WO2024061166A1 - 超声雾化器及基于超声雾化器的谐振频率确定方法 - Google Patents

超声雾化器及基于超声雾化器的谐振频率确定方法 Download PDF

Info

Publication number
WO2024061166A1
WO2024061166A1 PCT/CN2023/119425 CN2023119425W WO2024061166A1 WO 2024061166 A1 WO2024061166 A1 WO 2024061166A1 CN 2023119425 W CN2023119425 W CN 2023119425W WO 2024061166 A1 WO2024061166 A1 WO 2024061166A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
voltage
ultrasonic
sub
controller
Prior art date
Application number
PCT/CN2023/119425
Other languages
English (en)
French (fr)
Inventor
李新军
徐中立
李永海
Original Assignee
深圳市合元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市合元科技有限公司 filed Critical 深圳市合元科技有限公司
Publication of WO2024061166A1 publication Critical patent/WO2024061166A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H13/00Measuring resonant frequency

Definitions

  • the present application relates to the field of electronic circuit technology, and in particular to an ultrasonic atomizer and a resonant frequency determination method based on the ultrasonic atomizer.
  • ultrasonic atomizers can be used in humidification, fragrance, sterilization, decoration, medical atomization, electronic cigarettes and other fields.
  • the resonant frequency is a crucial parameter for the ultrasonic atomizer.
  • changes in temperature, environment, aging of components, external forces and other factors will lead to the resonance of the ultrasonic atomizer in the ultrasonic atomizer.
  • the frequency drifts.
  • the drift of the resonant frequency will reduce the working efficiency of the ultrasonic atomizer and even damage the ultrasonic atomizer. Therefore, in order to make the system have greater output power, it is usually necessary to make the ultrasonic atomizer piece work at the resonant frequency.
  • phase detection is usually used, that is, the voltage and current of the ultrasonic atomization piece are collected, the phase relationship between the two is compared, and the driving frequency is continuously adjusted to Make the phase difference between the two equal to 0 to determine the resonant frequency of the ultrasonic atomizer sheet.
  • This application aims to provide an ultrasonic atomizer and a frequency determination method based on the ultrasonic atomizer, which can determine the resonant frequency of the ultrasonic atomizer piece in a simpler way, which is beneficial to reducing costs and achieving miniaturization, and has strong practicability .
  • this application provides an ultrasonic atomizer, including:
  • Ultrasonic atomization tablet used to generate oscillation to atomize the atomization matrix
  • control circuit includes:
  • a controller and a driving branch the driving branch is connected to the power supply and the controller respectively, the driving branch is used to generate a driving voltage in response to the first pulse signal output by the controller, the The driving voltage is used to drive the ultrasonic atomizer sheet;
  • the impedance branch is connected between the driving branch and the ultrasonic atomizing piece.
  • the impedance branch is used to make the combined impedance of the impedance branch and the ultrasonic atomizing piece equal to that of the driving branch.
  • the impedance is matched, wherein the impedance branch includes a first capacitor connected in parallel with the ultrasonic atomization sheet;
  • the controller is used to obtain the first voltage of the ultrasonic atomization sheet, and determine the resonant frequency of the ultrasonic atomization sheet according to the first voltage.
  • controller is specifically used to:
  • the first voltage is obtained, and the resonant frequency of the ultrasonic atomization sheet is determined according to the first voltage, wherein the first moment is later than the moment when the ultrasonic atomization sheet is started.
  • the time length between the time when the ultrasonic atomization sheet is activated and the first time is any time length in [10 ⁇ s, 100 ⁇ s].
  • control circuit further includes a first conversion branch
  • the first conversion branch is connected between the ultrasonic atomization piece and the controller.
  • the first conversion branch is used to convert the waveform of the first voltage into a second waveform that fluctuates within a preset range. a waveform;
  • the controller is also used to determine the resonant frequency of the ultrasonic atomization sheet according to the second voltage corresponding to the first waveform.
  • the first conversion branch includes an energy storage sub-branch
  • the energy storage sub-branch is connected between the ultrasonic atomization piece and the controller, and the energy storage sub-branch is used to store energy in response to the first voltage;
  • the waveform of the voltage obtained by storing energy in the energy storage sub-branch is used as the First waveform.
  • controller is specifically used to:
  • the resonant frequency of the ultrasonic atomization sheet is determined according to the frequency corresponding to the minimum value of the second voltage.
  • control circuit further includes a voltage amplification branch
  • the voltage amplification branch is connected between the energy storage sub-branch and the controller.
  • the voltage amplification branch is used to amplify the voltage obtained by storing energy in the energy storage sub-branch, and Output the second waveform to the controller;
  • the controller is also used to determine the resonant frequency of the ultrasonic atomization sheet according to the third voltage corresponding to the second waveform.
  • control circuit further includes a second conversion branch
  • the second conversion branch is connected between the ultrasonic atomization piece and the controller, and the second conversion branch is used to convert the waveform of the first voltage into a third waveform with an interval voltage signal. , and output the third waveform to the controller;
  • the controller is also configured to determine the resonant frequency of the ultrasonic atomization sheet according to the fourth voltage corresponding to the voltage signal in the third waveform.
  • the second conversion branch includes a peak acquisition sub-branch
  • the peak value acquisition sub-branch is connected between the ultrasonic atomization piece and the controller.
  • the peak value acquisition sub-branch is used to acquire the peak value in the waveform of the first voltage to output the third voltage. Three waveforms, wherein the third waveform generates the voltage signal once each time the peak value is obtained.
  • controller is specifically used to:
  • N driving frequencies to drive the ultrasonic atomizer sheet, N is an integer ⁇ 2;
  • the resonant frequency of the ultrasonic atomization sheet is determined according to the frequency corresponding to the minimum value of the fourth voltage.
  • this application provides an ultrasonic atomizer, including:
  • Storage chamber for storing atomized matrix
  • Ultrasonic atomization tablet used to generate oscillation to atomize the atomization matrix
  • control circuit includes a controller, a driving branch and an impedance branch;
  • the driving branch includes a power supply sub-branch, a switch sub-branch, a capacitor sub-branch and a resonator sub-branch.
  • the power supply sub-branch is connected to the power supply.
  • the power supply sub-branch is used to operate according to the power supply. Generating a DC power supply, the switch sub-branch is connected to the controller and the power supply sub-branch respectively, and the switch sub-branch is used to turn on and off in response to the first pulse signal output by the controller.
  • the capacitor sub-branch Open to generate a pulse voltage according to the DC power supply, the capacitor sub-branch is connected to the switch sub-branch, and the capacitor sub-branch is used to realize soft turn-on and soft turn-off of the switch sub-branch,
  • the resonator branch is connected to the power sub-branch, the switch sub-branch and the impedance branch respectively, and the resonator branch is used to respond to the on and off of the switch sub-branch. Open and resonate to output a driving voltage according to the pulse voltage to drive the ultrasonic atomizer sheet;
  • the impedance branch is connected between the driving branch and the ultrasonic atomizing piece, and the impedance branch is used to make the combined impedance of the impedance branch and the ultrasonic atomizing piece equal to that of the driving branch. impedance matching;
  • the controller is used to obtain the voltage of the ultrasonic atomization piece, and determine the resonant frequency of the ultrasonic atomization piece according to the voltage of the ultrasonic atomization piece.
  • controller is specifically used to:
  • the resonant frequency of the ultrasonic atomization sheet is determined according to the frequency corresponding to the minimum value among the M detection signals.
  • this application provides a method for determining the resonant frequency based on an ultrasonic atomizer, which method includes:
  • N driving frequencies to drive the ultrasonic atomizing piece in the ultrasonic atomizer, N is an integer ⁇ 2;
  • the resonant frequency of the ultrasonic atomization sheet is determined according to the frequency corresponding to the minimum value of the voltages corresponding to the M detection signals.
  • obtaining the detection signal corresponding to the voltage of the ultrasonic atomization sheet under the action of M driving frequencies among the N driving frequencies includes:
  • the voltage waveform obtained by the accumulation of charges within the first time period is used as the detection signal.
  • obtaining the detection signal corresponding to the voltage of the ultrasonic atomization sheet under the action of M driving frequencies among the N driving frequencies includes:
  • a charge accumulation operation is performed until the voltage obtained by the accumulation of charge is equal to the maximum value of the voltage of the ultrasonic atomization sheet, and the voltage obtained by the accumulation of charge is recorded as The reference voltage;
  • the ultrasonic atomizer provided by this application includes a storage chamber, an ultrasonic atomizer sheet, a control circuit and a power supply.
  • the control circuit includes a controller, a driving branch and an impedance branch.
  • the driving branch is connected to the power supply and the controller respectively, and the impedance branch is connected between the driving branch and the ultrasonic atomization piece.
  • the driving branch is used to generate a driving voltage in response to the first pulse signal output by the controller, and the driving voltage is used to drive the ultrasonic atomizing sheet.
  • the impedance branch is used to match the combined impedance of the impedance branch and the ultrasonic atomizing sheet with the impedance of the driving branch, wherein the impedance branch includes a first capacitor connected in parallel with the ultrasonic atomizing sheet.
  • the controller is used to obtain the first voltage of the ultrasonic atomization sheet, and determine the resonant frequency of the ultrasonic atomization sheet based on the first voltage.
  • FIG1 is a schematic diagram of the structure of an ultrasonic atomizer provided in an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of an ultrasonic atomizer provided by another embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a control circuit provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a control circuit provided by another embodiment of the present application.
  • Figure 5 is a schematic circuit structure diagram of the first conversion branch and the voltage amplification branch provided by the embodiment of the present application;
  • Figure 6 is a waveform diagram of the first voltage and the first waveform at different driving frequencies provided by an embodiment of the present application
  • Figure 7 is a schematic structural diagram of a control circuit provided by another embodiment of the present application.
  • Figure 8 is a schematic circuit structure diagram of the second conversion branch provided by the embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a control circuit provided by another embodiment of the present application.
  • Figure 10 is a schematic diagram of the circuit structure of the driving branch and the impedance branch provided by the embodiment of the present application.
  • Figure 11 is a flow chart of the method for determining the resonant frequency based on the ultrasonic atomizer provided by the embodiment of the present application;
  • Figure 12 is a schematic diagram of an implementation of step 1102 shown in Figure 11 provided by the embodiment of the present application.
