CN109554433B - 一种基于CD47/SIRPα阻断功能及其生物效应的药物快速筛选方法 - Google Patents

一种基于CD47/SIRPα阻断功能及其生物效应的药物快速筛选方法 Download PDF

Info

Publication number
CN109554433B
CN109554433B CN201811653505.2A CN201811653505A CN109554433B CN 109554433 B CN109554433 B CN 109554433B CN 201811653505 A CN201811653505 A CN 201811653505A CN 109554433 B CN109554433 B CN 109554433B
Authority
CN
China
Prior art keywords
ypet
cypet
protein
ptpn11
sirp alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811653505.2A
Other languages
English (en)
Other versions
CN109554433A (zh
Inventor
范春雷
吴王亲
武虎
匡红
刘美星
莫一平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Kexing Biotechnology Co ltd
Original Assignee
Hangzhou Kexing Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Kexing Biotechnology Co ltd filed Critical Hangzhou Kexing Biotechnology Co ltd
Priority to CN201811653505.2A priority Critical patent/CN109554433B/zh
Publication of CN109554433A publication Critical patent/CN109554433A/zh
Application granted granted Critical
Publication of CN109554433B publication Critical patent/CN109554433B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70596Molecules with a "CD"-designation not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5047Cells of the immune system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/21Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/60Fusion polypeptide containing spectroscopic/fluorescent detection, e.g. green fluorescent protein [GFP]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Food Science & Technology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明建立了一种基于CD47/SIRPα阻断功能及其生物效应的药物快速筛选方法:将红色荧光蛋白RFP偶联于CD47蛋白羧基未端(C端);青色荧光蛋白基因CyPet构建在SIRPα蛋白的下游,以及黄色荧光蛋白基因Ypet通过一个连接肽(G4S)3构建在PTPN11基因的下游,分别构建真核表达载体,并获得新型的稳转细胞系SIRPαCyPet.SH2PTPN11Ypet/THP‑1,以CD47‑RFP与细胞系的亲和进行荧光检测筛选阻断剂。本方法可精确反映抗SIRPα和抗CD47药的效应,可同时获得阻断功能与CD47/SIRPα信号通路的生物学效应数据,构建快速筛选抗CD47/SIRPα药物和评估其生物学效应的实验模型。

