WO2023143113A1 - 一种薄膜力学性能的测量方法及测量装置 - Google Patents

一种薄膜力学性能的测量方法及测量装置 Download PDF

Info

Publication number
WO2023143113A1
WO2023143113A1 PCT/CN2023/072033 CN2023072033W WO2023143113A1 WO 2023143113 A1 WO2023143113 A1 WO 2023143113A1 CN 2023072033 W CN2023072033 W CN 2023072033W WO 2023143113 A1 WO2023143113 A1 WO 2023143113A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
droplet
thin film
mechanical properties
measuring
Prior art date
Application number
PCT/CN2023/072033
Other languages
English (en)
French (fr)
Inventor
刘涛
刘爱双
姚艳波
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2023143113A1 publication Critical patent/WO2023143113A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • G01N13/02Investigating surface tension of liquids

Definitions

  • the invention relates to the technical field of testing mechanical properties of materials, in particular to a method and a measuring device for measuring mechanical properties of thin films.
  • Thin film materials have important applications in diffusion barriers, dielectric coatings, electronic packaging and other application fields. Rapid and accurate determination of the mechanical properties of thin films is a very important technology.
  • the traditional testing methods for the mechanical properties of thin film materials include tensile method, nano-indentation method, and bubbling method. Among them, the thickness of the film suitable for the stretching method is at the micron level and above, and it is impossible to test the mechanical properties of the film material with a nanometer-submicron thickness. For the mechanical performance test of nano-hundreds of nanometer films, the nano-indentation method is mainly used for measurement.
  • an indenter with a specific geometric shape exerts a certain pressure on the supporting film, and the elastic modulus of the film is calculated through the loading and unloading curves and the area function closely related to the geometrical shape of the indenter.
  • the measurement process of the nanoindentation method is affected by multiple factors, such as the indenter/indentation size effect, the influence of the mechanical properties of the matrix, the inaccurate fitting of the area function, the limited accuracy of the measuring instrument, etc., and the calculation of the mechanical properties of the film requires complex mechanical analysis.
  • the tympanic membrane method also needs to build more complicated equipment, and is not suitable for the measurement of nano-films, especially brittle nano-films.
  • the present invention uses liquid droplets to spread dynamically on the film to cause changes in film wrinkling, and uses the analytical model established by the present invention to provide a method for testing the mechanical properties of the film.
  • the method has the advantages of low equipment cost, convenient automatic control, accurate measurement, rapidity and high efficiency.
  • the present invention provides a method for measuring the mechanical properties of a film, which uses the dynamic spreading behavior of liquid droplets on the film and the wrinkle changes caused by it, and obtains the droplet size, wrinkle length and number through image processing. Changes over time, combined with droplet volume conservation, displacement continuity, and ⁇ d , ⁇ , The relationship between the angles establishes the functional relationship between the length of the fold and the volume of the droplet, the tensile modulus, the surface tension of the droplet, the surface tension of water, the radius of the droplet, and Poisson’s ratio, and the mechanical properties of the film are calculated from this. performance. Specifically, the following steps are included:
  • Droplets are dropped onto the film from a certain height position, and at the same time, a video of the droplet size change and film wrinkling caused by the dynamic spreading of the droplets on the film is taken.
  • the analytical model is:
  • V volume of droplet
  • Rc contact radius between droplet and film
  • Y tensile modulus of film
  • ⁇ d surface tension of droplet
  • ⁇ w stress on the periphery of film
  • Poisson’s ratio
  • ratio of the tension at the contact line to the tension on the film
  • h film thickness
  • L 0 wrinkle length
  • R i contact radius
  • angle between the upper surface of the droplet and the film plane
  • ⁇ d the contact angle when the droplet deposits on the film without causing deformation of the film
  • ⁇ ⁇ is defined as:
  • said film floats on the surface of the liquid.
  • the thin film is grown directly from the liquid, or the thin film floats on the surface of the liquid by transfer.
  • said film is a self-supporting film.
  • the film is photographed from directly above the droplet.
  • the volume of one droplet is less than 5 ⁇ L.
  • the variation of the wrinkles includes information on relative position, spacing, number and length.
  • a measuring device for film mechanical properties comprising:
  • the transfer mechanism is installed on the bracket
  • the dropper is connected to the transfer mechanism
  • a camera mechanism the camera mechanism includes a light source and a camera, the camera is set above the liquid outlet of the dropper, and the light source is set corresponding to the camera.
  • the transfer mechanism includes a lifting module and an adjusting rod, and the needle of the dropper is obliquely connected with the lifting module through the adjusting rod.
  • the camera is a stereo microscope, a metallographic microscope, a horizontal microscope or a camera, and the camera is set right above the liquid outlet of the dropper.
  • the number of shooting frames of the camera is not lower than 25 frames, and the resolution is not lower than 1280 ⁇ 720.
  • the measurement method of the present invention has flexible selection of film materials, strong universality, fast and efficient, and high measurement accuracy;
  • the measuring device of the invention is flexible in design, easy to manufacture, automatic in processing means, and good in process controllability.
  • Fig. 1 is ⁇ d , ⁇ , measurement diagram
  • Fig. 2 is a schematic diagram of a measuring device of the present invention
  • Fig. 3 is a schematic diagram of background intensity in Embodiment 1 of the present invention.
  • Fig. 4 is a schematic diagram of wrinkle strength in Example 1 of the present invention.
  • Fig. 5 is a schematic diagram of the variation of wrinkle strength in Example 1 of the present invention.
  • Fig. 6 is a schematic diagram of the change of droplet radius with time in Example 1 of the present invention.
  • Fig. 7 is a schematic diagram of the wrinkle length measured in Example 1 of the present invention.
  • Fig. 8 is a schematic diagram of comparison between experimental measurement and theoretical fitting results of the wrinkle length in Example 1 of the present invention.
  • Fig. 9 is a comparison between the experimental measurement and theoretical fitting results of the wrinkle length in Example 2 of the present invention intention.
  • a kind of measuring method of film mechanical property of the present invention comprises the steps:
  • droplets are added to the film from a certain height. Specifically, droplets are added onto the film from close to the film. The droplets exert a force on the film, subjecting the film to compressive stress, and when the compressive stress exceeds a threshold, the film undergoes buckling instability to achieve equilibrium, resulting in a regular wrinkle pattern. As the time increases, the droplet spreads on the film, the contact radius between the droplet and the film increases gradually, and the wrinkles on the film also change.
  • Real-time shooting of the video of the droplet from contacting the film to the dynamic spreading around to obtain different images of the droplet and film changing over time. Information such as the length and number of wrinkles and the contact radius of droplets can be obtained through image processing.
  • the displacement of the droplet changes with time and the continuous displacement of ⁇ d , ⁇ and
  • the functional relationship model between wrinkle length and droplet volume, droplet surface tension, droplet radius, Poisson's ratio, surface tension of floating medium, etc. and film mechanical properties was established.
  • the mechanical properties of the film can be obtained by using the functional relationship model.
  • the functional relationship with the tensile modulus Y of the film is obtained.
  • E the elastic modulus of the film
  • h the thickness of the film
  • the surface tension of the dropped droplet is greater than the critical surface energy of the film.
  • the droplet can Realize dynamic spreading.
  • dynamic spreading of droplets on the surface of the film can also be achieved in other cases.
  • the liquid droplets are silicone oil. The droplet spreads on the film surface, resulting in dynamic wrinkling behavior, that is, the length and number of wrinkles change continuously as the droplet spreads on the film surface.
  • the film will be deformed greatly after contacting the film, so that the droplet cannot spread, so only one droplet is added during the measurement. And the volume of one droplet is less than 5 ⁇ L. Due to the very small volume of the droplet, the capillary force of the droplet is much greater than the gravity, so the capillary force of the droplet is the main stress to generate wrinkles.
  • the film in the present invention can be a simple film such as a metal film, a polymer film, a silicon film, a ceramic film, or a composite film formed by mixing or compounding several single materials.
  • the film is suspended on the surface of the liquid.
  • the thin film can be prepared by physical/chemical vapor phase growth, spray coating, drop coating, spin coating, dip coating, evaporation, surface oxidation, thinning, sputtering, etc.
  • the film grown directly from the liquid the film floats on the liquid surface after cutting the adhesion between the edge of the film and the inner wall of the petri dish.
  • the thin film is suspended on the surface of the liquid by transfer.
  • the liquid is deionized water with relatively high surface tension, which is cheap and easy to obtain.
  • the film may also be a self-supporting film.
  • the film is an airgel film or other material film
  • the film can directly float in the air to realize self-support.
  • the film is also not subject to other tension or pressure.
  • the droplet lands on the film, the film is deformed by external force and produces wrinkles.
  • the wrinkles of the film also change, and then the mechanical properties of the film can be measured according to the changes in the wrinkles.
  • the film in order to ensure that when the droplet lands on the floating film, the film can produce obvious changes with the spread of the droplet, and as the droplet spreads, the droplet will not expand outside the film, the diameter of the film to be measured
  • the choice is 1cm-10cm
