonobodyが認識しており、Monobodyはユビキチンの立体構造を認識していることが示された。
ポリユビキチン化の選択的阻害
(1)目的
  図1に示すように、ユビキチン化反応はユビキチン活性化酵素E1、ユビキチン転移酵素E2、ユビキチンリガーゼE3の酵素カスケードにより起こることが明らかにされている。この反応は、ユビキチンのC末端カルボキシル基と基質タンパク質中のリシン残基のε-アミノ基、あるいは主鎖アミノ基でペプチド結合の形成が行われる。ユビキチン化反応がユビキチン上で繰り返し行われることによって、多数のユビキチンが結合したポリユビキチン鎖が形成される。この反応をポリユビキチン化と称する。
 ユビキチンのアミノ酸配列にはN末端メチオニン残基と7箇所のリシン残基が含まれるため、ポリユビキチン化が行われる際には、様々な様式でポリマーが形成される(図1)。様式として、これまでに様々な長さの均一鎖や分岐鎖、さらには混合鎖などが発見されている。ユビキチンはその複雑な鎖を使い分けることにより、プロテアソーム分解だけでなく、DNA修復、シグナル伝達、オートファジーなど生体内で様々な重要プロセスに関与することが知られている。しかし、これらのユビキチン鎖のもつ生物学的機能の全容は未だに解明されていない。また、ユビキチンシステムはこれまでに多くの疾患と密接に関係していることが指摘されている。そのため、多様なユビキチン鎖の機能を明らかにすることやそれらの機能を制御することが、今後医療を発展させていく上で非常に重要な課題になると考えられる。
 これまでに、ユビキチン鎖の機能やポリユビキチン化反応を阻害する方法として、ユビキチン鎖に特異的なIgG抗体やペプチド、小分子などの開発が進められてきたが、結合親和性や結合特異性、生産容易性などにおいて問題があった。
 そこで本実施例では、モノユビキチンに対して人工抗体を結合させることにより、特定のポリユビキチン鎖の形成を阻害する技術の開発を試みている。
(2)ポリユビキチン化阻害アッセイ
K48鎖の阻害確認
 50 mM Tris-HCl, 7.5 mM NaCl, 2 mM MgCl2, 2mM ATP, 20 μM ユビキチン, 2 μM E2 (E2-25K), 0.1 μM E1, 24 μM Monobodyを調製し、37℃の水浴で1時間静置した。反応後の溶液5 μLに対して2×SDS Loading bufferを5 μL加え、9 μL分を12% Bis-Tris gelでMES bufferを泳動バッファーとしてSDS-PAGEを行った。  
K63鎖の阻害確認
50 mM Tris-HCl, 7.5 mM NaCl, 2 mM MgCl2, 2mM ATP, 20 μM ユビキチン, 2 μM E2 (Ubc13), 2 μM E2 (MMS2), 0.1 μM E1, 24 μM Monobodyを調製し、37℃の水浴で1時間静置した。反応後の溶液5 μLに対して2×SDS Loading bufferを5 μL加え、9 μL分を12% Bis-Tris gelでMES bufferを泳動バッファーとしてSDS-PAGEを行った。
(3)結果
 本実施例では、in vitroでの合成系が確立されているK48鎖とK63鎖を使用して、各Monobodyがポリユビキチン化反応を阻害するかどうかを検証した。
 その結果、結合能が確認された全ての人工抗体がK48鎖とK63鎖共に形成を阻害した(図12)。また、ユビキチンを認識しない野生型のMonobody(FN3)を添加した場合にはポリユビキチンのバンドが見られることから、各Monobodyによるユビキチンへの結合がポリユビキチン化阻害を可能にしていることが分かった。
 配列番号4~22:合成ペプチド
 配列番号23,25,27,29,31,33,35:合成DNA
 配列番号24,26,28,30,32,34,36:合成ポリペプチド

Claims (19)