  • FIG. 13 is a schematic diagram of another implementation of step 1102 shown in FIG. 11 provided in an embodiment of the present application.
  • the ultrasonic atomizer 100 includes a storage chamber 11 , an ultrasonic atomizer sheet 12 , a control circuit 13 and a power supply 14 .
  • the storage chamber 11 is used to store an atomization matrix, which may include different substances according to different usage scenarios.
  • an atomization matrix which may include different substances according to different usage scenarios.
  • it may include nicotine and/or aromatics and/or aerosol-generating substances ( For example, glycerol); and in the field of medical atomization, it may include solvents such as drugs and/or physiological saline that have the potential to treat diseases or be beneficial to health.
  • the ultrasonic atomization sheet 12 is fluidly connected to the storage cavity 11.
  • the ultrasonic atomization sheet 12 can be directly arranged in the storage cavity 11, or the atomization cavity where the ultrasonic atomization sheet 12 is located is directly connected to the storage cavity 11, or the ultrasonic atomization sheet 12 can be directly connected to the storage cavity 11.
  • Liquid transmission occurs between the atomizer sheet 12 and the storage chamber 11 through a medium.
  • the ultrasonic atomizing sheet 12 is used to generate oscillations to atomize the atomizing matrix, that is, the atomizing matrix transferred to or near the ultrasonic atomizing sheet 12 is atomized into aerosol through vibration.
  • the ultrasonic atomizing sheet 12 is vibrated by high frequency (preferably The vibration frequency is 1.7MHz ⁇ 4.0MHz, which exceeds the human hearing range and belongs to the ultrasonic frequency band) to break up the atomized matrix to produce an aerosol in which particles are naturally suspended.
  • high frequency preferably The vibration frequency is 1.7MHz ⁇ 4.0MHz, which exceeds the human hearing range and belongs to the ultrasonic frequency band
  • the control circuit 13 is electrically connected to the ultrasonic atomization sheet 12, and the control circuit 13 is used to provide driving voltage and driving current to the ultrasonic atomization sheet 12 according to the power supply 14.
  • the control circuit 13 may be disposed on a printed circuit board (PCB).
  • Power supply 14 is used for power supply.
  • power source 14 is a battery.
  • the battery can be a lithium-ion battery, a lithium metal battery, a lead-acid battery, a nickel-cadmium battery, a nickel-hydrogen battery, a lithium-sulfur battery, a lithium-air battery, a sodium-ion battery, etc., which are not limited here.
  • the battery in the embodiment of the present application can be a single cell, or a battery module composed of multiple cells connected in series and/or in parallel, etc., which is not limited here.
  • the battery may also include more or fewer components, or have different component configurations, which are not limited by the embodiments of the present application.
  • the ultrasonic atomizer 100 further includes a liquid transfer medium 15 and an air outlet channel 16 .
  • the liquid transfer element 15 is used to transfer the atomized substrate between the storage chamber 11 and the ultrasonic atomizing sheet 12 .
  • the air outlet channel 16 is used to output the inhalable vapor or aerosol generated by the atomized matrix for the user to inhale.
  • the ultrasonic atomizer 100 may be integrated or assembled. In one embodiment, when the ultrasonic atomizer 100 is assembled, the ultrasonic atomizer 100 further includes a power supply mechanism and an ultrasonic atomizer, wherein the ultrasonic atomizer includes a first housing 17 and the power supply mechanism includes a second Housing 18.
  • first shell 17 and the second shell 18 are detachably connected, for example, the first shell 17 and the second shell 18 can be detachably connected by a snap-fit structure or a magnetic structure.
  • the first shell 17 and the second shell 18 together serve to accommodate and protect other components.
  • the storage cavity 11, the ultrasonic atomizer sheet 12, the liquid transfer element 15 and the air outlet channel 16 are all arranged in the first shell 17, and the control circuit 13 and the power supply 14 are both arranged in the second shell 18.
  • the first housing 17 and the second housing 18 are removably aligned in a functional relationship.
  • Various mechanisms may be utilized to connect the second housing 18 to the first housing 17, resulting in a threaded engagement, a press fit engagement, an interference fit, a magnetic engagement, and the like.
  • the ultrasonic atomizer 100 may be substantially in the shape of a rod, a flat cylinder, a rod or a column, etc.
  • the first housing 17 and the second housing 18 may be formed from any suitable structurally sound material.
  • the first housing 17 and the second housing 18 may be formed of metal or alloy such as stainless steel, aluminum.
  • suitable materials include various plastics (e.g., polycarbonate), metal plated plastics (metal-plating over plastic), ceramics, etc.
  • the hardware structure of the ultrasonic nebulizer 100 shown in Figure 1 is only an example, and the ultrasonic nebulizer 100 may have more or fewer components than those shown in the figure. Two or more components may be combined, or may have different component configurations.
  • the various components shown in the figures may be implemented in hardware, software, or hardware including one or more signal processing and/or application specific integrated circuits. implemented in combination with software.
  • the ultrasonic atomizing sheet 12 can be disposed in the storage cavity 11 , thereby simplifying the structure.
  • the ultrasonic nebulizer 100 shown in Figure 1 or Figure 2 can be applied to a variety of different occasions and play different roles, and the embodiments of the present application do not impose specific restrictions on this.
  • the ultrasonic nebulizer 100 is applied to the medical field.
  • the ultrasonic nebulizer 100 can be a medical nebulizer, which can achieve the effect of auxiliary treatment by atomizing the liquid medicine added to it and allowing the patient to inhale it.
  • the ultrasonic nebulizer 100 can also be used as an electronic product, such as an electronic cigarette, which is an electronic product that converts nicotine solution into aerosol by atomization and other means for users to inhale.
  • FIG 3 shows a schematic diagram of the structure of the control circuit 13 connected to the power supply 14.
  • the control circuit 13 includes a controller 131, a drive branch 132 and an impedance branch 133.
  • the drive branch 132 is connected to the power supply 14 and the controller 131 respectively;
  • the impedance branch 133 is connected between the drive branch 132 and the ultrasonic atomization sheet 12, and the impedance branch 133 includes a first capacitor C1 connected in parallel with the ultrasonic atomization sheet 12.
  • the driving branch 132 is used to generate a driving voltage in response to the first pulse signal output by the controller 131, and the driving voltage is used to drive the ultrasonic atomization sheet 12.
  • the impedance branch 133 is used to match the combined impedance of the impedance branch 133 and the ultrasonic atomization sheet 12 with the impedance of the driving branch 132 to reduce the reactive power portion of the combination of the impedance branch 133 and the ultrasonic atomization sheet 12.
  • the controller 131 is used to obtain a first voltage of the ultrasonic atomization sheet 12, and determine the resonant frequency of the ultrasonic atomization sheet 12 according to the first voltage.
  • the first method is to determine the resonant frequency by collecting the output current of the power supply 14. Specifically, since the impedance of the ultrasonic atomizer 12 is the smallest when it works at the resonant frequency, the output current of the power supply 14 is the largest, so multiple frequencies can be used. Drive the ultrasonic atomizer piece and collect the output current corresponding to each frequency. The frequency corresponding to the maximum value of the collected output current is the resonant frequency.
  • the branch where the first capacitor C1 is located will produce a shunt of current, which in turn will lead to the maximum value of the collected output current. It no longer corresponds to the resonant frequency, that is, the frequency corresponding to the maximum value in the output current is not the resonant frequency. Therefore, the method of determining the resonant frequency by collecting the output current of the power supply 14 is not applicable to the ultrasonic atomizer 100 in the embodiment of the present application.
  • the second method is to use phase detection, that is, to collect the voltage and current of the ultrasonic atomizer sheet 12, compare the phase relationship between the two, and continuously adjust the driving frequency so that the phase difference between the two is 0, thereby determining the ultrasonic The resonant frequency of the atomizer piece 12.
  • phase detection that is, to collect the voltage and current of the ultrasonic atomizer sheet 12
  • compare the phase relationship between the two compares the phase relationship between the two
  • continuously adjust the driving frequency so that the phase difference between the two is 0, thereby determining the ultrasonic
  • the resonant frequency of the atomizer piece 12 the cost of this method is relatively high, the circuit is relatively complex, and the implementation is difficult. It is not conducive to cost saving and miniaturization, and has poor practicality.
  • a simpler circuit structure is used to detect the resonant frequency of the ultrasonic atomizer sheet 12 .
  • the voltage output by the power supply 14 is kept constant, if the ultrasonic atomization piece 12 operates at the resonant frequency point and the impedance of the ultrasonic atomization piece 12 is minimum, then the voltage across the ultrasonic atomization piece 12 is also minimum at this time.
  • the first capacitor C1 since the first capacitor C1 is connected in parallel with the ultrasonic atomization sheet 12, the first capacitor C1 will not affect the voltage across the ultrasonic atomization sheet 12.
  • the circuit structure used is relatively simple, which is conducive to cost reduction and miniaturization, and has strong practicability.
  • the controller 131 is also specifically configured to: after the first moment, obtain the first voltage, and determine the resonant frequency of the ultrasonic atomization sheet according to the first voltage. Among them, the first moment is later than the moment when the ultrasonic atomizer sheet starts.
  • the voltage at both ends of the ultrasonic atomization piece 12 will gradually decrease from the maximum voltage to a stable state.
  • the voltage at both ends of the ultrasonic atomization piece 12 is within a range. Fluctuating up and down, the first voltage should be obtained when the ultrasonic atomization piece 12 is in a stable state, so that the resonant frequency of the ultrasonic atomization piece 12 can be further determined.
  • the length of time between the moment when the ultrasonic atomization piece 12 is activated and the first moment can be set according to the actual application situation.
  • This application implements There is no specific limit to this.
  • the time length between the time when the ultrasonic atomization sheet 12 is activated and the first time is any time length in [10 ⁇ s, 100 ⁇ s].
  • the duration can be set to a larger value, such as 100 ⁇ s.
  • control circuit 13 further includes a first conversion branch 134 .
  • First The conversion branch 134 is connected between the ultrasonic atomizing piece 12 and the controller 131 .
  • the first conversion branch 134 is used to convert the waveform of the first voltage into a first waveform that fluctuates within a preset range.
