WO2023145489A1 - 液晶ポリエステル組成物、液晶ポリエステル組成物の製造方法、フィルム及びフィルムの製造方法 - Google Patents

液晶ポリエステル組成物、液晶ポリエステル組成物の製造方法、フィルム及びフィルムの製造方法 Download PDF

Info

Publication number
WO2023145489A1
WO2023145489A1 PCT/JP2023/000805 JP2023000805W WO2023145489A1 WO 2023145489 A1 WO2023145489 A1 WO 2023145489A1 JP 2023000805 W JP2023000805 W JP 2023000805W WO 2023145489 A1 WO2023145489 A1 WO 2023145489A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystalline
crystalline polyester
liquid crystal
polyester composition
Prior art date
Application number
PCT/JP2023/000805
Other languages
English (en)
French (fr)
Inventor
昌平 莇
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2023145489A1 publication Critical patent/WO2023145489A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones

Definitions

  • the present invention relates to a liquid crystalline polyester composition, a method for producing a liquid crystalline polyester composition, a film, and a method for producing a film.
  • Liquid crystalline polyester film is attracting attention as an electronic substrate material because it has excellent high-frequency characteristics and low water absorption.
  • Liquid crystal polyester film is a laminate having it as an insulating material (for example, copper clad laminate: Copper Clad Laminate, CCL, flexible copper clad laminate: Flexible Copper Clad Laminate, FCCL, double-sided CCL having copper foil on both sides, etc.) It is possible to provide as
  • Patent Document 1 discloses an aromatic liquid crystalline polyester having a specific repeating unit derived from an aromatic hydroxycarboxylic acid. According to the aromatic liquid crystalline polyester, dielectric loss is suppressed and a film having excellent heat resistance is produced. It is considered to be excellent in film processability.
  • Patent Document 2 describes an insulating material for circuit boards made of a liquid crystalline aromatic polyester composed of specific structural units, and the insulating material is said to have a small dielectric loss tangent in a high frequency region.
  • JP 2005-272819 A Japanese Patent No. 4363057
  • Patent Literature 1 is excellent in dielectric loss tangent, there is room for further improvement in improving processing characteristics in film formation.
  • Patent Document 2 is said to be excellent in dielectric loss tangent, there is room for further improvement in terms of properties that are being demanded in recent years.
  • the inventors of the present invention have made intensive studies to solve the above problems.
  • the inventors have found that the addition of the specific liquid crystalline polyester (B) to the polyester composition makes it possible to suppress the increase in viscosity of the liquid crystalline polyester composition due to a temperature drop, and have completed the present invention. That is, the present invention has the following aspects.
  • the liquid crystal polyester (A) is having a repeating unit represented by the following formula (A1), a repeating unit represented by the following formula (A2), and a repeating unit represented by the following formula (A3); (A1) —O—Ar 1 —CO— (A2) —CO—Ar 2 —CO— (A3) -X-Ar 3 -Y- (Ar 1 represents a phenylene group, a naphthylene group or a biphenylylene group.
  • Ar 2 and Ar 3 each independently represent a phenylene group, a naphthylene group, a biphenylylene group, or a group represented by the following formula (A4).
  • X and Y each independently represent an oxygen atom or an imino group (--NH--).
  • Each hydrogen atom in the above groups represented by Ar 1 , Ar 2 or Ar 3 may be independently substituted with a halogen atom, an alkyl group or an aryl group.
  • (A4) —Ar 4 —Z—Ar 5 — Ar 4 and Ar 5 each independently represent a phenylene group or a naphthylene group.
  • Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group or an alkylidene group.
  • the number of repeating units represented by the formula (A1) is 30% or more and 80% or less.
  • the liquid crystal polyester (B) is Having a repeating unit represented by the following formula (B1), (B1) —O—Ar b1 —CO— (Ar b1 represents a phenylene group, a naphthylene group or a biphenylylene group.
  • Each hydrogen atom in the above group represented by Ar b1 may be independently substituted with a halogen atom, an alkyl group or an aryl group.
  • the repeating unit represented by the formula (B1) is including a repeating unit represented by the following formula (B1-1), (B1-1) -O-Ar b1-1 -CO- (Ar b1-1 represents a naphthylene group.
  • Each hydrogen atom in the above group represented by Ar b1-1 may be independently substituted with a halogen atom, an alkyl group or an aryl group.
  • the number of repeating units represented by the formula (B1-1) is more than 50% and 90% or less with respect to 100% of the total number of repeating units corresponding to the formula (B1).
  • a liquid crystal polyester composition. ⁇ 3> In the liquid crystalline polyester composition, the content ratio of the liquid crystalline polyester (A) and the liquid crystalline polyester (B) is the liquid crystalline polyester (A)/liquid crystalline polyester (B) 95/ 5 to 25/75, the liquid crystalline polyester composition according to ⁇ 1> or ⁇ 2>.
  • the ratio of the total content of the liquid crystalline polyester (A) and the liquid crystalline polyester (B) to 100% by mass of the total mass of the liquid crystalline polyester composition is 80% by mass or more, the ⁇ 1> to ⁇ 4> The liquid crystalline polyester composition according to any one of items 4>.
  • the liquid crystal polyester (A) is The ⁇ 1> to ⁇ 6> having a repeating unit represented by the following formula (A1), a repeating unit represented by the following formula (A2), and a repeating unit represented by the following formula (A3) The liquid crystalline polyester composition according to any one of.
  • Ar 1 represents a 2,6-naphthylene group, a 1,4-phenylene group, or a 4,4'-biphenylylene group.
  • Ar 2 and Ar 3 each independently represent a 2,6-naphthylene group, a 2,7-naphthylene group, a 1,4-phenylene group, a 1,3-phenylene group or a 4,4'-biphenylylene group.
  • each hydrogen atom in the above group represented by Ar 1 , Ar 2 or Ar 3 is independently substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms; good too.
  • the repeating unit represented by the formula (B1) is The liquid crystalline polyester according to any one of ⁇ 1> to ⁇ 7>, which consists only of a repeating unit represented by the following formula (B1-1) and a repeating unit represented by the following formula (B1-2). Composition.
  • An amine decomposition product obtained from the liquid crystal polyester composition under the following amine decomposition conditions is a component detected in a retention time range of 17.4 to 17.5 minutes by liquid chromatography analysis under the following analysis conditions.
  • liquid crystal polyester composition with 4-(4-hydroxyphenoxy) benzoic acid as a standard substance, the relative content of the component obtained from the peak area of the chromatogram of the liquid chromatography analysis, the total mass of the liquid crystalline polyester composition 100 mass %, the liquid crystal polyester composition according to any one of ⁇ 1> to ⁇ 8>, which is 0.0001% by mass or more and 0.5% by mass or less.
  • Example decomposition conditions The liquid crystal polyester composition and butylamine are mixed and treated at 200° C. for 2 hours or more, followed by vacuum treatment at 60° C. to remove butylamine, neutralization treatment by adding formic acid, and the amine decomposition product.
  • the liquid crystal polyester contained in the liquid crystal polyester composition has a weight-average molecular weight of 270,000 or more, measured using polystyrene as a standard substance, according to any one of ⁇ 1> to ⁇ 9>.
  • a liquid crystal polyester composition. ⁇ 11> The method for producing the liquid crystalline polyester composition according to any one of ⁇ 1> to ⁇ 10>, which comprises mixing the liquid crystalline polyester (A) and the liquid crystalline polyester (B).
  • the liquid crystal polyester (A) is having a repeating unit represented by the following formula (A1), a repeating unit represented by the following formula (A2), and a repeating unit represented by the following formula (A3); (A1) —O—Ar 1 —CO— (A2) —CO—Ar 2 —CO— (A3) -X-Ar 3 -Y- (Ar 1 represents a phenylene group, a naphthylene group or a biphenylylene group.
  • Ar 2 and Ar 3 each independently represent a phenylene group, a naphthylene group, a biphenylylene group, or a group represented by the following formula (A4).
  • X and Y each independently represent an oxygen atom or an imino group (--NH--).
  • Each hydrogen atom in the above groups represented by Ar 1 , Ar 2 or Ar 3 may be independently substituted with a halogen atom, an alkyl group or an aryl group.
  • (A4) —Ar 4 —Z—Ar 5 — Ar 4 and Ar 5 each independently represent a phenylene group or a naphthylene group.
  • Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group or an alkylidene group.
  • the number of repeating units represented by the formula (A1) is 30% or more and 80% or less.
  • the liquid crystal polyester (B) is Having a repeating unit represented by the following formula (B1), (B1) —O—Ar b1 —CO— (Ar b1 represents a phenylene group, a naphthylene group or a biphenylylene group.
  • Each hydrogen atom in the above group represented by Ar b1 may be independently substituted with a halogen atom, an alkyl group or an aryl group.
  • a method for producing a film according to ⁇ 12> which comprises melt-molding a film using the liquid crystalline polyester composition according to any one of ⁇ 1> to ⁇ 10> as a molding material.
  • the liquid crystalline polyester composition excellent in the balance of a dielectric loss tangent and processing characteristics can be provided. Further, according to the present invention, it is possible to provide a film of the liquid crystalline polyester composition and a method for producing the same.
  • Embodiments of the liquid crystalline polyester composition of the present invention, the method for producing the liquid crystalline polyester composition, the film, and the method for producing the film are described below.
  • the liquid crystalline polyester composition of the embodiment is a liquid crystalline polyester composition containing the following liquid crystalline polyester (A) and the following liquid crystalline polyester (B). Since the liquid crystalline polyester composition of the embodiment contains the liquid crystalline polyester (A) and the liquid crystalline polyester (B), the dielectric loss tangent and processing characteristics are well balanced.
  • the liquid crystalline polyester composition "excellent in processability" means that the liquid crystalline polyester composition is heated to a temperature equal to or higher than the endothermic peak detected by a differential scanning calorimeter, and the temperature is lowered after heating. It means that the degree of increase in the viscosity of the liquid crystalline polyester composition is small when the liquid crystal polyester composition is heated.
  • the degree of viscosity increase is the difference between the viscosity at the temperature at the apex position of the endothermic peak detected by the differential scanning calorimeter of the liquid crystalline polyester composition and the viscosity at the time when the temperature at the apex position of the endothermic peak is lowered by 20°C. It can be confirmed by the difference ( ⁇ Tm ⁇ 20° C. ⁇ Tm ). It can be evaluated that the smaller the value of the difference ( ⁇ Tm ⁇ 20° C. ⁇ Tm ), the smaller the degree of viscosity increase.
  • the degree of viscosity increase is determined by, for example, the viscosity at the temperature at the apex position of the endothermic peak detected by a differential scanning calorimeter of the liquid crystalline polyester composition, and the viscosity at the time when the temperature at the apex position of the endothermic peak is lowered by 20°C. ( ⁇ Tm ⁇ 20° C./ ⁇ Tm ). It can be evaluated that the smaller the value of the ratio ( ⁇ Tm ⁇ 20° C./ ⁇ Tm ), the smaller the degree of increase in viscosity.
  • dielectric loss tangent As a liquid crystal polyester composition having an excellent balance between dielectric loss tangent and processing characteristics, a preferable value of dielectric loss tangent related to the liquid crystal polyester composition is the dielectric at a frequency of 10 GHz, which is measured on a test piece in [Evaluation of dielectric properties] described later. A tangent value of 0.0010 or less can be exemplified.
  • dielectric properties refer to properties relating to dielectric constant and dielectric loss tangent.
  • Preferred dielectric properties related to the liquid crystal polyester composition include a relative permittivity value of 3 or more and 4 or less at a frequency of 10 GHz, which is measured on a test piece in [Evaluation of dielectric properties] described later, and a dielectric loss tangent at a frequency of 10 GHz.
  • a value of 0.0002 or more and 0.0010 or less can be exemplified.
  • the liquid crystalline polyester contained in the liquid crystalline polyester composition of the present embodiment is a polyester that exhibits liquid crystallinity in a molten state, and preferably melts at a temperature of 450°C or less.
  • the liquid crystalline polyester contained in the liquid crystalline polyester composition of the present embodiment is preferably a wholly aromatic liquid crystalline polyester using only an aromatic compound as a raw material monomer.
  • the liquid crystalline polyester is preferably a wholly aromatic liquid crystalline polyester having only repeating units derived from an aromatic compound as repeating units.
  • a typical example of a liquid crystal polyester is an aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, and at least one compound selected from the group consisting of an aromatic diol, an aromatic hydroxylamine and an aromatic diamine, and polymerized.
  • the aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids, aromatic diols, aromatic hydroxyamines and aromatic diamines are each independently partly or wholly replaced by polymerizable derivatives thereof.
  • Examples of polymerizable derivatives of compounds having a carboxyl group such as aromatic hydroxycarboxylic acids and aromatic dicarboxylic acids include esters in which the carboxyl group is converted to an alkoxycarbonyl group or an aryloxycarbonyl group; converted acid halides; and acid anhydrides obtained by converting a carboxyl group to an acyloxycarbonyl group.
  • Examples of polymerizable derivatives of compounds having a hydroxyl group such as aromatic hydroxycarboxylic acids, aromatic diols and aromatic hydroxylamines include acylated products obtained by acylating a hydroxyl group to convert it to an acyloxyl group.
  • Examples of polymerizable derivatives of compounds having an amino group such as aromatic hydroxylamines and aromatic diamines include acylated products obtained by acylating an amino group to convert it to an acylamino group.
  • liquid crystalline polyester (A) and the liquid crystalline polyester (B) contained in the liquid crystalline polyester composition of the embodiment will be described below.
  • the liquid crystal polyester (A) is having a repeating unit represented by the following formula (A1), a repeating unit represented by the following formula (A2), and a repeating unit represented by the following formula (A3); (A1) —O—Ar 1 —CO— (A2) —CO—Ar 2 —CO— (A3) -X-Ar 3 -Y- (Ar 1 represents a phenylene group, a naphthylene group or a biphenylylene group.
  • Ar 2 and Ar 3 each independently represent a phenylene group, a naphthylene group, a biphenylylene group, or a group represented by the following formula (A4).
  • X and Y each independently represent an oxygen atom or an imino group (--NH--).
  • Each hydrogen atom in the above groups represented by Ar 1 , Ar 2 or Ar 3 may be independently substituted with a halogen atom, an alkyl group or an aryl group.
  • (A4) —Ar 4 —Z—Ar 5 — (Ar 4 and Ar 5 each independently represent a phenylene group or a naphthylene group.
  • Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group or an alkylidene group.
  • the number of repeating units represented by formula (A1) is 30% or more and 80% or less.
  • the liquid crystal polyester (A) mentioned above includes a repeating unit represented by the following formula (A1), a repeating unit represented by the following formula (A2), and the following formula and a repeating unit represented by (A3).
  • Ar 1 , Ar 2 and Ar 3 each independently represent a phenylene group, a naphthylene group, or a biphenylylene group.
  • Each hydrogen atom in the group represented by Ar 1 , Ar 2 or Ar 3 may be independently substituted with a halogen atom, an alkyl group or an aryl group.
  • the liquid crystalline polyester (A) mentioned above includes a repeating unit represented by the following formula (A1) and a repeating unit represented by the following formula (A2) and a repeating unit represented by the following formula (A3).
  • Ar 1 represents a 2,6-naphthylene group, a 1,4-phenylene group, or a 4,4'-biphenylylene group.
  • Ar 2 and Ar 3 each independently represent a 2,6-naphthylene group, a 2,7-naphthylene group, a 1,4-phenylene group, a 1,3-phenylene group or a 4,4'-biphenylylene group.
  • each hydrogen atom in the above group represented by Ar 1 , Ar 2 or Ar 3 is independently substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms; good too. )
  • halogen atoms that can be substituted with hydrogen atoms include fluorine atoms, chlorine atoms, bromine atoms and iodine atoms.
  • alkyl group having 1 to 10 carbon atoms which can be substituted with a hydrogen atom examples include methyl group, ethyl group, 1-propyl group, isopropyl group, 1-butyl group, isobutyl group, sec-butyl group and tert-butyl. group, 1-hexyl group, 2-ethylhexyl group, 1-octyl group and 1-decyl group.
  • At least one hydrogen atom in the group represented by Ar 1 , Ar 2 or Ar 3 is substituted with the halogen atom, the alkyl group having 1 to 10 carbon atoms or the aryl group having 6 to 20 carbon atoms; , the number of groups substituting the hydrogen atom is preferably 1 or 2 , and more preferably There is one.
  • a hydrogen atom of Ar 1 , Ar 2 or Ar 3 may not be substituted with any of the groups described above.
  • the liquid crystalline polyester (A) preferably contains a repeating unit containing a naphthalene structure.
  • a liquid crystalline polyester containing a repeating unit containing a naphthalene structure tends to be more excellent in dielectric loss tangent than a liquid crystalline polyester containing no repeating unit containing a naphthalene structure.
  • a liquid crystal polyester having a repeating unit containing a divalent naphthalene structure a repeating unit represented by the above formula (A1), a repeating unit represented by the above formula (A2), and a repeating unit represented by the above formula (A3)
  • at least one of the plurality of Ar 1 , Ar 2 and Ar 3 is preferably a naphthylene group, more preferably a 2,6-naphthylene group.
  • the number-based content of repeating units containing a naphthalene structure in the liquid crystal polyester (A) is preferably 40% or more with respect to the total number (100%) of all repeating units in the liquid crystal polyester (A). , is preferably 50% or more, more preferably 55% or more, and even more preferably 60% or more. When the content of the repeating unit containing the naphthalene structure is at least the above lower limit, the dielectric loss tangent of the liquid crystalline polyester can be further reduced.
  • the content based on the number of repeating units containing a naphthalene structure in the liquid crystal polyester (A) is preferably 90% or less, preferably 85%, relative to the total number (100%) of all repeating units in the liquid crystal polyester.
  • the content of the repeating unit containing the naphthalene structure is equal to or less than the above upper limit, it is possible to ensure reaction stability during production of the liquid crystalline polyester.
  • An example of the numerical range of the number of repeating units containing the naphthalene structure in the liquid crystal polyester (A) may be 40% or more and 90% or less, or 50% or more and 85% or less. It may be 55% or more and 85% or less, or 60% or more and 80% or less.
  • the liquid crystalline polyester having repeating units represented by formulas (A1) to (A3) preferably has repeating units in which Ar 1 and/or Ar 2 is a 2,6-naphthylene group.
  • the repeating units represented by the above formulas (A1) to (A3) in which Ar 1 and/or Ar 2 are 2,6-naphthylene groups are added to the liquid crystal polyester (A). It may be contained in an amount of 40% or more, may be contained in an amount of 40% or more and 90% or less, or may be contained in an amount of 50% or more and 85% or less based on the total number (100%) of all repeating units. , 55% or more and 85% or less, or 60% or more and 80% or less.
  • the repeating unit represented by formula (A1) above is a repeating unit derived from an aromatic hydroxycarboxylic acid.
  • the aromatic hydroxycarboxylic acid include parahydroxybenzoic acid, metahydroxybenzoic acid, 2-hydroxy-6-naphthoic acid, 2-hydroxy-3-naphthoic acid, 1-hydroxy-5-naphthoic acid, 4- Hydroxy-4'-carboxydiphenyl ether and aromatics in which some of the hydrogen atoms in the aromatic ring of these aromatic hydroxycarboxylic acids are substituted with substituents selected from the group consisting of alkyl groups, aryl groups and halogen atoms group hydroxycarboxylic acids.
  • the aromatic hydroxycarboxylic acid may be used alone or in combination of two or more in the production of the liquid crystalline polyester.
  • the repeating units represented by the formula (A1) include repeating units in which Ar 1 is a 1,4-phenylene group (eg, repeating units derived from 4-hydroxybenzoic acid), and Ar 1 is a 2,6- Repeating units that are naphthylene groups (eg, repeating units derived from 6-hydroxy-2-naphthoic acid) are preferred.
  • the repeating unit represented by formula (A2) above is a repeating unit derived from an aromatic dicarboxylic acid.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, biphenyl-4,4′-dicarboxylic acid, 2,6-naphthalenedicarboxylic acid, diphenyl ether-4,4′-dicarboxylic acid, diphenylthioether-4,4 '-dicarboxylic acids and aromatic dicarboxylic acids in which some of the hydrogen atoms in the aromatic rings of these aromatic dicarboxylic acids are substituted with substituents selected from the group consisting of alkyl groups, aryl groups and halogen atoms. mentioned.
