WO2023143058A1 - 超声雾化器 - Google Patents

超声雾化器 Download PDF

Info

Publication number
WO2023143058A1
WO2023143058A1 PCT/CN2023/071618 CN2023071618W WO2023143058A1 WO 2023143058 A1 WO2023143058 A1 WO 2023143058A1 CN 2023071618 W CN2023071618 W CN 2023071618W WO 2023143058 A1 WO2023143058 A1 WO 2023143058A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
power supply
impedance
capacitor
ultrasonic
Prior art date
Application number
PCT/CN2023/071618
Other languages
English (en)
French (fr)
Inventor
李新军
徐中立
李永海
Original Assignee
深圳市合元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市合元科技有限公司 filed Critical 深圳市合元科技有限公司
Publication of WO2023143058A1 publication Critical patent/WO2023143058A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/005Sprayers or atomisers specially adapted for therapeutic purposes using ultrasonics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0653Details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of ultrasonic nebulizers, in particular to an ultrasonic nebulizer.
  • ultrasonic nebulizers can be used in many fields such as humidification, aromatherapy, sterilization, decoration, medical atomization, and electronic cigarettes.
  • the ultrasonic atomizer uses ultrasonic atomization technology to realize the atomization function.
  • the ultrasonic atomizing sheet can convert electrical energy into ultrasonic energy, and ultrasonic energy can atomize water-soluble particles at room temperature.
  • the liquid is atomized into tiny mist particles of 1 ⁇ m to 5 ⁇ m, so that water can be used as the medium, and the water-soluble atomized liquid can be sprayed into mist by using ultrasonic directional pressure.
  • the embodiment of the present application aims to provide an ultrasonic nebulizer, which can improve the working efficiency of the ultrasonic nebulizer.
  • an ultrasonic nebulizer comprising:
  • a liquid storage cavity used for storing liquid matrix
  • an ultrasonic atomizing sheet for generating oscillations to atomize the liquid matrix
  • control circuit includes:
  • a power supply branch connected to the power supply, for generating DC power according to the power supply;
  • a switch branch connected to the controller and the power supply branch, is used to turn on and off in response to the first pulse signal output by the controller, so as to generate a pulse voltage according to the DC power supply;
  • a resonant branch connected to the power supply branch and the switch branch respectively, for resonating in response to the conduction and disconnection of the switch branch, so as to drive the ultrasonic atomization according to the pulse voltage output
  • the driving voltage of the chip
  • Impedance branch connected between the resonant branch and the ultrasonic atomizing sheet, the impedance branch is used to make the impedance of the combination of the impedance branch and the ultrasonic atomizing sheet and the power supply branch circuit, the switching branch and the resonant branch combined impedance matching.
  • the power branch circuit includes a first inductor
  • a first end of the first inductor is connected to the power supply, and a second end of the first inductor is respectively connected to the switching branch and the resonance branch.
  • the switch branch circuit includes a switch tube
  • the first end of the switch tube is connected to the controller, the second end of the switch tube is grounded, and the third end of the switch tube is respectively connected to the power supply branch and the resonance branch.
  • the switch branch circuit further includes a first capacitor, the first end of the first capacitor is connected to the third end of the switch transistor, and the second end of the first capacitor is grounded ;
  • the first capacitor is used for charging when the switching tube is off and the current flowing through the resonant branch is less than a first current threshold, and for charging when the switching tube is off and flowing through the resonance branch When the current of the branch is greater than or equal to the first current threshold, it resonates with the resonant branch and discharges;
  • the switch tube when the first capacitor is discharged to the second current threshold, the switch tube is turned on.
  • the resonant frequency of the combination of the first capacitor and the resonant branch is lower than the frequency of the ultrasonic atomizing sheet
  • the resonant frequency of the resonant branch is greater than the frequency of the ultrasonic atomizing sheet.
  • the frequency of the ultrasonic atomizing sheet is any frequency in [2.9MHZ-3.1MHZ];
  • the combined resonance frequency of the first capacitor and the resonant branch is any frequency in [2MHZ-3MHZ];
  • the resonant frequency of the resonant branch is any frequency in [3.2MHZ-4MHZ].
  • the switch branch further includes a first resistor and a second resistor connected in series;
  • the first end of the circuit composed of the first resistor and the second resistor connected in series is connected to the controller, and the second end of the circuit composed of the first resistor connected in series with the second resistor is grounded, so The connection point between the first resistor and the second resistor is connected to the first end of the switch tube.
  • the resonance branch includes a second capacitor and a second inductor
  • the first end of the second capacitor is respectively connected to the power supply branch and the switch branch, the second end of the second capacitor is connected to the first end of the second inductor, and the second inductor The second end of is connected to the impedance branch.
  • the resonant branch includes a sixth capacitor and a primary winding of a transformer
  • the first end of the sixth capacitor is respectively connected to the power supply branch and the switch branch, the second end of the sixth capacitor is connected to the first end of the primary winding, and the primary winding The second end of the ground.
  • the impedance branch includes a sixth inductor and a secondary winding of the transformer
  • the first end of the sixth inductance is connected to the first end of the secondary winding of the transformer, the second end of the sixth inductance is connected to the ultrasonic atomizing sheet, and the second end of the secondary winding of the transformer Both ends are grounded.
  • the impedance branch includes a third capacitor
  • the first end of the third capacitor is respectively connected to the resonance branch and the ultrasonic atomizing sheet, and the second end of the third capacitor is grounded.
  • the impedance branch further includes a third inductor
  • the first end of the third inductance is respectively connected to the first end of the third capacitor and the resonance branch, and the second end of the third inductance is connected to the ultrasonic atomizing sheet, or, the A first end of the third inductance is connected to the resonant branch, and a second end of the third inductance is respectively connected to the first end of the third capacitor and the ultrasonic atomizing sheet.
  • the impedance of the combination of the impedance branch and the ultrasonic atomizing sheet includes a real part of the impedance and an imaginary part of the impedance, and the real part of the impedance and the power supply branch and the switch
  • the impedance of the combination of the branch and the resonant branch is equal and the imaginary part of the impedance is zero
  • the impedance of the combination of the impedance branch and the ultrasonic atomizing sheet is the same as that of the power supply branch and the switch
  • the combined impedance of the branch and the resonant branch are matched.
  • control circuit further includes a driving branch
  • the switching branch is connected to the controller through the driving branch, and the driving branch is connected to the power supply;
  • the driving branch is used to receive the first pulse signal, and output a second pulse signal to the switching branch according to the first pulse signal and the power supply, wherein the driving capability of the second pulse signal is stronger than the first pulse signal.
  • the driving branch includes a driving chip, and the driving chip includes a power input terminal, at least one signal input terminal, and at least one signal output terminal;
  • the power input terminal is connected to the power supply, the signal input terminal is connected to the controller, and the signal output terminal is connected to the switch branch;
  • the signal input terminal is used for inputting the first pulse signal
  • the signal output terminal is used for outputting the second pulse signal
  • control circuit further includes a current detection branch
  • the current detection branch is respectively connected to the power supply, the power supply branch and the controller, and the current detection branch is used to detect the current flowing into the power supply branch.
  • the current detection branch includes an amplifier and a third resistor, the third resistor is respectively connected to the amplifier, the power supply branch and the power supply, and the amplifier and the controller connection;
  • the amplifier is configured to output a detection voltage according to the voltage across the third resistor, so that the controller determines the current flowing into the power supply branch according to the detection voltage.
  • the switching branch can be turned on or off to make the resonance branch resonate.
  • the resonance branch is purely resistive, reducing the The reactive power part of the resonance branch reduces the power loss and improves the working efficiency of the ultrasonic nebulizer. Therefore, the impedance of the resonant branch is the smallest, the current is the largest, and the output driving voltage is the largest, and is greater than the voltage of the power supply, which realizes the process of boosting the voltage of the power supply to drive the ultrasonic nebulizer.
  • the impedance of the combination of the impedance branch and the ultrasonic atomizing sheet is matched with the impedance of the combination of the power supply branch, the switch branch and the resonance branch through the impedance branch, which can reduce the combination of the impedance branch and the ultrasonic atomizing sheet Part of the reactive power, which can further reduce power loss and improve the working efficiency of the ultrasonic nebulizer.
  • Fig. 1 is the structural representation of the ultrasonic nebulizer provided by the embodiment of the present application
  • Fig. 2 is a schematic structural diagram of an ultrasonic nebulizer provided in another embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a control circuit provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the circuit structure of the control circuit provided by the embodiment of the present application.
  • FIG. 5 is a schematic circuit structure diagram of a control circuit provided by another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a control circuit provided by another embodiment of the present application.
  • FIG. 7 is a schematic diagram of a circuit structure of a control circuit provided by another embodiment of the present application.
  • the ultrasonic atomizer reduces reactive power by setting a resonant branch to provide a driving voltage for the ultrasonic atomizing sheet after boosting the power supply of the power supply part, improving work efficiency.
  • the impedance matching process of the ultrasonic atomizing sheet is also realized through the impedance branch circuit, which can reduce the reactive power of the ultrasonic atomizing sheet, thereby further improving the work efficiency.
  • FIG. 1 is a schematic structural diagram of an ultrasonic nebulizer provided in an embodiment of the present application.
  • the ultrasonic atomizer 100 includes a liquid storage chamber 11 , an ultrasonic atomizing chip 12 , a controller 13 , a control circuit 14 and a power supply 15 .
  • the liquid storage chamber 11 is used to store the liquid matrix, which may include different substances according to different use scenarios, for example, in the field of electronic cigarettes, it may contain nicotine and/or fragrance and/or aerosol generating substances (such as , glycerin), for example, in the field of medical atomization, may include solvents such as medicines for disease treatment or beneficial to health and/or physiological saline.
  • nicotine and/or fragrance and/or aerosol generating substances such as , glycerin
  • solvents such as medicines for disease treatment or beneficial to health and/or physiological saline.
  • the ultrasonic atomizing sheet 12 is in fluid communication with the liquid storage chamber 11, and the ultrasonic atomizing sheet 12 can be directly arranged in the liquid storage chamber 11, or the atomization chamber where the ultrasonic atomizing sheet 12 is located can directly communicate with the liquid storage chamber 11, or
  • the liquid can be transmitted between the ultrasonic atomizing sheet 12 and the liquid storage chamber 11 through a liquid absorbing medium. It is used to generate vibrations to atomize the liquid matrix, that is, to atomize the liquid matrix transmitted to or near the ultrasonic atomizing sheet 12 into an aerosol through vibration.
  • the ultrasonic atomizing sheet 12 breaks up the liquid matrix through high-frequency vibration (preferably, the vibration frequency is 1.7MHz-4.0MHz, exceeding the human hearing range and belongs to the ultrasonic frequency band) to generate an aerosol in which the particles are naturally suspended.
  • high-frequency vibration preferably, the vibration frequency is 1.7MHz-4.0MHz, exceeding the human hearing range and belongs to the ultrasonic frequency band
  • the controller 13 may adopt a micro control unit (Micro Controller Unit, MCU) or a digital signal processing (Digital Signal Processing, DSP) controller or the like.
  • the controller 13 is electrically connected to the control circuit 14 , and the controller 13 can be used to control at least one electronic component in the control circuit 14 .
  • the control circuit 14 is electrically connected to the ultrasonic atomizing sheet 12 , and the control circuit 14 is used to provide driving voltage and driving current for the ultrasonic atomizing sheet 12 according to the power supply 15 .
  • the controller 13 and the control circuit 14 may be disposed on a printed circuit board (Printed Circuit Board, PCB).
  • the power supply 15 is used for power supply.
  • the power source 15 is a battery.
  • the battery may be lithium-ion battery, lithium metal battery, lead-acid battery, nickel-cadmium battery, nickel-hydrogen battery, lithium-sulfur battery, lithium-air battery or sodium-ion battery, etc., which are not limited herein.
  • the battery in the embodiment of the present application may be a single battery cell, or a battery module composed of multiple battery cells connected in series and/or parallel, etc., which is not limited here.
  • the battery may also include more or less elements, or have different element configurations, which is not limited in this embodiment of the present application.
  • the ultrasonic nebulizer 100 further includes a liquid transmission medium 16 , an air outlet channel 17 , an upper shell 18 and a lower shell 19 .
  • the liquid transfer element 16 is used to transfer the liquid matrix between the liquid storage cavity 11 and the ultrasonic atomizing sheet 12 .
  • the air outlet channel 17 is used to output the inhalable vapor or aerosol produced by the liquid matrix for inhalation by the user.