  • the controller 131 is also used to determine the resonant frequency of the ultrasonic atomization sheet 12 according to the second voltage corresponding to the first waveform.
  • the preset range can be set according to actual application conditions, and the embodiments of this application do not specifically limit this.
  • the waveform of the first voltage is a waveform with a fast changing speed.
  • a controller 131 with high sampling speed and high precision is required, and the cost of such a controller is high.
  • the requirements for sampling speed and accuracy can be greatly reduced, so that a controller with lower sampling speed and accuracy can be selected. 131, which can not only achieve sampling of the first waveform, but also save costs.
  • the first conversion branch includes an energy storage sub-branch 1341 .
  • the energy storage sub-branch 1341 is connected between the ultrasonic atomization piece 12 and the controller 131 .
  • the energy storage sub-branch 1341 is used to store energy in response to the first voltage. If within the first period of time, the maximum change value of the voltage obtained by storing energy in the energy storage sub-branch 1341 is less than the preset change threshold, then the waveform of the voltage obtained by storing energy in the energy storage sub-branch 1341 is used as the first waveform.
  • the charge on the energy storage sub-branch 1341 continues to accumulate.
  • the maximum change value of the voltage obtained by the accumulation of charges i.e., the difference between the maximum value and the minimum value within the first period of time
  • the value of the voltage at this time is The accumulated voltage waveform. At this time, it can be considered that the charge remains in a stable state, that is, the first waveform is a stable signal.
  • the preset change threshold can be set according to actual application conditions, and the embodiments of the present application do not specifically limit this.
  • the preset change threshold can be set to 0.2v.
  • the voltage obtained by the accumulation of charges can be considered to be a stable voltage, then we can obtain First waveform.
  • the first duration can be set according to actual application conditions, and the embodiments of this application do not specifically limit this.
  • the first duration is set to any duration in (0,10ms], such as 10ms. If within 10ms, the maximum change value of the voltage obtained by the accumulation of charges can remain less than If the change threshold is preset, the voltage obtained by the accumulation of charge will fluctuate less within 10ms. At this time, it can be considered that the first waveform obtained by the accumulation of charges is a stable waveform, and the second voltage corresponding to the first waveform is a stable voltage.
  • the first duration can be more accurately determined to be a relatively stable waveform, thereby reducing the probability of misjudgment.
  • the first duration is set to be greater than or equal to the duration of 5 sampling cycles, and each sampling cycle is any duration between (0,100 ⁇ s].
  • the sampling cycle is the cycle of each sampling of the voltage obtained by the accumulation of charge. If the voltage obtained by the accumulation of charge is sampled continuously for more than 5 times, and the maximum change value of the sampled voltage obtained by the accumulation of charge is less than the preset change threshold, it can be determined that the first waveform is a relatively stable waveform.
  • the preset change threshold is set to 0.2v
  • the first duration is set to be equal to the duration of 5 sampling periods
  • the voltage sampled for the first time is 0.4v
  • the voltage sampled for the second time is 0.5v
  • the voltage sampled for the third time is 0.5v
  • the voltage sampled for the fourth time is 0.4v
  • the voltage sampled for the fifth time is 0.5v.
  • the current waveform of the voltage obtained by the accumulation of charges can be used as the first waveform
  • the second voltage corresponding to the first waveform can be 0.5v.
  • the magnitude of the driving voltage can be determined by acquiring the second voltage.
  • the charge accumulation process can be realized. Therefore, this method can be applied to signals of various frequencies, that is, it can be applied to various application scenarios and has strong practicability.
  • this variable since the voltage obtained by storing energy in the energy storage sub-branch 1341 is a variable obtained after charge accumulation, this variable has lower processing requirements for the controller. As the sampling frequency decreases, the price of the controller also decreases. At this time, a controller with a lower sampling frequency can be selected to save costs while meeting the sampling requirements for the first waveform.
  • the controller 131 is specifically configured to: output N driving frequencies to drive the ultrasonic atomizer sheet, where N is an integer ⁇ 2. Obtain the third driving frequency under the action of M driving frequencies among N driving frequencies. One waveform to obtain M first waveforms, 2 ⁇ M ⁇ N. Obtain the second voltage corresponding to the first waveform. The resonant frequency of the ultrasonic atomizer sheet is determined according to the frequency corresponding to the minimum value of the second voltage.
  • the first voltage across the ultrasonic atomization piece 12 is the minimum voltage, so as the driving frequency increases, the detected first voltage increases. trend, then the subsequent driving frequency does not need to collect the first voltage, that is, there is no need to collect the first waveform, so as to improve work efficiency. That is, it may be necessary to collect the first waveform only at M driving frequencies among the N driving frequencies, or it may be necessary to collect the first waveform at all driving frequencies among the plurality of driving frequencies.
  • each first waveform can determine a second voltage
  • M first waveforms can determine M second voltages in total.
  • the minimum value among the M second voltages is obtained, and the frequency corresponding to the minimum value is the resonant frequency of the ultrasonic atomization sheet 12 .
  • FIG. 6 exemplarily shows the first voltage and the first waveform sampled by the ultrasonic atomizer 12 with a resonant frequency of 2.94 MHz under different driving frequencies.
  • the curve V11 is the first voltage when the driving frequency is 2.92MHz;
  • the curve L11 is the first waveform when the driving frequency is 2.92MHz;
  • the curve V12 is the first voltage when the driving frequency is 2.94MHz;
  • the curve L12 is the first voltage when the driving frequency is 2.92MHz.
  • the first waveform is at 2.94MHz;
  • the curve V13 is the first voltage when the driving frequency is 2.96MHz;
  • the curve L13 is the first waveform when the driving frequency is 2.96MHz.
  • the change range of the first waveform is [840mv, 842mv], and the preset change threshold is 2mv
  • the second voltage corresponding to the first waveform can be 841mv
  • the driving frequency is 2.94MHz
  • the change range of the first waveform is [733mv, 735mv]
  • the preset change threshold is 2mv
  • the second voltage corresponding to the first waveform can be 734mv
  • the driving frequency is 2.96MHz
  • the change range is [1.36v, 1.38v]
  • the preset change threshold is 2mv
  • the second voltage corresponding to the first waveform can be 1.37v.
  • the driving frequency is 2.94MHz, which is exactly the resonant frequency
  • the second voltage corresponding to the first waveform is the smallest, and vice versa. Therefore, if the minimum value of M second voltages at M driving frequencies is obtained , then the frequency corresponding to the minimum value is the resonant frequency of the ultrasonic atomization sheet 12 .
  • the first conversion branch 134 also includes a first pretreatment sub-branch 1342, a commutator branch 1343, and a voltage-limiting and current-limiting sub-branch 1344.
  • the first pre-treatment sub-branch 1342 is connected to the ultrasonic atomization sheet 12
  • the commutator branch 1343 is connected to the first pre-treatment sub-branch 1342
  • the pressure-limiting and current-limiting sub-branch 1344 are respectively connected to the commutator branch 1343.
  • energy storage sub-branch 1341 and controller 131 connect.
  • the first end of the first pretreatment sub-branch 1342 is connected to the first end of the ultrasonic atomization sheet 12, and the second end of the first pretreatment sub-branch 1342 is connected to the first end of the commutator branch 1343.
  • the second end of the commutator branch 1343 is connected to the first end of the energy storage sub-branch 1341 and the first end of the voltage-limiting and current-limiting sub-branch 1344 respectively.
  • the second end of the voltage-limiting and current-limiting sub-branch 1344 The terminal is connected to the controller 131.
  • the first preprocessing sub-branch 1342 is configured to divide and filter the first voltage of the ultrasonic atomization sheet 12 and output the first sub-voltage.
  • the rectifier branch 1343 is configured to rectify the first sub-voltage, so that the energy storage sub-branch 1341 stores energy in response to the first sub-voltage and outputs the first detection voltage.
  • the voltage limiting and current limiting sub-branch 1344 is configured to limit the voltage and current of the first detection voltage and then output a first waveform that fluctuates within a preset range to the controller 131, so that the controller 131 responds according to the first waveform.
  • the second voltage determines the resonant frequency of the ultrasonic atomization piece 12.
  • the first preprocessing sub-branch 1342 is used to divide and filter the first voltage. Among them, through the voltage dividing process, the amplitude of the first driving signal can be reduced to reduce the voltage input to the controller 131, which is beneficial to protecting the controller 131.
  • the filtering process is used to filter out possible high-voltage pulse signals to protect subsequent electronic components, such as the controller 131 .
  • the first preprocessing sub-branch 1342 outputs a first sub-voltage, and the first sub-voltage is rectified by the rectifier sub-branch 1343 to rectify the first sub-voltage into a signal capable of charging the energy storage sub-branch 1341 .
  • the energy storage sub-branch 1341 stores energy based on the rectified first sub-voltage, and the voltage of the energy storage sub-branch 1341 gradually increases until the voltage of the energy storage sub-branch 1341 remains in a relatively stable state, for example, When the voltage of the energy storage sub-branch 1341 is within the preset voltage range, it can be considered that the voltage of the energy storage sub-branch 1341 remains in a relatively stable state. At this time, the voltage of the energy storage sub-branch 1341 is recorded as the first detection voltage, and the first detection voltage is transmitted to the voltage limiting and current limiting sub-branch 1344.
  • the energy storage sub-branch 1341 can perform multiple accumulations according to the first sub-voltage to obtain an amplitude and frequency that can reflect the first sub-voltage. variables, and then input to the controller 131. It can be seen that the signal received by the controller 131 is not a rapidly changing quantity, but an accumulated variable, so the processing requirements of the controller 131 are not high. In other words, even if the controller 131 with a lower sampling frequency is selected, the sampling requirement for the first detection voltage can be satisfied. As the sampling frequency decreases, the price of the controller 131 also decreases. Therefore, cost savings can be achieved by selecting a controller 131 with a lower sampling frequency. Purpose.
  • the voltage limiting and current limiting sub-branch 1344 limits the voltage of the first detection voltage to prevent its voltage from rising too much, and limits the current of the first detection voltage to prevent it from being too large.
  • the current flows into the controller 131, which can protect the controller 131.
  • the voltage limiting and current limiting sub-branch 1344 also outputs the first waveform to the controller 131 .