  • the thickness of the film is 1nm-1 ⁇ m
  • the elastic modulus of the film is 1-30GPa.
  • the film when shooting the video of the dynamic spreading of the droplet on the surface of the film, the film is shot from directly above the droplet in order to facilitate the identification of changes in wrinkles around the droplet. Therefore, the photographed wrinkles expand evenly along the circumferential direction.
  • the wrinkle condition can be determined by the change of light and shade along the circumferential direction of the droplet, or can be determined by the change of light and shade along the radial direction of the droplet.
  • the determination and analysis of the changes in folds can be carried out manually, or through the automatic image recognition function combined with artificial intelligence, and then analyzed by image analysis software.
  • the image of the spreading of the droplet on the film at each time point is extracted by the automatic image recognition function, and the image analysis software analyzes the wrinkle changes.
  • the following image processing operations are adopted. Specifically, take the center of the droplet as the center of the circle, randomly select a circle without wrinkles, and its radius is R b , and extract the pixel intensity distribution map at the radius R b . Since there is no wrinkle here, the pixel intensity at this place is is the background intensity.
  • the contact radius between the droplet and the film is R c
  • a wrinkled circle is randomly selected between R c and R b
  • the radius is R w
  • the pixel intensity at R w is extracted.
  • the background intensity is subtracted from the obtained pixel intensity at Rw , thereby identifying the intensity variation of the folds, so as to determine the total number of folds, relative position, spacing and average angular period and other information.
  • the following image processing operations are adopted.
  • the wrinkle length is determined by taking the pixel intensity change value at the stable point as the threshold value (shown by the dotted line in the right figure of Fig. 5 ).
  • the deformed droplet can be considered as two upper and lower spherical caps, and the two spherical caps formed are added using the volume formula of the spherical cap
  • the volume formula of the droplet can be obtained, so that the following analytical model can be obtained:
  • V volume of droplet
  • Rc contact radius between droplet and film
  • Y tensile modulus of film
  • ⁇ d surface tension of droplet
  • ⁇ w stress on the periphery of film
  • Poisson’s ratio
  • ratio of the tension at the contact line to the tension on the film
  • h film thickness
  • L 0 wrinkle length
  • R i contact radius
  • angle between the upper surface of the droplet and the film plane
  • ⁇ d the contact angle when the droplet deposits on the film without causing deformation of the film
  • ⁇ ⁇ is defined as:
  • different parameters may be used to obtain other models related to different mechanical properties of the thin film, so as to obtain the measurement results of the mechanical properties of the thin film.
  • the present invention discloses a device for measuring the mechanical properties of the film, including:
  • the transfer mechanism is installed on the bracket
  • the dropper is connected to the transfer mechanism
  • a camera mechanism the camera mechanism includes a light source and a camera, the camera is set above the liquid outlet of the dropper, and the light source is set corresponding to the camera.
  • the bracket supports the transfer mechanism, and the transfer mechanism can adjust the position of the dropper, so that the position, height and angle of the dropper relative to the film can be adjusted arbitrarily, so that the dropper can be installed obliquely on the above the film to avoid excessive obscuration of the camera filming the spreading of the droplet from above.
  • the dripping liquid is loaded into the dropper, the floating film is placed under the camera mechanism, the angle and height of the dropper relative to the film are adjusted by the transfer mechanism, and then the dropper and the camera are started.
  • the mechanism realizes the shooting of the video of the dynamic spreading of the droplet on the film.
  • the dropper is a pipette gun including a needle, a liquid injection pump or a syringe, or other mechanisms capable of dripping liquid.
  • the needle is connected with the transfer mechanism.
  • a pipette, liquid injection pump or syringe communicates with the needle through a hose.
  • the needle is set obliquely, and its size is small, so that there is less occlusion of the image and the accuracy of measurement is improved.
  • the transfer mechanism includes a lifting module and an adjusting rod, and the needle of the dropper is obliquely connected with the lifting module through the adjusting rod.
  • the camera mechanism can also be connected with the lifting mechanism, and the height of the camera mechanism can be adjusted independently to ensure the clarity of the captured video.
  • the camera can be any device capable of shooting video, such as a stereo microscope, a metallographic microscope, a horizontal microscope, or a camera, and the camera is set directly above the liquid outlet of the dropper.
  • the radius of droplet spreading and the change of wrinkles can be obtained directly from the image, without conversion of the above information, which reduces the amount of calculation and the difficulty of analyzing the mechanical properties of the film. Further, in order to be able to extract the spread of the droplets and the change of wrinkles at each time point, the number of shooting frames of the camera is not less than 25 frames, and the resolution is not less than 1280 ⁇ 720.
  • the present invention takes different thin films as examples, and compares the experimental results measured by the method of the present invention with the results measured by the traditional method.
  • the droplet is selected as silicone oil, and the syringe is filled with silicone oil.
  • the syringe pump pushes the syringe to extrude a droplet of silicone oil, and the volume of the droplet is 2 ⁇ L.
  • Image analysis was carried out by performing image analysis on the resulting spreading video of silicone oil droplets deposited on the PS film. As shown in Figure 3, firstly, the pixel intensity distribution map is extracted along the circle with radius R b to obtain the background intensity.
  • the intensity variation of the folds can be easily identified by subtracting the background intensity from the obtained intensity, so as to determine the total number of folds and the average angular period, for each fold through the R
  • the intensity distribution is drawn and the corresponding relative intensity change is calculated, as shown in Figure 4.
  • the position gradually moves away from the wrinkled area, and finally reaches the background area, so a monotonous decreasing behavior appears in the figure, and finally tends to be stable, as shown in Figure 5.
  • the wrinkle length at a given angular position is determined by setting a threshold value of 0.015 for its intensity change.
  • FIG. 6 is a schematic diagram of the spreading of silicone oil droplets on the polystyrene film.
  • the droplet contact radius gradually increases with time, and with the expansion of the silicone oil droplet Radially symmetrical wrinkles emanate from the contact line of the silicone oil droplet, and the wrinkle pattern initially increases with the contact radius and then gradually shrinks and finally disappears.
  • displacement continuity and ⁇ d , ⁇ The relationship between the three angles is modeled to fit the wrinkle length and droplet radius. Refer to Figure 7 for the experimentally measured length, and refer to Figure 8. The fitting is consistent with the experimental results.
  • the modulus of the PS film measured using the tensile method was 2.67 GPa.
  • the moduli of the PS films obtained by the two methods are basically the same.
  • the glass substrate coated with PS film was slowly inserted at an angle into a Petri dish filled with deionized water. Due to the hydrophobicity of PS and the high surface tension of water, such manipulation allowed the easy transfer of a circular PS film with a diameter of 5 cm from the glass dish to the water surface. measured by AFM The thickness of the PS film was 96.3 nm.
  • the droplet spreading experiment was carried out using the above measuring device, and the process of processing and analyzing the wrinkle pictures was the same as that in Example 1. Through volume conservation, displacement continuity and ⁇ d , ⁇ , The relationship between the three angles is modeled to fit the wrinkle length and droplet radius. The fitting is consistent with the experimental results.
  • the process of processing and analyzing the wrinkle pictures is the same as in Example 1, through the volume conservation of droplets, continuous displacement and ⁇ d , ⁇ , The relationship between the three angles was modeled to fit the wrinkle length and droplet radius, and the fitting was consistent with the experimental results.
  • the thickness of the PDA film grown for 18 hours was measured by AFM to be 345.3nm, and the polymerization time was calculated to be 18 hours.
  • a metal film was sputtered on the glass substrate coated with the PS film using a metal sputtering instrument, and the glass substrate with the metal film and the PS film was slowly inserted into a petri dish filled with deionized water at a certain angle. Due to the hydrophobicity of PS and the high surface tension of water, such manipulation allowed the easy transfer of a circular PS film with a diameter of 7 cm from the glass dish to the water surface.
  • the thickness of the composite film measured by AFM measurement is 204.3 nm.
  • the droplet spreading experiment was carried out using the above measuring device, and the process of processing and analyzing the wrinkle pictures was the same as that in Example 1.
  • the K11-070 magnetron sputtering system is used to prepare ZnO-based transparent conductive glass.
  • the target material is AZO and GZO ceramic targets.
  • the distance between the target material and the center of the substrate is 7cm.
  • the substrate substrate is made of 0.7mm Luobo glass.
  • the sputtering gas is 5N high-purity Ar gas.
  • an AZO film with a thickness of about 800 ⁇ 50nm was deposited, and the film was transferred to the water surface, and the above-mentioned measuring device was used to carry out the droplet spreading experiment.
  • the process of processing and analyzing the wrinkle picture was the same as in Example 1.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及一种薄膜力学性能的测量方法及测量装置,包括如下步骤:使薄膜处于漂浮状态;从一定高度位置向薄膜上滴加液滴,同时拍摄液滴在薄膜上动态铺展所引起的液滴尺寸变化和薄膜起皱的视频;通过对视频进行图像处理,量化褶皱长度、褶皱数目以及液滴半径变化之间的关系,建立解析模型;利用解析模型,计算薄膜的力学性能。本发明所使用的液滴滴加和视频拍摄系统用于薄膜力学性能测试的技术手段,设备成本低廉、可便捷实现自动化控制;通过分析液滴在薄膜上动态铺展引起的褶皱变化,建立的薄膜力学性能测试方法,具有测量准确、快速高效的优点。