Description

一种基于CD47/SIRPα阻断功能及其生物效应的药物快速筛选 方法
技术领域
本发明涉及一种基于CD47/SIRPα靶点的药物快速筛选方法,属于生物技术领域。
背景技术
CD47(Cluster of Differentiαtion 47,分化簇47)也被称为整合蛋白相关蛋白(IΑP),是一种跨膜蛋白。CD47属于免疫球蛋白超家族,可结合配体血小板反应蛋白-1(TSP-1)和信号调节蛋白α(SIRPα,Signal Regulatory Proteinα,信号调节蛋白α)。SIRPα是一个调节性膜糖蛋白,主要表达于髓细胞、干细胞或神经元。SIRPα的胞内域包含4个ITIMs(Immunoreceptor tyrosine-based inhibitory motif,免疫受体基于酪氨酸的抑制域),在SIRPα的胞外域结合CD47后传导信号至细胞内使ITIMs磷酸化,随即SHP磷酸酶,如PTPN11(PTPN11,SHP2:Tyrosine-protein phosphatase non-receptor type11,酪氨酸蛋白磷酸酶非受体11型)被招募到细胞膜上并磷酸化激活酪氨酸激酶SHP2;同时SHP磷酸酶会抑制细胞表面肌凝蛋白的积累,并导致吞噬作用的抑制。肿瘤细胞表面高表达CD47。CD47作为一种不吃我信号通过CD47/SIRPα信号系统使肿瘤细胞避免被免疫系统的巨噬细胞吞噬,因而CD47/SIRPα是某些癌症的潜在治疗靶点。
基于CD47/SIRPα阻断功能的抗癌新药,包括抗CD47、抗SIRPα单抗药、小分子阻断剂、多肽阻断剂等的研发是目前医药领域热点之一。但目前为止尚未见有关基于CD47/SIRPα阻断功能及其生物效应的新药快速、高效而精准的筛选系统。
发明内容
本发明的目的是建立了一种基于CD47/SIRPα阻断功能及其生物学效应的药物快速筛选方法。
本发明构思如下:
采用红色荧光蛋白tagRFP偶联于CD47蛋白羧基末端;青色荧光蛋白基因CyPet构建在SIRPα蛋白的下游,黄色荧光蛋白基因Ypet通过一个连接肽(G4S)3构建在PTPN11蛋白N端2个SH2结构域基因的下游,将两个带有荧光蛋白标记基因的片段构建载体并在细胞内表达,建立稳转细胞系。将稳转细胞系诱导成巨噬细胞后与抗SIRPα或抗CD47的单抗药、小分子、或多肽阻断剂共同孵育,清洗非特异性结合后与加入CD47-tagRFP融合蛋白共孵育。通过检测红色荧光蛋白tagRFP荧光值判断该抗SIRPα或抗CD47药具有CD47/SIRPα阻断功能;通过检测CyPet/Ypet荧光值并与对照组比较,判断抗SIRPα或抗CD47药具有CD47/SIRPα阻断功能。
为了实现本发明目的,第一方面,本发明提供一种基于CD47/SIRPα阻断功能及其生物效应的药物快速筛选方法,包括以下步骤:
1)将第一荧光蛋白与CD47蛋白羧基末端连接构建重组CD47-第一荧光蛋白融合蛋白;
2)将第二荧光蛋白与构建在SIRPα蛋白的下游;将第三荧光蛋白基因构建在PTPN11蛋白N端2个SH2结构域基因的下游;在CMV启动子下分别连接SIRPα-第二荧光蛋白和SH2PTPN11-第三荧光蛋白基因片段,构建表达质粒;
3)将CMV-SIRPα-第二荧光蛋白和CMV-SH2PTPN11-第三荧光蛋白基因共转染到单核细胞系中,建立稳转细胞系;
4)稳转细胞系诱导成巨噬细胞后与抗SIRPα或抗CD47的单抗药、小分子、或多肽阻断剂等新药孵育,清洗非特异性结合后与重组CD47-第一荧光蛋白融合蛋白共孵育;
5)分别检测第一、第二、第三荧光蛋白荧光值,并判断新药对CD47/SIRPα信号通路的阻断功能。
进一步地,第一荧光蛋白是tagRFP红色荧光蛋白;第二荧光蛋白是青色荧光蛋白CyPet;第三荧光蛋白是黄色荧光蛋白Ypet。
进一步地,步骤1)中,将tagRFP基因与人全长CD47基因构建在同一个读码框使tagRFP接于CD47蛋白C端形成所述CD47-tagRFP融合蛋白,同时在tagRFP的C端接上6个组氨酸His标签。
进一步地,步骤1)中,将CD47-tagRFP基因通过EcoR I/SeXA I亚克隆到慢病毒表达载体pLV-puro的CMV启动子下,获得质粒pCMV-CD47tagRFP;;将pCMV-CD47tagRFP与慢病毒包装质粒pH1、pH2共转染到慢病毒包装系细胞293V,制备CMV-CD47tagRFP慢病毒,转染至人胚肾细胞293,筛选克隆获得高表达CD47-tagRFP融合蛋白的CD47tagRFP/293细胞系;扩增该CD47tagRFP/293细胞,裂解后用His亲和法制备纯化含重组CD47-RFP融合蛋白的膜碎片。
进一步地,步骤2)中,将CyPet偶联于SIRPα的C端,YPet偶联于PTPN11(SHP2)的C端。
进一步地,步骤2)中,将青色荧光蛋白CyPet基因构建在SIRPα蛋白基因的下游,通过EcoR I/SeXA I亚克隆到慢病毒表达载体pLV-puro的CMV启动子下,获得质粒pCMV-SIRPαCyPet;将黄色荧光蛋白基因Ypet通过一个连接肽(G4S)3构建在PTPN11蛋白N端2个SH2结构域基因的下游,即SH2PTPN11[MCLVKGDRRFSDEFTLHEMESGREAGMMEKARGEVLKKKLWKGKFQRGGF]-(G4S)3-Ypet,并通过EcoR I/SeXA I亚克隆到慢病毒表达载体pLV-puro的CMV启动子下,获得质粒pCMV-SH2PTPN11Ypet;将pCMV-SIRPαCyPet和pCMV-SH2PTPN11Ypet分别与慢病毒包装质粒pH1、pH2共转染到慢病毒包装系细胞293V,制备CMV-SIRPαCyPet和CMV-SH2PTPN11Ypet慢病毒,共转染到人外周血的单核细胞THP-1中,建立SIRPαCyPet.SH2PTPN11Ypet/THP-1稳转细胞系。
进一步地,步骤4)中,使用佛波酯诱导稳转细胞系成巨噬细胞。
进一步地,步骤4)中,诱导成巨噬细胞后与抗SIRPα或抗CD47的单抗药、小分子、或多肽阻断剂等新药,并加入CD47-tagRFP融合蛋白共同孵育;同时设立SIRPαCyPet.SH2PTPN11Ypet/THP-1细胞与CD47-tagRFP融合蛋白直接共孵育的对照组。
进一步地,步骤5)中,经缓冲液清洗去除非特异性结合后用流式细胞仪、或荧光酶标仪分析细胞表面的红色荧光蛋白RFP荧光值;按CyPet/Ypet荧光蛋白FRET法分析SIRPαCyPet.SH2PTPN11Ypet/THP-1细胞内的Ypet荧光值。通过药物组荧光值与对照组比较,判断抗SIRPα或抗CD47药对CD47/SIRPα阻断功能。
另一方面,本发明提供一种稳转细胞系,其能够筛选对CD47/SIRPα信号通路具有阻断功能的药物。
进一步地,该稳转细胞系中包含不同种类的荧光蛋白,分别与PTPN11基因和SIRPα基因连接,当CD47/SIRPα信号通路被阻断或正常连接时,能够激发不同的荧光信号。
进一步地,该稳转细胞系中的荧光蛋白分别是光谱吸收峰/发射峰为Ex/Em=435/477nm的青色荧光蛋白CyPet;光谱吸收峰/发射峰为Ex/Em=517/530nm的黄色荧光蛋白YPet。
另一方面,本发明提供一种基于CD47/SIRPα阻断功能及其生物效应的药物快速筛选方法,包括以下步骤:
1)将红色荧光蛋白tagRFP偶联于CD47蛋白羧基末端(C端),制备CD47-tagRFP融合蛋白。
2)将青色荧光蛋白基因CyPet构建在SIRPα蛋白的下游,通过EcoR I/SeXA I亚克隆到慢病毒表达载体pLV-puro的CMV启动子下,获得质粒pCMV-SIRPαCyPet;将黄色荧光蛋白基因Ypet通过一个连接肽(G4S)3构建在PTPN11蛋白N端2个SH2结构域基因的下游,通过EcoR I/SeXA I亚克隆到慢病毒表达载体pLV-puro的CMV启动子下,获得质粒pCMV-SH2PTPN11Ypet;将pCMV-SIRPαCyPet和pCMV-SH2PTPN11Ypet分别与慢病毒包装质粒pH1、pH2共转染到慢病毒包装系细胞293V,制备CMV-SIRPαCyPet和CMV-SH2PTPN11Ypet慢病毒,共转染到人外周血的单核细胞THP-1中,建立稳转细胞系SIRPαCyPet.SH2PTPN11Ypet/THP-1。
3)将SIRPαCyPet.SH2PTPN11Ypet/THP-1细胞诱导成巨噬细胞后与抗SIRPα或抗CD47的单抗药、小分子、或多肽阻断剂等新药共孵育,同时加入CD47-tagRFP融合蛋白孵育;同时设立SIRPαCyPet.SH2PTPN11Ypet/THP-1细胞与CD47-tagRFP融合蛋白直接共孵育的对照组;
4)清洗去除非特异性结合后,检测细胞表面的红色荧光蛋白tagRFP荧光值;或按CyPet/Ypet荧光蛋白FRET法分析细胞内的Ypet荧光值,并与对照组比较。
5)依据荧光值判断抗SIRPα或抗CD47的新药对CD47/SIRPα信号通路的阻断作用。
进一步地,编码CD47-tagRFP融合蛋白的核酸序列如SEQ ID NO:1所示;CD47-tagRFP融合蛋白的氨基酸序列如SEQ ID NO:2所示;
编码SIRPαCyPet融合蛋白的DNA基因序列如SEQ ID NO:3所示,表达后SIRPαCyPet融合蛋白的氨基酸序列如SEQ ID NO:4所示;
编码SH2PTPN11Ypet融合蛋白的DNA基因序列如SEQ ID NO:5所示,表达后SH2PTPN11Ypet融合蛋白的序列如SEQ ID NO:6所示。
借由上述技术方案,本发明至少具有下列优点及有益效果:
(1)快速简便、低成本,系统除了必要的阻断效应实验步骤外无需另外处理,如用荧光素酶的话需裂解细胞并要用昂贵的荧光素酶试剂盒。本发明的方法可直接用活细胞,即测即得,并可进行动态监测。
(2)可用通用的流式细胞仪、荧光酶标仪等方法测定,适用绝大多数普通实验室。
(3)系统可精确反映抗SIRPα和抗CD47药的效应。
(4)使用活细胞检测,一个样本可同时获得CD47/SIRPα的阻断功能与CD47/SIRPα信号通路的生物学效应数据,为快速筛选抗CD47/SIRPα药物和评估其生物学效应提供了一个新型强有力的系统和实验模型。
附图说明
图1 pCMV-CD47tagRFP质粒图谱
图2 pCMV-SIRPαCyPet质粒图谱
图3 pCMV-SH2PTPN11Ypet质粒图谱
图4A正常情况下,没有CD47与SIRPα结合,ITIMs无磷酸化,SH2PTPN11Ypet则游离于细胞质内。
图4B当CD47与SIRPα结合时,ITIMs磷酸化,SH2PTPN11Ypet则被招募到细胞膜下与磷酸化ITIMs结构域结合;414nm激发光被CyPet吸收产生475nm发射波,被Ypet吸收产生530nm发射波,故可检测530nm荧光判断SH2PTPN11CyPet是否与ITIMs结构域结合。
图4C当有阻断功能的anti-CD47单抗与CD47结合时,阻断了CD47与SIRPα结合时,ITIMs去磷酸化,SH2PTPN11Ypet又游离于细胞质内;414nm激发光被CyPet吸收产生475nm发射波,但Ypet的530nm荧光会很弱或无。
图5使用快速筛选系统筛选抗SIRPα单抗药。检测数据如图所示,空白组的平均荧光强度MFI(PE Texas Red)=7.3;对照组的MFI(PE Texas Red)=7928.6,是空白组的1086.1倍;实验组的MFI(PE Texas Red)各不相等,其中筛选出5个阻断性能优良(MFI(PETexas Red)≤500)的抗SIRPα单抗药,即anti-SIRPα-3MFI(PE Texas Red)=406.7;anti-SIRPα-10MFI(PE Texas Red)=106.7;anti-SIRPα-26MFI(PE Texas Red)=7.6;anti-SIRPα-33MFI(PE Texas Red)=120.3;anti-SIRPα-43MFI(PE Texas Red)=46.7。
图6使用快速筛选系统检测抗SIRPα单抗药的生物学效应。检测数据如图所示,空白组的平均荧光强度MFI(FITC)=29.2;对照组的MFI(FITC)=3839.2,为空白组的131.5倍;实验组的MFI(FITC)各不相等,其中可筛选出5个生物学效应优良(MFI(FITC)≤200)的抗SIRPα单抗药,即anti-SIRPα-3MFI(FITC)=226.3;anti-SIRPα-10MFI(FITC)=80.9;anti-SIRPα-26MFI(FITC)=32.9;anti-SIRPα-33MFI(FITC)=87.5;anti-SIRPα-43MFI(FITC)=51.8。
图7基于快筛系统筛选抗CD47单抗药。检测数据如图所示,空白组的平均荧光强度MFI(PE Texas Red)=7.3;对照组的MFI(PE Texas Red)=7929.1,是空白组的1086.2倍;实验组的MFI(PE Texas Red)各不相等,其中筛选出7个阻断性能优良(MFI(PE Texas Red)≤500)的抗CD47单抗药,即anti-CD47-5MFI(PE Texas Red)=462.9;anti-CD47-12MFI(PE Texas Red)=36.9;anti-CD47-19MFI(PE Texas Red)=293.5;anti-CD47-29MFI(PE Texas Red)=82.6;anti-CD47-33MFI(PE Texas Red)=7.9;anti-CD47-48MFI(PE Texas Red)=342.8;anti-CD47-54MFI(PE Texas Red)=73.9。
图8基于快筛系统检测抗CD47单抗药的生物学效应。检测数据如图所示,空白组的平均荧光强度MFI(FITC)=29.3;对照组的MFI(FITC)=3843.6,为空白组的131.2倍;实验组的MFI(FITC)各不相等,其中可筛选出7个生物学效应优良(MFI(FITC)≤255)的抗SIRPα单抗药,即anti-SIRPα-5MFI(FITC)=253.6;anti-SIRPα-12MFI(FITC)=47.2;anti-SIRPα-19MFI(FITC)=171.5;anti-SIRPα-29MFI(FITC)=69.3;anti-SIRPα-33MFI(FITC)=33.1;anti-SIRPα-48MFI(FITC)=195.4;anti-SIRPα-54MFI(FITC)=65.1。