  • the aromatic dicarboxylic acid may be used alone or in combination of two or more in the production of the liquid crystalline polyester.
  • the repeating unit represented by the above formula (A2) includes repeating units in which Ar 2 is a 1,4-phenylene group (eg, repeating units derived from terephthalic acid), and Ar 2 is a 1,3-phenylene group.
  • repeating units e.g., repeating units derived from isophthalic acid
  • Ar 2 is a 2,6-naphthylene group
  • Ar 2 in diphenyl ether- Repeating units that are 4,4'-diyl groups eg, repeating units derived from diphenyl ether-4,4'-dicarboxylic acid
  • the repeating unit represented by formula (A3) above is a repeating unit derived from an aromatic diol, aromatic hydroxylamine or aromatic diamine.
  • aromatic diols, aromatic hydroxylamines or aromatic diamines include 4,4′-dihydroxybiphenyl, hydroquinone, methylhydroquinone, resorcinol, 4,4′-dihydroxydiphenylketone, 4,4′-dihydroxydiphenyl ether, bis (4-hydroxyphenyl)methane, 1,2-bis(4-hydroxyphenyl)ethane, 4,4'-dihydroxydiphenylsulfone, 4,4'-dihydroxydiphenylthioether, 2,6-dihydroxynaphthalene, 1,5- dihydroxynaphthalene, 4-aminophenol, 1,4-phenylenediamine, 4-amino-4'-hydroxybiphenyl, 4,4'-diaminobiphenyl.
  • the aromatic diol, aromatic hydroxyamine or aromatic diamine may be used alone or in combination of two or more in the production of the liquid crystalline polyester.
  • the repeating unit represented by the above formula (A3) includes repeating units in which Ar 3 is a 1,4-phenylene group (for example, repeating units derived from hydroquinone, 4-aminophenol or 1,4-phenylenediamine), and repeating units in which Ar 3 is a 4,4'-biphenylylene group (for example, repeating units derived from 4,4'-dihydroxybiphenyl, 4-amino-4'-hydroxybiphenyl or 4,4'-diaminobiphenyl) preferable.
  • oil means that the chemical structure is changed due to the polymerization of the raw material monomer, and no other structural change occurs.
  • each repeating unit is an aromatic hydroxycarboxylic acid, an aromatic diol, and each acyl of an aromatic It may be a repeating unit derived from a compound.
  • the number of these substituents is preferably small, and it is particularly preferable not to have a substituent such as an alkyl group. .
  • the number-based content of the repeating unit represented by the formula (A1) is the total number of all repeating units (100%) On the other hand, it is 30% or more and 80% or less, preferably 40% or more and 70% or less, and more preferably 45% or more and 65% or less.
  • the number-based content of repeating units represented by the formula (A2) is the total number of all repeating units (100%) On the other hand, it is preferably 35% or less, more preferably 10% or more and 35% or less, still more preferably 15% or more and 30% or less, and particularly preferably 17.5% or more and 27.5% or less.
  • the number-based content of repeating units represented by the formula (A3) is the total number of all repeating units (100%) On the other hand, it is preferably 35% or less, more preferably 10% or more and 35% or less, still more preferably 15% or more and 30% or less, and particularly preferably 17.5% or more and 27.5% or less.
  • the ratio of the content of the repeating unit (A2) to the content of the repeating unit (A3) in the liquid crystalline polyester (A) is [content of the repeating unit (A2)]/[content of the repeating unit (A3)] (number / number), preferably 0.9/1 to 1/0.9, more preferably 0.95/1 to 1/0.95, and 0.98/1 to 1/0.98 More preferred.
  • the liquid crystalline polyester (A) may have two or more types of repeating units (A1) to (A3) each independently.
  • the liquid crystalline polyester may have repeating units other than the repeating units (A1) to (A3), but the content thereof is the total number (100%) of all repeating units constituting the liquid crystalline polyester (A). is preferably 10% or less, more preferably 5% or less, and even more preferably 0%.
  • the sum of the content of the repeating unit (A1) of the liquid crystalline polyester (A), the content of the repeating unit (A2) of the liquid crystalline polyester (A) and the content of the repeating unit (A3) of the liquid crystalline polyester (A) is Do not exceed 100% on a number basis.
  • the number of each repeating unit means a value determined by the analysis method described in JP-A-2000-19168. Specifically, the liquid crystalline polyester resin is reacted with a lower alcohol (alcohol having 1 to 3 carbon atoms) in a supercritical state to depolymerize the liquid crystalline polyester resin to a monomer that derives its repeating unit, and a depolymerization product is obtained. The number of each repeating unit can be calculated by quantifying the monomer deriving each repeating unit obtained as by liquid chromatography.
  • the number of repeating units (A1) can be determined by measuring the molar concentration of the monomers that induce the repeating units (A1) to (A3), respectively, by liquid chromatography. By calculating the ratio of the molar concentration of the monomer that induces the repeating unit (A1) when the total molar concentration of the monomers that induce the repeating units (A1) to (A3) is 100%, can ask.
  • the liquid crystal polyester (B) is Having a repeating unit represented by the following formula (B1), (B1) —O—Ar b1 —CO— (Ar b1 represents a phenylene group, a naphthylene group or a biphenylylene group. Each hydrogen atom in the above group represented by Ar b1 may be independently substituted with a halogen atom, an alkyl group or an aryl group. )
  • the number of repeating units represented by the formula (B1) is more than 80% with respect to the total number (100%) of all repeating units constituting the liquid crystal polyester (B).
  • the phenylene group, naphthylene group, and biphenylylene group for Ar b1 include the same groups as those exemplified for the liquid crystal polyester (A).
  • the halogen atom and the alkyl group or aryl group for Ar b1 include the same groups as those exemplified for the liquid crystal polyester (A).
  • the polyester (B) consists essentially of repeating units represented by the formula (B1) (the number of repeating units represented by the formula (B1) is 100%).
  • the above-mentioned liquid crystalline polyester (B) includes:
  • the repeating unit represented by the formula (B1) is It preferably contains a repeating unit represented by the following formula (B1-1).
  • Each hydrogen atom in the above group represented by Ar b1-1 may be independently substituted with a halogen atom, an alkyl group or an aryl group.
  • the number of repeating units represented by the formula (B1-1) is preferably more than 50% and 90% or less, preferably 65% It is more preferable to be 80% or less.
  • the content of the repeating unit represented by the formula (B1-1) is within the above numerical range, it is contained in the liquid crystalline polyester composition to suppress the viscosity increase due to the temperature drop. It is even more excellent, and can exhibit excellent dielectric loss tangent.
  • the repeating unit represented by the formula (B1) is a repeating unit represented by the following formula (B1-1), and the following formula (B1 -2), more preferably consisting only of a repeating unit represented by the following formula (B1-1) and a repeating unit represented by the following formula (B1-2) .
  • Ar b1-2 represents a phenylene group.
  • Each hydrogen atom in the above group represented by Ar b1-1 or Ar b1-2 may be independently substituted with a halogen atom, an alkyl group or an aryl group.
  • Examples of the naphthylene group for Ar b1-1 include the same groups as those exemplified for the liquid crystal polyester (A).
  • Examples of the phenylene group for Ar b1-2 include the same groups as those exemplified for the liquid crystal polyester (A).
  • the halogen atoms, alkyl groups and aryl groups for Ar b1-1 and Ar b1-2 include the same atoms or groups as those exemplified for the liquid crystal polyester (A).
  • the liquid crystalline polyester (B) mentioned above consists only of the repeating unit represented by the formula (B1), and the repeating unit represented by the formula (B1) is represented by the following formula (B1 -1), and a repeating unit represented by the following formula (B1-2), preferably a repeating unit represented by the following formula (B1-1), and a repeating unit represented by the following formula (B1- It is more preferable to consist only of repeating units represented by 2).
  • Ar b1-2 represents a 1,4-phenylene group.
  • each hydrogen atom in the group represented by Ar b1-1 or Ar b1-2 is independently substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 20 carbon atoms; good too. )
  • the repeating unit represented by formula (B1) above is a repeating unit derived from an aromatic hydroxycarboxylic acid.
  • Examples of the repeating unit derived from aromatic hydroxycarboxylic acid include the same repeating units as the repeating units exemplified as the repeating unit represented by formula (A1) above.
  • the liquid crystalline polyester of the embodiment can have the following aspects. ⁇ 15>
  • the repeating unit represented by the formula (B1) includes a repeating unit represented by the following formula (B1-1) and a repeating unit represented by the following formula (B1-2)
  • the liquid crystal As an example, with respect to the total number (100%) of all repeating units constituting the polyester (B), The number of repeating units represented by the formula (B1-1) is more than 50% and 90% or less, The number of repeating units represented by the formula (B1-2) may be 10% or more and less than 50%, The number of repeating units represented by the formula (B1-1) is 65% or more and 80% or less, The liquid crystalline polyester composition according to any one of ⁇ 1> to ⁇ 10>, wherein the number of repeating units represented by formula (B1-2) may be 20% or more and 35% or less.
  • the liquid crystal polyester (B) may independently have two or more repeating units represented by the formula (B1).
  • the liquid crystalline polyester may have repeating units other than the repeating unit represented by the formula (B1), but the content thereof is the total number of all repeating units constituting the liquid crystalline polyester (B) (100 %), preferably 10% or less, more preferably 5% or less, and even more preferably 0%.
  • liquid crystal polyester (A) and liquid crystal polyester (B) exemplified above, as a particularly preferable combination, the liquid crystal polyester of the embodiment can have the following aspects.
  • the liquid crystalline polyester (A) comprises a repeating unit represented by the following formula (A1), a repeating unit represented by the following formula (A2), and a repeating unit represented by the following formula (A3).
  • Ar 2 and Ar 3 each independently represent a 2,6-naphthylene group or a 1,4-phenylene group.
  • each hydrogen atom in the above group represented by Ar 1 , Ar 2 or Ar 3 is independently substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms; good too.
  • the liquid crystalline polyester composition according to any one of >.
  • Ar b1-1 represents a 2,6-naphthylene group.
  • Ar b1-2 represents a 1,4-phenylene group.
  • each hydrogen atom in the group represented by Ar b1-1 or Ar b1-2 is independently substituted with a halogen atom, an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 20 carbon atoms; good too.
  • the flow initiation temperature of the liquid crystalline polyester composition of the embodiment containing the liquid crystalline polyester (A) and the liquid crystalline polyester (B) is preferably 260° C. or higher, more preferably 260° C. or higher and 400° C. or lower, and 260° C. or higher and 380° C. or lower. More preferred.
  • the heat resistance and strength of the liquid crystalline polyester composition tend to improve as the flow initiation temperature of the liquid crystalline polyester composition increases.
  • the flow initiation temperature of the liquid crystalline polyester composition exceeds 400°C, the melting temperature and melt viscosity of the liquid crystalline polyester composition tend to increase. Therefore, the temperature required for molding the liquid crystalline polyester composition tends to be high.
  • preferred values for the flow initiation temperature of the liquid crystalline polyester (A) include the same numerical values as those exemplified as the flow initiation temperature of the liquid crystalline polyester composition of the embodiment.
  • preferred values for the flow initiation temperature of the liquid crystalline polyester (B) include the same numerical values as those exemplified as the flow initiation temperature of the liquid crystalline polyester composition of the embodiment.
  • the flow initiation temperature of the liquid crystalline polyester composition is also called flow temperature or flow temperature, and is a temperature that serves as an indication of the molecular weight of the liquid crystalline polyester (edited by Naoyuki Koide, "Liquid Crystal Polymer - Synthesis, Molding, Application -", CMC Co., Ltd., June 5, 1987, p.95).
  • the flow initiation temperature was determined by using a flow tester to melt the liquid crystalline polyester composition under a load of 9.8 MPa (100 kg/cm 2 ) at a rate of 4° C./min, followed by a nozzle with an inner diameter of 1 mm and a length of 10 mm.
  • the weight average molecular weight (Mw) of the liquid crystal polyester contained in the liquid crystal polyester composition is preferably 50,000 or more, more preferably 100,000 or more, and even more preferably 270,000 or more. .
  • the weight average molecular weight (Mw) of the liquid crystal polyester contained in the liquid crystal polyester composition is preferably 1,000,000 or less, more preferably 700,000 or less, and 500,000 or less. More preferred.
  • An example of the above numerical range of the weight average molecular weight (Mw) of the liquid crystal polyester contained in the liquid crystal polyester composition is preferably 50,000 or more and 1,000,000 or less, and 100,000 or more and 700,000. It is more preferably 270,000 or more and 500,000 or less.
  • the weight-average molecular weight of the liquid crystal polyester is equal to or less than the above upper limit, it is much easier to form a film having excellent isotropy. It is preferable that the weight-average molecular weight of the liquid crystalline polyester is at least the above lower limit, because even better mechanical strength can be exhibited.
  • the number average molecular weight (Mn) of the liquid crystal polyester contained in the liquid crystal polyester composition is preferably 1,000 or more, more preferably 5,000 or more, and even more preferably 7,000 or more. .
  • the number average molecular weight (Mn) of the liquid crystal polyester contained in the liquid crystal polyester composition is preferably 500,000 or less, more preferably 300,000 or less, and even more preferably 100,000 or less.
  • An example of the above numerical range of the number average molecular weight (Mn) of the liquid crystal polyester contained in the liquid crystal polyester composition is preferably 1,000 or more and 500,000 or less, and 5,000 or more and 300,000 or less. more preferably 7,000 or more and 100,000 or less.
  • the number average molecular weight of the liquid crystalline polyester is equal to or less than the above upper limit, it is much easier to form a film having excellent isotropy.
  • the number average molecular weight of the liquid crystalline polyester is at least the above lower limit, it is preferable because even better mechanical strength is exhibited.
  • the film having excellent isotropy means the molecular orientation of the liquid crystalline polyester contained in the film in the direction of film formation (MD: Machine Direction) and the direction perpendicular to MD (TD: Transverse Direction). It means that the film has a small difference in the direction of
  • the polydispersity (Mw/Mn) of the liquid crystal polyester contained in the liquid crystal polyester composition is not particularly limited, but can be exemplified from 1.0 to 4.0.
  • liquid crystalline polyester contained in the liquid crystalline polyester composition of the embodiment may contain the liquid crystalline polyester (A) and the liquid crystalline polyester (B).
  • the values of the weight average molecular weight (Mw), number average molecular weight (Mn) and polydispersity (Mw/Mn) of the liquid crystal polyester (A) contained in the liquid crystal polyester composition are The same numerical values as those exemplified for each item (weight average molecular weight (Mw), number average molecular weight (Mn), and polydispersity (Mw/Mn)) of the liquid crystalline polyester are listed.
  • the values of the weight average molecular weight (Mw), number average molecular weight (Mn) and polydispersity (Mw/Mn) of the liquid crystal polyester (B) contained in the liquid crystal polyester composition are The same numerical values as those exemplified for each item (weight average molecular weight (Mw), number average molecular weight (Mn), and polydispersity (Mw/Mn)) of the liquid crystalline polyester are listed.
  • weight average molecular weight and “number average molecular weight” can be determined by gel permeation chromatography (GPC) analysis, and based on a calibration curve obtained by measuring the molecular weight of standard polystyrene, It means the value obtained by standard polystyrene conversion.
  • an amine decomposition product obtained from the liquid crystalline polyester composition under the following amine decomposition conditions has a retention time of 17.4 to 17.5 minutes by liquid chromatography analysis under the following analysis conditions. preferably contains a component detected in (Amine decomposition conditions)
  • the liquid crystal polyester composition and butylamine are mixed and treated at 200° C. for 2 hours or more, followed by vacuum treatment at 60° C. to remove butylamine, neutralization treatment by adding formic acid, and the amine decomposition product.
  • the amount of butylamine used under the above amine decomposition conditions is an amount that can sufficiently decompose the liquid crystalline polyester in the liquid crystalline polyester composition.
  • the content is preferably 0.5% by mass or less, more preferably 0.1% by mass or less, and 0.05% by mass with respect to the total mass (100% by mass) of the liquid crystal polyester composition. % or less.
  • the content is preferably 0.0001% by mass or more, more preferably 0.005% by mass or more, more preferably 0.01% by mass, relative to the total mass (100% by mass) of the liquid crystal polyester composition. % or more is more preferable.
  • An example of the numerical range of the relative content of the component is preferably 0.0001% by mass or more and 0.5% by mass or less with respect to the total mass (100% by mass) of the polyester composition, It is more preferably 0.005% by mass or more and 0.1% by mass or less, and even more preferably 0.01% by mass or more and 0.05% by mass or less.
  • Relative determined from the peak area of the chromatogram of the liquid chromatography analysis, using 4-(4-hydroxyphenoxy)benzoic acid as a standard substance, of the components detected in the range of the retention time of 17.4 to 17.5 minutes When the content is within the above numerical range, it is easier to form a film having excellent isotropy, and a better mechanical strength is exhibited.
  • the ratio of the content of the liquid crystal polyester to the total mass (100% by mass) of the liquid crystal polyester composition may be 50% by mass or more, may be 80% by mass or more, or may be 100% by mass. good too.
  • the ratio of the total content of the liquid crystalline polyester (A) and the liquid crystalline polyester (B) to 100% by mass of the total mass of the liquid crystalline polyester contained in the liquid crystalline polyester composition may be 50% by mass or more, It may be 80% by mass or more, or may be 100% by mass.
  • the ratio of the total content of the liquid crystalline polyester (A) and the liquid crystalline polyester (B) to the total weight (100% by mass) of the liquid crystalline polyester composition may be 50% by mass or more, or 80% by mass or more. or 100% by mass.
  • the liquid crystalline polyester is preferably produced by melt-polymerizing raw material monomers corresponding to the repeating units constituting the polyester, and solid-phase polymerizing the obtained polymer as necessary. As a result, a high-molecular-weight liquid crystalline polyester having high heat resistance, strength, and rigidity can be produced with good operability.
  • Melt polymerization may be carried out in the presence of a catalyst. Examples of this catalyst include metal compounds such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, antimony trioxide, 4-(dimethylamino)pyridine, 1-methylimidazole, and the like. Nitrogen-containing heterocyclic compounds are preferably used.
  • the liquid crystalline polyester composition of the present embodiment may further contain optional components other than the liquid crystalline polyester described above.
  • the liquid crystalline polyester composition of the embodiment comprises the liquid crystalline polyester (A), the liquid crystalline polyester (B), and other optional components that are used as necessary, and their contents in the liquid crystalline polyester composition (% by mass ) may be contained so as not to exceed the total mass (100% by mass) of the liquid crystal polyester composition.
  • Optional components include fillers, resins other than the liquid crystalline polyester described above, flame retardants, conductivity imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, damping agents, antibacterial agents, insect repellents, deodorants, Anti-coloring agents, heat stabilizers, release agents, antistatic agents, plasticizers, lubricants, dyes, foaming agents, foam control agents, viscosity modifiers, surfactants and the like.
  • the liquid crystalline polyester composition described above contains the liquid crystalline polyester (A) and the liquid crystalline polyester (B), compared with the case where only the liquid crystalline polyester (A) is contained, the viscosity increases due to the temperature drop. are suppressed and processability is improved.