  • the upper case 18 and the lower case 19 are detachably connected.
  • the upper case 18 and the lower case 19 can be detachably connected through a buckle structure or a magnetic attraction structure.
  • the upper case 18 and the lower case 19 jointly play the role of housing and protecting other components.
  • the liquid storage chamber 11 , the ultrasonic atomizing sheet 12 , the liquid transfer element 16 and the air outlet channel 17 are all arranged in the upper casing 18
  • the controller 13 , the control circuit 14 and the power supply 15 are all arranged in the lower casing 19 .
  • the upper housing 18 is removably aligned with the lower housing 19 in functional relationship.
  • Various mechanisms may be utilized to connect the lower housing 19 to the upper housing 18, resulting in a threaded engagement, a force fit engagement, an interference fit, a magnetic engagement, and the like.
  • the ultrasonic nebulizer 100 may be substantially in the shape of a rod, a flat cylinder, a rod, a column, etc.
  • Upper housing 18 and lower housing 19 may be formed from any suitable structurally sound material.
  • the upper housing 18 and the lower housing 19 may be formed of a metal or alloy such as stainless steel or aluminum.
  • Other suitable materials include various plastics (eg, polycarbonate), metal-plating over plastic, ceramics, and the like.
  • the hardware structure of the ultrasonic atomizer 100 shown in FIG. 1 is only an example, and the ultrasonic atomizer 100 may have more or fewer components than those shown in the figure, and Combining two or more components, or having different component configurations, the various components shown in the figures can be implemented in hardware, software, or hardware including one or more signal processing and/or application specific integrated circuits implemented in combination with software.
  • the ultrasonic atomizing sheet 12 can be arranged in the liquid storage chamber 11 , so that the liquid transmission element 16 can be saved, which is beneficial to save costs.
  • the ultrasonic nebulizer 100 shown in FIG. 1 or FIG. 2 can be applied to many different occasions and play different roles, which is not specifically limited in this embodiment of the present application.
  • the ultrasonic nebulizer 100 is applied in the medical field.
  • the ultrasonic nebulizer 100 can be a medical nebulizer, and the medical nebulizer can achieve a and make the patient inhale to achieve the effect of adjuvant therapy.
  • the ultrasonic nebulizer 100 can also be used as an electronic product, such as an electronic cigarette.
  • the electronic cigarette is a device for users to inhale after turning nicotine solution into aerosol by atomization and other means. An electronic product.
  • FIG. 3 is a schematic diagram of the circuit structure of the ultrasonic nebulizer provided in the embodiment of the present application.
  • the control circuit 14 includes a power branch 141 , a switch branch 142 , a resonance branch 143 and an impedance branch 144 .
  • the power supply branch 141 is connected with the power supply 15
  • the switch branch 142 is connected with the controller 12 and the power supply branch 141 respectively
  • the resonance branch 143 is connected with the power supply branch 141 and the switch branch 142 respectively
  • the impedance branch 144 is connected with the Between the resonance branch 143 and the ultrasonic atomizing sheet 12 .
  • the first end of the power supply branch 141 is connected to the power supply 15
  • the second end of the power supply branch 141 is respectively connected to the first end of the switch branch 142 and the first end of the resonant branch 143
  • the switch branch 142 The second end is connected to the controller 13
  • the second end of the resonance branch 143 is connected to the first end of the impedance branch 144
  • the second end of the impedance branch 144 is connected to the first end of the ultrasonic atomizing sheet 12 .
  • the power supply branch 141 is used to generate DC power according to the power supply 15 .
  • the switch branch 142 is configured to be turned on and off in response to the first pulse signal output by the controller 13 to generate a pulse voltage according to the DC power.
  • the resonant branch 143 is used to resonate in response to the switch branch 142 being turned on and off, so as to output the driving voltage for driving the ultrasonic atomizing sheet 12 according to the pulse voltage.
  • the impedance branch 144 is used to match the combined impedance of the impedance branch 144 and the ultrasonic atomizing sheet 12 with the combined impedance of the power supply branch 141 , the switch branch 142 and the resonance branch 143 .
  • the ultrasonic atomizing sheet 12 when the ultrasonic atomizing sheet 12 needs to be driven, first, the power supply 15 is converted to a DC power output after passing through the power supply branch 141, and at the same time, the controller 13 outputs the first pulse signal to control the switch branch 142 is continuously switched between on and off, so as to convert the DC power output by the power supply branch 141 into AC power, that is, pulse voltage. Then, after resonance occurs, the resonance branch 143 can boost the received pulse voltage, and use the boosted driving voltage to drive the ultrasonic atomizing sheet 12 .
  • the resonant branch 143 since the resonant branch 143 realizes the resonance, the resonant branch 143 is substantially purely resistive, which can reduce the part of the reactive power of the resonant branch 143, that is, reduce the power loss, thereby improving the performance of the ultrasonic nebulizer 100. work efficiency.
  • the impedance of the resonant branch 143 is the smallest and the current is the largest, and can output a relatively large driving voltage to drive the ultrasonic atomizing sheet 12 to operate stably.
  • the ultrasonic atomizing sheet 12 can be equivalent to a capacitive load, and after resonance occurs in the resonance branch 143, the combination of the power supply branch 141, the switch branch 142 and the resonance branch 143 is a pure resistive output. Direct energy transmission between the two (ie, the capacitive load and the pure resistive output) will generate relatively large reactive power, which will lead to a significant reduction in the efficiency of driving the ultrasonic atomizing sheet 12 .
  • the combined impedance (Zh) of the impedance branch 144 and the ultrasonic atomizing sheet 12 includes the real part of the impedance (Rh) and the imaginary part of the impedance (j*Xh).
  • the impedance (Z0) of the combination of the road 141, the switch branch 142 and the resonance branch 143 is equal, and the imaginary part of the impedance is zero, the impedance of the combination of the impedance branch 144 and the ultrasonic atomizing sheet 12 is the same as that of the power supply branch 141, the switch The combined impedance of branch 142 and resonant branch 143 are matched.
  • an impedance opposite to the capacitive reactance of the ultrasonic atomizing sheet 12 needs to be further configured in the resistance branch 144 to offset the capacitive reactance and eliminate the useless work caused by the capacitive reactance.
  • the power supply branch 141 includes a first inductor L1. Wherein, the first end of the first inductor L1 is connected to the power source 15 , and the second end of the first inductor L1 is respectively connected to the switch branch 142 and the resonant branch 143 .
  • the first inductance L1 is a high-frequency choke coil, and the high-frequency choke coil only has a relatively large hindering effect on high-frequency alternating currents, has little hindering effect on low-frequency alternating currents, and has a greater hindering effect on direct currents. Small, so it can be used to "pass DC, block AC, pass low frequency, and block high frequency". Therefore, the first inductor L1 can allow direct current to pass through to provide energy for subsequent circuits, that is, to realize the process of outputting direct current power according to the power supply 15 . In addition, the first inductor L1 can also be used to prevent high frequency short circuit.
  • FIG. 4 also exemplarily shows a structure of the switch branch 142.
  • the switch branch 142 includes a switch tube Q1. Wherein, the first terminal of the switching transistor Q1 is connected to the controller 13 , the second terminal of the switching transistor Q1 is grounded to GND, and the third terminal of the switching transistor Q1 is respectively connected to the power supply branch 141 and the resonance branch 143 .
  • the switching transistor Q1 is an N-type metal-oxide-semiconductor field effect transistor (ie, an NMOS transistor) as an example.
  • the gate of the NMOS transistor is the first terminal of the switch transistor Q1
  • the source of the NMOS transistor is the second terminal of the switch transistor Q1
  • the drain of the NMOS transistor is the third terminal of the switch transistor Q1 .
  • the switch tube Q1 can also be a P-type metal oxide semiconductor field effect transistor or a signal relay, and the switch tube Q1 can also be a triode, an insulated gate bipolar transistor, an integrated gate commutated thyristor, The gate can turn off at least one of a thyristor, a junction gate field effect transistor, a MOS controlled thyristor, a gallium nitride-based power device, a silicon carbide-based power device, and a thyristor.
  • the switch branch 142 further includes a first resistor R1 and a second resistor R2 connected in series. Wherein, the first end of the circuit formed by connecting the first resistor R1 and the second resistor R2 in series is connected to the controller 13, the second end of the circuit formed by connecting the first resistor R1 and the second resistor R2 in series is grounded to GND, and the first resistor The connection point between R1 and the second resistor R2 is connected to the first end of the switch tube Q1.
  • the first resistor R1 and the second resistor R2 are used to divide the voltage of the first pulse signal output by the controller 13 to obtain the voltage of the first terminal of the switch tube Q1 .
  • the switch tube Q1 is turned on, otherwise, the switch tube Q1 is turned off.
  • the switch branch 142 further includes a first capacitor C1, the first end of the first capacitor C1 is connected to the third end of the switch transistor Q1, and the second end of the first capacitor C1 is grounded to GND.
  • the first capacitor C1 is used for charging when the switch tube Q1 is turned off and the current flowing through the resonant branch 143 is less than the first current threshold, and for charging when the switch tube Q1 is turned off and flows through the resonant branch 143 When the current is greater than or equal to the first current threshold, it resonates with the resonant branch 143 and discharges. Wherein, when the first capacitor C1 is discharged to the second current threshold, the switch tube Q1 is turned on.
  • the settings of the first current threshold and the second current threshold are related to parameters of the first capacitor C1 and the resonant branch 143 .
  • different first capacitors C1 and resonant branches 143 can be selected to obtain different first current thresholds and second current thresholds, which are not specifically limited in this embodiment of the present application.
  • setting the first capacitor C1 can function as a voltage hysteresis. Specifically, when the switch tube Q1 is turned off, the voltage between the second terminal and the third terminal of the switch tube Q1 will not suddenly rise, but the voltage at both ends of the first capacitor C1 will be maintained first. After the current between the second terminal and the third terminal of the switch tube Q1 drops to zero, the voltage between the second terminal and the third terminal of the switch tube Q1 starts to rise again. Therefore, the soft turn-off of the switching tube Q1 is realized.
  • the current flowing through the resonant branch 143 is less than the first current threshold, and the first capacitor C1 is charged.
  • the current of the resonant branch 143 gradually increases until it is greater than or equal to the first current threshold, the current of the resonant branch 143 is greater than the current of the first inductor L1, and the first capacitor C1 resonates with the resonant branch 143 to discharge .
  • the switch tube Q1 is turned on.
  • the efficiency can reach 100% theoretically.
  • transistor barrier capacitance, diffusion capacitance and distributed capacitance in the circuit it takes a certain conversion time for the transistor to turn from saturation to cut-off or from cut-off to saturation.
  • both the collector current and the collector voltage of the tube will have a large value during the conversion time, resulting in an increase in tube consumption.
  • the parasitic capacitance is not too large, and its influence can be ignored when the operating frequency is low.
  • the increase of tube loss cannot be ignored, which reduces the efficiency and even damages the device.
  • the soft switching process (including soft turn-on and soft turn-off) of the switch tube Q1 can be realized, that is, the switch tube Q1 can be kept on and off. , the product of voltage and current is always zero. Therefore, the switching loss of the switching tube Q1 is close to zero, and the switching efficiency of the switching tube Q1 is relatively high, thereby improving the working efficiency of the ultrasonic nebulizer 100 .
  • the switching tube Q1 in order to ensure that the switching tube Q1 can work in a soft switching state, it can be realized by configuring the following parameters. First, when the switching tube Q1 is turned off, configure the connection between the first capacitor C1 and the resonant branch 143 The frequency when combined resonance (recorded as the first resonant frequency) is less than the frequency of the ultrasonic atomizing sheet 12, and at the same time, when the switch tube Q1 is turned on, the frequency when the resonant branch 143 is configured to resonate (recorded as the second resonant frequency) is greater than The frequency of the ultrasonically atomized sheet 12.
  • the first resonant frequency and the second resonant frequency can be configured according to the actually selected ultrasonic atomizing sheet 12 , which is not specifically limited in this embodiment of the present application.
  • the frequency of the selected ultrasonic atomizing sheet 12 is any frequency in [2.9MHz-3.1MHz]
  • the first resonance frequency can be any frequency in [2MHz-3MHz]
  • the second resonant frequency can be any frequency in [3.2MHz-4MHz].
  • the frequency of the ultrasonic atomizing sheet is 3MHz
  • the first resonance frequency is 2.5MHz
  • the second resonance frequency is 4MHz, so that the first resonance frequency is lower than the frequency of the ultrasonic atomizing sheet, and the frequency of the ultrasonic atomizing sheet is lower than the second resonance frequency. Frequency, so that the soft switching of the switching tube Q1 can be realized, and the switching efficiency of the switching tube Q1 can be improved.
  • the frequency of the selected ultrasonic atomizing sheet 12 is any frequency in [10KHz-10MHz], it can be set correspondingly according to the frequency of the ultrasonic atomizing sheet 12 actually used.
  • the first resonant frequency and the second resonant frequency only need to satisfy that the first resonant frequency is lower than the frequency of the ultrasonic atomizing sheet, and the frequency of the ultrasonic atomizing sheet is lower than the second resonant frequency.