  • the controller 131 can determine the resonant frequency of the ultrasonic atomizing sheet 12 according to the second voltage corresponding to the first waveform.
  • the first preprocessing sub-branch 1342 includes a third capacitor C3, a third resistor R3, and a fourth resistor R4.
  • the first end of the third resistor R3 is connected to the first end of the ultrasonic atomization sheet 12
  • the second end of the third resistor R3 is respectively connected to the first end of the third capacitor C3, the first end of the fourth resistor R4 and
  • the commutator branch 1343 is connected, and the second end of the third capacitor C3 and the second end of the fourth resistor R4 are connected to the ground GND.
  • the combination of the third resistor R3 and the fourth resistor R4 is used to divide the voltage, and the third capacitor C3 is used to filter.
  • the rectifier sub-branch 1343 includes a first diode D1, wherein an anode of the first diode D1 is connected to a connection point between the third resistor R3 and the fourth resistor R4 in the first pre-processing sub-branch 1342, and a cathode of the first diode D1 is connected to the energy storage sub-branch 1341 and the voltage and current limiting sub-branch 1344, respectively.
  • the first diode D1 due to the unidirectional conductivity of the first diode D1, the first diode D1 only allows signals greater than 0, which is equivalent to filtering out the third signal output by the first preprocessing sub-branch 1342. One drives the negative half of the sub-signal, leaving only the positive half.
  • the first diode D1 can also effectively prevent the voltage of the circuit connected to the cathode of the first diode D1 from flowing back to the circuit connected to the anode of the first diode D1, which can cause damage to the first diode D1.
  • the circuit (such as the ultrasonic atomizer sheet 12) connected to the anode plays a protective role.
  • the energy storage sub-branch 1341 includes a sixteenth capacitor C16. Among them, after the first end of the sixteenth capacitor C16 passes through the commutator branch 1343 and the first preprocessing sub-branch 1342, it is connected to the second end of the first inductor L1 and the first switch in the first boost branch 142 respectively. The third terminal of the first switch Q1 in the branch 141 is connected to the ultrasonic atomizing piece 12, and the second terminal of the sixteenth capacitor C16 is connected to the ground GND.
  • the first sub-voltage output by the commutator branch 1343 can charge the sixteenth capacitor C16.
  • the voltage across the sixteenth capacitor C16 is a relatively stable voltage, for example, the voltage across the sixteenth capacitor C16 is within the preset voltage range, at this time, the voltage across the sixteenth capacitor C16 is recorded as The first detection voltage.
  • the sixteenth capacitor C16 can accumulate charges driven by the first sub-voltage, obtain a variable that can reflect the amplitude and frequency of the first sub-voltage, and then input it to the controller 131 . Therefore, the signal received by the controller 131 is not a rapidly changing quantity, but an accumulated variable. In other words, the processing requirements for the controller 131 are not high. Even if the controller 131 with a lower sampling frequency is selected, the sampling requirement for the first detection voltage can be met. Then the controller 131 with a lower sampling frequency can be selected to achieve cost saving purpose.
  • the capacitance value of the sixteenth capacitor C16 is less than or equal to 100 nF.
  • the sixteenth capacitor C16 that is less than or equal to 100nF, it is possible to generate a stable first detection voltage at a faster speed and at the same time reduce the risk of damage to the first capacitor C1 due to breakdown, which is beneficial to improving the performance of ultrasound.
  • the stability of the atomizer 100 operation is possible to generate a stable first detection voltage at a faster speed and at the same time reduce the risk of damage to the first capacitor C1 due to breakdown, which is beneficial to improving the performance of ultrasound.
  • the voltage limiting and current limiting sub-branch 1344 includes a sixth resistor R6 and a seventh resistor R7.
  • the first end of the sixth resistor R6 is connected to the first end of the seventh resistor R7, the commutator branch 1343 and the energy storage sub-branch 1341 respectively.
  • the second end of the sixth resistor R6 is connected to the ground GND, and the third end of the seventh resistor R7 is connected to the ground GND. The two ends are connected to the controller 131.
  • the sixth resistor R6 is used to provide a smaller load to limit the first detection voltage, thereby preventing the voltage from rising too much.
  • the seventh resistor R7 is used to limit the current of the first detection voltage to prevent excessive current from flowing into the controller 131, thereby protecting the controller 131.
  • control circuit 13 further includes a voltage amplification branch 135 .
  • the voltage amplification branch 135 is connected between the energy storage sub-branch 1341 and the controller 131.
  • the voltage amplification branch 135 is used to amplify the voltage obtained by storing energy in the energy storage sub-branch 1341 and output the second waveform to the controller 131 .
  • the controller 131 is also used to determine the resonant frequency of the ultrasonic atomization sheet 12 according to the third voltage corresponding to the second waveform.
  • the voltage amplification branch 135 includes a first resistor R1, a second resistor R2, a fourth capacitor C4, a fifth capacitor C5 and a first amplifier U1.
  • the connection relationship between the components can be referred to as shown in Figure 5 and will not be described again here.
  • the first amplifier U1 can amplify the voltage obtained by storing energy in the energy storage sub-branch 1341 by a certain multiple, which is determined by the performance of the first amplifier U1, thereby increasing the distinction between different voltage values. This is beneficial to improving the accuracy of determining the resonant frequency of the ultrasonic atomization sheet 12.
  • control circuit 13 further includes a second conversion branch 136 .
  • the second conversion branch 136 is connected between the ultrasonic atomization piece 12 and the controller 131 .
  • the second conversion branch 136 is used to convert the waveform of the first voltage into a third waveform having an interval voltage signal, and output the third waveform to the controller 131 , wherein the voltage signal includes a rising edge or a falling edge.
  • the controller 131 is also used to determine the resonant frequency of the ultrasonic atomization sheet 12 according to the fourth voltage corresponding to the voltage signal in the third waveform.
  • the third waveform remains unchanged.
  • the voltage signal only appears every time the preset voltage position is reached.
  • the preset position is the peak value of the first voltage, that is, when the first voltage reaches the peak value, a voltage signal appears in the third waveform. Therefore, based on the fourth voltage corresponding to the voltage signal, the resonant frequency of the ultrasonic atomization sheet 12 can be determined.
  • the peak value of the first voltage can be directly obtained by the controller 131 according to the waveform of the first voltage, or can also be determined by the circuit structure. The following provides an embodiment of a circuit structure for achieving peak acquisition.
  • the second conversion branch 136 includes a peak acquisition sub-branch 1361 .
  • the peak acquisition sub-branch 1361 is connected between the ultrasonic atomization piece 12 and the controller 131 .
  • the peak value obtaining sub-branch 1361 is used to obtain the peak value in the waveform of the first voltage to output the third waveform. Wherein, each time a peak value is obtained, the third waveform generates a voltage signal.
  • the controller 131 is specifically configured to: output N driving frequencies to drive the ultrasonic atomizer sheet, where N is an integer ⁇ 2.
  • the third waveforms under the action of M driving frequencies among the N driving frequencies are obtained to obtain M third waveforms.
  • the resonant frequency of the ultrasonic atomizer sheet is determined according to the frequency corresponding to the minimum value of the fourth voltage.
  • the ultrasonic atomizing piece 12 works at the resonant frequency point and the impedance of the ultrasonic atomizing piece 12 is the smallest, the voltage across the ultrasonic atomizing piece 12 is also the smallest. Since the voltage across the ultrasonic atomizing piece 12 is usually If the voltage is sine wave, the peak value of the voltage across the ultrasonic atomizer sheet 12 is also the smallest. Therefore, by determining the peak value in the voltage across the ultrasonic atomizing sheet 12 , the resonant frequency of the ultrasonic atomizing sheet 12 can also be determined.
  • the first voltage across the ultrasonic atomizing piece 12 is the minimum voltage, and the peak value of the first voltage is also the minimum at this time. Therefore, as the driving frequency increases, , the detected peak value of the first voltage shows an increasing trend, then the subsequent driving frequency does not need to collect the peak value of the first voltage, that is, there is no need to collect the third waveform, so as to improve work efficiency.
  • each third waveform can determine a fourth voltage
  • M third waveforms can determine M fourth voltages in total.
  • the minimum value among the M fourth voltages is obtained, and the frequency corresponding to the minimum value is the resonant frequency of the ultrasonic atomization sheet 12 .
  • the driving frequency is 2.92MHz
  • the peak value of the first voltage is 29.18mv
  • the driving frequency is 2.94MHz
  • the peak value of the first voltage is 26.67mv
  • the driving frequency is 2.96 MHz
  • the peak value of the first voltage is 44.92mv. It can be assumed that when the driving frequency is 2.94MHz, which is exactly the resonant frequency, the peak value of the first voltage is the smallest, and vice versa. Therefore, if the minimum value among M fourth voltages (that is, the peak values of the first voltage) at M driving frequencies is obtained, the frequency corresponding to the minimum value is the resonant frequency of the ultrasonic atomization sheet 12 .
  • the peak acquisition sub-branch 1361 includes a sixth capacitor C6, a seventh capacitor C7, an eighth capacitor C8, a ninth capacitor C9, a tenth capacitor C10, an eleventh capacitor C11, and a second diode D2. , the third diode D3, the seventh resistor R7, the eighth resistor R8, the ninth resistor R9, the tenth resistor R10, the second amplifier U2 and the third amplifier U3.
  • the connection relationship between various components can be referred to as shown in Figure 8 and will not be described again here.
  • the ninth capacitor C9 is charged by the first voltage, and is charged until the voltage on the ninth capacitor C9 is equal to and maintained as the peak value of the first voltage. Then, when the peak value of the first voltage does not arrive, the voltage of the inverting input terminal of the third amplifier U3 remains smaller than the voltage of the non-inverting input terminal of the third amplifier U3. Only when the peak value of the first voltage is reached, the voltage at the inverting input terminal of the third amplifier U3 remains equal to the voltage at the non-inverting input terminal of the third amplifier U3, and the voltage output by the third amplifier U3 is the peak value of the first voltage (that is, corresponding to the third waveform voltage signal in ).
  • the second conversion branch 136 further includes a second preprocessing sub-branch 1362 .
  • the second preprocessing sub-branch 1362 is connected between the ultrasonic atomization sheet 12 and the peak acquisition sub-branch 1361.
  • the second preprocessing sub-branch 1362 is used to rectify, divide and filter the first voltage.