Description

一种薄膜力学性能的测量方法及测量装置 技术领域
本发明涉及材料力学性能测试技术领域,尤其是指一种薄膜力学性能的测量方法及测量装置。
背景技术
薄膜材料在扩散屏障、介质涂层、电子封装等应用领域具有重要的应用,薄膜的力学性能的快速、准确测定是非常重要的技术。传统的薄膜材料的力学性能的测试方法有拉伸法、纳米压痕法,鼓泡法。其中拉伸法适用的薄膜的厚度为微米级别及以上,无法对于纳米-亚微米厚度的薄膜材料力学性能的测试。对于纳米-几百纳米薄膜的力学性能测试,主要采用纳米压痕法进行测量。该方法采用一个特定几何形状的压头对支撑薄膜施加一定压力,通过加载和卸载曲线以及与压头几何形状密切相关的面积函数来计算薄膜弹性模量。纳米压痕法的测量过程受多重因素影响,如压头/压痕尺寸效应、基体力学性能影响、面积函数拟合不准确、测量仪器精度受限等问题,并且对薄膜力学性能的计算需要复杂的力学分析。此外,鼓膜法同样需要搭建较为复杂的设备,且不适合用于纳米薄膜,尤其是脆性纳米薄膜的测量。
为此,近年来研发人员开发了一些新型的薄膜力学性能的测量技术。比如,将薄膜与硅胶等弹性体结合,通过挤压产生褶皱,利用褶皱波长来计算材料的弹性模量。还有,将水滴滴加到漂浮的薄膜上引起褶皱的现象,通过获取褶皱的长度和数目对薄膜力学性能进行测量。上述力学性能的测量方法,由于在测量过程中依赖于静态起皱行为,依据单一的褶皱数据点进行薄膜力学性能计算,因此缺乏统计意义上的可靠性和重复性。在这些技术方案中要想实现具有统计意义的多数据点分析,需要采用多个样品并 且在不同水平的控制参数下进行重复测试,这就显著提高了测量的难度、降低了测量的效率。
发明内容
为此,本发明利用液滴在薄膜上动态铺展,从而引起薄膜起皱情况变化,并利用本发明所建立的解析模型,提供一种薄膜力学性能测试方法。该方法具有设备成本低廉、可便捷实现自动化控制,测量准确、快速高效的优点。
为实现上述技术目标,本发明提供了一种薄膜力学性能的测量方法,利用液滴在薄膜上的动态铺展行为,及其引起的褶皱变化,通过图像处理,得到液滴尺寸、褶皱长度和数目随时间的变化,结合液滴的体积守恒、位移连续以及θd、θ、角度之间的关系建立了褶皱的长度与液滴体积、拉伸模量、液滴表面张力、水的表面张力、液滴半径、泊松比之间的函数关系,由此计算得到薄膜的力学性能。具体的,包括如下步骤:
使薄膜处于漂浮状态;
从一定高度位置向薄膜上滴加液滴,同时拍摄液滴在薄膜上动态铺展所引起的液滴尺寸变化和薄膜起皱的视频。
通过对视频进行图像处理,量化褶皱长度、褶皱数目以及液滴半径变化之间的关系,建立解析模型;
利用解析模型,计算薄膜的力学性能。
在本发明的一个实施例中,所述解析模型为:



其中,V:液滴体积,Rc:液滴与薄膜的接触半径,Y:薄膜拉伸模量,γd:液滴表面张力,γw:薄膜外周所受应力,ν:泊松比,τ:接触线处受到的张力与薄膜受到的张力之比,h:薄膜厚度,L0:褶皱长度,Ri:接触半径,θ:液滴上表面与薄膜平面之间的夹角,液滴下表面与薄膜平面之间的夹角,θd:液滴沉积在薄膜上,未引起薄膜形变时的接触角,τ的定义为:
在本发明的一个实施例中,所述薄膜漂浮于液体表面。
在本发明的一个实施例中,所述薄膜直接从所述液体中生长出来,或所述薄膜通过转移漂浮于所述液体表面。
在本发明的一个实施例中,所述薄膜为自支撑薄膜。
在本发明的一个实施例中,从液滴的正上方对薄膜进行拍摄。
在本发明的一个实施例中,一滴所述液滴的体积小于5μL。
在本发明的一个实施例中,褶皱的变化包括相对位置、间距、数目和长度的信息。
一种薄膜力学性能的测量装置,包括:
支架;
移载机构,所述移载机构安装在所述支架上;
滴液器,所述滴液器与所述移载机构相连;
摄像机构,所述摄像机构包括光源和摄像器,所述摄像器对应所述滴液器出液端上方设置,所述光源对应所述摄像器设置。
在本发明的一个实施例中,所述移载机构包括升降模组和调节杆,所述滴液器的针头通过调节杆与所述升降模组倾斜连接。
在本发明的一个实施例中,所述摄像器为体视显微镜、金相显微镜、卧式显微镜或相机,所述摄像器正对所述滴液器的出液端上方设置。
在本发明的一个实施例中,所述摄像器的拍摄帧数不低于25帧,分辨率不低于1280×720。
本发明的上述技术方案相比现有技术具有以下优点:
本发明所述的测量方法对薄膜材料选择灵活、普适性强且快速高效、测量精度高;
本发明所述的测量装置设计灵活、制作简便,加工手段可自动化,工艺可控性好。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1是本发明的计算模型中θd、θ、测量示意图;
图2是本发明的测量装置示意图;
图3是本发明实施例一中背景强度示意图;
图4是本发明实施例一中褶皱强度示意图;
图5是本发明实施例一中褶皱强度变化示意图;
图6是本发明实施例一中液滴半径随时间变化示意图;
图7是本发明实施例一中测量的褶皱长度示意图;
图8是本发明实施例一中褶皱长度的实验测量和理论拟合结果对比示意图;
图9是本发明实施例二中褶皱长度的实验测量和理论拟合结果对比示 意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
参照图1所示,本发明的一种薄膜力学性能的测量方法,包括如下步骤:
使薄膜处于漂浮状态。此种状态下,薄膜自身的运动自由,当薄膜受外力时,薄膜将经历屈曲失稳,此时薄膜为实现平衡,将产生弹性基础的变形,从而形成规则的褶皱图案。
为实现褶皱的动态变化,从一定高度位置向薄膜上滴加液滴。具体的,从靠近薄膜处在薄膜上滴加液滴。液滴对薄膜施加作用力,使薄膜受到压缩应力,当压缩应力超过阈值时,薄膜经历屈曲失稳,为实现平衡,从而产生规则的褶皱图案。随着时间的增加,液滴在薄膜上铺展,液滴与薄膜的接触半径逐渐增加,薄膜上的褶皱也存在变化。实时拍摄液滴从接触薄膜到向四周动态铺展的视频,得到液滴及薄膜随时间变化的不同图像。通过图像处理即可得到褶皱的长度、数目以及液滴的接触半径等信息。
利用液滴的体积守恒,液滴随时间变化时位移连续以及θd、θ和三种角度之间的关系,其中,液滴最开始沉积在薄膜上时,且没有引起薄膜形变时其接触角为θd,液滴陷入薄膜内使其产生褶皱时液滴上表面与薄膜平面之间的夹角为θ、液滴下表面与薄膜平面之间的夹角为建立褶皱长度与液滴体积、液滴表面张力、液滴半径、泊松比、漂浮介质的表面张力等与薄膜力学性能之间的函数关系模型。利用该函数关系模型可以得到薄膜的力学性能。
本实施例中,根据液滴及褶皱的变化,得到与薄膜拉伸模量Y之间的函数关系,利用Y=Eh,其中E为薄膜的弹性模量,h为薄膜厚度,即可计算出薄膜的弹性模量。由此可以实现基于薄膜动态起皱行为的薄膜力学性 能的测试。
作为本发明的优选实施例,为实现液滴在薄膜表面的铺展,滴加的液滴的表面张力大于所述薄膜的临界表面能,此时,在热力学能量最小化的原则下,液滴能够实现动态铺展。当然,在其他情况下也能实现液滴在薄膜表面的动态铺展。优选地,所述液滴为硅油。液滴在薄膜表面铺展,产生动态起皱行为,即随着液滴在薄膜表面的铺展,褶皱的长度和数目不断发生变化。进一步的,为防止液滴重力过大,接触到薄膜后,薄膜产生较大变形,以致液滴无法铺展,故测量时仅滴加一滴液滴。且一滴所述液滴的体积小于5μL。由于液滴的体积非常小,液滴的毛细力远大于重力,因此液滴的毛细力是产生褶皱的主要应力。
作为本发明的优选实施例,本发明中的薄膜可以是金属薄膜、高分子薄膜、硅薄膜、陶瓷薄膜等单质薄膜,也可以是几种单一材质混杂或复合在一起所形成的复合薄膜。为实现对薄膜的支撑且不影响薄膜的变形,所述薄膜悬浮于液体表面。薄膜的制备方法可以是物理/化学气相生长、喷涂、滴涂、旋涂、浸涂、蒸镀、表面氧化、减薄、溅射等。针对直接从液体中生长出来的薄膜,切断薄膜边缘与培养皿内壁之间的粘连后,薄膜漂浮于液体表面。针对生长在固体上的薄膜,通过转移使薄膜悬浮于液体表面。作为优选的,所述液体为表面张力较大且便宜易得的去离子水。
在本发明的其他实施例中,所述薄膜还可以为自支撑薄膜。当薄膜为气凝胶薄膜或其他材料薄膜时,薄膜能够直接漂浮在空气中,实现自支撑。此时薄膜同样不受其他拉力或压力等。当液滴滴落在薄膜上,薄膜受外力而变形产生褶皱,随着液滴在薄膜上扩散、铺展,薄膜产生的褶皱也发生变化,进而根据褶皱的变化实现薄膜力学性能的测量。
进一步的,为保证液滴滴落在漂浮的薄膜上时,薄膜能够随液滴的铺展产生明显的变化,且随着液滴的铺展,液滴不会扩展到薄膜外,待测薄膜的直径选择为1cm-10cm,薄膜的厚度选择为1nm-1μm,薄膜的弹性模量为1-30GPa。
作为本发明优选的实施例,在拍摄液滴在薄膜表面进行动态铺展的视频时,为便于识别液滴周围褶皱的变化情况,从液滴的正上方对薄膜进行拍摄。从而拍摄到的褶皱沿圆周方向均匀扩展,此时可以沿液滴周长方向的明暗变化来确定褶皱情况,也可以是沿液滴径向的明暗变化来确定褶皱情况。对褶皱变化情况的确定和分析,可以直接通过人工进行,也可以通过与人工智能结合的自动图像识别功能确定,而后利用图像分析软件进行分析。
参照图3到图5所示,本实施例中,通过自动图像识别功能提取各个时间点液滴在薄膜上的铺展图像,图像分析软件分析褶皱变化。为了准确确定一个时间点下的褶皱数目,采取如下的图像处理操作。具体的,以液滴中心为圆心,任意选择一处没有褶皱的圆,其半径为Rb,提取半径为Rb处的像素强度分布图,由于此处无褶皱,因此该处的像素强度即为背景强度。液滴与薄膜的接触半径为Rc,在Rc与Rb之间任意选择一处有褶皱的圆,半径为Rw,提取Rw处的像素强度。以得到的Rw处的像素强度减去背景强度,由此识别出褶皱的强度变化,从而确定褶皱的总数、相对位置、间距和平均角周期等信息。为了准确确定一个时间点下的褶皱长度,采取如下的图像处理操作。在Rc与Rb之间的一个给定距离R上,绘制强度分布图,并计算相应的相对强度变化,由于从Rc到Rb,位置逐渐远离起皱区域,最终达到背景区域,因此出现如图5中所示单调的下降行为,并最终趋于稳定。以稳定处的像素强度变化值为阈值(图5右图中的虚线处所示),从而确定该褶皱长度。根据液滴的体积守恒、液滴铺展时位移连续以及θd、θ和三种角度之间的关系,且液滴沉积在薄膜上的形变,将其形变后的液滴可以考虑成上下两个球冠,利用球冠的体积公式,将形成的两个球冠相加就能够得到液滴的体积公式,从而可得到以下的解析模型:



通过以上解析模型可以得到关于褶皱长度的函数关系:
LO=f(V,Y,γdw,Ri,v,)
其中,V:液滴体积,Rc:液滴与薄膜的接触半径,Y:薄膜拉伸模量,γd:液滴表面张力,γw:薄膜外周所受应力,ν:泊松比,τ:接触线处受到的张力与薄膜受到的张力之比,h:薄膜厚度,L0:褶皱长度,Ri:接触半径,θ:液滴上表面与薄膜平面之间的夹角,液滴下表面与薄膜平面之间的夹角,θd:液滴沉积在薄膜上,未引起薄膜形变时的接触角,τ的定义为:
通过上述的函数关系,给定V、L0、γd、γw、ν、Ri,就能够得到薄膜的拉伸模量Y,通过Y=Eh计算得到弹性模量,即得到薄膜的力学性能。
在本发明的其他实施例中,还可以采用不同的参数得到不同的薄膜力学性能相关的其他模型,从而得到薄膜力学性能的测量结果。
参照图2所示,为了实现将液滴滴加在薄膜上,且对液滴在薄膜上的铺展过程进行拍摄,本发明公开了一种薄膜力学性能的测量装置,包括:
支架;
移载机构,所述移载机构安装在所述支架上;
滴液器,所述滴液器与所述移载机构相连;
摄像机构,所述摄像机构包括光源和摄像器,所述摄像器对应所述滴液器出液端上方设置,所述光源对应所述摄像器设置。
支架支撑移载机构,移载机构能够调整滴液器的位置,使得滴液器相对薄膜的位置、高度和角度能够被任意调整,从而滴液器能够倾斜设置于 薄膜上方,避免对从上方拍摄液滴的铺展过程的摄像器造成过多遮挡。
本实施例中,在滴液器中装入滴液的液体,将漂浮的薄膜放置在摄像机构下方,利用移载机构调整好滴液器相对薄膜的角度和高度,而后启动滴液器和摄像机构,实现液滴在薄膜上动态铺展的视频的拍摄。
作为本发明的优选实施例,所述滴液器为包括针头的移液枪、液体注射泵或注射器,或者其他能够实现滴液的机构。所述针头与所述移载机构相连。移液枪、液体注射泵或注射器通过软管连通所述针头。针头倾斜设置,其尺寸小,从而对图像的遮挡较少,提高测量的准确性。所述移载机构包括升降模组和调节杆,所述滴液器的针头通过调节杆与所述升降模组倾斜连接。利用调节杆调节好滴液器针头相对薄膜的角度和投影位置,再利用升降模组调节滴液器针尖相对薄膜的高度。针头的角度和投影位置调整完成后,利用控制机构控制升降模组的上升,从而方便在滴液器下方放置漂浮的薄膜,放置完成后,升降机构驱动滴液器下降,实现滴液器相对薄膜高度的自动化调整。在本发明的实施例中,摄像机构也可以与升降机构相连,摄像机构的高度能够单独调整,保证拍摄的视频的清晰。具体的,所述摄像器可以为体视显微镜、金相显微镜、卧式显微镜或相机等任意能够拍摄视频的设备,所述摄像器正对所述滴液器的出液端上方设置。从而能够从图像中直接得到液滴铺展的半径、褶皱的变化情况,无需对上述信息进行换算,减少计算量,降低薄膜力学性能分析的难度。进一步的,为能够提取出各时间点液滴的铺展情况及褶皱的变化情况,所述摄像器的拍摄帧数不低于25帧,分辨率不低于1280×720。
为验证本发明测量方法的准确性,本实施例中搭建了测量装置,具体包括配备10mL塑料注射器(内径=2mm,外径=4mm)的注射泵和一个小直径针(内径=150μm,外径=300μm),注射器和小直径针之间通过注射管相连;还包括竖直设置的丝杆模组,丝杆模组包括升降丝杆,升降丝杆两端与支架转动连接,升降丝杆一端连接微步进电机,升降丝杆上套设有丝杆螺母,调节杆与所述丝杆螺母相连,小直径针安装在调节杆端部,丝杆模组能够精确调节针尖相对于漂浮的薄膜表面的高度;还包括一台立体显 微镜和漫射白光源,漫射白光源用于照亮漂浮的薄膜,立体显微镜的其中一个目镜上装有智能手机,用于拍摄视频。
本发明以不同薄膜为例,将本发明方法测得的实验结果于传统方法测得的结果相比较。
实施例1
通过使用真空旋涂机在室温和相对湿度<50%的玻璃基板(直径=5cm)上旋涂1wt.%的聚苯乙烯甲苯溶液,制备圆形聚苯乙烯薄膜。在旋涂操作之前,玻璃基板先用丙酮冲洗并在空气中干燥,然后用O2等离子体处理1分钟。本实施例中,使用两步旋涂条件来制备PS薄膜:第一步,以500rpm的恒定旋涂速度持续60秒;第二步,以1000rpm的恒定转速旋涂60s。旋涂后,将涂有PS膜的玻璃基板以一定角度缓慢插入装有去离子水的培养皿中。由于PS的疏水性和水的高表面张力,这样的操作允许将直径5cm的圆形PS薄膜从玻璃盘轻松转移到水表面。经过AFM测量测得PS膜的厚度为98.3nm。
本实施例中液滴选择为硅油,在注射器中装填好硅油。将装有漂浮的PS薄膜的培养皿放置在小直径针的针尖下。注射泵推动注射器挤出一滴硅油液滴,液滴的体积为2μL。通过对得到的硅油液滴沉积在PS膜上的铺展视频进行图像分析。如图3所示,首先先沿着半径为Rb的圆提取像素强度分布图,得到背景强度。在沿半径为Rw的圆提取像素强度,通过得到的强度减去背景强度,就能很容易的识别出褶皱的强度变化,从而确定褶皱的总数和平均角周期,对每一个褶皱通过在Rc与Rb之间的给定距离R上,绘制出强度分布图,并计算相应的相对强度变化,如图4所示。从Rc到Rb,位置逐渐远离起皱区域,最终达到背景区域,因此图中出现单调的下降行为,并最终趋于稳定,如图5所示。本实施例中,通过将其强度变化设定了一个阈值为0.015,从而确定在给定的角度位置处的褶皱长度。
