WO2023145264A1 - 空間浄化装置 - Google Patents

空間浄化装置 Download PDF

Info

Publication number
WO2023145264A1
WO2023145264A1 PCT/JP2022/045028 JP2022045028W WO2023145264A1 WO 2023145264 A1 WO2023145264 A1 WO 2023145264A1 JP 2022045028 W JP2022045028 W JP 2022045028W WO 2023145264 A1 WO2023145264 A1 WO 2023145264A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
water
hypochlorous acid
humidification
purification device
Prior art date
Application number
PCT/JP2022/045028
Other languages
English (en)
French (fr)
Inventor
将秀 福本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023145264A1 publication Critical patent/WO2023145264A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • A61L9/04Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air without heating
    • A61L9/12Apparatus, e.g. holders, therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present disclosure relates to a space purification device that regulates the amount of hypochlorous acid released into the air.
  • the space purification device electrolyzes salt water to generate electrolyzed water (hypochlorous acid water) and supplies the electrolyzed water to the filter unit.
  • the filter part of the air purifying device brings the air into contact with the electrolyzed water to remove viruses and the like floating in the air (see, for example, Patent Document 1).
  • the air purifier dehumidifies air with high relative humidity (for example, temperature 12 ° C, humidity 95%). ventilate the In such a situation, it is difficult for the electrolyzed water to evaporate in the filter section, so hypochlorous acid is difficult to be released into the target space.
  • the air purifier blows warm air with low relative humidity (for example, temperature 20° C., humidity 30%). Under such circumstances, the electrolyzed water is easily vaporized, and a large amount of hypochlorous acid is released into the target space. In other words, it is not easy to control the hypochlorous acid released into the target space (into the air).
  • the purpose of the present disclosure is to provide a technique for adjusting the amount of hypochlorous acid released into the target space (into the air).
  • a space purifier includes a filter unit that retains hypochlorous acid water supplied therein and vaporizes the hypochlorous acid water by bringing the retained hypochlorous acid water into contact with air. and an air supply unit that is immersed in the hypochlorous acid water and supplies air as bubbles to the hypochlorous acid water.
  • the amount of hypochlorous acid released into the target space (into the air) can be adjusted.
  • FIG. 1 is a diagram showing the internal configuration of a space cleaning device according to an embodiment.
  • FIG. 2 is a diagram showing the configuration of the space purification device according to the embodiment.
  • FIG. 3A is a flow chart showing a switching procedure by the space purification device according to the embodiment.
  • FIG. 3B is a flow chart showing a switching procedure by the space cleaning device according to the embodiment.
  • FIG. 4 is a diagram showing the configuration of a space purification device according to Modification 1.
  • FIG. 5 is a diagram showing the configuration of a space purification device according to Modification 2.
  • FIG. 6 is a diagram showing the configuration of a space purification device according to Modification 3.
  • FIG. 5 is a diagram showing the configuration of a space purification device according to Modification 2.
  • the present embodiment relates to a space purification device that generates electrolyzed water based on water and an electrolysis accelerator, and then discharges the electrolyzed water.
  • the space purification device of the present disclosure includes a water storage tank, an electrolytic tank, and a mixing tank.
  • a reservoir supplies water to the electrolytic cell and the mixing cell.
  • the electrolytic cell is equipped with electrodes, and by dissolving an electrolysis accelerator in the water from the water storage tank, water containing chloride ions is generated, and by electrolyzing the water containing chloride ions by energizing the electrodes, active oxygen Produces electrolyzed water containing seeds.
  • Electrolyzed water generated in the electrolytic cell is supplied to the mixing cell.
  • the mixing tank is provided with a filter section, and the electrolyzed water from the electrolysis tank is brought into continuous contact with the air sucked in from the outside, and the contacted air is released to the outside by the rotation of the fan. As described above, it is difficult to control the amount of hypochlorous acid released into the air only with the filter portion.
  • the space purification device further includes an air supply unit in the electrolytic cell.
  • the air supply unit sucks air and supplies the sucked air to the electrolyzed water (hypochlorous acid water) as air bubbles. That is, since hypochlorous acid is released into the air by the filter section or the air supply section, the amount of hypochlorous acid released into the air can be easily adjusted.
  • FIG. 1 shows the internal configuration of a space purification device 1000 according to an embodiment.
  • the space purification device 1000 includes a water tank 100, a water supply tank 110, a lid 112, a first pump 120, a first water supply pipe 122, a supply port 124, a second pump 130, and a second water supply pipe 132. , a water shortage float 160, an electrolytic cell 200, an electrode unit 210, a third pump 220, a third water supply pipe 222, a metering tank 224, a third water supply pipe 226, a full water float 250, and a water shortage float 260. , and an air supply unit 270 .
  • the space purification device 1000 further includes a mixing tank 300, a filter section 310, a full water float 350, a water shortage float 360, a drain float 370, an electrolysis accelerator input section 400, an input port 404, and an electrolysis accelerator 410. , and a control unit 500 .
  • the first pump 120 , the first water supply pipe 122 and the supply port 124 are included in the first supply section 128 .
  • the second pump 130 and the second water supply pipe 132 are included in the second supply section 138 .
  • a third pump 220 , a third water supply pipe 222 , a metering volume 224 and a third water supply pipe 226 are included in a third supply section 228 .
  • the first supply unit 128 and the second supply unit 138 may be called "water supply units" that supply water.
  • the water tank 100 has a box shape with an open top, has a structure capable of storing water, and stores water supplied from a water supply tank 110 described later.
  • the water tank 100 is arranged, for example, in the lower portion of the space cleaning device 1000 .
  • the water supply tank 110 is a tank that stores water inside and is detachable from the water tank 100 .
  • An opening (not shown) of the water supply tank 110 is provided with a lid 112 .
  • An opening/closing part (not shown) is provided in the center of the lid 112 . When the lid 112 is opened, the water in the water tank 110 is supplied to the water tank 100 .
  • the opening/closing portion opens. That is, when the water supply tank 110 filled with water is attached to the water tank 100 , the opening/closing portion is opened to supply water to the water tank 100 , and the water is accumulated in the water tank 100 .
  • the water supply to the water tank 100 stops because the opening of the water tank 110 is sealed.
  • the water inside the water tank 110 is supplied to the water tank 100 each time the water level in the water tank 100 drops. As a result, the water level in the water tank 100 is kept constant.
  • the first pump 120 is arranged inside the water tank 100 and connected to the first water supply pipe 122 .
  • the first pump 120 operates according to an instruction from the control unit 500 to pump up the water stored in the water tank 100 toward the first water supply pipe 122 .
  • the first water supply pipe 122 is a pipe that connects the water tank 100 and the electrolytic bath 200, and has a supply port 124 at the end on the electrolytic bath 200 side.
  • the water pumped by the first pump 120 flows through the first water supply pipe 122 and is supplied to the electrolytic cell 200 from the supply port 124 . That is, the first pump 120 , the first water supply pipe 122 and the supply port 124 supply water from the water tank 100 to the electrolytic cell 200 .
  • the second pump 130 is arranged inside the water tank 100 and connected to the second water supply pipe 132 .
  • the second pump 130 operates according to instructions from the control unit 500 to pump up the water stored in the water tank 100 toward the second water supply pipe 132 .
  • the second water supply pipe 132 is a pipe that connects the water tank 100 and the mixing tank 300 .
  • the water pumped by the second pump 130 flows through the second water supply pipe 132 and is supplied to the mixing tank 300 . That is, the second pump 130 and the second water supply pipe 132 supply water from the water storage tank 100 to the mixing tank 300 .
  • the electrolytic bath 200 has a box shape with an open top and is arranged below the supply port 124 .
  • the electrolytic cell 200 stores water supplied from the supply port 124 .
  • an electrolysis accelerator input portion 400 is arranged in line with the supply port 124.
  • the electrolysis accelerator input unit 400 can load the electrolysis accelerator 410 therein, and rotates a tablet input member (not shown) when an instruction to input the electrolysis accelerator 410 is given from the control unit 500 . When the tablet loading member rotates, the electrolysis accelerator 410 drops from the loading port 404 into the electrolytic bath 200 .
  • the electrolysis accelerator input unit 400 counts the number of the electrolysis accelerators 410 dropped into the electrolytic bath 200, and when it is determined that one tablet of the electrolysis accelerator 410 has dropped into the electrolytic bath 200, the rotation of the tablet charging member is stopped. do. That is, the electrolysis accelerator input unit 400 injects the electrolysis accelerator 410 into the electrolytic bath 200 . By dissolving the electrolysis accelerator 410 into the water in the electrolytic cell 200 , water containing chloride ions is generated in the electrolytic cell 200 .
  • An example of an electrolysis enhancer 410 is sodium chloride and is formed as an electrolysis enhancer tablet.
  • the electrode part 210 is installed so as to be submerged in the water in the electrolytic bath 200 .
  • the electrode unit 210 electrochemically decomposes water containing chloride ions in the electrolytic cell 200 to generate electrolyzed water containing active oxygen species.
  • the active oxygen species refer to oxygen molecules having higher oxidation activity than normal oxygen and their related substances.
  • active oxygen species include so-called narrowly-defined active oxygen such as superoxide anion, singlet oxygen, hydroxyl radical, or hydrogen peroxide, and so-called broadly-defined active oxygen such as ozone or hypochlorous acid (hypohalogenous acid). Contains active oxygen.
  • the electrode unit 210 Based on an instruction from the control unit 500, the electrode unit 210 sets the energization time during which energization for electrolysis is performed and the time after the energization is stopped, that is, the non-energization time, which is the time during which the energization is not performed, for one cycle.
  • electrolyzed water may be generated by repeating one cycle a plurality of times. By providing the non-energization time for the electrode section 210, the life of the electrode section 210 is extended. If the energization time is longer than the non-energization time, electrolyzed water containing a larger amount of active oxygen species is produced per cycle.
  • the electrolytic cell 200 is a tank for generating electrolyzed water from the water into which the electrolysis accelerator 410 is added. Electrolyzed water is also called hypochlorous acid water, and hypochlorous acid water having a predetermined concentration is generated in the electrolytic cell 200 .
  • the third pump 220 is arranged inside the electrolytic cell 200 and connected to the third water supply pipe 222 .
  • the third pump 220 pumps up the electrolyzed water stored in the electrolytic cell 200 toward the third water supply pipe 222 when operated in accordance with an instruction from the control unit 500 .
  • the third water supply pipe 222 is connected to a metered volume 224 to supply electrolyzed water from the electrolytic cell 200 to the metered volume 224 .
  • the metered volume 224 is a volume having a constant volume, and stores a constant volume of electrolyzed water supplied from the third water supply pipe 222 .
  • the metering measure 224 is connected to a third water supply pipe 226 , which extends toward the mixing tank 300 .
  • the electrolyzed water stored in the metering volume 224 is made to flow through the third water supply pipe 226 and supplied to the mixing tank 300 . That is, the third pump 220 , the third water supply pipe 222 , the metering volume 224 , and the third water supply pipe 226 supply electrolyzed water from the electrolytic bath 200 to the mixing bath 300 .
  • the air supply unit 270 is provided inside the electrolytic cell 200 .
  • the air supply unit 270 sucks in outside air and supplies the sucked air as bubbles to the hypochlorous acid water.
  • Air supply 270 includes air stone 272 , air pump 274 , and air tube 276 .