  • the frequency of the ultrasonic atomizing sheet 12 actually used is 2.4MHz or 2.7MHz
  • the first resonant frequency can be any frequency in [1.5MHz-2MHz]
  • the second resonant frequency can be in [3MHz-3.5MHz] any frequency.
  • the first resonance frequency can be any frequency in [100KHz-120KHz]
  • the second resonance frequency can be any frequency in [180KHz-200KHz] frequency.
  • FIG. 4 also exemplarily shows a structure of the resonance branch 143.
  • the resonance branch 143 includes a second capacitor C2 and a second inductor L2.
  • the first end of the second capacitor C2 is respectively connected to the power supply branch 141 (that is, the second end of the first inductor L1) and the switch branch 142 (that is, the third end of the switching tube Q1), and the second end of the second capacitor C2
  • the two ends are connected to the first end of the second inductor L2
  • the second end of the second inductor L2 is connected to the impedance branch 144 .
  • the circuit formed by the second capacitor C2 and the second inductor L2 is purely resistive.
  • the impedance is the smallest and the current is the largest.
  • a high voltage N times greater than the pulse voltage input to the resonant branch 143 will be generated on C2 and the second inductor L2, where N is greater than 1.
  • the high voltage is the driving voltage used to drive the ultrasonic atomizing sheet 12 .
  • the ultrasonic atomizing sheet 12 can obtain relatively sufficient driving energy, which is beneficial to maintain the stable operation of the ultrasonic atomizing sheet 12 .
  • FIG. 5 also exemplarily shows another structure of the resonant branch 143.
  • the resonant branch 143 includes a sixth capacitor C6 and a primary winding L4 of the transformer.
  • the first end of the sixth capacitor C6 is connected to the power supply branch 141 and the switch branch 142 respectively
  • the second end of the sixth capacitor C6 is connected to the first end of the primary winding L4, and the second end of the primary winding L4 Ground GND.
  • the resonance between the sixth capacitor C6 and the primary winding L4 of the transformer is similar to the resonance between the second capacitor C2 and the second inductor L2, which is within the scope of those skilled in the art and will not be repeated here.
  • the impedance branch 144 includes a third capacitor C3 and a third inductor L3 .
  • the first end of the third inductor L3 is respectively connected to the first end of the third capacitor C3 and the resonant branch 143
  • the second end of the third inductor L3 is connected to the ultrasonic atomizing sheet 12 .
  • FIG. 4 only exemplarily shows a structure of the impedance branch 144, and in other embodiments, the impedance branch 144 may also have other structures, which are not specifically limited in this embodiment of the present application. , as long as the impedance of the combination of the impedance branch 144 and the ultrasonic atomizing sheet 12 matches the impedance of the combination of the power supply branch 141 , the switch branch 142 and the resonance branch 143 .
  • the impedance branch 144 may only include the third capacitor C3.
  • the first end of the third capacitor C3 is respectively connected to the resonance branch 143 and the ultrasonic atomizing sheet 12 , and the second end of the third capacitor C3 is grounded to GND.
  • the impedance branch 144 still includes a third capacitor C3 and a third inductance L3, and in this embodiment, the first end of the third inductance L3 is connected to the resonant branch 143, and the third The second end of the inductor L3 is respectively connected to the first end of the third capacitor C3 and the ultrasonic atomizing sheet 12 .
  • the impedance branch includes a sixth inductor L6 and a secondary winding L5 of the transformer.
  • the first end of the sixth inductance L6 is connected to the first end of the secondary winding L5 of the transformer
  • the second end of the sixth inductance L6 is connected to the ultrasonic atomizing sheet 12
  • the second end of the secondary winding L5 of the transformer is grounded GND.
  • the control circuit 14 further includes a sixth resistor R6 , a seventh resistor R7 and an eighth resistor R8 .
  • the first end of the sixth resistor R6 is connected to the first end of the sixth inductor L6, the second end of the sixth resistor R6 is connected to the first end of the seventh resistor R7, and the second end of the seventh resistor R7 is connected to the first end of the sixth resistor R7.
  • the first ends of the eight resistors R8 are all grounded to GND, and the second end of the eighth resistor R8 is connected to the ultrasonic atomizing sheet 12 .
  • the sixth resistor R6 and the seventh resistor R7 are used to realize the voltage detection function
  • the eighth resistor R8 is used to realize the current detection function.
  • the power source 15 forms a loop through the first inductor L1, the switch tube Q1 and the ground GND, and stores energy from the power source 15 in the first inductor L1.
  • the inductance value of the first inductor L1 is larger, and the stored energy is more, which can be equivalent to a constant current source.
  • the first pulse signal output by the controller 13 is in a low level state, the switch tube Q1 is turned off, the current originally flowing through the switch tube Q1 is transferred to the first capacitor C1, and the current on the switch tube Q1 is zero.
  • the power supply 15, the first inductor L1, and the first capacitor C1 form a loop, the power supply 15 starts to charge the first capacitor C1, the voltage across the first capacitor C1 gradually increases, and at this time, the current on the resonant branch 143 changes from negative to zero Axes are gradually reduced.
  • the current on the first inductor L1 is equal to the current on the first capacitor C1
  • the current on the resonant branch 143 and the ultrasonic atomizing sheet 12 is zero.
  • the current on the resonant branch 143 and the ultrasonic atomizing sheet 12 changes from negative to positive and gradually increases.
  • the current flowing through the first capacitor C1 is 0, and the voltage across the first capacitor C1 reaches a maximum value at this moment.
  • the first capacitor C1 starts to discharge.
  • the voltage across the first capacitor C1 decreases gradually.
  • the first pulse signal output by the controller 13 switches from a low level state to a high level state, and the switch tube Q1 conduction. It can be seen that when the switch tube Q1 is turned on, the voltage between the second terminal and the third terminal of the switch tube Q1 (that is, the voltage across the first capacitor C1 ) is zero, so no loss occurs when the switch tube Q1 is turned on.
  • the switch tube Q1 is turned on, the first capacitor C1 is short-circuited, and the voltage across the first capacitor C1 is zero.
  • the initial current flowing through the switch tube Q1 is 0, and gradually increases, and the current of the resonant branch 143 gradually decreases.
  • the current flowing through the switch tube Q1 is equal to the current on the first inductor L1, the current in the resonant branch 143 is zero.
  • the current of the resonant branch 143 changes from 0 to a negative value, and the current amplitude gradually increases, and the current flowing through the switch tube Q1 keeps rising.
  • the power supply 15 stores the capacity in the first inductor L1 again until the first pulse signal output by the controller 13 switches from a high level state to a low level state again, and then the switch tube Q1 is turned off again.
  • the above-mentioned process is executed repeatedly, that is, the driving process of the ultrasonic atomizing sheet 12 is realized. Moreover, in this process, on the one hand, the soft switching process of the switching tube Q1 is realized through the cooperation of the first capacitor C1, the second capacitor C2 and the first inductor L2, and the damage on the switching tube Q1 is less, so that the ultrasonic The working efficiency of the atomizer 100 is relatively high.
  • the impedance branch 144 by arranging the impedance branch 144 to realize the combined impedance of the impedance branch 144 and the ultrasonic atomizing sheet 12 and the combined impedance of the power supply branch 141, the switch branch 142 and the resonance branch 143, it is possible to reduce The useless work generated by the ultrasonic atomizing sheet 12 and the driving efficiency of the ultrasonic atomizing sheet 12 are relatively high, which further improves the working efficiency of the ultrasonic atomizer 100 .
  • the control circuit 14 further includes a driving branch 145 .
  • the switching branch 142 is connected to the controller 13 through the driving branch 145 , and the driving branch 145 is connected to the power source 15 .
  • the second end of the switching branch 142 is connected to the first end of the driving branch 145
  • the second end of the driving branch 145 is connected to the controller 13
  • the third end of the driving branch 145 is connected to the power supply 15 .
  • the driving branch 145 is used for receiving the first pulse signal output by the controller 13 , and outputting the second pulse signal to the switching branch 142 according to the first pulse signal and the power supply 15 .
  • the driving capability of the second pulse signal is stronger than that of the first pulse signal.
  • the driving branch 145 is used to amplify the first pulse signal output by the controller 13 and then output the second pulse signal, so as to drive the switching tube Q1 in the switching branch 142 to turn on and off quickly.
  • a structure of the driving branch 145 is shown exemplary in FIG. 7. As shown in FIG. output.
  • the power input end is the sixth pin of the driver chip U1
  • at least one signal input end includes a signal input end, which is the second pin of the driver chip U1
  • at least one signal output end includes a signal input end.
  • the output terminal is the fifth pin of the driver chip U1.
  • the power input end is connected to the power supply 15
  • the signal input end is connected to the controller 13
  • the signal output end is connected to the switch branch 142 .
  • the signal input end is used for inputting the first pulse signal
  • the signal output end is used for outputting the second pulse signal.
  • the sixth pin of the driver chip U1 is used to connect to the power supply 15 .
  • the second pin of the driver chip U1 is connected to the controller 13 .
  • the fifth pin of the driver chip U1 is connected to the switch branch 142 .
  • the second pin of the driving chip U1 is used for inputting the first pulse signal
  • the fifth pin of the driving chip U1 is used for outputting the second pulse signal.
  • the driving capability of the pulse signal output by the controller 13 is improved by setting the driving chip U1. Therefore, the fast driving of the switch sub-branch 142 can be realized to maintain the stable operation of the ultrasonic atomizing sheet 12 . At the same time, the greater the current input by the sixth pin of the driver chip U1, the stronger the driving capability output by the fifth pin of the driver chip U1.
  • the driver chip U1 may be an integrated chip with a model number of SGM48000.
  • other types of integrated chips may also be selected, which is not limited in this embodiment of the present application.
  • the specific pin definitions may be different, but the functions and signal definitions are the same. If another type of driver chip is selected, it can be set in a manner similar to that of the above embodiment, which is within the scope of easy understanding by those skilled in the art, and will not be repeated here.
  • the power supply 15 is used as the input power supply of the driver chip U1 as an example.
  • the power supply 15 is simultaneously used as the power supply of the driver chip U1 and the ultrasonic atomizing sheet 12, so as to save costs. the goal of.
  • two different power supplies can be used to supply power for the driving chip U1 and the ultrasonic atomizing sheet 12 respectively, so as to improve the driving efficiency.
  • the control circuit 14 further includes a current detection branch 146 .
  • the current detection branch 146 is connected with the power supply 15, the power supply branch 141 and the controller 13 respectively.
  • the first end of the current detection path 146 is connected to the power supply 15
  • the second end of the current detection path 146 is connected to the power supply branch 141
  • the third end of the current detection path 146 is connected to the controller 13 .
  • the current detection branch 146 is used to detect the current flowing into the power supply branch 141 . Then, the controller 13 can judge whether the ultrasonic atomizing sheet 12 has an abnormality such as excessive current during the working process according to the current, so as to deal with it in time when an abnormality occurs, which is beneficial to reduce the risk of the ultrasonic atomizing sheet 12 being damaged.
  • FIG. 7 exemplarily shows a structure of the current detection branch 146.
  • the current detection branch 146 includes an amplifier U2 and a third resistor R3.
  • the third resistor R3 is respectively connected to the amplifier U2 and the power supply branch 141 , and the amplifier U2 is connected to the controller 13 .
  • the first end of the third resistor R3 is respectively connected to the power supply 15 and the non-inverting input end of the amplifier U2, and the second end of the third resistor R3 is respectively connected to the inverting input end of the amplifier U2 and the first end of the first inductor L1.
  • the output end of the amplifier U2 is connected to the controller 13, the ground end of the amplifier U2 is grounded to GND, and the power end of the amplifier U2 is connected to the voltage V1.
  • the amplifier U2 is configured to output a detection voltage according to the voltage across the third resistor R3, so that the controller 13 can determine the current flowing into the power supply branch 141 according to the detection voltage.
  • the amplifier U2 can amplify the received voltage at both ends of the third resistor R3 by K times and then output the detection voltage, wherein K is a positive integer. Then, the controller 13 can determine the current flowing into the power supply branch 141 according to the relationship between the detection voltage and the current flowing into the power supply branch 141 after acquiring the detection voltage.
  • the current detection branch 146 further includes a fourth capacitor C4, a fifth capacitor C5, a fourth resistor R4, and a fifth resistor R5.
  • the fourth capacitor C4 and the fifth capacitor C5 are filter capacitors
  • the fifth resistor R5 is a current limiting resistor
  • the fourth resistor R4 is a pull-down resistor.
  • the resistor is represented as a single resistor, and the capacitor is represented as a single capacitor.
  • the resistors can also be an integration of series, parallel or mixed resistors, and the capacitors can also be an integration of series, parallel or mixed capacitors.
  • connection mentioned in this application can be a direct connection, that is, a connection between two components, or an indirect connection, that is, an indirect connection between two components can be formed through one or more components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Anesthesiology (AREA)
  • Special Spraying Apparatus (AREA)