  • the suppression of viscosity increase due to temperature drop can be confirmed by the following difference ( ⁇ Tm ⁇ 20° C. ⁇ Tm ) in the following [Evaluation of solidification speed]. It can be judged that the smaller the numerical value calculated in the evaluation, the slower the solidification speed of the sample, the lower the degree of increase in viscosity due to the temperature drop, and the better the processing characteristics.
  • an example of the value of the difference in viscosity ( ⁇ Tm ⁇ 20° C. ⁇ Tm ) of the liquid crystalline polyester composition may be 700 Pa s or less, It may be 600 Pa s or less, may be 50 Pa s or more and 680 Pa s or less, may be 50 Pa s or more and 650 Pa s or less, may be 50 Pa s or more and 500 Pa s or less, or may be 100 Pa s. s or more and 400 Pa ⁇ s or less.
  • an example of the value of the viscosity ratio ( ⁇ Tm ⁇ 20° C./ ⁇ Tm ) of the liquid crystalline polyester composition may be 1.52 or less, It may be 1 or more and 1.51 or less, or 1.3 or more and 1.50 or less.
  • the endothermic peak temperature detected by differential scanning calorimetry of the liquid crystalline polyester contained in the liquid crystalline polyester composition is preferably 250° C. or higher, more preferably 250° C. or higher and 350° C. or lower, and 280° C. or higher. It is more preferably 340° C. or lower, and particularly preferably 300° C. or higher and 330° C. or lower. It is preferable that the endothermic peak temperature of the liquid crystalline polyester is equal to or higher than the above lower limit value because heat resistance is good.
  • the temperature of the endothermic peak of the liquid crystalline polyester was measured by raising the temperature from room temperature (23°C) at a rate of 10°C/min using a differential scanning calorimeter (for example, Shimadzu Corporation's "DSC-60A Plus"). It is measured as the temperature (° C.) at the peak position of the endothermic peak of the obtained liquid crystalline polyester sample.
  • a differential scanning calorimeter for example, Shimadzu Corporation's "DSC-60A Plus”
  • the liquid crystalline polyester composition contains the liquid crystalline polyester (A) and the liquid crystalline polyester (B), compared with the case where only the liquid crystalline polyester (B) is contained, the dielectric measured by the following dielectric property evaluation Tangent value is small.
  • the dielectric properties of the liquid crystal polyester composition can be obtained by the following [Evaluation of dielectric properties].
  • the liquid crystalline polyester composition of the embodiment preferably has a dielectric constant value of 4 or less at a frequency of 10 GHz, measured on the test piece in [Evaluation of dielectric properties] above, and preferably 3.8 or less. It is more preferably 3.6 or less.
  • the liquid crystal polyester composition of the embodiment may have a dielectric constant value of 3 or more at a frequency of 10 GHz, which is measured with respect to the test piece in the above [dielectric property evaluation], or 3.2 or more. It may be 3.4 or more.
  • the upper limit and lower limit of the dielectric constant of the liquid crystal polyester composition can be freely combined. Examples of the numerical range of the value of the dielectric constant of the liquid crystal polyester composition may be 3 or more and 4 or less, 3.2 or more and 3.8 or less, or 3.4 or more and 3.4 or more. .6 or less.
  • the liquid crystal polyester composition of the embodiment preferably has a dielectric loss tangent value of 0.0010 or less at a frequency of 10 GHz, which is measured on the test piece in [Evaluation of dielectric properties] above, and is 0.0009 or less. is more preferable, and 0.0008 or less is even more preferable.
  • the lower limit of the dielectric loss tangent value at a frequency of 10 GHz, which is measured on the test piece in the above [Evaluation of dielectric properties] is not particularly limited, but 0.5. 0002 or more, 0.0003 or more, or 0.0004 or more.
  • the upper limit and lower limit of the dielectric loss tangent of the liquid crystal polyester composition can be freely combined.
  • Examples of the numerical range of the value of the dielectric loss tangent of the liquid crystal polyester composition may be 0.0002 or more and 0.0010 or less, 0.0003 or more and 0.0009 or less, or 0.0003 or more and 0.0009 or less. 0004 or more and 0.0008 or less may be sufficient.
  • the liquid crystalline polyester composition contains the liquid crystalline polyester (A) and the liquid crystalline polyester (B), there are cases where only the liquid crystalline polyester (A) is contained and cases where only the liquid crystalline polyester (B) is contained. In comparison, mechanical strength values may be improved.
  • the mechanical strength of the liquid crystalline polyester composition can be evaluated using the flexural strength and flexural modulus measured for the following test piece in the following [Evaluation of bending properties] as indices.
  • the sample to be measured is a molding material, and a rod-shaped test piece of each example having a width of 12.7 mm, a length of 127 mm, and a thickness of 6.4 mm. to manufacture.
  • the resulting bar-shaped test piece is subjected to a flexural test according to ASTM D790 to measure the flexural strength and flexural modulus at 23°C.
  • the liquid crystalline polyester composition of the embodiment has a bending strength measured with respect to the test piece in the above [bending property evaluation], for example, may be 124 MPa or more, may be 130 MPa or more, and may be 140 MPa or more and 300 MPa or less. 150 MPa or more and 200 MPa or less.
  • the liquid crystal polyester composition of the embodiment may have a flexural modulus of, for example, 5 GPa or more, and may be 5.5 MPa or more and 20 GPa or less, as measured with respect to the test piece in the above [bending property evaluation]. It may be 7 MPa or more and 10 GPa or less.
  • liquid crystal polyester composition of the embodiment described above since it contains the liquid crystal polyester (A) and the liquid crystal polyester (B), it has an excellent balance between dielectric loss tangent and processability.
  • the liquid crystalline polyester composition has excellent processing characteristics, that is, the liquid crystalline polyester composition is heated, and since the viscosity increase due to the subsequent temperature drop is suppressed, the workable state is easily maintained for a long time, and the desired shape can be obtained. It can be easily processed into
  • the method for producing the liquid crystalline polyester composition of the present embodiment is a method including mixing the liquid crystalline polyester (A) and the liquid crystalline polyester (B).
  • the liquid crystalline polyester composition of the present embodiment can be obtained by mixing the liquid crystalline polyester (A) and the liquid crystalline polyester (B) which have been separately polymerized in advance.
  • the liquid crystalline polyester composition of the embodiment can be obtained by mixing the above-described liquid crystalline polyester (A), the liquid crystalline polyester (B), and optionally used optional components all at once or in an appropriate order. .
  • the powdery liquid crystalline polyester (A) and the powdery liquid crystalline polyester (B) may be mixed with a mixer or the like to obtain a mixture. and the powdery liquid crystalline polyester (B) are preferably mixed with a mixer or the like and then melt-kneaded.
  • the liquid crystalline polyester composition of the present embodiment is pelletized by melt-kneading the liquid crystalline polyester (A), the liquid crystalline polyester (B), and optional components used as necessary using an extruder. can be provided as
  • the liquid crystalline polyester (A), the liquid crystalline polyester (B), and optional components can be exemplified by the same components as those explained in the above ⁇ liquid crystal polyester composition>>. .
  • the ratio of the compounding amounts of the liquid crystalline polyester (A) and the liquid crystalline polyester (B) is, from the viewpoint of excellent balance between dielectric loss tangent and processing characteristics, a mass ratio of Liquid crystal polyester (A)/liquid crystal polyester (B) is preferably 95/5 to 25/75, preferably 95/5 to 30/70, and preferably 95/5 to 40/60. , preferably 95/5 to 50/50, more preferably 95/5 to 50/50 (excluding 50/50), even more preferably 90/10 to 60/40 . Furthermore, from the viewpoint of excellent mechanical strength, the ratio of the amount of the liquid crystalline polyester (A) and the liquid crystalline polyester (B) is 80 in terms of mass ratio. /20 to 30/70, more preferably 80/20 to 60/40, even more preferably 70/30 to 60/40.
  • the liquid crystalline polyester composition obtained in this manner particularly pellets of the liquid crystalline polyester composition, can be suitably used as a composition for film-forming materials used in the production of films described later.
  • the film of the embodiment is a film produced using the liquid crystal polyester composition of the embodiment described above.
  • the film of the embodiment can be obtained by molding the liquid crystalline polyester composition of the embodiment into a film.
  • a film containing the liquid crystal polyester composition of the embodiment can be exemplified.
  • a film made of the liquid crystal polyester composition of the embodiment can be exemplified.
  • the film of the embodiment contains liquid crystal polyester (A) and liquid crystal polyester (B), and the following films can be exemplified.
  • the liquid crystal polyester (A) is having a repeating unit represented by the following formula (A1), a repeating unit represented by the following formula (A2), and a repeating unit represented by the following formula (A3); (A1) —O—Ar 1 —CO— (A2) —CO—Ar 2 —CO— (A3) -X-Ar 3 -Y- (Ar 1 represents a phenylene group, a naphthylene group or a biphenylylene group.
  • Ar 2 and Ar 3 each independently represent a phenylene group, a naphthylene group, a biphenylylene group, or a group represented by the following formula (A4).
  • X and Y each independently represent an oxygen atom or an imino group (--NH--).
  • Each hydrogen atom in the above groups represented by Ar 1 , Ar 2 or Ar 3 may be independently substituted with a halogen atom, an alkyl group or an aryl group.
  • (A4) —Ar 4 —Z—Ar 5 — (Ar 4 and Ar 5 each independently represent a phenylene group or a naphthylene group.
  • Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group or an alkylidene group.
  • the number of repeating units represented by the formula (A1) is 30% or more and 80% or less
  • the liquid crystal polyester (B) is Having a repeating unit represented by the following formula (B1), (B1) —O—Ar b1 —CO— (Ar b1 represents a phenylene group, a naphthylene group or a biphenylylene group. Each hydrogen atom in the above group represented by Ar b1 may be independently substituted with a halogen atom, an alkyl group or an aryl group. ) A film in which the number of repeating units represented by the formula (B1) exceeds 80% with respect to the total number (100%) of all repeating units constituting the liquid crystalline polyester (B).
  • the film of the embodiment may further contain optional components other than the liquid crystal polyester (A) and the liquid crystal polyester (B).
  • liquid crystal polyester (A), the liquid crystal polyester (B), and optional components in the film of the embodiment the same contents as described in the above ⁇ liquid crystal polyester composition>> can be exemplified.
  • the film of the embodiment can be suitably used as a film for electronic parts such as printed wiring boards.
  • the films of the embodiments can be provided as substrates (e.g., flexible substrates), laminates (e.g., flexible copper-clad laminates), printed substrates, printed wiring boards, printed circuit boards, etc., which comprise the film as an insulating material. .
  • the thickness of the film of the embodiment is not particularly limited, but the thickness suitable as a film for electronic parts is preferably 5 ⁇ m or more and 50 ⁇ m or less, more preferably 7 ⁇ m or more and 40 ⁇ m or less. , more preferably 10 ⁇ m or more and 33 ⁇ m or less, and particularly preferably 15 ⁇ m or more and 20 ⁇ m or less.
  • the “thickness” is the average value obtained by measuring the thickness at 10 randomly selected points according to JIS (K7130-1992).
  • the content of the liquid crystalline polyester with respect to 100% by mass of the total mass of the film of the embodiment may be 50% by mass or more and 100% by mass or less, or may be 80% by mass or more and 95% by mass or less.
  • the film of the embodiment is produced using the liquid crystalline polyester composition of the above embodiment as a raw material, it can be produced in a state of good processability, and can exhibit excellent isotropy and excellent dielectric loss tangent. .
  • a method for producing a film according to an embodiment is a method including melt-molding a film using the liquid crystalline polyester composition according to the above embodiment as a molding material.
  • the liquid crystalline polyester composition can be heated to soften and molded into a desired shape.
  • the melt molding method includes an injection molding method, an extrusion molding method such as a T-die method and an inflation method, a compression molding method, a blow molding method, a vacuum molding method and a press molding method. Among them, an inflation method or a T-die method is preferable. .
  • the film can be produced with good processability and can exhibit an excellent dielectric loss tangent.
  • the liquid crystalline polyester composition has excellent processing characteristics in the film production method, that is, the heated liquid crystalline polyester composition is suppressed from increasing in viscosity due to a subsequent temperature drop, so that the processable state can be maintained for a long time. Cheap. Therefore, according to the film manufacturing method of the embodiment, the relaxation of the orientation of the liquid crystalline polyester is facilitated during film formation, and for example, film processing excellent in isotropy can be easily realized.
  • the dielectric constant and dielectric loss tangent at 10 GHz of the obtained test piece were measured using a vector network analyzer (N5290A, manufactured by Keysight Technologies Inc.) and a split cylinder resonator (CR710, manufactured by EM Lab Co., Ltd.). ⁇ Measurement environment: 23°C, 50% RH
  • a sample solution for measurement was prepared by adding 2 mg of the sample to 1.4 g of pentafluorophenol, dissolving it at 80° C. for 2 hours, cooling it to room temperature, adding 2.6 g of chloroform, and adding a solvent (pentafluorophenol/chloroform (weight ratio: 35/ 65)) and then filtered through a filter with a pore size of 0.45 ⁇ m.
  • Molecular weights were calculated using polystyrene as a standard.
  • the configuration of the LC device is as follows. Degassing unit: DGU-20A5 Liquid sending unit: LC-30AD ⁇ 2 Autosampler: SIL-30AC Column oven: CTO-20AC Absorbance detector: SPD-20A System controller: CBM-20A System software: LabSolution
  • the production of each liquid crystalline polyester and liquid crystalline polyester composition is described below.
  • the liquid crystalline polyester (a2) is included in the concept of the liquid crystalline polyester (A) in the composition of the present invention.
  • the liquid crystalline polyester (b1) is included in the concept of the liquid crystalline polyester (B) in the composition of the present invention.
  • the liquid crystalline polyester (a1) was heated from room temperature to 215° C. over 50 minutes in a nitrogen atmosphere, then from 215° C. to 230° C. over 1 hour, and from 230° C. to 300° C. over 11 hours and 40 minutes. and maintained at 300° C. for 10 hours for solid-phase polymerization to obtain a powdery liquid crystalline polyester (a2).
  • the flow initiation temperature of this liquid crystalline polyester (a2) was 328.7°C.
  • the liquid crystalline polyester (a2) was granulated at a cylinder temperature of 345° C. using a twin-screw extruder (manufactured by Ikegai Iron Works Co., Ltd., PCM-30) to obtain pellets of the liquid crystalline polyester (a2).
  • the flow initiation temperature of the liquid crystalline polyester (a2) after granulation was 307.2°C.
  • the temperature at the endothermic peak of the liquid crystalline polyester (a2) after granulation was 322°C.
  • Example 1 Production of liquid crystal polyester composition (c)]
  • the flow initiation temperature of this liquid crystalline polyester composition (c) was 323.0°C.
  • the liquid crystalline polyester composition (c) was granulated at a cylinder temperature of 340 ° C. to obtain pellets of the liquid crystalline polyester composition (c). .
  • the flow initiation temperature of the liquid crystalline polyester composition (c) after granulation was 304.6°C.
  • the temperature at the endothermic peak position of the liquid crystal polyester composition (c) after granulation was 322°C.
  • Example 2 Production of liquid crystal polyester composition (d)]
  • the flow initiation temperature of this liquid crystalline polyester composition (d) was 315.1°C.
  • the liquid crystalline polyester composition (d) was granulated at a cylinder temperature of 330 ° C. to obtain pellets of the liquid crystalline polyester composition (d). .
  • the flow initiation temperature of the liquid crystalline polyester composition (d) after granulation was 302.5°C.
  • the temperature at the endothermic peak position of the liquid crystal polyester composition (d) after granulation was 321°C.
  • Example 3 Production of liquid crystal polyester composition (e)]
  • the flow initiation temperature of this liquid crystalline polyester composition (e) was 312.5°C.
  • the liquid crystalline polyester composition (e) was granulated at a cylinder temperature of 330 ° C. to obtain pellets of the liquid crystalline polyester composition (e). .
  • the flow initiation temperature of the liquid crystalline polyester composition (e) after granulation was 302.2°C.
  • the temperature at the endothermic peak of the liquid crystal polyester composition (e) after granulation was 319°C.
  • Example 4 Production of liquid crystal polyester composition (f)]
  • the flow initiation temperature of this liquid crystalline polyester composition (f) was 311.0°C.
  • the liquid crystalline polyester composition (f) was granulated at a cylinder temperature of 325 ° C. to obtain pellets of the liquid crystalline polyester composition (f). .
  • the flow initiation temperature of the liquid crystalline polyester composition (f) after granulation was 300.5°C.
  • the temperature at the endothermic peak of the liquid crystal polyester composition (f) after granulation was 320°C.
  • Example 5 Production of liquid crystal polyester composition (g)]
  • the flow initiation temperature of this liquid crystalline polyester composition (g) was 309.4°C.
  • the liquid crystalline polyester composition (g) was granulated at a cylinder temperature of 325 ° C. to obtain pellets of the liquid crystalline polyester composition (g). .
  • the flow initiation temperature of the liquid crystalline polyester composition (g) after granulation was 299.9°C.
  • the temperature at the endothermic peak of the liquid crystal polyester composition (g) after granulation was 315°C.
  • Example 6 Production of liquid crystal polyester composition (h)]
  • the flow initiation temperature of this liquid crystalline polyester composition (h) was 311.6°C.
  • the liquid crystalline polyester composition (h) was granulated at a cylinder temperature of 325 ° C. to obtain pellets of the liquid crystalline polyester composition (h).
  • the flow initiation temperature of the liquid crystalline polyester composition (h) after granulation was 299.1°C.
  • the temperature at the endothermic peak of the liquid crystal polyester composition (h) after granulation was 310°C.
  • Example 7 Production of liquid crystal polyester composition (i)]
  • the flow initiation temperature of this liquid crystalline polyester composition (i) was 310.2°C.
  • the liquid crystalline polyester composition (i) was granulated at a cylinder temperature of 330 ° C. to obtain pellets of the liquid crystalline polyester composition (i). .
  • the flow initiation temperature of the liquid crystalline polyester composition (i) after granulation was 298.2°C.
  • the temperature at the endothermic peak position of the liquid crystal polyester composition (i) after granulation was 312°C.
  • Example 8 Production of liquid crystal polyester composition (j)]
  • the flow initiation temperature of this liquid crystalline polyester composition (j) was 327.3°C.
  • the liquid crystalline polyester composition (j) was granulated at a cylinder temperature of 340 ° C. to obtain pellets of the liquid crystalline polyester composition (j). .
  • the flow initiation temperature of the liquid crystalline polyester composition (j) after granulation was 305.2°C.
  • the temperature at the endothermic peak of the liquid crystal polyester composition (j) after granulation was 320°C.
  • Table 2 shows the results of evaluating each item of the liquid crystal polyester composition.
  • the liquid crystalline polyester compositions of Examples 1 to 8 are less likely to cause a viscosity increase than the liquid crystalline polyester of Comparative Example 1, as evaluated by the difference from the viscosity at the endothermic peak position ( ⁇ Tm ⁇ 20° C. ⁇ Tm ). and the dielectric loss tangent value was smaller than that of the liquid crystalline polyester of Comparative Example 2. From this, it was shown that the liquid crystalline polyester compositions of Examples 1 to 8 containing the liquid crystalline polyester (a2) and the liquid crystalline polyester (b1) are excellent in balance between dielectric loss tangent and processability.
  • the flexural strength and flexural modulus are improved as compared with the molded articles of the liquid crystalline polyesters of Comparative Examples 1 and 2. rice field. From this, it was confirmed that by containing both the liquid crystal polyester (a2) and the liquid crystal polyester (b1), an unexpectedly synergistic effect of improving the flexural properties was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