  • the air stone 272 is a stone (for example, made of porous ceramics or porous synthetic resin) that forms fine bubbles of air sent from the air pump 274 through the air tube 276 and discharges them as bubbles into the hypochlorous acid water. stone).
  • the air stone 272 is installed at the bottom of the electrolytic bath 200 while being immersed in the hypochlorous acid water.
  • the air pump 274 is arranged outside the electrolytic cell 200 .
  • the air pump 274 draws in outside air, increases the pressure, and sends it to the air stone 272 .
  • the air tube 276 communicates between the air stone 272 and the air pump 274 and circulates the air discharged from the air pump 274 to the air stone 272 .
  • Air tube 276 is installed through the side wall of electrolytic cell 200 .
  • the air supply unit 270 controls the amount of air supplied to the hypochlorous acid water and the size (diameter) of the bubbles to be generated according to instructions from the control unit 500, so that the released air Adjust the amount of hypochlorous acid (hypochlorous acid gas) to be included. Specifically, if the amount of air supplied to the hypochlorous acid water increases, the amount of bubbles generated (number of generation) increases accordingly, and the amount of hypochlorous acid contained in the released air increases. To increase. In addition, if the size (diameter) of the bubbles released into the hypochlorous acid water becomes smaller, the rising speed of the bubbles when floating will be reduced, and the contact time between the hypochlorous acid water and the bubbles will increase. .
  • the contact area between the hypochlorous acid water and the bubbles circulating in the liquid is increased compared to when the size (diameter) of the bubbles is large.
  • the amount of hypochlorous acid taken into the air bubbles flowing through the hypochlorous acid water increases in the process of floating, and the amount of hypochlorous acid contained in the released air increases.
  • the amount of air supplied to the hypochlorous acid water by the air supply unit 270 is controlled by the amount of air discharged from the air pump 274 .
  • the size (diameter) of the bubbles is controlled by the size of the pores of the air stone 272 (and the amount of air discharged from the air pump 274).
  • the air bubbles are fine bubbles of air sucked from the outside by the air supply unit 270 (air stone 272), and the air is trapped by the hypochlorous acid water.
  • the bubbles released from the air supply unit 270 float while taking hypochlorous acid (and moisture) contained in the hypochlorous acid water into the internal air. After that, when the bubbles float up to the surface of the hypochlorous acid water, they burst and disappear.
  • the mixing tank 300 has a box shape with an open top, and mixes the water supplied from the water tank 100 and the electrolyzed water supplied from the electrolytic tank 200 . This corresponds to diluting the electrolyzed water supplied from the electrolytic cell 200 with the water supplied from the water tank 100 .
  • the mixing tank 300 is provided with a filter part 310 that is partly immersed in the hypochlorous acid water.
  • the filter unit 310 also includes a fan (not shown).
  • the fan is, for example, a sirocco fan, and rotates under the control of the control unit 500 .
  • the air volume of the fan is determined every air volume unit time (for example, 5 minutes) according to the temperature, humidity, and gas odor level.
  • the amount of rotation of the fan is controlled based on the determined air volume. As the fan rotates, air is sucked into the interior of the space purification device 1000 through an intake port (not shown) provided in the housing (not shown) of the space purification device 1000 .
  • the filter part 310 is a member that brings the electrolyzed water stored in the mixing tank 300 into contact with the indoor air that has flowed into the space cleaning device 1000 by the fan.
  • the electrolyzed water stored in the mixing tank 300 can also be said to be mixed water of hypochlorous acid water and water.
  • the filter part 310 is configured in a cylindrical shape and has holes through which air can flow in the circumference part.
  • the filter part 310 is rotatably built in the mixing tank 300 about the central axis so that one end of the filter part 310 is immersed in the electrolyzed water stored in the mixing tank 300 and water is retained.
  • the filter unit 310 is rotated by a driving unit (not shown) to continuously bring the electrolyzed water into contact with the room air. That is, the filter unit 310 rotates to pump up the hypochlorous acid water, and then brings the hypochlorous acid water into contact with the air.
  • the water shortage float 160 provided in the water storage tank 100, the full water float 250 and the water shortage float 260 provided in the electrolytic tank 200, and the full water float 350, the water shortage float 360, and the water discharge float 370 provided in the mixing tank 300 are Alternatively, the presence or absence of electrolyzed water is detected.
  • water and electrolyzed water may be collectively referred to as "water”.
  • the drought float 160, full float 250, drought 260, full float 350, drought float 360, and drain float 370 are collectively referred to as "floats.”
  • Each float is buoyant and is provided with magnets (not shown). The position of the magnet is sensed with a sensing portion (not shown). When there is water up to the position of each float, each float moves to a predetermined position due to buoyancy. At this time, the sensing portion senses the magnet provided on each float portion. On the other hand, if there is no water up to the position of each float, the detection portion will not be able to detect the magnets provided on each float.
  • the water shortage float 160 detects water shortage in the water tank 100 .
  • the full water float 250 detects when the electrolytic cell 200 is full of water.
  • Water shortage float 260 detects water shortage in electrolytic cell 200 .
  • the drought does not have to be a 100% drought, and may be a small amount of water remaining.
  • the full water float 350 detects when the mixing tank 300 is full.
  • a water shortage float 360 detects a water shortage in the mixing tank 300 .
  • Drainage float 370 senses the drainage level of mixing tank 300 .
  • “full of water” does not have to be 100% full of water, and may be the amount of water that can be filled with water.
  • Each float transmits the detection result to the control unit 500 .
  • the control unit 500 receives detection results from the water shortage float 160 , the water shortage float 250 , the water shortage float 260 , the water shortage float 350 , the water shortage float 360 and the water discharge float 370 . Further, the control unit 500 controls the electrode unit 210 , the filter unit 310 , the electrolysis accelerator input unit 400 , the first supply unit 128 , the second supply unit 138 and the third supply unit 228 .
  • FIG. 2 shows the configuration of the space purification device 1000.
  • the supply section 270, mixing tank 300, and filter section 310 are the same as in FIG.
  • the electrolytic bath 200 is provided with an electrolysis accelerator input portion 400 .
  • An air passage 610 that connects the air inlet 600 to the air outlet 640 is installed in the room.
  • a HEPA (High Efficiency Particulate Air) filter 700 and a blower 710 are provided near the air inlet 600 of the air passage 610 .
  • the HEPA filter 700 is an air filter that removes dirt, dust, and the like from the air sucked from the intake port 600 and outputs clean air.
  • Blower 710 generates a flow of air from inlet 600 toward outlet 640 .
  • the air passage 610 branches into a first air passage 620 and a second air passage 630 between points P1 and P2.
  • the first air passage 620 and the second air passage 630 are different air passages between the intake port 600 and the air outlet 640 .
  • the air duct 610, the first air duct 620, and the second air duct 630 have a tubular shape to allow air to flow. Since the mixing tank 300 is installed in the first air duct 620 , the filter part 310 is installed in the first air duct 620 . Since the electrolytic bath 200 is installed in the second air passage 630 , the air supply part 270 is installed in the second air passage 630 . Also, a first switching damper 720 is provided at the point P1. A second switching damper 730 is provided at the point P2.
  • the first switching damper 720 and the second switching damper 730 can operate according to instructions from the control unit 500 .
  • the first switching damper 720 and the second switching damper 730 enable the first air path 620 by opening the first air path 620 and closing the second air path 630 .
  • the indoor air sucked from the intake port 600 and entering the air passage 610 and the first air passage 620 is sequentially blown out of the space cleaning device 1000 via the filter portion 310 and the blow-out port 640.
  • the air in contact with the electrolyzed water in the mixing tank 300 is released to the outside.
  • the space purifying device 1000 releases active oxygen species derived from the generated electrolyzed water (including volatilization) together with the air.
  • the first switching damper 720 and the second switching damper 730 close the first air passage 620 and open the second air passage 630, thereby making the second air passage 630 usable.
  • the indoor air sucked from the intake port 600 and entering the air passage 610 and the second air passage 630 is mixed with the hypochlorous acid diffused by the popping of the bubbles, and then through the air outlet 640. , is blown out of the space purification device 1000 .
  • the control unit 500 in FIG. 1 switches between using the first air duct 620 and using the second air duct 630 according to the amount of humidification required in the room.
  • Using the first air passage 620 corresponds to releasing hypochlorous acid without operating the filter unit 310 and the air supply unit 270 .
  • Using the second air passage 630 corresponds to releasing hypochlorous acid without operating the air supply section 270 and without operating the filter section 310 .
  • the control unit 500 acquires a humidity value set by a user or the like (hereinafter referred to as "set value”), and also obtains a humidity value measured by a humidity sensor (not shown) (hereinafter referred to as "measured value").
  • the controller 500 derives the required amount of humidification by subtracting the measured value from the set value.
  • the controller 500 may derive the required amount of humidification by performing a calculation based on the result of subtracting the measured value from the set value.
  • the controller 500 stores a threshold value in advance, and switches to the first air passage 620 when the required humidification amount is equal to or higher than the threshold value, and switches to the first air passage 620 when the requested humidification amount is less than the threshold value. Switch to the second air passage 630 .
  • control unit 500 has a calendar function, and determines winter in Japan (for example, October to March) as a case in which the required amount of humidification is equal to or greater than the threshold, and summer in Japan (for example, 4 months). May through September) may be determined to be when the amount of humidification required is less than the threshold.
  • the air supply unit 270 when a small amount of air is circulated as bubbles in the hypochlorous acid water, the bubbles (circulating air) can contain a large amount of hypochlorous acid gas and be discharged to the outside of the space purifier 1000. . Therefore, the amount of water that evaporates from the hypochlorous acid water into air bubbles (circulating air) and is released outside the space purification device 1000 is suppressed. In other words, a predetermined amount of hypochlorous acid is released even when air with high relative humidity that has been dehumidified by an air conditioner or the like is ventilated in the Japanese summer (particularly during the rainy season).
  • a device, system, or method subject in the present disclosure comprises a computer.
  • the main functions of the device, system, or method of the present disclosure are realized by the computer executing the program.
  • a computer has a processor that operates according to a program as its main hardware configuration. Any type of processor can be used as long as it can implement functions by executing a program.
  • the processor is composed of one or more electronic circuits including a semiconductor integrated circuit (Integrated Circuit) or an LSI (Large Scale Integration).
  • a plurality of electronic circuits may be integrated on one chip or may be provided on a plurality of chips.
  • a plurality of chips may be integrated into one device, or may be provided in a plurality of devices.
  • the program is recorded in a non-temporary recording medium such as a computer-readable ROM (Read Only Memory), optical disk, hard disk drive, or the like.
  • a non-temporary recording medium such as a computer-readable ROM (Read Only Memory), optical disk, hard disk drive, or the like.
  • the program may be pre-stored in a recording medium, or may be supplied to the recording medium via a wide area network including the Internet.
  • FIG. 3A and 3B are flowcharts showing switching procedures by the space purification device 1000.
  • FIG. 3A and 3B are flowcharts showing switching procedures by the space purification device 1000.