Abstract

一种超声雾化器,其包括:储液腔(11),用于存储液体基质;超声雾化片(12),用于产生振荡以雾化液体基质;控制器(13)、控制电路(14)及电源(15);控制电路(14)包括电源支路(141)、开关支路(142)、谐振支路(143)与阻抗支路(144),谐振支路(143)用于响应于开关支路(142)的导通与断开而谐振,以根据脉冲电压输出驱动电压;阻抗支路(144)用于使阻抗支路(144)和超声雾化片(12)组合的阻抗与电源支路(141)、开关支路(142)和谐振支路(143)组合的阻抗相匹配。该雾化器能够提升工作效率。

Description

超声雾化器
相关申请的交叉参考
本申请要求于2022年01月26日提交中国专利局,申请号为202210096036.9,发明名称为“超声雾化器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及超声雾化器技术领域,特别是涉及一种超声雾化器。
背景技术
日常生活中,超声雾化器可以使用于加湿、加香、杀菌、装饰、医疗雾化、电子烟等多领域。
其中,超声雾化器利用超声波雾化技术以实现雾化功能,具体为在超声雾化器中,超声雾化片能够把电能转化为超声波能量,而超声波能量在常温下能把水溶性雾化液雾化成1μm到5μm的微小雾粒,从而可实现以水为介质,利用超声定向压强将水溶性雾化液喷成雾状。
然而,在现有技术中,在对超声雾化片驱动时,能量的额外损耗较多,导致超声波雾化器的工作效率较低。
发明内容
本申请实施例旨在提供一种超声雾化器,能够提升超声雾化器的工作效率。
第一方面,本申请提供一种超声雾化器,包括:
储液腔,用于存储液体基质;
超声雾化片,用于产生振荡以雾化所述液体基质;
控制器、控制电路及电源;
其中,所述控制电路包括:
电源支路,与所述电源连接,用于根据所述电源产生直流电源;
开关支路,分别与所述控制器及所述电源支路连接,用于响应于所述控制器输出的第一脉冲信号而导通与断开,以根据所述直流电源产生脉冲电压;
谐振支路,分别与所述电源支路及所述开关支路连接,用于响应于所述开关支路的导通与断开而谐振,以根据所述脉冲电压输出驱动所述超声雾化片的驱动电压;
阻抗支路,连接于所述谐振支路及所述超声雾化片之间,所述阻抗支路用于使所述阻抗支路和所述超声雾化片的组合的阻抗与所述电源支路、所述开关支路和所述谐振支路的组合的阻抗相匹配。
在一种可选的方式中,所述电源支路包括第一电感;
所述第一电感的第一端与所述电源连接,所述第一电感的第二端分别与所述开关支路及所述谐振支路连接。
在一种可选的方式中,所述开关支路包括开关管;
所述开关管的第一端与所述控制器连接,所述开关管的第二端接地,所述开关管的第三端分别与所述电源支路及所述谐振支路连接。
在一种可选的方式中,所述开关支路还包括第一电容,所述第一电容的第一端与所述开关管的第三端连接,所述第一电容的第二端接地;
所述第一电容用于在所述开关管断开,且流过所述谐振支路的电流小于第一电流阈值时充电,以及用于在所述开关管断开,且流过所述谐振支路的电流大于或等于所述第一电流阈值时与所述谐振支路进行谐振而放电;
其中,在所述第一电容放电至第二电流阈值时,所述开关管导通。
在一种可选的方式中,在所述开关管断开时,所述第一电容与所述谐振支路的组合谐振时的频率小于所述超声雾化片的频率;
在所述开关管导通时,所述谐振支路谐振时的频率大于所述超声雾化片的频率。
在一种可选的方式中,所述超声雾化片的频率为[2.9MHZ-3.1MHZ]中的任一频率;
在所述开关管断开时,所述第一电容与所述谐振支路的组合谐振时的频率为[2MHZ-3MHZ]中的任一频率;
在所述开关管导通时,所述谐振支路谐振时的频率为[3.2MHZ-4MHZ]中的任一频率。
在一种可选的方式中,所述开关支路还包括串联连接的第一电阻与第二电阻;
所述第一电阻与所述第二电阻串联连接组成的电路的第一端与所述控制器连接,所述第一电阻与所述第二电阻串联连接组成的电路的第二端接地,所述第一电阻与所述第二电阻之间的连接点与所述开关管的第一端连接。
在一种可选的方式中,所述谐振支路包括第二电容与第二电感;
所述第二电容的第一端分别与所述电源支路及所述开关支路连接,所述第二电容的第二端与所述第二电感的第一端连接,所述第二电感的第二端与所述阻抗支路连接。
在一种可选的方式中,所述谐振支路包括第六电容与变压器的原边绕组;
所述第六电容的第一端分别与所述电源支路及所述开关支路连接,所述第六电容的第二端与所述原边绕组的第一端连接,所述原边绕组的第二端接地。
在一种可选的方式中,所述阻抗支路包括第六电感与所述变压器的副边绕组;
所述第六电感的第一端与所述变压器的副边绕组的第一端连接,所述第六电感的第二端与所述超声雾化片连接,所述变压器的副边绕组的第二端接地。
在一种可选的方式中,所述阻抗支路包括第三电容;
所述第三电容的第一端分别与所述谐振支路及所述超声雾化片连接,所述第三电容的第二端接地。
在一种可选的方式中,所述阻抗支路还包括第三电感;
所述第三电感的第一端分别与所述第三电容的第一端及所述谐振支路连接,所述第三电感的第二端与所述超声雾化片连接,或,所述第三电感的第一端与所述谐振支路连接,所述第三电感的第二端分别与所述第三电容的第一端及所述超声雾化片连接。
在一种可选的方式中,所述阻抗支路和所述超声雾化片的组合的阻抗包括阻抗实部与阻抗虚部,在所述阻抗实部与所述电源支路、所述开关支路和所述谐振支路的组合的阻抗相等、且所述阻抗虚部为零时,所述阻抗支路和所述超声雾化片的组合的阻抗与所述电源支路、所述开关支路和所述谐振支路的组合的阻抗相匹配。
在一种可选的方式中,所述控制电路还包括驱动支路;
所述开关支路通过所述驱动支路与所述控制器连接,且所述驱动支路与所述电源连接;
所述驱动支路用于接收所述第一脉冲信号,并根据所述第一脉冲信号与所述电源输出第二脉冲信号至所述开关支路,其中,所述第二脉冲信号的驱动能力强于所述第一脉冲信号。
在一种可选的方式中,所述驱动支路包括驱动芯片,所述驱动芯片 包括电源输入端、至少一个信号输入端与至少一个信号输出端;
所述电源输入端与所述电源连接,所述信号输入端与所述控制器连接,所述信号输出端与所述开关支路连接;
其中,所述信号输入端用于输入所述第一脉冲信号,所述信号输出端用于输出所述第二脉冲信号。
在一种可选的方式中,所述控制电路还包括电流检测支路;
所述电流检测支路分别与所述电源、所述电源支路及所述控制器连接,所述电流检测支路用于检测流入所述电源支路的电流。
在一种可选的方式中,所述电流检测支路包括放大器与第三电阻,所述第三电阻分别与所述放大器、所述电源支路及所述电源连接,且所述放大器与所述控制器连接;
所述放大器被配置为根据所述第三电阻两端的电压输出检测电压,以使所述控制器根据所述检测电压确定流入至所述电源支路的电流。
本申请提供的超声雾化器,在超声雾化片的工作过程中,可通过开关支路的导通或断开以使谐振支路谐振,此时,谐振支路呈现纯电阻性,减少了谐振支路的无功功率的部分,即减少了功率损耗,提高了超声雾化器的工作效率。从而,谐振支路的阻抗最小,电流最大,所输出的驱动电压最大,且大于电源的电压,则实现了对电源的电压进行升压以驱动超声雾化器的过程。另外,通过阻抗支路实现阻抗支路和超声雾化片的组合的阻抗与电源支路、开关支路和谐振支路的组合的阻抗相匹配,可减少阻抗支路和超声雾化片的组合的无功功率的部分,从而能够进一步减少功率损耗,提高超声雾化器的工作效率。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明, 这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本申请实施例提供的超声雾化器的结构示意图;
图2为本申请另一实施例提供的超声雾化器的结构示意图;
图3为本申请实施例提供的控制电路的结构示意图;
图4为本申请实施例提供的控制电路的电路结构示意图;
图5为本申请另一实施例提供的控制电路的电路结构示意图;
图6为本申请另一实施例提供的控制电路的结构示意图;
图7为本申请又一实施例提供的控制电路的电路结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的一种超声雾化器,该超声雾化器通过设置谐振支路以在实现对电源的电源进行升压后为超声雾化片提供驱动电压的基础上,减少了无功功率的部分,提高了工作效率。同时,还通过阻抗支路以实现超声雾化片的阻抗匹配过程,可减少超声雾化片的无功功率的部分,从而进一步提高了工作效率。
请参照图1,图1为本申请实施例提供的超声雾化器的结构示意图。如图1所示,该超声雾化器100包括用于储液腔11、超声雾化片12、 控制器13、控制电路14与电源15。
其中,储液腔11用于存储液体基质,该液体基质根据不同的使用场景可包括不同的物质,例如在电子烟雾化领域,可包含尼古丁和/或芳香剂和/或气溶胶生成物质(例如,甘油),例如在医疗雾化领域,可包括具有疾病治疗或者有利于健康的药物和/或生理盐水等溶剂。
超声雾化片12与储液腔11流体连通,可以是超声雾化片12直接设置在储液腔11,也可以是超声雾化片12所在的雾化腔与储液腔11直接贯通,也可以是超声雾化片12与储液腔11之间通过吸液介质进行液体传输。其用于产生振荡以雾化液体基质,即通过振动将传递至超声雾化片12上或者附近的液体基质雾化成气溶胶。具体地,超声雾化片12在使用中通过高频振动(优选振动频率为1.7MHz~4.0MHz,超过人的听觉范围属于超声频段)将液体基质打散而产生微粒自然悬浮的气溶胶。
控制器13可采用微控制单元(Micro Controller Unit,MCU)或者数字信号处理(Digital Signal Processing,DSP)控制器等。控制器13与控制电路14电性连接,控制器13可用于控制控制电路14中的至少一个电子元件。控制电路14与超声雾化片12电性连接,控制电路14用于根据电源15为超声雾化片12提供驱动电压与驱动电流。在一实施方式中,控制器13与控制电路14可以设置于印刷电路板(Printed Circuit Board,PCB)上。
电源15用于供电。在一实施方式中,电源15为电池。其中,电池可以为锂离子电池、锂金属电池、铅酸电池、镍镉电池、镍氢电池、锂硫电池、锂空气电池或者钠离子电池等,在此不做限定。从规模而言,本申请实施例中的电池可以为电芯单体,也可以是由多个电芯单体串联和/或并联组成的电池模组等等,在此不做限定。当然,在其他的实施例中,电池也可以包括更多或更少的元件,或者具有不同的元件配置, 本申请实施例对此不作限制。
在一实施例中,超声雾化器100还包括液体传递介质16、出气通道17、上壳体18与下壳体19。
其中,液体传递元件16用于在储液腔11与超声雾化片12之间传递液体基质。
出气通道17用于将由液体基质所产生的可吸入蒸汽或气溶胶输出,以供用户抽吸。
上壳体18与下壳体19之间可拆卸连接,在一实施例中,上壳体18与下壳体19可以通过卡扣结构或磁吸结构等实现可拆卸连接。上壳体18与下壳体19共同起到收容及保护其他元器件的作用。其中,储液腔11、超声雾化片12、液体传递元件16与出气通道17均设置于上壳体18内,且控制器13、控制电路14与电源15均设置于下壳体19内。