  1.  フィブロネクチンIII型ポリペプチドを含む、ユビキチンに対する人工抗体であって、以下の(A)、(B)又は(C)のポリペプチドを含む、前記人工抗体。
    (A)ユビキチンとの結合領域を含むFGループを含むポリペプチドであって、当該結合領域のアミノ酸配列が、次式(1):
    -Ar-Z-Ar-X-Ar- (1)
    (式中、Arは芳香族アミノ酸残基を表し、Zは単結合、又はプロリン及びアルギニン以外のアミノ酸残基を表し、Xは任意のアミノ酸残基を表す。)
    で示されるアミノ酸配列を含むポリペプチド
    (B)前記(A)のポリペプチドのアミノ酸配列(但し、前記式(1)に示すアミノ酸配列を除く)において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、ユビキチンとの結合活性を有するポリペプチド
    (C)前記(A)のポリペプチドのアミノ酸配列(但し、前記式(1)に示すアミノ酸配列を除く)において、少なくとも80%の同一性を有し、かつ、ユビキチンとの結合活性を有するポリペプチド
  2.  式(1)で示されるアミノ酸配列が、FWGW(配列番号4)、YVYGW(配列番号5)、YWGW(配列番号6)、YWWYY(配列番号7)又はYWMW(配列番号8)である、請求項1に記載の人工抗体。
  3.  FGループのアミノ酸配列が、YYGNAFWGWP(配列番号16)、GHTGGSYVYGWY(配列番号17)、WYAYSYWGWP(配列番号18)、EYSYMYWGWP(配列番号20)、WEISYWWYYQ(配列番号21)又はYYSGYYWMWY(配列番号22)である、請求項2に記載の人工抗体。
  4.   以下の(P1)、(P2)又は(P3)のポリペプチドを含む、請求項1に記載の人工抗体。
    (P1)配列番号24、26、28、30、32及び34に示されるいずれかのアミノ酸配列からなるポリペプチド
    (P2)配列番号24、26、28、30、32及び34に示されるいずれかのアミノ酸配列(但し、前記式(1)に示すアミノ酸配列に対応する、ユビキチンとの結合領域のアミノ酸配列を除く。)において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、ユビキチンとの結合活性を有するポリペプチド
    (P3)配列番号24、26、28、30、32及び34に示されるいずれかのアミノ酸配列(但し、前記式(1)に示すアミノ酸配列に対応する、ユビキチンとの結合領域のアミノ酸配列を除く。)において、少なくとも80%の同一性を有し、かつ、ユビキチンとの結合活性を有するポリペプチド
  5.  ユビキチンに対して5nM以下の解離定数を有する、請求項1に記載の人工抗体。
  6.  ユビキチンがポリユビキチンである、請求項1に記載の人工抗体。
  7.  以下の(A)、(B)又は(C)のポリペプチドをコードするDNA。
    (A)ユビキチンとの結合領域を含むFGループを含むフィブロネクチンIII型ポリペプチドであって、当該結合領域のアミノ酸配列が、次式(1):
    -Ar-Z-Ar-X-Ar- (1)
    (式中、Arは芳香族アミノ酸残基を表し、Zは単結合、又はプロリン及びアルギニン以外の任意のアミノ酸残基を表し、Xは任意のアミノ酸残基を表す。)
    で示されるアミノ酸配列を含むポリペプチド
    (B)前記(A)のポリペプチドのアミノ酸配列(但し、前記式(1)に示すアミノ酸配列を除く)において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、ユビキチンとの結合活性を有するポリペプチド
    (C)前記(A)のポリペプチドのアミノ酸配列(但し、前記式(1)に示すアミノ酸配列を除く)において、少なくとも80%の同一性を有し、かつ、ユビキチンとの結合活性を有するポリペプチド
  8.  式(1)で示されるアミノ酸配列が、FWGW(配列番号4)、YVYGW(配列番号5)、YWGW(配列番号6)、YWWYY(配列番号7)又はYWMW(配列番号8)である、請求項7に記載のDNA。