图9 Elisa法筛选抗SIRPα单抗药。检测数据如图所示,空白组的OD(450nm,下同)=0.2;对照组的OD=1.8,是空白组的9倍;实验组的OD值各不相等,其中筛选出15个阻断性能较好(OD≤0.5)的抗SIRPα单抗药,即anti-SIRPα-1OD=0.5;anti-SIRPα-3OD=0.3;anti-SIRPα-5OD=0.5;anti-SIRPα-10OD=0.2;anti-SIRPα-12OD=0.3;anti-SIRPα-15OD=0.4;anti-SIRPα-16OD=0.5;anti-SIRPα-19OD=0.4;anti-SIRPα-26OD=0.2;anti-SIRPα-31OD=0.4;anti-SIRPα-33OD=0.2;anti-SIRPα-41OD=0.3;anti-SIRPα-43OD=0.2;anti-SIRPα-44OD=0.5;anti-SIRPα-45OD=0.4。
图10 Elisa法筛选抗CD47单抗药。检测数据如图所示,空白组的OD=0.2;对照组的OD=1.8,是空白组的9倍;实验组的OD值各不相等,其中筛选出17个阻断性能较好(OD≤0.5)的抗CD47单抗药,即anti-CD47-3OD=0.4;anti-CD47-5OD=0.3;anti-CD47-18OD=0.3;anti-CD47-19OD=0.3;anti-CD47-21OD=0.3;anti-CD47-22OD=0.3;anti-CD47-23OD=0.3;anti-CD47-29OD=0.2;anti-CD47-33OD=0.2;anti-CD47-35OD=0.3;anti-CD47-36OD=0.3;anti-CD47-39OD=0.5;anti-CD47-42OD=0.4;anti-CD47-47OD=0.4;anti-CD47-45OD=0.3;anti-CD47-49OD=0.4;anti-CD47-54OD=0.2。
具体实施方式
以下是本发明的具体实施例,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
实施例1重组CD47-tagRFP融合蛋白的制备
将红色荧光蛋白tagRFP基因与人全长CD47基因构建在同一个读码框使红色荧光蛋白tagRFP接于CD47蛋白C端形成CD47-tagRFP融合蛋白,同时在tagRFP的C端接上6个组氨酸His标签。由于CD47与SIRPα的结合位点在胞外域的N端,故tagRFP接于CD47胞内域的C端,不影响CD47与SIRPα的结合。前后两端的限制性内切酶EcoRI(GAATTC)和SexAI(ACCTGGT)用于基因合成后连接于慢病毒表达载体pLV-Puro的CMV启动子下游,获得质粒pCMV-CD47tagRFP(图1),去掉了原质粒中的PGK启动子和Puro抗性基因,有利于提高慢病毒的转染效率,而阳性克隆的筛选可利用目标蛋白中tagRFP荧光蛋白直接用分选型流式细胞仪筛选或荧光显微镜下挑取。末端的6个His标签用于蛋白His亲和柱纯化以及用His6抗体鉴定目标蛋白。Flag标签(DYKDDDDK)前面为CD47蛋白,后面为tagRFP蛋白;可用Flag抗体鉴定目标蛋白,蛋白纯化后还可以用肠激酶(特异性识别序列DDDDK)将CD47蛋白与tagRFP蛋白切开。CD47tagRFP融合蛋白的DNA基因序列(7-1662bp)如SEQ ID NO:1所示,表达后CD47tagRFP融合蛋白的氨基酸序列如SEQ ID NO:2所示。
将pCMV-CD47tagRFP与质粒pH1、pH2共转染至慢病毒包装系细胞293V,经5代或20天以上培养获得稳定表达目的蛋白细胞后,荧光显微镜下,用50μl的移液枪挑取高表达CD47-tagRFP融合蛋白的CD47-tagRFP/293细胞克隆。扩增收集该CD47-tagRFP/293细胞,可用匀浆、超声、或冷冻高压细胞破碎仪裂解细胞,1500g高速离心后取沉淀加His结合缓冲液,上Ni2+或Co2+His亲和法柱制备纯化重组CD47-tagRFP融合蛋白。
CD47-RFP融合蛋白的制备纯化和鉴定的具体过程包括:
(1)将扩增的CD47-RFP/293细胞离心收集,800g、4℃、20min;并用结合缓冲液(20mM Tris-HCl(PH8.0)、150mM NaCl、2μg/ml Aprotinin、2μg/ml Leupeptin、1mM的PMSF、0.1%DNA酶和0.05%RNA酶)、10%(V/V)Glycerol清洗三遍。
(2)沉淀细胞加入裂解结合缓冲液(按1g细胞湿重/mL缓冲液),裂解结合缓冲液即为结合缓冲液中加有0.5%NP-40;冰浴研磨50次,并超声裂解10min(300w、工作3s、间隔10s)。
(3)高速(8,000g、4℃)离心20min,取上清过0.22μm滤膜,加入Ni2+-NTA-Sepharose亲和柱材料,混匀后,摇床4℃、140rpm/min震荡1-2小时。
(4)放入重力柱,先用结合缓冲液洗3遍,弃洗脱液;用清洗缓冲液(含60mM咪唑的结合缓冲液)清洗三遍。
(5)用洗脱液(含200mM咪唑的结合缓冲液)洗脱,收集洗脱液。
(6)用10KD蛋白分子量截留的超滤管离心(6000g、、4℃、30min),浓缩蛋白;用PBSpH7.4置换3遍,收集蛋白液,因为CD47-tagRFP融合蛋白有红色荧光蛋白标签,纯化后的蛋白液显红色,红色越深目标蛋白浓度越高;蛋白液加15%甘油,分装于4℃保存。
(7)取2.5μL用BCA法测蛋白质浓度。
(8)取4μg蛋白质样品进行SDS-PAGE电泳,考马斯亮蓝染色,脱色后观察蛋白质纯度。
(9)Western-blot验证目标蛋白质特异性,包括用His6抗体、Flag抗体、及CD47抗体验证。
如上述步骤中,获得的CD47-tagRFP融合蛋白的DNA基因序列如SEQ ID NO:1所示,表达后CD47-tagRFP融合蛋白序列如SEQ ID NO:2所示。
实施例2质粒pCMV-SIRPαCyPet的构建
将青色荧光蛋白CyPet基因构建在SIRPα蛋白的下游,基因合成后用EcoRI(GAATTC)和SexAI(ACCTGGT)连接于慢病毒表达载体pLV-Puro的CMV启动子下游,获得质粒pCMV-SIRPαCyPet(如图2所示)。SIRPαCyPet融合蛋白的DNA基因序列如SEQ ID NO:3所示,表达后SIRPαCyPet融合蛋白的氨基酸序列如SEQ ID NO:4所示。
实施例3 pCMV-SH2PTPN11Ypet质粒的构建
将黄色荧光蛋白基因Ypet通过一个连接肽(G4S)3构建在PTPN11蛋白N端2个SH2结构域基因的下游,并克隆(EcoR I/SexA I)到慢病毒表达载体pLV-Puro的CMV启动子下游,获得质粒pCMV-SH2PTPN11Ypet(如图3所示)。融合蛋白的DNA基因序列如SEQ ID NO:5所示,表达后SH2PTPN11Ypet融合蛋白的序列如SEQ ID NO:6所示。
实施例4建立SIRPαCyPet.SH2PTPN11Ypet/THP-1稳转细胞系
将pCMV-SIRPαCyPet和pCMV-SH2PTPN11Ypet分别与病毒蛋白pH1、pH2共转染到慢病毒包装系细胞293V,制备SIRPαCyPet和SH2PTPN11Ypet慢病毒,并共转染人外周血的单核细胞THP-1,筛选克隆建立新型的SIRPαCyPet.SH2PTPN11Ypet/THP-1稳转细胞系。
青色荧光蛋白CyPet的光谱吸收峰/发射峰为Ex/Em=435/477nm;黄色荧光蛋白Ypet的光谱吸收峰/发射峰为Ex/Em=517/530nm。CyPet/Ypet是目前研究获得的动态范围最大的青/黄色FRET对[NguyenΑW,Dαugherty PS.Evolutionαryoptimizαtion offluorescent proteins for intrαcellulαr FRET.NαtBiotechnol,2005,23:355~360]。
将Ypet偶联于PTPN11蛋白N端1-244肽段(含2个SH2结构域)的C端;CyPet偶联于SIRPα的C端。当SIRPα-CyPet的胞外域与CD47结合时SIRPα-CyPet胞内域的ITIMs磷酸化,随即SH2PTPN11Ypet被招募到细胞膜上与SIRPα-CyPet胞内域靠近;如果药物能阻断CD47与SIRPα的结合,则SH2PTPN11Ypet不会被招募到细胞膜上去靠近SIRPα-CyPet胞内域磷酸化的ITIMs,故可利用预先设计好的CyPet/Ypet,青/黄色FRET对,分析判断药物有没有CD47/SIRPα阻断功能及其生物学效能(图4A、4B、4C)。
实施例5使用快速筛选系统筛选抗SIRPα单抗药
实验前,先用10-30ng/ml的佛波酯将SIRPαCyPet.SH2PTPN11Ypet/THP-1细胞诱导成巨噬细胞(Macrophages,
Figure GDA0003552323040000101
)。将SIRPαCyPet.SH2PTPN11
Figure GDA0003552323040000102
细胞与各1μg/mL的49种待筛选抗SIRPα单抗药(αnti-SIRPα-1~αnti-SIRPα-49)分别孵育20分钟。洗去非特异性结合后,再与2μg/mL的CD47-tagRFP融合蛋白共孵育为实验组。同时设立不做任何处理的SIRPαCyPet.SH2PTPN11
Figure GDA0003552323040000103
细胞为空白组;设立SIRPαCyPet.SH2PTPN11
Figure GDA0003552323040000104
细胞与2μg/mL的CD47-tagRFP融合蛋白直接共孵育为对照组。共孵育至20分钟时,从上述组别中取部分细胞,洗去非特异性结合,用流式细胞仪分析细胞表面tagRFP(555/584nm)荧光值(如以BDFACSVerseTM流式细胞仪PE Texas Red通道进行数据收集,下同)。
共孵育至2小时,取上述组别的剩余细胞,洗去非特异性结合后,按CyPet/Ypet荧光蛋白对(414/530nm)FRET法用流式细胞仪分析细胞表面Ypet荧光值(如以BD FACSVerseTM流式细胞仪FITC通道进行数据收集,下同)。
检测数据如图5所示,空白组的平均荧光强度MFI(PE Texas Red)=7.3;对照组的MFI(PE Texas Red)=7928.6,是空白组的1086.1倍;实验组的MFI(PE Texas Red)各不相等,其中筛选出5个阻断性能优良(MFI(PE Texas Red)≤500)的抗SIRPα单抗药,从优到次顺序为:anti-SIRPα-26MFI(PE Texas Red)=7.6;anti-SIRPα-43MFI(PE Texas Red)=46.7;anti-SIRPα-10MFI(PE Texas Red)=106.7;anti-SIRPα-33MFI(PE Texas Red)=120.3;anti-SIRPα-3MFI(PE Texas Red)=406.7。
检测数据又如图6所示,本实施例中空白组的平均荧光强度MFI(FITC)=29.2;对照组的MFI(FITC)=3839.2,为空白组的131.5倍;实验组的MFI(FITC)各不相等,其中可筛选出5个具有影响CD47/SIRPα信号通路生物学效应的优良(MFI(FITC)≤200)抗SIRPα单抗药,从优到次顺序为:anti-SIRPα-26MFI(FITC)=32.9;anti-SIRPα-43MFI(FITC)=51.8;anti-SIRPα-10MFI(FITC)=80.9;anti-SIRPα-33MFI(FITC)=87.5;anti-SIRPα-3MFI(FITC)=226.3。
如图5、6所示,抗SIRPα单抗阻断SIRPα-CD47结合的能力和阻断CD47/SIRPα信号通路的生物学效应在本发明所述之体系中表现出很好的一致性。
如上所述,使用本发明所述之系统从49种待筛选抗SIRPα单抗药中筛选到5种具有较好阻断能力和生物学效应的抗SIRPα单抗药。进一步结合对比例1(具体实施见下文)的数据,证明本系统在反映抗SIRPα单抗药阻断SIRPα和CD47的结合上,其特异性、精确性和识别度是高度优于其他系统的。且同时还能体现其具有阻断CD47/SIRPα信号通路的生物学效应,即SIRPα-CD47的结合抑制了巨噬细胞对肿瘤细胞的的吞噬杀伤作用,而抗SIRPα单抗药对于SIRPα-CD47的阻断恢复了巨噬细胞对肿瘤细胞的的吞噬杀伤作用。
实施例6基于快筛系统筛选抗CD47单抗药
实验前,先用10-30ng/ml的佛波酯将SIRPαCyPet.SH2PTPN11Ypet/THP-1细胞诱导成巨噬细胞
Figure GDA0003552323040000111
实验组先将2μg/mL的CD47-tagRFP融合蛋白分别与各1μg/mL的54种待筛选的抗CD47单抗药(αnti-CD47-1~αnti-CD47-54)分别孵育20分钟。洗去非特异性结合后,再同SIRPαCyPet.SH2PTPN11
Figure GDA0003552323040000112
细胞共孵育为实验组。同时设立不做任何处理的SIRPαCyPet.SH2PTPN11
Figure GDA0003552323040000113
细胞为空白组;设立SIRPαCyPet.SH2PTPN11
Figure GDA0003552323040000114
细胞与各2μg/mL的CD47-tagRFP融合蛋白直接共孵育为对照组。共孵育至20分钟时,从上述组别中取部分细胞,洗去非特异性结合,用流式细胞仪分析细胞表面tagRFP荧光值;
共孵育至2小时时,取上述组别的剩余细胞。洗去非特异性结合后,按CyPet/Ypet荧光蛋白FRET法用流式细胞仪分析细胞Ypet荧光值。