对上述获得的褶皱长度的信息进行分析,图6为硅油液滴在聚苯乙烯薄膜上铺展示意图。液滴接触半径随时间逐渐增加,且随着硅油液滴的扩 散,从硅油液滴的接触线发出径向对称的褶皱,其褶皱图案最初随着接触半径增加然后逐渐缩小并最终消失。通过液滴的体积守恒、位移连续和θd、θ、三种角度之间的关系建立模型对褶皱长度及液滴半径进行拟合,参照图7所示为实验测量长度,参照图8所示,拟合与实验结果一致。本工作测量得到的PS薄膜的拉伸模量为254.5N/m2,经过计算得到E=2.59GPa。使用拉伸法测量PS膜得到的模量为2.67GPa。两种方法得到的PS膜的模量基本一致。
实施例2
将0.36g盐酸多巴胺溶于120mL,50mmol/L的Tris缓冲液,置于9cm培养皿中。在室温下延长聚合时间(7小时–36小时)后,PDA薄膜会在空气/多巴胺溶液界面形成。PDA薄膜形成后,小心地用锋利的刀切断PDA薄膜边缘与培养皿内壁之间的粘连,使薄膜自由漂浮在溶液表面,准备进行液滴扩散诱导起皱实验。利用上述测量装置进行液滴铺展实验,处理以及分析褶皱图片的过程与实施例1相同,图9表示了生长时间为9h的PDA薄膜的褶皱长度与接触半径的实验与拟合结果,得到的拉伸模量为238.1N/m,经过AFM测量测得生长9h的PDA薄膜的厚度为153.6nm,经过计算得到E9h=1.55Gpa。使用纳米压痕法测量PDA膜的弹性模量在1.4GPa-15GPa之间。
实施例3
通过使用真空旋涂机在室温和相对湿度<50%的玻璃盘(直径=5cm)上旋涂1wt.%的聚苯乙烯甲苯溶液,制备圆形聚苯乙烯薄膜。在旋涂操作之前,玻璃基板先用丙酮冲洗并在空气中干燥,然后用O2等离子体处理1分钟。在我们的研究中,使用两步旋涂条件来制备所有的PS薄膜:第一步,以500rpm的恒定旋涂速度持续60秒;第二步,以1000rpm的恒定转速旋涂60s。旋涂后,将涂有PS膜的玻璃基板以一定角度缓慢插入装有去离子水的培养皿中。由于PS的疏水性和水的高表面张力,这样的操作允许将直径5cm的圆形PS薄膜从玻璃盘轻松转移到水表面。经过AFM测量测得 PS膜的厚度为96.3nm。利用上述测量装置进行液滴铺展实验,处理以及分析褶皱图片的过程与实施例1相同。通过液滴的体积守恒、位移连续和θd、θ、三种角度之间的关系建立模型对褶皱长度及液滴半径进行拟合,拟合与实验结果一致,测量得到的PS薄膜的拉伸模量为261.5N/m,经过计算得到E=2.66GPa。
实施例4
将0.36g盐酸多巴胺溶于120mL50mMTris缓冲液,置于9cm培养皿中。在室温下延长聚合时间(7小时–36小时)后,PDA薄膜会在空气/多巴胺溶液界面形成。PDA薄膜形成后,小心地用锋利的刀切断PDA薄膜边缘与培养皿内壁之间的粘连,使薄膜自由漂浮在溶液表面,准备进行液滴扩散诱导起皱实验。利用上述测量装置进行液滴铺展实验,处理以及分析褶皱图片的过程与实施例1相同,通过液滴的体积守恒、位移连续和θd、θ、三种角度之间的关系建立模型对褶皱长度及液滴半径进行拟合,拟合与实验结果一致,经过AFM测量测得生长18h的PDA薄膜的厚度为345.3nm,经过计算得到聚合时间为18h的薄膜的模量为E18h=0.88Gpa。
实施例5
通过使用真空旋涂机在室温和相对湿度<50%的玻璃盘(直径=7cm)上旋涂0.1wt.%的聚苯乙烯甲苯溶液,制备圆形聚苯乙烯薄膜。在旋涂操作之前,玻璃基板先用丙酮冲洗并在空气中干燥,然后用O2等离子体处理1分钟。在我们的研究中,使用两步旋涂条件来制备所有的PS薄膜:第一步,以500rpm的恒定旋涂速度持续60秒;第二步,以1000rpm的恒定转速旋涂60s。旋涂后,将涂有PS膜的玻璃基板使用金属溅射仪器溅射一层金属薄膜,将带有金属膜与PS膜的玻璃基板以一定角度缓慢插入装有去离子水的培养皿中。由于PS的疏水性和水的高表面张力,这样的操作允许将直径7cm的圆形PS薄膜从玻璃盘轻松转移到水表面。经过AFM测量测得该复合膜膜的厚度为204.3nm。利用上述测量装置进行液滴铺展实验,处理以及分析褶皱图片的过程与实施例1相同。通过液滴的体积守恒、位移连续 和θd、θ、三种角度之间的关系建立模型对褶皱长度及液滴半径进行拟合,拟合与实验结果一致,本工作测量得到的该复合薄膜的拉伸模量为2737N/m,经过计算得到E=13.4GPa。
实施例6
采用K11-070磁控溅射系统制备ZnO基透明导电玻璃,靶材为AZO、GZO陶瓷靶,靶材与基片中心距离7cm,基片衬底使用0.7mm的洛玻玻璃,本底真空抽至为3.5×10-4Pa,溅射气体为5N的高纯Ar气。在工作压强为1.5Pa下沉积了厚度为800±50nm左右的AZO薄膜,将该薄膜转移至水面上,利用上述测量装置进行液滴铺展实验,处理以及分析褶皱图片的过程与实施例1相同,通过液滴的体积守恒、位移连续和θd、θ、三种角度之间的关系建立模型对褶皱长度及液滴半径进行拟合,拟合与实验结果一致,经过计算得到E=24Gpa。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (12)