  9.  FGループのアミノ酸配列が、YYGNAFWGWP(配列番号16)、GHTGGSYVYGWY(配列番号17)、WYAYSYWGWP(配列番号18)、EYSYMYWGWP(配列番号20)、WEISYWWYYQ(配列番号21)又はYYSGYYWMWY(配列番号22)である、請求項8に記載のDNA。
  10.   以下の(P1)、(P2)又は(P3)のポリペプチドをコードする、請求項7に記載のDNA。
    (P1)配列番号24、26、28、30、32及び34に示されるいずれかのアミノ酸配列からなるポリペプチド
    (P2)配列番号24、26、28、30、32及び34に示されるいずれかのアミノ酸配列(但し、前記式(1)に示すアミノ酸配列に対応する、ユビキチンとの結合領域のアミノ酸配列を除く。)において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、ユビキチンとの結合活性を有するポリペプチド
    (P3)配列番号24、26、28、30、32及び34に示されるいずれかのアミノ酸配列(但し、前記式(1)に示すアミノ酸配列に対応する、ユビキチンとの結合領域のアミノ酸配列を除く。)において、少なくとも80%の同一性を有し、かつ、ユビキチンとの結合活性を有するポリペプチド
  11.   以下の(Q1)、(Q2)又は(Q3)に示す、請求項7に記載のDNA。
    (Q1)配列番号23、25、27、29、31及び33に示されるいずれかの塩基配列からなるDNA
    (Q2)配列番号23、25、27、29、31及び33に示されるいずれかの塩基配列に相補的な塩基配列において、ストリンジェントな条件下でハイブリダイズし、かつ、ユビキチンとの結合活性を有するポリペプチドをコードするDNA
    (但し、当該ストリンジェントな条件下でハイブリダイズするDNAのうち、前記式(1)に示すアミノ酸配列に対応する、ユビキチンとの結合領域のアミノ酸配列をコードする塩基配列は、常に式(1)に示すアミノ酸配列のコドンとしてハイブリダイズする。)
    (Q3)配列番号23、25、27、29、31及び33に示されるいずれかの塩基配列と少なくとも80%の同一性を有し、かつ、ユビキチンとの結合活性を有するポリペプチドをコードするDNA
    (但し、当該同一性を有するDNAのうち、前記式(1)に示すアミノ酸配列に対応する、ユビキチンとの結合領域のアミノ酸配列をコードする塩基配列は、常に式(1)に示すアミノ酸配列をコードする。)
  12.  請求項7~11のいずれか1項に記載のDNAを含む発現ベクター。
  13.  請求項12に記載の発現ベクターを含む形質転換体。
  14.  請求項13に記載の形質転換体を培養し、得られる培養物からユビキチンに対する人工抗体を採取することを特徴とする、当該人工抗体の製造方法。
  15.  請求項1~6のいずれか1項に記載の人工抗体を含む、ユビキチン又はユビキチン化基質検出用試薬。
  16.  請求項1~6のいずれか1項に記載の人工抗体を、被検試料と接触させることを特徴とする、ユビキチン又はユビキチン化基質の検出方法。
  17.  請求項1~6のいずれか1項に記載の人工抗体を、被検試料と接触させ、当該人工抗体と被検試料との複合体からユビキチン又はユビキチン化基質を採取することを特徴とする、ユビキチン又はユビキチン化基質の製造方法。
  18.  ユビキチンがポリユビキチンである請求項16に記載の方法。
  19.  ユビキチンがポリユビキチンである請求項17に記載の方法。 
PCT/JP2023/002596 2022-01-27 2023-01-27 ユビキチンに対する人工抗体 WO2023145861A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-010877 2022-01-27
JP2022010877 2022-01-27