检测数据如图7所示,本实施例中空白组的平均荧光强度MFI(PE Texas Red)=7.3;对照组的MFI(PE Texas Red)=7929.1,是空白组的1086.2倍;实验组的MFI(PE TexasRed)各不相等,其中筛选出7个阻断性能优良(MFI(PE Texas Red)≤500)的抗CD47单抗药,从优到次顺序为:αnti-CD47-33MFI(PE Texas Red)=7.9;αnti-CD47-54MFI(PE TexasRed)=73.9;αnti-CD47-12MFI(PE Texas Red)=36.9;αnti-CD47-29MFI(PE Texas Red)=82.6;αnti-CD47-19MFI(PE Texas Red)=293.5;αnti-CD47-48MFI(PE Texas Red)=342.8;αnti-CD47-5MFI(PE Texas Red)=462.9。
检测数据又如图8所示,本实施例中空白组的平均荧光强度MFI(FITC)=29.3;对照组的MFI(FITC)=3843.6,为空白组的131.2倍;实验组的MFI(FITC)各不相等,其中可筛选出7个阻断生物学效应优良(MFI(FITC)≤255)的抗SIRPα单抗药,从优到次顺序为:anti-SIRPα-5MFI(FITC)=253.6;anti-SIRPα-33MFI(FITC)=33.1;anti-SIRPα-12MFI(FITC)=47.2;anti-SIRPα-54MFI(FITC)=65.1;anti-SIRPα-29MFI(FITC)=69.3;anti-SIRPα-19MFI(FITC)=171.5;anti-SIRPα-48MFI(FITC)=195.4。
如图7、8所示,抗CD47单抗阻断SIRPα-CD47结合的能力和阻断CD47/SIRPα信号通路的生物学效应在本发明所述之体系中表现出很好的一致性。
如上所述,使用本发明所述之系统从54种待筛选抗CD47单抗药中筛选到7种具有较好阻断能力和生物学效应的抗CD47单抗药。进一步结合对比例2(具体实施见下文)的数据,证明本系统在反映抗CD47单抗药阻断SIRPα和CD47的结合上,其特异性、精确性和识别度是高度优于其他系统的。且同时还能体现其具有阻断CD47/SIRPα信号通路的生物学效应,即SIRPα-CD47的结合抑制了巨噬细胞对肿瘤细胞的的吞噬杀伤作用,而抗CD47单抗药对于SIRPα-CD47的阻断恢复了巨噬细胞对肿瘤细胞的的吞噬杀伤作用。
对比例1:Elisa法筛选抗SIRPα单抗药。
先以250ng/mL浓度SIRPα蛋白过夜包被96孔板。洗板5次尽去非特异性结合后,实验组加入各1μg/mL的49种待筛选抗SIRPα单抗药(αnti-SIRPα-1~αnti-SIRPα-49)分别孵育30分钟。洗板5次尽去非特异性结合后,加入生物素标记的CD47蛋白,孵育30分钟;洗板5次尽去非特异性结合。加入辣根过氧化物酶(HRP)标记的亲合素,孵育30分钟。洗板5次尽去非特异性结合后,加底物TMB显色10分钟,随后加酸终止。同时设立不加任何单抗药和生物素标记的CD47蛋白,仅显色终止的为空白组;设立仅加辣根过氧化物酶(HRP)标记的亲合素,随后显色、终止为对照组。最后以上各组用酶标仪在450nm波长下测定吸光度(0D)值。
检测数据如图9所示,本对比例1中空白组的OD=0.2;对照组的OD=1.8,是空白组的9倍;实验组的OD值各不相等,其中筛选出15个阻断性能较好(OD≤0.5)的抗SIRPα单抗药,从优到次顺序为:αnti-SIRPα-10OD=0.2;αnti-SIRPα-26OD=0.2;αnti-SIRPα-33OD=0.2;αnti-SIRPα-43OD=0.2;αnti-SIRPα-3OD=0.3;αnti-SIRPα-12OD=0.3;αnti-SIRPα-41OD=0.3;αnti-SIRPα-19OD=0.4;αnti-SIRPα-31OD=0.4;αnti-SIRPα-15OD=0.4;αnti-SIRPα-45OD=0.4;anti-SIRPα-1OD=0.5;αnti-SIRPα-5OD=0.5;αnti-SIRPα-16OD=0.5;αnti-SIRPα-44OD=0.5。
对比实施例5,以Elisa法筛选抗SIRPα单抗药,其特异性、精确性和识别度不如本文所述之系统,且仅能反映抗SIRPα单抗药对于SIRPα-CD47结合的阻断作用,不能获得是否具有阻断CD47/SIRPα信号通路生物学效应的数据。另外,以Elisa法进行筛选还有操作繁琐、特异性低、误差较大、试剂盒成本较高等缺点。
对比例2:Elisa法筛选抗CD47单抗药。
先以250ng/mL浓度CD47蛋白过夜包被96孔板。洗板5次尽去非特异性结合后,实验组加入各1μg/mL的54种待筛选抗CD47单抗药(anti-CD47-1~anti-CD47-54)分别孵育30分钟。洗板5次尽去非特异性结合后,加入生物素标记的SIRPα蛋白,孵育30分钟;洗板5次尽去非特异性结合。加入辣根过氧化物酶(HRP)标记的亲合素,孵育30分钟。洗板5次尽去非特异性结合后,加底物TMB显色10分钟,随后加酸终止。同时设立不加任何单抗药和生物素标记的SIRPα蛋白,仅显色终止的为空白组;设立仅加辣根过氧化物酶(HRP)标记的亲合素,随后显色、终止为对照组。最后以上各组用酶标仪在450nm波长下测定吸光度(0D)值。
检测数据如图10所示,本对比例中空白组的OD=0.2;对照组的OD=1.8,是空白组的9倍;实验组的OD值各不相等,其中筛选出17个阻断性能较好(OD≤0.5)的抗SIRPα单抗药,从优到次顺序为:αnti-CD47-29OD=0.2;αnti-CD47-33OD=0.2;αnti-CD47-54OD=0.2;αnti-CD47-5OD=0.3;αnti-CD47-18OD=0.3;αnti-CD47-19OD=0.3;αnti-CD47-21OD=0.3;αnti-CD47-22OD=0.3;αnti-CD47-23OD=0.3;αnti-CD47-35OD=0.3;αnti-CD47-36OD=0.3;αnti-CD47-45OD=0.3;αnti-CD47-3OD=0.4;αnti-CD47-42OD=0.4;αnti-CD47-47OD=0.4;αnti-CD47-49OD=0.4;αnti-CD47-39OD=0.5。
对比实施例6,以Elisa法筛选抗CD47单抗药,其特异性、精确性和识别度不如本文所述之系统,且仅能反映抗CD47单抗药对于SIRPα-CD47结合的阻断作用,不能获得细胞信号通路应答的生物学效应数据。而且,以Elisa法进行筛选还有操作繁琐、非特异性干扰大、误差较大、试剂盒成本较高等缺点。
综上所述,本发明的筛选方法具有:1)快速简便、低成本,系统除了必要的阻断效应实验步骤外无需另外处理,即测即得,并可进行动态监测。2)可用通用的流式细胞仪、荧光酶标仪等多种方法测定,普适性好。3)系统可精确反映抗SIRPα和抗CD47药的效应,稳定性好,精确度高,特异性极高。4)一个系统可同时进行抗SIRPα药物和抗CD47药物的筛选,简便多用。5)一个样本可同时获得SIRPα/CD47的阻断功能与PTPN11信号通路的生物学效应数据。为快速筛选抗SIRPα/CD47药和评估其生物学效应提供了一个新型强有力的系统和实验模型。
以上所述,仅为本发明的优选实施例,应当指出,对本技术领域的普通技术人员来说,在不脱离本发明的核心技术特点的前体下,还可以做出变化和改进。这些变化和改进均属于本发明的专利保护范围。与本发明的权利要求书相当的含义和范围内的任何改变,都应认为是包括在权利要求书的范围内。
SEQUENCE LISTING
<110> 杭州科兴生物科技有限公司
<120> 一种基于CD47/SIRPα阻断功能及其生物效应的药物快速筛选方法
<130> 1
<160> 6
<170> PatentIn version 3.5
<210> 1
<211> 1689
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
gaattcatgt ggccactggt ggccgccctg ctgctgggct ctgcctgctg tggcagcgcc 60
cagctgctgt tcaacaagac caagagcgtg gagttcacct tttgcaatga cacagtggtc 120
atcccttgtt ttgtgacaaa catggaggcc cagaatacca cagaggtgta cgtgaagtgg 180
aagttcaagg gcagggacat ctataccttt gatggcgccc tgaacaagtc caccgtgcca 240
acagacttca gctccgccaa gatcgaggtg agccagctgc tgaagggcga tgcctccctg 300
aagatggaca agagcgatgc cgtgtcccac accggcaatt acacatgcga ggtgaccgag 360
ctgacacggg agggagagac catcatcgag ctgaagtata gagtggtgtc ttggtttagc 420
cctaacgaga atatcctgat cgtgatcttc ccaatctttg ccatcctgct gttctggggc 480
cagtttggca tcaagacact gaagtaccgg agcggcggca tggacgagaa gaccatcgcc 540
ctgctggtgg caggactggt catcacagtg atcgtgatcg tgggagcaat cctgttcgtg 600
ccaggagagt attctctgaa gaacgcaacc ggactgggac tgatcgtgac cagcacaggc 660
atcctgatcc tgctgcacta ctacgtgttc agcaccgcca tcggcctgac atcttttgtg 720
atcgccatcc tggtcatcca ggtcatcgcc tacatcctgg cagtggtggg actgtccctg 780
tgcatcgcag catgtatccc aatgcacgga ccactgctga tctccggact gtctatcctg 840
gccctggcac agctgctggg actggtgtac atgaagtttg tggcctctaa tcagaagacc 900
atccagcccc ctggcatcac agattataag gacgatgacg ataagctcga gagcgagctg 960
attaaggaga acatgcacat gaagctgtac atggagggca ccgtgaacaa ccaccacttc 1020
aagtgcacat ccgagggcga aggcaagccc tacgagggca cccagaccat gagaatcaag 1080
gtggtcgagg gcggccctct ccccttcgcc ttcgacatcc tggctaccag cttcatgtac 1140
ggcagcagaa ccttcatcaa ccacacccag ggcatccccg acttctttaa gcagtccttc 1200
cctgagggct tcacatggga gagagtcacc acatacgaag acgggggcgt gctgaccgct 1260
acccaggaca ccagcctcca ggacggctgc ctcatctaca acgtcaagat cagaggggtg 1320
aacttcccat ccaacggccc tgtgatgcag aagaaaacac tcggctggga ggccaacacc 1380
gagatgctgt accccgctga cggcggcctg gaaggcagaa gcgacatggc cctgaagctc 1440
gtgggcgggg gccacctgat ctgcaacttc aagaccacat acagatccaa gaaacccgct 1500
aagaacctca agatgcccgg cgtctactat gtggaccaca gactggaaag aatcaaggag 1560
gccgacaaag agacctacgt cgagcagcac gaggtggctg tggccagata ctgcgacctc 1620
cctagcaaac tggggcacaa gcatcaccat caccatcact agcggccgca tctagaagat 1680
ctacctggt 1689
<210> 2
<211> 551
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 2
Met Trp Pro Leu Val Ala Ala Leu Leu Leu Gly Ser Ala Cys Cys Gly
1 5 10 15
Ser Ala Gln Leu Leu Phe Asn Lys Thr Lys Ser Val Glu Phe Thr Phe
20 25 30
Cys Asn Asp Thr Val Val Ile Pro Cys Phe Val Thr Asn Met Glu Ala
35 40 45
Gln Asn Thr Thr Glu Val Tyr Val Lys Trp Lys Phe Lys Gly Arg Asp
50 55 60
Ile Tyr Thr Phe Asp Gly Ala Leu Asn Lys Ser Thr Val Pro Thr Asp
65 70 75 80
Phe Ser Ser Ala Lys Ile Glu Val Ser Gln Leu Leu Lys Gly Asp Ala
85 90 95
Ser Leu Lys Met Asp Lys Ser Asp Ala Val Ser His Thr Gly Asn Tyr
100 105 110
Thr Cys Glu Val Thr Glu Leu Thr Arg Glu Gly Glu Thr Ile Ile Glu
115 120 125
Leu Lys Tyr Arg Val Val Ser Trp Phe Ser Pro Asn Glu Asn Ile Leu
130 135 140
Ile Val Ile Phe Pro Ile Phe Ala Ile Leu Leu Phe Trp Gly Gln Phe
145 150 155 160
Gly Ile Lys Thr Leu Lys Tyr Arg Ser Gly Gly Met Asp Glu Lys Thr