  1. 一种薄膜力学性能的测量方法,其特征在于,包括如下步骤:
    使薄膜处于漂浮状态;
    从一定高度位置向薄膜上滴加液滴,同时拍摄液滴在薄膜上动态铺展所引起的液滴尺寸变化和薄膜起皱的视频。
    通过对视频进行图像处理,量化褶皱长度、褶皱数目以及液滴半径变化之间的关系,建立解析模型;
    利用解析模型,计算薄膜的力学性能。
  2. 根据权利要求1所述的一种薄膜力学性能的测量方法,其特征在于:所述解析模型为:



    其中,V:液滴体积,Rc:液滴与薄膜的接触半径,Y:薄膜拉伸模量,γd:液滴表面张力,γw:薄膜外周所受应力,ν:泊松比,τ:接触线处受到的张力与薄膜受到的张力之比,h:薄膜厚度,L0:褶皱长度,Ri:接触半径,θ:液滴上表面与薄膜平面之间的夹角,液滴下表面与薄膜平面之间的夹角,θd:液滴沉积在薄膜上,未引起薄膜形变时的接触角,τ的定义为:
  3. 根据权利要求1所述的一种薄膜力学性能的测量方法,其特征在于:所述薄膜漂浮于液体表面。
  4. 根据权利要求3所述的一种薄膜力学性能的测量方法,其特征在于:所述薄膜直接从所述液体中生长出来,或所述薄膜通过转移漂浮于所述液体表面。
  5. 根据权利要求1所述的一种薄膜力学性能的测量方法,其特征在于:所述薄膜为自支撑薄膜。
  6. 根据权利要求1所述的一种薄膜力学性能的测量方法,其特征在于:从所述液滴的正上方对所述薄膜进行拍摄。
  7. 根据权利要求1所述的一种薄膜力学性能的测量方法,其特征在于:一滴所述液滴的体积小于5μL。
  8. 根据权利要求1所述的一种薄膜力学性能的测量方法,其特征在于:随液滴动态铺展的起皱情况分析,包括褶皱的数目和长度随液滴尺寸变化的信息。
  9. 一种薄膜力学性能的测量装置,其特征在于,包括:
    支架;
    移载机构,所述移载机构安装在所述支架上;
    滴液器,所述滴液器与所述移载机构相连;
    摄像机构,所述摄像机构包括光源和摄像器,所述摄像器对应所述滴液器出液端上方设置,所述光源对应所述摄像器设置。
  10. 根据权利要求10所述的一种薄膜力学性能的测量装置,其特征在于:所述移载机构包括升降模组和调节杆,所述滴液器通过调节杆与所述升降模组连接。
  11. 根据权利要求10所述的一种薄膜力学性能的测量装置,其特征在于:所述摄像器为体视显微镜、金相显微镜、卧式显微镜或相机,所述摄像器正对所述滴液器的出液端上方设置。
  12. 根据权利要求10所述的一种薄膜力学性能的测量装置,其特征在于:所述摄像器的拍摄帧数不低于25帧,分辨率不低于1280×720。
PCT/CN2023/072033 2022-01-27 2023-01-13 一种薄膜力学性能的测量方法及测量装置 WO2023143113A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210102701.0 2022-01-27
CN202210102701.0A CN114563312B (zh) 2022-01-27 2022-01-27 一种薄膜力学性能的测量方法及测量装置

Publications (1)

Publication Number Publication Date
WO2023143113A1 true WO2023143113A1 (zh) 2023-08-03

Family

ID=81713075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072033 WO2023143113A1 (zh) 2022-01-27 2023-01-13 一种薄膜力学性能的测量方法及测量装置

Country Status (2)