本発明は、液晶ポリエステル(A)と、液晶ポリエステル(B)と、を含有し、前記液晶ポリエステル(B)は、式(B1)-O-Arb1-CO-で表される繰返し単位を有し(Arb1は、フェニレン基、ナフチレン基またはビフェニリレン基を表す。Arb1で表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。)、前記液晶ポリエステル(B)を構成する全繰返し単位の合計数(100%)に対して、前記式(B1)で表される繰返し単位の数が80%超である、液晶ポリエステル組成物に関する。

Description

液晶ポリエステル組成物、液晶ポリエステル組成物の製造方法、フィルム及びフィルムの製造方法
 本発明は、液晶ポリエステル組成物、液晶ポリエステル組成物の製造方法、フィルム及びフィルムの製造方法に関する。
 本願は、2022年1月28日に、日本に出願された特願2022-011708号に基づき優先権を主張し、その内容をここに援用する。
 液晶ポリエステルフィルムは、優れた高周波特性を有し且つ低吸水性であることから、エレクトロニクス基板材料として注目されている。
 液晶ポリエステルフィルムは、それを絶縁材として備える積層体(例えば、銅張積層板:Copper Clad Laminate,CCL、フレキシブル銅張積層板:Flexible Copper Clad Laminate,FCCL、両面に銅箔を有する両面CCLなど)として提供することが可能である。
 特許文献1には、芳香族ヒドロキシカルボン酸に由来する特定の繰り返し単位を有する芳香族液晶ポリエステルが開示され、当該芳香族液晶ポリエステルによれば、誘電損失が抑制され、耐熱性に優れたフィルムが与えられ、フィルム加工性にも優れるとされる。
 一方、特許文献2には、特定の構造単位からなる液晶性芳香族ポリエステルからなる回路基板用の絶縁材料が記載され、当該絶縁材料は高周波領域における誘電正接が小さいとされる。
特開2005-272819号公報 特許第4363057号公報
 しかし、特許文献1に示される材料は誘電正接に優れるものの、フィルム製膜における加工特性の向上においては更なる改善の余地がある。
 また、特許文献2に示される材料は誘電正接に優れるとされるものの、近年要求されつつある特性においては更なる改善の余地がある。
 本発明は、上記のような問題点を解消するためになされたものであり、誘電正接及び加工特性のバランスに優れた、液晶ポリエステル組成物を提供することを目的とする。
 また本発明は、前記液晶ポリエステル組成物のフィルム、及びその製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決すべく、鋭意検討した結果、フィルム製膜における加工特性は、成形材料の温度降下による粘度上昇が生じ難いことで、より向上されることに着目し、液晶ポリエステル組成物に特定の液晶ポリエステル(B)を含有させることにより、液晶ポリエステル組成物の温度降下による粘度上昇を抑制可能であることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の態様を有する。
<1> 液晶ポリエステル(A)と、液晶ポリエステル(B)と、を含有し、
 前記液晶ポリエステル(A)は、
 下記式(A1)で表される繰返し単位と、下記式(A2)で表される繰返し単位と、下記式(A3)で表される繰返し単位と、を有し、
 (A1)-O-Ar-CO-
 (A2)-CO-Ar-CO-
 (A3)-X-Ar-Y-
(Arは、フェニレン基、ナフチレン基またはビフェニリレン基を表す。
 ArおよびArは、それぞれ独立に、フェニレン基、ナフチレン基、ビフェニリレン基または下記式(A4)で表される基を表す。
 XおよびYは、それぞれ独立に、酸素原子またはイミノ基(-NH-)を表す。
 Ar、ArまたはArで表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。)
 (A4)-Ar-Z-Ar
(ArおよびArは、それぞれ独立に、フェニレン基またはナフチレン基を表す。
 Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基またはアルキリデン基を表す。)
 前記液晶ポリエステル(A)を構成する全繰返し単位の合計数100%に対して、
前記式(A1)で表される繰返し単位の数が30%以上80%以下であり、
 前記液晶ポリエステル(B)は、
 下記式(B1)で表される繰返し単位を有し、
 (B1)-O-Arb1-CO-
(Arb1は、フェニレン基、ナフチレン基またはビフェニリレン基を表す。
 Arb1で表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。)
 前記液晶ポリエステル(B)を構成する全繰返し単位の合計数100%に対して、前記式(B1)で表される繰返し単位の数が80%超である、液晶ポリエステル組成物。
<2> 前記式(B1)で表される繰返し単位が、
 下記式(B1-1)で表される繰返し単位を含み、
 (B1-1)-O-Arb1-1-CO-
(Arb1-1は、ナフチレン基を表す。
 Arb1-1で表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。)
 前記式(B1)に該当する繰返し単位の合計数100%に対し、前記式(B1-1)で表される繰返し単位の数が50%超90%以下である、前記<1>に記載の液晶ポリエステル組成物。
<3> 前記液晶ポリエステル組成物における、前記液晶ポリエステル(A)と、前記液晶ポリエステル(B)との含有量の比率が、質量比で、液晶ポリエステル(A)/液晶ポリエステル(B)=95/5~25/75である、前記<1>又は<2>に記載の液晶ポリエステル組成物。
<4> 前記液晶ポリエステル組成物における、前記液晶ポリエステル(A)と、前記液晶ポリエステル(B)との含有量の比率が、質量比で、液晶ポリエステル(A)/液晶ポリエステル(B)=95/5~50/50である、前記<1>又は<2>に記載の液晶ポリエステル組成物。
<5> 前記液晶ポリエステル組成物の総質量100質量%に対する、前記液晶ポリエステル(A)及び前記液晶ポリエステル(B)の合計含有量の割合が、80質量%以上である、前記<1>~<4>のいずれか一つに記載の液晶ポリエステル組成物。
<6> 液晶ポリエステル(B)が、前記式(B1)で表される繰返し単位のみからなる、前記<1>~<5>のいずれか一つに記載の液晶ポリエステル組成物。
<7> 前記液晶ポリエステル(A)が、
 下記式(A1)で表される繰返し単位と、下記式(A2)で表される繰返し単位と、下記式(A3)で表される繰返し単位と、を有する、前記<1>~<6>のいずれか一つに記載の液晶ポリエステル組成物。
(A1)-O-Ar-CO-
(A2)-CO-Ar-CO-
(A3)-O-Ar-O-
(Arは、2,6-ナフチレン基、1,4-フェニレン基、又は4,4’-ビフェニリレン基を表す。
 Ar及びArは、それぞれ独立に、2,6-ナフチレン基、2,7-ナフチレン基、1,4-フェニレン基、1,3-フェニレン基、又は4,4’-ビフェニリレン基を表す。
 Ar、Ar又はArで表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基、又は炭素数6~20のアリール基で置換されていてもよい。)
<8> 前記式(B1)で表される繰返し単位は、
下記式(B1-1)で表される繰返し単位、及び下記式(B1-2)で表される繰返し単位のみからなる、前記<1>~<7>のいずれか一つに記載の液晶ポリエステル組成物。
 (B1-1)-O-Arb1-1-CO-
 (B1-2)-O-Arb1-2-CO-
(Arb1-1は、ナフチレン基を表す。
 Arb1-2は、フェニレン基を表す。
 Arb1-1又はArb1-2で表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。)
<9> 前記液晶ポリエステル組成物を下記のアミン分解条件で得たアミン分解物が、下記の分析条件の液体クロマトグラフィー分析によって、保持時間17.4~17.5分の範囲に検出される成分を含み、4-(4-ヒドロキシフェノキシ)安息香酸を標準物質として、前記液体クロマトグラフィー分析のクロマトグラムのピーク面積から求められる前記成分の相対含有量は、前記液晶ポリエステル組成物の総質量100質量%に対して、0.0001質量%以上0.5質量%以下である、前記<1>~<8>のいずれか一つに記載の液晶ポリエステル組成物。
(アミン分解条件)
 前記液晶ポリエステル組成物とブチルアミンとを混合し、200℃、2時間以上で処理した後、60℃での減圧処理にてブチルアミン除去を行い、ギ酸を添加する中和処理を行い、前記アミン分解物を得る。
(分析条件)
 カラム:基材(多孔質球状シリカ)、修飾基(オクタデシル基)、膜厚3μm、3mmφ×15cm
 移動相:A)0.1体積% 酢酸水
     B)0.1体積% 酢酸アセトニトリル
 グラジェント:前記移動相Aの割合90体積%、前記移動相Bの割合10体積%にて通液を開始し、30分間かけて前記移動相Bの割合100体積%にまで徐々に濃度を上昇させ、前記移動相Bの割合100体積%にて10分間測定
 カラム温度:45℃
 検出器  :UV-254nm
 流速   :0.4mL/分
 注入量  :1μL
<10> 前記液晶ポリエステル組成物に含有される液晶ポリエステルの、ポリスチレンを標準物質として測定される重量平均分子量が、270000以上である、前記<1>~<9>のいずれか一つに記載の液晶ポリエステル組成物。
<11> 前記液晶ポリエステル(A)と、前記液晶ポリエステル(B)とを混合することを含む、前記<1>~<10>のいずれか一つに記載の液晶ポリエステル組成物の製造方法。
<12> 液晶ポリエステル(A)と、液晶ポリエステル(B)と、を含有し、
 前記液晶ポリエステル(A)は、
 下記式(A1)で表される繰返し単位と、下記式(A2)で表される繰返し単位と、下記式(A3)で表される繰返し単位と、を有し、
 (A1)-O-Ar-CO-
 (A2)-CO-Ar-CO-
 (A3)-X-Ar-Y-
(Arは、フェニレン基、ナフチレン基またはビフェニリレン基を表す。
 ArおよびArは、それぞれ独立に、フェニレン基、ナフチレン基、ビフェニリレン基または下記式(A4)で表される基を表す。
 XおよびYは、それぞれ独立に、酸素原子またはイミノ基(-NH-)を表す。
 Ar、ArまたはArで表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。)
 (A4)-Ar-Z-Ar
(ArおよびArは、それぞれ独立に、フェニレン基またはナフチレン基を表す。
 Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基またはアルキリデン基を表す。)
 前記液晶ポリエステル(A)を構成する全繰返し単位の合計数100%に対して、
前記式(A1)で表される繰返し単位の数が30%以上80%以下であり、
 前記液晶ポリエステル(B)は、
 下記式(B1)で表される繰返し単位を有し、
 (B1)-O-Arb1-CO-
(Arb1は、フェニレン基、ナフチレン基またはビフェニリレン基を表す。
 Arb1で表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。)
 前記液晶ポリエステル(B)を構成する全繰返し単位の合計数100%に対して、前記式(B1)で表される繰返し単位の数が80%超である、フィルム。
<13> 前記<1>~<10>のいずれか一つに記載の液晶ポリエステル組成物を成形材料として、フィルムを溶融成形することを含む、前記<12>に記載のフィルムの製造方法。
<14> 前記溶融成形が、インフレーション法による成形、又はTダイ法による成形である、前記<13>に記載のフィルムの製造方法。
 本発明によれば、誘電正接及び加工特性のバランスに優れた、液晶ポリエステル組成物を提供できる。
 また、本発明によれば、前記液晶ポリエステル組成物のフィルム、及びその製造方法を提供できる。
 以下、本発明の液晶ポリエステル組成物、液晶ポリエステル組成物の製造方法、フィルム及びフィルムの製造方法の実施形態を説明する。
≪液晶ポリエステル組成物≫
 実施形態の液晶ポリエステル組成物は、下記の液晶ポリエステル(A)と、下記の液晶ポリエステル(B)と、を含有する液晶ポリエステル組成物である。
 実施形態の液晶ポリエステル組成物は、前記液晶ポリエステル(A)と、液晶ポリエステル(B)とを含有するため、誘電正接及び加工特性のバランスに優れる。
 本明細書において、液晶ポリエステル組成物が「加工特性に優れていること」とは、示差走査熱量測定装置で検出される吸熱ピークの温度以上に加熱された液晶ポリエステル組成物を、加熱後に温度降下させた場合の、液晶ポリエステル組成物の粘度上昇の程度が小さいことを意味する。
 上記の粘度上昇の程度は、液晶ポリエステル組成物の示差走査熱量測定装置で検出される吸熱ピークの頂点位置の温度における粘度と、吸熱ピークの頂点位置の温度から20℃降下した時点の粘度との差(ηTm-20℃-ηTm)によって確認できる。当該差(ηTm-20℃-ηTm)の値が小さいほど、粘度上昇の程度が小さいと評価できる。
 上記の粘度上昇の程度は、例えば、液晶ポリエステル組成物の示差走査熱量測定装置で検出される吸熱ピークの頂点位置の温度における粘度と、吸熱ピークの頂点位置の温度から20℃降下した時点の粘度との比(ηTm-20℃/ηTm)によっても確認できる。当該比(ηTm-20℃/ηTm)の値が小さいほど、粘度上昇の程度が小さいと評価できる。
 液晶ポリエステル組成物の誘電正接の値が低いほど、誘電正接に優れるといえる。
 誘電正接及び加工特性のバランスに優れる液晶ポリエステル組成物として、液晶ポリエステル組成物に係る好ましい誘電正接の値としては、後述の[誘電特性評価]における試験片に対して測定される、周波数10GHzにおける誘電正接の値が0.0010以下を例示できる。
 本明細書において、「誘電特性」とは、比誘電率と誘電正接とに関する特性をいう。
 液晶ポリエステル組成物に係る好ましい誘電特性としては、後述の[誘電特性評価]における試験片に対して測定される、周波数10GHzにおける比誘電率の値が3以上4以下で、且つ周波数10GHzにおける誘電正接の値が0.0002以上0.0010以下を例示できる。
 本実施形態の液晶ポリエステル組成物が含有する液晶ポリエステルとは、溶融状態で液晶性を示すポリエステルであり、450℃以下の温度で溶融するものであることが好ましい。
 本実施形態の液晶ポリエステル組成物が含有する液晶ポリエステルは、原料モノマーとして芳香族化合物のみを用いてなる全芳香族液晶ポリエステルであることが好ましい。
 液晶ポリエステルは、繰返し単位として芳香族化合物に由来する繰返し単位のみを有する全芳香族液晶ポリエステルであることが好ましい。
 液晶ポリエステルの典型的な例としては、芳香族ヒドロキシカルボン酸と、芳香族ジカルボン酸と、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物と、を重合(重縮合)させてなる重合体;複数種の芳香族ヒドロキシカルボン酸を重合させてなる重合体;芳香族ジカルボン酸と、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物と、を重合させてなる重合体;ポリエチレンテレフタレートなどのポリエステルと芳香族ヒドロキシカルボン酸とを重合させてなる重合体が挙げられる。
 ここで、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンは、それぞれ独立に、その一部または全部に代えて、重合可能なそれらの誘導体が用いられてもよい。
 芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸のようなカルボキシル基を有する化合物の重合可能な誘導体の例としては、カルボキシル基をアルコキシカルボニル基又はアリールオキシカルボニル基に変換したエステル;カルボキシル基をハロホルミル基に変換した酸ハロゲン化物;カルボキシル基をアシルオキシカルボニル基に変換した酸無水物等が挙げられる。
 芳香族ヒドロキシカルボン酸、芳香族ジオール及び芳香族ヒドロキシアミンのようなヒドロキシル基を有する化合物の重合可能な誘導体の例としては、ヒドロキシル基をアシル化してアシルオキシル基に変換したアシル化物等が挙げられる。
 芳香族ヒドロキシアミン及び芳香族ジアミンのようなアミノ基を有する化合物の重合可能な誘導体の例としては、アミノ基をアシル化してアシルアミノ基に変換したアシル化物等が挙げられる。
 以下、実施形態の液晶ポリエステル組成物が含有する、液晶ポリエステル(A)及び液晶ポリエステル(B)の詳細について説明する。
<液晶ポリエステル(A)>
 前記液晶ポリエステル(A)は、
 下記式(A1)で表される繰返し単位と、下記式(A2)で表される繰返し単位と、下記式(A3)で表される繰返し単位と、を有し、
 (A1)-O-Ar-CO-
 (A2)-CO-Ar-CO-
 (A3)-X-Ar-Y-
(Arは、フェニレン基、ナフチレン基またはビフェニリレン基を表す。
 ArおよびArは、それぞれ独立に、フェニレン基、ナフチレン基、ビフェニリレン基または下記式(A4)で表される基を表す。
 XおよびYは、それぞれ独立に、酸素原子またはイミノ基(-NH-)を表す。
 Ar、ArまたはArで表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。)
 (A4)-Ar-Z-Ar
(ArおよびArは、それぞれ独立に、フェニレン基またはナフチレン基を表す。
 Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基またはアルキリデン基を表す。)
 前記液晶ポリエステル(A)を構成する全繰返し単位の合計数(100%)に対して、
前記式(A1)で表される繰返し単位の数は、30%以上80%以下である。
 液晶ポリエステル(A)における各繰り返し単位の割合については後で詳述する。
 より誘電正接に優れるとの観点から、上記で挙げた液晶ポリエステル(A)としては、下記式(A1)で表される繰返し単位と、下記式(A2)で表される繰返し単位と、下記式(A3)で表される繰返し単位と、を有することが好ましい。
 前記式(A1)~(A3)における好ましい前記Ar、前記Ar及び前記Arとして以下を例示する。
(A1)-O-Ar-CO-
(A2)-CO-Ar-CO-
(A3)-O-Ar-O-
(Ar、Ar及びArは、それぞれ独立に、フェニレン基、ナフチレン基、又はビフェニリレン基を表す。
 Ar、Ar又はArで表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基、又はアリール基で置換されていてもよい。)
 より誘電正接に優れるとの観点から、具体的には、上記で挙げた液晶ポリエステル(A)としては、下記式(A1)で表される繰返し単位と、下記式(A2)で表される繰返し単位と、下記式(A3)で表される繰返し単位と、を有することが好ましい。
 前記式(A1)~(A3)における好ましい前記Ar、前記Ar及び前記Arとして以下を例示する。
(A1)-O-Ar-CO-
(A2)-CO-Ar-CO-
(A3)-O-Ar-O-
(Arは、2,6-ナフチレン基、1,4-フェニレン基、又は4,4’-ビフェニリレン基を表す。
 Ar及びArは、それぞれ独立に、2,6-ナフチレン基、2,7-ナフチレン基、1,4-フェニレン基、1,3-フェニレン基、又は4,4’-ビフェニリレン基を表す。
 Ar、Ar又はArで表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基、又は炭素数6~20のアリール基で置換されていてもよい。)
 水素原子と置換可能な前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 水素原子と置換可能な前記炭素数1~10のアルキル基の例としては、メチル基、エチル基、1-プロピル基、イソプロピル基、1-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、1-ヘキシル基、2-エチルヘキシル基、1-オクチル基及び1-デシル基等が挙げられる。
 水素原子と置換可能な前記炭素数6~20のアリール基の例としては、フェニル基、オルトトリル基、メタトリル基、パラトリル基等のような単環式芳香族基や、1-ナフチル基、2-ナフチル基等のような縮環式芳香族基が挙げられる。
 Ar、Ar、又はArで表される前記基中の1個以上の水素原子が、前記ハロゲン原子、前記炭素数1~10のアルキル基又は前記炭素数6~20のアリール基で置換されている場合、前記水素原子を置換する基の数は、Ar、Ar、又はArで表される基毎に、互いに独立に、好ましくは1個又は2個であり、より好ましくは1個である。