165 170 175
Ile Ala Leu Leu Val Ala Gly Leu Val Ile Thr Val Ile Val Ile Val
180 185 190
Gly Ala Ile Leu Phe Val Pro Gly Glu Tyr Ser Leu Lys Asn Ala Thr
195 200 205
Gly Leu Gly Leu Ile Val Thr Ser Thr Gly Ile Leu Ile Leu Leu His
210 215 220
Tyr Tyr Val Phe Ser Thr Ala Ile Gly Leu Thr Ser Phe Val Ile Ala
225 230 235 240
Ile Leu Val Ile Gln Val Ile Ala Tyr Ile Leu Ala Val Val Gly Leu
245 250 255
Ser Leu Cys Ile Ala Ala Cys Ile Pro Met His Gly Pro Leu Leu Ile
260 265 270
Ser Gly Leu Ser Ile Leu Ala Leu Ala Gln Leu Leu Gly Leu Val Tyr
275 280 285
Met Lys Phe Val Ala Ser Asn Gln Lys Thr Ile Gln Pro Pro Gly Ile
290 295 300
Thr Asp Tyr Lys Asp Asp Asp Asp Lys Leu Glu Ser Glu Leu Ile Lys
305 310 315 320
Glu Asn Met His Met Lys Leu Tyr Met Glu Gly Thr Val Asn Asn His
325 330 335
His Phe Lys Cys Thr Ser Glu Gly Glu Gly Lys Pro Tyr Glu Gly Thr
340 345 350
Gln Thr Met Arg Ile Lys Val Val Glu Gly Gly Pro Leu Pro Phe Ala
355 360 365
Phe Asp Ile Leu Ala Thr Ser Phe Met Tyr Gly Ser Arg Thr Phe Ile
370 375 380
Asn His Thr Gln Gly Ile Pro Asp Phe Phe Lys Gln Ser Phe Pro Glu
385 390 395 400
Gly Phe Thr Trp Glu Arg Val Thr Thr Tyr Glu Asp Gly Gly Val Leu
405 410 415
Thr Ala Thr Gln Asp Thr Ser Leu Gln Asp Gly Cys Leu Ile Tyr Asn
420 425 430
Val Lys Ile Arg Gly Val Asn Phe Pro Ser Asn Gly Pro Val Met Gln
435 440 445
Lys Lys Thr Leu Gly Trp Glu Ala Asn Thr Glu Met Leu Tyr Pro Ala
450 455 460
Asp Gly Gly Leu Glu Gly Arg Ser Asp Met Ala Leu Lys Leu Val Gly
465 470 475 480
Gly Gly His Leu Ile Cys Asn Phe Lys Thr Thr Tyr Arg Ser Lys Lys
485 490 495
Pro Ala Lys Asn Leu Lys Met Pro Gly Val Tyr Tyr Val Asp His Arg
500 505 510
Leu Glu Arg Ile Lys Glu Ala Asp Lys Glu Thr Tyr Val Glu Gln His
515 520 525
Glu Val Ala Val Ala Arg Tyr Cys Asp Leu Pro Ser Lys Leu Gly His
530 535 540
Lys His His His His His His
545 550
<210> 3
<211> 2328
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
gaattcatgg agccagcagg accagcacca ggcaggctgg gacctctgct gtgcctgctg 60
ctggcagcat cctgtgcatg gagcggagtg gccggcgagg aggagctgca ggtcatccag 120
ccagacaagt ccgtgctggt ggcagcagga gagaccgcca ccctgagatg caccgccacc 180
agcctgatcc cagtgggacc tatccagtgg ttcagaggag caggacctgg aagggagctg 240
atctacaacc agaaggaggg ccacttccca cgcgtgacca ccgtgtccga cctgaccaag 300
agaaacaaca tggacttcag catccgcatc ggaaacatca ccccagcaga cgcaggaacc 360
tactactgcg tgaagttccg gaagggctcc cccgacgacg tggagttcaa gtccggagca 420
ggaaccgagc tgagcgtgag ggcaaagcca tccgccccag tggtgagcgg acctgcagcc 480
agggccaccc cacagcacac cgtgtccttc acctgtgagt cccacggctt cagcccaagg 540
gacatcaccc tgaagtggtt caagaacggc aacgagctca gcgacttcca gaccaacgtg 600
gaccccgtgg gcgagagcgt gtcctacagc atccactcca ccgcaaaggt ggtgctgacc 660
cgggaggacg tgcacagcca ggtcatctgc gaggtggcac acgtgaccct gcagggcgac 720
cctctgagag gaaccgccaa cctgagcgag accatcaggg tgccacctac cctggaggtg 780
acccagcagc ctgtgagagc cgagaaccag gtgaacgtga cctgtcaggt gaggaagttc 840
tacccacagc ggctgcagct gacctggctg gagaacggca acgtgtccag gaccgagacc 900
gcaagcaccg tgaccgagaa caaggacggc acctacaact ggatgtcctg gctgctggtg 960
aacgtgagcg cccacaggga cgacgtgaag ctgacctgcc aggtggagca cgacggacag 1020
ccagccgtgt ccaagagcca cgacctgaag gtgtccgccc accctaagga gcagggcagc 1080
aacaccgcag cagagaacac cggctccaac gagcgcaaca tctacatcgt ggtgggagtg 1140
gtgtgcaccc tgctggtggc cctgctgatg gccgccctgt acctggtgag gatcaggcag 1200
aagaaggcac agggcagcac cagctccacc aggctgcacg agccagagaa gaacgcccgg 1260
gagatcaccc aggacaccaa cgacatcacc tacgccgacc tgaacctgcc aaagggcaag 1320
aagcctgcac cacaggcagc agagccaaac aaccacaccg agtacgcatc catccagacc 1380
agcccacagc ctgcatccga ggacaccctg acctacgccg acctggacat ggtgcacctg 1440
aacagaaccc caaagcagcc agcaccaaag cctgagccat ccttcagcga gtacgccagc 1500
gtgcaggtgc ctcgcaagga ttataaggac gatgacgata agctcgaggg cgccgtgagc 1560
aagggagagg aactgttcgg cggcatcgtg cccatcctgg tggagctgga gggcgacgtg 1620
aacggccaca agttcagcgt gagcggcgag ggcgagggcg acgccaccta cggcaagctg 1680
accctgaagt tcatctgcac caccggcaag ctgcccgtgc cctggcccac cctggtgacc 1740
accctgacct ggggcgtgca gtgcttcagc cggtaccccg accacatgaa gcagcacgac 1800
ttcttcaaga gcgtgatgcc cgagggctac gtgcaggagc ggaccatctt cttcaaggac 1860
gacggcaact acaagacccg ggccgaggtg aagttcgagg gcgacaccct ggtgaaccgg 1920
atcgagctga agggcatcga cttcaaggag gacggcaaca tcctgggcca caagctggag 1980
tacaactaca tcagccacaa cgtgtacatc accgccgaca agcagaagaa cggcatcaag 2040
gccaacttca aggcccggca caacatcacc gacggcagcg tgcagctggc cgaccactac 2100
cagcagaaca cccccatcgg cgacggcccc gtgatcctgc ccgacaacca ctacctgagc 2160
acccagagcg ccctgagcaa ggaccccaac gagaagcggg accacatggt gctgctggag 2220
ttcgtgaccg ccgccggcat cacccacggc atggacgaac tgtacaaaca tgatgagctt 2280
catcaccatc accatcacta gcggccgcat ctagaagatc tacctggt 2328
<210> 4
<211> 764
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 4
Met Glu Pro Ala Gly Pro Ala Pro Gly Arg Leu Gly Pro Leu Leu Cys
1 5 10 15
Leu Leu Leu Ala Ala Ser Cys Ala Trp Ser Gly Val Ala Gly Glu Glu
20 25 30
Glu Leu Gln Val Ile Gln Pro Asp Lys Ser Val Leu Val Ala Ala Gly
35 40 45
Glu Thr Ala Thr Leu Arg Cys Thr Ala Thr Ser Leu Ile Pro Val Gly
50 55 60
Pro Ile Gln Trp Phe Arg Gly Ala Gly Pro Gly Arg Glu Leu Ile Tyr
65 70 75 80
Asn Gln Lys Glu Gly His Phe Pro Arg Val Thr Thr Val Ser Asp Leu
85 90 95
Thr Lys Arg Asn Asn Met Asp Phe Ser Ile Arg Ile Gly Asn Ile Thr
100 105 110
Pro Ala Asp Ala Gly Thr Tyr Tyr Cys Val Lys Phe Arg Lys Gly Ser
115 120 125
Pro Asp Asp Val Glu Phe Lys Ser Gly Ala Gly Thr Glu Leu Ser Val
130 135 140
Arg Ala Lys Pro Ser Ala Pro Val Val Ser Gly Pro Ala Ala Arg Ala
145 150 155 160
Thr Pro Gln His Thr Val Ser Phe Thr Cys Glu Ser His Gly Phe Ser
165 170 175
Pro Arg Asp Ile Thr Leu Lys Trp Phe Lys Asn Gly Asn Glu Leu Ser
180 185 190
Asp Phe Gln Thr Asn Val Asp Pro Val Gly Glu Ser Val Ser Tyr Ser
195 200 205
Ile His Ser Thr Ala Lys Val Val Leu Thr Arg Glu Asp Val His Ser
210 215 220
Gln Val Ile Cys Glu Val Ala His Val Thr Leu Gln Gly Asp Pro Leu
225 230 235 240
Arg Gly Thr Ala Asn Leu Ser Glu Thr Ile Arg Val Pro Pro Thr Leu
245 250 255
Glu Val Thr Gln Gln Pro Val Arg Ala Glu Asn Gln Val Asn Val Thr
260 265 270
Cys Gln Val Arg Lys Phe Tyr Pro Gln Arg Leu Gln Leu Thr Trp Leu
275 280 285
Glu Asn Gly Asn Val Ser Arg Thr Glu Thr Ala Ser Thr Val Thr Glu
290 295 300