Publications (1)

Publication Number Publication Date
WO2023145861A1 true WO2023145861A1 (ja) 2023-08-03

Family

ID=87471740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002596 WO2023145861A1 (ja) 2022-01-27 2023-01-27 ユビキチンに対する人工抗体

Country Status (1)

Country Link
WO (1) WO2023145861A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013539362A (ja) * 2010-07-30 2013-10-24 ノバルティス アーゲー フィブロネクチンクレードル分子及びそのライブラリ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013539362A (ja) * 2010-07-30 2013-10-24 ノバルティス アーゲー フィブロネクチンクレードル分子及びそのライブラリ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AKIKO KOIDE, CHARLES W BAILEY, XIAOLIN HUANG, SHOHEI KOIDE: "The fibronectin type III domain as a scaffold for novel binding proteins", JOURNAL OF MOLECULAR BIOLOGY, ACADEMIC PRESS, UNITED KINGDOM, vol. 284, no. 4, 11 December 1998 (1998-12-11), United Kingdom , pages 1141 - 1151, XP008153820, ISSN: 0022-2836, DOI: 10.1006/jmbi.1998.2238 *
D. LIPOVSEK: "Adnectins: engineered target-binding protein therapeutics", PROTEIN ENGINEERING, DESIGN AND SELECTION, OXFORD JOURNAL, LONDON, GB, vol. 24, no. 1-2, 1 January 2011 (2011-01-01), GB , pages 3 - 9, XP055551510, ISSN: 1741-0126, DOI: 10.1093/protein/gzq097 *

Similar Documents

Publication Publication Date Title
US11390653B2 (en) Amino acid-specific binder and selectively identifying an amino acid
Matsumoto et al. Engineering and structural characterization of a linear polyubiquitin-specific antibody
JP5877893B2 (ja) 融合ポリペプチドのアミノ酸配列およびその使用
AU2016295024B2 (en) Her2 binding proteins based on di-ubiquitin muteins
KR101682257B1 (ko) 인간 cxcl1 단백질의 면역학적 측정 방법
Tanno et al. The Ankrd 13 family of UIM-bearing proteins regulates EGF receptor endocytosis from the plasma membrane
JP2011528908A (ja) ユビキチンリガーゼのモジュレーターの特定法
CN113195516A (zh) 由特异性结合物识别的表位标签
Mader et al. Oxygen-dependent asparagine hydroxylation of the ubiquitin-associated (UBA) domain in Cezanne regulates ubiquitin binding
Kern et al. UBXD1 binds p97 through two independent binding sites
CN109554433B (zh) 一种基于CD47/SIRPα阻断功能及其生物效应的药物快速筛选方法
WO2023145861A1 (ja) ユビキチンに対する人工抗体
JP6967523B2 (ja) Aimp2−dx2タンパク質に特異的に結合する抗体
Lee et al. The Dac-tag, an affinity tag based on penicillin-binding protein 5
Madsen et al. Human ASPL/TUG interacts with p97 and complements the proteasome mislocalization of a yeast ubx4 mutant, but not the ER-associated degradation defect
WO2019216345A1 (ja) ドレブリンに特異的に結合するペプチド、及びそのペプチドを用いたドレブリンの検出方法
Koshiyama et al. Sumoylation of a meiosis‐specific RecA homolog, Lim15/Dmc1, via interaction with the small ubiquitin‐related modifier (SUMO)‐conjugating enzyme Ubc9
Elliff et al. Dynamic states of eIF6 and SDS variants modulate interactions with uL14 of the 60S ribosomal subunit
Groll et al. Towards multiplexed protein–protein interaction analysis using protein tag-specific nanobodies
WO2018225781A1 (ja) ヒストンh3トリメチル化リシン特異的モノクローナル抗体又はその抗原結合性断片
US20220081467A1 (en) Sliding clamp-based affinity purification systems, methods of making and use thereof
Xu et al. Secretory expression and purification of recombinant PLA2R epitopes for the detection of anti-PLA2R autoantibody in serum
JP2017201918A (ja) 融合タンパク質、それをコードするポリヌクレオチドおよびそれらの用途
Cao et al. Construction and characterization of an enhanced GFP-tagged anti-BAFF scFv antibody
Thornton et al. Purification, characterization, and crystallization of the distal BRCT domain of the human XRCC1 DNA repair protein

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23747071

Country of ref document: EP

Kind code of ref document: A1