  • the second preprocessing sub-branch 1362 includes a fourth diode D4, a Zener diode DW1, an eleventh resistor R11, a twelfth resistor R12, and a twelfth capacitor C12.
  • a fourth diode D4 a Zener diode DW1
  • an eleventh resistor R11 a twelfth resistor R12
  • a twelfth capacitor C12 a twelfth capacitor C12.
  • the fourth diode D4 is used for rectification
  • the eleventh resistor R11 and the twelfth resistor R12 are used for voltage division
  • the twelfth capacitor C12 is used for filtering
  • the zener diode DW1 is used for Clamp the voltage input to the non-inverting input terminal of the third amplifier U3.
  • FIG. 9 exemplarily shows a schematic structural diagram of the control circuit 13 provided in another embodiment.
  • the control circuit 13 includes a driver 131 , a driving branch 132 and an impedance branch 133 .
  • the driving branch 132 includes a power supply sub-branch 1321, a switch sub-branch 1322, a capacitor sub-branch 1323 and a resonator sub-branch 1324.
  • the power sub-branch 1321 is connected to the power supply 14 .
  • the switch sub-branch 1322 is connected to the controller 131 and the power sub-branch 1321 respectively.
  • the capacitor sub-branch 1323 is connected to the switch sub-branch 1322.
  • the resonator branch 1324 is connected to the power supply sub-branch 1321, the switch sub-branch 1322 and the impedance branch 133 respectively.
  • the impedance branch 133 is also connected to the ultrasonic atomizing sheet 12 .
  • power sub-branch 1321 is used to generate DC power from power source 14 .
  • the switch sub-branch 1322 is used to turn on and off in response to the first pulse signal to generate a pulse voltage according to the DC power supply.
  • the capacitor sub-branch 1323 is used to realize soft turn-on and soft turn-off of the switch sub-branch 1322.
  • the resonator branch 1324 is used to resonate in response to the on and off of the switch sub-branch 1322 to output a driving voltage according to the pulse voltage to drive the ultrasonic atomizing sheet 12 .
  • the impedance branch is used to match the combined impedance of the impedance branch 133 and the ultrasonic atomizing sheet 12 with the impedance of the driving branch 132 .
  • the controller 131 is used to obtain the voltage of the ultrasonic atomization piece 12 and determine the resonant frequency of the ultrasonic atomization piece according to the voltage of the ultrasonic atomization piece 12 .
  • the power supply 14 is converted into a DC power output after passing through the power sub-branch 1321.
  • the controller 131 outputs a first pulse signal to control the switch sub-circuit.
  • Branch 1322 continuously switches between on and off, thereby converting the DC power output by power sub-branch 1321 into AC power, that is, pulse voltage.
  • the resonator branch 1324 can boost the received pulse voltage, and use the boosted driving voltage to drive the ultrasonic atomizing sheet 12 .
  • the resonator branch 1324 since the resonator branch 1324 achieves resonance, the resonator branch 1324 is essentially purely resistive, which can reduce the reactive power of the resonator branch 1324, that is, reduce the power loss, thereby improving the ultrasonic atomization
  • the working efficiency of the machine is 100.
  • the impedance of the resonator branch 1324 is the smallest and the current is the largest, and a larger driving voltage can be output to drive the ultrasonic atomizing sheet 12 to operate stably.
  • the ultrasonic atomizer 12 can be equivalent to a capacitive load, and after the resonator branch 1324 resonates, the combination of the power sub-branch 1321, the switch sub-branch 1322 and the resonator sub-branch 1324 is a purely resistive output. , if energy is transmitted directly between the two (i.e., capacitive load and pure resistive output), a large reactive power will be generated, which will lead to a significant reduction in the efficiency of driving the ultrasonic atomizer sheet 12.
  • an impedance branch 133 is also provided to match the impedance of the combination of the impedance branch 133 and the ultrasonic atomizer sheet 12 with the impedance of the combination of the power sub-branch 1321, the switch sub-branch 1322 and the resonator sub-branch 1324.
  • the reactive power of the combination of the impedance branch 133 and the ultrasonic atomizer sheet 12 can be reduced to reduce power loss, and the ultrasonic atomizer sheet 12 can obtain higher driving energy, thereby improving the efficiency of driving the ultrasonic atomizer sheet 12 and also improving the working efficiency of the ultrasonic atomizer 100.
  • the combined impedance (Zh) of the impedance branch 133 and the ultrasonic atomization sheet 12 includes a real impedance part (Rh) and an imaginary impedance part (j*Xh).
  • the impedance (Z0) of the combination of the branch 1321, the switch sub-branch 1322 and the resonator sub-branch 1324 is equal and the imaginary part of the impedance is less than the first preset threshold, the impedance of the combination of the impedance branch 133 and the ultrasonic atomization sheet 12 Matching the impedance of the combination of power sub-branch 1321, switch sub-branch 1322 and resonator sub-branch 1324.
  • the first preset threshold can be set according to actual application conditions, and the embodiments of the present application do not specifically limit this.
  • Zh Rh+j*Xh.
  • the power sub-branch 1321 includes a first inductor L1.
  • the first end of the first inductor L1 is connected to the power supply 14
  • the second end of the first inductor L1 is connected to the switch sub-branch 1322 and the resonator sub-branch 1324 respectively.
  • the first inductor L1 is a high-frequency choke coil.
  • the high-frequency choke coil only has a greater blocking effect on high-frequency alternating current, has a very small blocking effect on low-frequency alternating current, and has a greater blocking effect on DC. It is small, so it can be used to "pass DC, block AC, pass low frequencies, and block high frequencies.” Therefore, the first inductor L1 can allow DC to pass to provide energy for subsequent circuits, that is, to implement the process of outputting DC power according to the power supply 14 .
  • the first inductor L1 can also be used to prevent high-frequency short circuit.
  • FIG. 4 also illustrates a structure of the switch sub-branch 1322.
  • the switch sub-branch 1322 includes a switch transistor Q1.
  • the first end of the switch Q1 is connected to the controller 131, the second end of the switch Q1 is connected to the ground GND, and the third end of the switch Q1 is connected to the power sub-branch 1321 and the resonator sub-branch 1324 respectively.
  • the switch tube Q1 is taken as an N-type metal oxide semiconductor field effect transistor (i.e., NMOS tube) as an example.
  • NMOS tube N-type metal oxide semiconductor field effect transistor
  • the gate of the NMOS tube is the first end of the switch tube Q1
  • the source of the NMOS tube is the second end of the switch tube Q1
  • the drain of the NMOS tube is the third end of the switch tube Q1.
  • the switch tube Q1 can also be a P-type metal oxide semiconductor field effect transistor or a signal relay.
  • the switch tube Q1 can also be a transistor, an insulated gate bipolar transistor, an integrated gate commutation thyristor,
  • the gate can turn off at least one of a thyristor, a junction gate field effect transistor, a MOS controlled thyristor, a gallium nitride-based power device, a silicon carbide-based power device, and a thyristor.
  • the switch sub-branch 1322 further includes a thirteenth resistor R13 and a fourteenth resistor R14 connected in series.
  • the first end of the circuit composed of the thirteenth resistor R13 and the fourteenth resistor R14 connected in series is connected to the controller 131, and the second end of the circuit composed of the thirteenth resistor R13 and the fourteenth resistor R14 connected in series is connected to the ground GND.
  • the connection point between the thirteenth resistor R13 and the fourteenth resistor R14 is connected to the first end of the switching tube Q1.
  • the thirteenth resistor R13 and the fourteenth resistor R14 are used to divide the voltage of the first pulse signal output by the controller 131 to obtain the voltage at the first end of the switch tube Q1.
  • the divided voltage on the fourteenth resistor R14 is greater than the turn-on voltage of the switch Q1, the switch Q1 is turned on; otherwise, the switch Q1 is turned off.
  • the capacitor sub-branch 1323 includes a fourteenth capacitor C14.
  • the first terminal of the fourteenth capacitor C14 is connected to the third terminal of the switch Q1.
  • the second terminal of the fourteenth capacitor C14 is connected to the ground GND.
  • the fourteenth capacitor C14 is used for charging when the switch Q1 is turned off and the current flowing through the resonator branch 1324 is less than the first current threshold, and for charging when the switch Q1 is turned off and the current flowing through the resonator is When the current of the branch 1324 is greater than or equal to the first current threshold, it resonates with the resonator branch 1324 and discharges. When the fourteenth capacitor C14 is discharged to the second current threshold, the switch Q1 is turned on.
  • the settings of the first current threshold and the second current threshold are related to the parameters of the first capacitor C1 and the resonator branch 1324 .
  • different first current thresholds and second current thresholds can be obtained by selecting different fourteenth capacitors C14 and resonator branches 1324. This is not specifically limited in the embodiment of the present application.
  • the switch Q1 when the switch Q1 is turned off, the voltage between the second terminal and the third terminal of the switch Q1 will not suddenly rise, but first maintain the voltage across the first capacitor C1. Until the current between the second terminal and the third terminal of the switch Q1 drops to zero, the current between the second terminal and the third terminal of the switch Q1 The voltage starts to rise again. As a result, the soft turn-off of the switching tube Q1 is realized.
  • the current flowing through the resonator branch 1324 is less than the first current threshold, and the fourteenth capacitor C14 is charged. Then, the current in the resonator branch 1324 gradually increases until it is greater than or equal to the first current threshold. The current in the resonator branch 1324 is greater than the current in the first inductor L1. The fourteenth capacitor C14 and the resonator branch 1324 Resonate and discharge. Then, when the fourteenth capacitor C14 is discharged to the second current threshold, the switch Q1 is turned on.
  • the soft switching process (including soft turn-on and soft turn-off) of the switch Q1 can be realized, that is, the switch Q1 can be kept on and off. , the product of voltage and current is always zero. Therefore, the switching loss of the switching tube Q1 is also close to zero, and the switching efficiency of the switching tube Q1 is high, which further improves the working efficiency of the ultrasonic atomizer 100.
  • FIG. 4 also illustrates a structure of the resonator branch 1324.
  • the resonator branch 1324 includes a thirteenth capacitor C2 and a second inductor L2.