Asn Lys Asp Gly Thr Tyr Asn Trp Met Ser Trp Leu Leu Val Asn Val
305 310 315 320
Ser Ala His Arg Asp Asp Val Lys Leu Thr Cys Gln Val Glu His Asp
325 330 335
Gly Gln Pro Ala Val Ser Lys Ser His Asp Leu Lys Val Ser Ala His
340 345 350
Pro Lys Glu Gln Gly Ser Asn Thr Ala Ala Glu Asn Thr Gly Ser Asn
355 360 365
Glu Arg Asn Ile Tyr Ile Val Val Gly Val Val Cys Thr Leu Leu Val
370 375 380
Ala Leu Leu Met Ala Ala Leu Tyr Leu Val Arg Ile Arg Gln Lys Lys
385 390 395 400
Ala Gln Gly Ser Thr Ser Ser Thr Arg Leu His Glu Pro Glu Lys Asn
405 410 415
Ala Arg Glu Ile Thr Gln Asp Thr Asn Asp Ile Thr Tyr Ala Asp Leu
420 425 430
Asn Leu Pro Lys Gly Lys Lys Pro Ala Pro Gln Ala Ala Glu Pro Asn
435 440 445
Asn His Thr Glu Tyr Ala Ser Ile Gln Thr Ser Pro Gln Pro Ala Ser
450 455 460
Glu Asp Thr Leu Thr Tyr Ala Asp Leu Asp Met Val His Leu Asn Arg
465 470 475 480
Thr Pro Lys Gln Pro Ala Pro Lys Pro Glu Pro Ser Phe Ser Glu Tyr
485 490 495
Ala Ser Val Gln Val Pro Arg Lys Asp Tyr Lys Asp Asp Asp Asp Lys
500 505 510
Leu Glu Gly Ala Val Ser Lys Gly Glu Glu Leu Phe Gly Gly Ile Val
515 520 525
Pro Ile Leu Val Glu Leu Glu Gly Asp Val Asn Gly His Lys Phe Ser
530 535 540
Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu
545 550 555 560
Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu
565 570 575
Val Thr Thr Leu Thr Trp Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp
580 585 590
His Met Lys Gln His Asp Phe Phe Lys Ser Val Met Pro Glu Gly Tyr
595 600 605
Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr
610 615 620
Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu
625 630 635 640
Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys
645 650 655
Leu Glu Tyr Asn Tyr Ile Ser His Asn Val Tyr Ile Thr Ala Asp Lys
660 665 670
Gln Lys Asn Gly Ile Lys Ala Asn Phe Lys Ala Arg His Asn Ile Thr
675 680 685
Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile
690 695 700
Gly Asp Gly Pro Val Ile Leu Pro Asp Asn His Tyr Leu Ser Thr Gln
705 710 715 720
Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu
725 730 735
Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu
740 745 750
Tyr Lys His Asp Glu Leu His His His His His His
755 760
<210> 5
<211> 1440
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
gaattcatga catcgcggag atggtttcac ccaaatatca ctggtgtgga ggcagaaaac 60
ctactgttga caagaggagt tgatggcagt tttttggcaa ggcctagtaa aagtaaccct 120
ggagacttca cactttccgt tagaagaaat ggagctgtca cccacatcaa gattcagaac 180
actggtgatt actatgacct gtatggaggg gagaaatttg ccactttggc tgagttggtc 240
cagtattaca tggaacatca cgggcaatta aaagagaaga atggagatgt cattgagctt 300
aaatatcctc tgaactgtgc agatcctacc tctgaaaggt ggtttcatgg acatctctct 360
gggaaagaag cagagaaatt attaactgaa aaaggaaaac atggtagttt tcttgtacga 420
gagagccaga gccaccctgg agattttgtt ctttctgtgc gcactggtga tgacaaaggg 480
gagagcaatg acggcaagtc taaagtgacc catgttatga ttcgctgtca ggaactgaaa 540
tacgacgttg gtggaggaga acggtttgat tctttgacag atcttgtgga acattataag 600
aagaatccta tggtcgacta caaggacgac gacgacaagg gaggaggagg cagcggcgga 660
ggaggctccg gcggcggcgg cagcaaaggt gaagaattat tcactggtgt tgtcccaatt 720
ttggttgaat tagatggtga tgttaatggt cacaaatttt ctgtctccgg tgaaggtgaa 780
ggtgatgcta cgtacggtaa attgacctta aaattactct gtactactgg taaattgcca 840
gttccatggc caaccttagt cactacttta ggttatggtg ttcaatgttt tgctagatac 900
ccagatcata tgaaacaaca tgactttttc aagtctgcca tgccagaagg ttatgttcaa 960
gaaagaacta tttttttcaa agatgacggt aactacaaga ccagagctga agtcaagttt 1020
gaaggtgata ccttagttaa tagaatcgaa ttaaaaggta ttgattttaa agaagatggt 1080
aacattttag gtcacaaatt ggaatacaac tataactctc acaatgttta catcactgct 1140
gacaaacaaa agaatggtat caaagctaac ttcaaaatta gacacaacat tgaagatggt 1200
ggtgttcaat tagctgacca ttatcaacaa aatactccaa ttggtgatgg tccagtcttg 1260
ttaccagaca accattactt atcctatcaa tctgccttat tcaaagatcc aaacgaaaag 1320
agagaccaca tggtcttgtt agaatttttg actgctgctg gtattaccga gggtatgaat 1380
gaattgtaca aacatcacca tcaccatcac tagcggccgc atctagaaga tctacctggt 1440
<210> 6
<211> 468
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 6
Met Thr Ser Arg Arg Trp Phe His Pro Asn Ile Thr Gly Val Glu Ala
1 5 10 15
Glu Asn Leu Leu Leu Thr Arg Gly Val Asp Gly Ser Phe Leu Ala Arg
20 25 30
Pro Ser Lys Ser Asn Pro Gly Asp Phe Thr Leu Ser Val Arg Arg Asn
35 40 45
Gly Ala Val Thr His Ile Lys Ile Gln Asn Thr Gly Asp Tyr Tyr Asp
50 55 60
Leu Tyr Gly Gly Glu Lys Phe Ala Thr Leu Ala Glu Leu Val Gln Tyr
65 70 75 80
Tyr Met Glu His His Gly Gln Leu Lys Glu Lys Asn Gly Asp Val Ile
85 90 95
Glu Leu Lys Tyr Pro Leu Asn Cys Ala Asp Pro Thr Ser Glu Arg Trp
100 105 110
Phe His Gly His Leu Ser Gly Lys Glu Ala Glu Lys Leu Leu Thr Glu
115 120 125
Lys Gly Lys His Gly Ser Phe Leu Val Arg Glu Ser Gln Ser His Pro
130 135 140
Gly Asp Phe Val Leu Ser Val Arg Thr Gly Asp Asp Lys Gly Glu Ser
145 150 155 160
Asn Asp Gly Lys Ser Lys Val Thr His Val Met Ile Arg Cys Gln Glu
165 170 175
Leu Lys Tyr Asp Val Gly Gly Gly Glu Arg Phe Asp Ser Leu Thr Asp
180 185 190
Leu Val Glu His Tyr Lys Lys Asn Pro Met Val Asp Tyr Lys Asp Asp
195 200 205
Asp Asp Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly
210 215 220
Gly Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val
225 230 235 240
Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu
245 250 255
Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Leu Leu Cys
260 265 270
Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu
275 280 285
Gly Tyr Gly Val Gln Cys Phe Ala Arg Tyr Pro Asp His Met Lys Gln
290 295 300
His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg
305 310 315 320
Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val
325 330 335
Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile
340 345 350
Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn
355 360 365
Tyr Asn Ser His Asn Val Tyr Ile Thr Ala Asp Lys Gln Lys Asn Gly
370 375 380
Ile Lys Ala Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Gly Val
385 390 395 400
Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro
405 410 415
Val Leu Leu Pro Asp Asn His Tyr Leu Ser Tyr Gln Ser Ala Leu Phe
420 425 430
Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Leu
435 440 445
Thr Ala Ala Gly Ile Thr Glu Gly Met Asn Glu Leu Tyr Lys His His
450 455 460
His His His His
465