Country Link
CN (1) CN114563312B (zh)
WO (1) WO2023143113A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114563312B (zh) * 2022-01-27 2022-12-06 苏州大学 一种薄膜力学性能的测量方法及测量装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100286555A1 (en) * 2006-03-15 2010-11-11 Crosby Alfred J Methods and apparatus for modulus measurement
JP2011059104A (ja) * 2009-08-12 2011-03-24 Nagoya Institute Of Technology 表面物性の測定方法及び測定装置
KR20140100756A (ko) * 2013-02-07 2014-08-18 경상대학교산학협력단 종이의 액체 표면 거동 및 사이즈도 측정방법, 그리고 이의 측정장치
CN111665170A (zh) * 2020-06-16 2020-09-15 中国石油大学(华东) 一种通气定量控制柔性基底变形和张力的液滴冲击实验装置
CN114563312A (zh) * 2022-01-27 2022-05-31 苏州大学 一种薄膜力学性能的测量方法及测量装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW548293B (en) * 2000-11-14 2003-08-21 Teijin Ltd Aromatic polycarbonate, production method therefor and composition comprising the same
CN102564906B (zh) * 2012-02-18 2013-08-14 浙江理工大学 一种聚合物薄膜玻璃化转变温度的测量方法
CN103018138B (zh) * 2012-12-24 2014-12-24 江苏大学 基于轴对称液滴轮廓曲线和体积的液体表面张力测量方法
CN104697903A (zh) * 2013-12-05 2015-06-10 上海梭伦信息科技有限公司 真实液滴法的便携式接触角和界面张力测试方法及装置
WO2015191600A1 (en) * 2014-06-09 2015-12-17 Arizona Board Of Regents On Behalf Of Arizona State University Method of screening cancer cells using wrinkle patterns on a thin membrane
CA3001848C (en) * 2015-10-15 2023-09-19 Board Of Regents, The University Of Texas System Versatile process for precision nanoscale manufacturing
CN105865979B (zh) * 2016-03-30 2019-03-12 南京邮电大学 一种测量微液滴电湿效应的装置与方法
CN107460595A (zh) * 2016-06-02 2017-12-12 黄磊 一种褶皱面料及其制备工艺
CN106756777B (zh) * 2016-11-28 2019-07-16 山东大学 一种通过应变调控褶皱表面亲疏水性可逆转变的方法及应用
US10767458B2 (en) * 2017-03-08 2020-09-08 Saudi Arabian Oil Company Characterization of crude oil-water interfacial film rigidity to enhance oil recovery
CN107907450B (zh) * 2017-11-27 2020-06-09 深圳大学 一种基于原子力显微镜的二维纳米材料亲水角测试方法
CN108148107A (zh) * 2017-12-25 2018-06-12 华远医药研究院有限公司 薯蓣皂苷的提取纯化方法
CN109678135B (zh) * 2019-02-01 2020-09-22 苏州大学 一种超薄碳膜的制备方法
CN109918785B (zh) * 2019-03-07 2023-03-31 南京航空航天大学 一种大型复杂薄壁钛合金构件热成形起皱预测及控制方法
WO2020188681A1 (ja) * 2019-03-18 2020-09-24 株式会社ニコン 露光システム、露光装置、及び露光方法
CN111859723A (zh) * 2020-01-13 2020-10-30 北京航空航天大学 一种电子元器件通孔插装工艺应力损伤仿真分析方法
CN113571862B (zh) * 2020-07-06 2022-04-26 南通大学 柔性滤波器的快速制造方法
CN112268838B (zh) * 2020-10-30 2023-04-25 江苏科技大学 一种疏水表面性能测试装置及其表征方法
CN112603660A (zh) * 2021-01-31 2021-04-06 高文 容量自适应流体收集存储容器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100286555A1 (en) * 2006-03-15 2010-11-11 Crosby Alfred J Methods and apparatus for modulus measurement
JP2011059104A (ja) * 2009-08-12 2011-03-24 Nagoya Institute Of Technology 表面物性の測定方法及び測定装置
KR20140100756A (ko) * 2013-02-07 2014-08-18 경상대학교산학협력단 종이의 액체 표면 거동 및 사이즈도 측정방법, 그리고 이의 측정장치
CN111665170A (zh) * 2020-06-16 2020-09-15 中国石油大学(华东) 一种通气定量控制柔性基底变形和张力的液滴冲击实验装置
CN114563312A (zh) * 2022-01-27 2022-05-31 苏州大学 一种薄膜力学性能的测量方法及测量装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUANG JIANGSHUI, MEGAN JUSZKIEWICZ, WIM H. DE JEU, ENRIQUE CERDA, TODD EMRICK, NARAYANAN MENON, THOMAS P. RUSSELL: "Capillary Wrinkling of Floating Thin Polymer Films", SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, US, vol. 317, no. 5838, 3 August 2007 (2007-08-03), US , pages 650 - 653, XP093081437, ISSN: 0036-8075 *
IYER N., COOPER K., YANG J., ZENHAUSERN F.: "MEASURING ELASTIC PROPERTIES OF THIN BIOLOGICAL FILMS USING CAPILLARY WRINKLING", AIP CONFERENCE PROCEEDINGS, AMERICAN INSTITUTE OF PHYSICS, NEW YORK, US, vol. 1042, 1 January 2008 (2008-01-01), NEW YORK, US , pages 41 - 43, XP093081468, ISSN: 0094-243X, DOI: 10.1063/1.2989066 *

Also Published As

Publication number Publication date
CN114563312A (zh) 2022-05-31
CN114563312B (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
WO2023143113A1 (zh) 一种薄膜力学性能的测量方法及测量装置
Chen et al. Bioinspired superhydrophilic-hydrophobic integrated surface with conical pattern-shape for self-driven fog collection
Andrade et al. The contact angle and interface energetics
Neumann et al. Techniques of measuring contact angles
Shull et al. Dewetting dynamics for large equilibrium contact angels
JP7358030B2 (ja) 親水性基材
Li et al. Vapour adsorption and contact angles on hydrophobic solid surfaces
Kwok Contact angles and surface energetics
US11193845B2 (en) Ultrahigh sensitive pressure-sensing film based on spiky hollow carbon spheres and the fabrication method thereof
CN105865979A (zh) 一种测量微液滴电湿效应的装置与方法
Chang et al. Anti-smudge behavior of facilely fabricated liquid-infused surfaces with extremely low contact angle hysteresis property
CN101041414A (zh) 基于干法刻蚀和湿法腐蚀工艺制备硅纳米结构的方法
Kiper et al. Sessile drop evaporation on (super) hydrophobic surfaces: Effect of low pressure on the contact line dynamics
US11499902B2 (en) Force sensing probe for surface wettability characterization
Cordeiro et al. Temperature dependent physicochemical properties of poly (N-isopropylacrylamide-co-N-(1-phenylethyl) acrylamide) thin films
CN104020152A (zh) 一种三明治结构微米管及其制备方法和应用
Denkov et al. Method for controlled formation of vitrified films for cryo-electron microscopy
JP2016539203A (ja) 基材にコーティングが施された物品、コーティング組成物、コーティング方法
RU2362141C2 (ru) Способ определения количества жидкости, перемещаемой поверхностно-активным веществом
JP2007108007A (ja) 接触角測定方法および接触角測定装置
Sasaki et al. Non-close-packed arrangement of soft elastomer microspheres on solid substrates
CN206470193U (zh) 一种用于原位测量聚合物薄膜中溶剂蒸汽膨胀的装置
TWI678477B (zh) 可變表面吸附力元件及其製造方法
JP7353293B2 (ja) 均一な剛性を有するポリマーゲルの表面にナノ物質を堆積させる方法
US8587881B2 (en) Miniature lenses, systems and methods of making the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23745996

Country of ref document: EP

Kind code of ref document: A1