上壳体18与下壳体19以功能性关系可拆卸地对齐。可以利用各种机构将下壳体19连接到上壳体18,从而产生螺纹接合、压入配合接合、过盈配合、磁性接合等等。在一些实施方式中,当上壳体18与下壳体19处于组装配置时,超声雾化器100可基本上是棒状、扁筒状、杆状、柱状形状等。
上壳体18与下壳体19可由任何适合的结构上完好的材料形成。在一些示例中,上壳体18与下壳体19可由诸如不锈钢、铝之类的金属或合金形成。其它适合的材料包括各种塑料(例如,聚碳酸酯)、金属电镀塑料(metal-plating over plastic)、陶瓷等等。
需要说明的是,如图1所示的超声雾化器100的硬件结构仅是一个示例,并且,超声雾化器100可以具有比图中所示出的更多的或者更少的部件,可以组合两个或更多的部件,或者可以具有不同的部件配置,图中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成 电路在内的硬件、软件、或硬件和软件的组合中实现。例如,如图2所示,可将超声雾化片12设于储液腔11中,则能够节省液体传递元件16,有利于节省成本。
同时,可以理解的是,图1或图2所示的超声雾化器100可应用于多种不同的场合,并起到不同的作用,本申请实施例对此不做具体限制。例如,在一实施例中,超声雾化器100应用于医学领域,此时,超声雾化器100可以为医用雾化器,该医用雾化器可实现通过对加入其内部的药液进行雾化,并使患者吸入,以达到辅助治疗的效果。又如,在另一实施例中,超声雾化器100还可以作为一种电子产品,比如电子烟,电子烟为通过雾化等手段,将尼古丁溶液等变成气雾后,供用户吸食的一种电子产品。
请一并参阅图3,图3为本申请实施例提供的超声雾化器电路结构示意图。如图3所示,控制电路14包括电源支路141、开关支路142、谐振支路143与阻抗支路144。
其中,电源支路141与电源15连接,开关支路142分别与控制器12及电源支路141连接,谐振支路143分别与电源支路141及开关支路142连接,阻抗支路144连接于谐振支路143及超声雾化片12之间。具体地,电源支路141的第一端与电源15连接,电源支路141的第二端分别与开关支路142的第一端及谐振支路143的第一端连接,开关支路142的第二端与控制器13连接,谐振支路143的第二端与阻抗支路144的第一端连接,阻抗支路144的第二端与超声雾化片12的第一端连接。
具体地,电源支路141用于根据电源15产生直流电源。开关支路142用于响应于控制器13输出的第一脉冲信号而导通与断开,以根据直流电源产生脉冲电压。谐振支路143用于响应于开关支路142的导通与断开而谐振,以根据脉冲电压输出驱动超声雾化片12的驱动电压。阻 抗支路144用于使阻抗支路144和超声雾化片12的组合的阻抗与电源支路141、开关支路142和谐振支路143的组合的阻抗相匹配。
在该实施例中,在超声雾化片12需要被驱动时,首先,电源15在经过电源支路141后转换为直流电源输出,同时,控制器13输出第一脉冲信号,以控制开关支路142在导通与断开之间不断循环切换,从而将电源支路141所输出的直流电源转换为交流电源,即脉冲电压。继而,谐振支路143在发生谐振后,能够将所接收到的脉冲电压进行升压,并使用升压后的驱动电压驱动超声雾化片12。其中,由于谐振支路143实现了谐振,则谐振支路143实质上呈现纯电阻性,可减少谐振支路143无功功率的部分,即减少了功率损耗,从而提高了超声雾化器100的工作效率。并且,在该种情况下,谐振支路143的阻抗最小,电流最大,可输出较大的驱动电压以驱动超声雾化片12稳定运行。
此外,超声雾化片12可等效为一容性负载,而在谐振支路143发生谐振之后,电源支路141、开关支路142和谐振支路143的组合为纯阻性输出,若将二者(即容性负载与纯阻性输出)之间直接进行能量传输,则会有较大的无功功率产生,进而导致驱动超声雾化片12的效率大幅度降低。
因此,在此实施例中,还通过设置阻抗支路144,以实现阻抗支路144和超声雾化片12的组合的阻抗与电源支路141、开关支路142和谐振支路143的组合的阻抗相匹配。从而,可减少阻抗支路144和超声雾化片12的组合的无功功率的部分,以减少功率的损耗,超声雾化片12能够获得较高的驱动能量,提高了驱动超声雾化片12的效率,也提高了超声雾化器100的工作效率。
具体地,在一实施方式中,阻抗支路144和超声雾化片12的组合的阻抗(Zh)包括阻抗实部(Rh)与阻抗虚部(j*Xh),在阻抗实部与电源支 路141、开关支路142和谐振支路143的组合的阻抗(Z0)相等、且阻抗虚部为零时,阻抗支路144和超声雾化片12的组合的阻抗与电源支路141、开关支路142和谐振支路143的组合的阻抗相匹配。
其中,Zh=Rh+j*Xh。且,由于电源支路141、开关支路142和谐振支路143的组合的阻抗为纯电阻性,则Z0=R0,其中,R0表示开关支路142和谐振支路143的组合的电阻。从而,若要满足阻抗支路144和超声雾化片12的组合的阻抗与电源支路141、开关支路142和谐振支路143的组合的阻抗相匹配,所需满足的条件为:Rh=R0,且j*Xh=0。此时,超声雾化片12的工作效率较高。
其中,在不同的应用情况下,可有多种方式可实现上述条件,本申请对此不作具体限制。例如,在一实施方式中,首先,在电阻支路144中配置一合适的负载,以使Rh=R0,此时,超声雾化片12能够得到最大的驱动功率。其次,在电阻支路144需进一步配置与超声雾化片12的容抗相反的阻抗,以抵消其容抗,消除了其容抗所带来的无用功。
在一实施例中,如图4所示,电源支路141包括第一电感L1。其中,第一电感L1的第一端与电源15连接,第一电感L1的第二端分别与开关支路142及谐振支路143连接。
具体地,第一电感L1为高频扼流圈,高频扼流圈只对高频交变电流有较大的阻碍作用,对低频交变电流的阻碍作用很小,对直流的阻碍作用更小,因此可以用来“通直流,阻交流,通低频,阻高频”。从而,第一电感L1可允许直流通过以为后续电路提供能量,即实现根据电源15输出直流电源的过程。另外,第一电感L1还可用于防止高频短路。
图4还示例性示出了开关支路142的一种结构,如图4所示,开关支路142包括开关管Q1。其中,开关管Q1的第一端与控制器13连接,开关管Q1的第二端接地GND,开关管Q1的第三端分别与电源支路141 及谐振支路143连接。
其中,在该实施例中,以开关管Q1为N型金属氧化物半导体场效应晶体管(即NMOS管)为例。具体地,NMOS管的栅极为开关管Q1的第一端,NMOS管的源极为开关管Q1的第二端,NMOS管的漏极为开关管Q1的第三端。
除此之外,在其他实施例中,开关管Q1也可以P型金属氧化物半导体场效应晶体管或信号继电器,开关管Q1还可以是三极管、绝缘栅双极晶体管、集成栅极换向晶闸管、栅极可关断晶闸管、结栅场效应晶体管、MOS控制晶闸管、氮化镓基功率器件、碳化硅基功率器件、可控硅中的至少一种。
在一实施例中,开关支路142还包括串联连接的第一电阻R1与第二电阻R2。其中,第一电阻R1与第二电阻R2串联连接组成的电路的第一端与控制器13连接,第一电阻R1与第二电阻R2串联连接组成的电路的第二端接地GND,第一电阻R1与第二电阻R2之间的连接点与开关管Q1的第一端连接。
在该实施例中,第一电阻R1与第二电阻R2用于对控制器13输出的第一脉冲信号的电压进行分压,以获得开关管Q1的第一端的电压。当第二电阻R2上的分压大于开关管Q1的导通电压时,开关管Q1导通,反之,开关管Q1断开。
在一实施例中,开关支路142还包括第一电容C1,第一电容C1的第一端与开关管Q1的第三端连接,第一电容C1的第二端接地GND。
具体地,第一电容C1用于在开关管Q1断开,且流过谐振支路143的电流小于第一电流阈值时充电,以及用于在开关管Q1断开,且流过谐振支路143的电流大于或等于第一电流阈值时与谐振支路143进行谐振而放电。其中,在第一电容C1放电至第二电流阈值时,开关管Q1导 通。
可以理解的是,第一电流阈值和第二电流阈值的设置均与第一电容C1以及谐振支路143的参数相关。换言之,在不同的应用场景中,选择不同的第一电容C1与谐振支路143,可获得不同的第一电流阈值与第二电流阈值,本申请实施例对此不作具体限制。
在该实施例中,设置第一电容C1可起到电压滞后的作用。具体为,当开关管Q1断开瞬间,开关管Q1的第二端与第三端之间的电压不会突然上升,而是先维持第一电容C1两端的电压。直至开关管Q1的第二端与第三端之间的电流降到为零之后,开关管Q1的第二端与第三端之间的电压再开始上升。从而,实现了开关管Q1的软关断。
与此同时,流过谐振支路143的电流小于第一电流阈值,第一电容C1被充电。接着,谐振支路143的电流逐渐增大,直至大于或等于第一电流阈值时,谐振支路143的电流大于第一电感L1上的电流,第一电容C1与谐振支路143进行谐振而放电。继而,在第一电容C1放电至第二电流阈值时,开关管Q1导通。可见,通过选择合适的第一电容C1与谐振支路143,以使第二电流阈值为零,则可实现开关管Q1的零电压导通,亦即,实现了开关管Q1的软开通。
可理解,当晶体管(例如开关管Q1)处于开关状态,理论上可以达到100%的效率。但由于晶体管势垒电容、扩散电容以及电路中分布电容的影响,晶体管由饱和到截止或由截止到饱和,都需要一定的转换时间。因而导致转换时间内管子的集电极电流和集电极电压均会有较大的数值致使管耗增加。通常,寄生电容不太大,工作频率较低时,可忽略其影响。然而工作频率较高时,管耗的增加就无法忽略,使效率降低,甚至使器件损坏。
因此,在该实施例中,通过设置第一电容C1与谐振支路143,可实 现开关管Q1的软开关过程(包括软开通与软关断),即保持开关管Q1在导通与断开时,电压与电流的乘积始终为零。从而,开关管Q1的开关损耗也接近为零,开关管Q1的开关效率较高,进而也提高超声雾化器100的工作效率。
继而,在一实施例中,为了能够确保开关管Q1能够工作在软开关状态下,可通过配置以下参数实现,首先,在开关管Q1断开时,配置第一电容C1与谐振支路143的组合谐振时的频率(记为第一谐振频率)小于超声雾化片12的频率,同时,在开关管Q1导通时,配置谐振支路143谐振时的频率(记为第二谐振频率)大于超声雾化片12的频率。
其中,第一谐振频率与第二谐振频率可根据实际选用的超声雾化片12进行配置,本申请实施例对此不作具体限制。
例如,在一可选的实施方式中,所选择的超声雾化片12的频率为[2.9MHz-3.1MHz]中的任一频率,则第一谐振频率可为[2MHz-3MHz]中的任一频率,第二谐振频率可为[3.2MHz-4MHz]中的任一频率。比如,超声雾化片的频率为3MHz,第一谐振频率为2.5MHz,第二谐振频率为4MHz,从而满足第一谐振频率小于超声雾化片的频率,超声雾化片的频率小于第二谐振频率,从而可实现开关管Q1的软开关,提高开关管Q1的开关效率。