Claims (7)

1.一种基于CD47/SIRPα阻断功能及其生物效应的药物快速筛选方法,包括以下步骤:
1)将第一荧光蛋白与CD47蛋白羧基末端连接构建重组CD47-第一荧光蛋白融合蛋白;
2)将第二荧光蛋白构建在SIRPα蛋白的下游;将第三荧光蛋白基因构建在PTPN11基因SH2结构域的下游;在CMV启动子下分别连接SIRPα-第二荧光蛋白和SH2PTPN11-第三荧光蛋白基因片段,构建两个表达质粒;
3)将CMV-SIRPα-第二荧光蛋白和CMV-SH2PTPN11-第三荧光蛋白的基因共转染到单核细胞系中,建立稳转细胞系;
4)稳转细胞系诱导成巨噬细胞,将巨噬细胞与抗SIRPα的单抗药、小分子、或多肽阻断剂孵育,清洗非特异性结合后与重组CD47-第一荧光蛋白融合蛋白共孵育;
或,将CD47-第一荧光蛋白与抗CD47的单抗药、小分子、或多肽阻断剂孵育,清洗非特异性结合后与巨噬细胞共孵育;
5)分别检测第一、第二、第三荧光蛋白荧光值,并判断单抗药、小分子、或多肽阻断剂对CD47/SIRPα信号通路的阻断功能;
其中第一荧光蛋白是RFP红色荧光蛋白;第二荧光蛋白是青色荧光蛋白CyPet;第三荧光蛋白是黄色荧光蛋白Ypet。
2.根据权利要求1的药物快速筛选方法,其中步骤1)中,将红色荧光蛋白tagRFP基因与人全长CD47基因构建在同一个读码框使tagRFP接于CD47蛋白C端形成CD47-tagRFP融合蛋白,同时在tagRFP的C端接上6个组氨酸His标签。
3.根据权利要求2的药物快速筛选方法,其中步骤1)中,将CD47-tagRFP基因通过EcoRI/SeXA I克隆到慢病毒表达载体pLV-puro的CMV启动子下,获得质粒pCMV-CD47tagRFP,去掉了原质粒中的PGK启动子和Puro抗性基因,有利于提高慢病毒的转染效率,而阳性克隆的筛选利用目标蛋白中tagRFP荧光蛋白直接用分选型流式细胞仪筛选或荧光显微镜下挑取;将pCMV-CD47tagRFP与慢病毒包装质粒pH1、pH2共转染到慢病毒包装系细胞293V,制备CMV-CD47tagRFP慢病毒,转染至人胚肾细胞293,筛选克隆获得高表达CD47-tagRFP融合蛋白的CD47-tagRFP/293细胞系;扩增该CD47-tagRFP/293细胞,裂解后用His亲和法制备纯化含重组CD47-tagRFP融合蛋白的膜碎片。
4.根据权利要求3的药物快速筛选方法,其中步骤2)中,将YPet偶联于PTPN11基因SH2结构域的C端,CyPet偶联于SIRPα的C端;将青色荧光蛋白CyPet基因构建在SIRPα蛋白的下游,构建SIRPα-CyPet融合蛋白基因,并通过EcoR I/SeXA I亚克隆到慢病毒表达载体pLV-puro的CMV启动子下,获得质粒pCMV-SIRPαCyPet;同样,将黄色荧光蛋白基因Ypet通过一个连接肽构建在PTPN11基因SH2结构域的下游,即SH2PTPN11-连接肽-Ypet,构建SH2PTPN11-Ypet融合蛋白基因,并通过EcoRI和SexAI亚克隆到慢病毒表达载体pLV-puro的CMV启动子下,获得质粒pCMV-SH2PTPN11Ypet;将pCMV-SIRPαCyPet和pCMV-SH2PTPN11Ypet分别与慢病毒包装质粒pH1、pH2共转染到慢病毒包装系细胞293V,制备CMV-SIRPαCyPet和CMV-SH2PTPN11Ypet慢病毒,并共转染到人外周血的单核细胞THP-1中,建立SIRPαCyPet.SH2PTPN11Ypet/THP-1稳转细胞系;
其中编码CD47-tagRFP融合蛋白的核酸序列如SEQ ID NO:1所示;CD47-tagRFP融合蛋白的氨基酸序列如SEQ ID NO:2所示;
编码SIRPαCyPet融合蛋白的DNA基因序列如SEQ ID NO:3所示,表达后SIRPαCyPet融合蛋白的氨基酸序列如SEQ ID NO:4所示;
编码SH2PTPN11Ypet融合蛋白的DNA基因序列如SEQ ID NO:5所示,表达后SH2PTPN11Ypet融合蛋白的序列如SEQ ID NO:6所示;
连接肽氨基酸序列为(G4S)3,即:
GGGGSGGGGSGGGGS。
5.根据权利要求4的药物快速筛选方法,其中步骤4)中,使用佛波酯诱导稳转细胞系成巨噬细胞;
将巨噬细胞与抗SIRPα的单抗药、小分子、或多肽阻断剂孵育,清洗非特异性结合后与重组CD47-tagRFP融合蛋白共孵育;
或,将CD47-tagRFP与抗CD47的单抗药、小分子、或多肽阻断剂孵育,清洗非特异性结合后与巨噬细胞共孵育;
同时设立巨噬细胞与CD47-tagRFP融合蛋白直接共孵育的对照组。
6.根据权利要求5的药物快速筛选方法,其中步骤5)中,经缓冲液清洗去除非特异性结合后用流式细胞仪、或荧光酶标仪分析细胞表面的tagRFP荧光值;按CyPet/Ypet荧光蛋白FRET法分析巨噬细胞内的Ypet荧光值;通过药物组荧光值与对照组比较,判断抗SIRPα或抗CD47药对CD47/SIRPα阻断功能。
7.一种基于CD47/SIRPα阻断功能及其生物效应的药物快速筛选方法,包括以下步骤:
1)将红色荧光蛋白tagRFP偶联于CD47蛋白羧基末端,制备CD47-tagRFP融合蛋白;
2)将青色荧光蛋白基因CyPet构建在SIRPα蛋白基因的下游,通过EcoR I/SeXA I亚克隆到慢病毒表达载体pLV-puro的CMV启动子下,获得质粒pCMV-SIRPαCyPet;同样,将黄色荧光蛋白基因Ypet通过一个连接肽(G4S)3构建在PTPN11基因SH2结构域的下游,并通过EcoRI/SeXA I亚克隆到慢病毒表达载体pLV-puro的CMV启动子下,获得质粒pCMV-SH2PTPN11Ypet;将pCMV-SIRPαCyPet和pCMV-SH2PTPN11Ypet分别与慢病毒包装质粒pH1、pH2共转染到慢病毒包装系细胞293V,制各CMV-SIRPαCyPet和CMV-SH2PTPN11Ypet慢病毒,并共转染到人外周血的单核细胞THP-1中,建立稳转细胞系SIRPαCyPet.SH2PTPN11Ypet/THP-1;
3)将SIRPαCyPet.SH2PTPN11Ypet/THP-1细胞诱导成巨噬细胞后与抗SIRPα的单抗药、小分子、或多肽阻断剂共孵育,清洗非特异性结合后与重组CD47-tagRFP融合蛋白共孵育;
或,将CD47-tagRFP与抗CD47的单抗药、小分子、或多肽阻断剂孵育,清洗非特异性结合后与巨噬细胞共孵育;
同时设立巨噬细胞与CD47-tagRFP融合蛋白直接共孵育的对照组;
4)清洗去除非特异性结合后,检测细胞表面的红色荧光蛋白tagRFP荧光值;以及按CyPet/Ypet荧光蛋白FRET法分析细胞内的Ypet荧光值,并与对照组比较;
5)依据荧光值判断抗SIRPα或抗CD47的单抗药、小分子、或多肽阻断剂对CD47/SIRPα信号通路的阻断作用;
其中编码CD47-tagRFP融合蛋白的核酸序列如SEQ ID NO:1所示;CD47-tagRFP融合蛋白的氨基酸序列如SEQ ID NO:2所示;
编码SIRPαCyPet融合蛋白的DNA基因序列如SEQ ID NO:3所示,表达后SIRPαCyPet融合蛋白的氨基酸序列如SEQ ID NO:4所示;编码SH2PTPN11Ypet融合蛋白的DNA基因序列如SEQID NO:5所示,表达后SH2PTPN11Ypet融合蛋白的序列如SEQ ID NO:6所示。
CN201811653505.2A 2018-12-29 2018-12-29 一种基于CD47/SIRPα阻断功能及其生物效应的药物快速筛选方法 Active CN109554433B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811653505.2A CN109554433B (zh) 2018-12-29 2018-12-29 一种基于CD47/SIRPα阻断功能及其生物效应的药物快速筛选方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811653505.2A CN109554433B (zh) 2018-12-29 2018-12-29 一种基于CD47/SIRPα阻断功能及其生物效应的药物快速筛选方法