  • the first end of the thirteenth capacitor C2 is connected to the power sub-branch 1321 (ie, the second end of the first inductor L1) and the switch sub-branch 1322 (ie, the third end of the switch transistor Q1) respectively.
  • the second end of the capacitor C2 is connected to the first end of the second inductor L2, and the second end of the second inductor L2 is connected to the impedance branch 133.
  • the circuit composed of the thirteenth capacitor C2 and the second inductor L2 is purely resistive. At this time, the impedance is minimum and the current is the maximum.
  • the capacitor C2 and the second inductor L2 will generate a high voltage that is N times greater than the pulse voltage input to the resonator branch 1324, where N is greater than 1.
  • the high voltage is the driving voltage used to drive the ultrasonic atomizing sheet 12 . Then, the ultrasonic atomization piece 12 can obtain sufficient driving energy, which is beneficial to maintaining the stable operation of the ultrasonic atomization piece 12 .
  • the impedance branch 133 includes a fifteenth capacitor C15, a third inductor L3, and a fourth inductor L4.
  • the first end of the third inductor L3 is connected to the first end of the fifteenth capacitor C15 and the second end of the fourth inductor L4 respectively.
  • the first end of the fourth inductor L4 is connected to the resonator branch 1324.
  • the second end of the inductor L3 is connected to the ultrasonic atomization piece 12, and the second end of the fifteenth capacitor C15 is connected to the ground GND.
  • FIG. 10 only illustrates one structure of the impedance branch 133.
  • the impedance branch 133 can also have other structures, and this is not specified in the embodiment of the present application. Limitation, as long as the impedance of the combination of the impedance branch 133 and the ultrasonic atomization sheet 12 matches the impedance of the driving branch 133.
  • the impedance branch 133 may only include the fifteenth capacitor C15. At this time, the first end of the fifteenth capacitor C15 is connected to the resonator branch 1324 and the ultrasonic atomization sheet 12 respectively, and the second end of the fifteenth capacitor C15 is connected to the ground GND.
  • the driving branch circuit 132 shown in FIG. 7 may have the same structure as the driving circuit 132 shown in FIG. 9 .
  • the driving branch 132 shown in FIG. 7 can also be a half-bridge circuit structure or a full-bridge circuit structure, as long as there is a need between the driving branch 132 and the ultrasonic atomization sheet 12
  • the resonant frequency of the ultrasonic atomizing sheet 12 can be obtained through the solution provided by the embodiment of the present application.
  • FIG. 11 is a flow chart of a method for determining the resonant frequency based on an ultrasonic atomizer provided by an embodiment of the present application.
  • the specific structure of the ultrasonic atomizer can be realized by the structure shown in Figures 1 to 5 and 6 to 10. The specific implementation process has been described in detail in the above embodiments and will not be repeated here. Repeat.
  • the method for determining the resonant frequency based on the ultrasonic atomizer includes the following steps:
  • Step 1101 Output N driving frequencies to drive the ultrasonic atomizing piece in the ultrasonic atomizer.
  • Step 1102 Obtain detection signals corresponding to the voltage of the ultrasonic atomization sheet under the action of M driving frequencies among the N driving frequencies, so as to obtain M detection signals.
  • Step 1103 Determine the resonant frequency of the ultrasonic atomization sheet based on the frequency corresponding to the minimum value of the voltages corresponding to the M detection signals.
  • N is an integer ⁇ 2, and 2 ⁇ M ⁇ N.
  • the detection signal is a signal related to the voltage of the ultrasonic atomization piece, such as the peak value of the voltage of the ultrasonic atomization piece. Therefore, one detection signal can be determined at each of the M driving frequencies, and a total of M detection signals can be determined by the M driving frequencies. Since the impedance of the ultrasonic atomization piece 12 is the smallest when the ultrasonic atomization piece 12 works at the resonant frequency, the signal related to the voltage of the ultrasonic atomization piece should also be the minimum in this case, that is, the detection signal should be the minimum. Therefore, the minimum value among the M detection signals is obtained, and the frequency corresponding to the minimum value is the resonant frequency of the ultrasonic atomization sheet 12 .
  • the process of obtaining detection signals corresponding to the voltages of the ultrasonic atomization sheet under the action of M driving frequencies among the N driving frequencies in step 1102 includes the following steps:
  • Step 1201 Perform a charge accumulation operation based on the voltage of the ultrasonic atomizer sheet.
  • Step 1202 If the maximum change value of the voltage obtained by the accumulation of charges within the first time period is less than the preset change threshold, use the voltage waveform obtained by the accumulation of charges within the first time period as a detection signal.
  • the maximum change value of the voltage obtained by the accumulation of charges i.e., the difference between the maximum value and the minimum value within the first period of time
  • the value of the voltage at this time is The accumulated voltage waveform. At this time, it can be considered that the charge remains in a stable state, that is, the detection signal is a stable signal.