又如,在另一可选的实施方式中,所选择的超声雾化片12的频率为[10KHz-10MHz]中的任一频率,则可根据实际使用的超声雾化片12的频率对应设置第一谐振频率与第二谐振频率,只需满足第一谐振频率小于超声雾化片的频率,超声雾化片的频率小于第二谐振频率即可。比如,实际使用的超声雾化片12的频率为2.4MHz或2.7MHz,第一谐振频率可为[1.5MHz-2MHz]中的任一频率,第二谐振频率可为[3MHz-3.5MHz]中的任一频率。而如果实际使用的超声雾化片12的频率为130KHz或160KHz, 则第一谐振频率可为[100KHz-120KHz]中的任一频率,第二谐振频率可为[180KHz-200KHz]中的任一频率。
图4还示例性示出了谐振支路143的一种结构,如图4所示,谐振支路143包括第二电容C2与第二电感L2。其中,第二电容C2的第一端分别与电源支路141(即第一电感L1的第二端)及开关支路142(即开关管Q1的第三端)连接,第二电容C2的第二端与第二电感L2的第一端连接,第二电感L2的第二端与阻抗支路144连接。
在该实施例中,当第二电容C2与第二电感L2形成串联谐振时,第二电容C2与第二电感L2组成的电路呈纯电阻性,此时阻抗最小,电流最大,在第二电容C2与第二电感L2上会产生比输入至谐振支路143的脉冲电压大N倍的高电压,其中,N大于1。其中,该高电压即用于驱动超声雾化片12的驱动电压。继而,超声雾化片12可获得较充足的驱动能量,有利于保持超声雾化片12的稳定运行。
图5还示例性示出了谐振支路143的另一种结构,如图5所示,谐振支路143包括第六电容C6与变压器的原边绕组L4。其中,第六电容C6的第一端分别与电源支路141及开关支路142连接,第六电容C6的第二端与原边绕组L4的第一端连接,原边绕组L4的第二端接地GND。
在该实施例中,第六电容C6与变压器的原边绕组L4的谐振与第二电容C2与第二电感L2的谐振类似,其在本领域技术人员容易理解的范围内,这里不再赘述。
在一实施例中,如图4所示,阻抗支路144包括第三电容C3与第三电感L3。其中,第三电感L3的第一端分别与第三电容C3的第一端及谐振支路143连接,第三电感L3的第二端与超声雾化片12连接。
需要说明的是,图4仅示例性示出了阻抗支路144的一种结构,而在其他的实施例中,阻抗支路144也可以为其他的结构,本申请实施例 对此不作具体限制,只需能够实现阻抗支路144和超声雾化片12的组合的阻抗与电源支路141、开关支路142和谐振支路143的组合的阻抗相匹配即可。
例如,在一实施方式中,阻抗支路144可以只包括第三电容C3。此时,第三电容C3的第一端分别与谐振支路143及超声雾化片12连接,第三电容C3的第二端接地GND。
又如,在另一实施方式中,阻抗支路144仍包括第三电容C3与第三电感L3,且在该实施方式中,第三电感L3的第一端与谐振支路143连接,第三电感L3的第二端分别与第三电容C3的第一端及超声雾化片12连接。
再如,在又一实施方式中,如图5所示,阻抗支路包括第六电感L6与变压器的副边绕组L5。其中,第六电感L6的第一端与变压器的副边绕组L5的第一端连接,第六电感L6的第二端与超声雾化片12连接,变压器的副边绕组L5的第二端接地GND。
在一实施例中,请继续参照图5,控制电路14还包括第六电阻R6、第七电阻R7与第八电阻R8。其中,第六电阻R6的第一端与第六电感L6的第一端连接,第六电阻R6的第二端与第七电阻R7的第一端连接,第七电阻R7的第二端与第八电阻R8的第一端均接地GND,第八电阻R8的第二端与超声雾化片12连接。
在该实施例中,第六电阻R6与第七电阻R7用于实现电压检测功能,第八电阻R8用于实现电流检测功能。
以下对图4所示的电路结构的工作原理进行介绍。
在开关管Q1关断之前,开关管Q1处于导通状态,电源15通过第一电感L1、开关管Q1与地GND形成一条回路,将来自电源15的能量储存在第一电感L1上。第一电感L1的电感值较大,储存能量较多,可等 效为恒流源。
接着,控制器13输出的第一脉冲信号处于低电平状态,开关管Q1断开,原先流过开关管Q1的电流被转移到第一电容C1上,开关管Q1上电流为0。电源15、第一电感L1、第一电容C1形成回路,电源15开始对第一电容C1进行充电,第一电容C1两端的电压逐步升高,此时谐振支路143上的电流由负往0轴逐步减小。
当第一电感L1上的电流等于第一电容C1上的电流时,谐振支路143与超声雾化片12上的电流为0。谐振支路143与超声雾化片12上的电流由负变正,并逐步增大。当谐振支路143的电流等于第一电感L1上的电流时,流过第一电容C1的电流为0,此时第一电容C1两端的电压达到最大值。
随着谐振支路143的电流的进一步加大,并增大至大于第一电感L1上的电流时,第一电容C1开始放电。第一电容C1两端的电压逐渐降低,当第一电容C1上所储存的电荷量完全放完时,控制器13输出的第一脉冲信号由低电平状态切换为高电平状态,开关管Q1导通。可见,在开关管Q1导通时,开关管Q1的第二端与第三端的电压(即为第一电容C1两端的电压)为零,所以开关管Q1导通时不会产生损耗。
继而,在开关管Q1被导通后,第一电容C1被短路,第一电容C1两端电压为0。此时,流过开关管Q1的初始电流为0,并开始逐步升高,谐振支路143的电流逐步减少。当流过开关管Q1的电流等于第一电感L1上的电流时,谐振支路143的电流为0。
谐振支路143的电流由0变为负值,且电流幅值逐步增大,流过开关管Q1的电流保持上升阶段。电源15又再次将能力存储在第一电感L1中,直至控制器13输出的第一脉冲信号从高电平状态再次切换为低电平状态,则开关管Q1重新关断。
重复循环执行上述过程,即实现对超声雾化片12的驱动过程。并且,在该过程中,一方面,通过第一电容C1、第二电容C2与第一电感L2配合使用,实现了开关管Q1的软开关过程,开关管Q1上的损坏较少,从而使超声雾化器100的工作效率较高。另一方面,通过设置阻抗支路144以实现阻抗支路144和超声雾化片12的组合的阻抗与电源支路141、开关支路142和谐振支路143的组合的阻抗相匹配,可减少超声雾化片12所产生的无用功,超声雾化片12的驱动效率较高,也进一步提高了超声雾化器100的工作效率。
在一实施例中,如图6所示,控制电路14还包括驱动支路145。其中,开关支路142通过驱动支路145与控制器13连接,且驱动支路驱动145与电源15连接。具体为,开关支路142的第二端与驱动支路145的第一端连接,驱动支路145的第二端与控制器13连接,驱动支路145的第三端与电源15连接。
具体地,驱动支路145用于接收控制器13所输出的第一脉冲信号,并根据第一脉冲信号与电源15输出第二脉冲信号至开关支路142。其中,第二脉冲信号的驱动能力强于第一脉冲信号。则驱动支路145用于将控制器13输出的第一脉冲信号增强后输出第二脉冲信号,以更高效的驱动开关支路142中开关管Q1的快速导通与断开。
图7中示例性的示出了驱动支路145的一种结构,如图7所示,驱动支路145包括驱动芯片U1,驱动芯片U1包括电源输入端、至少一个信号输入端与至少一个信号输出端。其中,在此实施例中,电源输入端为驱动芯片U1的第6引脚,至少一个信号输入端包括一个信号输入端,为驱动芯片U1的第2引脚,至少一个信号输出端包括一个信号输出端,为驱动芯片U1的第5引脚。
其中,电源输入端与电源15连接,信号输入端与控制器13连接, 信号输出端与开关支路142连接。其中,信号输入端用于输入第一脉冲信号,信号输出端用于输出第二脉冲信号。
具体为,驱动芯片U1的第6引脚用于与电源15连接。驱动芯片U1的第2引脚与控制器13连接。驱动芯片U1的第5引脚与开关支路142连接。其中,驱动芯片U1的第2引脚用于输入第一脉冲信号,驱动芯片U1的第5引脚用于输出第二脉冲信号。
在该实施例中,通过设置驱动芯片U1,以提高控制器13所输出的脉冲信号的驱动能力。从而,可实现对开关子支路142的快速驱动,以保持超声雾化片12的稳定运行。同时,驱动芯片U1的第6引脚所输入的电流越大,驱动芯片U1的第5引脚所输出的驱动能力越强。
在一实施例中,驱动芯片U1可选用型号为SGM48000的集成芯片。当然,在其他的实施例中,也可以选用其他型号的集成芯片,本申请实施例对此不作限制。此外,由于驱动芯片有不同的类型,因此,当使用其他类型的驱动芯片时,具体的引脚定义可能有所不同,但所具有的功能以及信号的定义是相同的。则若选用其他类型的驱动芯片,可采用与上述实施例类似的方式进行设置即可,其在本领域技术人员容易理解的范围内,这里不再赘述。
另外,在该实施例中,以电源15作为驱动芯片U1的输入电源为例,换言之,在此实施例中,电源15同时作为驱动芯片U1与超声雾化片12的供电电源,以达到节约成本的目的。而在其他的实施例中,为了驱动芯片U1与超声雾化片12在工作过程中不对彼此造成干扰,则可采用两个不同电源分别为驱动芯片U1与超声雾化片12供电,以提高驱动芯片U1与超声雾化片12二者工作的稳定性。
在一实施例中,如图6所示,控制电路14还包括电流检测支路146。其中,电流检测支路146分别与电源15、电源支路141及控制器13连 接。具体为,电流检测之路146的第一端与电源15连接,电流检测之路146的第二端与电源支路141连接,电流检测之路146的第三端与控制器13连接。
在该实施例中,电流检测支路146用于检测流入电源支路141的电流。继而,控制器13可根据该电流判断超声雾化片12在工作过程中是否出现电流过大等异常,以在出现异常时可及时进行处理,有利于降低超声雾化片12被损坏的风险。
图7中示例性的示出了电流检测支路146的一种结构,如图7所示,电流检测支路146包括放大器U2与第三电阻R3。其中,第三电阻R3分别与放大器U2及电源支路141连接,且放大器U2与控制器13连接。
具体地,第三电阻R3的第一端分别与电源15及放大器U2的同相输入端连接,第三电阻R3的第二端分别与放大器U2的反相输入端及第一电感L1的第一端连接,放大器U2的输出端与控制器13连接,放大器U2的接地端接地GND,放大器U2的电源端与电压V1连接。
在此实施例中,放大器U2被配置为根据第三电阻R3两端的电压输出检测电压,以使控制器13根据检测电压确定流入至电源支路141的电流。具体地,放大器U2能够对接收到的第三电阻R3两端的电压进行放大K倍后输出检测电压,其中,K为正整数。继而,控制器13在获取到检测电压后可根据检测电压与流入至电源支路141的电流之间的关系,确定流入至电源支路141的电流。
在一实施例中,电流检测支路146还包括第四电容C4、第五电容C5、第四电阻R4与第五电阻R5。其中,第四电容C4与第五电容C5为滤波电容,第五电阻R5为限流电阻,第四电阻R4为下拉电阻。
需要说明的是,在以上各图所示的实施例中,电阻的表现形态为单独的一个电阻,电容的表现形态为单一的电容。在其他实施例中,电阻 还可以是串联、并联或混联电阻的集成,电容还可以是串联、并联或混联电容的集成。
本申请所述的连接,可以是直接连接,即两元器件之间的连接,也可以是间接连接,即两元器件之间可以通过一个或多个元件形成间接连接。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (17)