  • control unit 500 derives the required amount of humidification (step S10). If the required amount of humidification is greater than or equal to the threshold value (Y in step S12), control unit 500 determines the operation of filter unit 310 (step S14). If the required amount of humidification is not equal to or greater than the threshold value (N in step S12), control unit 500 determines the operation of air supply unit 270 (step S16).
  • step S50 determines the operation of the filter unit 310 (step S52). If it is not winter (N of step S50), the control unit 500 determines the operation of the air supply unit 270 (step S54).
  • FIG. 4 shows the configuration of a space purification device 1000a according to Modification 1.
  • Water tank 100, water supply tank 110, first pump 120, first water supply pipe 122, second pump 130, second water supply pipe 132, air passage 610, first air passage 620, second air passage 630, HEPA filter 700, Fan 710, first switching damper 720, and second switching damper 730 are the same as in the embodiment shown in FIG.
  • the first mixing tank 300a and the filter section 310 correspond to the mixing tank 300 and the filter section 310 in FIG.
  • the electrolytic bath 200 is not provided in the first air passage 620 .
  • the electrode unit 210 is arranged in the electrolytic bath 200, but the air supply unit 270 is not arranged.
  • a second mixing tank 300b is provided in the second air passage 630, and an air supply unit 270 is arranged in the second mixing tank 300b.
  • the second water supply pipe 132 from the water tank 100 is branched at the first switching valve 180 and connected to the first mixing tank 300a and the second mixing tank 300b, respectively.
  • the third water supply pipe 226 from the electrolytic cell 200 branches at the second switching valve 280 and is connected to the first mixing cell 300a and the second mixing cell 300b, respectively.
  • the first switching valve 180 and the second switching valve 280 are controlled by the controller 500 to operate in conjunction with the first switching damper 720 and the second switching damper 730 .
  • the first switching valve 180 and the second switching valve 280 operate in the first mixing tank.
  • the 300a side is opened and the second mixing tank 300b side is closed.
  • the first switching damper 720 and the second switching damper 730 close the first air passage 620 and open the second air passage 630
  • the first switching valve 180 and the second switching valve 280 are closed on the side of the first mixing tank 300a. is closed, and the second mixing tank 300b side is opened.
  • filter section 310 is turned on and air supply section 270 is turned off.
  • filter section 310 is turned off and air supply section 270 is turned on.
  • the control unit 500 switches between using the first air duct 620 and using the second air duct 630 according to the amount of humidification required in the room. Since the processing in the control unit 500 is the same as before, the description is omitted here.
  • FIG. 5 shows the configuration of a space purification device 1000b according to Modification 2.
  • the water tank 100, the water supply tank 110, the first pump 120, the first water supply pipe 122, the second pump 130, the second water supply pipe 132, the mixing tank 300, the filter section 310, the air passage 610, the HEPA filter 700, and the blower 710 are , are identical to the embodiment shown in FIG.
  • the first air passage 620, the second air passage 630, the first switching damper 720, and the second switching damper 730 are not included.
  • the electrode unit 210 is arranged in the electrolytic bath 200, but the air supply unit 270 is not arranged.
  • An air supply 270 is also arranged in the mixing tank 300 . That is, the mixing tank 300 is arranged in the air passage 610 , and the air supply section 270 and the filter section 310 are arranged in the mixing tank 300 . Also, water and hypochlorous acid water are supplied to the mixing tank 300 .
  • Control unit 500 turns on filter unit 310 and turns off air supply unit 270 when the required amount of humidification is greater than or equal to the threshold value. This corresponds to switching to the operation operation of the filter unit 310 .
  • control unit 500 turns off filter unit 310 and turns on air supply unit 270 . This corresponds to switching to the operating operation of the air supply unit 270 .
  • the control unit 500 switches between the operations of the filter unit 310 and the air supply unit 270 according to the required amount of humidification.
  • FIG. 6 shows the configuration of a space purification device 1000c according to Modification 3.
  • the electrolytic cell 200, the air passage 610, the HEPA filter 700, and the blower 710 are the same as those of Modification 2 shown in FIG.
  • the air passage 610 is provided in the electrolytic cell 200 .
  • a water supply tank 110 , an electrode section 210 , an air supply section 270 and a filter section 310 are arranged in the electrolytic bath 200 .
  • the water from the water supply tank 110 and the electrolysis accelerator 410 from the electrolysis accelerator input portion 400 (not shown) are mixed and electrolyzed to produce hypochlorous acid water. generated.
  • control unit 500 When the required amount of humidification is greater than or equal to the threshold value, the control unit 500 turns on the filter unit 310 and turns off the air supply unit 270 . This corresponds to switching to the operation operation of the filter unit 310 . When the required amount of humidification is less than the threshold value, control unit 500 turns off filter unit 310 and turns on air supply unit 270 . This corresponds to switching to the operating operation of the air supply unit 270 . In other words, the control unit 500 switches between the operations of the filter unit 310 and the air supply unit 270 according to the required amount of humidification.
  • the space purification device retains the hypochlorous acid water supplied to the inside, and brings the retained hypochlorous acid water into contact with air to generate hypochlorous acid water. Since it is equipped with a filter unit 310 that vaporizes acid water and an air supply unit 270 that is immersed in hypochlorous acid water and supplies air as bubbles to the hypochlorous acid water, it is released into the target space (into the air). You can adjust the amount of hypochlorous acid used.
  • the filter unit 310 is provided in the first air passage 620, the air supply unit 270 is provided in the second air passage 630, and the first air passage 620 and the second air passage 630 can be switched, the filter unit Either 310 or air supply 270 can be used.
  • the first air passage 620 and the second air passage 630 are switched according to the required amount of humidification, the amount of hypochlorous acid released into the target space (into the air) can be adjusted by switching the air passage. .
  • the air path is switched to the first air path 620, and when the required humidification amount is less than the threshold value, the air path is switched to the second air path 630.
  • the filter section 310 can be used when the volume is large. Further, when the required humidification amount is equal to or higher than the threshold value, the air path is switched to the first air path 620, and when the required humidification amount is less than the threshold value, the air path is switched to the second air path 630.
  • Air supply 270 can be used for smaller volumes. Since the air supply part 270 is provided inside the electrolytic cell 200, hypochlorous acid can be released into the air by releasing air bubbles into the hypochlorous acid water of the electrolytic cell 200. - ⁇ Moreover, since the filter part 310 is provided in the mixing tank 300, hypochlorous acid can be released based on the diluted hypochlorous acid water in the mixing tank 300. - ⁇
  • hypochlorous acid water is supplied to each of the filter unit 310 and the air supply unit 270. Concentration can be adjusted. Further, since the concentrations of the hypochlorous acid water are adjusted for each of the filter unit 310 and the air supply unit 270, the hypochlorous acid water having the concentration suitable for each of the filter unit 310 and the air supply unit 270 is adjusted. can be used.
  • the filter unit 310 and the air supply unit 270 are arranged in the mixing tank 300, the device configuration can be simplified.
  • the operation of the filter unit 310 and the air supply unit 270 can be switched according to the required amount of humidification, the operation can be performed according to the required amount of humidification.
  • the required amount of humidification is equal to or greater than the threshold, the operation is switched to the operation of the filter unit 310, and when the required amount of humidification is less than the threshold, the operation is switched to the operation of the air supply unit 270.
  • humidification can be achieved on demand.
  • the electrolytic bath 200, the mixing bath 300, and the air supply unit 270 are arranged in the electrolytic bath 200, the device configuration can be simplified.
  • the space purifying device (1000, 1000a, 1000b, 1000c) retains the hypochlorous acid water supplied inside, and brings the retained hypochlorous acid water into contact with air.
  • a filter part (310) for vaporizing chloric acid water and an air supply part (270) immersed in hypochlorous acid water and supplying air as bubbles to the hypochlorous acid water are provided.
  • the space purification device includes a first air passage (620) provided between an intake port (600) and an air outlet (640), and a first air passage (620) provided between the air intake port (600) and the air outlet (640).
  • a second air passage (630) different from the first air passage (620) may also be provided.
  • the first air passage (620) is provided with the filter section (310), the second air passage (630) is provided with the air supply section (270), and the first air passage (620) and the second air passage ( 630) may be configured to be switchable.
  • the first air passage (620) and the second air passage (630) may be configured to be switched according to the required amount of humidification.
  • It is configured to switch to the first air duct (620) if the required amount of humidification is greater than or equal to the threshold, and switch to the second air duct (630) if the required amount of humidification is less than the threshold. It may be configured to be switched.
  • the space purification device may further include an electrolytic cell (200) that generates hypochlorous acid water by electrolysis.
  • An air supply (270) may be provided within the electrolytic cell (200).
  • the space purifier further includes a water supply unit for supplying water, and a mixing tank (300) for mixing the hypochlorous acid water generated in the electrolytic cell (200) and the water supplied from the water supply unit. You may prepare.
  • the filter section (310) may be provided within the mixing tank (300).
  • the space purification device includes a water supply unit that supplies water, an electrolytic cell (200) that generates hypochlorous acid water by electrolysis, hypochlorous acid water generated in the electrolytic cell (200), and a water supply.
  • a mixing tank (300) for mixing water supplied from the unit, and the filter unit (310) and the air supply unit (270) may be provided in the mixing tank (300).
  • the filter section (310) and the air supply section (270) may be configured so that their operation can be switched according to the required amount of humidification.
  • the operation is switched to the operation of the filter section (310). It may be configured to be switched to driving operation.
  • the space purifier further comprises an electrolytic cell (200) for generating and storing hypochlorous acid water by electrolysis, and the filter section (310) and the air supply section (270) are provided in the electrolytic cell (200).
  • an electrolytic cell (200) for generating and storing hypochlorous acid water by electrolysis, and the filter section (310) and the air supply section (270) are provided in the electrolytic cell (200).
  • the filter section (310) and the air supply section (270) may be configured so that their operation can be switched according to the required amount of humidification.
  • the operation is switched to the operation of the filter section (310). It may be configured to be switched to driving operation.
  • a part (lower end) of the filter part 310 is immersed in the hypochlorous acid water, and the hypochlorous acid water is pumped up by rotating, and then the filter is removed.
  • the filter system in which hypochlorous acid water is brought into contact with passing air to be vaporized is used, the present invention is not limited to this.
  • hypochlorous acid water is dripped from the upper end of the filter that is fixed and does not rotate, and the hypochlorous acid water is brought into contact with the air passing through the filter to vaporize it. may be used.
  • the filter unit 310 is a filter that is fixed and does not rotate, and a part (lower end) is immersed in the hypochlorous acid water, and the filter is sucked up by the capillary phenomenon of the filter while sucking up the hypochlorous acid water.
  • a filter method may be used in which hypochlorous acid water is brought into contact with passing air to be vaporized.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

本開示の空間浄化装置(1000)は、内部に供給された次亜塩素酸水を保持し、保持した次亜塩素酸水を空気に接触させることにより次亜塩素酸水を気化させるフィルタ部(310)と、次亜塩素酸水に浸漬されており、空気を気泡として次亜塩素酸水に供給する空気供給部(270)と、を備える。

Description

空間浄化装置
 本開示は、空気中に放出される次亜塩素酸の量を調節する空間浄化装置に関する。
 空間浄化装置は、食塩水を電気分解して電解水(次亜塩素酸水)を生成し、電解水をフィルタ部に供給する。また、空気浄化装置のフィルタ部は、空気と電解水を接触させ、空気中に浮遊するウイルス等の除去を図る(例えば、特許文献1参照)。
特開2010-29244号公報
 対象空間に要求される加湿量の少ない状況、例えば日本の夏場(特に梅雨時期)に、空気浄化装置は、空調機等により除湿された相対湿度の高い空気(例えば温度12℃、湿度95%)を通風する。そのような状況では、フィルタ部において電解水が気化されにくいので、対象空間に次亜塩素酸が放出されにくい。一方、対象空間に要求される加湿量の多い状況、例えば日本の冬場に、空気浄化装置は、温められた相対湿度の低い空気(例えば温度20℃、湿度30%)を通風する。そのような状況では、電解水が気化されやすいので、対象空間に次亜塩素酸が多量に放出される。つまり、対象空間(空気中)に放出される次亜塩素酸を調節することが容易ではない。
 本開示は、対象空間(空気中)に放出される次亜塩素酸の量を調節する技術を提供することを目的とする。
 本開示のある態様の空間浄化装置は、内部に供給された次亜塩素酸水を保持し、保持した次亜塩素酸水を空気に接触させることにより次亜塩素酸水を気化させるフィルタ部と、次亜塩素酸水に浸漬されており、空気を気泡として次亜塩素酸水に供給する空気供給部と、を備える。
 なお、以上の構成要素の任意の組合せ、本開示の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本開示の態様として有効である。
 本開示によれば、対象空間(空気中)に放出される次亜塩素酸の量を調節できる。
図1は、実施の形態に係る空間浄化装置の内部構成を示す図である。 図2は、実施の形態に係る空間浄化装置の構成を示す図である。 図3Aは、実施の形態に係る空間浄化装置による切替手順を示すフローチャートである。 図3Bは、実施の形態に係る空間浄化装置による切替手順を示すフローチャートである。 図4は、変形例1に係る空間浄化装置の構成を示す図である。 図5は、変形例2に係る空間浄化装置の構成を示す図である。 図6は、変形例3に係る空間浄化装置の構成を示す図である。
 本開示の実施の形態を具体的に説明する前に、実施の形態の概要を説明する。本実施の形態は、水と電解促進剤とをもとに電解水を生成してから放出する空間浄化装置に関する。
 本開示の空間浄化装置は、貯水槽と、電解槽と、混合槽とを備える。貯水槽は電解槽と混合槽とに水を供給する。電解槽は電極を備え、貯水槽からの水に電解促進剤を溶かすことによって塩化物イオンを含む水を生成し、塩化物イオンを含む水を電極への通電により電気分解することによって、活性酸素種を含む電解水を生成する。電解槽において生成された電解水は、混合槽に供給される。混合槽はフィルタ部を備え、電解槽からの電解水と、外部から吸い込んだ空気とを連続的に接触させて、ファンの回転により接触させた空気を外部に放出させる。前述のごとく、フィルタ部のみでは、空気中に放出される次亜塩素酸の量を調節することが困難である。
 本実施の形態に係る空間浄化装置は、電解槽に空気供給部をさらに備える。空気供給部は、空気を吸い込み、吸い込んだ空気を電解水(次亜塩素酸水)に気泡として供給する。つまり、空気中への次亜塩素酸の放出は、フィルタ部または空気供給部によってなされるので、空気中に放出される次亜塩素酸の量が調節しやすくなる。
 以下、本開示を実施するための形態について添付図面を参照して説明する。図1は、実施の形態に係る空間浄化装置1000の内部構成を示す。
 空間浄化装置1000は、貯水槽100と、給水タンク110と、蓋112と、第1ポンプ120と、第1給水管122と、供給口124と、第2ポンプ130と、第2給水管132と、渇水フロート160と、電解槽200と、電極部210と、第3ポンプ220と、第3給水管222と、定量升224と、第3給水管226と、満水フロート250と、渇水フロート260と、空気供給部270と、を備える。空間浄化装置1000はさらに、混合槽300と、フィルタ部310と、満水フロート350と、渇水フロート360と、排水フロート370と、電解促進剤投入部400と、投入口404と、電解促進剤410と、制御部500と、を備える。
 第1ポンプ120、第1給水管122、及び供給口124は、第1供給部128に含まれる。第2ポンプ130及び第2給水管132は、第2供給部138に含まれる。第3ポンプ220、第3給水管222、定量升224、及び第3給水管226は、第3供給部228に含まれる。第1供給部128及び第2供給部138は、水を供給する「水供給部」と呼ばれてもよい。
 貯水槽100は、天面が開口された箱形状であり、水を貯水できる構造を有し、後述の給水タンク110から供給される水を貯める。貯水槽100は、例えば、空間浄化装置1000の下側部分に配置される。
 給水タンク110は、内部に水を貯めるタンクであり、貯水槽100に着脱可能である。給水タンク110の開口(図示せず)には蓋112が設けられる。蓋112の中央には開閉部(図示せず)が設けられる。蓋112の開閉部が開くと、給水タンク110内の水が貯水槽100へ供給される。
 具体的には、給水タンク110の開口を下向きにして、給水タンク110を貯水槽100に取り付けると、開閉部が開く。つまり、水を入れた給水タンク110が貯水槽100に取り付けられると、開閉部が開いて貯水槽100に給水され、貯水槽100内に水が溜まる。貯水槽100内の水位が上昇して蓋112のところまで到達すると、給水タンク110の開口が水封されるので、貯水槽100への給水が停止する。給水タンク110の内部に水が残っている場合、貯水槽100内の水位が下がった場合に都度、給水タンク110内部の水が貯水槽100に給水される。その結果、貯水槽100内の水位は一定に保たれる。
 第1ポンプ120は、貯水槽100内に配置されるとともに、第1給水管122に接続される。第1ポンプ120は、制御部500からの指示に応じて動作して、貯水槽100に貯まった水を第1給水管122の方に汲み上げる。第1給水管122は、貯水槽100と電解槽200とをつなぐ管であり、電解槽200側端に供給口124を有する。第1ポンプ120によって汲み上げられた水は、第1給水管122内を流れ、供給口124から電解槽200に供給される。つまり、第1ポンプ120、第1給水管122、及び供給口124は、貯水槽100から電解槽200に水を供給する。
 第2ポンプ130は、貯水槽100内に配置されるとともに、第2給水管132に接続される。第2ポンプ130は、制御部500からの指示に応じて動作して、貯水槽100に貯まった水を第2給水管132の方に汲み上げる。第2給水管132は、貯水槽100と混合槽300とをつなぐ管である。第2ポンプ130によって汲み上げられた水は、第2給水管132内を流れ、混合槽300に供給される。つまり、第2ポンプ130及び第2給水管132は、貯水槽100から混合槽300に水を供給する。
 電解槽200は、天面が開口された箱形状であり、供給口124の下側に配置される。電解槽200は、供給口124から供給される水を貯める。電解槽200の上側には、供給口124と並んで電解促進剤投入部400が配置される。電解促進剤投入部400は、内部に電解促進剤410を装填でき、制御部500より電解促進剤410の投入指示があると、錠剤投入部材(図示せず)を回動させる。錠剤投入部材が回動すると、電解促進剤410が投入口404から電解槽200に落下する。電解促進剤投入部400は、電解槽200に落下された電解促進剤410の個数をカウントし、電解槽200に電解促進剤410が一錠落下したと判断すると、錠剤投入部材の回動を停止する。つまり、電解促進剤投入部400は、電解槽200に電解促進剤410を投入する。電解促進剤410が電解槽200内の水に溶け込むことにより、電解槽200において塩化物イオンを含む水が生成される。電解促進剤410の一例は、塩化ナトリウムであり、電解促進錠剤として形成される。
 電極部210は、電解槽200内の水に浸かるように設置される。電極部210は、通電されることによって、電解槽200内の塩化物イオンを含む水を電気化学的に電気分解し、活性酸素種を含む電解水を生成する。ここで、活性酸素種とは、通常の酸素よりも高い酸化活性を持つ酸素分子と、その関連物質のことである。例えば、活性酸素種には、スーパーオキシドアニオン、一重項酸素、ヒドロキシラジカル、又は過酸化水素といった所謂狭義の活性酸素の他に、オゾン又は次亜塩素酸(次亜ハロゲン酸)等といった所謂広義の活性酸素が含まれる。
 電極部210は、制御部500からの指示をもとに、電気分解するための通電を行う通電時間と、その通電停止後の時間、つまり通電を行っていない時間である非通電時間を一周期として、その一周期を複数回繰り返すことで、電解水を生成してもよい。電極部210に対し、非通電時間を設けることで、電極部210の寿命が延びる。非通電時間に対して通電時間を長くすれば、一周期当たりにおいてより多くの量の活性酸素種を含む電解水が生成される。また、通電時間に対して非通電時間を長くすれば、一周期当たりの活性酸素種の生成が抑えられる。さらに、通電時間における電力量を大きくすれば、より多くの量の活性酸素種を含む電解水が生成される。このように、電解槽200は、電解促進剤410を投入した水から電解水を生成するためのタンクであるといえる。電解水は次亜塩素酸水とも呼ばれ、電解槽200において所定の濃度の次亜塩素酸水が生成される。
 第3ポンプ220は、電解槽200内に配置されるとともに、第3給水管222に接続される。第3ポンプ220は、制御部500からの指示に応じて動作すると、電解槽200に貯まった電解水を第3給水管222の方に汲み上げる。第3給水管222は定量升224に接続されており、電解槽200の電解水を定量升224に供給する。定量升224は、一定容量を有する升であり、第3給水管222から供給された一定容量の電解水を貯める。定量升224は第3給水管226に接続され、第3給水管226は、混合槽300の方に延びる。定量升224に貯められた電解水は、第3給水管226内を流されて、混合槽300に供給される。つまり、第3ポンプ220、第3給水管222、定量升224、及び第3給水管226は、電解槽200から混合槽300に電解水を供給する。
 空気供給部270は、電解槽200内に設けられる。空気供給部270は、外部の空気を吸い込み、吸い込んだ空気を気泡として次亜塩素酸水に供給する。空気供給部270は、エアストーン272、エアポンプ274、及びエアチューブ276を含む。エアストーン272は、エアチューブ276を介してエアポンプ274からに送り込まれる空気を細かい泡状にして気泡として次亜塩素酸水中に放出する石(例えば、多孔質セラミックスあるいは多孔質合成樹脂製などからなる石)である。エアストーン272は、電解槽200の底部において次亜塩素酸水に浸漬された状態で設置される。エアポンプ274は、電解槽200の外部に配置される。エアポンプ274は、外部の空気を吸い込み、圧力を高くしてエアストーン272に送り込む。エアチューブ276は、エアストーン272とエアポンプ274との間を連通接続し、エアポンプ274から吐出された空気をエアストーン272まで流通させる。エアチューブ276は、電解槽200の側壁を貫通して設置される。
 空気供給部270は、制御部500からの指示に応じて、次亜塩素酸水への空気の供給量と、発生させる気泡の大きさ(径)とを制御することによって、放出される空気に含ませる次亜塩素酸(次亜塩素酸ガス)の量を調整する。具体的には、次亜塩素酸水への空気の供給量が増加すれば、それに応じて気泡の発生量(発生数)が多くなり、放出される空気に含ませる次亜塩素酸の量が増加する。また、次亜塩素酸水に放出する気泡の大きさ(径)が小さくなれば、浮上する際の気泡の上昇速度を低下させて次亜塩素酸水と気泡との間の接触時間が増加する。さらに、気泡の大きさ(径)が大きい場合と比較して、次亜塩素酸水と液中を流通する気泡との間の接触面積が増加される。これらの結果、次亜塩素酸水を流通する気泡が、浮上する過程で気泡内に取り込む次亜塩素酸の量が増加し、放出される空気に含ませる次亜塩素酸が増加する。
 ここで、空気供給部270による次亜塩素酸水への空気の供給量は、エアポンプ274の空気の吐出量によって制御される。また、気泡の大きさ(径)は、エアストーン272の細孔の大きさ(及びエアポンプ274の空気の吐出量)によって制御される。気泡は、空気供給部270(エアストーン272)により外部から吸い込まれた空気が泡状に微細化された空気であり、次亜塩素酸水によって空気が閉じ込められた状態となっている。空気供給部270から放出された気泡は、次亜塩素酸水に含まれる次亜塩素酸(及び水分)を内部の空気に取り込みながら浮上する。その後、気泡は、次亜塩素酸水の液面まで浮上すると弾けてなくなる。
 混合槽300は、天面が開口された箱形状であり、貯水槽100から供給された水と電解槽200から供給された電解水とを混合させる。これは、貯水槽100から供給された水により、電解槽200から供給された電解水を希釈することに相当する。混合槽300には、次亜塩素酸水に一部が浸漬される状態でフィルタ部310が設けられる。
 フィルタ部310には、ファン(図示せず)も含まれる。ファンは、例えばシロッコファンであり、制御部500による制御に応じて回転する。ファンの風量は、温度、湿度、及びガスの臭いレベルに応じて、風量単位時間(例えば、5分)毎に決定される。決定された風量に基づき、ファンの回転量が制御される。ファンが回転することによって、空間浄化装置1000の筐体(図示せず)に設けられた吸気口(図示せず)から、空間浄化装置1000の内部に空気が吸い込まれる。
 フィルタ部310は、混合槽300に貯水された電解水と、ファンによって空間浄化装置1000内に流入した室内空気とを接触させる部材である。混合槽300に貯水された電解水は、次亜塩素酸水と水との混合水ともいえる。フィルタ部310は、円筒状に構成され、円周部分に空気が流通可能な孔を備える。フィルタ部310の一端が混合槽300に貯水された電解水に浸漬され、保水されるように、フィルタ部310は、中心軸を回転中心として混合槽300に回転自在に内蔵される。フィルタ部310は、駆動部(図示せず)により回転され、電解水と室内空気を連続的に接触させる。つまり、フィルタ部310は、回転することによって次亜塩素酸水を汲みあげてから、次亜塩素酸水を空気に接触させる。
 貯水槽100に設けられた渇水フロート160、電解槽200に設けられた満水フロート250及び渇水フロート260、並びに、混合槽300に設けられた満水フロート350、渇水フロート360、及び排水フロート370は、水あるいは電解水が存在するか否かを検知する。ここでは、水及び電解水を「水」と総称することもある。
 渇水フロート160、満水フロート250、渇水フロート260、満水フロート350、渇水フロート360、及び排水フロート370は、「フロート」と総称される。各フロートは浮力を有し、磁石(図示せず)が設けられる。磁石の位置は、検知部分(図示せず)で検知される。各フロートの位置まで水が存在する場合、各フロートは、浮力によって所定の位置まで移動する。このとき、検知部分は、各フロート部分に設けられた磁石を検知する。一方、各フロートの位置まで水が存在しない場合、検知部分は、各フロートに設けられた磁石を検知できなくなる。
 渇水フロート160は、貯水槽100の渇水を検知する。満水フロート250は、電解槽200の満水を検知する。渇水フロート260は、電解槽200の渇水を検知する。ここで、渇水とは、100%の渇水でなくてもよく、わずかの水が残っていてもよい。
 また、満水フロート350は、混合槽300の満水を検知する。渇水フロート360は、混合槽300の渇水を検知する。排水フロート370は、混合槽300の排水レベルを検知する。ここで、満水とは、100%の満水でなくてもよく、さらに水を入れることが可能な水量であってもよい。各フロートは検知結果を制御部500に送信する。
 制御部500は、渇水フロート160、満水フロート250、渇水フロート260、満水フロート350、渇水フロート360、及び排水フロート370から検知結果を受けつける。また、制御部500は、電極部210、フィルタ部310、電解促進剤投入部400、第1供給部128、第2供給部138、及び第3供給部228の制御を実行する。
 以下では、室内に設置された空間浄化装置1000の構成をさらに詳しく説明する。図2は、空間浄化装置1000の構成を示す。貯水槽100、給水タンク110、第1ポンプ120、第1給水管122、第2ポンプ130、第2給水管132、電解槽200、電極部210、第3ポンプ220、第3給水管226、空気供給部270、混合槽300、及びフィルタ部310は、図1と同一である。なお、特に図示していないが、電解槽200には、電解促進剤投入部400が併設されている。
 室内には、吸気口600から吹出口640までをつなぐ風路610が設置される。風路610の吸気口600の近くには、HEPA(High Efficiency Particulate Air)フィルタ700及び送風機710が設けられる。HEPAフィルタ700は、吸気口600から吸い込まれた空気中からゴミ及び塵埃などを取り除き、清浄空気として出力するエアフィルタである。送風機710は、吸気口600から吹出口640に向かう空気の流れを生成する。
 風路610は、ポイントP1とポイントP2との間において第1風路620及び第2風路630に分岐される。第1風路620及び第2風路630は、吸気口600と吹出口640との間における互いに異なった風路である。風路610、第1風路620、及び第2風路630は、風を流れさせるために管形状を有する。第1風路620には混合槽300が設けられるので、第1風路620にはフィルタ部310が設けられる。第2風路630には電解槽200が設けられるので、第2風路630には空気供給部270が設けられる。また、ポイントP1には第1切替ダンパ720が設けられる。ポイントP2には第2切替ダンパ730が設けられる。
 第1切替ダンパ720及び第2切替ダンパ730は、制御部500からの指示に応じて動作可能である。例えば、第1切替ダンパ720及び第2切替ダンパ730は、第1風路620を開け、第2風路630を閉じることによって、第1風路620を使用可能にする。その際、吸気口600から吸い込まれて風路610及び第1風路620内に入った室内空気は、順に、フィルタ部310及び吹出口640を介して、空間浄化装置1000の外部へ吹き出される。これにより、混合槽300の電解水と接触させた空気が外部へ放出される。空間浄化装置1000は、生成した電解水由来(揮発を含む)の活性酸素種を空気とともに放出する。
 一方、第1切替ダンパ720及び第2切替ダンパ730は、第1風路620を閉じ、第2風路630を開けることによって、第2風路630を使用可能にする。その際、吸気口600から吸い込まれ風路610及び第2風路630内に入った室内空気は、気泡が弾けることによって拡散された次亜塩素酸を混合してから、吹出口640を介して、空間浄化装置1000の外部へ吹き出される。
 図1の制御部500は、室内において要求される加湿量に応じて、第1風路620の使用と第2風路630の使用とを切り替える。第1風路620を使用することは、フィルタ部310を動作させて、かつ空気供給部270を動作させずに、次亜塩素酸を放出することに相当する。第2風路630を使用することは、空気供給部270を動作させて、かつフィルタ部310を動作させずに、次亜塩素酸を放出することに相当する。制御部500は、ユーザ等により設定された湿度の値(以下、「設定値」という)を取得するとともに、湿度センサ(図示せず)により計測した湿度の値(以下、「計測値」という)を取得する。制御部500は、設定値から計測値を減算することによって、要求される加湿量を導出する。制御部500は、設定値から計測値を減算した減算結果をもとに演算を実行することによって、要求される加湿量を導出してもよい。制御部500は、しきい値を予め記憶しており、要求される加湿量がしきい値以上である場合、第1風路620に切り替え、要求される加湿量がしきい値より少ない場合、第2風路630に切り替える。
 また、制御部500は、カレンダー機能を備え、日本の冬期(例えば、10月から3月)を、要求される加湿量がしきい値以上である場合と判定し、日本の夏期(例えば、4月から9月)を、要求される加湿量がしきい値より少ない場合と判定してもよい。空気供給部270では、次亜塩素酸水中に少量の空気を気泡として流通させると、気泡(流通空気)に多量の次亜塩素酸ガスを含ませて空間浄化装置1000の外に放出可能である。そのため、次亜塩素酸水から気泡(流通空気)中に気化して空間浄化装置1000の外に放出される水の量が抑制される。つまり、日本の夏場(特に梅雨時期)に、空調機等で除湿された相対湿度の高い空気を通風する場合においても、所定量の次亜塩素酸が放出される。
 本開示における装置、システム、または方法の主体は、コンピュータを備えている。このコンピュータがプログラムを実行することによって、本開示における装置、システム、または方法の主体の機能が実現される。コンピュータは、プログラムにしたがって動作するプロセッサを主なハードウェア構成として備える。プロセッサは、プログラムを実行することによって機能を実現することができれば、その種類は問わない。プロセッサは、半導体集積回路(Integrated Circuit)、またはLSI(Large Scale Integration)を含む1つまたは複数の電子回路で構成される。複数の電子回路は、1つのチップに集積されてもよいし、複数のチップに設けられてもよい。複数のチップは1つの装置に集約されていてもよいし、複数の装置に備えられていてもよい。プログラムは、コンピュータが読み取り可能なROM(Read Only Memory)、光ディスク、ハードディスクドライブなどの非一時的記録媒体に記録される。プログラムは、記録媒体に予め格納されていてもよいし、インターネット等を含む広域通信網を介して記録媒体に供給されてもよい。
 以上の構成による空間浄化装置1000の動作を説明する。図3A及び図3Bは、空間浄化装置1000による切替手順を示すフローチャートである。
 図3Aにおいて、制御部500は、要求される加湿量を導出する(ステップS10)。要求される加湿量がしきい値以上である場合(ステップS12のY)、制御部500は、フィルタ部310の動作を決定する(ステップS14)。要求される加湿量がしきい値以上でない場合(ステップS12のN)、制御部500は、空気供給部270の動作を決定する(ステップS16)。
 図3Bにおいて、冬期である場合(ステップS50のY)、制御部500は、フィルタ部310の動作を決定する(ステップS52)。冬期でない場合(ステップS50のN)、制御部500は、空気供給部270の動作を決定する(ステップS54)。
 以下では、図2に示す空間浄化装置1000のさまざまな変形例を説明する。
 (変形例1)
 図4は、変形例1に係る空間浄化装置1000aの構成を示す。貯水槽100、給水タンク110、第1ポンプ120、第1給水管122、第2ポンプ130、第2給水管132、風路610、第1風路620、第2風路630、HEPAフィルタ700、送風機710、第1切替ダンパ720、及び第2切替ダンパ730は、図2に示す実施の形態と同一である。また、第1混合槽300a及びフィルタ部310は、図2の混合槽300及びフィルタ部310に対応し、第1風路620に設けられる。一方、電解槽200は、第1風路620に設けられない。電解槽200には、電極部210が配置されるが、空気供給部270が配置されない。第2風路630には、第2混合槽300bが設けられ、第2混合槽300bには空気供給部270が配置される。
 このような構成において、貯水槽100からの第2給水管132は、第1切替弁180において分岐して第1混合槽300a及び第2混合槽300bにそれぞれ接続される。また、電解槽200からの第3給水管226は、第2切替弁280において分岐して第1混合槽300a及び第2混合槽300bにそれぞれ接続される。第1切替弁180及び第2切替弁280は、第1切替ダンパ720及び第2切替ダンパ730と連動して動作するように制御部500に制御される。
 例えば、第1切替ダンパ720及び第2切替ダンパ730が、第1風路620を開け、第2風路630を閉じる場合に、第1切替弁180及び第2切替弁280は、第1混合槽300a側を開け、第2混合槽300b側を閉める。第1切替ダンパ720及び第2切替ダンパ730が、第1風路620を閉め、第2風路630を開ける場合に、第1切替弁180及び第2切替弁280は、第1混合槽300a側を閉め、第2混合槽300b側を開ける。前者の場合、フィルタ部310がオンにされ、かつ空気供給部270がオフにされる。後者の場合、フィルタ部310がオフにされ、かつ空気供給部270がオンにされる。実施の形態と同様に、制御部500は、室内において要求される加湿量に応じて、第1風路620の使用と第2風路630の使用とを切り替える。制御部500における処理はこれまでと同様であるので、ここでは説明を省略する。
 (変形例2)
 図5は、変形例2に係る空間浄化装置1000bの構成を示す。貯水槽100、給水タンク110、第1ポンプ120、第1給水管122、第2ポンプ130、第2給水管132、混合槽300、フィルタ部310、風路610、HEPAフィルタ700、及び送風機710は、図2に示す実施の形態と同一である。一方、第1風路620、第2風路630、第1切替ダンパ720、及び第2切替ダンパ730が含まれない。また、電解槽200には、電極部210が配置されるが、空気供給部270が配置されない。混合槽300には空気供給部270も配置される。つまり、風路610に混合槽300が配置され、混合槽300に空気供給部270とフィルタ部310が配置される。また、混合槽300に水及び次亜塩素酸水が供給される。
 このような構成において、変形例2では、実施の形態及び変形例1のような風路の切替はなされない。制御部500は、要求される加湿量がしきい値以上である場合、フィルタ部310をオンにして、空気供給部270をオフにする。これは、フィルタ部310の運転動作に切り替えることに相当する。制御部500は、要求される加湿量がしきい値より少ない場合、フィルタ部310をオフにして、空気供給部270をオンにする。これは、空気供給部270の運転動作に切り替えることに相当する。つまり、制御部500は、要求される加湿量に応じてフィルタ部310と空気供給部270の運転動作を切り替える。
 (変形例3)
 図6は、変形例3に係る空間浄化装置1000cの構成を示す。電解槽200、風路610、HEPAフィルタ700、及び送風機710は、図5に示す変形例2と同一である。風路610に電解槽200に設けられる。電解槽200には、給水タンク110、電極部210、空気供給部270、及びフィルタ部310が配置される。電解槽200では、これまでと同様に、給水タンク110からの水と図示していない電解促進剤投入部400からの電解促進剤410とが混合され、電気分解されて、次亜塩素酸水が生成される。
 制御部500は、要求される加湿量がしきい値以上である場合、フィルタ部310をオンにして、空気供給部270をオフにする。これは、フィルタ部310の運転動作に切り替えることに相当する。制御部500は、要求される加湿量がしきい値より少ない場合、フィルタ部310をオフにして、空気供給部270をオンにする。これは、空気供給部270の運転動作に切り替えることに相当する。つまり、制御部500は、要求される加湿量に応じてフィルタ部310と空気供給部270の運転動作を切り替える。
 本実施の形態及び変形例1~3によれば、空間浄化装置は、内部に供給された次亜塩素酸水を保持し、保持した次亜塩素酸水を空気に接触させることで次亜塩素酸水を気化させるフィルタ部310と、次亜塩素酸水に浸漬されており、空気を気泡として次亜塩素酸水に供給する空気供給部270とを備えるので、対象空間(空気中)に放出される次亜塩素酸の量を調節できる。また、第1風路620にフィルタ部310が設けられ、第2風路630に空気供給部270が設けられ、第1風路620と第2風路630とが切り替え可能であるので、フィルタ部310と空気供給部270のいずれか一方を使用できる。また、要求される加湿量に応じて第1風路620と第2風路630とを切り替えるので、風路の切替により対象空間(空気中)に放出される次亜塩素酸の量を調節できる。
 また、要求される加湿量がしきい値以上である場合、第1風路620に切り替え、要求される加湿量がしきい値より少ない場合、第2風路630に切り替えるので、要求される加湿量が多い場合にフィルタ部310を使用できる。また、要求される加湿量がしきい値以上である場合、第1風路620に切り替え、要求される加湿量がしきい値より少ない場合、第2風路630に切り替えるので、要求される加湿量が少ない場合に空気供給部270を使用できる。空気供給部270を電解槽200内に設けるので、電解槽200の次亜塩素酸水内に気泡を放出することによって、次亜塩素酸を空気中に放出できる。また、フィルタ部310を混合槽300内に設けるので、混合槽300内の希釈した次亜塩素酸水をもとに次亜塩素酸を放出できる。
 また、第1混合槽300aにフィルタ部310を配置し、第2混合槽300bに空気供給部270を配置するので、フィルタ部310と空気供給部270とのそれぞれに対して次亜塩素酸水の濃度を調節できる。また、フィルタ部310と空気供給部270とのそれぞれに対して次亜塩素酸水の濃度が調節されるので、フィルタ部310と空気供給部270とのそれぞれに適した濃度の次亜塩素酸水を使用できる。
 また、混合槽300にフィルタ部310と空気供給部270とを配置するので、装置構成を簡易にできる。また、フィルタ部310と空気供給部270は、要求される加湿量に応じて運転動作を切り替えられるので、要求される加湿量に応じた動作を実行できる。また、要求される加湿量がしきい値以上である場合、フィルタ部310の運転動作に切り替えられ、要求される加湿量がしきい値より少ない場合、空気供給部270の運転動作に切り替えられるので、要求に応じた加湿を実現できる。また、電解槽200に、電解槽200、混合槽300、空気供給部270を配置するので、装置構成を簡易にできる。
 本開示の一態様の概要は、次の通りである。本開示のある態様の空間浄化装置(1000、1000a、1000b、1000c)は、内部に供給された次亜塩素酸水を保持し、保持した次亜塩素酸水を空気に接触させることにより次亜塩素酸水を気化させるフィルタ部(310)と、次亜塩素酸水に浸漬されており、空気を気泡として次亜塩素酸水に供給する空気供給部(270)と、を備える。
 空間浄化装置は、吸気口(600)と吹出口(640)との間に設けられる第1風路(620)と、吸気口(600)と吹出口(640)との間に設けられ、第1風路(620)とは異なる第2風路(630)とをさらに備えてもよい。第1風路(620)にはフィルタ部(310)が設けられ、第2風路(630)には空気供給部(270)が設けられ、第1風路(620)と第2風路(630)とは、切り替え可能に構成されてもよい。
 第1風路(620)と第2風路(630)とは、要求される加湿量に応じて切り替えられるように構成されてもよい。
 要求される加湿量がしきい値以上である場合、第1風路(620)に切り替えられるように構成され、要求される加湿量がしきい値より少ない場合、第2風路(630)に切り替えられるように構成されてもよい。
 空間浄化装置は、電気分解によって次亜塩素酸水を生成する電解槽(200)をさらに備えてもよい。空気供給部(270)は、電解槽(200)内に設けられてもよい。
 空間浄化装置は、水を供給する水供給部と、電解槽(200)において生成された次亜塩素酸水と、水供給部から供給された水とを混合する混合槽(300)とをさらに備えてもよい。フィルタ部(310)は、混合槽(300)内に設けられてもよい。
 空間浄化装置は、水を供給する水供給部と、電気分解によって次亜塩素酸水を生成する電解槽(200)と、電解槽(200)において生成された次亜塩素酸水と、水供給部から供給された水とを混合する混合槽(300)と、をさらに備え、フィルタ部(310)及び空気供給部(270)は、混合槽(300)内に設けられてもよい。
 フィルタ部(310)と空気供給部(270)とは、要求される加湿量に応じて運転動作を切り替えられるように構成されてもよい。
 要求される加湿量がしきい値以上である場合、フィルタ部(310)の運転動作に切り替えられるように構成され、要求される加湿量がしきい値より少ない場合、空気供給部(270)の運転動作に切り替えられるように構成されてもよい。
 空間浄化装置は、電気分解によって次亜塩素酸水を生成して貯留する電解槽(200)をさらに備え、フィルタ部(310)及び空気供給部(270)は、電解槽(200)内に設けられてもよい。
 フィルタ部(310)と空気供給部(270)とは、要求される加湿量に応じて運転動作を切り替えられるように構成されてもよい。
 要求される加湿量がしきい値以上である場合、フィルタ部(310)の運転動作に切り替えられるように構成され、要求される加湿量がしきい値より少ない場合、空気供給部(270)の運転動作に切り替えられるように構成されてもよい。
 以上、本開示を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素あるいは各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されるところである。
 実施の形態及び変形例1~3では、フィルタ部310として、次亜塩素酸水に一部(下端)が浸漬されており、回転することによって次亜塩素酸水を汲みあげてから、フィルタを通過する空気に次亜塩素酸水を接触させて気化させるフィルタ方式を用いたが、これに限られない。例えば、固定されて回転しないフィルタに、フィルタの上端側から次亜塩素酸水を滴下しながら(掛け流しながら)、フィルタを通過する空気に次亜塩素酸水を接触させて気化させるフィルタ方式を用いてもよい。あるいは、フィルタ部310として、固定されて回転しないフィルタであって、次亜塩素酸水に一部(下端)が浸漬されており、フィルタの毛細管現象によって次亜塩素酸水を吸い上げながら、フィルタを通過する空気に次亜塩素酸水を接触させて気化させるフィルタ方式を用いてもよい。
 100 貯水槽
 110 給水タンク
 112 蓋
 120 第1ポンプ
 122 第1給水管
 124 供給口
 128 第1供給部
 130 第2ポンプ
 132 第2給水管
 138 第2供給部
 160 渇水フロート
 180 第1切替弁
 200 電解槽
 210 電極部
 220 第3ポンプ
 222 第3給水管
 224 定量升
 226 第3給水管
 228 第3供給部
 250 満水フロート
 260 渇水フロート
 270 空気供給部
 272 エアストーン
 274 エアポンプ
 276 エアチューブ
 280 第2切替弁
 300 混合槽
 300a 第1混合槽
 300b 第2混合槽
 310 フィルタ部
 350 満水フロート
 360 渇水フロート
 370 排水フロート
 400 電解促進剤投入部
 404 投入口
 410 電解促進剤
 500 制御部
 600 吸気口
 610 風路
 620 第1風路
 630 第2風路
 640 吹出口
 700 HEPAフィルタ
 710 送風機
 720 第1切替ダンパ
 730 第2切替ダンパ
 1000、1000a、1000b、1000c 空間浄化装置

Claims (12)

  1.  内部に供給された次亜塩素酸水を保持し、保持した前記次亜塩素酸水を空気に接触させることにより前記次亜塩素酸水を気化させるフィルタ部と、
     前記次亜塩素酸水に浸漬されており、空気を気泡として前記次亜塩素酸水に供給する空気供給部と、
    を備える、空間浄化装置。
  2.  吸気口と吹出口との間に設けられる第1風路と、
     前記吸気口と前記吹出口との間に設けられ、前記第1風路とは異なる第2風路と、をさらに備え、
     前記第1風路には前記フィルタ部が設けられ、
     前記第2風路には前記空気供給部が設けられ、
     前記第1風路と前記第2風路とは、切り替え可能に構成されている、請求項1に記載の空間浄化装置。
  3.  前記第1風路と前記第2風路とは、要求される加湿量に応じて切り替えられるように構成されている、請求項2に記載の空間浄化装置。
  4.  前記要求される加湿量がしきい値以上である場合、前記第1風路に切り替えられるように構成され、
     前記要求される加湿量が前記しきい値より少ない場合、前記第2風路に切り替えられるように構成されている、請求項3に記載の空間浄化装置。
  5.  電気分解によって前記次亜塩素酸水を生成する電解槽をさらに備え、
     前記空気供給部は、前記電解槽内に設けられる、請求項1から4のいずれか1項に記載の空間浄化装置。
  6.  水を供給する水供給部と、
     前記電解槽において生成された前記次亜塩素酸水と、前記水供給部から供給された前記水とを混合する混合槽と、をさらに備え、
     前記フィルタ部は、前記混合槽内に設けられる、請求項5に記載の空間浄化装置。
  7.  水を供給する水供給部と、
     電気分解によって次亜塩素酸水を生成する電解槽と、
     前記電解槽において生成された前記次亜塩素酸水と、前記水供給部から供給された前記水とを混合する混合槽と、をさらに備え、
     前記フィルタ部及び前記空気供給部は、前記混合槽内に設けられる、請求項1に記載の空間浄化装置。
  8.  前記フィルタ部と前記空気供給部とは、要求される加湿量に応じて運転動作を切り替えられるように構成されている、請求項7に記載の空間浄化装置。
  9.  前記要求される加湿量がしきい値以上である場合、前記フィルタ部の運転動作に切り替えられるように構成され、
     前記要求される加湿量が前記しきい値より少ない場合、前記空気供給部の運転動作に切り替えられるように構成されている、請求項8に記載の空間浄化装置。
  10.  電気分解によって前記次亜塩素酸水を生成して貯留する電解槽をさらに備え、
     前記フィルタ部及び前記空気供給部は、前記電解槽内に設けられる、請求項1に記載の空間浄化装置。
  11.  前記フィルタ部と前記空気供給部とは、要求される加湿量に応じて運転動作を切り替えられるように構成されている、請求項10に記載の空間浄化装置。
  12.  前記要求される加湿量がしきい値以上である場合、前記フィルタ部の運転動作に切り替えられるように構成され、
     前記要求される加湿量が前記しきい値より少ない場合、前記空気供給部の運転動作に切り替えられるように構成されている、請求項11に記載の空間浄化装置。
PCT/JP2022/045028 2022-01-26 2022-12-07 空間浄化装置 WO2023145264A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-009804 2022-01-26
JP2022009804A JP2023108652A (ja) 2022-01-26 2022-01-26 空間浄化装置

Publications (1)

Publication Number Publication Date
WO2023145264A1 true WO2023145264A1 (ja) 2023-08-03

Family

ID=87471575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045028 WO2023145264A1 (ja) 2022-01-26 2022-12-07 空間浄化装置

Country Status (2)

Country Link
JP (1) JP2023108652A (ja)
WO (1) WO2023145264A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018175740A (ja) * 2017-04-21 2018-11-15 パナソニックIpマネジメント株式会社 空気浄化装置
WO2019026256A1 (ja) * 2017-08-03 2019-02-07 三菱電機株式会社 熱交換換気装置
JP2021084079A (ja) * 2019-11-28 2021-06-03 学校法人福岡工業大学 バッチ式マイクロバブル液生成装置および生成方法
JP2021152442A (ja) * 2020-03-25 2021-09-30 パナソニックIpマネジメント株式会社 空気清浄装置
WO2022209204A1 (ja) * 2021-03-31 2022-10-06 パナソニックIpマネジメント株式会社 電解水散布装置
JP2023000452A (ja) * 2021-06-18 2023-01-04 パナソニックIpマネジメント株式会社 電解水散布装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018175740A (ja) * 2017-04-21 2018-11-15 パナソニックIpマネジメント株式会社 空気浄化装置
WO2019026256A1 (ja) * 2017-08-03 2019-02-07 三菱電機株式会社 熱交換換気装置
JP2021084079A (ja) * 2019-11-28 2021-06-03 学校法人福岡工業大学 バッチ式マイクロバブル液生成装置および生成方法
JP2021152442A (ja) * 2020-03-25 2021-09-30 パナソニックIpマネジメント株式会社 空気清浄装置
WO2022209204A1 (ja) * 2021-03-31 2022-10-06 パナソニックIpマネジメント株式会社 電解水散布装置
JP2023000452A (ja) * 2021-06-18 2023-01-04 パナソニックIpマネジメント株式会社 電解水散布装置

Also Published As

Publication number Publication date
JP2023108652A (ja) 2023-08-07

Similar Documents

Publication Publication Date Title
JP2012207814A (ja) 加湿機
JP6990825B2 (ja) 空間殺菌装置
JP2003014261A (ja) 加湿装置
JP2014035144A (ja) 加湿機能付き空気清浄機
JP2019170597A (ja) 空間殺菌装置
JP2010151365A (ja) 加湿装置
JP2014016128A (ja) 空気加湿装置
WO2023145264A1 (ja) 空間浄化装置
JP5494340B2 (ja) 加湿装置
JP2019063420A (ja) 揮発装置
WO2022209204A1 (ja) 電解水散布装置
JP2016180531A (ja) 空気浄化装置
JP2011010702A (ja) 空気除菌装置
JP2009106706A (ja) 空気除菌装置
JPWO2010004762A1 (ja) 調湿装置
JP2008064433A (ja) 加湿装置
JP2008167963A (ja) 空気除菌装置
JP2022140255A (ja) 空間浄化装置
WO2023037784A1 (ja) 空間浄化装置
WO2023021853A1 (ja) 空間浄化装置
JP2016156536A (ja) 空気浄化装置
JP2006200887A (ja) 加湿装置
JP7403048B2 (ja) 空間浄化装置
JP2019170615A (ja) 空間殺菌装置
JP2020049031A (ja) 空気中の細菌、ウイルス、臭気物質の除去方法、およびそれを用いた空気清浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22924116

Country of ref document: EP

Kind code of ref document: A1