  • the process of obtaining detection signals corresponding to the voltage of the ultrasonic atomization sheet under the action of M driving frequencies among N driving frequencies in step 1102 includes the following steps:
  • Step 1301 According to the voltage of the ultrasonic atomization piece, perform a charge accumulation operation until the voltage obtained by the accumulation of charge is equal to the maximum value of the voltage of the ultrasonic atomization piece, and record the voltage obtained by the accumulation of charge as the reference Voltage.
  • Step 1302 Output a voltage signal when the voltage of the ultrasonic atomization sheet is equal to the reference voltage, wherein the voltage signal is a detection signal.
  • the reference voltage is the maximum value (that is, the peak value) of the voltage of the ultrasonic atomizer sheet.
  • a voltage signal is output only when the voltage of the ultrasonic atomization piece is equal to the reference voltage, and then the voltage signal is also the maximum value of the voltage of the ultrasonic atomization piece. That is, the process of obtaining the peak value of the voltage of the ultrasonic atomization piece is realized, and the signal corresponding to the peak value is used as the detection signal. Based on the detection signal, the resonant frequency of the ultrasonic atomization piece can be determined.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Special Spraying Apparatus (AREA)

Abstract

一种超声雾化器(100)及基于超声雾化器(100)的谐振频率确定方法。超声雾化器(100)包括储存腔(11)、超声雾化片(12)、控制电路(13)及电源(14)。储存腔(11)存储雾化基质。超声雾化片(12)产生振荡以雾化雾化基质。控制电路(13)包括控制器(131)、驱动支路(132)与阻抗支路(133)。驱动支路(132)与电源(14)及控制器(131)连接,驱动支路(132)响应于第一脉冲信号而产生驱动电压。阻抗支路(133)连接于驱动支路(132)及超声雾化片(12)之间,阻抗支路(133)使阻抗支路(133)和超声雾化片(12)的组合阻抗与驱动支路(132)的阻抗相匹配,阻抗支路(133)包括与超声雾化片(12)并联的第一电容(C1)。控制器(131)获取超声雾化片(12)的第一电压,并根据第一电压确定超声雾化片(12)的谐振频率。

Description

超声雾化器及基于超声雾化器的谐振频率确定方法
相关申请的交叉参考
本申请要求于2022年09月22日提交中国专利局,申请号为202211159798.5,申请名称为“超声雾化器及基于超声雾化器的谐振频率确定方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子电路技术领域,特别是涉及一种超声雾化器及基于超声雾化器的谐振频率确定方法。
背景技术
日常生活中,超声雾化器可以使用于加湿、加香、杀菌、装饰、医疗雾化、电子烟等多领域。其中,谐振频率对于超声雾化器是至关重要的一个参数,但随温度、环境、元件的老化、外界施加作用力等各种因素变化,都会导致超声雾化器中超声雾化片的谐振频率发生漂移。而谐振频率的漂移,就会导致超声雾化片的工作效率降低,甚至会损坏超声雾化片。从而,为了使系统具有较大的输出功率,通常需要使超声雾化片工作在谐振频率下。
在现有技术中,为了确定超声雾化片的谐振频率,通常采用相位检测的手段,即采集超声雾化片的电压与电流,比较两者之间的相位关系,并不断调整驱动频率,以使两者相位差为0,从而确定超声雾化片的谐振频率。
然而,上述方式的成本较高,电路也较为复杂,实现难度较高。不利于成本节约及小型化,实用性较差。
发明内容
本申请旨在提供一种超声雾化器及基于超声雾化器的频率确定方法,能够通过更加简单的方式确定超声雾化片的谐振频率,有利于降低成本并实现小型化,实用性较强。
为实现上述目的,第一方面,本申请提供一种超声雾化器,包括:
储存腔,用于存储雾化基质;
超声雾化片,用于产生振荡以雾化所述雾化基质;
控制电路及电源;
其中,所述控制电路包括:
控制器与驱动支路,所述驱动支路分别与所述电源及所述控制器连接,所述驱动支路用于响应于所述控制器输出的第一脉冲信号而产生驱动电压,所述驱动电压用于驱动所述超声雾化片;
阻抗支路,连接于所述驱动支路及所述超声雾化片之间,所述阻抗支路用于使所述阻抗支路和所述超声雾化片的组合阻抗与所述驱动支路的阻抗相匹配,其中,所述阻抗支路包括与所述超声雾化片并联连接的第一电容;
所述控制器用于获取所述超声雾化片的第一电压,并根据所述第一电压确定所述超声雾化片的谐振频率。
在一种可选的方式中,所述控制器具体用于:
在第一时刻之后,获取所述第一电压,并根据所述第一电压确定所述超声雾化片的谐振频率,其中,所述第一时刻晚于所述超声雾化片启动的时刻。
在一种可选的方式中,所述超声雾化片启动的时刻与所述第一时刻之间的时长为[10μs,100μs]中的任一时长。
在一种可选的方式中,所述控制电路还包括第一转换支路;
所述第一转换支路连接于所述超声雾化片及所述控制器之间,所述第一转换支路用于将所述第一电压的波形转化为在预设范围内波动的第一波形;
所述控制器还用于根据所述第一波形对应的第二电压,确定所述超声雾化片的谐振频率。
在一种可选的方式中,所述第一转换支路包括储能子支路;
所述储能子支路连接于所述超声雾化片及所述控制器之间,所述储能子支路用于响应于所述第一电压而储能;
若在第一时长内,所述储能子支路储能而获得的电压的最大变化值小于预设变化阈值,则将所述储能子支路储能而获得的电压的波形作为所述第一波形。
在一种可选的方式中,所述控制器具体用于:
输出N个驱动频率驱动所述超声雾化片,N为≥2的整数;
获取所述N个驱动频率中的M个驱动频率作用下的第一波形,以获取到M个第一波形,2≤M≤N;
获取所述第一波形对应的第二电压;
根据所述第二电压中的最小值所对应的频率,确定所述超声雾化片的谐振频率。
在一种可选的方式中,所述控制电路还包括电压放大支路;
所述电压放大支路,连接于所述储能子支路及所述控制器之间,所述电压放大支路用于对所述储能子支路储能而获得的电压进行放大,并输出第二波形至所述控制器;
所述控制器还用于根据所述第二波形对应的第三电压,确定所述超声雾化片的谐振频率。
在一种可选的方式中,所述控制电路还包括第二转换支路;
所述第二转换支路连接于所述超声雾化片及所述控制器之间,所述第二转换支路用于将所述第一电压的波形转化为具有间隔电压信号的第三波形,并将所述第三波形输出至所述控制器;
所述控制器还用于根据所述第三波形中电压信号对应的第四电压,确定所述超声雾化片的谐振频率。
在一种可选的方式中,所述第二转换支路包括峰值获取子支路;
所述峰值获取子支路,连接于所述超声雾化片及所述控制器之间,所述峰值获取子支路用于获取所述第一电压的波形中的峰值,以输出所述第三波形,其中,在每次获取到所述峰值时,所述第三波形产生一次所述电压信号。
在一种可选的方式中,所述控制器具体用于:
输出N个驱动频率驱动所述超声雾化片,N为≥2的整数;
获取所述N个驱动频率中的M个驱动频率作用下的第三波形,以获取到M个第三波形,2≤M≤N;
获取所述第三波形对应的第四电压;
根据所述第四电压中的最小值所对应的频率,确定所述超声雾化片的谐振频率。
第二方面,本申请提供一种超声雾化器,包括:
储存腔,用于存储雾化基质;
超声雾化片,用于产生振荡以雾化所述雾化基质;
控制电路及电源;
其中,所述控制电路包括控制器、驱动支路与阻抗支路;
所述驱动支路包括电源子支路、开关子支路、电容子支路与谐振子支路,所述电源子支路与所述电源连接,所述电源子支路用于根据所述电源产生直流电源,所述开关子支路分别与所述控制器及所述电源子支路连接,所述开关子支路用于响应于所述控制器输出的第一脉冲信号而导通与断开,以根据所述直流电源产生脉冲电压,所述电容子支路与所述开关子支路连接,所述电容子支路用于实现所述开关子支路的软开通与软关断,所述谐振子支路分别与所述电源子支路、所述开关子支路及所述阻抗支路连接,所述谐振子支路用于响应于所述开关子支路的导通与断开而谐振,以根据所述脉冲电压输出驱动电压,以驱动所述超声雾化片;
所述阻抗支路连接于所述驱动支路及所述超声雾化片之间,所述阻抗支路用于使阻抗支路和所述超声雾化片的组合阻抗与所述驱动支路的阻抗相匹配;
所述控制器用于获取所述超声雾化片的电压,并根据所述超声雾化片的电压确定所述超声雾化片的谐振频率。
在一种可选的方式中,所述控制器具体用于:
输出N个驱动频率驱动所述超声雾化片,N为≥2的整数;
获取所述N个驱动频率中M个驱动频率作用下所述超声雾化片的电压对应的检测信号,以获取到M个检测信号,2≤M≤N;
根据所述M个检测信号中的最小值所对应的频率,确定所述超声雾化片的谐振频率。
第三方面,本申请提供一种基于超声雾化器的谐振频率确定方法,所述方法包括:
输出N个驱动频率驱动所述超声雾化器中超声雾化片,N为≥2的整数;
获取所述N个驱动频率中的M个驱动频率作用下所述超声雾化片的电压对应的检测信号,以获取到M个检测信号;
根据所述M个检测信号对应的电压中的最小值所对应的频率,确定所述超声雾化片的谐振频率。
在一种可选的方式中,所述获取所述N个驱动频率中的M个驱动频率作用下所述超声雾化片的电压对应的检测信号,包括:
根据所述超声雾化片的电压,执行电荷的累积操作;
若在第一时长内,由电荷的累积而获得的电压的最大变化值小于预设变化阈值,则将所述第一时长内由电荷的累积而获得的电压波形作为所述检测信号。
在一种可选的方式中,所述获取所述N个驱动频率中的M个驱动频率作用下所述超声雾化片的电压对应的检测信号,包括:
根据所述超声雾化片的电压,执行电荷的累积操作,直至由电荷的累积而获得的电压与所述超声雾化片的电压的最大值相等,并将由电荷的累积而获得的电压记为基准电压;
在所述超声雾化片的电压等于所述基准电压时输出电压信号,其中,所述电压信号为所述检测信号。
本申请提供的超声雾化器包括储存腔、超声雾化片、控制电路及电源。其中,控制电路包括控制器、驱动支路与阻抗支路。驱动支路分别与电源及控制器连接,阻抗支路连接于驱动支路及超声雾化片之间。驱动支路用于响应于控制器输出的第一脉冲信号而产生驱动电压,驱动电压用于驱动超声雾化片。阻抗支路用于使阻抗支路和超声雾化片的组合阻抗与驱动支路的阻抗相匹配,其中,阻抗支路包括与超声雾化片并联连接的第一电容。控制器用于获取超声雾化片的第一电压,并根据第一电压确定超声雾化片的谐振频率。通过上述方式,通过简单的电路获取到超声雾化片的电压,就能够确定超声雾化片的谐振频率,从而有利于降低成本并实现小型化,实用性较强。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本申请实施例提供的超声雾化器的结构示意图;
图2为本申请另一实施例提供的超声雾化器的结构示意图;
图3为本申请实施例提供的控制电路的结构示意图;
图4为本申请另一实施例提供的控制电路的结构示意图;
图5为本申请实施例提供的第一转换支路与电压放大支路的电路结构示意图;
图6为本申请实施例提供的在不同驱动频率下的第一电压与第一波形的波形图;
图7为本申请又一实施例提供的控制电路的结构示意图;
图8为本申请实施例提供的第二转换支路的电路结构示意图;
图9为本申请又一实施例提供的控制电路的结构示意图;
图10为本申请实施例提供的驱动支路与阻抗支路的电路结构示意图;