  1. 一种超声雾化器,其特征在于,包括:
    储液腔,用于存储液体基质;
    超声雾化片,用于产生振荡以雾化所述液体基质;
    控制器、控制电路及电源;
    其中,所述控制电路包括:
    电源支路,与所述电源连接,用于根据所述电源产生直流电源;
    开关支路,分别与所述控制器及所述电源支路连接,用于响应于所述控制器输出的第一脉冲信号而导通与断开,以根据所述直流电源产生脉冲电压;
    谐振支路,分别与所述电源支路及所述开关支路连接,用于响应于所述开关支路的导通与断开而谐振,以根据所述脉冲电压输出驱动所述超声雾化片的驱动电压;
    阻抗支路,连接于所述谐振支路及所述超声雾化片之间,所述阻抗支路用于使所述阻抗支路和所述超声雾化片的组合的阻抗与所述电源支路、所述开关支路和所述谐振支路的组合的阻抗相匹配。
  2. 根据权利要求1所述的超声雾化器,其特征在于,所述电源支路包括第一电感;
    所述第一电感的第一端与所述电源连接,所述第一电感的第二端分别与所述开关支路及所述谐振支路连接。
  3. 根据权利要求1所述的超声雾化器,其特征在于,所述开关支路包括开关管;
    所述开关管的第一端与所述控制器连接,所述开关管的第二端接地,所述开关管的第三端分别与所述电源支路及所述谐振支路连接。
  4. 根据权利要求3所述的超声雾化器,其特征在于,所述开关支路还包括第一电容,所述第一电容的第一端与所述开关管的第三端连接,所述第一电容的第二端接地;
    所述第一电容用于在所述开关管断开,且流过所述谐振支路的电流小于第一电流阈值时充电,以及用于在所述开关管断开,且流过所述谐振支路的电流大于或等于所述第一电流阈值时与所述谐振支路进行谐振而放电;
    其中,在所述第一电容放电至第二电流阈值时,所述开关管导通。
  5. 根据权利要求4所述的超声雾化器,其特征在于,在所述开关管断开时,所述第一电容与所述谐振支路的组合谐振时的频率小于所述超声雾化片的频率;
    在所述开关管导通时,所述谐振支路谐振时的频率大于所述超声雾化片的频率。
  6. 根据权利要求5所述的超声雾化器,其特征在于,所述超声雾化片的频率为[2.9MHZ-3.1MHZ]中的任一频率;
    在所述开关管断开时,所述第一电容与所述谐振支路的组合谐振时的频率为[2MHZ-3MHZ]中的任一频率;
    在所述开关管导通时,所述谐振支路谐振时的频率为[3.2MHZ-4MHZ]中的任一频率。
  7. 根据权利要求3所述的超声雾化器,其特征在于,所述开关支路还包括串联连接的第一电阻与第二电阻;
    所述第一电阻与所述第二电阻串联连接组成的电路的第一端与所述控制器连接,所述第一电阻与所述第二电阻串联连接组成的电路的第二端接地,所述第一电阻与所述第二电阻之间的连接点与所述开关管的第一端连接。
  8. 根据权利要求1所述的超声雾化器,其特征在于,所述谐振支路包括第二电容与第二电感;
    所述第二电容的第一端分别与所述电源支路及所述开关支路连接,所述第二电容的第二端与所述第二电感的第一端连接,所述第二电感的第二端与所述阻抗支路连接。
  9. 根据权利要求1所述的超声雾化器,其特征在于,所述谐振支路包括第六电容与变压器的原边绕组;
    所述第六电容的第一端分别与所述电源支路及所述开关支路连接,所述第六电容的第二端与所述原边绕组的第一端连接,所述原边绕组的第二端接地。
  10. 根据权利要求9所述的超声雾化器,其特征在于,所述阻抗支路包括第六电感与所述变压器的副边绕组;
    所述第六电感的第一端与所述变压器的副边绕组的第一端连接,所述第六电感的第二端与所述超声雾化片连接,所述变压器的副边绕组的第二端接地。
  11. 根据权利要求1所述的超声雾化器,其特征在于,所述阻抗支路包括第三电容;
    所述第三电容的第一端分别与所述谐振支路及所述超声雾化片连接,所述第三电容的第二端接地。
  12. 根据权利要求11所述的超声雾化器,其特征在于,所述阻抗支路还包括第三电感;
    所述第三电感的第一端分别与所述第三电容的第一端及所述谐振支路连接,所述第三电感的第二端与所述超声雾化片连接,或,所述第三电感的第一端与所述谐振支路连接,所述第三电感的第二端分别与所述第三电容的第一端及所述超声雾化片连接。
  13. 根据权利要求1-12任意一项所述的超声雾化器,其特征在于,所述阻抗支路和所述超声雾化片的组合的阻抗包括阻抗实部与阻抗虚部,在所述阻抗实部与所述电源支路、所述开关支路和所述谐振支路的组合的阻抗相等、且所述阻抗虚部为零时,所述阻抗支路和所述超声雾化片的组合的阻抗与所述电源支路、所述开关支路和所述谐振支路的组合的阻抗相匹配。
  14. 根据权利要求1所述的超声雾化器,其特征在于,所述控制电路还包括驱动支路;
    所述开关支路通过所述驱动支路与所述控制器连接,且所述驱动支路与所述电源连接;
    所述驱动支路用于接收所述第一脉冲信号,并根据所述第一脉冲信号与所述电源输出第二脉冲信号至所述开关支路,其中,所述第二脉冲 信号的驱动能力强于所述第一脉冲信号。
  15. 根据权利要求14所述的超声雾化器,其特征在于,所述驱动支路包括驱动芯片,所述驱动芯片包括电源输入端、至少一个信号输入端与至少一个信号输出端;
    所述电源输入端与所述电源连接,所述信号输入端与所述控制器连接,所述信号输出端与所述开关支路连接;
    其中,所述信号输入端用于输入所述第一脉冲信号,所述信号输出端用于输出所述第二脉冲信号。
  16. 根据权利要求1所述的超声雾化器,其特征在于,所述控制电路还包括电流检测支路;
    所述电流检测支路分别与所述电源、所述电源支路及所述控制器连接,所述电流检测支路用于检测流入所述电源支路的电流。
  17. 根据权利要求16所述的超声雾化器,其特征在于,所述电流检测支路包括放大器与第三电阻,所述第三电阻分别与所述放大器、所述电源支路及所述电源连接,且所述放大器与所述控制器连接;
    所述放大器被配置为根据所述第三电阻两端的电压输出检测电压,以使所述控制器根据所述检测电压确定流入至所述电源支路的电流。
PCT/CN2023/071618 2022-01-26 2023-01-10 超声雾化器 WO2023143058A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210096036.9 2022-01-26
CN202210096036.9A CN116532300A (zh) 2022-01-26 2022-01-26 超声雾化器