 Ar、Ar、又はArが有する水素原子は、上述した基で置換されていなくともよい。
 液晶ポリエステル(A)は、ナフタレン構造を含む繰返し単位を含有することが好ましい。ナフタレン構造を含む繰返し単位を含有する液晶ポリエステルは、ナフタレン構造を含む繰返し単位を含有しない液晶ポリエステルに比べ、より一層誘電正接に優れる傾向にある。
 2価のナフタレン構造を含む繰返し単位を有する液晶ポリエステルとして、上記式(A1)で表される繰返し単位と、上記式(A2)で表される繰返し単位と、上記式(A3)で表される繰返し単位とを有する液晶ポリエステルにおいて、複数あるAr、Ar、及びArの少なくとも一つはナフチレン基であることが好ましく、2,6-ナフチレン基であることがより好ましい。
 液晶ポリエステル(A)における、ナフタレン構造を含む繰返し単位の個数基準での含有量は、液晶ポリエステル(A)中の全繰返し単位の合計数(100%)に対して40%以上であることが好ましく、50%以上であることが好ましく、55%以上であることがより好ましく、60%以上であることがさらに好ましい。ナフタレン構造を含む繰返し単位の含有量が上記下限値以上であることにより、液晶ポリエステルの誘電正接を、より一層低下させることが可能である。
 液晶ポリエステル(A)における、ナフタレン構造を含む繰返し単位の個数基準での含有量は、液晶ポリエステル中の全繰返し単位の合計数(100%)に対して90%以下であることが好ましく、85%以下であることがより好ましく、80%以下であることがさらに好ましい。ナフタレン構造を含む繰返し単位の含有量が上記上限値以下であることにより、液晶ポリエステルを生産する時の反応安定性を確保できる。
 液晶ポリエステル(A)における、上記のナフタレン構造を含む繰返し単位の含有数の値の数値範囲の一例としては、40%以上90%以下であってもよく、50%以上85%以下であってもよく、55%以上85%以下であってもよく、60%以上80%以下であってもよい。
 上記式(A1)~(A3)で表される繰返し単位を有する液晶ポリエステルは、Ar及び/又はArが2,6-ナフチレン基である繰り返し単位を有することが好ましい。
 液晶ポリエステル(A)は、上記式(A1)~(A3)で表される繰返し単位においてAr及び/又はArが2,6-ナフチレン基である繰り返し単位を、液晶ポリエステル(A)中の全繰返し単位の合計数(100%)に対して、個数基準で、40%以上含有してもよく、40%以上90%以下含有してもよく、50%以上85%以下含有してもよく、55%以上85%以下含有してもよく、60%以上80%以下含有してもよい。
 上記式(A1)で表される繰返し単位は、芳香族ヒドロキシカルボン酸に由来する繰返し単位である。
 前記芳香族ヒドロキシカルボン酸としては、例えば、パラヒドロキシ安息香酸、メタヒドロキシ安息香酸、2-ヒドロキシ-6-ナフトエ酸、2-ヒドロキシ-3-ナフトエ酸、1-ヒドロキシ-5-ナフトエ酸、4-ヒドロキシ-4’-カルボキシジフェニルエーテルや、これらの芳香族ヒドロキシカルボン酸の芳香環にある水素原子の一部が、アルキル基、アリール基及びハロゲン原子からなる群より選ばれる置換基で置換されてなる芳香族ヒドロキシカルボン酸が挙げられる。前記芳香族ヒドロキシカルボン酸は、液晶ポリエステルの製造において、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記式(A1)で表される繰返し単位としては、Arが1,4-フェニレン基である繰返し単位(例えば、4-ヒドロキシ安息香酸に由来する繰返し単位)、及びArが2,6-ナフチレン基である繰返し単位(例えば、6-ヒドロキシ-2-ナフトエ酸に由来する繰返し単位)が好ましい。
 上記式(A2)で表される繰返し単位は、芳香族ジカルボン酸に由来する繰返し単位である。
 前記芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、ビフェニル-4,4’-ジカルボン酸、2,6-ナフタレンジカルボン酸、ジフェニルエーテル-4,4’-ジカルボン酸、ジフェニルチオエーテル-4,4’-ジカルボン酸や、これらの芳香族ジカルボン酸の芳香環にある水素原子の一部が、アルキル基、アリール基及びハロゲン原子からなる群より選ばれる置換基で置換されてなる芳香族ジカルボン酸が挙げられる。
 前記芳香族ジカルボン酸は、液晶ポリエステルの製造において、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記式(A2)で表される繰返し単位としては、Arが1,4-フェニレン基である繰返し単位(例えば、テレフタル酸に由来する繰返し単位)、Arが1,3-フェニレン基である繰返し単位(例えば、イソフタル酸に由来する繰返し単位)、Arが2,6-ナフチレン基である繰返し単位(例えば、2,6-ナフタレンジカルボン酸に由来する繰返し単位)、及びArがジフェニルエーテル-4,4’-ジイル基である繰返し単位(例えば、ジフェニルエーテル-4,4’-ジカルボン酸に由来する繰返し単位)が好ましい。
 上記式(A3)で表される繰返し単位は、芳香族ジオール、芳香族ヒドロキシアミン又は芳香族ジアミンに由来する繰返し単位である。
 芳香族ジオール、芳香族ヒドロキシアミン又は芳香族ジアミンとしては、例えば、4,4’-ジヒドロキシビフェニル、ハイドロキノン、メチルハイドロキノン、レゾルシン、4,4’-ジヒドロキシジフェニルケトン、4,4’-ジヒドロキシジフェニルエーテル、ビス(4-ヒドロキシフェニル)メタン、1,2-ビス(4-ヒドロキシフェニル)エタン、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルチオエーテル、2,6-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、4-アミノフェノール、1,4-フェニレンジアミン、4-アミノ-4’-ヒドロキシビフェニル、4,4’-ジアミノビフェニルが挙げられる。
 前記芳香族ジオール、芳香族ヒドロキシアミン又は芳香族ジアミンは、液晶ポリエステルの製造において、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記式(A3)で表される繰返し単位としては、Arが1,4-フェニレン基である繰返し単位(例えば、ハイドロキノン、4-アミノフェノール又は1,4-フェニレンジアミンに由来する繰返し単位)、及びArが4,4’-ビフェニリレン基である繰返し単位(例えば、4,4’-ジヒドロキシビフェニル、4-アミノ-4’-ヒドロキシビフェニル又は4,4’-ジアミノビフェニルに由来する繰返し単位)が好ましい。
 本明細書において、「由来」とは、原料モノマーが重合するために化学構造が変化し、その他の構造変化を生じないことを意味する。
 ここでの由来は、当該化合物の重合可能な誘導体を由来とする場合も包含する概念であり、例えば、各繰返し単位は、芳香族ヒドロキシカルボン酸、芳香族ジオール、及び芳香族ヒドロキシアミンの各アシル化物に由来する繰返し単位であってよい。
 なお、実施形態の液晶ポリエステル組成物が、特に良好な耐熱性が要求される場合には、これらの置換基の数は少ない方が好ましく、特にアルキル基のような置換基は有しないことが好ましい。
 液晶ポリエステル(A)における、前記式(A1)で表される繰返し単位(以下、繰返し単位(A1)ともいう。)の個数基準での含有量は、全繰返し単位の合計数(100%)に対して、30%以上80%以下であり、40%以上70%以下が好ましく、45%以上65%以下がより好ましい。
 液晶ポリエステル(A)における、前記式(A2)で表される繰返し単位(以下、繰返し単位(A2)ともいう。)の個数基準での含有量は、全繰返し単位の合計数(100%)に対して、35%以下が好ましく、10%以上35%以下がより好ましく、15%以上30%以下がさらに好ましく、17.5%以上27.5%以下が特に好ましい。
 液晶ポリエステル(A)における、前記式(A3)で表される繰返し単位(以下、繰返し単位(A3)ともいう。)の個数基準での含有量は、全繰返し単位の合計数(100%)に対して、35%以下が好ましく、10%以上35%以下がより好ましく、15%以上30%以下がさらに好ましく、17.5%以上27.5%以下が特に好ましい。
 液晶ポリエステル(A)における、繰返し単位(A1)の含有量が多いほど、溶融流動性や耐熱性や強度・剛性が向上し易いが、あまり多いと、溶融温度や溶融粘度が高くなり易く、成形に必要な温度が高くなり易い。
 液晶ポリエステル(A)における、繰返し単位(A2)の含有量と繰返し単位(A3)の含有量との割合は、[繰返し単位(A2)の含有量]/[繰返し単位(A3)の含有量](数/数)で表して、0.9/1~1/0.9が好ましく、0.95/1~1/0.95がより好ましく、0.98/1~1/0.98がさらに好ましい。
 尚、液晶ポリエステル(A)は、繰返し単位(A1)~(A3)を、それぞれ独立に、2種以上有してもよい。また、液晶ポリエステルは、繰返し単位(A1)~(A3)以外の繰返し単位を有してもよいが、その含有量は、液晶ポリエステル(A)を構成する全繰返し単位の合計数(100%)に対して、10%以下が好ましく、5%以下がより好ましく、0%がさらに好ましい。
 上記の液晶ポリエステル(A)の繰返し単位(A1)の含有率、液晶ポリエステル(A)の繰返し単位(A2)の含有率および液晶ポリエステル(A)の繰返し単位(A3)の含有率の和は、個数基準で100%を超えない。
 本明細書において、各繰返し単位の数(各繰返し単位の重合度)は、特開2000-19168号公報に記載の分析方法によって求められる値を意味する。
 具体的には、液晶ポリエステル樹脂を超臨界状態の低級アルコール(炭素数1~3のアルコール)と反応させて、前記液晶ポリエステル樹脂をその繰返し単位を誘導するモノマーまで解重合し、解重合生成物として得られる各繰返し単位を誘導するモノマーを液体クロマトグラフィーによって定量することで、各繰返し単位の数を算出することができる。
 例えば、液晶ポリエステル樹脂が、繰返し単位(A1)~(A3)からなる場合の繰返し単位(A1)の数は、繰返し単位(A1)~(A3)をそれぞれ誘導するモノマーのモル濃度を液体クロマトグラフィーによって算出し、繰返し単位(A1)~(A3)をそれぞれ誘導するモノマーのモル濃度の合計を100%とした際の繰返し単位(A1)を誘導するモノマーのモル濃度の割合を算出することによって、求めることができる。
<液晶ポリエステル(B)>
 前記液晶ポリエステル(B)は、
 下記式(B1)で表される繰返し単位を有し、
 (B1)-O-Arb1-CO-
(Arb1は、フェニレン基、ナフチレン基またはビフェニリレン基を表す。
 Arb1で表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。)
 前記液晶ポリエステル(B)を構成する全繰返し単位の合計数(100%)に対して、前記式(B1)で表される繰返し単位の数が80%超である。
 前記Arb1におけるフェニレン基、ナフチレン基、及びビフェニリレン基としては、上記液晶ポリエステル(A)において例示した基と同一の基が挙げられる。
 Arb1におけるハロゲン原子、及びアルキル基またはアリール基としては、上記液晶ポリエステル(A)において例示した基と同一の基が挙げられる。
 液晶ポリエステル(B)において、前記式(B1)で表される繰返し単位の含有割合が多いほど、液晶ポリエステル組成物に含有されて、温度降下による粘度上昇を抑制する作用に優れる。
 かかる観点から、前記液晶ポリエステル(B)を構成する全繰返し単位の合計数(100%)に対して、前記式(B1)で表される繰返し単位の数は、80%超であり、85%以上100%以下であることが好ましく、90%以上100%以下であることが好ましく、95%以上100%以下であることがより好ましく、98%以上100%以下であることがさらに好ましく、前記液晶ポリエステル(B)は実質的に前記式(B1)で表される繰返し単位のみからなる(前記式(B1)で表される繰返し単位の数が100%である)ことが特に好ましい。
 液晶ポリエステル組成物に含有されて、温度降下による粘度上昇を抑制する作用に、より一層優れるとの観点から、上記で挙げた液晶ポリエステル(B)としては、
 前記式(B1)で表される繰返し単位が、
 下記式(B1-1)で表される繰返し単位を含むことが好ましい。
 (B1-1)-O-Arb1-1-CO-
(Arb1-1は、ナフチレン基を表す。
 Arb1-1で表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。)
 前記式(B1)に該当する繰返し単位の合計数(100%)に対し、前記式(B1-1)で表される繰返し単位の数が50%超90%以下であることが好ましく、65%以上80%以下であることがより好ましい。
 液晶ポリエステル(B)において、前記式(B1-1)で表される繰返し単位の含有割合が上記数値範囲内であると、液晶ポリエステル組成物に含有されて、温度降下による粘度上昇を抑制する作用により一層優れるとともに、優れた誘電正接を発揮できる。
 より具体的には、上記で挙げた液晶ポリエステル(B)としては、前記式(B1)で表される繰返し単位が、下記式(B1-1)で表される繰返し単位、及び下記式(B1-2)で表される繰返し単位を含むことが好ましく、下記式(B1-1)で表される繰返し単位、及び下記式(B1-2)で表される繰返し単位のみからなることがより好ましい。
 (B1-1)-O-Arb1-1-CO-
 (B1-2)-O-Arb1-2-CO-
(Arb1-1は、ナフチレン基を表す。
 Arb1-2は、フェニレン基を表す。
 Arb1-1又はArb1-2で表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。)
 前記Arb1-1におけるナフチレン基としては、上記液晶ポリエステル(A)において例示した基と同一の基が挙げられる。
 前記Arb1-2におけるフェニレン基としては、上記液晶ポリエステル(A)において例示した基と同一の基が挙げられる。
 Arb1-1及びArb1-2におけるハロゲン原子、アルキル基またはアリール基としては、上記液晶ポリエステル(A)において例示した原子又は基と同一の原子又は基が挙げられる。
 さらに具体的には、上記で挙げた液晶ポリエステル(B)としては、前記式(B1)で表される繰返し単位のみからなり、前記式(B1)で表される繰返し単位が、下記式(B1-1)で表される繰返し単位、及び下記式(B1-2)で表される繰返し単位を含むことが好ましく、下記式(B1-1)で表される繰返し単位、及び下記式(B1-2)で表される繰返し単位のみからなることがより好ましい。
 (B1-1)-O-Arb1-1-CO-
 (B1-2)-O-Arb1-2-CO-
(Arb1-1は、2,6-ナフチレン基を表す。
 Arb1-2は、1,4-フェニレン基を表す。
 Arb1-1又はArb1-2で表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基または炭素数6~20のアリール基で置換されていてもよい。)
 上記式(B1)で表される繰返し単位は、芳香族ヒドロキシカルボン酸に由来する繰返し単位である。芳香族ヒドロキシカルボン酸に由来する繰返し単位としては、上記式(A1)で表される繰返し単位として例示した繰返し単位と同一の繰返し単位が挙げられる。
 実施形態の液晶ポリエステルは以下の側面を有することができる。
 <15>前記式(B1)で表される繰返し単位が、下記式(B1-1)で表される繰返し単位、及び下記式(B1-2)で表される繰返し単位を含む場合、前記液晶ポリエステル(B)を構成する全繰返し単位の合計数(100%)に対して、一例として、
 前記式(B1-1)で表される繰返し単位の数が50%超90%以下で、
 前記式(B1-2)で表される繰返し単位の数は、10%以上50%未満であってよく、
 前記式(B1-1)で表される繰返し単位の数が65%以上80%以下で、
 前記式(B1-2)で表される繰返し単位の数は、20%以上35%以下であってよい、前記<1>~<10>のいずれか一つに記載の液晶ポリエステル組成物。
 尚、液晶ポリエステル(B)は、前記式(B1)で表される繰返し単位を、それぞれ独立に、2種以上有してよい。また、液晶ポリエステルは、前記式(B1)で表される繰返し単位以外の繰返し単位を有してもよいが、その含有量は、液晶ポリエステル(B)を構成する全繰返し単位の合計数(100%)に対して、10%以下が好ましく、5%以下がより好ましく、0%がさらに好ましい。
 上記で例示したうちの、液晶ポリエステル(A)と液晶ポリエステル(B)の種類の、特に好ましい組み合わせとして、実施形態の液晶ポリエステルは以下の側面を有することができる。
 <16>液晶ポリエステル(A)が、下記式(A1)で表される繰返し単位と、下記式(A2)で表される繰返し単位と、下記式(A3)で表される繰返し単位と、を有する液晶ポリエステルであり、
 より好ましくは、液晶ポリエステル(A)が、下記式(A1)で表される繰返し単位と、下記式(A2)で表される繰返し単位と、下記式(A3)で表される繰返し単位と、のみからなる液晶ポリエステルであり、
(A1)-O-Ar-CO-
(A2)-CO-Ar-CO-
(A3)-O-Ar-O-
(Arは、2,6-ナフチレン基を表す。
 Ar及びArは、それぞれ独立に、2,6-ナフチレン基、又は1,4-フェニレン基を表す。
 Ar、Ar又はArで表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基、又は炭素数6~20のアリール基で置換されていてもよい。)
 液晶ポリエステル(B)が、下記式(B1-1)で表される繰返し単位、及び下記式(B1-2)で表される繰返し単位のみからなる、前記<1>~<10>、<15>のいずれか一つに記載の液晶ポリエステル組成物。
 (B1-1)-O-Arb1-1-CO-
 (B1-2)-O-Arb1-2-CO-
(Arb1-1は、2,6-ナフチレン基を表す。
 Arb1-2は、1,4-フェニレン基を表す。
 Arb1-1又はArb1-2で表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基または炭素数6~20のアリール基で置換されていてもよい。)
 また、当該<16>に記載の液晶ポリエステル組成物における、前記液晶ポリエステル(A)と、前記液晶ポリエステル(B)との含有量の比率が、質量比で、液晶ポリエステル(A)/液晶ポリエステル(B)=95/5~25/75であることが好ましく、95/5~30/70であることが好ましく、95/5~40/60であることが好ましく、95/5~50/50であることが好ましく、95/5~50/50(ただし、50/50を除く)であることがより好ましく、90/10~60/40であることがさらに好ましく、別の側面として、80/20~30/70であることが好ましく、80/20~60/40であることがより好ましく、70/30~60/40であることがさらに好ましい。
 液晶ポリエステル(A)及び液晶ポリエステル(B)を含有する実施形態の液晶ポリエステル組成物の流動開始温度は、260℃以上が好ましく、260℃以上400℃以下がより好ましく、260℃以上380℃以下がさらに好ましい。
 かかる液晶ポリエステル組成物の流動開始温度が高いほど、液晶ポリエステル組成物の耐熱性及び強度が向上する傾向がある。一方で、液晶ポリエステル組成物の流動開始温度が400℃を超えると、液晶ポリエステル組成物の溶融温度や溶融粘度が高くなる傾向がある。そのため、液晶ポリエステル組成物の成形に必要な温度が高くなる傾向がある。
 また、前記液晶ポリエステル(A)の流動開始温度の好ましい値としては、実施形態の液晶ポリエステル組成物の流動開始温度として例示した各数値と同一の数値が挙げられる。
 また、前記液晶ポリエステル(B)の流動開始温度の好ましい値としては、実施形態の液晶ポリエステル組成物の流動開始温度として例示した各数値と同一の数値が挙げられる。
 本明細書において、液晶ポリエステル組成物の流動開始温度は、フロー温度又は流動温度とも呼ばれ、液晶ポリエステルの分子量の目安となる温度である(小出直之編、「液晶ポリマー-合成・成形・応用-」、株式会社シーエムシー、1987年6月5日、p.95参照)。
 流動開始温度は、フローテスターを用いて、液晶ポリエステル組成物を9.8MPa(100kg/cm)の荷重下4℃/分の速度で昇温しながら溶融させ、内径1mmおよび長さ10mmのノズルから押し出すときに、前記液晶ポリエステル組成物が4800Pa・s(48000ポイズ)の粘度を示す温度である。
 液晶ポリエステル組成物に含有される液晶ポリエステルの重量平均分子量(Mw)は、50,000以上であることが好ましく、100,000以上であることがより好ましく、270,000以上であることがさらに好ましい。