Publications (2)

Publication Number Publication Date
CN109554433A CN109554433A (zh) 2019-04-02
CN109554433B true CN109554433B (zh) 2022-04-29

Family

ID=65872548

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811653505.2A Active CN109554433B (zh) 2018-12-29 2018-12-29 一种基于CD47/SIRPα阻断功能及其生物效应的药物快速筛选方法

Country Status (1)

Country Link
CN (1) CN109554433B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022127882A1 (zh) * 2020-12-17 2022-06-23 南京蓬勃生物科技有限公司 筛选靶向CD47-SIRPα免疫检查点的候选药物的方法和试剂盒
CN114366821A (zh) * 2022-02-09 2022-04-19 台州学院 一种表达受体蛋白的细胞膜纳米囊泡及其制备方法和应用
CN116804185A (zh) * 2022-03-25 2023-09-26 士泽生物医药(苏州)有限公司 一种通用型细胞及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102321586A (zh) * 2011-08-17 2012-01-18 东北师范大学 以MyD88TIR二聚化为靶点的抗炎抑制剂筛选模型及应用
CN106047934A (zh) * 2016-08-09 2016-10-26 李因传 一种多编码框、非整合型慢病毒载体的构建和应用
CN108872569A (zh) * 2018-06-19 2018-11-23 浠思(上海)生物技术有限公司 利用HTRF一步法筛选CD47/SIRP alpha阻断剂的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102321586A (zh) * 2011-08-17 2012-01-18 东北师范大学 以MyD88TIR二聚化为靶点的抗炎抑制剂筛选模型及应用
CN106047934A (zh) * 2016-08-09 2016-10-26 李因传 一种多编码框、非整合型慢病毒载体的构建和应用
CN108872569A (zh) * 2018-06-19 2018-11-23 浠思(上海)生物技术有限公司 利用HTRF一步法筛选CD47/SIRP alpha阻断剂的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Engineered proteins with sensing and activating modules for automated reprogramming of cellular functions;Jie Sun等;《 Nat Commun》;20170907;第8卷(第1期);第1-10页 *
Functions and molecular mechanisms of the CD47-SIRPalpha signalling pathway",Takashi Matozaki;Takashi Matozaki等;《Trends Cell Biol》;20090112;第19卷(第2期);第72-80页 *
信号调节蛋白-α基因真核表达质粒的构建及其在A549细胞中的表达;杨臣臣等;《中国生物制品学杂志》;20150605;第28卷(第5期);第493-496页 *

Also Published As

Publication number Publication date
CN109554433A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
US10836798B2 (en) Amino acid-specific binder and selectively identifying an amino acid
CN109554433B (zh) 一种基于CD47/SIRPα阻断功能及其生物效应的药物快速筛选方法
EP2882844A2 (en) Protease-resistant systems for polypeptide display and methods of making and using thereof
KR102208505B1 (ko) 고처리량 수용체:리간드 확인을 위한 방법
Miyamoto et al. Towards delineation of a developmental α-importome in the mammalian male germline
CN109666699B (zh) 一种基于lag-3/mhc ii阻断功能及其生物效应的药物快速筛选方法
WO2010151656A2 (en) Compositions and methods for identification of parp function, inhibitors, and activators
CN109652453B (zh) 一种基于pd-1/pdl-1阻断功能及生物效应的抗癌药物快速筛选方法
CN113336859A (zh) 一种识别cd105的生物探针
KR20170043783A (ko) 개선된 분할 녹색 형광 단백질 상보 시스템 및 이의 용도
EP2423218B1 (en) Tag peptide having protease recognition sequence and utilization of same
US20220281931A1 (en) Chemically inducible polypeptide polymerization
CN111856024B (zh) 检测生物膜蛋白质间相互作用的方法及所用成套试剂
KR101864375B1 (ko) 바이오 실리카를 이용한 물질의 검출, 분리 또는 정제
CN109652454B (zh) 一种基于gp120/CCR5阻断功能及其生物效应的药物快速筛选方法
CN109666698B (zh) 一种基于Tim-3/Galectin-9阻断功能及其生物效应的药物快速筛选方法
JP6624755B2 (ja) プロテインタグ、タグ化タンパク質及びタンパク質精製方法
JP2012127694A (ja) 細胞内ユビキチン化の検出方法
EP3530670B1 (en) Method for producing endotoxin detecting agent comprising recombinant limulus factor c and use thereof
JP2004108943A (ja) オルガネラ局在タンパク質の解析方法と解析材料
WO2019085958A1 (zh) 检测生物分子间相互作用及其调控因子的成套试剂与应用
CN114437232B (zh) 一种细胞表面大分子定量展示系统及其制备方法和用途
KR102466369B1 (ko) 자가면역 뇌염의 진단 방법
EP1397520B1 (en) Hiv-1 vpr interactions with mitochondrial apoptosis inducing factor and methods of using the same
Hennig Validation and classification of RNA binding proteins identified by mRNA interactome capture

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant