WO2023143207A1 - 一种太阳能电池及其制备方法 - Google Patents

一种太阳能电池及其制备方法 Download PDF

Info

Publication number
WO2023143207A1
WO2023143207A1 PCT/CN2023/072438 CN2023072438W WO2023143207A1 WO 2023143207 A1 WO2023143207 A1 WO 2023143207A1 CN 2023072438 W CN2023072438 W CN 2023072438W WO 2023143207 A1 WO2023143207 A1 WO 2023143207A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
carrier transport
perovskite
transport layer
interface passivation
Prior art date
Application number
PCT/CN2023/072438
Other languages
English (en)
French (fr)
Inventor
李勃超
何博
何永才
顾小兵
王永磊
董鑫
丁蕾
张富
李巧艳
Original Assignee
西安隆基乐叶光伏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210101614.3A external-priority patent/CN114447126B/zh
Priority claimed from CN202210103158.6A external-priority patent/CN114447127A/zh
Application filed by 西安隆基乐叶光伏科技有限公司 filed Critical 西安隆基乐叶光伏科技有限公司
Publication of WO2023143207A1 publication Critical patent/WO2023143207A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations

Definitions

  • the present application relates to the technical field of solar cells, in particular to a solar cell and a preparation method thereof.
  • Perovskite cell/silicon-based heterojunction two-terminal laminated cell realizes spectral distribution and absorption, and can obtain a photoelectric conversion efficiency of more than 30% (>silicon cell limit efficiency 29.4%), which is considered to be the mainstream of low-cost and high-efficiency solar cells in the future product.
  • the long-term stability of perovskite batteries is very important.
  • the halide ions (I, Br, Cl) and metal ions (Pb, Sn, etc.) of the perovskite layer in the perovskite battery will cause ion migration due to the defects of the perovskite film layer, and these migrating ions will pass through the hole
  • the transport layer/perovskite layer interface and the perovskite layer/electron transport layer interface cause perovskite layer composition mismatch and electrode corrosion, which ultimately deteriorates the long-term working stability of perovskite cells.
  • defects in the perovskite film layer can also cause serious performance hysteresis of the device, which seriously affects the performance of the perovskite device.
  • this application proposes a solar cell, the interface passivation layer conforms to the textured structure of the substrate, which not only realizes the suppression of ion migration at the interface of the perovskite/transport layer, but also reduces the performance hysteresis of the solar cell , and continues the light-trapping structure design of the base suede structure, which reduces the light reflection loss.
  • the application provides a solar cell, including a substrate, the surface of the substrate has a textured structure, and a carrier transport layer and a perovskite absorption layer are stacked on the substrate; the perovskite absorption layer and the perovskite absorption layer There is an interface passivation layer between the carrier transport layers, and the interface passivation layer conforms to the textured structure.
  • the perovskite absorbing layer contains an alkali metal compound.
  • the alkali metal compound in the perovskite absorbing layer can eliminate defects inside the perovskite absorbing layer, and the direct contact between the interface passivation layer and the perovskite absorbing layer can solve the problem of ion migration and Performance lag issue. Therefore, the solar cell described in this application achieves the purpose of double passivation of perovskite interface-perovskite bulk phase defects, inhibits ion migration, and finally eliminates the performance hysteresis of stacked devices and improves long-term stability.
  • the carrier transport layer includes a first carrier transport layer and a second carrier transport layer, and the first carrier transport layer and the second carrier transport layer are respectively located on the perovskite Both sides of the ore absorbing layer;
  • interface passivation layer between the perovskite absorption layer and the first carrier transport layer and/or there is an interface passivation between the perovskite absorption layer and the second carrier transport layer layer;
  • a surface of the first carrier transport layer away from the perovskite absorbing layer is laminated with the substrate.
  • the substrate is conductive glass or a silicon cell.
  • the suede structure is randomly or regularly distributed on at least one surface of the substrate
  • the basic shapes constituting the suede structure are selected from one or more of columnar, conical, platform, arc-shaped grooves or arc-shaped protrusions.
  • the height of the suede structure is h, where h ⁇ 3 ⁇ m.
  • the interface passivation layer is an alkali metal halide passivation layer or an alkali metal halide passivation layer, and its thickness is d1, 0 ⁇ d1 ⁇ 5nm.
  • the alkali metal halide passivation layer is selected from at least one of potassium iodide layer, potassium bromide layer, potassium chloride layer or potassium fluoride layer.
  • the alkali metal halide passivation layer is selected from at least one of potassium thiocyanate layer, potassium cyanide layer, potassium oxycyanide layer or potassium selenocyanide layer.
  • the perovskite absorbing layer contains potassium salt, and the thickness of the perovskite absorbing layer is d2, 350nm ⁇ d1 ⁇ 700nm.
  • the potassium salt is at least one selected from potassium halides, potassium carbazole or potassium acetate.
  • first carrier transport layer, the perovskite absorption layer and the second carrier transport layer are all conformal to the textured structure.
  • the content of the alkali metal compound in the perovskite absorbing layer is 1 ⁇ -10%.
  • the alkali metal compound is at least one of potassium-containing compounds, sodium-containing compounds, lithium-containing compounds, rubidium-containing compounds, and cesium-containing compounds.
  • the alkali metal compound is selected from at least one of halogen alkali metals, halogenoid alkali metals, carbazole alkali metals or acetate alkali metals.
  • the present application also provides a method for preparing a solar cell, comprising the steps of:
  • a second carrier transport layer is formed on the surface of the perovskite absorption layer away from the first interface passivation layer.
  • the present application also provides a method for preparing a solar cell, comprising the steps of:
  • a second carrier transport layer is formed on the surface of the second interface passivation layer away from the perovskite absorption layer.
  • the present application also provides a method for preparing a solar cell, comprising the steps of:
  • a second carrier transport layer is formed on the surface of the second interface passivation layer away from the perovskite absorbing layer.
  • the perovskite absorbing layer contains an alkali metal compound.
  • a second interface passivation layer is formed on the surface of the perovskite absorbing layer away from the first interface passivation layer.
  • forming the perovskite absorbing layer specifically includes the following steps:
  • a metal halide layer is evaporated on the surface of the first interface passivation layer away from the first carrier transport layer;
  • forming the perovskite absorbing layer specifically includes the following steps:
  • a metal halide layer is evaporated on the surface of the first interface passivation layer away from the first carrier transport layer;
  • the mixed solution reacts with the metal halide layer, thereby forming the perovskite absorbing layer.
  • the prepared solar cell is the aforementioned solar cell.
  • the interface passivation layer is conformal to the textured surface of the substrate, which realizes uniform and dense deposition of the interface passivation layer and the textured surface of the substrate, inhibits ion migration, and significantly reduces the forward and reverse sweep of the laminated battery. Curve hysteresis; at the same time, the conformal structure of the interface passivation layer continues the good light-trapping structure design of the base suede surface, which minimizes the light reflection loss and significantly improves the photo-generated current.
  • FIG. 1 is a schematic structural diagram of a solar cell in the prior art provided by the present application.
  • FIG. 2 is a schematic structural diagram of a solar cell provided by the present application.
  • FIG. 3 is a schematic structural diagram of a solar cell provided by the present application.
  • FIG. 4 is a schematic structural diagram of a solar cell provided by the present application.
  • FIG. 5 is an IV curve diagram of Example 1 and Comparative Example 1 provided by the present application.
  • FIG. 6 is an IV curve diagram of Example 11 and Comparative Example 5 provided by the present application.
  • a potassium salt additive is added to the perovskite solution or a passivation layer is prepared on the perovskite film layer to inhibit ion migration and passivate the perovskite film layer at the same time.
  • a potassium salt additive is added to the perovskite solution or a passivation layer is prepared on the perovskite film layer to inhibit ion migration and passivate the perovskite film layer at the same time.
  • the non-conformal structure lacks internal Light trapping design, the optical loss is greater than the conformal structure.
  • Conventional spin coating/scraping coating/spray coating/printing and other film-forming methods are difficult to prepare a passivation film layer that is conformal to the textured surface. Usually, it will be deposited on the bottom of the textured surface and expose the top of the textured surface, so that the perovskite The lack of a passivation layer between the mineral layer and the hole transport layer loses the passivation effect.
  • the application provides a solar cell, including a substrate, the surface of the substrate has a textured structure, and a carrier transport layer and a perovskite absorption layer are stacked on the substrate; the perovskite absorption layer and the perovskite absorption layer There is an interface passivation layer between the carrier transport layers, and the interface passivation layer conforms to the textured structure.
  • the carrier transport layer includes a first carrier transport layer and a second carrier transport layer, the first carrier transport layer and the second carrier transport layer are respectively located in the perovskite absorption layer both sides of
  • interface passivation layer between the perovskite absorption layer and the first carrier transport layer and/or there is an interface passivation between the perovskite absorption layer and the second carrier transport layer layer;
  • a surface of the first carrier transport layer away from the perovskite absorption layer is together with the base layer.
  • the substrate is conductive glass or crystalline silicon battery. Therefore, the solar cell may be a single-layer perovskite cell or a stacked perovskite cell.
  • the solar cell is a stacked perovskite cell.
  • the stacked perovskite cell is as follows:
  • the present application provides a stacked perovskite cell, including an upper cell 200 and a lower cell 100, the upper cell 200 sequentially includes a first carrier transport layer 201, a perovskite absorption layer 203 and a second cell 200 from bottom to top. carrier transport layer 204;
  • interface passivation layer between the perovskite absorption layer 203 and the first carrier transport layer 201 and/or the second carrier transport layer 204;
  • the surface of the lower battery 100 in contact with the upper battery 200 has a textured structure 1011 , and the interface passivation layer conforms to the textured structure 1011 .
  • the upper battery 200 is a perovskite battery
  • the lower battery 100 is a crystalline silicon battery.
  • Conformity in this application refers to the same shape, that is, the interface passivation layer also has a textured structure in this application.
  • the perovskite absorbing layer includes an alkali metal compound.
  • tandem perovskite cells described in this application have three structures.
  • the first stacked perovskite cell includes an upper cell 200 and a lower cell 100.
  • the upper cell 200 includes a first carrier transport layer 201, a first Interface passivation layer 202, perovskite absorption layer 203, second carrier transport layer 204, buffer layer 205, transparent conductive layer 206 and anti-reflection layer 207;
  • the light absorbing layer 101 and the tunneling layer 102, the tunneling layer 102 and the first carrier transporting layer 201 are stacked together.
  • Both upper and lower surfaces of the light absorption layer 101 have textured structures 1011, the tunneling layer 102, the first carrier transport layer 201, the first interface passivation layer 202, the perovskite absorption layer 203, the second The carrier transport layer 204 , the buffer layer 205 , the transparent conductive layer 206 and the anti-reflection layer 207 are all conformal to the textured structure 1011 .
  • the upper battery 200 includes a metal electrode 103, the metal electrode 103 penetrates the anti-reflection layer 207 and is connected to the transparent conductive layer 206, the lower battery 100 includes a metal electrode 103, and the metal electrode 103 is connected to the light The absorber layer 101 is connected.
  • the first carrier transport layer 201 can be a hole transport layer or an electron transport layer, and the conductivity types of the first carrier transport layer 201 and the second carrier transport layer 204 are opposite.
  • the first carrier transport layer 201 can be a molybdenum oxide layer, [bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA ) layer, copper iodide layer or Spiro-OMeTAD (2,2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene
  • PTAA molybdenum oxide layer
  • PTAA [bis(4-phenyl)(2,4,6-trimethylphenyl)amine]
  • PTAA molybdenum oxide layer
  • PTAA [bis(4-phenyl)(2,4,6-trimethylphenyl)amine]
  • PTAA copper iodide layer
  • the second carrier transport layer 204 is an electron transport layer, which can be a titanium oxide layer, a tin oxide layer, a C60 layer or a C60-PCBM layer, [60]PCBM ([6,6]-phenyl-C61butyric acid methyl ester, the Chinese name is [6,6]-phenyl-C61-butyric acid methyl ester) layer, [70]PCBM ([6,6]-Phenyl-C71-butyric acid methyl ester, the Chinese name is [6, 6]-phenyl-C71-butyric acid isomethyl ester) layer, bis[60]PCBM (Bis(1-[3-(methoxycarbonyl)propyl]-1-phenyl)-[6,6]C62) layer, [ 60]ICBA(1',1",4',4"-Tetrahydro-di[1,4]methanonaphthaleno[1,2:2',3',56,60:2",3"][5,6
  • the first carrier transport layer 201 is an electron transport layer, it can be a titanium oxide layer, a tin oxide layer, a C60 layer or a C60-PCBM layer, [60]PCBM ([6,6]-phenyl-C61butyric acid methyl ester, the Chinese name is [6,6]-phenyl-C61-butyric acid methyl ester) layer, [70]PCBM ([6,6]-Phenyl-C71-butyric acid methyl ester, the Chinese name is [ 6,6]-phenyl-C71-butyric acid isomethyl ester) layer, bis[60]PCBM (Bis(1-[3-(methoxycarbonyl)propyl]-1-phenyl)-[6,6]C62) layer ⁇ [60]ICBA(1',1",4',4"-Tetrahydro-di[1,4]methanonaphthaleno[1,2:2',3',56,60:2",3"][5
  • the second carrier transport layer 204 is a hole transport layer, which can be a molybdenum oxide layer, [bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) layer , copper iodide layer or Spiro-OMeTAD(2,2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene Chinese name is 2,2',7 ,7'-tetra[N,N-bis(4-methoxyphenyl)amino]-9,9'-spirobifluorene) layer, PEDOT layer, PEDOT:PSS layer, P3HT layer, P3OHT layer, P3ODDT layer , NiO x layer or CuSCN layer. Including but not limited thereto, as long as the functions in this application can be realized.
  • the thickness of the first carrier transport layer 201 is 10-15nm, such as 10nm,
  • the perovskite absorbing layer 203 may be an organic-inorganic hybrid halide perovskite layer, an all-inorganic halide perovskite layer, a lead-free perovskite layer, etc., including but not limited thereto.
  • Its thickness is d2, 350nm ⁇ d2 ⁇ 700nm, for example, d2 can be 350nm, 360nm, 370nm, 380nm, 390nm, 400nm, 410nm, 420nm, 430nm, 440nm, 450nm, 460nm, 470nm, 480nm, 490nm, 500nm, 600nm, 650nm or 700nm. Alternatively, 350nm ⁇ d2 ⁇ 500nm.
  • the content of the alkali metal compound in the perovskite absorbing layer is 1 ⁇ -10%, such as 1 ⁇ , 5 ⁇ , 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% or 10%.
  • the alkali metal compound is one of potassium-containing compounds, sodium-containing compounds, lithium-containing compounds, rubidium-containing compounds, and cesium-containing compounds.
  • the perovskite absorbing layer 203 contains a potassium-containing compound, and the potassium-containing compound is selected from one of potassium halides, potassium halides, potassium carbazole, and potassium acetate.
  • the perovskite absorbing layer 203 contains a sodium-containing compound, and the sodium-containing compound is at least one selected from sodium halides, sodium halides, sodium carbazole or sodium acetate.
  • the perovskite absorption layer 203 contains a lithium-containing compound, and the lithium-containing compound is selected from at least one of lithium halides, lithium halides, lithium carbazoles, and lithium acetate.
  • the perovskite absorbing layer 203 contains a rubidium-containing compound, and the rubidium-containing compound is selected from at least one of rubidium halogen, rubidium-like halogen, rubidium carbazole or rubidium acetate.
  • the perovskite absorbing layer 203 contains a cesium-containing compound, and the cesium-containing compound is selected from at least one of cesium halide, cesium halide-like cesium, cesium carbazole, or cesium acetate.
  • the perovskite absorbing layer 203 contains potassium salt, and the potassium salt is selected from at least one of potassium halides, potassium carbazole or potassium acetate.
  • the content of potassium salt in the perovskite absorbing layer is 1 ⁇ -10%, such as 1 ⁇ , 5 ⁇ , 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% or 10%.
  • the buffer layer 205 is used for the longitudinal transport of carriers, while protecting the perovskite absorbing layer from subsequent PVD process sputtering damage, it can be SnO 2 layer or TiO 2 layer, its thickness is 5-30nm, for example can 5nm, 6nm, 7nm, 8nm, 9nm, 10nm, 11nm, 12nm, 13nm, 14nm, 15nm, 16nm, 17nm, 18nm, 19nm, 20nm, 21nm, 22nm, 23nm, 24nm, 25nm, 26nm, 27nm, 28nm, 29nm or 30nm.
  • the transparent conductive layer 206 can be a transparent conductive film, specifically fluorine-doped tin oxide (FTO), indium tin oxide (ITO) or aluminum-doped zinc oxide (AZO); the thickness of the transparent conductive layer 206 is 1- 20nm, such as 1nm, 2nm, 3nm, 4nm, 5nm, 6nm, 7nm, 8nm, 9nm, 10nm, 11nm, 12nm, 13nm, 14nm, 15nm, 16nm, 17nm, 18nm, 19nm or 20nm.
  • FTO fluorine-doped tin oxide
  • ITO indium tin oxide
  • AZO aluminum-doped zinc oxide
  • the anti-reflection layer 207 may be MgF 2 , LiF, SiO 2 , etc., with a thickness of 50-300 nm, such as 50 nm, 100 nm, 150 nm, 200 nm, 250 nm or 300 nm.
  • the metal electrode 103 can be made of one or more of metal materials such as Ag, Au, Cu, Al, Ni, C material, and polymer conductive material.
  • the light-absorbing layer 101 can be a silicon wafer, and further can be a commercial-grade M2n-type silicon wafer with a resistivity of 1-10 ⁇ .cm and a thickness of 150-200 ⁇ m, such as 150 ⁇ m, 160 ⁇ m, 170 ⁇ m, 180 ⁇ m, 190 ⁇ m or 200 ⁇ m .
  • the tunneling layer 102 can use PECVD to deposit uc-Si-p+ layer and uc-Si-n+ layer respectively to form a tunnel junction, and its thickness is 15-50nm, such as 15nm, 20nm, 25nm, 30nm, 35nm, 40nm, 45nm or 50nm.
  • the suede structure is randomly or regularly distributed on at least one surface of the substrate
  • the basic shapes constituting the suede structure are selected from one or more of columnar, conical, platform, arc-shaped grooves or arc-shaped protrusions.
  • it can be triangular prism, quadrangular prism, hexagonal prism, cylindrical, conical, triangular pyramid, quadrangular pyramid, conical frustum, triangular prism, quadrangular prism and semi-circular arc Shaped grooves or semi-circular arc-shaped protrusions and other structures.
  • the suede structure may be composed of one or more of columns, cones, terraces, arc-shaped grooves or arc-shaped protrusions.
  • the height of the suede structure 1011 is h, where h ⁇ 3 ⁇ m.
  • the first interface passivation layer 202 is an alkali metal halide passivation layer or an alkali metal halide passivation layer, and its thickness is d1, 0 ⁇ d1 ⁇ 5nm.
  • d1 may be 0.5nm, 0.6nm, 0.7nm, 0.8nm, 0.9nm, 1.0nm, 1.5nm, 2.0nm, 2.5nm, 3.0nm, 3.5nm, 4.0nm, 4.5nm, 5.0nm.
  • the alkali metal halide passivation layer is selected from at least one of potassium iodide layer, potassium bromide layer, potassium chloride layer or potassium fluoride layer.
  • the alkali metal halide passivation layer is selected from one of potassium thiocyanate layer, potassium cyanide layer, potassium oxycyanide layer or potassium selenocyanide layer.
  • the alkali metal species in the alkali metal compound in the perovskite absorbing layer 203 may or may not be consistent.
  • the preparation method of the first stacked perovskite battery comprises the following steps:
  • Step 1 providing a lower battery 100 with a suede structure 1011;
  • Step 2 forming a first carrier transport layer 201 on the surface of the lower battery 100;
  • Step 3 forming a first interface passivation layer 202 conformal to the textured structure 1011 on the surface of the first carrier transport layer 201 facing away from the lower battery 100 by vapor deposition;
  • Step 4 forming a perovskite absorption layer 203 on the surface of the first interface passivation layer 202 away from the first carrier transport layer 201;
  • Step five forming a second carrier transport layer 204 on the surface of the perovskite absorption layer 203 facing away from the first interface passivation layer 202 .
  • Step 1 the silicon wafer is sequentially subjected to polishing, texturing, coating, cleaning and tunneling junction procedures to form the lower cell 100 with the textured structure 1011 .
  • the preparation method of the first stacked perovskite battery comprises the following steps:
  • Step 1 provide the lower battery 100
  • Step 2 forming a first carrier transport layer 201 on the surface of the lower battery 100;
  • Step 3 Forming a first interface passivation layer 202 on the surface of the first carrier transport layer 201 facing away from the lower battery 100 by vapor deposition;
  • Step 4 forming a perovskite absorbing layer 203 on the surface of the first interface passivation layer 202 away from the first carrier transport layer 201, and the perovskite absorbing layer 203 contains an alkali metal compound;
  • Step five forming a second carrier transport layer 204 on the surface of the perovskite absorption layer 203 facing away from the first interface passivation layer 202 .
  • Step 1 the silicon wafer is sequentially subjected to polishing, texturing, cleaning and tunneling junction procedures to form the lower cell 100 with the textured structure 1011 .
  • a commercial-grade M2 n-type silicon wafer is used, and the silicon wafer substrate containing the textured structure 1011 is formed through alkaline solution polishing, texturing, and cleaning, and then PECVD is used to form a tunneling layer 102 on the silicon wafer substrate.
  • the lower battery can be a silicon battery, copper indium gallium selenide battery, etc.
  • the silicon battery can be a heterojunction battery, PERC (Passivated Emitter and Rear Cell, passivated emitter and back) battery, TOPCON (Tunnel Oxide Passivated Contact, tunnel Through the oxide layer passivation contact) battery, etc.
  • step 2 the first carrier transport layer 201 conformal to the textured structure 1011 is formed on the tunneling layer 102 of the lower cell 100 by vacuum evaporation.
  • Step 3 a first interface passivation layer 202 conformal to the textured structure 1011 is formed on the surface of the first carrier transport layer 201 facing away from the lower battery 100 by vacuum evaporation.
  • Step 4 a perovskite absorbing layer 203 is prepared on the surface of the first interface passivation layer 202 away from the first carrier transport layer 201 by a double-source co-evaporation method.
  • Deposition forms the mixed layer of lead iodide and cesium bromide
  • Potassium formate additive, FAI and FABr are mixed simultaneously to form mixed solution, and in described mixed solution, the mol ratio of FAI and FABr is 3:1, the molar ratio of potassium formate additive
  • the concentration is 0.1%
  • the mixed solution is dropped on the mixed layer, immediately spin-coated to obtain a perovskite precursor layer, and then annealed to form a perovskite absorbing layer 203 conformal to the textured structure 1011 .
  • preparing the perovskite absorbing layer specifically includes the following steps:
  • a metal halide layer is evaporated on the surface of the first interface passivation layer away from the first carrier transport layer;
  • PbI 2 cesium bromide and lead iodide
  • Step 5 the second carrier transport layer 204 is formed on the surface of the perovskite absorption layer 203 facing away from the first interface passivation layer 202 by vacuum coating equipment.
  • the preparation method also includes the following steps:
  • Step 6 Deposit and form a buffer layer 205 on the surface of the second carrier transport layer 204 facing away from the perovskite absorption layer 203 by using atomic layer deposition equipment.
  • Step 7 Deposit a transparent conductive layer 206 on the surface of the buffer layer 205 facing away from the second carrier transport layer 204 .
  • Step 8 Evaporate and form a silver grid on the surface of the transparent conductive layer 206 facing away from the buffer layer 205 and on the surface of the light absorbing layer 101 facing away from the tunneling layer 102 by mask method wire electrodes.
  • Step 9 On the front side (perovskite side), an anti-reflection film is prepared by electron beam evaporation to reduce light reflection on the surface of the battery, thereby obtaining the first stacked perovskite battery.
  • the preparation method of the first stacked perovskite battery comprises the following steps:
  • Step 1 providing a lower battery 100 with a suede structure 1011;
  • the silicon wafer is sequentially subjected to polishing, texturing, cleaning and tunneling junction procedures to form the lower cell 100 with the textured structure 1011 .
  • a commercial-grade M2 n-type silicon wafer is used, and a silicon wafer substrate containing a textured structure 1011 is formed through alkaline solution polishing, texturing, and cleaning, and then a tunneling layer 102 is formed on the silicon wafer substrate by PECVD. .
  • the lower battery can be a silicon battery, copper indium gallium selenide battery, etc.
  • the silicon battery can be a heterojunction battery, PERC (Passivated Emitter and Rear Cell, passivated emitter and back) battery, TOPCON (Tunnel Oxide Passivated Contact, tunnel Through the oxide layer passivation contact) battery, etc.
  • Step 2 forming a first carrier transport layer 201 on the surface of the lower battery 100;
  • the first carrier transport layer 201 conformal to the textured structure 1011 is formed on the tunneling layer 102 of the lower cell 100 by vacuum evaporation.
  • Step 3 forming a first interface passivation layer 202 conformal to the textured structure 1011 on the surface of the first carrier transport layer 201 facing away from the lower battery 100 by vapor deposition;
  • the first interface passivation layer 202 conforming to the textured structure 1011 is formed on the surface of the first carrier transport layer 201 facing away from the lower battery 100 by vacuum evaporation.
  • Step 4 forming a perovskite absorption layer 203 on the surface of the first interface passivation layer 202 away from the first carrier transport layer 201;
  • the perovskite absorbing layer 203 is prepared on the surface of the first interface passivation layer 202 facing away from the first carrier transport layer 201 by a double-source co-evaporation method.
  • preparing the perovskite absorbing layer specifically includes the following steps:
  • a metal halide layer is evaporated on the surface of the first interface passivation layer away from the first carrier transport layer;
  • the mixed layer of lead iodide and cesium bromide; Potassium formate additive, FAI and FABr are mixed simultaneously to form mixed solution, and in described mixed solution, the mol ratio of FAI and FABr is 3:1, and the molar concentration of potassium formate additive is 0.1%, the mixed solution is dropped on the mixed layer, immediately spin-coated to obtain a perovskite precursor layer, and then annealed to form a perovskite absorbing layer 203 conformal to the textured structure 1011 .
  • Step five forming a second carrier transport layer 204 on the surface of the perovskite absorption layer 203 facing away from the first interface passivation layer 202 .
  • the second carrier transport layer 204 is formed on the surface of the perovskite absorption layer 203 facing away from the first interface passivation layer 202 by vacuum coating equipment.
  • Step 6 Deposit and form a buffer layer 205 on the surface of the second carrier transport layer 204 facing away from the perovskite absorption layer 203 by using atomic layer deposition equipment.
  • Step 7 Deposit a transparent conductive layer 206 on the surface of the buffer layer 205 facing away from the second carrier transport layer 204 .
  • Step 8 Evaporate and form silver grid line electrodes on the surface of the transparent conductive layer 206 facing away from the buffer layer 205 and on the surface of the light absorbing layer 101 facing away from the tunneling layer 102 by mask method .
  • Step 9 On the front side (perovskite side), an anti-reflection film is prepared by electron beam evaporation to reduce light reflection on the surface of the battery, thereby obtaining the first stacked perovskite battery.
  • the second stacked perovskite battery includes an upper battery 200 and a lower battery 100.
  • the upper battery 200 includes a first carrier transport layer 201, a perovskite stacked sequentially from bottom to top. Ore absorption layer 203, second interface passivation layer 208, second carrier transport layer 204, buffer layer 205, transparent conductive layer 206 and anti-reflection layer 207;
  • the light absorbing layer 101 and the tunneling layer 102, the tunneling layer 102 and the first carrier transporting layer 201 are stacked together.
  • Both upper and lower surfaces of the light absorption layer 101 have a textured structure 1011, the tunneling layer 102, the first carrier transport layer 201, the perovskite absorption layer 203, the second interface passivation layer 208, the second The carrier transport layer 204 , the buffer layer 205 , the transparent conductive layer 206 and the anti-reflection layer 207 are all conformal to the textured structure 1011 .
  • the upper battery 200 includes a metal electrode 103, the metal electrode 103 penetrates the anti-reflection layer 207 and is connected to the transparent conductive layer 206, and the lower battery 100 includes A metal electrode 103 , the metal electrode 103 is connected to the light absorbing layer 101 .
  • the light absorbing layer 101 and the tunneling layer 102 are connected with the first carrier transport layer 201, perovskite absorbing layer 203, second carrier transport layer 204, buffer layer 205,
  • the transparent conductive layer 206 , the antireflection layer 207 , the light absorbing layer 101 and the tunneling layer 102 are the same, and all of them can refer to the first stacked perovskite cell.
  • the material of the second interface passivation layer 208 is the same as that of the first interface passivation layer 202 in the first type of stacked perovskite cell, so reference can be made to the first type of stacked perovskite cell.
  • the preparation method of the second laminated perovskite battery comprises the following steps:
  • Step 1 providing a lower battery 100 with a suede structure 1011;
  • Step 2 forming a first carrier transport layer 201 on the surface of the lower battery 100;
  • Step 3 forming a perovskite absorption layer 203 on the surface of the first carrier transport layer 201 facing away from the lower battery 100;
  • the perovskite absorbing layer 203 contains an alkali metal compound
  • Step 4 Form a second interface passivation layer 208 conformal to the textured structure 1011 on the surface of the perovskite absorption layer 203 facing away from the first carrier transport layer 201 by vapor deposition;
  • Step 5 forming a second carrier transport layer 204 on the surface of the second interface passivation layer 208 facing away from the perovskite absorption layer 203 .
  • Step 1 the silicon wafer is sequentially subjected to polishing, texturing, cleaning and tunneling junction procedures to form the lower cell 100 with the textured structure 1011 .
  • a commercial-grade M2 n-type silicon wafer is used, and a silicon wafer substrate containing a textured structure 1011 is formed through alkaline solution polishing, texturing, and cleaning, and then a tunneling layer 102 is formed on the silicon wafer substrate by PECVD. .
  • the lower battery can be a silicon battery, copper indium gallium selenide battery, etc.
  • the silicon battery can be a heterojunction battery, PERC (Passivated Emitter and Rear Cell, passivated emitter and back) battery, TOPCON (Tunnel Oxide Passivated Contact, tunnel oxidation layer passivation contact) battery, etc.
  • step 2 the first carrier transport layer 201 conformal to the textured structure 1011 is formed on the tunneling layer 102 of the lower cell 100 by vacuum evaporation.
  • Step 3 a perovskite absorbing layer 203 is prepared on the surface of the first carrier transport layer 201 away from the tunneling layer 102 by a dual-source co-evaporation method.
  • preparing the perovskite absorbing layer specifically includes the following steps:
  • a metal halide layer is evaporated on the surface of the first interface passivation layer away from the first carrier transport layer;
  • Step 4 a second interface passivation layer 208 conformal to the textured structure 1011 is formed on the surface of the perovskite absorbing layer 203 away from the first carrier transport layer 201 by vacuum evaporation.
  • Step 5 the second carrier transport layer 204 is formed on the surface of the second interface passivation layer 208 facing away from the perovskite absorption layer 203 by vacuum coating equipment.
  • the preparation method also includes the following steps:
  • Step 6 Deposit and form a buffer layer 205 on the surface of the second carrier transport layer 204 away from the second interface passivation layer 208 by using atomic layer deposition equipment.
  • Step 7 Deposit a transparent conductive layer 206 on the surface of the buffer layer 205 facing away from the second carrier transport layer 204 .
  • Step 8 Evaporate and form silver grid line electrodes on the surface of the transparent conductive layer 206 facing away from the buffer layer 205 and on the surface of the light absorbing layer 101 facing away from the tunneling layer 102 by mask method .
  • Step 9 On the front side (perovskite side), an anti-reflection film is prepared by electron beam evaporation to reduce light reflection on the surface of the battery, thereby obtaining the second stacked perovskite battery.
  • the preparation method of the second laminated perovskite battery comprises the following steps:
  • Step 1 providing a lower battery 100 with a suede structure 1011;
  • the silicon wafer is sequentially subjected to polishing, texturing, cleaning and tunneling junction procedures to form the lower cell 100 with the textured structure 1011 .
  • a commercial-grade M2 n-type silicon wafer is used, and a silicon wafer substrate containing a textured structure 1011 is formed through alkaline solution polishing, texturing, and cleaning, and then a tunneling layer 102 is formed on the silicon wafer substrate by PECVD. .
  • the lower battery can be a silicon battery, copper indium gallium selenide battery, etc.
  • the silicon battery can be a heterojunction battery, PERC (Passivated Emitter and Rear Cell, passivated emitter and back) battery, TOPCON (Tunnel Oxide Passivated Contact, tunnel oxidation layer passivation contact) battery, etc.
  • Step 2 forming a first carrier transport layer 201 on the surface of the lower battery 100;
  • the first carrier transport layer 201 conformal to the textured structure 1011 is formed on the tunneling layer 102 of the lower cell 100 by vacuum evaporation.
  • Step 3 forming a perovskite absorption layer 203 on the surface of the first carrier transport layer 201 facing away from the lower battery 100;
  • the perovskite absorbing layer 203 is prepared on the surface of the first carrier transport layer 201 away from the tunneling layer 102 by a double-source co-evaporation method.
  • preparing the perovskite absorbing layer specifically includes the following steps:
  • a metal halide layer is evaporated on the surface of the first interface passivation layer away from the first carrier transport layer;
  • Step 4 Form a second interface passivation layer 208 conformal to the textured structure 1011 on the surface of the perovskite absorption layer 203 facing away from the first carrier transport layer 201 by vapor deposition;
  • a second interface passivation layer 208 conformal to the textured structure 1011 is formed on the surface of the perovskite absorbing layer 203 facing away from the first carrier transport layer 201 by vacuum evaporation.
  • Step 5 forming a second carrier transport layer 204 on the surface of the second interface passivation layer 208 facing away from the perovskite absorption layer 203 .
  • the second carrier transport layer 204 is formed on the surface of the second interface passivation layer 208 facing away from the perovskite absorbing layer 203 by vacuum coating equipment.
  • Step 6 Deposit and form a buffer layer 205 on the surface of the second carrier transport layer 204 away from the second interface passivation layer 208 by using atomic layer deposition equipment.
  • Step 7 Deposit a transparent conductive layer 206 on the surface of the buffer layer 205 facing away from the second carrier transport layer 204 .
  • Step 8 Evaporate and form silver grid line electrodes on the surface of the transparent conductive layer 206 facing away from the buffer layer 205 and on the surface of the light absorbing layer 101 facing away from the tunneling layer 102 by mask method .
  • Step 9 On the front side (perovskite side), an anti-reflection film is prepared by electron beam evaporation to reduce light reflection on the surface of the battery, thereby obtaining the second stacked perovskite battery.
  • the third stacked perovskite cell includes an upper cell 200 and a lower cell 100, and the upper cell 200 includes a first carrier transport layer 201, a first Interface passivation layer 202, perovskite absorption layer 203, second interface passivation layer 208, second carrier transport layer 204, buffer layer 205, transparent conductive layer 206 and anti-reflection layer 207; Bottom to top includes a light absorbing layer 101 and a tunneling layer 102 stacked in sequence, and the tunneling layer 102 is stacked with the first carrier transport layer 201 .
  • Both upper and lower surfaces of the light absorption layer 101 have textured structures 1011, the tunneling layer 102, the first carrier transport layer 201, the first interface passivation layer 202, the perovskite absorption layer 203, the second The two-interface passivation layer 208 , the second carrier transport layer 204 , the buffer layer 205 , the transparent conductive layer 206 and the antireflection layer 207 are all conformal to the textured structure 1011 .
  • the upper battery 200 includes a metal electrode 103, the metal electrode 103 penetrates the anti-reflection layer 207 and is connected to the transparent conductive layer 206, the lower battery 100 includes a metal electrode 103, and the metal electrode 103 is connected to the light The absorber layer 101 is connected.
  • the first carrier transport layer 201, the first interface passivation layer 202, the perovskite absorption layer 203, the second carrier transport layer 204, the buffer layer 205, the transparent conductive layer in the third stacked perovskite cell Layer 206, anti-reflection layer 207, light absorbing layer 101, and tunneling layer 102 are connected with the first carrier transport layer 201, the first interface passivation layer 202, and the perovskite absorption layer in the first stacked perovskite cell.
  • the transmission layer 204 , the buffer layer 205 , the transparent conductive layer 206 , the anti-reflection layer 207 , the light absorption layer 101 and the tunneling layer 102 are the same, and can refer to the first stacked perovskite cell.
  • the material of the second interface passivation layer 208 is the same as that of the first interface passivation layer 202 in the first type of stacked perovskite cell, so reference can be made to the first type of stacked perovskite cell.
  • the preparation method of the third laminated perovskite battery comprises the following steps:
  • Step 1 providing a lower battery 100 with a suede structure 1011;
  • Step 2 forming a first carrier transport layer 201 on the surface of the lower battery 100;
  • Step 3 forming a first interface passivation layer 202 conformal to the textured structure 1011 on the surface of the first carrier transport layer 201 facing away from the lower battery 100 by vapor deposition;
  • Step 4 forming a perovskite absorption layer 203 on the surface of the first interface passivation layer 202 away from the first carrier transport layer 201;
  • Step 5 forming a second interface passivation layer 208 conformal to the textured structure 1011 on the surface of the perovskite absorbing layer 203 away from the first interface passivation layer 202;
  • Step 6 forming a second carrier transport layer 204 on the surface of the second interface passivation layer 208 facing away from the perovskite absorption layer 203 .
  • Step 1 the silicon wafer is sequentially subjected to polishing, texturing, cleaning and tunneling junction procedures to form the lower cell 100 with the textured structure 1011 .
  • a commercial-grade M2 n-type silicon wafer is used, and a silicon wafer substrate containing a textured structure 1011 is formed through alkaline solution polishing, texturing, and cleaning, and then a tunneling layer 102 is formed on the silicon wafer substrate by PECVD. .
  • the lower battery can be a silicon battery, copper indium gallium selenide battery, etc.
  • the silicon battery can be a heterojunction battery, PERC (Passivated Emitter and Rear Cell, passivated emitter and back) battery, TOPCON (Tunnel Oxide Passivated Contact, tunnel oxidation layer passivation contact) battery, etc.
  • step 2 the first carrier transport layer 201 conformal to the textured structure 1011 is formed on the tunneling layer 102 of the lower cell 100 by vacuum evaporation.
  • Step 3 a first interface passivation layer 202 conformal to the textured structure 1011 is formed on the surface of the first carrier transport layer 201 facing away from the lower battery 100 by vacuum evaporation.
  • Step 4 a perovskite absorbing layer 203 is prepared on the surface of the first interface passivation layer 202 away from the first carrier transport layer 201 by a double-source co-evaporation method.
  • preparing the perovskite absorbing layer specifically includes the following steps:
  • a metal halide layer is evaporated on the surface of the first interface passivation layer away from the first carrier transport layer;
  • PbI 2 cesium bromide and lead iodide
  • Step 5 a second interface passivation layer 208 conformal to the textured structure 1011 is formed on the surface of the perovskite absorbing layer 203 away from the first interface passivation layer 202 .
  • step six the second carrier transport layer 204 is formed on the surface of the second interface passivation layer 208 facing away from the perovskite absorption layer 203 by vacuum coating equipment.
  • the preparation method also includes the following steps:
  • Step 7 Deposit and form a buffer layer 205 on the surface of the second carrier transport layer 204 away from the second interface passivation layer 208 by using atomic layer deposition equipment.
  • Step 8 Deposit a transparent conductive layer 206 on the surface of the buffer layer 205 facing away from the second carrier transport layer 204 .
  • Step 9 Evaporate and form silver grid line electrodes on the surface of the transparent conductive layer 206 facing away from the buffer layer 205 and on the surface of the light absorbing layer 101 facing away from the tunneling layer 102 by mask method .
  • Step 10 On the front side (perovskite side), an anti-reflection film is prepared by electron beam evaporation to reduce the light reflection on the surface of the battery, thereby obtaining the third stacked perovskite battery.
  • the preparation method of the third laminated perovskite battery comprises the following steps:
  • Step 1 providing a lower battery 100 with a suede structure 1011;
  • the silicon wafer is sequentially subjected to polishing, texturing, cleaning and tunneling junction procedures to form the lower cell 100 with the textured structure 1011 .
  • a commercial-grade M2 n-type silicon wafer is used, and a silicon wafer substrate containing a textured structure 1011 is formed through alkaline solution polishing, texturing, and cleaning, and then a tunneling layer 102 is formed on the silicon wafer substrate by PECVD. .
  • the lower battery can be a silicon battery, copper indium gallium selenide battery, etc.
  • the silicon battery can be a heterojunction battery, PERC (Passivated Emitter and Rear Cell, passivated emitter and back) battery, TOPCON (Tunnel Oxide Passivated Contact, tunnel oxidation layer passivation contact) battery, etc.
  • Step 2 forming a first carrier transport layer 201 on the surface of the lower battery 100;
  • the first carrier transport layer 201 conformal to the textured structure 1011 is formed on the tunneling layer 102 of the lower cell 100 by vacuum evaporation.
  • Step 3 forming a first interface passivation layer 202 conformal to the textured structure 1011 on the surface of the first carrier transport layer 201 facing away from the lower battery 100 by vapor deposition;
  • the first interface passivation layer 202 conforming to the textured structure 1011 is formed on the surface of the first carrier transport layer 201 facing away from the lower battery 100 by vacuum evaporation.
  • Step 4 forming a perovskite absorption layer 203 on the surface of the first interface passivation layer 202 away from the first carrier transport layer 201;
  • the perovskite absorbing layer 203 is prepared on the surface of the first interface passivation layer 202 facing away from the first carrier transport layer 201 by a double-source co-evaporation method.
  • preparing the perovskite absorbing layer specifically includes the following steps:
  • a metal halide layer is evaporated on the surface of the first interface passivation layer away from the first carrier transport layer;
  • Step 5 forming a second interface passivation layer 208 conformal to the textured structure 1011 on the surface of the perovskite absorbing layer 203 away from the first interface passivation layer 202;
  • a second interface passivation layer 208 conformal to the textured structure 1011 is formed on the surface of the perovskite absorbing layer 203 away from the first interface passivation layer 202 .
  • Step 6 forming a second carrier transport layer 204 on the surface of the second interface passivation layer 208 facing away from the perovskite absorption layer 203 .
  • the second carrier transport layer 204 is formed on the surface of the second interface passivation layer 208 facing away from the perovskite absorbing layer 203 by vacuum coating equipment.
  • Step 7 Deposit and form a buffer layer 205 on the surface of the second carrier transport layer 204 away from the second interface passivation layer 208 by using atomic layer deposition equipment.
  • Step 8 Deposit a transparent conductive layer 206 on the surface of the buffer layer 205 facing away from the second carrier transport layer 204 .
  • Step 9 Evaporate and form silver grid line electrodes on the surface of the transparent conductive layer 206 facing away from the buffer layer 205 and on the surface of the light absorbing layer 101 facing away from the tunneling layer 102 by mask method .
  • Step 10 On the front side (perovskite side), an anti-reflection film is prepared by electron beam evaporation to reduce the light reflection on the surface of the battery, thereby obtaining the third stacked perovskite battery.
  • the first interface passivation layer 202 and the second interface passivation layer 208 are formed by vapor deposition.
  • the interface passivation layer deposited by vapor phase is easy to implement and highly reproducible, which can improve the yield rate of stacked cells and solve the problem of large-area preparation.
  • the solar cell is a single-layer perovskite cell.
  • the single-layer perovskite cell is as follows:
  • the present application provides a single-layer perovskite battery, including conductive glass, a first carrier transport layer 201, a perovskite absorption layer 203, and a second carrier transport layer 204;
  • interface passivation layer between the perovskite absorption layer 203 and the first carrier transport layer 201 and/or the second carrier transport layer 204;
  • At least one surface of the conductive glass has a textured structure, and the surface in contact with the first carrier transport layer 201 has a textured structure 1011 , and the interface passivation layer conforms to the textured structure 1011 .
  • the single-layer perovskite cell has three structures.
  • the first type of single-layer perovskite battery includes conductive glass, a first carrier transport layer 201, a first interface passivation layer 202, a perovskite absorption layer 203, a second carrier transport layer 204, The buffer layer 205 , the transparent conductive layer 206 and the antireflection layer 207 .
  • the first carrier transport layer 201, the first interface passivation layer 202, the perovskite absorption layer 203, the second carrier transport layer 204, the buffer layer 205, the transparent conductive layer 206 and the anti-reflection layer 207 are all compatible with The suede structure 1011 is conformal.
  • the first type of single-layer perovskite battery includes a first metal electrode and a second metal electrode, the first metal electrode passes through the antireflection layer 207 and communicates with the transparent conductive layer 206, and the second metal electrode connected to the conductive glass.
  • the layer 204, the buffer layer 205, the transparent conductive layer 206, and the anti-reflection layer 207 are the same, and reference can be made to the aforementioned stacked perovskite cell.
  • the second type of single-layer perovskite battery includes conductive glass, a first carrier transport layer 201, a perovskite absorption layer 203, a second interface passivation layer 208, a second carrier transport layer 204, The buffer layer 205 , the transparent conductive layer 206 and the antireflection layer 207 .
  • the first carrier transport layer 201, the perovskite absorption layer 203, the second interface passivation layer 208, the second carrier transport layer 204, the buffer layer 205, the transparent conductive layer 206 and the antireflection layer 207 are all compatible with The suede structure 1011 is conformal.
  • the second type of single-layer perovskite battery includes a first metal electrode and a second metal electrode, the first metal electrode passes through the antireflection layer 207 and communicates with the transparent conductive layer 206, and the second metal electrode connected to the conductive glass.
  • the layer 204, the buffer layer 205, the transparent conductive layer 206, and the anti-reflection layer 207 are the same, and reference can be made to the aforementioned stacked perovskite cell.
  • the third type of single-layer perovskite cell includes conductive glass, the first carrier transport Layer 201 , first interface passivation layer 202 , perovskite absorbing layer 203 , second interface passivation layer 208 , second carrier transport layer 204 , buffer layer 205 , transparent conductive layer 206 and antireflection layer 207 .
  • the first carrier transport layer 201, the first interface passivation layer 202, the perovskite absorption layer 203, the second interface passivation layer 208, the second carrier transport layer 204, the buffer layer 205, the transparent conductive layer 206 and the anti-reflection layer 207 are conformal to the textured structure 1011 .
  • the third type of single-layer perovskite cell includes a first metal electrode and a second metal electrode, the first metal electrode passes through the antireflection layer 207 and communicates with the transparent conductive layer 206, and the second metal electrode connected to the conductive glass.
  • the first carrier transport layer 201, the first interface passivation layer 202, the perovskite absorption layer 203, the second interface passivation layer 208, the second carrier Carrier transport layer 204, buffer layer 205, transparent conductive layer 206, anti-reflection layer 207 and the first carrier transport layer 201, first interface passivation layer 202, perovskite absorption layer in the aforementioned laminated perovskite cell 203 , the second interface passivation layer 208 , the second carrier transport layer 204 , the buffer layer 205 , the transparent conductive layer 206 and the anti-reflection layer 207 are the same, and reference can be made to the aforementioned stacked perovskite cell.
  • This embodiment is the first stacked perovskite battery, and its preparation method includes the following steps:
  • Step 1 providing a lower battery 100 with a suede structure 1011;
  • a commercial-grade M2 n-type silicon wafer with a resistivity of 180 ⁇ m and a resistivity of 5 ⁇ .cm is polished with an alkaline solution, textured, and cleaned to form a silicon wafer substrate with a textured structure 1011.
  • PECVD is used on the light-incident side of the battery (Plasma Enhanced Chemical Vapor Deposition, plasma enhanced chemical vapor deposition method) process to prepare the tunneling layer 102, the tunneling layer 102 can use PECVD to deposit uc-Si-p+ layer and uc-Si-n+ layer respectively to form a tunneling junction , and its thickness is 30nm.
  • Step 2 forming a first carrier transport layer 201 on the surface of the lower battery 100;
  • a first carrier transport layer 201 (hole transport layer) conformal to the textured structure 1011 is formed by using Sprio-TTB, and its thickness is 10 nm.
  • Step 3 forming a first interface passivation layer 202 conformal to the textured structure 1011 on the surface of the first carrier transport layer 201 facing away from the lower battery 100;
  • Step 4 forming a perovskite absorption layer 203 on the surface of the first interface passivation layer 202 away from the first carrier transport layer 201;
  • the perovskite absorbing layer 203 is prepared on the surface of the first interface passivation layer 202 facing away from the first carrier transport layer 201 by a double-source co-evaporation method.
  • the evaporation rate of lead iodide (PbI 2 ) is A mixed layer of lead iodide and cesium bromide deposited on the surface of the first interface passivation layer 202 away from the first carrier transport layer 201 has a thickness of 400 nm; FAI and FABr are mixed to form 90 ⁇ L mixed solution, and in described mixed solution, the mol ratio of FAI and FABr is 3:1, and the molar concentration of potassium formate additive is 0.1%, and described mixed solution is dripped on described mixed layer, The perovskite precursor layer was obtained by spin coating immediately, and annealed at 150° C. for 30 minutes to form a perovskite absorbing layer 203 conformal to the textured structure 1011 with a thickness of 600 nm.
  • Step five forming a second carrier transport layer 204 on the surface of the perovskite absorption layer 203 facing away from the first interface passivation layer 202 .
  • a C60 layer (second carrier transport layer 204) was formed to a thickness of 10 nm.
  • Step 6 Depositing a SnO 2 layer (buffer layer 205 ) with a thickness of 10 nm on the surface of the second carrier transport layer 204 facing away from the perovskite absorption layer 203 using atomic layer deposition equipment.
  • Step 7 Deposit a 110 nm ITO thin film (transparent conductive layer 206 ) on the surface of the buffer layer 205 facing away from the second carrier transport layer 204 by magnetron sputtering technology.
  • Step 8 Evaporate and form a silver grid on the surface of the transparent conductive layer 206 facing away from the buffer layer 205 and on the surface of the light absorbing layer 101 facing away from the tunneling layer 102 by mask method
  • the wire electrode has a thickness of 200 nm.
  • Step 9 Prepare a 120nm MgF 2 anti-reflection film on the front side (perovskite side) by electron beam evaporation, so as to obtain the first stacked perovskite cell, and its performance is shown in Table 1.
  • This embodiment is the second stacked perovskite battery, and its preparation method includes the following steps:
  • Step 1 providing a lower battery 100 with a suede structure 1011;
  • a commercial-grade M2 n-type silicon wafer with a resistivity of 180 ⁇ m and a resistivity of 5 ⁇ .cm is polished with an alkaline solution, textured, and cleaned to form a silicon wafer substrate with a textured structure 1011.
  • PECVD is used on the light-incident side of the battery (Plasma Enhanced Chemical Vapor Deposition, plasma enhanced chemical vapor deposition method) process to prepare the tunneling layer 102, the tunneling layer 102 can use PECVD to deposit uc-Si-p+ layer and uc-Si-n+ layer respectively to form a tunneling junction , and its thickness is 30nm.
  • Step 2 forming a first carrier transport layer 201 on the surface of the lower battery 100;
  • a first carrier transport layer 201 (hole transport layer) conformal to the textured structure 1011 is formed by using Sprio-TTB, with a thickness of 10 nm.
  • Step 3 forming a perovskite absorption layer 203 on the surface of the first carrier transport layer 201 away from the tunneling layer 102;
  • the evaporation rate of lead iodide (PbI 2 ) is A mixed layer of lead iodide and cesium bromide is deposited on the surface of the first carrier transport layer 201 away from the tunneling layer 102, with a thickness of 400nm; Mix to form a 90 ⁇ L mixed solution.
  • the molar ratio of FAI and FABr is 3:1, and the molar concentration of the potassium formate additive is 0.1%.
  • Step 4 forming a second interface passivation layer 208 conformal to the textured structure 1011 on the surface of the perovskite absorbing layer 203 away from the first carrier transport layer 201;
  • a potassium iodide second interface passivation layer 208 conformal to the textured structure 1011 on the surface of the perovskite absorption layer 203 facing away from the first carrier transport layer 201 , with a thickness of 1 nm.
  • Step 5 forming a second carrier transport layer 204 on the surface of the second interface passivation layer 208 facing away from the perovskite absorption layer 203 .
  • a C60 layer (second carrier transport layer 204) was formed to a thickness of 10 nm.
  • Step 6 Deposit and form a SnO 2 layer (buffer layer 205 ) with a thickness of 10 nm on the surface of the second carrier transport layer 204 away from the second interface passivation layer 208 by using atomic layer deposition equipment.
  • Step 7 Deposit a 110 nm ITO thin film (transparent conductive layer 206 ) on the surface of the buffer layer 205 facing away from the second carrier transport layer 204 by magnetron sputtering technology.
  • Step 8 Evaporate and form silver grid line electrodes on the surface of the transparent conductive layer 206 facing away from the buffer layer 205 and on the surface of the light absorbing layer 101 facing away from the tunneling layer 102 by mask method , with a thickness of 200 nm.
  • Step 9 Prepare a 120nm MgF 2 anti-reflection film on the front side (perovskite side) by electron beam evaporation, so as to obtain the second stacked perovskite cell, and its performance is shown in Table 1.
  • This embodiment is the third stacked perovskite battery, and its preparation method includes the following steps:
  • Step 1 providing a lower battery 100 with a suede structure 1011;
  • a commercial-grade M2 n-type silicon wafer with a resistivity of 180 ⁇ m and a resistivity of 5 ⁇ .cm is polished with an alkaline solution, textured, and cleaned to form a silicon wafer substrate with a textured structure 1011.
  • PECVD is used on the light-incident side of the battery (Plasma Enhanced Chemical Vapor Deposition, plasma enhanced chemical vapor deposition method) process to prepare the tunneling layer 102, the tunneling layer 102 can use PECVD to deposit uc-Si-p+ layer and uc-Si-n+ layer respectively to form a tunneling junction , and its thickness is 30nm.
  • Step 2 forming a first carrier transport layer 201 on the surface of the lower battery 100;
  • a first carrier transport layer 201 (hole transport layer) conformal to the textured structure 1011 is formed by using Sprio-TTB, with a thickness of 10 nm.
  • Step 3 forming a first interface passivation layer 202 conformal to the textured structure 1011 on the surface of the first carrier transport layer 201 facing away from the lower battery 100;
  • a potassium iodide first interface passivation layer 202 conformal to the textured structure 1011 is formed on the surface of the side away from the lower battery 100 , with a thickness of 1 nm.
  • Step 4 forming a perovskite absorption layer 203 on the surface of the first interface passivation layer 202 away from the first carrier transport layer 201;
  • the perovskite absorbing layer 203 is prepared on the surface of the first interface passivation layer 202 facing away from the first carrier transport layer 201 by a double-source co-evaporation method.
  • the evaporation rate of lead iodide (PbI 2 ) is A mixed layer of lead iodide and cesium bromide deposited on the surface of the first interface passivation layer 202 away from the first carrier transport layer 201 has a thickness of 400 nm; FAI and FABr are mixed to form 90 ⁇ L mixed solution, and in described mixed solution, the mol ratio of FAI and FABr is 3:1, and the molar concentration of potassium formate additive is 0.1%, and described mixed solution is dripped on described mixed layer, The perovskite precursor layer was obtained by spin coating immediately, and annealed at 150° C. for 30 minutes to form a perovskite absorbing layer 203 conformal to the textured structure 1011 with a thickness of 600 nm.
  • Step 5 forming a second interface passivation layer 208 conformal to the textured structure 1011 on the surface of the perovskite absorption layer 203 facing away from the first carrier transport layer 201;
  • a potassium iodide second interface passivation layer 208 conformal to the textured structure 1011 on the surface of the perovskite absorption layer 203 facing away from the first carrier transport layer 201 , with a thickness of 1 nm.
  • Step 6 forming a second carrier transport layer 204 on the surface of the second interface passivation layer 208 facing away from the perovskite absorption layer 203 .
  • a C60 layer (second carrier transport layer 204) was formed to a thickness of 10 nm.
  • Step 7 Deposit and form a SnO 2 layer (buffer layer 205 ) with a thickness of 10 nm on the surface of the second carrier transport layer 204 away from the second interface passivation layer 208 by using atomic layer deposition equipment.
  • Step 8 Deposit a 110 nm ITO film (transparent conductive layer 206 ) on the surface of the buffer layer 205 facing away from the second carrier transport layer 204 by magnetron sputtering technology.
  • Step 9 Evaporate and form silver grid line electrodes on the surface of the transparent conductive layer 206 facing away from the buffer layer 205 and on the surface of the light absorbing layer 101 facing away from the tunneling layer 102 by mask method , with a thickness of 200 nm.
  • Step 10 Prepare a 120nm MgF 2 anti-reflection film on the front side (perovskite side) by electron beam evaporation, so as to obtain the third stacked perovskite cell, and its performance is shown in Table 1.
  • Example 4 The difference between Example 4 and Example 1 is that the first interface passivation layer 202 in Example 4 is a potassium bromide layer, and its battery performance is shown in Table 1.
  • Example 5 The difference between Example 5 and Example 1 is that the first interface passivation layer 202 in Example 5 is a potassium chloride layer, and its battery performance is shown in Table 1.
  • Example 6 The difference between Example 6 and Example 1 is that the first interface passivation layer 202 in Example 6 is a potassium fluoride layer, and its battery performance is shown in Table 1.
  • step 4 form a perovskite absorption layer 203 on the surface of the first carrier transport layer 201 away from the tunneling layer 102;
  • the evaporation rate of lead iodide (PbI 2 ) is A mixed layer of lead iodide and cesium bromide is deposited on the surface of the first carrier transport layer 201 away from the tunneling layer 102, with a thickness of 400 nm; at the same time, FAI and FABr are mixed to form a 90 ⁇ L mixed layer Solution, in the mixed solution, the molar ratio of FAI and FABr is 3:1, the mixed solution is dropped on the mixed layer, immediately spin-coated to obtain the perovskite precursor layer, and annealed at 150 ° C After 30 minutes, a perovskite absorbing layer 203 conformal to the textured structure 1011 is formed with a thickness of 600 nm.
  • This embodiment is the first single-layer perovskite battery, and its preparation method includes the following steps:
  • Step 1 providing conductive glass with textured structure 1011;
  • Step 2 forming a first carrier transport layer 201 on the surface of the conductive glass
  • a first carrier transport layer 201 (hole transport layer) conformal to the textured structure 1011 is formed by using Sprio-TTB, with a thickness of 10 nm.
  • Step 3 forming a first interface passivation layer 202 conformal to the textured structure 1011 on the surface of the first carrier transport layer 201 facing away from the lower battery 100;
  • Step 4 forming a perovskite absorption layer 203 on the surface of the first interface passivation layer 202 away from the first carrier transport layer 201;
  • the perovskite absorbing layer 203 is prepared on the surface of the first interface passivation layer 202 facing away from the first carrier transport layer 201 by a double-source co-evaporation method.
  • the evaporation rate of lead iodide (PbI 2 ) is A mixed layer of lead iodide and cesium bromide deposited on the surface of the first interface passivation layer 202 away from the first carrier transport layer 201 has a thickness of 400 nm; FAI and FABr are mixed to form 90 ⁇ L mixed solution, and in described mixed solution, the mol ratio of FAI and FABr is 3:1, and the molar concentration of potassium formate additive is 0.1%, and described mixed solution is dripped on described mixed layer, The perovskite precursor layer was obtained by spin coating immediately, and annealed at 150° C. for 30 minutes to form a perovskite absorbing layer 203 conformal to the textured structure 1011 with a thickness of 350 nm.
  • Step five forming a second carrier transport layer 204 on the surface of the perovskite absorption layer 203 facing away from the first interface passivation layer 202 .
  • a C60 layer (second carrier transport layer 204) was formed to a thickness of 10 nm.
  • Step 6 Depositing a SnO 2 layer (buffer layer 205 ) with a thickness of 10 nm on the surface of the second carrier transport layer 204 facing away from the perovskite absorption layer 203 using atomic layer deposition equipment.
  • Step 7 Deposit a 110 nm ITO thin film (transparent conductive layer 206 ) on the surface of the buffer layer 205 facing away from the second carrier transport layer 204 by magnetron sputtering technology.
  • Step 8 On the surface of the transparent conductive layer 206 facing away from the buffer layer 205 and on the surface of the conductive glass facing away from the first carrier transport layer 201, use a mask method to evaporate and form A silver grid wire electrode is formed with a thickness of 200nm.
  • Step 9 Prepare a 70nm MgF 2 anti-reflection film on the front side (perovskite side) by electron beam evaporation, so as to obtain the first single-layer perovskite cell, and its performance is shown in Table 1.
  • Example 9 The difference between Example 9 and Example 1 is that the potassium content in the perovskite absorbing layer 203 in Example 9 is 5%, and the potassium content is tested by ICP-OES, and the battery performance is shown in Table 2.
  • Example 10 The difference between Example 10 and Example 2 is that the battery in the first step in Example 10 is a heterojunction battery, the content of potassium in the perovskite absorbing layer 203 is 5%, and the potassium content of the perovskite absorbing layer 203 is tested by ICP-OES content, and its battery performance is shown in Table 2.
  • Example 11 The difference between Example 11 and Example 3 is that the battery in the first step in Example 11 is a heterojunction battery, the content of potassium in the perovskite absorbing layer 203 is 5%, and the potassium content is tested by ICP-OES. content, and its battery performance is shown in Table 2.
  • Example 12 The difference between Example 12 and Example 9 is that the first interface passivation layer 202 in Example 12 is a potassium bromide layer, and its battery performance is shown in Table 2.
  • Example 13 The difference between Example 13 and Example 9 is that the first interface passivation layer 202 in Example 13 is a potassium chloride layer, and its battery performance is shown in Table 2.
  • Example 14 The difference between Example 14 and Example 9 is that the first interface passivation layer 202 in Example 14 is a potassium fluoride layer, and its battery performance is shown in Table 2.
  • This embodiment is the first single-layer perovskite battery, and its preparation method includes the following steps:
  • Step 1 providing conductive glass with textured structure 1011;
  • Step 2 forming a first carrier transport layer 201 on the surface of the conductive glass
  • a first carrier transport layer 201 (hole transport layer) conformal to the textured structure 1011 is formed by using Sprio-TTB, with a thickness of 10 nm.
  • Step 3 forming a first interface passivation layer 202 conformal to the textured structure 1011 on the surface of the first carrier transport layer 201 facing away from the lower battery 100;
  • a KI first interface passivation layer 202 conformal to the textured structure 1011 on the surface of the first carrier transport layer 201 facing away from the lower cell 100 , with a thickness of 1 nm.
  • Step 4 forming a perovskite absorption layer 203 on the surface of the first interface passivation layer 202 away from the first carrier transport layer 201;
  • the perovskite absorbing layer 203 is prepared on the surface of the first interface passivation layer 202 facing away from the first carrier transport layer 201 by a double-source co-evaporation method.
  • the evaporation rate of lead iodide (PbI 2 ) is A mixed layer of lead iodide and cesium bromide deposited on the surface of the first interface passivation layer 202 away from the first carrier transport layer 201 has a thickness of 400 nm; FAI and FABr are mixed to form 90 ⁇ L mixed solution, and in described mixed solution, the mol ratio of FAI and FABr is 3:1, and the molar concentration of potassium formate additive is 0.1%, and described mixed solution is dripped on described mixed layer, Immediately spin-coat the perovskite precursor layer, and anneal at 150°C for 30 minutes to form a perovskite absorbing layer 203 conformal to the textured structure 1011, with a thickness of 650nm. The potassium content in the perovskite absorbing layer 203 The
  • Step five forming a second carrier transport layer 204 on the surface of the perovskite absorption layer 203 facing away from the first interface passivation layer 202 .
  • a C60 layer (second carrier transport layer 204) was formed to a thickness of 10 nm.
  • Step 6 Depositing a SnO 2 layer (buffer layer 205 ) with a thickness of 10 nm on the surface of the second carrier transport layer 204 facing away from the perovskite absorption layer 203 using atomic layer deposition equipment.
  • Step 7 Deposit a 110 nm ITO thin film (transparent conductive layer 206 ) on the surface of the buffer layer 205 facing away from the second carrier transport layer 204 by magnetron sputtering technology.
  • Step 8 Evaporate a silver grid on the surface of the transparent conductive layer 206 facing away from the buffer layer 205 and on the surface of the conductive glass facing away from the first carrier transport layer 201 by mask method
  • the wire electrode has a thickness of 200 nm.
  • Step 9 Prepare a 120nm MgF 2 anti-reflection film on the front side (perovskite side) by electron beam evaporation, so as to obtain the first single-layer perovskite cell, and its performance is shown in Table 2.
  • the solar cell in this embodiment differs from the cell in Example 9 in that the first carrier transport layer, the first interface passivation layer, the perovskite absorption layer, the second carrier transport layer, the buffer layer, and the transparent conductive layer 206 are all planar, not non-conformal with the suede structure.
  • step 3 The difference between the preparation method of the solar cell in this embodiment and the preparation method of Example 9 is only in step 3, specifically as follows:
  • a first interface passivation layer is formed on the first carrier transport layer 201 by using a spin coating method with a thickness of 100 nm by using KI. Its battery performance is shown in Table 2.
  • the difference between the solar cell in this embodiment and Example 1 is that the solar cell in Comparative Example 1 has no first interface passivation layer, and the first carrier transport layer, perovskite The absorbing layer, the second carrier transporting layer, the buffer layer and the transparent conductive layer 206 are all plane and not out of conformity with the textured structure. Its battery performance is shown in Table 1.
  • the solar cell in this embodiment differs from the cell in Example 1 in that the first carrier transport layer, the first interface passivation layer, the perovskite absorption layer, the second carrier transport layer, the buffer layer, and the transparent conductive layer 206 are all planar, not non-conformal with the suede structure.
  • the difference between the preparation method of the solar cell in this embodiment and the preparation method of Example 1 lies in the third step, specifically as follows:
  • the first carrier transport layer 201 is coated by spin coating
  • potassium iodide is used to form a first interface passivation layer with a thickness of 100 nm. Its battery performance is shown in Table 1.
  • the difference between the solar cell in this embodiment and Example 9 is that the solar cell in Comparative Example 3 has no first interface passivation layer, and the first carrier transport layer, perovskite The absorbing layer, the second carrier transport layer, the buffer layer and the transparent conductive layer 206 are all plane and not conformal to the suede structure.
  • the battery performance is shown in Table 2.
  • the difference between the solar cell in Comparative Example 4 and Example 9 is that the perovskite absorber layer in Comparative Example 4 does not contain alkali metal compounds and does not contain the first interface passivation layer. Its solar cell performance is shown in Table 2.
  • the difference between the solar cell in Comparative Example 5 and Example 9 is that the perovskite absorber layer in Comparative Example 5 does not contain an alkali metal compound. Its solar cell performance is shown in Table 2.
  • Table 1 is embodiment 1 to embodiment 8, and the performance parameter of comparative example 1, comparative example 2
  • the conformal structure with the suede surface is higher than the non-conformal structure in terms of photocurrent, photovoltage and fill factor, and the photocurrent Jsc is increased by more than Above 1mA, the fill factor FF is increased by more than 3%, which can significantly improve battery performance.
  • the conformal potassium salt passivation layer on the textured surface has a significant gain in the performance of the conformal textured laminated device. Among them, the case with the best performance is the structure in which the upper and lower interfaces and the perovskite component are conformal to the textured pyramid at the same time.
  • Table 2 is embodiment 9 to embodiment 16, and the performance parameter of comparative example 3 to comparative example 5
  • the performance of the laminated battery with potassium salt additives in the perovskite is better than that without additives, and the potassium at the upper and lower interfaces of the laminated battery
  • the salt passivation layer can significantly improve the short-circuit current Jsc, open-circuit voltage Voc and fill factor FF of the laminated battery, while effectively reducing the performance hysteresis of the positive and negative curves.
  • the case with the best performance in the above passivation structure is the case where the upper and lower interfaces and the perovskite absorber layer are simultaneously passivated with potassium salt, and the effect of the lower interface potassium salt passivation structure is better than that of the upper interface potassium salt passivation structure.
  • the potassium salt additive in the perovskite absorber layer is slightly better than the case of the interface passivation structure.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without any creative efforts.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请公开了一种太阳能电池,包括基底,所述基底的表面具有绒面结构,在所述基底上具有层叠设置的载流子传输层和钙钛矿吸收层;所述钙钛矿吸收层与所述载流子传输层之间具有界面钝化层,所述界面钝化层与所述绒面结构共形。本申请还提供太阳能电池的制备方法。本申请提供的太阳能电池,所述界面钝化层与基底的绒面共形,实现了界面钝化层和基底绒面均匀、致密沉积,抑制了离子迁移,显著降低了电池正反扫曲线迟滞;同时界面钝化层的共形结构延续了基底绒面良好的陷光结构设计,最大限度的降低了光反射损耗,光生电流显著提升。

Description

一种太阳能电池及其制备方法
本申请要求在2022年1月27日提交中国专利局、申请号为202210103158.6、名称为“一种太阳能电池及其制备方法”、以及在2022年1月27日提交中国专利局、申请号为202210101614.3、名称为“一种太阳能电池及其制备方法”的中国专利申请的优先权,两者全部内容通过引用结合在本申请中。
技术领域
本申请涉及太阳能电池技术领域,具体涉及一种太阳能电池及其制备方法。
背景技术
钙钛矿电池/硅基异质结两端叠层电池实现光谱分配吸收,可获得30%(>硅电池极限效率29.4%)以上的光电转换效率,被认为是未来低成本高效太阳电池的主流产品。要实现钙钛矿/硅叠层电池器件的长期稳定工作,其中钙钛矿电池的长期稳定性至关重要。钙钛矿电池中钙钛矿层的卤素离子(I,Br,Cl)和金属离子(Pb、Sn等)会因为钙钛矿膜层缺陷原因产生离子迁移现象,这些迁移的离子会穿过空穴传输层/钙钛矿层界面和钙钛矿层/电子传输层界面造成钙钛矿层组分失配和电极腐蚀,最终恶化钙钛矿电池的长期工作稳定性能。此外钙钛矿膜层缺陷还会造成器件严重的性能迟滞,严重影响钙钛矿器件的性能。
发明内容
针对上述问题,本申请提出了一种太阳能电池,所述界面钝化层与基底的绒面结构共形,既实现了抑制钙钛矿/传输层界面的离子迁移,减小太阳能电池性能迟滞目的,又延续了基底绒面结构陷光结构设计,降低了光反射损耗。
本申请提供一种太阳能电池,包括基底,所述基底的表面具有绒面结构,在所述基底上具有层叠设置的载流子传输层和钙钛矿吸收层;所述钙钛矿吸收层与所述载流子传输层之间具有界面钝化层,所述界面钝化层与所述绒面结构共形。
进一步地,所述钙钛矿吸收层内包含有碱金属化合物。本申请提供的太 阳能电池,所述钙钛矿吸收层中的碱金属化合物可以消除钙钛矿吸收层内部的缺陷,界面钝化层与钙钛矿吸收层直接接触可解决钙钛矿吸收层中离子迁移和性能迟滞问题。因此本申请所述的太阳能电池实现了钙钛矿界面-钙钛矿体相缺陷双重钝化的目的,抑制离子迁移,最终消除叠层器件性能迟滞和提高长期稳定性的目的。
进一步地,所述载流子传输层包括第一载流子传输层和第二载流子传输层,所述第一载流子传输层以及第二载流子传输层分别位于所述钙钛矿吸收层的两侧;
所述钙钛矿吸收层与所述第一载流子传输层之间具有界面钝化层和/或所述钙钛矿吸收层与所述第二载流子传输层之间具有界面钝化层;
所述第一载流子传输层背离所述钙钛矿吸收层的一侧表面与所述基底层叠在一起。
进一步地,所述基底为导电玻璃或硅电池。
进一步地,所述绒面结构随机或规整的分布在所述基底的至少一个表面上;
构成所述绒面结构基础形状选自柱状、锥状、台状、弧形槽或弧形凸起中的一种或两种以上。
进一步地,所述绒面结构的高度为h,h≥3μm。
进一步地,所述界面钝化层为碱金属卤化物钝化层或碱金属类卤化物钝化层,其厚度为d1,0<d1≤5nm。
进一步地,所述碱金属卤化物钝化层选自碘化钾层、溴化钾层、氯化钾层或氟化钾层中的至少一种。
进一步地,所述碱金属类卤化物钝化层选自硫氰钾层、氰化钾层、氧氰钾层或硒氰钾层中的至少一种。
进一步地,所述钙钛矿吸收层中包含有钾盐,且所述钙钛矿吸收层的厚度为d2,350nm≤d1≤700nm。
进一步地,所述钾盐选自类卤素钾、咔唑钾或醋酸钾中的至少一种。
进一步地,所述第一载流子传输层、钙钛矿吸收层以及第二载流子传输层均与所述绒面结构共形。
进一步地,在所述钙钛矿吸收层中碱金属化合物的含量为1‰-10%。
进一步地,在所述钙钛矿吸收层中,所述碱金属化合物为含钾化合物、含钠化合物、含锂化合物、含铷化合物、含铯化合物中的至少一种。
进一步地,所述碱金属化合物选自卤素碱金属、类卤素碱金属、咔唑碱金属或醋酸碱金属中的至少一种。
本申请还一种太阳能电池的制备方法,包括如下步骤:
提供具有绒面结构的基底;
在所述基底具有绒面的表面上形成第一载流子传输层;
在所述第一载流子传输层背离所述基底的一侧表面采用气相沉积法形成与绒面结构共形的第一界面钝化层;
在所述第一界面钝化层背离所述第一载流子传输层的一侧表面形成钙钛矿吸收层;
在所述钙钛矿吸收层背离所述第一界面钝化层的一侧表面形成第二载流子传输层。
本申请还提供一种太阳能电池的制备方法,包括如下步骤:
提供具有绒面结构的基底;
在所述基底具有绒面的表面上形成第一载流子传输层;
在所述第一载流子传输层背离所述基底的一侧表面形成钙钛矿吸收层;
在所述钙钛矿吸收层背离所述第一载流子传输层的一侧表面采用气相沉积法形成与绒面结构共形的第二界面钝化层;
在所述第二界面钝化层背离所述钙钛矿吸收层的一侧表面形成第二载流子传输层。
本申请还提供一种太阳能电池的制备方法,包括如下步骤:
提供具有绒面结构的基底;
在所述基底具有绒面的表面上形成第一载流子传输层;
在所述第一载流子传输层背离所述基底的一侧表面采用气相沉积法形成与绒面结构共形的第一界面钝化层;
在所述第一界面钝化层背离所述第一载流子传输层的一侧表面形成钙钛矿吸收层;
在所述钙钛矿吸收层背离所述第一界面钝化层的一侧表面采用气相沉积法形成与绒面结构共形的第二界面钝化层;
在所述第二界面钝化层背离所述钙钛矿吸收层的一侧表面修成第二载流子传输层。
进一步地,所述钙钛矿吸收层内包含有碱金属化合物。
进一步地,在所述钙钛矿吸收层背离所述第一界面钝化层的一侧表面形成第二界面钝化层。
进一步地,形成所述钙钛矿吸收层,具体包括如下步骤:
所述第一界面钝化层背离所述第一载流子传输层的一侧表面蒸镀沉积金属卤化物层;
将有机铵盐卤化物或有机铵盐卤化物与钾盐添加剂形成的混合溶液,与所述金属卤化物层反应,从而形成所述钙钛矿吸收层。
进一步地,形成所述钙钛矿吸收层,具体包括如下步骤:
所述第一界面钝化层背离所述第一载流子传输层的一侧表面蒸镀沉积金属卤化物层;
将有机铵盐卤化物与碱金属化合物混合形成的混合溶液;
所述混合溶液与所述金属卤化物层反应,从而形成所述钙钛矿吸收层。
进一步地,制备的太阳能电池为前述的太阳能电池。
本申请提供的太阳能电池,所述界面钝化层与基底的绒面共形,实现了界面钝化层和基底绒面均匀、致密沉积,抑制了离子迁移,显著降低了叠层电池正反扫曲线迟滞;同时界面钝化层的共形结构延续了基底绒面良好的陷光结构设计,最大限度的降低了光反射损耗,光生电流显著提升。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的现有技术中的太阳能电池的结构示意图。
图2为本申请提供的太阳能电池的结构示意图。
图3为本申请提供的太阳能电池的结构示意图。
图4为本申请提供的太阳能电池的结构示意图。
图5为本申请提供的实施例1与对比例1的IV曲线图。
图6为本申请提供的实施例11与对比例5的IV曲线图。
附图标记说明
100-下电池,200-上电池,101-光吸收层,1011-绒面结构,102隧穿层,103-金属电极,201-第一载流子传输层,202-第一界面钝化层,203-钙钛矿吸收层,204-第二载流子传输层,205-缓冲层,206-透明导电层,207-减反射层,208-第二界面钝化层。
具体实施例
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下对本申请的示范性实施例做出说明,其中包括本申请实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本申请的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。在本申请中上下位置依据光线入射方向而定,光线入射处为上。
通常在钙钛矿溶液中加入钾盐添加剂或者钙钛矿膜层上制备一层钝化层用以抑制离子迁移同时钝化钙钛矿膜层,然而在钙钛矿/硅绒面(绒面高度≥3μm)太阳能电池中以上解决迟滞和离子迁移的方法存在3个问题:(1)采用完全覆盖绒面的方法(即不共形)难以实现绒面塔尖和谷底覆盖层均匀厚度,造成金字塔尖和谷底载流子传输性能不一致,虽可以抑制离子迁移但难以消除迟滞;(2)相对于界面钝化层和晶硅电池/导电玻璃绒面共形的结构,不共形结构缺少内部陷光设计,光学损失大于共形结构。(3)常规的旋涂/刮涂/喷涂/印刷等成膜方法难以制备与绒面共型的钝化膜层,通常会出现沉积在绒面谷底而暴露绒面塔尖,这样使钙钛矿层和空穴传输层之间缺少钝化层而失去钝化效果。
本申请提供一种太阳能电池,包括基底,所述基底的表面具有绒面结构,在所述基底上具有层叠设置的载流子传输层和钙钛矿吸收层;所述钙钛矿吸收层与所述载流子传输层之间具有界面钝化层,所述界面钝化层与所述绒面结构共形。
所述载流子传输层包括第一载流子传输层和第二载流子传输层,所述第一载流子传输层以及第二载流子传输层分别位于所述钙钛矿吸收层的两侧;
所述钙钛矿吸收层与所述第一载流子传输层之间具有界面钝化层和/或所述钙钛矿吸收层与所述第二载流子传输层之间具有界面钝化层;
所述第一载流子传输层背离所述钙钛矿吸收层的一侧表面与所述基底层在一起。
所述基底为导电玻璃或晶硅电池。因此所述太阳能电池可以为单层钙钛矿电池或叠层钙钛矿电池。
进一步地,当所述基底为晶硅电池时,所述太阳能电池为叠层钙钛矿电池。
所述叠层钙钛矿电池如下:
本申请提供一种叠层钙钛矿电池,包括上电池200和下电池100,所述上电池200从下到上顺序包括第一载流子传输层201、钙钛矿吸收层203以及第二载流子传输层204;
所述钙钛矿吸收层203与所述第一载流子传输层201和/或所述第二载流子传输层204之间具有界面钝化层;
所述下电池100与所述上电池200接触的表面具有绒面结构1011,所述界面钝化层与所述绒面结构1011共形。
所述上电池200为钙钛矿电池,所述下电池100为晶硅电池。
在本申请中共形指的是形状相同,即在本申请中界面钝化层也具有绒面结构。
进一步地,所述钙钛矿吸收层中包括碱金属化合物。
本申请所述的叠层钙钛矿电池具有三种结构。
第一种叠层钙钛矿电池,如图2所示,包括上电池200和下电池100,所述上电池200从下到上包括依次层叠设置的第一载流子传输层201、第一界面钝化层202、钙钛矿吸收层203、第二载流子传输层204、缓冲层205、透明导电层206以及减反射层207;所述下电池100从下到上包括依次层叠设置的光吸收层101和隧穿层102,所述隧穿层102与所述第一载流子传输层201层叠在一起。所述光吸收层101的上下两个表面均具有绒面结构1011,所述隧穿层102、第一载流子传输层201、第一界面钝化层202、钙钛矿吸收层203、第二载流子传输层204、缓冲层205、透明导电层206以及减反射层207均与所述绒面结构1011共形。所述上电池200包括金属电极103,所述金属电极103贯穿所述减反射层207与所述透明导电层206连接,所述下电池100包括金属电极103,所述金属电极103与所述光吸收层101连接。
所述第一载流子传输层201可以为空穴传输层也可以为电子传输层,所述第一载流子传输层201和第二载流子传输层204的导电类型相反。当所述第一载流子传输层201为空穴传输层时,其可以为氧化钼层、[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)层、碘化铜层或Spiro-OMeTAD(2,2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene中文名为2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴)层、PEDOT层、PEDOT:PSS层、P3HT层、P3OHT层、P3ODDT层、NiOx层或CuSCN层。所述第二载流子传输层204为电子传输层,其可以为氧化钛层、氧化锡层、C60层或C60-PCBM层、[60]PCBM([6,6]-phenyl-C61butyric acid methyl ester,中文名称为[6,6]-苯基-C61-丁酸异甲酯)层、[70]PCBM([6,6]-Phenyl-C71-butyric acid methyl ester,中文名称为[6,6]-苯基-C71-丁酸异甲酯)层、bis[60]PCBM(Bis(1-[3-(methoxycarbonyl)propyl]-1-phenyl)-[6,6]C62)层、[60]ICBA(1',1”,4',4”-Tetrahydro-di[1,4]methanonaphthaleno[1,2:2',3',56,60:2”,3”][5,6]fulle rene-C60)层等,包括但不仅限于此,只要能实现在本申请中的功能即可。
当所述第一载流子传输层201为电子传输层时,其可以为氧化钛层、氧化锡层、C60层或C60-PCBM层、[60]PCBM([6,6]-phenyl-C61butyric acid methyl ester,中文名称为[6,6]-苯基-C61-丁酸异甲酯)层、[70]PCBM([6,6]-Phenyl-C71-butyric acid methyl ester,中文名称为[6,6]-苯基-C71-丁酸异甲酯)层、bis[60]PCBM(Bis(1-[3-(methoxycarbonyl)propyl]-1-phenyl)-[6,6]C62)层、[60]ICBA(1',1”,4',4”-Tetrahydro-di[1,4]methanonaphthaleno[1,2:2',3',56,60:2”,3”][5,6]fullerene-C60)层等。所述第二载流子传输层204为空穴传输层,其可以为氧化钼层、[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)层、碘化铜层或Spiro-OMeTAD(2,2',7,7'-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene中文名为2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴)层、PEDOT层、PEDOT:PSS层、P3HT层、P3OHT层、P3ODDT层、NiOx层或CuSCN层。包括但不仅限于此,只要能实现在本申请中的功能即可。所述第一载流子传输层201的厚度为10-15nm,例如可以为10nm、11nm、12nm、13nm、14nm 或15nm。
所述钙钛矿吸收层203可以为有机-无机杂化卤化物钙钛矿层、全无机卤化物钙钛矿层、无铅钙钛矿层等,包括但不仅限于此。其厚度为d2,350nm≤d2≤700nm,例如d2可以为350nm、360nm、370nm、380nm、390nm、400nm、410nm、420nm、430nm、440nm、450nm、460nm、470nm、480nm、490nm、500nm、600nm、650nm或700nm。或者,350nm≤d2≤500nm。
在所述钙钛矿吸收层中碱金属化合物的含量1‰-10%,例如可以为1‰、5‰、1%、2%、3%、4%、5%、6%、7%、8%、9%或10%。
在所述钙钛矿吸收层203中,所述碱金属化合物为含钾化合物、含钠化合物、含锂化合物、含铷化合物、含铯化合物中的一种。
具体地,所述钙钛矿吸收层203中包含有含钾化合物,所述含钾化合物选自卤素钾、类卤素钾、咔唑钾或醋酸钾中的一种。
具体地,所述钙钛矿吸收层203中包含有含钠化合物,所述含钠化合物选自卤素钠、类卤素钠、咔唑钠或醋酸钠中的至少一种。
具体地,所述钙钛矿吸收层203中包含有含锂化合物,所述含锂化合物选自卤素锂、类卤素锂、咔唑锂或醋酸锂中的至少一种。
具体地,所述钙钛矿吸收层203中包含有含铷化合物,所述含铷化合物选自卤素铷、类卤素铷、咔唑铷或醋酸铷中的至少一种。
具体地,所述钙钛矿吸收层203中包含有含铯化合物,所述含铯化合物选自卤素铯、类卤素铯、咔唑铯或醋酸铯中的至少一种。
所述钙钛矿吸收层203中包含有钾盐,所述钾盐选自类卤素钾、咔唑钾或醋酸钾中的至少一种。在所述钙钛矿吸收层中钾盐的含量为1‰-10%,例如可以为1‰、5‰、1%、2%、3%、4%、5%、6%、7%、8%、9%或10%。
所述缓冲层205用于载流子的纵向运输,同时保护钙钛矿吸收层不受后续PVD工艺溅射损坏,其可以为SnO2层或TiO2层,其厚度为5-30nm,例如可以为5nm、6nm、7nm、8nm、9nm、10nm、11nm、12nm、13nm、14nm、15nm、16nm、17nm、18nm、19nm、20nm、21nm、22nm、23nm、24nm、25nm、26nm、27nm、28nm、29nm或30nm。
所述透明导电层206可以为透明导电膜,具体可为掺氟氧化锡(FTO)、氧化铟锡(ITO)或掺铝氧化锌(AZO)等;所述透明导电层206的厚度为1-20nm,例如可以为1nm、2nm、3nm、4nm、5nm、6nm、7nm、8nm、9nm、 10nm、11nm、12nm、13nm、14nm、15nm、16nm、17nm、18nm、19nm或20nm。
所述减反射层207可以为MgF2,LiF,SiO2等,厚度为50-300nm,例如可以为50nm、100nm、150nm、200nm、250nm或300nm。
所述金属电极103可以由Ag、Au、Cu、Al、Ni等金属材料,C材料、高分子导电材料中的一种或几种制成。
所述光吸收层101可以为硅片,进一步可以为商业级M2n型硅片,电阻率为1-10Ω.cm,厚度为150-200μm,例如可以为150μm、160μm、170μm、180μm、190μm或200μm。
所述隧穿层102可以用PECVD分别沉积uc-Si-p+层和uc-Si-n+层形成遂穿结,其厚度15-50nm,例如可以为15nm、20nm、25nm、30nm、35nm、40nm、45nm或50nm。
在本申请中,所述绒面结构随机或规整的分布在所述基底的至少一个表面上;
构成所述绒面结构基础形状选自柱状、锥状、台状、弧形槽或弧形凸起中的一种或两种以上。例如可以为正向或反向的三棱柱状、四棱柱状、六棱柱状、圆柱状、圆锥状、三棱锥状、四棱锥状、圆台状、三棱台状、四棱台状以及半圆弧形凹槽或半圆弧形凸起等结构。
所述绒面结构可以由多个柱状、锥状、台状、弧形槽或弧形凸起中的一种或两种以上构成。
在本申请中,所述绒面结构1011的高度为h,h≥3μm。
在本申请中,所述第一界面钝化层202为碱金属卤化物钝化层或碱金属类卤化物钝化层,其厚度为d1,0<d1≤5nm。例如d1可以为0.5nm、0.6nm、0.7nm、0.8nm、0.9nm、1.0nm、1.5nm、2.0nm、2.5nm、3.0nm、3.5nm、4.0nm、4.5nm、5.0nm。
具体地,所述碱金属卤化物钝化层选自碘化钾层、溴化钾层、氯化钾层或氟化钾层中的至少一种。
具体地,所述碱金属类卤化物钝化层选自硫氰钾层、氰化钾层、氧氰钾层或硒氰钾层中的一种。
在本申请中,所述钙钛矿吸收层203中的碱金属化合物中的碱金属的种 类与界面钝化层中碱金属的种类可以一致也可以不一致。
所述第一种叠层钙钛矿电池的制备方法,包括如下步骤:
步骤一:提供具有绒面结构1011的下电池100;
步骤二:在所述下电池100表面形成第一载流子传输层201;
步骤三:采用气相沉积法在所述第一载流子传输层201背离所述下电池100的一侧表面形成与绒面结构1011共形的第一界面钝化层202;
步骤四:在所述第一界面钝化层202背离所述第一载流子传输层201的一侧表面形成钙钛矿吸收层203;
步骤五:在所述钙钛矿吸收层203背离所述第一界面钝化层202的一侧表面形成第二载流子传输层204。
在步骤一中,将硅片依次经历抛光、制绒、镀膜、清洗和隧穿结程序,形成具有绒面结构1011的下电池100。
或者,所述第一种叠层钙钛矿电池的制备方法,包括如下步骤:
步骤一:提供下电池100;
步骤二:在所述下电池100表面形成第一载流子传输层201;
步骤三:采用气相沉积法在所述第一载流子传输层201背离所述下电池100的一侧表面形成第一界面钝化层202;
步骤四:在所述第一界面钝化层202背离所述第一载流子传输层201的一侧表面形成钙钛矿吸收层203,所述钙钛矿吸收层203中含有碱金属化合物;
步骤五:在所述钙钛矿吸收层203背离所述第一界面钝化层202的一侧表面形成第二载流子传输层204。
在步骤一中,将硅片依次经历抛光、制绒、清洗和隧穿结程序,形成具有绒面结构1011的下电池100。
具体地,采用商业级M2的n型硅片,经过碱溶液抛光、制绒、清洗形成含绒面结构1011的硅片衬底随后采用PECVD在所述硅片衬底上形成隧穿层102。
所述下电池可以是硅电池、铜铟镓硒电池等,硅电池可以为异质结电池、PERC(Passivated Emitter and Rear Cell,钝化发射极和背面)电池、TOPCON(Tunnel Oxide Passivated Contact,隧穿氧化层钝化接触)电池等。
在步骤二中,通过真空蒸镀在所述下电池100的隧穿层102上形成与绒面结构1011共形的第一载流子传输层201。
在步骤三中,通过真空蒸镀在所述第一载流子传输层201背离所述下电池100的一侧表面形成与绒面结构1011共形的第一界面钝化层202。
在步骤四中,采用双源共蒸法在所述第一界面钝化层202背离所述第一载流子传输层201的一侧表面制备钙钛矿吸收层203。
可选的,具体地,首先分别调节溴化铯和碘化铅(PbI2)的蒸发速率,在所述第一界面钝化层202背离所述第一载流子传输层201的一侧表面沉积形成碘化铅与溴化铯的混合层;同时将甲酸钾添加剂、FAI和FABr混合形成混合溶液,在所述混合溶液中,FAI和FABr的摩尔比为3:1,甲酸钾添加剂的摩尔浓度为0.1%,将所述混合溶液滴在所述混合层上,立即旋涂获得钙钛矿前驱层,然后退火形成与绒面结构1011共形的钙钛矿吸收层203。
具体地,制备所述钙钛矿吸收层,具体包括如下步骤:
所述第一界面钝化层背离所述第一载流子传输层的一侧表面蒸镀沉积金属卤化物层;
将有机铵盐卤化物或有机铵盐卤化物与钾盐添加剂形成的混合溶液,与所述金属卤化物层反应,从而形成所述钙钛矿吸收层。
进一步具体地,首先分别调节溴化铯和碘化铅(PbI2)的蒸发速率,在所述第一界面钝化层202背离所述第一载流子传输层201的一侧表面沉积形成碘化铅与溴化铯的混合层;同时将甲酸钾添加剂、FAI和FABr混合形成混合溶液,在所述混合溶液中,FAI和FABr的摩尔比为3:1,甲酸钾添加剂的摩尔浓度为0.1%,将所述混合溶液滴在所述混合层上,立即旋涂获得钙钛矿前驱层,然后退火形成与绒面结构1011共形的钙钛矿吸收层203。
在步骤五中,在所述钙钛矿吸收层203背离所述第一界面钝化层202的一侧表面通过真空镀膜设备蒸镀形成第二载流子传输层204。
在本申请中,所述制备方法还包括如下步骤:
步骤六:在所述第二载流子传输层204背离所述钙钛矿吸收层203的一侧表面采用原子层沉积设备沉积形成缓冲层205。
步骤七:在所述缓冲层205背离所述第二载流子传输层204的一侧表面沉积有透明导电层206。
步骤八:在所述透明导电层206背离所述缓冲层205的一侧表面以及在所述光吸收层101背离所述隧穿层102的一侧表面采用掩膜法蒸镀形成银栅 线电极。
步骤九:在正面(钙钛矿侧)利用电子束蒸发制备减反射薄膜,降低电池表面光反射,从而获得第一种叠层钙钛矿电池。
所述第一种叠层钙钛矿电池的制备方法,包括如下步骤:
步骤一:提供具有绒面结构1011的下电池100;
具体地,将硅片依次经历抛光、制绒、清洗和隧穿结程序,形成具有绒面结构1011的下电池100。
具体地,采用商业级M2的n型硅片,经过碱溶液抛光、制绒、清洗形成含绒面结构1011的硅片衬底,随后采用PECVD在所述硅片衬底上形成隧穿层102。
所述下电池可以为硅电池、铜铟镓硒电池等,硅电池可以为异质结电池、PERC(Passivated Emitter and Rear Cell,钝化发射极和背面)电池、TOPCON(Tunnel Oxide Passivated Contact,隧穿氧化层钝化接触)电池等。
步骤二:在所述下电池100表面形成第一载流子传输层201;
具体地,通过真空蒸镀在所述下电池100的隧穿层102上形成与绒面结构1011共形的第一载流子传输层201。
步骤三:采用气相沉积法在所述第一载流子传输层201背离所述下电池100的一侧表面形成与绒面结构1011共形的第一界面钝化层202;
具体地,通过真空蒸镀在所述第一载流子传输层201背离所述下电池100的一侧表面形成与绒面结构1011共形的第一界面钝化层202。
步骤四:在所述第一界面钝化层202背离所述第一载流子传输层201的一侧表面形成钙钛矿吸收层203;
具体地,采用双源共蒸法在所述第一界面钝化层202背离所述第一载流子传输层201的一侧表面制备钙钛矿吸收层203。
具体地,制备所述钙钛矿吸收层,具体包括如下步骤:
所述第一界面钝化层背离所述第一载流子传输层的一侧表面蒸镀沉积金属卤化物层;
将有机铵盐卤化物或有机铵盐卤化物与钾盐添加剂形成的混合溶液,与所述金属卤化物层反应,从而形成所述钙钛矿吸收层。
进一步地具体地,首先分别调节溴化铯和碘化铅(PbI2)的蒸发速率,在所述第一界面钝化层202背离所述第一载流子传输层201的一侧表面沉积形成碘化铅与溴化铯的混合层;同时将甲酸钾添加剂、FAI和FABr混合形成混合溶液,在所述混合溶液中,FAI和FABr的摩尔比为3:1,甲酸钾添加剂的摩尔浓度为0.1%,将所述混合溶液滴在所述混合层上,立即旋涂获得钙钛矿前驱层,然后退火形成与绒面结构1011共形的钙钛矿吸收层203。
步骤五:在所述钙钛矿吸收层203背离所述第一界面钝化层202的一侧表面形成第二载流子传输层204。
具体地,在所述钙钛矿吸收层203背离所述第一界面钝化层202的一侧表面通过真空镀膜设备蒸镀形成第二载流子传输层204。
步骤六:在所述第二载流子传输层204背离所述钙钛矿吸收层203的一侧表面采用原子层沉积设备沉积形成缓冲层205。
步骤七:在所述缓冲层205背离所述第二载流子传输层204的一侧表面沉积有透明导电层206。
步骤八:在所述透明导电层206背离所述缓冲层205的一侧表面以及在所述光吸收层101背离所述隧穿层102的一侧表面采用掩膜法蒸镀形成银栅线电极。
步骤九:在正面(钙钛矿侧)利用电子束蒸发制备减反射薄膜,降低电池表面光反射,从而获得第一种叠层钙钛矿电池。
第二种叠层钙钛矿电池,如图3所示,包括上电池200和下电池100,所述上电池200从下到上包括依次层叠设置的第一载流子传输层201、钙钛矿吸收层203、第二界面钝化层208、第二载流子传输层204、缓冲层205、透明导电层206以及减反射层207;所述下电池100从下到上包括依次层叠设置的光吸收层101和隧穿层102,所述隧穿层102与所述第一载流子传输层201层叠在一起。所述光吸收层101的上下两个表面均具有绒面结构1011,所述隧穿层102、第一载流子传输层201、钙钛矿吸收层203、第二界面钝化层208、第二载流子传输层204、缓冲层205、透明导电层206以及减反射层207均与所述绒面结构1011共形。所述上电池200包括金属电极103,所述金属电极103贯穿所述减反射层207与所述透明导电层206连接,所述下电池100包括 金属电极103,所述金属电极103与所述光吸收层101连接。
第二种叠层钙钛矿电池中的第一载流子传输层201、钙钛矿吸收层203、第二载流子传输层204、缓冲层205、透明导电层206、减反射层207、光吸收层101以及隧穿层102与第一种叠层钙钛矿电池中的第一载流子传输层201、钙钛矿吸收层203、第二载流子传输层204、缓冲层205、透明导电层206、减反射层207、光吸收层101以及隧穿层102相同,均可以参考第一种叠层钙钛矿电池。
所述第二界面钝化层208的材料与第一种叠层钙钛矿电池中的第一界面钝化层202相同,因此可以参考第一种叠层钙钛矿电池。
第二种叠层钙钛矿电池的制备方法,包括如下步骤:
步骤一:提供具有绒面结构1011的下电池100;
步骤二:在所述下电池100表面形成第一载流子传输层201;
步骤三:在所述第一载流子传输层201背离所述下电池100的一侧表面形成钙钛矿吸收层203;
可选的,所述钙钛矿吸收层203中含有碱金属化合物;
步骤四:采用气相沉积法在所述钙钛矿吸收层203背离所述第一载流子传输层201的一侧表面形成与绒面结构1011共形的第二界面钝化层208;
步骤五:在所述第二界面钝化层208背离所述钙钛矿吸收层203的一侧表面形成第二载流子传输层204。
在步骤一中,将硅片依次经历抛光、制绒、清洗和隧穿结程序,形成具有绒面结构1011的下电池100。
具体地,采用商业级M2的n型硅片,经过碱溶液抛光、制绒、清洗形成含绒面结构1011的硅片衬底,随后采用PECVD在所述硅片衬底上形成隧穿层102。
下电池可以是硅电池、铜铟镓硒电池等,硅电池可以为异质结电池、PERC(Passivated Emitter and Rear Cell,钝化发射极和背面)电池、TOPCON(Tunnel Oxide Passivated Contact,隧穿氧化层钝化接触)电池等。
在步骤二中,通过真空蒸镀在所述下电池100的隧穿层102上形成与绒面结构1011共形的第一载流子传输层201。
在步骤三中,采用双源共蒸法在所述第一载流子传输层201背离所述隧穿层102的一侧表面制备钙钛矿吸收层203。
具体地,制备所述钙钛矿吸收层,具体包括如下步骤:
所述第一界面钝化层背离所述第一载流子传输层的一侧表面蒸镀沉积金属卤化物层;
将有机铵盐卤化物或有机铵盐卤化物与钾盐添加剂形成的混合溶液,与所述金属卤化物层反应,从而形成所述钙钛矿吸收层。
进一步具体地,首先分别调节溴化铯和碘化铅(PbI2)的蒸发速率,在所述第一载流子传输层201背离所述隧穿层102的一侧表面沉积形成碘化铅与溴化铯的混合层;同时将甲酸钾添加剂、FAI和FABr混合形成混合溶液,在所述混合溶液中,FAI和FABr的摩尔比为3:1,甲酸钾添加剂的摩尔浓度为0.1%,将所述混合溶液滴在所述混合层上,立即旋涂获得钙钛矿前驱层,然后退火形成与绒面结构1011共形的钙钛矿吸收层203。
在步骤四中,通过真空蒸镀在所述钙钛矿吸收层203背离所述第一载流子传输层201的一侧表面形成与绒面结构1011共形的第二界面钝化层208。
在步骤五中,在所述第二界面钝化层208背离所述钙钛矿吸收层203的一侧表面通过真空镀膜设备蒸镀形成第二载流子传输层204。
在本申请中,所述制备方法还包括如下步骤:
步骤六:在所述第二载流子传输层204背离所述第二界面钝化层208的一侧表面采用原子层沉积设备沉积形成缓冲层205。
步骤七:在所述缓冲层205背离所述第二载流子传输层204的一侧表面沉积有透明导电层206。
步骤八:在所述透明导电层206背离所述缓冲层205的一侧表面以及在所述光吸收层101背离所述隧穿层102的一侧表面采用掩膜法蒸镀形成银栅线电极。
步骤九:在正面(钙钛矿侧)利用电子束蒸发制备减反射薄膜,降低电池表面光反射,从而获得第二种叠层钙钛矿电池。
第二种叠层钙钛矿电池的制备方法,包括如下步骤:
步骤一:提供具有绒面结构1011的下电池100;
具体地,将硅片依次经历抛光、制绒、清洗和隧穿结程序,形成具有绒面结构1011的下电池100。
具体地,采用商业级M2的n型硅片,经过碱溶液抛光、制绒、清洗形成含绒面结构1011的硅片衬底,随后采用PECVD在所述硅片衬底上形成隧穿层102。
下电池可以是硅电池、铜铟镓硒电池等,硅电池可以为异质结电池、PERC(Passivated Emitter and Rear Cell,钝化发射极和背面)电池、TOPCON(Tunnel Oxide Passivated Contact,隧穿氧化层钝化接触)电池等。
步骤二:在所述下电池100表面形成第一载流子传输层201;
具体地,通过真空蒸镀在所述下电池100的隧穿层102上形成与绒面结构1011共形的第一载流子传输层201。
步骤三:在所述第一载流子传输层201背离所述下电池100的一侧表面形成钙钛矿吸收层203;
具体地,采用双源共蒸法在所述第一载流子传输层201背离所述隧穿层102的一侧表面制备钙钛矿吸收层203。
具体地,制备所述钙钛矿吸收层,具体包括如下步骤:
所述第一界面钝化层背离所述第一载流子传输层的一侧表面蒸镀沉积金属卤化物层;
将有机铵盐卤化物或有机铵盐卤化物与钾盐添加剂形成的混合溶液,与所述金属卤化物层反应,从而形成所述钙钛矿吸收层。
进一步具体地,首先分别调节溴化铯和碘化铅(PbI2)的蒸发速率,在所述第一载流子传输层201背离所述隧穿层102的一侧表面沉积形成碘化铅与溴化铯的混合层;同时将甲酸钾添加剂、FAI和FABr混合形成混合溶液,在所述混合溶液中,FAI和FABr的摩尔比为3:1,甲酸钾添加剂的摩尔浓度为0.1%,将所述混合溶液滴在所述混合层上,立即旋涂获得钙钛矿前驱层,然后退火形成与绒面结构1011共形的钙钛矿吸收层203。
步骤四:采用气相沉积法在所述钙钛矿吸收层203背离所述第一载流子传输层201的一侧表面形成与绒面结构1011共形的第二界面钝化层208;
具体地,通过真空蒸镀在所述钙钛矿吸收层203背离所述第一载流子传输层201的一侧表面形成与绒面结构1011共形的第二界面钝化层208。
步骤五:在所述第二界面钝化层208背离所述钙钛矿吸收层203的一侧表面形成第二载流子传输层204。
具体地,在所述第二界面钝化层208背离所述钙钛矿吸收层203的一侧表面通过真空镀膜设备蒸镀形成第二载流子传输层204。
步骤六:在所述第二载流子传输层204背离所述第二界面钝化层208的一侧表面采用原子层沉积设备沉积形成缓冲层205。
步骤七:在所述缓冲层205背离所述第二载流子传输层204的一侧表面沉积有透明导电层206。
步骤八:在所述透明导电层206背离所述缓冲层205的一侧表面以及在所述光吸收层101背离所述隧穿层102的一侧表面采用掩膜法蒸镀形成银栅线电极。
步骤九:在正面(钙钛矿侧)利用电子束蒸发制备减反射薄膜,降低电池表面光反射,从而获得第二种叠层钙钛矿电池。
第三种叠层钙钛矿电池,如图4所示,包括上电池200和下电池100,所述上电池200从下到上包括依次层叠设置的第一载流子传输层201、第一界面钝化层202、钙钛矿吸收层203、第二界面钝化层208、第二载流子传输层204、缓冲层205、透明导电层206以及减反射层207;所述下电池100从下到上包括依次层叠设置的光吸收层101和隧穿层102,所述隧穿层102与所述第一载流子传输层201层叠在一起。所述光吸收层101的上下两个表面均具有绒面结构1011,所述隧穿层102、第一载流子传输层201、第一界面钝化层202、钙钛矿吸收层203、第二界面钝化层208、第二载流子传输层204、缓冲层205、透明导电层206以及减反射层207均与所述绒面结构1011共形。所述上电池200包括金属电极103,所述金属电极103贯穿所述减反射层207与所述透明导电层206连接,所述下电池100包括金属电极103,所述金属电极103与所述光吸收层101连接。
第三种叠层钙钛矿电池中的第一载流子传输层201、第一界面钝化层202、钙钛矿吸收层203、第二载流子传输层204、缓冲层205、透明导电层206、减反射层207、光吸收层101以及隧穿层102与第一种叠层钙钛矿电池中的第一载流子传输层201、第一界面钝化层202、钙钛矿吸收层203、第二载流子 传输层204、缓冲层205、透明导电层206、减反射层207、光吸收层101以及隧穿层102相同,均可以参考第一种叠层钙钛矿电池。
所述第二界面钝化层208的材料与第一种叠层钙钛矿电池中的第一界面钝化层202相同,因此可以参考第一种叠层钙钛矿电池。
第三种叠层钙钛矿电池的制备方法,包括如下步骤:
步骤一:提供具有绒面结构1011的下电池100;
步骤二:在所述下电池100表面形成第一载流子传输层201;
步骤三:采用气相沉积法在所述第一载流子传输层201背离所述下电池100的一侧表面形成与绒面结构1011共形的第一界面钝化层202;
步骤四:在所述第一界面钝化层202背离所述第一载流子传输层201的一侧表面形成钙钛矿吸收层203;
步骤五:在所述钙钛矿吸收层203背离所述第一界面钝化层202的一侧表面形成与绒面结构1011共形的第二界面钝化层208;
步骤六:在所述第二界面钝化层208背离所述钙钛矿吸收层203的一侧表面修成第二载流子传输层204。
在步骤一中,将硅片依次经历抛光、制绒、清洗和隧穿结程序,形成具有绒面结构1011的下电池100。
具体地,采用商业级M2的n型硅片,经过碱溶液抛光、制绒、清洗形成含绒面结构1011的硅片衬底,随后采用PECVD在所述硅片衬底上形成隧穿层102。
下电池可以是硅电池、铜铟镓硒电池等,硅电池可以为异质结电池、PERC(Passivated Emitter and Rear Cell,钝化发射极和背面)电池、TOPCON(Tunnel Oxide Passivated Contact,隧穿氧化层钝化接触)电池等。
在步骤二中,通过真空蒸镀在所述下电池100的隧穿层102上形成与绒面结构1011共形的第一载流子传输层201。
在步骤三中,通过真空蒸镀在所述第一载流子传输层201背离所述下电池100的一侧表面形成与绒面结构1011共形的第一界面钝化层202。
在步骤四中,采用双源共蒸法在所述第一界面钝化层202背离所述第一载流子传输层201的一侧表面制备钙钛矿吸收层203。
具体地,制备所述钙钛矿吸收层,具体包括如下步骤:
所述第一界面钝化层背离所述第一载流子传输层的一侧表面蒸镀沉积金属卤化物层;
将有机铵盐卤化物或有机铵盐卤化物与钾盐添加剂形成的混合溶液,与所述金属卤化物层反应,从而形成所述钙钛矿吸收层。
进一步具体地,首先分别调节溴化铯和碘化铅(PbI2)的蒸发速率,在所述第一界面钝化层202背离所述第一载流子传输层201的一侧表面沉积形成碘化铅与溴化铯的混合层;同时将甲酸钾添加剂、FAI和FABr混合形成混合溶液,在所述混合溶液中,FAI和FABr的摩尔比为3:1,甲酸钾添加剂的摩尔浓度为0.1%,将所述混合溶液滴在所述混合层上,立即旋涂获得钙钛矿前驱层,然后退火形成与绒面结构1011共形的钙钛矿吸收层203。
在步骤五中,在所述钙钛矿吸收层203背离所述第一界面钝化层202的一侧表面形成与绒面结构1011共形的第二界面钝化层208。
在步骤六中,在所述第二界面钝化层208背离所述钙钛矿吸收层203的一侧表面通过真空镀膜设备蒸镀形成第二载流子传输层204。
在本申请中,所述制备方法还包括如下步骤:
步骤七:在所述第二载流子传输层204背离所述第二界面钝化层208的一侧表面采用原子层沉积设备沉积形成缓冲层205。
步骤八:在所述缓冲层205背离所述第二载流子传输层204的一侧表面沉积有透明导电层206。
步骤九:在所述透明导电层206背离所述缓冲层205的一侧表面以及在所述光吸收层101背离所述隧穿层102的一侧表面采用掩膜法蒸镀形成银栅线电极。
步骤十:在正面(钙钛矿侧)利用电子束蒸发制备减反射薄膜,降低电池表面光反射,从而获得第三种叠层钙钛矿电池。
第三种叠层钙钛矿电池的制备方法,包括如下步骤:
步骤一:提供具有绒面结构1011的下电池100;
具体地,将硅片依次经历抛光、制绒、清洗和隧穿结程序,形成具有绒面结构1011的下电池100。
具体地,采用商业级M2的n型硅片,经过碱溶液抛光、制绒、清洗形成含绒面结构1011的硅片衬底,随后采用PECVD在所述硅片衬底上形成隧穿层102。
下电池可以是硅电池、铜铟镓硒电池等,硅电池可以为异质结电池、PERC(Passivated Emitter and Rear Cell,钝化发射极和背面)电池、TOPCON(Tunnel Oxide Passivated Contact,隧穿氧化层钝化接触)电池等。
步骤二:在所述下电池100表面形成第一载流子传输层201;
具体地,通过真空蒸镀在所述下电池100的隧穿层102上形成与绒面结构1011共形的第一载流子传输层201。
步骤三:采用气相沉积法在所述第一载流子传输层201背离所述下电池100的一侧表面形成与绒面结构1011共形的第一界面钝化层202;
具体地,通过真空蒸镀在所述第一载流子传输层201背离所述下电池100的一侧表面形成与绒面结构1011共形的第一界面钝化层202。
步骤四:在所述第一界面钝化层202背离所述第一载流子传输层201的一侧表面形成钙钛矿吸收层203;
具体地,采用双源共蒸法在所述第一界面钝化层202背离所述第一载流子传输层201的一侧表面制备钙钛矿吸收层203。
具体地,制备所述钙钛矿吸收层,具体包括如下步骤:
所述第一界面钝化层背离所述第一载流子传输层的一侧表面蒸镀沉积金属卤化物层;
将有机铵盐卤化物或有机铵盐卤化物与钾盐添加剂形成的混合溶液,与所述金属卤化物层反应,从而形成所述钙钛矿吸收层。
进一步地,首先分别调节溴化铯和碘化铅(PbI2)的蒸发速率,在所述第一界面钝化层202背离所述第一载流子传输层201的一侧表面沉积形成碘化铅与溴化铯的混合层;同时将甲酸钾添加剂、FAI和FABr混合形成混合溶液,在所述混合溶液中,FAI和FABr的摩尔比为3:1,甲酸钾添加剂的摩尔浓度为0.1%,将所述混合溶液滴在所述混合层上,立即旋涂获得钙钛矿前驱层,然后退火形成与绒面结构1011共形的钙钛矿吸收层203。
步骤五:在所述钙钛矿吸收层203背离所述第一界面钝化层202的一侧表面形成与绒面结构1011共形的第二界面钝化层208;
具体地,在所述钙钛矿吸收层203背离所述第一界面钝化层202的一侧表面形成与绒面结构1011共形的第二界面钝化层208。
步骤六:在所述第二界面钝化层208背离所述钙钛矿吸收层203的一侧表面修成第二载流子传输层204。
具体地,在所述第二界面钝化层208背离所述钙钛矿吸收层203的一侧表面通过真空镀膜设备蒸镀形成第二载流子传输层204。
步骤七:在所述第二载流子传输层204背离所述第二界面钝化层208的一侧表面采用原子层沉积设备沉积形成缓冲层205。
步骤八:在所述缓冲层205背离所述第二载流子传输层204的一侧表面沉积有透明导电层206。
步骤九:在所述透明导电层206背离所述缓冲层205的一侧表面以及在所述光吸收层101背离所述隧穿层102的一侧表面采用掩膜法蒸镀形成银栅线电极。
步骤十:在正面(钙钛矿侧)利用电子束蒸发制备减反射薄膜,降低电池表面光反射,从而获得第三种叠层钙钛矿电池。
在前述的三种叠层钙钛矿电池的制备方法中,采用气相沉积法形成第一界面钝化层202以及第二界面钝化层208。气相沉积的界面钝化层具有易实现、高复现性,可提升叠层电池的良率及解决大面积制备的问题。
进一步地,当所述基底为导电玻璃时,所述太阳能电池为单层钙钛矿电池。
所述单层钙钛矿电池如下:
本申请提供一种单层钙钛矿电池,包括导电玻璃、第一载流子传输层201、钙钛矿吸收层203以及第二载流子传输层204;
所述钙钛矿吸收层203与所述第一载流子传输层201和/或所述第二载流子传输层204之间具有界面钝化层;
所述导电玻璃的至少一个表面具有绒面结构,且与所述第一载流子传输层201接触的表面具有绒面结构1011,所述界面钝化层与所述绒面结构1011共形。
所述单层钙钛矿电池具有三种结构。
第一种单层钙钛矿电池包括依次层叠设置的导电玻璃、第一载流子传输层201、第一界面钝化层202、钙钛矿吸收层203、第二载流子传输层204、缓冲层205、透明导电层206以及减反射层207。所述第一载流子传输层201、第一界面钝化层202、钙钛矿吸收层203、第二载流子传输层204、缓冲层205、透明导电层206以及减反射层207均与所述绒面结构1011共形。
所述第一种单层钙钛矿电池包括第一金属电极和第二金属电极,所述第一金属电极贯穿所述减反射层207与所述透明导电层206连通,所述第二金属电极与所述导电玻璃接通。
本申请中第一种单层钙钛矿电池中的第一载流子传输层201、第一界面钝化层202、钙钛矿吸收层203、第二载流子传输层204、缓冲层205、透明导电层206、减反射层207与前述叠层钙钛矿电池中的第一载流子传输层201、第一界面钝化层202、钙钛矿吸收层203、第二载流子传输层204、缓冲层205、透明导电层206以及减反射层207相同,均可以参考前述叠层钙钛矿电池。
第二种单层钙钛矿电池包括依次层叠设置的导电玻璃、第一载流子传输层201、钙钛矿吸收层203、第二界面钝化层208、第二载流子传输层204、缓冲层205、透明导电层206以及减反射层207。所述第一载流子传输层201、钙钛矿吸收层203、第二界面钝化层208、第二载流子传输层204、缓冲层205、透明导电层206以及减反射层207均与所述绒面结构1011共形。
所述第二种单层钙钛矿电池包括第一金属电极和第二金属电极,所述第一金属电极贯穿所述减反射层207与所述透明导电层206连通,所述第二金属电极与所述导电玻璃接通。
本申请中第二种单层钙钛矿电池中的第一载流子传输层201、钙钛矿吸收层203、第二界面钝化层208、第二载流子传输层204、缓冲层205、透明导电层206、减反射层207与前述叠层钙钛矿电池中的第一载流子传输层201、钙钛矿吸收层203、第二界面钝化层208、第二载流子传输层204、缓冲层205、透明导电层206以及减反射层207相同,均可以参考前述叠层钙钛矿电池。
第三种单层钙钛矿电池包括依次层叠设置的导电玻璃、第一载流子传输 层201、第一界面钝化层202、钙钛矿吸收层203、第二界面钝化层208、第二载流子传输层204、缓冲层205、透明导电层206以及减反射层207。所述第一载流子传输层201、第一界面钝化层202、钙钛矿吸收层203、第二界面钝化层208、第二载流子传输层204、缓冲层205、透明导电层206以及减反射层207均与所述绒面结构1011共形。
所述第三种单层钙钛矿电池包括第一金属电极和第二金属电极,所述第一金属电极贯穿所述减反射层207与所述透明导电层206连通,所述第二金属电极与所述导电玻璃接通。
本申请中第三种单层钙钛矿电池中的第一载流子传输层201、第一界面钝化层202、钙钛矿吸收层203、第二界面钝化层208、第二载流子传输层204、缓冲层205、透明导电层206、减反射层207与前述叠层钙钛矿电池中的第一载流子传输层201、第一界面钝化层202、钙钛矿吸收层203、第二界面钝化层208、第二载流子传输层204、缓冲层205、透明导电层206以及减反射层207相同,均可以参考前述叠层钙钛矿电池。
实施例
下述实施例中所使用的实验方法如无特殊要求,均为常规方法。
下述实施例中所使用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1
本实施例为第一种叠层钙钛矿电池,其制备方法包括如下步骤:
步骤一:提供具有绒面结构1011的下电池100;
具体地,将180μm,电阻率为5Ω.cm商业级M2的n型硅片经过碱溶液抛光、制绒、清洗形成含绒面结构1011的硅片衬底,在电池的入光面侧采用PECVD(Plasma Enhanced Chemical Vapor Deposition,等离子体增强化学气相沉积法)工艺制备隧穿层102,所述隧穿层102可以用PECVD分别沉积uc-Si-p+层和uc-Si-n+层形成遂穿结,其厚度30nm。
步骤二:在所述下电池100表面形成第一载流子传输层201;
具体地,通过真空蒸镀(蒸镀的速率为)在所述下电池100的隧 穿层102上,采用Sprio-TTB形成与绒面结构1011共形的第一载流子传输层201(空穴传输层),其厚度为10nm。
步骤三:在所述第一载流子传输层201背离所述下电池100的一侧表面形成与绒面结构1011共形的第一界面钝化层202;
具体地,通过真空蒸镀(速率为)在所述第一载流子传输层201背离所述下电池100的一侧表面形成与绒面结构1011共形的碘化钾第一界面钝化层202,其厚度为1nm。
步骤四:在所述第一界面钝化层202背离所述第一载流子传输层201的一侧表面形成钙钛矿吸收层203;
具体地,采用双源共蒸法在所述第一界面钝化层202背离所述第一载流子传输层201的一侧表面制备钙钛矿吸收层203。
进一步地,首先分别调节溴化铯和碘化铅(PbI2)的蒸发速率,所述溴化铯的蒸发速率碘化铅(PbI2)蒸发速率为在所述第一界面钝化层202背离所述第一载流子传输层201的一侧表面沉积形成的碘化铅与溴化铯的混合层,其厚度为400nm;同时将甲酸钾添加剂、FAI和FABr混合形成90μL混合溶液,在所述混合溶液中,FAI和FABr的摩尔比为3:1,甲酸钾添加剂的摩尔浓度为0.1%,将所述混合溶液滴在所述混合层上,立即旋涂获得钙钛矿前驱层,并在150℃条件下退火30min,形成与绒面结构1011共形的钙钛矿吸收层203,其厚度为600nm。
步骤五:在所述钙钛矿吸收层203背离所述第一界面钝化层202的一侧表面形成第二载流子传输层204。
具体地,在所述钙钛矿吸收层203背离所述第一界面钝化层202的一侧表面通过真空镀膜设备蒸镀,蒸发速率为形成C60层(第二载流子传输层204),其厚度为10nm。
步骤六:在所述第二载流子传输层204背离所述钙钛矿吸收层203的一侧表面采用原子层沉积设备沉积形成厚度为10nm的SnO2层(缓冲层205)。
步骤七:在所述缓冲层205背离所述第二载流子传输层204的一侧表面采用磁控溅射技术沉积110nm的ITO薄膜(透明导电层206)。
步骤八:在所述透明导电层206背离所述缓冲层205的一侧表面以及在所述光吸收层101背离所述隧穿层102的一侧表面采用掩膜法蒸镀形成银栅 线电极,其厚度为200nm。
步骤九:在正面(钙钛矿侧)利用电子束蒸发制备120nm的MgF2减反射薄膜,从而获得第一种叠层钙钛矿电池,其性能如表1所示。
实施例2
本实施例为第二种叠层钙钛矿电池,其制备方法包括如下步骤:
步骤一:提供具有绒面结构1011的下电池100;
具体地,将180μm,电阻率为5Ω.cm商业级M2的n型硅片经过碱溶液抛光、制绒、清洗形成含绒面结构1011的硅片衬底,在电池的入光面侧采用PECVD(Plasma Enhanced Chemical Vapor Deposition,等离子体增强化学气相沉积法)工艺制备隧穿层102,所述隧穿层102可以用PECVD分别沉积uc-Si-p+层和uc-Si-n+层形成遂穿结,其厚度30nm。
步骤二:在所述下电池100表面形成第一载流子传输层201;
具体地,通过真空蒸镀(蒸镀的速率为)在所述下电池100的隧穿层102上,采用Sprio-TTB形成与绒面结构1011共形的第一载流子传输层201(空穴传输层),其厚度为10nm。
步骤三:在所述第一载流子传输层201背离所述隧穿层102的一侧表面形成钙钛矿吸收层203;
首先分别调节溴化铯和碘化铅(PbI2)的蒸发速率,所述溴化铯的蒸发速率碘化铅(PbI2)蒸发速率为在所述第一载流子传输层201背离所述隧穿层102的一侧表面沉积形成的碘化铅与溴化铯的混合层,其厚度为400nm;同时将甲酸钾添加剂、FAI和FABr混合形成90μL混合溶液,在所述混合溶液中,FAI和FABr的摩尔比为3:1,甲酸钾添加剂的摩尔浓度为0.1%,将所述混合溶液滴在所述混合层上,立即旋涂获得钙钛矿前驱层,并在150℃条件下退火30min,形成与绒面结构1011共形的钙钛矿吸收层203,其厚度为600nm。
步骤四:在所述钙钛矿吸收层203背离所述第一载流子传输层201的一侧表面形成与绒面结构1011共形的第二界面钝化层208;
具体地,通过真空蒸镀(速率为)在所述钙钛矿吸收层203背离所述第一载流子传输层201的一侧表面形成与绒面结构1011共形的碘化钾第二界面钝化层208,其厚度为1nm。
步骤五:在所述第二界面钝化层208背离所述钙钛矿吸收层203的一侧表面形成第二载流子传输层204。
具体地,在所述第二界面钝化层208背离所述钙钛矿吸收层203的一侧表面通过真空镀膜设备蒸镀,蒸发速率为形成C60层(第二载流子传输层204),其厚度为10nm。
步骤六:在所述第二载流子传输层204背离所述第二界面钝化层208的一侧表面采用原子层沉积设备沉积形成厚度为10nm的SnO2层(缓冲层205)。
步骤七:在所述缓冲层205背离所述第二载流子传输层204的一侧表面采用磁控溅射技术沉积110nm的ITO薄膜(透明导电层206)。
步骤八:在所述透明导电层206背离所述缓冲层205的一侧表面以及在所述光吸收层101背离所述隧穿层102的一侧表面采用掩膜法蒸镀形成银栅线电极,其厚度为200nm。
步骤九:在正面(钙钛矿侧)利用电子束蒸发制备120nm的MgF2减反射薄膜,从而获得第二种叠层钙钛矿电池,其性能如表1所示。
实施例3
本实施例为第三种叠层钙钛矿电池,其制备方法包括如下步骤:
步骤一:提供具有绒面结构1011的下电池100;
具体地,将180μm,电阻率为5Ω.cm商业级M2的n型硅片经过碱溶液抛光、制绒、清洗形成含绒面结构1011的硅片衬底,在电池的入光面侧采用PECVD(Plasma Enhanced Chemical Vapor Deposition,等离子体增强化学气相沉积法)工艺制备隧穿层102,所述隧穿层102可以用PECVD分别沉积uc-Si-p+层和uc-Si-n+层形成遂穿结,其厚度30nm。
步骤二:在所述下电池100表面形成第一载流子传输层201;
具体地,通过真空蒸镀(蒸镀的速率为)在所述下电池100的隧穿层102上,采用Sprio-TTB形成与绒面结构1011共形的第一载流子传输层201(空穴传输层),其厚度为10nm。
步骤三:在所述第一载流子传输层201背离所述下电池100的一侧表面形成与绒面结构1011共形的第一界面钝化层202;
具体地,通过真空蒸镀(速率为)在所述第一载流子传输层201 背离所述下电池100的一侧表面形成与绒面结构1011共形的碘化钾第一界面钝化层202,其厚度为1nm。
步骤四:在所述第一界面钝化层202背离所述第一载流子传输层201的一侧表面形成钙钛矿吸收层203;
具体地,采用双源共蒸法在所述第一界面钝化层202背离所述第一载流子传输层201的一侧表面制备钙钛矿吸收层203。
进一步地,首先分别调节溴化铯和碘化铅(PbI2)的蒸发速率,所述溴化铯的蒸发速率碘化铅(PbI2)蒸发速率为在所述第一界面钝化层202背离所述第一载流子传输层201的一侧表面沉积形成的碘化铅与溴化铯的混合层,其厚度为400nm;同时将甲酸钾添加剂、FAI和FABr混合形成90μL混合溶液,在所述混合溶液中,FAI和FABr的摩尔比为3:1,甲酸钾添加剂的摩尔浓度为0.1%,将所述混合溶液滴在所述混合层上,立即旋涂获得钙钛矿前驱层,并在150℃条件下退火30min,形成与绒面结构1011共形的钙钛矿吸收层203,其厚度为600nm。
步骤五:在所述钙钛矿吸收层203背离所述第一载流子传输层201的一侧表面形成与绒面结构1011共形的第二界面钝化层208;
具体地,通过真空蒸镀(速率为)在所述钙钛矿吸收层203背离所述第一载流子传输层201的一侧表面形成与绒面结构1011共形的碘化钾第二界面钝化层208,其厚度为1nm。
步骤六:在所述第二界面钝化层208背离所述钙钛矿吸收层203的一侧表面形成第二载流子传输层204。
具体地,在所述第二界面钝化层208背离所述钙钛矿吸收层203的一侧表面通过真空镀膜设备蒸镀,蒸发速率为形成C60层(第二载流子传输层204),其厚度为10nm。
步骤七:在所述第二载流子传输层204背离所述第二界面钝化层208的一侧表面采用原子层沉积设备沉积形成厚度为10nm的SnO2层(缓冲层205)。
步骤八:在所述缓冲层205背离所述第二载流子传输层204的一侧表面采用磁控溅射技术沉积110nm的ITO薄膜(透明导电层206)。
步骤九:在所述透明导电层206背离所述缓冲层205的一侧表面以及在所述光吸收层101背离所述隧穿层102的一侧表面采用掩膜法蒸镀形成银栅线电极,其厚度为200nm。
步骤十:在正面(钙钛矿侧)利用电子束蒸发制备120nm的MgF2减反射薄膜,从而获得第三种叠层钙钛矿电池,其性能如表1所示。
实施例4
实施例4与实施例1的不同之处在于,实施例4中的第一界面钝化层202为溴化钾层,其电池性能如表1所示。
实施例5
实施例5与实施例1的不同之处在于,实施例5中的第一界面钝化层202为氯化钾层,其电池性能如表1所示。
实施例6
实施例6与实施例1的不同之处在于,实施例6中的第一界面钝化层202为氟化钾层,其电池性能如表1所示。
实施例7
实施例7与实施例1的不同之处在于,步骤四:在所述第一载流子传输层201背离所述隧穿层102的一侧表面形成钙钛矿吸收层203;
首先分别调节溴化铯和碘化铅(PbI2)的蒸发速率,所述溴化铯的蒸发速率碘化铅(PbI2)蒸发速率为在所述第一载流子传输层201背离所述隧穿层102的一侧表面沉积形成的碘化铅与溴化铯的混合层,其厚度为400nm;同时将FAI和FABr混合形成90μL混合溶液,在所述混合溶液中,FAI和FABr的摩尔比为3:1,将所述混合溶液滴在所述混合层上,立即旋涂获得钙钛矿前驱层,并在150℃条件下退火30min,形成与绒面结构1011共形的钙钛矿吸收层203,其厚度为600nm。
实施例8
本实施例为第一种单层钙钛矿电池,其制备方法包括如下步骤:
步骤一:提供具有绒面结构1011的导电玻璃;
步骤二:在所述导电玻璃表面形成第一载流子传输层201;
具体地,通过真空蒸镀(蒸镀的速率为)在所述下电池100的隧穿层102上,采用Sprio-TTB形成与绒面结构1011共形的第一载流子传输层201(空穴传输层),其厚度为10nm。
步骤三:在所述第一载流子传输层201背离所述下电池100的一侧表面形成与绒面结构1011共形的第一界面钝化层202;
具体地,通过真空蒸镀(速率为)在所述第一载流子传输层201背离所述下电池100的一侧表面形成与绒面结构1011共形的碘化钾第一界面钝化层202,其厚度为1nm。
步骤四:在所述第一界面钝化层202背离所述第一载流子传输层201的一侧表面形成钙钛矿吸收层203;
具体地,采用双源共蒸法在所述第一界面钝化层202背离所述第一载流子传输层201的一侧表面制备钙钛矿吸收层203。
进一步地,首先分别调节溴化铯和碘化铅(PbI2)的蒸发速率,所述溴化铯的蒸发速率碘化铅(PbI2)蒸发速率为在所述第一界面钝化层202背离所述第一载流子传输层201的一侧表面沉积形成的碘化铅与溴化铯的混合层,其厚度为400nm;同时将甲酸钾添加剂、FAI和FABr混合形成90μL混合溶液,在所述混合溶液中,FAI和FABr的摩尔比为3:1,甲酸钾添加剂的摩尔浓度为0.1%,将所述混合溶液滴在所述混合层上,立即旋涂获得钙钛矿前驱层,并在150℃条件下退火30min,形成与绒面结构1011共形的钙钛矿吸收层203,其厚度为350nm。
步骤五:在所述钙钛矿吸收层203背离所述第一界面钝化层202的一侧表面形成第二载流子传输层204。
具体地,在所述钙钛矿吸收层203背离所述第一界面钝化层202的一侧表面通过真空镀膜设备蒸镀,蒸发速率为形成C60层(第二载流子传输层204),其厚度为10nm。
步骤六:在所述第二载流子传输层204背离所述钙钛矿吸收层203的一侧表面采用原子层沉积设备沉积形成厚度为10nm的SnO2层(缓冲层205)。
步骤七:在所述缓冲层205背离所述第二载流子传输层204的一侧表面采用磁控溅射技术沉积110nm的ITO薄膜(透明导电层206)。
步骤八:在所述透明导电层206背离所述缓冲层205的一侧表面以及在所述导电玻璃背离所述第一载流子传输层201的一侧表面采用掩膜法蒸镀形 成银栅线电极,其厚度为200nm。
步骤九:在正面(钙钛矿侧)利用电子束蒸发制备70nm的MgF2减反射薄膜,从而获得第一种单层钙钛矿电池,其性能如表1所示。
实施例9
实施例9与实施例1的不同之处在于,实施例9中的钙钛矿吸收层203中钾的含量为5%,采用ICP-OES测试钾的含量,其电池性能如表2所示。
实施例10
实施例10与实施例2的不同之处在于,实施例10中的第一步中电池为异质结电池,钙钛矿吸收层203中钾的含量为5%,采用ICP-OES测试钾的含量,其电池性能如表2所示。
实施例11
实施例11与实施例3的不同之处在于,实施例11中的第一步中电池为异质结电池,钙钛矿吸收层203中钾的含量为5%,采用ICP-OES测试钾的含量,其电池性能如表2所示。
实施例12
实施例12与实施例9的不同之处在于,实施例12中的第一界面钝化层202为溴化钾层,其电池性能如表2所示。
实施例13
实施例13与实施例9的不同之处在于,实施例13中的第一界面钝化层202为氯化钾层,其电池性能如表2所示。
实施例14
实施例14与实施例9的不同之处在于,实施例14中的第一界面钝化层202为氟化钾层,其电池性能如表2所示。
实施例15
本实施例为第一种单层钙钛矿电池,其制备方法包括如下步骤:
步骤一:提供具有绒面结构1011的导电玻璃;
步骤二:在所述导电玻璃表面形成第一载流子传输层201;
具体地,通过真空蒸镀(蒸镀的速率为)在所述下电池100的隧穿层102上,采用Sprio-TTB形成与绒面结构1011共形的第一载流子传输层201(空穴传输层),其厚度为10nm。
步骤三:在所述第一载流子传输层201背离所述下电池100的一侧表面形成与绒面结构1011共形的第一界面钝化层202;
具体地,通过真空蒸镀(速率为)在所述第一载流子传输层201背离所述下电池100的一侧表面形成与绒面结构1011共形的KI第一界面钝化层202,其厚度为1nm。
步骤四:在所述第一界面钝化层202背离所述第一载流子传输层201的一侧表面形成钙钛矿吸收层203;
具体地,采用双源共蒸法在所述第一界面钝化层202背离所述第一载流子传输层201的一侧表面制备钙钛矿吸收层203。
进一步地,首先分别调节溴化铯和碘化铅(PbI2)的蒸发速率,所述溴化铯的蒸发速率碘化铅(PbI2)蒸发速率为在所述第一界面钝化层202背离所述第一载流子传输层201的一侧表面沉积形成的碘化铅与溴化铯的混合层,其厚度为400nm;同时将甲酸钾添加剂、FAI和FABr混合形成90μL混合溶液,在所述混合溶液中,FAI和FABr的摩尔比为3:1,甲酸钾添加剂的摩尔浓度为0.1%,将所述混合溶液滴在所述混合层上,立即旋涂获得钙钛矿前驱层,并在150℃条件下退火30min,形成与绒面结构1011共形的钙钛矿吸收层203,其厚度为650nm,钙钛矿吸收层203中钾的含量为5%,采用ICP-OES测试钾的含量。
步骤五:在所述钙钛矿吸收层203背离所述第一界面钝化层202的一侧表面形成第二载流子传输层204。
具体地,在所述钙钛矿吸收层203背离所述第一界面钝化层202的一侧表面通过真空镀膜设备蒸镀,蒸发速率为形成C60层(第二载流子传输层204),其厚度为10nm。
步骤六:在所述第二载流子传输层204背离所述钙钛矿吸收层203的一侧表面采用原子层沉积设备沉积形成厚度为10nm的SnO2层(缓冲层205)。
步骤七:在所述缓冲层205背离所述第二载流子传输层204的一侧表面采用磁控溅射技术沉积110nm的ITO薄膜(透明导电层206)。
步骤八:在所述透明导电层206背离所述缓冲层205的一侧表面以及在所述导电玻璃背离所述第一载流子传输层201的一侧表面采用掩膜法蒸镀形成银栅线电极,其厚度为200nm。
步骤九:在正面(钙钛矿侧)利用电子束蒸发制备120nm的MgF2减反射薄膜,从而获得第一种单层钙钛矿电池,其性能如表2所示。
实施例16
本实施方式中的太阳能电池与实施例9的电池区别在于第一载流子传输层、第一界面钝化层、钙钛矿吸收层、第二载流子传输层、缓冲层以及透明导电层206均为平面,不与绒面结构不共形。
本实施方式中的太阳能电池的制备方法与实施例9的制备方法区别仅在于步骤三,具体为如下:
具体地:在热蒸发镀膜设备中,采用旋涂法在所述第一载流子传输层201上,采用KI形成第一界面钝化层,其厚度为100nm。其电池性能如表2所示。
对比例1
如图1所示,本实施方式中的太阳能电池与实施例1的不同之处在于,对比例1中的太阳能电池没有第一界面钝化层,且第一载流子传输层、钙钛矿吸收层、第二载流子传输层、缓冲层以及透明导电层206均为平面,不与绒面结构不共形。其电池性能如表1所示。
对比例2
本实施方式中的太阳能电池与实施例1的电池区别在于第一载流子传输层、第一界面钝化层、钙钛矿吸收层、第二载流子传输层、缓冲层以及透明导电层206均为平面,不与绒面结构不共形。本实施方式中的太阳能电池的制备方法与实施例1的制备方法区别仅在于步骤三,具体为如下:
具体地:在热蒸发镀膜设备中,采用旋涂法在所述第一载流子传输层201 上,采用碘化钾形成第一界面钝化层,其厚度为100nm。其电池性能如表1所示。
对比例3
如图2所示,本实施方式中的太阳能电池与实施例9的不同之处在于,对比例3中的太阳能电池没有第一界面钝化层,且第一载流子传输层、钙钛矿吸收层、第二载流子传输层、缓冲层以及透明导电层206均为平面,不与绒面结构不共形,其电池性能如表2所示。
对比例4
对比例4中的太阳能电池与实施例9的不同之处在于,对比例4中的钙钛矿吸收层中不含有碱金属化合物以及不含第一界面钝化层。其太阳能电池性能如表2所示。
对比例5
对比例5中的太阳能电池与实施例9的不同之处在于,对比例5中的钙钛矿吸收层中不含有碱金属化合物。其太阳能电池性能如表2所示。
表1为实施例1至实施例8,以及对比例1、对比例2的性能参数
小结:结合表1和图1、2、3、4、5可知,与绒面共形的结构无论从光电流、光电压以及填充因子方面均高于不共形结构,其中光电流Jsc提升超过1mA以上,填充因子FF提升超过3%以上,可明显提升电池性能。而在绒面上共形的钾盐钝化层均对共形绒面叠层器件性能出现明显增益。其中性能最佳的案例为上下界面以及钙钛矿组分同时与绒面金字塔共形的结构。
需要说明的是,实施例9正扫IV曲线、实施例9反扫IV曲线,与图5 中实施例1正扫IV曲线、实施例1反扫IV曲线对应类似,为了避免重复,此处不再赘述。对比例3正扫IV曲线、对比例3反扫IV曲线,与图5中对比例1正扫IV曲线、对比例1反扫IV曲线对应类似,为了避免重复,此处不再赘述。
表2为实施例9至实施例16,以及对比例3至对比例5的的性能参数
小结:结合表2和图1、2、3、4、图5可知,钙钛矿中带有钾盐添加剂的叠层电池性能优于没有添加剂的性能,而在叠层电池上下界面处的钾盐钝化层可明显提升叠层电池的短路电流Jsc、开路电压Voc以及填充因子FF,同时有效降低正反曲线性能迟滞现象。在以上钝化结构中性能最佳的案例为上下界面与钙钛矿吸收层同时采用钾盐钝化的案例,其次下界面钾盐钝化结构效果优于上界面钾盐钝化结构。在迟滞方面钙钛矿吸收层中钾盐添加剂效果略优于界面钝化结构的案例。
尽管以上结合对本申请的实施方案进行了描述,但本申请并不局限于上 述的具体实施方案和应用领域,上述的具体实施方案仅仅是示意性的、指导性的,而不是限制性的。本领域的普通技术人员在本说明书的启示下和在不脱离本申请权利要求所保护的范围的情况下,还可以做出很多种的形式,这些均属于本申请保护之列。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (23)

  1. 一种太阳能电池,其特征在于,包括基底,所述基底的表面具有绒面结构,在所述基底上具有层叠设置的载流子传输层和钙钛矿吸收层;所述钙钛矿吸收层与所述载流子传输层之间具有界面钝化层,所述界面钝化层与所述绒面结构共形。
  2. 根据权利要求1所述的太阳能电池,其特征在于,所述钙钛矿吸收层内包含有碱金属化合物。
  3. 根据权利要求1或2所述的太阳能电池,其特征在于,所述载流子传输层包括第一载流子传输层和第二载流子传输层,所述第一载流子传输层以及第二载流子传输层分别位于所述钙钛矿吸收层的两侧;
    所述钙钛矿吸收层与所述第一载流子传输层之间具有界面钝化层和/或所述钙钛矿吸收层与所述第二载流子传输层之间具有界面钝化层;
    所述第一载流子传输层背离所述钙钛矿吸收层的一侧表面与所述基底层叠在一起。
  4. 根据权利要求1或2所述的太阳能电池,其特征在于,所述基底为导电玻璃或硅电池。
  5. 根据权利要求3所述的太阳能电池,其特征在于,所述绒面结构随机或规整的分布在所述基底的至少一个表面上;
    构成所述绒面结构基础形状选自柱状、锥状、台状、弧形槽或弧形凸起中的一种或两种以上。
  6. 根据权利要求1-4任一项所述的太阳能电池,其特征在于,所述绒面结构的高度为h,h≥3μm。
  7. 根据权利要求1-4任一项所述的太阳能电池,其特征在于,所述界面钝化层为碱金属卤化物钝化层或碱金属类卤化物钝化层,其厚度为d1,0<d1≤5nm。
  8. 根据权利要求7所述的太阳能电池,其特征在于,所述碱金属卤化物钝化层选自碘化钾层、溴化钾层、氯化钾层或氟化钾层中的至少一种。
  9. 根据权利要求7所述的太阳能电池,其特征在于,所述碱金属类卤化物钝化层选自硫氰钾层、氰化钾层、氧氰钾层或硒氰钾层中的至少一种。
  10. 根据权利要求1、3、4任一项所述的太阳能电池,其特征在于,所述钙钛矿吸收层中包含有钾盐,且所述钙钛矿吸收层的厚度为d2,350nm≤d1≤700nm。
  11. 根据权利要求10所述的太阳能电池,其特征在于,所述钾盐选自类卤 素钾、咔唑钾或醋酸钾中的至少一种。
  12. 根据权利要求3所述的太阳能电池,其特征在于,所述第一载流子传输层、钙钛矿吸收层以及第二载流子传输层均与所述绒面结构共形。
  13. 根据权利要求2所述的太阳能电池,其特征在于,在所述钙钛矿吸收层中碱金属化合物的含量为1‰-10%。
  14. 根据权利要求2所述的太阳能电池,其特征在于,在所述钙钛矿吸收层中,所述碱金属化合物为含钾化合物、含钠化合物、含锂化合物、含铷化合物、含铯化合物中的至少一种。
  15. 根据权利要求14所述的太阳能电池,其特征在于,所述碱金属化合物选自卤素碱金属、类卤素碱金属、咔唑碱金属或醋酸碱金属中的至少一种。
  16. 一种太阳能电池的制备方法,其特征在于,包括如下步骤:
    提供具有绒面结构的基底;
    在所述基底具有绒面的表面上形成第一载流子传输层;
    在所述第一载流子传输层背离所述基底的一侧表面采用气相沉积法形成与绒面结构共形的第一界面钝化层;
    在所述第一界面钝化层背离所述第一载流子传输层的一侧表面形成钙钛矿吸收层;
    在所述钙钛矿吸收层背离所述第一界面钝化层的一侧表面形成第二载流子传输层。
  17. 一种太阳能电池的制备方法,其特征在于,包括如下步骤:
    提供具有绒面结构的基底;
    在所述基底具有绒面的表面上形成第一载流子传输层;
    在所述第一载流子传输层背离所述基底的一侧表面形成钙钛矿吸收层;
    在所述钙钛矿吸收层背离所述第一载流子传输层的一侧表面采用气相沉积法形成与绒面结构共形的第二界面钝化层;
    在所述第二界面钝化层背离所述钙钛矿吸收层的一侧表面形成第二载流子传输层。
  18. 一种太阳能电池的制备方法,其特征在于,包括如下步骤:
    提供具有绒面结构的基底;
    在所述基底具有绒面的表面上形成第一载流子传输层;
    在所述第一载流子传输层背离所述基底的一侧表面采用气相沉积法形成 与绒面结构共形的第一界面钝化层;
    在所述第一界面钝化层背离所述第一载流子传输层的一侧表面形成钙钛矿吸收层;
    在所述钙钛矿吸收层背离所述第一界面钝化层的一侧表面采用气相沉积法形成与绒面结构共形的第二界面钝化层;
    在所述第二界面钝化层背离所述钙钛矿吸收层的一侧表面修成第二载流子传输层。
  19. 根据权利要求16-18任一项所述的制备方法,其特征在于,所述钙钛矿吸收层内包含有碱金属化合物。
  20. 根据权利要求16或17项所述的制备方法,其特征在于,在所述钙钛矿吸收层背离所述第一界面钝化层的一侧表面形成第二界面钝化层。
  21. 根据权利要求16-18任一项所述的制备方法,其特征在于,形成所述钙钛矿吸收层,具体包括如下步骤:
    所述第一界面钝化层背离所述第一载流子传输层的一侧表面蒸镀沉积金属卤化物层;
    将有机铵盐卤化物或有机铵盐卤化物与钾盐添加剂形成的混合溶液,与所述金属卤化物层反应,从而形成所述钙钛矿吸收层。
  22. 根据权利要求19所述的制备方法,其特征在于,形成所述钙钛矿吸收层,具体包括如下步骤:
    所述第一界面钝化层背离所述第一载流子传输层的一侧表面蒸镀沉积金属卤化物层;
    将有机铵盐卤化物与碱金属化合物混合形成的混合溶液;
    所述混合溶液与所述金属卤化物层反应,从而形成所述钙钛矿吸收层。
  23. 根据权利要求16-22任一项所述的制备方法,其特征在于,制备的太阳能电池为权利要求1-15任一项所述的太阳能电池。
PCT/CN2023/072438 2022-01-27 2023-01-16 一种太阳能电池及其制备方法 WO2023143207A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210101614.3A CN114447126B (zh) 2022-01-27 2022-01-27 一种太阳能电池及其制备方法
CN202210103158.6A CN114447127A (zh) 2022-01-27 2022-01-27 一种太阳能电池及其制备方法
CN202210101614.3 2022-01-27
CN202210103158.6 2022-01-27

Publications (1)

Publication Number Publication Date
WO2023143207A1 true WO2023143207A1 (zh) 2023-08-03

Family

ID=87470561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072438 WO2023143207A1 (zh) 2022-01-27 2023-01-16 一种太阳能电池及其制备方法

Country Status (1)

Country Link
WO (1) WO2023143207A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106033796A (zh) * 2016-07-29 2016-10-19 陕西师范大学 一种钙钛矿薄膜电池及其吸收层和吸收层制备方法
CN109148688A (zh) * 2018-07-11 2019-01-04 复旦大学 一种高效钙钛矿太阳能电池及其制备方法
CN109360889A (zh) * 2018-07-28 2019-02-19 西安交通大学 一种高填充因子的钙钛矿太阳能电池及其制备方法
CN109686843A (zh) * 2018-11-30 2019-04-26 苏州协鑫纳米科技有限公司 钙钛矿太阳能电池及其制备方法
CN110970562A (zh) * 2018-09-28 2020-04-07 东泰高科装备科技有限公司 一种钙钛矿/晶硅叠层太阳能电池及其制备方法
WO2020213814A1 (ko) * 2019-04-16 2020-10-22 서울대학교산학협력단 패시베이션 층을 포함하는 페로브스카이트 발광 소자 및 이의 제조방법
CN112117379A (zh) * 2019-06-21 2020-12-22 北京宏泰创新科技有限公司 一种双钝化层钙钛矿太阳能电池
CN113948646A (zh) * 2021-10-15 2022-01-18 华能新能源股份有限公司 一种钙钛矿多晶薄膜的钝化方法和电池
CN114447126A (zh) * 2022-01-27 2022-05-06 西安隆基乐叶光伏科技有限公司 一种太阳能电池及其制备方法
CN114447127A (zh) * 2022-01-27 2022-05-06 西安隆基乐叶光伏科技有限公司 一种太阳能电池及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106033796A (zh) * 2016-07-29 2016-10-19 陕西师范大学 一种钙钛矿薄膜电池及其吸收层和吸收层制备方法
CN109148688A (zh) * 2018-07-11 2019-01-04 复旦大学 一种高效钙钛矿太阳能电池及其制备方法
CN109360889A (zh) * 2018-07-28 2019-02-19 西安交通大学 一种高填充因子的钙钛矿太阳能电池及其制备方法
CN110970562A (zh) * 2018-09-28 2020-04-07 东泰高科装备科技有限公司 一种钙钛矿/晶硅叠层太阳能电池及其制备方法
CN109686843A (zh) * 2018-11-30 2019-04-26 苏州协鑫纳米科技有限公司 钙钛矿太阳能电池及其制备方法
WO2020213814A1 (ko) * 2019-04-16 2020-10-22 서울대학교산학협력단 패시베이션 층을 포함하는 페로브스카이트 발광 소자 및 이의 제조방법
CN112117379A (zh) * 2019-06-21 2020-12-22 北京宏泰创新科技有限公司 一种双钝化层钙钛矿太阳能电池
CN113948646A (zh) * 2021-10-15 2022-01-18 华能新能源股份有限公司 一种钙钛矿多晶薄膜的钝化方法和电池
CN114447126A (zh) * 2022-01-27 2022-05-06 西安隆基乐叶光伏科技有限公司 一种太阳能电池及其制备方法
CN114447127A (zh) * 2022-01-27 2022-05-06 西安隆基乐叶光伏科技有限公司 一种太阳能电池及其制备方法

Similar Documents

Publication Publication Date Title
CN114447126B (zh) 一种太阳能电池及其制备方法
US20230200096A1 (en) Tandem cell
CN108292688A (zh) 含氧化物纳米颗粒缓冲层的太阳能电池和制造方法
CN110970562A (zh) 一种钙钛矿/晶硅叠层太阳能电池及其制备方法
CN115881832B (zh) 一种太阳能电池钝化结构与制备方法
WO2019210263A1 (en) Multi-junction photovoltaic cell having wide bandgap oxide conductor between subcells and method of making same
KR102372238B1 (ko) 일체형 탠덤 태양전지 및 그 제조방법
CN209087911U (zh) 一种钙钛矿/晶硅叠层太阳能电池
US11522096B2 (en) Perovskite-silicon tandem structure and photon upconverters
WO2024066405A1 (zh) 一种太阳能电池及其制备方法
CN114447127A (zh) 一种太阳能电池及其制备方法
WO2023143207A1 (zh) 一种太阳能电池及其制备方法
CN116801652A (zh) 一种晶硅钙钛矿叠层太阳能电池及制备方法
CN116528640A (zh) 一种仿形钙钛矿薄膜以及太阳能电池的制备方法
US20240138163A1 (en) Materials and Methods for Hole Transport Layers in Perovskite Photovoltaic Devices
CN115568263A (zh) 一种太阳电池中钙钛矿活性层的制备方法
Nguyen et al. Influence of a gold seed in transparent V 2 O x/Ag/V 2 O x selective contacts for dopant-free silicon solar cells
CN113540291B (zh) 两端钙钛矿叠层电池的制作方法以及两端钙钛矿叠层电池
CN114678391A (zh) 一种叠层太阳电池
CN114361344A (zh) 一种叠层太阳能电池及其制作方法
CN113523576A (zh) 绒面制作方法、叠层电池制作方法及叠层电池
Laalioui Perovskite-Based Solar Cells: From Fundamentals to Tandem Devices
CN218101302U (zh) 钙钛矿太阳能电池的双层铋金属电极及钙钛矿太阳能电池
WO2023082584A1 (zh) 一种钙钛矿-硅基叠层太阳能电池及其制作方法
CN210403774U (zh) 一种背接触无掺杂异质结-钙钛矿叠层太阳电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746089

Country of ref document: EP

Kind code of ref document: A1