Publications (1)

Publication Number Publication Date
WO2023143058A1 true WO2023143058A1 (zh) 2023-08-03

Family

ID=87454740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071618 WO2023143058A1 (zh) 2022-01-26 2023-01-10 超声雾化器

Country Status (2)

Country Link
CN (1) CN116532300A (zh)
WO (1) WO2023143058A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10180204A (ja) * 1996-12-24 1998-07-07 Shibaura Eng Works Co Ltd 超音波洗浄装置及び駆動方法
CN104043577A (zh) * 2014-05-30 2014-09-17 河海大学常州校区 一种数字化智能式超声功率源及其使用方法
CN207020508U (zh) * 2017-08-17 2018-02-16 湖南中烟工业有限责任公司 一种超声雾化片振荡控制电路及超声波电子烟
CN110354407A (zh) * 2019-05-30 2019-10-22 哈尔滨工业大学(深圳) 基于高频超声波的理疗驱动器系统及其驱动方法
CN217342045U (zh) * 2022-01-26 2022-09-02 深圳市合元科技有限公司 超声雾化器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10180204A (ja) * 1996-12-24 1998-07-07 Shibaura Eng Works Co Ltd 超音波洗浄装置及び駆動方法
CN104043577A (zh) * 2014-05-30 2014-09-17 河海大学常州校区 一种数字化智能式超声功率源及其使用方法
CN207020508U (zh) * 2017-08-17 2018-02-16 湖南中烟工业有限责任公司 一种超声雾化片振荡控制电路及超声波电子烟
CN110354407A (zh) * 2019-05-30 2019-10-22 哈尔滨工业大学(深圳) 基于高频超声波的理疗驱动器系统及其驱动方法
CN217342045U (zh) * 2022-01-26 2022-09-02 深圳市合元科技有限公司 超声雾化器

Also Published As

Publication number Publication date
CN116532300A (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
CN217342045U (zh) 超声雾化器
KR20200089637A (ko) 에어로졸 흡인기용 전원 유닛
WO2019238064A1 (zh) 一种超声雾化片工作控制电路及超声波电子烟
CN217342050U (zh) 超声雾化装置
CN106531140A (zh) 一种压电式蜂鸣器驱动电路
CN218048634U (zh) 超声雾化器
CN211065048U (zh) 一种超声波雾化片工作电路、超声波电子烟
WO2023143058A1 (zh) 超声雾化器
CN114223970A (zh) 一种声表面波驱动控制电路及电子烟
CN217989794U (zh) 超声雾化器
CN217342047U (zh) 超声雾化器
WO2023207794A1 (zh) 超声雾化装置
WO2024037496A1 (zh) 用于超声雾化器的阻抗识别方法与超声雾化器
CN206472855U (zh) 一种超声雾化片振荡控制电路及超声波电子烟
CN217342048U (zh) 超声雾化器与超声雾化装置
CN216210583U (zh) 便携式雾化器控制电路
WO2023143065A1 (zh) 超声雾化器及其工作状态确定方法
CN217342046U (zh) 超声雾化器
CN207885673U (zh) 一种超声波电子烟工作电路及该超声波电子烟
CN117619636A (zh) 超声雾化器
WO2023232112A1 (zh) 超声雾化器与超声雾化的功率控制方法
WO2024061166A1 (zh) 超声雾化器及基于超声雾化器的谐振频率确定方法
CN107300236A (zh) 一种超声波加湿器电路
CN116532299A (zh) 超声雾化器与超声雾化装置
CN116532301A (zh) 超声雾化器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23745941

Country of ref document: EP

Kind code of ref document: A1