 液晶ポリエステル組成物に含有される液晶ポリエステルの重量平均分子量(Mw)は、1,000,000以下であることが好ましく、700,000以下であることがより好ましく、500,000以下であることがさらに好ましい。
 液晶ポリエステル組成物に含有される液晶ポリエステルの重量平均分子量(Mw)の、上記数値範囲の一例としては、50,000以上1,000,000以下であることが好ましく、100,000以上700,000以下であることがより好ましく、270,000以上500,000以下であることがさらに好ましい。
 液晶ポリエステルの重量平均分子量が上記上限値以下であると、等方性に優れたフィルム化加工がより一層容易である。液晶ポリエステルの重量平均分子量が上記下限値以上であると、より一層良好な機械強度が発揮されることから好ましい。
 液晶ポリエステル組成物に含有される液晶ポリエステルの数平均分子量(Mn)は、1,000以上であることが好ましく、5,000以上であることがより好ましく、7,000以上であることがさらに好ましい。
 液晶ポリエステル組成物に含有される液晶ポリエステルの数平均分子量(Mn)は、500,000以下であることが好ましく、300,000以下であることがより好ましく、100,000以下であることがさらに好ましい。
 液晶ポリエステル組成物に含有される液晶ポリエステルの数平均分子量(Mn)の、上記数値範囲の一例としては、1,000以上500,000以下であることが好ましく、5,000以上300,000以下であることがより好ましく、7,000以上100,000以下であることがさらに好ましい。
 液晶ポリエステルの数平均分子量が上記上限値以下であると、等方性に優れたフィルム化加工がより一層容易である。液晶ポリエステルの数平均分子量が上記下限値以上であると、より一層良好な機械強度が発揮されることから好ましい。
 本明細書において、等方性に優れるフィルムとは、フィルムの製膜方向(MD:Machine Direction)と、MDの垂直方向(TD:Transverse Direction)とで、フィルムに含有される液晶ポリエステルの分子配向の方向の差異が小さいフィルムであることを意味する。
 液晶ポリエステル組成物に含有される液晶ポリエステルの多分散度(Mw/Mn)は、特に限定されるものではないが、1.0以上4.0以下を例示できる。
 ここで、実施形態の液晶ポリエステル組成物に含有される液晶ポリエステルとは、前記液晶ポリエステル(A)と、前記液晶ポリエステル(B)とを含有してよい。
 また、液晶ポリエステル組成物に含有される前記液晶ポリエステル(A)の重量平均分子量(Mw)、数平均分子量(Mn)及び多分散度(Mw/Mn)の値としては、液晶ポリエステル組成物に含有される液晶ポリエステルの各項目(重量平均分子量(Mw)、数平均分子量(Mn)及び多分散度(Mw/Mn))として例示した各数値と同一の数値が挙げられる。
 また、液晶ポリエステル組成物に含有される前記液晶ポリエステル(B)の重量平均分子量(Mw)、数平均分子量(Mn)及び多分散度(Mw/Mn)の値としては、液晶ポリエステル組成物に含有される液晶ポリエステルの各項目(重量平均分子量(Mw)、数平均分子量(Mn)及び多分散度(Mw/Mn))として例示した各数値と同一の数値が挙げられる。
 本明細書において、「重量平均分子量」及び「数平均分子量」とは、ゲル浸透クロマトグラフィー(GPC)分析により求めることができ、標準ポリスチレンの分子量を測定して得られた検量線に基づいて、標準ポリスチレン換算で求めた値を意味する。
 実施形態の液晶ポリエステル組成物は、前記液晶ポリエステル組成物を下記のアミン分解条件で得たアミン分解物が、下記の分析条件の液体クロマトグラフィー分析によって保持時間17.4~17.5分の範囲に検出される成分を含むことが好ましい。
(アミン分解条件)
 前記液晶ポリエステル組成物とブチルアミンとを混合し、200℃、2時間以上で処理した後、60℃での減圧処理にてブチルアミン除去を行い、ギ酸を添加する中和処理を行い、前記アミン分解物を得る。
(分析条件)
 カラム:基材(多孔質球状シリカ)、修飾基(オクタデシル基)、膜厚3μm、3mmφ×15cm
 移動相:A)0.1体積% 酢酸水
     B)0.1体積% 酢酸アセトニトリル
 グラジェント:前記移動相Aの割合90体積%、前記移動相Bの割合10体積%にて通液を開始し、30分間かけて前記移動相Bの割合100体積%にまで徐々に濃度を上昇させ、前記移動相Bの割合100体積%にて10分間測定
 カラム温度:45℃
 検出器  :UV-254nm
 流速   :0.4mL/分
 注入量  :1μL
 上記のアミン分解条件におけるブチルアミンの使用量は、液晶ポリエステル組成物中の液晶ポリエステルを十分に分解できる量とする。
 前記保持時間17.4~17.5分の範囲に検出される成分の、4-(4-ヒドロキシフェノキシ)安息香酸を標準物質として、前記液体クロマトグラフィー分析のクロマトグラムのピーク面積から求められる相対含有量は、前記液晶ポリエステル組成物の総質量(100質量%)に対して、0.5質量%以下であることが好ましく、0.1質量%以下であることがより好ましく、0.05質量%以下であることがさらに好ましい。
 前記保持時間17.4~17.5分の範囲に検出される成分の、4-(4-ヒドロキシフェノキシ)安息香酸を標準物質として、前記液体クロマトグラフィー分析のクロマトグラムのピーク面積から求められる相対含有量は、前記液晶ポリエステル組成物の総質量(100質量%)に対して、0.0001質量%以上であることが好ましく、0.005質量%以上であることがより好ましく、0.01質量%以上であることがさらに好ましい。
 前記成分の前記相対含有量の上記数値範囲の一例としては、前記ポリエステル組成物の総質量(100質量%)に対して、0.0001質量%以上0.5質量%以下であることが好ましく、0.005質量%以上0.1質量%以下であることがより好ましく、0.01質量%以上0.05質量%以下であることがさらに好ましい。
 前記保持時間17.4~17.5分の範囲に検出される成分の、4-(4-ヒドロキシフェノキシ)安息香酸を標準物質として、前記液体クロマトグラフィー分析のクロマトグラムのピーク面積から求められる相対含有量が上記数値範囲内であると、等方性に優れたフィルム化加工がより一層容易であり、また、より一層良好な機械強度が発揮される。
 前記液晶ポリエステル組成物における、前記液晶ポリエステル(A)と、前記液晶ポリエステル(B)との含有量の比率は、誘電正接及び加工特性のバランスに優れるとの観点から、質量比で、液晶ポリエステル(A)/液晶ポリエステル(B)=95/5~25/75であることが好ましく、95/5~30/70であることが好ましく、95/5~40/60であることが好ましく、95/5~50/50であることが好ましく、95/5~50/50(ただし、50/50を除く)であることがより好ましく、90/10~60/40であることがさらに好ましい。
 更に機械強度にも優れるとの観点から、前記液晶ポリエステル(A)と、前記液晶ポリエステル(B)との含有量の比率は、質量比で、液晶ポリエステル(A)/液晶ポリエステル(B)=80/20~30/70であることが好ましく、80/20~60/40であることがより好ましく、70/30~60/40であることがさらに好ましい。
 前記液晶ポリエステル組成物の総質量(100質量%)に対する、液晶ポリエステルの含有量の割合は、50質量%以上であってもよく、80質量%以上であってもよく、100質量%であってもよい。
 前記液晶ポリエステル組成物に含有される液晶ポリエステルの総質量100質量%に対する、前記液晶ポリエステル(A)及び前記液晶ポリエステル(B)の合計含有量の割合は、50質量%以上であってもよく、80質量%以上であってもよく、100質量%であってもよい。
 また、前記液晶ポリエステル組成物の総質量(100質量%)に対する、液晶ポリエステル(A)及び液晶ポリエステル(B)の合計含有量の割合は、50質量%以上であってもよく、80質量%以上であってもよく、100質量%であってもよい。
(液晶ポリエステルの製造方法)
 液晶ポリエステルは、それを構成する繰返し単位に対応する原料モノマーを溶融重合させ、必要に応じて得られた重合物を固相重合させることにより、製造することが好ましい。これにより、耐熱性や強度・剛性が高い高分子量の液晶ポリエステルを操作性よく製造することができる。
 溶融重合は、触媒の存在下に行ってもよい。この触媒の例としては、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム、三酸化アンチモンなどの金属化合物や、4-(ジメチルアミノ)ピリジン、1-メチルイミダゾールなどの含窒素複素環式化合物が挙げられ、含窒素複素環式化合物が好ましく用いられる。
<任意成分>
 本実施形態の液晶ポリエステル組成物は、上述した液晶ポリエステル以外の任意成分を更に含有していてもよい。
 実施形態の液晶ポリエステル組成物は、前記液晶ポリエステル(A)と、前記液晶ポリエステル(B)と、必要に応じて用いられるその他の任意成分とを、液晶ポリエステル組成物におけるそれらの含有量(質量%)の合計が、液晶ポリエステル組成物の総質量(100質量%)を超えないように含有することができる。
 任意成分としては、充填剤、上述した液晶ポリエステル以外の樹脂、難燃剤、導電性付与材剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、染料、発泡剤、制泡剤、粘度調整剤、界面活性剤等が挙げられる。
 上記で説明した液晶ポリエステル組成物は、前記液晶ポリエステル(A)及び前記液晶ポリエステル(B)を含有しているため、前記液晶ポリエステル(A)のみを含有する場合と比べ、温度降下による粘度上昇が抑制されており、加工特性が向上されている。
 液晶ポリエステル組成物において、温度降下による粘度上昇が抑制されていることは、下記の〔固化速度評価〕における下記差(ηTm-20℃-ηTm)にて確認できる。当該評価で算出される数値が小さいほど、試料の固化速度が遅く、温度降下による粘度上昇の程度が低く、加工特性がより良好であると判断できる。
〔固化速度評価〕
 レオメーター(例えば、TAインスツルメント株式会社製、Discovery HR-20)を用いて、測定対象の液晶ポリエステル組成物の試料を示差走査熱量測定装置で検出される吸熱ピークより高い温度で溶融させた後に、10℃/minの冷却速度で冷却した時の粘度を測定する。測定条件を下記に記載する。各試料の示差走査熱量測定装置で検出される吸熱ピークの頂点位置の温度における粘度と、吸熱ピークの頂点位置の温度から20℃降下した時点の粘度との比(ηTm-20℃/ηTm)を算出する。更に、各試料の示差走査熱量測定装置で検出される吸熱ピークの頂点位置の温度における粘度と、吸熱ピークの頂点位置の温度から20℃降下した時点の粘度との差(ηTm-20℃-ηTm)を算出する。
 測定開始温度:示差走査熱量測定装置で検出される吸熱ピークより高い温度
 冷却速度  :10℃/min
 周波数   :1Hz
 歪み    :0.05
 誘電正接及び加工特性のバランスに優れる液晶ポリエステル組成物として、液晶ポリエステル組成物の粘度の上記差(ηTm-20℃-ηTm)の値の一例としては、700Pa・s以下であってよく、600Pa・s以下であってよく、50Pa・s以上680Pa・s以下であってよく、50Pa・s以上650Pa・s以下であってよく、50Pa・s以上500Pa・s以下であってよく、100Pa・s以上400Pa・s以下であってよい。
 誘電正接及び加工特性のバランスに優れる液晶ポリエステル組成物として、液晶ポリエステル組成物の粘度の上記比(ηTm-20℃/ηTm)の値の一例としては、1.52以下であってよく、1以上1.51以下であってよく、1.3以上1.50以下であってよい。
 なお、液晶ポリエステル組成物に含有される液晶ポリエステルの、示差走査熱量測定で検出される吸熱ピークの温度は、250℃以上が好ましく、250℃以上350℃以下であることがより好ましく、280℃以上340℃以下であることがさらに好ましく、300℃以上330℃以下であることが特に好ましい。
 液晶ポリエステルの吸熱ピークの温度が上記下限値以上であると、耐熱性が良好であることから好ましい。
 液晶ポリエステルの吸熱ピークの温度は、示差走査熱量測定装置(例えば(株)島津製作所の「DSC-60A Plus」)を用いて、室温(23℃)から10℃/分の速度で昇温して得られた、液晶ポリエステル試料の吸熱ピークの頂点位置の温度(℃)として測定する。
 液晶ポリエステル組成物は、前記液晶ポリエステル(A)及び前記液晶ポリエステル(B)を含有しているため、前記液晶ポリエステル(B)のみを含有する場合と比べ、下記の誘電特性評価で測定される誘電正接の値が小さい。
 液晶ポリエステル組成物に係る誘電特性は、下記の[誘電特性評価]により求めることができる。
〔誘電特性評価〕
 射出成形機(例えば、日精樹脂工業社製、PNX40-5A)を用いて、測定対象の試料を成形材料として、幅64mm、長さ64mm、厚さ1mmの成形体を作製し、次いで両面から切削して厚さ0.2mmの試験片を得る。得られた試験片について、ベクトルネットワークアナライザー(例えば、キーサイトテクノロジー株式会社製、N5290A)およびスプリットシリンダ共振器(例えば、EMラボ株式会社製、CR710)を用いて、10GHzにおける比誘電率および誘電正接を測定する。
・測定環境:23℃、50%RH
 実施形態の液晶ポリエステル組成物は、上記〔誘電特性評価〕における試験片に対して測定される、周波数10GHzにおける比誘電率の値が4以下であることが好ましく、3.8以下であることがより好ましく、3.6以下であることがさらに好ましい。また、実施形態の液晶ポリエステル組成物は、上記〔誘電特性評価〕における試験片に対して測定される、周波数10GHzにおける比誘電率の値が、3以上であってもよく、3.2以上であってもよく、3.4以上であってもよい。
 上記の液晶ポリエステル組成物の上記比誘電率の値の上限値と下限値とは、自由に組み合わせることができる。上記の液晶ポリエステル組成物の上記比誘電率の値の数値範囲の一例としては、3以上4以下であってもよく、3.2以上3.8以下であってもよく、3.4以上3.6以下であってもよい。
 実施形態の液晶ポリエステル組成物は、上記〔誘電特性評価〕における試験片に対して測定される、周波数10GHzにおける誘電正接の値が0.0010以下であることが好ましく、0.0009以下であることがより好ましく、0.0008以下であることがさらに好ましい。また、実施形態の液晶ポリエステル組成物は、上記〔誘電特性評価〕における試験片に対して測定される、周波数10GHzにおける誘電正接の値の下限値は、特に制限されるものではないが、0.0002以上であってもよく、0.0003以上であってもよく、0.0004以上であってもよい。
 上記の液晶ポリエステル組成物の上記誘電正接の値の上限値と下限値とは、自由に組み合わせることができる。上記の液晶ポリエステル組成物の上記誘電正接の値の数値範囲の一例としては、0.0002以上0.0010以下であってもよく、0.0003以上0.0009以下であってもよく、0.0004以上0.0008以下であってもよい。
 液晶ポリエステル組成物は、前記液晶ポリエステル(A)及び前記液晶ポリエステル(B)を含有しているため、前記液晶ポリエステル(A)のみを含有する場合及び前記液晶ポリエステル(B)のみを含有する場合と比べ、機械強度の値が向上されてよい。
 液晶ポリエステル組成物に係る機械強度は、下記の〔曲げ特性評価〕における下記試験片に対して測定される曲げ強度及び曲げ弾性率を指標として評価することができる。
〔曲げ特性評価〕
 射出成形機(例えば、日精樹脂工業社製、PNX40-5A)を用いて、測定対象の試料を成形材料として、幅12.7mm、長さ127mm、厚さ6.4mmの各例の棒状試験片を製造する。得られた棒状試験片について、ASTM D790に従って曲げ試験を行い、23℃での曲げ強度及び曲げ弾性率を測定する。
 実施形態の液晶ポリエステル組成物は、上記〔曲げ特性評価〕における前記試験片に対して測定された曲げ強度が、例えば、124MPa以上であってよく、130MPa以上であってよく、140MPa以上300MPa以下であってよく、150MPa以上200MPa以下であってよい。
 実施形態の液晶ポリエステル組成物は、上記〔曲げ特性評価〕における前記試験片に対して測定された曲げ弾性率が、例えば、5GPa以上であってよく、5.5MPa以上20GPa以下であってよく、7MPa以上10GPa以下であってよい。
 以上に説明した実施形態の液晶ポリエステル組成物によれば、前記液晶ポリエステル(A)と、液晶ポリエステル(B)と、を含有するため、誘電正接及び加工特性のバランスに優れる。
 液晶ポリエステル組成物は加工特性に優れており、即ち、加熱された液晶ポリエステル組成物で、その後の温度降下による粘度上昇が抑制されているため、加工可能な状態が長く保たれやすく、所望の形状へと容易に加工可能である。
[液晶ポリエステル組成物の製造方法]
 本実施形態の液晶ポリエステル組成物の製造方法は、前記液晶ポリエステル(A)と、前記液晶ポリエステル(B)とを混合することを含む方法である。
 予め個別に重合された、液晶ポリエステル(A)と、液晶ポリエステル(B)とを混合することで、本実施形態の液晶ポリエステル組成物を得ることができる。
 実施形態の液晶ポリエステル組成物は、上述した前記液晶ポリエステル(A)、前記液晶ポリエステル(B)、及び必要に応じて用いられる任意成分を、一括で又は適当な順序で混合して得ることができる。
 前記混合としては、粉末状の前記液晶ポリエステル(A)と、粉末状の前記液晶ポリエステル(B)とをミキサー等で混合して混合物を得てもよいが、前記粉末状の液晶ポリエステル(A)と、前記粉末状の液晶ポリエステル(B)とをミキサー等で混合した後に溶融混練するのが好ましい。本実施形態の液晶ポリエステル組成物は、前記液晶ポリエステル(A)、前記液晶ポリエステル(B)、及び必要に応じて用いられる任意成分を、押出機を用いて溶融混練することで、ペレット化したものとして提供可能である。
 実施形態の液晶ポリエステル組成物の製造方法において、前記液晶ポリエステル(A)、前記液晶ポリエステル(B)、及び任意成分については、上記≪液晶ポリエステル組成物≫で説明した成分と同一の成分を例示できる。
 前記液晶ポリエステル組成物の製造方法における、前記液晶ポリエステル(A)と、前記液晶ポリエステル(B)との配合量の比率は、誘電正接及び加工特性のバランスに優れるとの観点から、質量比で、液晶ポリエステル(A)/液晶ポリエステル(B)=95/5~25/75であることが好ましく、95/5~30/70であることが好ましく、95/5~40/60であることが好ましく、95/5~50/50であることが好ましく、95/5~50/50(ただし、50/50を除く)であることがより好ましく、90/10~60/40であることがさらに好ましい。
 更に機械強度にも優れるとの観点から、前記液晶ポリエステル(A)と、前記液晶ポリエステル(B)との配合量の比率は、質量比で、液晶ポリエステル(A)/液晶ポリエステル(B)=80/20~30/70であることが好ましく、80/20~60/40であることがより好ましく、70/30~60/40であることがさらに好ましい。
 このようにして得られた液晶ポリエステル組成物、特に液晶ポリエステル組成物のペレットは、後述のフィルムの製造に用いられるフィルム成形材料用組成物として好適に使用可能である。
≪フィルム≫
 実施形態のフィルムは、上述した実施形態の液晶ポリエステル組成物を用いて作製されたフィルムである。実施形態のフィルムは、実施形態の液晶ポリエステル組成物をフィルム状に成形して得ることができる。
 本実施形態のフィルムとして、実施形態の液晶ポリエステル組成物を含むフィルムを例示できる。
 本実施形態のフィルムとして、実施形態の液晶ポリエステル組成物からなるフィルムを例示できる。
 実施形態のフィルムは、液晶ポリエステル(A)と、液晶ポリエステル(B)と、を含有し、以下のフィルムを例示できる。
 液晶ポリエステル(A)と、液晶ポリエステル(B)と、を含有し、
 前記液晶ポリエステル(A)は、
 下記式(A1)で表される繰返し単位と、下記式(A2)で表される繰返し単位と、下記式(A3)で表される繰返し単位と、を有し、
 (A1)-O-Ar-CO-
 (A2)-CO-Ar-CO-
 (A3)-X-Ar-Y-
(Arは、フェニレン基、ナフチレン基またはビフェニリレン基を表す。
 ArおよびArは、それぞれ独立に、フェニレン基、ナフチレン基、ビフェニリレン基または下記式(A4)で表される基を表す。
 XおよびYは、それぞれ独立に、酸素原子またはイミノ基(-NH-)を表す。
 Ar、ArまたはArで表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。)
 (A4)-Ar-Z-Ar
(ArおよびArは、それぞれ独立に、フェニレン基またはナフチレン基を表す。
 Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基またはアルキリデン基を表す。)
 前記液晶ポリエステル(A)を構成する全繰返し単位の合計数(100%)に対して、
前記式(A1)で表される繰返し単位の数が30%以上80%以下であり、
 前記液晶ポリエステル(B)は、
 下記式(B1)で表される繰返し単位を有し、
 (B1)-O-Arb1-CO-
(Arb1は、フェニレン基、ナフチレン基またはビフェニリレン基を表す。
 Arb1で表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。)
 前記液晶ポリエステル(B)を構成する全繰返し単位の合計数(100%)に対して、前記式(B1)で表される繰返し単位の数が80%超である、フィルム。
 実施形態のフィルムは、前記液晶ポリエステル(A)及び前記液晶ポリエステル(B)以外の任意成分を更に含有していてもよい。
 実施形態のフィルムにおける、前記液晶ポリエステル(A)、前記液晶ポリエステル(B)、及び任意成分の種類及び含有量については、上記≪液晶ポリエステル組成物≫で説明した内容と同一のものを例示できる。
 実施形態のフィルムは、プリント配線板などの電子部品用フィルム用途に好適に使用することができる。実施形態のフィルムは、それを絶縁材として備える、基板(例えば、フレキシブル基板)や、積層板(例えば、フレキシブル銅張積層板)、プリント基板、プリント配線板、プリント回路板等として提供可能である。
 実施形態のフィルムの厚さは、特に限定されるものではないが、電子部品用フィルムとして好適な厚さとしては、5μm以上50μm以下であることが好ましく、7μm以上40μm以下であることがより好ましく、10μm以上33μm以下であることがさらに好ましく、15μm以上20μm以下であることが特に好ましい。
 なお、本明細書において、「厚さ」は、JIS規格(K7130-1992)に従い、無作為に選出した10箇所の厚さを測定して得た値の平均値とする。
 実施形態のフィルムの総質量100質量%に対する液晶ポリエステルの含有割合は、50質量%以上100質量%以下であってもよく、80質量%以上95質量%以下であってもよい。
 従来、液晶ポリエステルを成形材料とした製膜では、製膜方向への分子配向が生じ易く、温度降下により速やかに粘度上昇が生じるため、等方性に優れるフィルムの提供が難しいという側面があった。
 実施形態のフィルムは、上記実施形態の液晶ポリエステル組成物を原料として製造されるため、加工特性が良好な状態で製膜されて、等方性に優れ、且つ優れた誘電正接を示すことができる。
≪フィルムの製造方法≫
 実施形態のフィルムの製造方法は、上記実施形態の液晶ポリエステル組成物を成形材料として、フィルムを溶融成形することを含む方法である。
 溶融成形法では、液晶ポリエステル組成物を加熱して軟化させ、所望の形状に成形することができる。
 溶融成形法としては、射出成形法、Tダイ法やインフレーション法などの押出成形法、圧縮成形法、ブロー成形法、真空成形法およびプレス成形が挙げられ、なかでもインフレーション法又はTダイ法が好ましい。
 従来、液晶ポリエステルを成形材料とした製膜では、製膜方向への分子配向が生じ易く、温度降下により速やかに粘度上昇が生じるため、等方性に優れるフィルムの製造が難しいという側面があった。
 実施形態のフィルムの製造方法によれば、上記実施形態の液晶ポリエステル組成物を原料として製造するため、加工特性が良好な状態で製膜され、且つ優れた誘電正接を示すことができる。
 液晶ポリエステル組成物は、フィルムの製造方法において加工特性に優れており、即ち加熱された液晶ポリエステル組成物で、その後の温度降下による粘度上昇が抑制されているため、加工可能な状態が長く保たれやすい。そのため、実施形態のフィルムの製造方法によれば、製膜時に液晶ポリエステルの配向緩和が促進されやすく、例えば等方性に優れたフィルム化加工を容易に実現できる。
 次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されない。
≪測定・評価≫
〔液晶ポリエステル試料の流動開始温度の測定〕
 フローテスター((株)島津製作所製、CFT-500型)を用いて、液晶ポリエステル試料約2gを、内径1mm及び長さ10mmのノズルを有するダイを取り付けたシリンダーに充填し、9.8MPa(100kg/cm)の荷重下、4℃/分の速度で昇温しながら、液晶ポリエステル試料を溶融させ、ノズルから押し出し、4800Pa・s(48000P)の粘度を示す温度(FT)を測定した。
〔液晶ポリエステル試料の吸熱ピークの測定〕
 示差走査熱量測定装置((株)島津製作所製、DSC-60A Plus)を用いて、室温(23℃)から10℃/分の速度で昇温しながら、液晶ポリエステル試料の吸熱ピークを測定し、その頂点位置の温度(℃)を求めた。
〔液晶ポリエステル試料の誘電特性評価〕
 射出成形機(日精樹脂工業社製、PNX40-5A)を用いて、各実施例又は比較例で得られた液晶ポリエステルのペレット又は液晶ポリエステル組成物のペレットを成形材料として、表1に示す条件で、幅64mm、長さ64mm、厚さ1mmの成形体を作製し、次いで両面から切削して厚さ0.2mmの試験片を得た。得られた試験片について、ベクトルネットワークアナライザー(キーサイトテクノロジー株式会社製、N5290A)およびスプリットシリンダ共振器(EMラボ株式会社製、CR710)を用いて、10GHzにおける比誘電率および誘電正接を測定した。
・測定環境:23℃、50%RH
Figure JPOXMLDOC01-appb-T000001
〔液晶ポリエステル試料の固化速度評価〕
 レオメーター(TAインスツルメント株式会社製、Discovery HR-20)を用いて、各実施例又は比較例で得られた液晶ポリエステルのペレット又は液晶ポリエステル組成物のペレットを試料として、340℃で溶融させた後に10℃/minの冷却速度で冷却した時の粘度を測定した。測定条件を下記に記載した。各試料の示差走査熱量測定装置で検出される吸熱ピークの頂点の位置の温度における粘度と、吸熱ピークの頂点の位置の温度から20℃降下した時点の粘度との比(ηTm-20℃/ηTm)、及び示差走査熱量測定装置で検出される吸熱ピークの頂点の位置の温度における粘度と、吸熱ピークの頂点の位置の温度から20℃降下した時点の粘度との差(ηTm-20℃-ηTm)を算出した。
測定開始温度:340℃
冷却速度  :10℃/min
周波数   :1Hz
歪み    :0.05
〔液晶ポリエステル試料の曲げ特性評価〕
 射出成形機(日精樹脂工業社製、PNX40-5A)を用いて、各実施例又は比較例で得られた液晶ポリエステルのペレット又は液晶ポリエステル組成物のペレットを成形材料として、表1に示す条件で、幅12.7mm、長さ127mm、厚さ6.4mmの各例の棒状試験片をそれぞれ製造した。次いで、得られた棒状試験片について、ASTM D790に従って曲げ試験を行い、23℃での曲げ強度及び曲げ弾性率を測定した。
〔液晶ポリエステル試料の分子量の測定〕
 高速GPC装置(東ソー製、HLC-8220)、カラム(東ソー製、TSKgel SuperHM-H(2本)、φ6.0mm×15cm)、溶媒(ペンタフルオロフェノール/クロロホルム(重量比 35/65))を用いて、各実施例又は比較例で得られた液晶ポリエステルのペレット又は液晶ポリエステル組成物のペレットを凍結粉砕して粉末状にしたものを試料として、試料に含まれる液晶ポリエステルの数平均分子量(Mn)および重量平均分子量(Mw)を測定した。測定用試料溶液は、試料2mgをペンタフルオロフェノール1.4gに添加し、80℃2時間溶解させ、室温まで冷却後クロロホルム2.6gを添加、さらに溶媒(ペンタフルオロフェノール/クロロホルム(重量比 35/65))で2倍希釈した後、孔径0.45μmのフィルターを用いてろ過し、調製した。分子量はポリスチレンを標準物質として用い、算出した。
〔液晶ポリエステルのアミン分解物のLC分析〕
 実施例1~8の各液晶ポリエステル組成物のペレット、及び比較例1~2の各液晶ポリエステルのペレットを、凍結粉砕して粉末状にし、超高速液体クロマトグラフ装置(島津製作所製、Nexera)を用いて、下記条件によりアミン分解を実施し、LC分析をした。4-(4-ヒドロキシフェノキシ)安息香酸を標準物質として用い、保持時間17.4~5分に検出される成分の、液体クロマトグラムのピーク面積から求められる含有量を定量した。
(アミン分解手順)
1)粉末状試料約0.05gを平底フラスコに採取した
2)NMP(特級)30mL、及びブチルアミン(特級)10mLをホールピペットで上記平底フラスコに加えた
3)平底フラスコを還流装置に設置して、200℃に設定したサンドバス内で、試料が完全に溶解するまで加熱した
4)試料の溶解後、さらに2時間加熱した
5)還流装置をサンドバスから上げて、水を流した状態で1時間冷却し、アミン分解液を得た
6)平底フラスコを還流装置から取り外し、100mLのなし型フラスコにアミン分解液を移した
7)平底フラスコをメタノールで2回共洗いし(計20mL)、残りのアミン分解液を回収した
8)エバポレーターにてメタノール及びブチルアミンを下記条件で除去し、アミン分解物を得た
 1.メタノール除去
  湯浴温度:60℃
  エバポレーター圧力:100mmHg(約133hPa)で、引き始めてから5分間
 2.ブチルアミン除去
  湯浴温度:60℃
  エバポレーター圧力:50mmHg(約67hPa)で15分間
9)アミン分解物に、ギ酸(特級)1mLをホールピペットで加えて液を中和し、アミン分解物(中和物)を得た
10)容器を軽く振って混合させ、アミン分解物(中和物)を50mLメスフラスコに移した
11)NMPで共洗いしながら室温まで冷ましつつ、NMPを加えて50mLまでメスアップし、LC分析用の試料を得て、下記測定条件にてLC分析を行った
(LC測定条件)
 カラム:L-Column ODS、基材(多孔質球状シリカ、高純度シリカ:シリカ99.99質量%以上)、修飾基(オクタデシル基)、膜厚3μm、3mmφ×15cm
 移動相:A)0.1体積% 酢酸水
     B)0.1体積% 酢酸アセトニトリル
 グラジェント:前記移動相Aの割合90体積%、前記移動相Bの割合10体積%にて通液を開始し、30分間かけて前記移動相Bの割合100体積%にまで徐々に濃度を上昇させ、前記移動相Bの割合100体積%にて10分間測定
 カラム温度:45℃
 検出器  :UV-254nm
 流速   :0.4mL/分
 LC分析用の試料の注入量  :1μL
 尚、LC装置の構成は下記の通りである。
 脱気ユニット:DGU-20A5
 送液ユニット:LC-30AD ×2
 オートサンプラ:SIL-30AC
 カラムオーブン:CTO-20AC
 吸光度検出器:SPD-20A
 システムコントローラ:CBM-20A
 システムソフトウェア:LabSolution
≪製造≫
 以下、各液晶ポリエステル及び液晶ポリエステル組成物の製造について記す。
 なお、液晶ポリエステル(a2)は、本発明の組成物における液晶ポリエステル(A)の概念に包含される。液晶ポリエステル(b1)は、本発明の組成物における液晶ポリエステル(B)の概念に包含される。
〔比較例1:液晶ポリエステル(a2)の製造〕
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、2-ヒドロキシ-6-ナフトエ酸1034.99g(5.5モル)、2,6-ナフタレンジカルボン酸378.33g(1.75モル)、テレフタル酸83.07g(0.5モル)、ヒドロキノン272.52g(2.475モル、2,6-ナフタレンジカルボン酸及びテレフタル酸の合計モル量に対して0.225モル過剰)、無水酢酸1226.87g(12モル)、及び触媒として1-メチルイミダゾール0.17gを入れた。反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、攪拌しながら、室温から145℃まで15分かけて昇温し、145℃で1時間還流させた。
 次いで、副生した酢酸及び未反応の無水酢酸を留去しながら、145℃から310℃まで3時間30分かけて昇温し、310℃で3時間保持した後、内容物を取り出し、室温まで冷却した。得られた固形物を、粉砕機で粉砕して、粉末状の液晶ポリエステル(a1)を得た。この液晶ポリエステル(a1)の流動開始温度は、265℃であった。
 液晶ポリエステル(a1)を、窒素雰囲気下、室温から215℃まで50分かけて昇温し、次いで215℃から230℃まで1時間かけて昇温し、230℃から300℃まで11時間40分かけて昇温し、300℃で10時間保持することにより、固相重合させて粉末状の液晶ポリエステル(a2)を得た。この液晶ポリエステル(a2)の流動開始温度は、328.7℃であった。
 次いで、2軸押出機(池貝鉄工株式会社製、PCM-30)を用いて、液晶ポリエステル(a2)をシリンダー温度345℃で造粒し、液晶ポリエステル(a2)のペレットを得た。この造粒後の液晶ポリエステル(a2)の流動開始温度は、307.2℃であった。また、造粒後の液晶ポリエステル(a2)の吸熱ピークの頂点位置の温度は、322℃であった。
〔比較例2:液晶ポリエステル(b1)の製造〕
 特開2004-250620号公報に記載の実施例1に記載の方法に準じて、2-ヒドロキシ-6-ナフトエ酸1511.1g(8.03モル)、及びp-ヒドロキシ安息香酸410.2g(2.97モル)を原料とし、液晶ポリエステル(b1)を合成した。この液晶ポリエステル(b1)の流動開始温度は、303.5℃であった。
 次いで、2軸押出機(池貝鉄工株式会社製、PCM-30)を用いて、液晶ポリエステル(b1)をシリンダー温度320℃で造粒し、液晶ポリエステル(b1)のペレットを得た。この造粒後の液晶ポリエステル(b1)の流動開始温度は、291.8℃であった。また、造粒後の液晶ポリエステル(b1)の吸熱ピークの頂点位置の温度は、312℃であった。
〔実施例1:液晶ポリエステル組成物(c)の製造〕
 上記で得られた粉末状の液晶ポリエステル(a2)と粉末状の液晶ポリエステル(b1)を、a2/b1=90/10の質量比で混合し、液晶ポリエステル組成物(c)を得た。この液晶ポリエステル組成物(c)の流動開始温度は、323.0℃であった。次いで、2軸押出機(池貝鉄工株式会社製、PCM-30)を用いて、液晶ポリエステル組成物(c)をシリンダー温度340℃で造粒し、液晶ポリエステル組成物(c)のペレットを得た。この造粒後の液晶ポリエステル組成物(c)の流動開始温度は、304.6℃であった。また、造粒後の液晶ポリエステル組成物(c)の吸熱ピークの頂点位置の温度は、322℃であった。
〔実施例2:液晶ポリエステル組成物(d)の製造〕
 上記で得られた粉末状の液晶ポリエステル(a2)と粉末状の液晶ポリエステル(b1)を、a2/b1=80/20の質量比で混合し、液晶ポリエステル組成物(d)を得た。この液晶ポリエステル組成物(d)の流動開始温度は、315.1℃であった。次いで、2軸押出機(池貝鉄工株式会社製、PCM-30)を用いて、液晶ポリエステル組成物(d)をシリンダー温度330℃で造粒し、液晶ポリエステル組成物(d)のペレットを得た。この造粒後の液晶ポリエステル組成物(d)の流動開始温度は、302.5℃であった。また、造粒後の液晶ポリエステル組成物(d)の吸熱ピークの頂点位置の温度は、321℃であった。
〔実施例3:液晶ポリエステル組成物(e)の製造〕
 上記で得られた粉末状の液晶ポリエステル(a2)と粉末状の液晶ポリエステル(b1)を、a2/b1=70/30の質量比で混合し、液晶ポリエステル組成物(e)を得た。この液晶ポリエステル組成物(e)の流動開始温度は、312.5℃であった。次いで、2軸押出機(池貝鉄工株式会社製、PCM-30)を用いて、液晶ポリエステル組成物(e)をシリンダー温度330℃で造粒し、液晶ポリエステル組成物(e)のペレットを得た。この造粒後の液晶ポリエステル組成物(e)の流動開始温度は、302.2℃であった。また、造粒後の液晶ポリエステル組成物(e)の吸熱ピークの頂点位置の温度は、319℃であった。
〔実施例4:液晶ポリエステル組成物(f)の製造〕
 上記で得られた粉末状の液晶ポリエステル(a2)と粉末状の液晶ポリエステル(b1)を、a2/b1=60/40の質量比で混合し、液晶ポリエステル組成物(f)を得た。この液晶ポリエステル組成物(f)の流動開始温度は、311.0℃であった。次いで、2軸押出機(池貝鉄工株式会社製、PCM-30)を用いて、液晶ポリエステル組成物(f)をシリンダー温度325℃で造粒し、液晶ポリエステル組成物(f)のペレットを得た。この造粒後の液晶ポリエステル組成物(f)の流動開始温度は、300.5℃であった。また、造粒後の液晶ポリエステル組成物(f)の吸熱ピークの頂点位置の温度は、320℃であった。
〔実施例5:液晶ポリエステル組成物(g)の製造〕
 上記で得られた粉末状の液晶ポリエステル(a2)と粉末状の液晶ポリエステル(b1)を、a2/b1=50/50の質量比で混合し、液晶ポリエステル組成物(g)を得た。この液晶ポリエステル組成物(g)の流動開始温度は、309.4℃であった。次いで、2軸押出機(池貝鉄工株式会社製、PCM-30)を用いて、液晶ポリエステル組成物(g)をシリンダー温度325℃で造粒し、液晶ポリエステル組成物(g)のペレットを得た。この造粒後の液晶ポリエステル組成物(g)の流動開始温度は、299.9℃であった。また、造粒後の液晶ポリエステル組成物(g)の吸熱ピークの頂点位置の温度は、315℃であった。
〔実施例6:液晶ポリエステル組成物(h)の製造〕
 上記で得られた粉末状の液晶ポリエステル(a2)と粉末状の液晶ポリエステル(b1)を、a2/b1=40/60の質量比で混合し、液晶ポリエステル組成物(h)を得た。この液晶ポリエステル組成物(h)の流動開始温度は、311.6℃であった。次いで、2軸押出機(池貝鉄工株式会社製、PCM-30)を用いて、液晶ポリエステル組成物(h)をシリンダー温度325℃で造粒し、液晶ポリエステル組成物(h)のペレットを得た。この造粒後の液晶ポリエステル組成物(h)の流動開始温度は、299.1℃であった。また、造粒後の液晶ポリエステル組成物(h)の吸熱ピークの頂点位置の温度は、310℃であった。
〔実施例7:液晶ポリエステル組成物(i)の製造〕
 上記で得られた粉末状の液晶ポリエステル(a2)と粉末状の液晶ポリエステル(b1)を、a2/b1=30/70の質量比で混合し、液晶ポリエステル組成物(i)を得た。この液晶ポリエステル組成物(i)の流動開始温度は、310.2℃であった。次いで、2軸押出機(池貝鉄工株式会社製、PCM-30)を用いて、液晶ポリエステル組成物(i)をシリンダー温度330℃で造粒し、液晶ポリエステル組成物(i)のペレットを得た。この造粒後の液晶ポリエステル組成物(i)の流動開始温度は、298.2℃であった。また、造粒後の液晶ポリエステル組成物(i)の吸熱ピークの頂点位置の温度は、312℃であった。
〔実施例8:液晶ポリエステル組成物(j)の製造〕
 上記で得られた粉末状の液晶ポリエステル(a2)と粉末状の液晶ポリエステル(b1)を、a2/b1=95/5の質量比で混合し、液晶ポリエステル組成物(j)を得た。この液晶ポリエステル組成物(j)の流動開始温度は、327.3℃であった。次いで、2軸押出機(池貝鉄工株式会社製、PCM-30)を用いて、液晶ポリエステル組成物(j)をシリンダー温度340℃で造粒し、液晶ポリエステル組成物(j)のペレットを得た。この造粒後の液晶ポリエステル組成物(j)の流動開始温度は、305.2℃であった。また、造粒後の液晶ポリエステル組成物(j)の吸熱ピークの頂点位置の温度は、320℃であった。
 液晶ポリエステル組成物について、各項目を評価した結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例1~8の液晶ポリエステル組成物は、比較例1の液晶ポリエステルよりも、吸熱ピーク位置における粘度との差(ηTm-20℃-ηTm)によって評価される粘度上昇が生じ難く加工特性に優れ、比較例2の液晶ポリエステルよりも誘電正接の値が小さかった。
 このことから、液晶ポリエステル(a2)と液晶ポリエステル(b1)とを含有する実施例1~8の液晶ポリエステル組成物は、誘電正接及び加工特性のバランスに優れることが示された。
 また、曲げ特性を参照すると、特に実施例2~7の液晶ポリエステル組成物の成形体において、比較例1及び比較例2の液晶ポリエステルの成形体よりも、曲げ強度及び曲げ弾性率が向上していた。
 このことから、液晶ポリエステル(a2)と液晶ポリエステル(b1)との両方を含有させることにより、想定を超えた曲げ特性の相乗的な向上効果が確認された。
 各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換などの変更が可能である。また、本発明は各実施形態に限定されることはなく、請求項(クレーム)にのみ限定される。

Claims (14)

  1.  液晶ポリエステル(A)と、液晶ポリエステル(B)と、を含有し、
     前記液晶ポリエステル(A)は、
     下記式(A1)で表される繰返し単位と、下記式(A2)で表される繰返し単位と、下記式(A3)で表される繰返し単位と、を有し、
     (A1)-O-Ar-CO-
     (A2)-CO-Ar-CO-
     (A3)-X-Ar-Y-
    (Arは、フェニレン基、ナフチレン基またはビフェニリレン基を表す。
     ArおよびArは、それぞれ独立に、フェニレン基、ナフチレン基、ビフェニリレン基または下記式(A4)で表される基を表す。
     XおよびYは、それぞれ独立に、酸素原子またはイミノ基(-NH-)を表す。
     Ar、ArまたはArで表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。)
     (A4)-Ar-Z-Ar
    (ArおよびArは、それぞれ独立に、フェニレン基またはナフチレン基を表す。
     Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基またはアルキリデン基を表す。)
     前記液晶ポリエステル(A)を構成する全繰返し単位の合計数100%に対して、
    前記式(A1)で表される繰返し単位の数が30%以上80%以下であり、
     前記液晶ポリエステル(B)は、
     下記式(B1)で表される繰返し単位を有し、
     (B1)-O-Arb1-CO-
    (Arb1は、フェニレン基、ナフチレン基またはビフェニリレン基を表す。
     Arb1で表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。)
     前記液晶ポリエステル(B)を構成する全繰返し単位の合計数100%に対して、前記式(B1)で表される繰返し単位の数が80%超である、液晶ポリエステル組成物。
  2.  前記式(B1)で表される繰返し単位が、
     下記式(B1-1)で表される繰返し単位を含み、
     (B1-1)-O-Arb1-1-CO-
    (Arb1-1は、ナフチレン基を表す。
     Arb1-1で表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。)
     前記式(B1)に該当する繰返し単位の合計数100%に対し、前記式(B1-1)で表される繰返し単位の数が50%超90%以下である、請求項1に記載の液晶ポリエステル組成物。
  3.  前記液晶ポリエステル組成物における、前記液晶ポリエステル(A)と、前記液晶ポリエステル(B)との含有量の比率が、質量比で、液晶ポリエステル(A)/液晶ポリエステル(B)=95/5~25/75である、請求項1又は2に記載の液晶ポリエステル組成物。
  4.  前記液晶ポリエステル組成物における、前記液晶ポリエステル(A)と、前記液晶ポリエステル(B)との含有量の比率が、質量比で、液晶ポリエステル(A)/液晶ポリエステル(B)=95/5~50/50である、請求項1又は2に記載の液晶ポリエステル組成物。
  5.  前記液晶ポリエステル組成物の総質量100質量%に対する、前記液晶ポリエステル(A)及び前記液晶ポリエステル(B)の合計含有量の割合が、80質量%以上である、請求項1又は2に記載の液晶ポリエステル組成物。
  6.  液晶ポリエステル(B)が、前記式(B1)で表される繰返し単位のみからなる、請求項1又は2に記載の液晶ポリエステル組成物。
  7.  前記液晶ポリエステル(A)が、
     下記式(A1)で表される繰返し単位と、下記式(A2)で表される繰返し単位と、下記式(A3)で表される繰返し単位と、を有する、請求項1又は2に記載の液晶ポリエステル組成物。
    (A1)-O-Ar-CO-
    (A2)-CO-Ar-CO-
    (A3)-O-Ar-O-
    (Arは、2,6-ナフチレン基、1,4-フェニレン基、又は4,4’-ビフェニリレン基を表す。
     Ar及びArは、それぞれ独立に、2,6-ナフチレン基、2,7-ナフチレン基、1,4-フェニレン基、1,3-フェニレン基、又は4,4’-ビフェニリレン基を表す。
     Ar、Ar又はArで表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、炭素数1~10のアルキル基、又は炭素数6~20のアリール基で置換されていてもよい。)
  8.  前記式(B1)で表される繰返し単位は、
    下記式(B1-1)で表される繰返し単位、及び下記式(B1-2)で表される繰返し単位のみからなる、請求項1又は2に記載の液晶ポリエステル組成物。
     (B1-1)-O-Arb1-1-CO-
     (B1-2)-O-Arb1-2-CO-
    (Arb1-1は、ナフチレン基を表す。
     Arb1-2は、フェニレン基を表す。
     Arb1-1又はArb1-2で表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。)
  9.  前記液晶ポリエステル組成物を下記のアミン分解条件で得たアミン分解物が、下記の分析条件の液体クロマトグラフィー分析によって、保持時間17.4~17.5分の範囲に検出される成分を含み、
     4-(4-ヒドロキシフェノキシ)安息香酸を標準物質として、前記液体クロマトグラフィー分析のクロマトグラムのピーク面積から求められる前記成分の相対含有量は、前記液晶ポリエステル組成物の総質量100質量%に対して、0.0001質量%以上0.5質量%以下である、請求項1又は2に記載の液晶ポリエステル組成物。
    (アミン分解条件)
     前記液晶ポリエステル組成物とブチルアミンとを混合し、200℃、2時間以上で処理した後、60℃での減圧処理にてブチルアミン除去を行い、ギ酸を添加する中和処理を行い、前記アミン分解物を得る。
    (分析条件)
     カラム:基材(多孔質球状シリカ)、修飾基(オクタデシル基)、膜厚3μm、3mmφ×15cm
     移動相:A)0.1体積% 酢酸水
         B)0.1体積% 酢酸アセトニトリル
     グラジェント:前記移動相Aの割合90体積%、前記移動相Bの割合10体積%にて通液を開始し、30分間かけて前記移動相Bの割合100体積%にまで徐々に濃度を上昇させ、前記移動相Bの割合100体積%にて10分間測定
     カラム温度:45℃
     検出器  :UV-254nm
     流速   :0.4mL/分
     注入量  :1μL
  10.  前記液晶ポリエステル組成物に含有される液晶ポリエステルの、ポリスチレンを標準物質として測定される重量平均分子量が、270000以上である、請求項1又は2に記載の液晶ポリエステル組成物。
  11.  前記液晶ポリエステル(A)と、前記液晶ポリエステル(B)とを混合することを含む、請求項1又は2に記載の液晶ポリエステル組成物の製造方法。
  12.  液晶ポリエステル(A)と、液晶ポリエステル(B)と、を含有し、
     前記液晶ポリエステル(A)は、
     下記式(A1)で表される繰返し単位と、下記式(A2)で表される繰返し単位と、下記式(A3)で表される繰返し単位と、を有し、
     (A1)-O-Ar-CO-
     (A2)-CO-Ar-CO-
     (A3)-X-Ar-Y-
    (Arは、フェニレン基、ナフチレン基またはビフェニリレン基を表す。
     ArおよびArは、それぞれ独立に、フェニレン基、ナフチレン基、ビフェニリレン基または下記式(A4)で表される基を表す。
     XおよびYは、それぞれ独立に、酸素原子またはイミノ基(-NH-)を表す。
     Ar、ArまたはArで表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。)
     (A4)-Ar-Z-Ar
    (ArおよびArは、それぞれ独立に、フェニレン基またはナフチレン基を表す。
     Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基またはアルキリデン基を表す。)
     前記液晶ポリエステル(A)を構成する全繰返し単位の合計数100%に対して、
    前記式(A1)で表される繰返し単位の数が30%以上80%以下であり、
     前記液晶ポリエステル(B)は、
     下記式(B1)で表される繰返し単位を有し、
     (B1)-O-Arb1-CO-
    (Arb1は、フェニレン基、ナフチレン基またはビフェニリレン基を表す。
     Arb1で表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。)
     前記液晶ポリエステル(B)を構成する全繰返し単位の合計数100%に対して、前記式(B1)で表される繰返し単位の数が80%超である、フィルム。
  13.  請求項1又は2に記載の液晶ポリエステル組成物を成形材料として、フィルムを溶融成形することを含む、請求項12に記載のフィルムの製造方法。
  14.  前記溶融成形が、インフレーション法による成形、又はTダイ法による成形である、請求項13に記載のフィルムの製造方法。
PCT/JP2023/000805 2022-01-28 2023-01-13 液晶ポリエステル組成物、液晶ポリエステル組成物の製造方法、フィルム及びフィルムの製造方法 WO2023145489A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-011708 2022-01-28
JP2022011708 2022-01-28

Publications (1)

Publication Number Publication Date
WO2023145489A1 true WO2023145489A1 (ja) 2023-08-03

Family

ID=87471314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000805 WO2023145489A1 (ja) 2022-01-28 2023-01-13 液晶ポリエステル組成物、液晶ポリエステル組成物の製造方法、フィルム及びフィルムの製造方法

Country Status (2)

Country Link
TW (1) TW202342639A (ja)
WO (1) WO2023145489A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081469A1 (fr) * 2000-04-20 2001-11-01 Kabushiki Kaisha Ueno Seiyaku Oyo Kenkyusho Composition de resine de polyester a cristaux liquides
JP2002249647A (ja) * 2001-02-23 2002-09-06 Ueno Seiyaku Oyo Kenkyusho:Kk 流動性が改良された全芳香族耐熱液晶ポリエステル樹脂組成物
JP2009108191A (ja) * 2007-10-30 2009-05-21 Ueno Fine Chem Ind Ltd 液晶ポリエステルブレンド
JP2010242246A (ja) * 2009-04-03 2010-10-28 Toray Ind Inc 液晶ポリエステル繊維の製造方法
JP2011021178A (ja) * 2009-06-15 2011-02-03 Ueno Fine Chem Ind Ltd 液晶ポリエステルブレンド組成物
JP2015183159A (ja) * 2014-03-26 2015-10-22 上野製薬株式会社 液晶ポリエステルブレンド
JP2020193261A (ja) * 2019-05-27 2020-12-03 上野製薬株式会社 液晶ポリマー組成物
WO2022220204A1 (ja) * 2021-04-14 2022-10-20 大倉工業株式会社 液晶ポリエステル系樹脂組成物、該組成物を用いた液晶ポリエステル系フィルム、該フィルムを用いた金属ラミネートフィルム、回路基板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081469A1 (fr) * 2000-04-20 2001-11-01 Kabushiki Kaisha Ueno Seiyaku Oyo Kenkyusho Composition de resine de polyester a cristaux liquides
JP2002249647A (ja) * 2001-02-23 2002-09-06 Ueno Seiyaku Oyo Kenkyusho:Kk 流動性が改良された全芳香族耐熱液晶ポリエステル樹脂組成物
JP2009108191A (ja) * 2007-10-30 2009-05-21 Ueno Fine Chem Ind Ltd 液晶ポリエステルブレンド
JP2010242246A (ja) * 2009-04-03 2010-10-28 Toray Ind Inc 液晶ポリエステル繊維の製造方法
JP2011021178A (ja) * 2009-06-15 2011-02-03 Ueno Fine Chem Ind Ltd 液晶ポリエステルブレンド組成物
JP2015183159A (ja) * 2014-03-26 2015-10-22 上野製薬株式会社 液晶ポリエステルブレンド
JP2020193261A (ja) * 2019-05-27 2020-12-03 上野製薬株式会社 液晶ポリマー組成物
WO2022220204A1 (ja) * 2021-04-14 2022-10-20 大倉工業株式会社 液晶ポリエステル系樹脂組成物、該組成物を用いた液晶ポリエステル系フィルム、該フィルムを用いた金属ラミネートフィルム、回路基板

Also Published As

Publication number Publication date
TW202342639A (zh) 2023-11-01

Similar Documents

Publication Publication Date Title
JP6411702B1 (ja) 全芳香族液晶ポリエステル樹脂
US10774215B2 (en) Composition containing a polyaryletherketone and low naphthenic liquid crystalline polymer
US8071711B2 (en) Polyester for producing fiber, and fiber and non-woven fabric using the same
JP5560770B2 (ja) 液晶高分子組成物及びその成形体
JPH02173156A (ja) 流動性改良液晶性ポリエステル樹脂組成物
WO2020166651A1 (ja) 液晶ポリエステル粉末、液晶ポリエステル組成物、フィルムの製造方法、及び積層体の製造方法
WO2016027446A1 (ja) 全芳香族液晶ポリエステル樹脂
US11879041B2 (en) Film and laminate
TW202035511A (zh) 樹脂組合物及包含該樹脂組合物之樹脂成形品
JP2020132849A (ja) 液晶ポリエステル粉末、液晶ポリエステル組成物、フィルムの製造方法、及び積層体の製造方法
JP5899887B2 (ja) 液晶ポリエステルフィルムの製造方法
US9012593B2 (en) Method for preparing an aromatic liquid crystal polyester resin and method for preparing a compound of aromatic liquid crystal polyester resin
US20120095183A1 (en) Methods of preparing wholly aromatic liquid crystalline polyester resin and wholly aromatic liquid crystalline polyester resin compound with constant melt viscosity
KR20180077187A (ko) 카메라 모듈용 액정성 폴리에스테르 수지 조성물 및 그것으로 이루어지는 카메라 모듈용 성형품
TW202112889A (zh) 液晶聚合物粒子、熱硬化性樹脂組合物、及成形體
JP2012201835A (ja) 液晶ポリエステル液状組成物
JP4946066B2 (ja) 芳香族液晶ポリエステル及びそれから得られるフィルム
WO2015046630A1 (ja) 摺動部材用樹脂組成物
WO2023145489A1 (ja) 液晶ポリエステル組成物、液晶ポリエステル組成物の製造方法、フィルム及びフィルムの製造方法
WO2022004630A1 (ja) 樹脂組成物および該樹脂組成物からなる樹脂成形品
TW202219106A (zh) 液狀組成物、液狀組成物之製造方法、液晶聚酯薄膜之製造方法及積層體之製造方法
JP7237524B2 (ja) 融解により異方性を緩和することができる樹脂組成物および該樹脂組成物からなる樹脂成形品
JP2004250688A (ja) 芳香族液晶ポリエステルフィルム
JP2004277731A (ja) 芳香族液晶ポリエステル溶液組成物
JP7446916B2 (ja) 全芳香族ポリエステル樹脂及びそれを含む樹脂組成物、並びに成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746703

Country of ref document: EP

Kind code of ref document: A1