图11为本申请实施例提供的基于超声雾化器的谐振频率确定方法的流程图;
图12是本申请实施例提供的图11中示出的步骤1102的一实施方式的示意图。
图13是本申请实施例提供的图11中示出的步骤1102的另一实施方式的示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参照图1,图1为本申请实施例提供的超声雾化器的结构示意图。如图1所示,该超声雾化器100包括用于储存腔11、超声雾化片12、控制电路13与电源14。
其中,储存腔11用于存储雾化基质,该雾化基质根据不同的使用场景可包括不同的物质,例如在电子烟雾化领域,可包含尼古丁和/或芳香剂和/或气溶胶生成物质(例如,甘油);又如在医疗雾化领域,可包括具有疾病治疗或者有利于健康的药物和/或生理盐水等溶剂。
超声雾化片12与储存腔11流体连通,可以是超声雾化片12直接设置在储存腔11,也可以是超声雾化片12所在的雾化腔与储存腔11直接贯通,也可以是超声雾化片12与储存腔11之间通过介质进行液体传输。超声雾化片12用于产生振荡以雾化该雾化基质,即通过振动将传递至超声雾化片12上或者附近的雾化基质雾化成气溶胶。具体地,超声雾化片12在使用中通过高频振动(优选 振动频率为1.7MHz~4.0MHz,超过人的听觉范围属于超声频段)将雾化基质打散而产生微粒自然悬浮的气溶胶。
控制电路13与超声雾化片12电性连接,控制电路13用于根据电源14为超声雾化片12提供驱动电压与驱动电流。在一实施方式中,控制电路13可以设置于印刷电路板(PCB)上。
电源14用于供电。在一实施方式中,电源14为电池。其中,电池可以为锂离子电池、锂金属电池、铅酸电池、镍镉电池、镍氢电池、锂硫电池、锂空气电池或者钠离子电池等,在此不做限定。从规模而言,本申请实施例中的电池可以为电芯单体,也可以是为由多个电芯单体串联和/或并联组成的电池模组等等,在此不做限定。当然,在其他的实施例中,电池也可以包括更多或更少的元件,或者具有不同的元件配置,本申请实施例对此不作限制。
在一实施例中,超声雾化器100还包括液体传递介质15、出气通道16。其中,液体传递元件15用于在储存腔11与超声雾化片12之间传递雾化基质。出气通道16用于将由雾化基质所产生的可吸入蒸汽或气溶胶输出,以供用户抽吸。
超声雾化器100可以为一体式的,也可以为组装式的。在一实施方式中,当超声雾化器100为组装式时,超声雾化器100还包括电源机构与超声雾化器,其中,超声雾化器包括第一壳体17,电源机构包括第二壳体18。
在一实施例中,第一壳体17与第二壳体18之间可拆卸连接,例如第一壳体17与第二壳体18可以通过卡扣结构或磁吸结构等实现可拆卸连接。第一壳体17与第二壳体18共同起到收容及保护其他元器件的作用。其中,储存腔11、超声雾化片12、液体传递元件15与出气通道16均设置于第一壳体17内,且控制电路13与电源14均设置于第二壳体18内。
第一壳体17与第二壳体18以功能性关系可拆卸地对齐。可以利用各种机构将第二壳体18连接到第一壳体17,从而产生螺纹接合、压入配合接合、过盈配合、磁性接合等等。在一些实施方式中,当第一壳体17与第二壳体18处于组装配置时,超声雾化器100可基本上是棒状、扁筒状、杆状或者柱状形状等。
第一壳体17与第二壳体18可由任何适合的结构上完好的材料形成。在一些示例中,第一壳体17与第二壳体18可由诸如不锈钢、铝之类的金属或合金形成。其它适合的材料包括各种塑料(例如,聚碳酸酯)、金属电镀塑料 (metal-plating over plastic)、陶瓷等等。
需要说明的是,如图1所示的超声雾化器100的硬件结构仅是一个示例,并且,超声雾化器100可以具有比图中所示出的更多的或者更少的部件,可以组合两个或更多的部件,或者可以具有不同的部件配置,图中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。例如,如图2所示,可将超声雾化片12设于储存腔11中,则可以简化结构。
同时,可以理解的是,图1或图2所示的超声雾化器100可应用于多种不同的场合,并起到不同的作用,本申请实施例对此不做具体限制。例如,在一实施例中,超声雾化器100应用于医学领域,此时,超声雾化器100可以为医用雾化器,该医用雾化器可实现通过对加入其内部的药液进行雾化,并使患者吸入,以达到辅助治疗的效果。又如,在另一实施例中,超声雾化器100还可以作为一种电子产品,比如电子烟,电子烟为通过雾化等手段,将尼古丁溶液等变成气雾后,供用户吸食的一种电子产品。
请参照图3,图3示出了控制电路13与电源14连接的结构示意图。如图3所示,控制电路13包括控制器131、驱动支路132与阻抗支路133。其中,驱动支路132分别与电源14及控制器131连接;阻抗支路133连接于驱动支路132及超声雾化片12之间,阻抗支路133包括与超声雾化片12并联连接的第一电容C1。
具体地,驱动支路132用于响应于控制器131输出的第一脉冲信号而产生驱动电压,驱动电压用于驱动超声雾化片12。阻抗支路133用于使阻抗支路133和超声雾化片12的组合阻抗与驱动支路132的阻抗相匹配,以减少阻抗支路133和超声雾化片12的组合的无功功率部分。控制器131用于获取超声雾化片12的第一电压,并根据第一电压确定超声雾化片12的谐振频率。
在相关技术中,获取超声雾化片12的谐振频率通常采样两种方式。第一种方式为通过采集电源14的输出电流确定谐振频率的方式,具体为,由于超声雾化片12工作在谐振频率下时其阻抗最小,电源14的输出电流最大,所以可通过多个频率驱动超声雾化片,并采集各频率对应的输出电流,所采集到的输出电流中的最大值对应的频率即为谐振频率。
然而,对于本申请而言,由于存在于超声雾化片并联连接的第一电容C1,则第一电容C1所在的支路会产生电流的分流,继而导致所采集到的输出电流中的最大值不再与谐振频率对应,即输出电流中的最大值对应的频率不为谐振频率。因此,通过采集电源14的输出电流确定谐振频率的方式不适用于本申请实施例中的超声雾化器100。
第二种方式为采用相位检测的手段,即采集超声雾化片12的电压与电流,比较两者之间的相位关系,并不断调整驱动频率,以使两者相位差为0,从而确定超声雾化片12的谐振频率。然而,该种方式的成本较高,电路也较为复杂,实现难度较高。不利于成本节约及小型化,实用性较差。
而对于本申请而言,则采用一种更加简单的电路结构实现对超声雾化片12的谐振频率的检测。具体为,在保持电源14输出的电压不变时,若超声雾化片12工作在谐振频率点处,超声雾化片12的阻抗最小,则此时超声雾化片12两端的电压也最小。同时,由于第一电容C1是与超声雾化片12并联,所以第一电容C1不会对超声雾化片12两端的电压造成影响。综上,通过获取超声雾化片12的第一电压,就能够确定超声雾化片12的谐振频率。并且,所采用的电路结构较为简单,从而有利于降低成本并实现小型化,实用性较强。
在一实施方式中,控制器131还具体用于:在第一时刻之后,获取第一电压,并根据第一电压确定超声雾化片的谐振频率。其中,第一时刻晚于超声雾化片启动的时刻。
在超声雾化片12启动之后,超声雾化片12两端的电压会从最大电压逐渐降低至稳定状态,当超声雾化片12处于稳定状态时,超声雾化片12两端的电压在一个范围内上下波动,则应该在超声雾化片12处于稳定状态时,才获取第一电压,才能够进一步确定超声雾化片12的谐振频率。其中,超声雾化片12启动的时刻与第一时刻之间的时长,即超声雾化片12两端的电压会从最大电压降低至稳定状态的时长可根据实际应用情况进行设置,本申请实施对此不作具体限制。比如,在一实施例中,超声雾化片12启动的时刻与第一时刻之间的时长为[10μs,100μs]中的任一时长。并且,为了保持检测结果的稳定性与准确性,可将该时长设置为较大值,例如100μs。
在一实施例中,如图4所示,控制电路13还包括第一转换支路134。第一 转换支路134连接于超声雾化片12及控制器131之间。
其中,第一转换支路134用于将第一电压的波形转化为在预设范围内波动的第一波形。控制器131还用于根据第一波形对应的第二电压,确定超声雾化片12的谐振频率。预设范围可根据实际应用情况进行设置,本申请实施例对此不作具体限制。
在该实施例中,第一电压的波形为变化速度较快的波形,若要直接对该波形进行采样,需要采样速度与精度较高的控制器131,该种控制器的成本较高。而在将第一电压的波形转化为在预设范围内波动的第一波形之后,对于采用速度与精度的要求则能够较大程度的降低,从而能够选择使用采样速度与精度较低的控制器131,既可实现对第一波形的采样,又能够节省成本。
请一并参照图4与图5,在一实施例中,第一转换支路包括储能子支路1341。储能子支路1341连接于超声雾化片12及控制器131之间。
其中,储能子支路1341用于响应于第一电压而储能。若在第一时长内,储能子支路1341储能而获得的电压的最大变化值小于预设变化阈值,则将储能子支路1341储能而获得的电压的波形作为第一波形。
在第一电压的驱动下,储能子支路1341上的电荷不断累积。当在第一时长内,由电荷的累积而获得的电压的最大变化值(即第一时长内的最大值与最小值之间的差值)保持小于预设变化阈值,则将此时电荷的累积而获得的电压的波形作为第一波形。此时,可认为电荷保持为稳定的状态,即第一波形为稳定的信号。
其中,预设变化阈值可根据实际应用情况进行设置,本申请实施例对此不作具体限制。例如,在一实施例中,预设变化阈值可设置为0.2v,此时,若由电荷的累积而获得的电压一直保持在[1v,1.1v]的这个范围内,并且保持的时长大于或等于第一时长,则由于电荷的累积而获得的电压的最大变化值为1.1-1=0.1v,小于0.2v,此时可认为由电荷的累积而获得的电压为稳定的电压,则可获得第一波形。
其中,第一时长可根据实际应用情况进行设置,本申请实施例对此不作具体限制。例如,在一实施方式中,第一时长设置为(0,10ms]中的任一时长,比如10ms。若在10ms内,由电荷的累积而获得的电压的最大变化值能够保持小于 预设变化阈值,则由电荷的累积而获得的电压在10ms内的波动幅度较小。此时,可认为由电荷的累积而获得的第一波形为稳定的波形,则第一波形对应的第二电压为稳定的电压。通过设置该第一时长,能够更为准确的确定第一波形为较为稳定的波形,从而减少误判的几率。
又如,在另一实施方式中,第一时长设置为大于或等于5个采样周期的时长,且每个采样周期为(0,100μs]之间的任一时长。其中,采样周期即每次采样由电荷的累积而获得的电压的周期。若对由电荷的累积而获得的电压连续采样5次以上,所采样到的由电荷的累积而获得的电压的最大变化值均小于预设变化阈值,则可确定第一波形为较为稳定的波形。
比如,在一实施方式中,预设变化阈值设置为0.2v,第一时长设置为等于5个采样周期的时长,且第一次采样到的电压为0.4v,第二次采样到的电压为0.5v,第三次采样到的电压为0.5v,第四次采样到的电压为0.4v,第五次采样到的电压为0.5v。则在该实施例中,电压的最大变化值为0.5-0.4=0.1v<0.2v。此时,可将当前的由电荷的累积而获得的电压的波形作为第一波形,第一波形对应的第二电压可以为0.5v。
在该实施例中,通过多次采样的方式,能够避免电压可能因环境的干扰等所出现的波动而导致的采样错误,同样也能够减少误判的几率。此外,通过设置采样周期在(0,100μs]之间的任一时长,则可提高能够采样到电压的几率。
继而,由于第一电压与第一波形对应的第二电压存在对应关系,则通过获取到第二电压,即可确定驱动电压的大小。
同时,在该实施例中,无论第一电压为快速变化的量(即频率较高的信号),亦或是缓慢变化的量(即频率较低的信号),均能够实现电荷累积的过程。从而,该方法可适用于各种不同频率的信号,即可适用于各种不同的应用场景,实用性较强。此外,由于储能子支路1341储能而获得的电压为电荷累积后所得到的变量,则该变量对控制器的处理要求较低。而随着采样频率的降低,控制器的价格也降低,则此时可选用采样频率较低的控制器,以在满足对第一波形的采样需求的同时达到节省成本的目的。
进一步地,在一实施例中,控制器131具体用于:输出N个驱动频率驱动超声雾化片,N为≥2的整数。获取N个驱动频率中的M个驱动频率作用下的第 一波形,以获取到M个第一波形,2≤M≤N。获取第一波形对应的第二电压。根据第二电压中的最小值所对应的频率,确定超声雾化片的谐振频率。
其中,由于当超声雾化片12工作在谐振频率处时,超声雾化片12两端的第一电压为最小电压,所以若随着驱动频率的增大,所检测到的第一电压呈现增大的趋势,则后续的驱动频率可以无需再采集第一电压,即无需再采集第一波形,以提高工作效率。亦即,可能只需在N个驱动频率中的M个驱动频率下采集第一波形,也可能需在多个驱动频率中的所有驱动频率下采集第一波形。
继而,每一个第一波形可确定一个第二电压,M个第一波形总共可确定M个第二电压。获取到M个第二电压中的最小值,该最小值对应的频率即为超声雾化片12的谐振频率。
请参照图6,图6中示例性示出了谐振频率为2.94MHz的超声雾化片12在不同驱动频率作用下,所采样到的第一电压与第一波形。其中,曲线V11为驱动频率为2.92MHz时的第一电压;曲线L11为驱动频率为2.92MHz时的第一波形;曲线V12为驱动频率为2.94MHz时的第一电压;曲线L12为驱动频率为2.94MHz时的第一波形;曲线V13为驱动频率为2.96MHz时的第一电压;曲线L13为驱动频率为2.96MHz时的第一波形。
如图6所示,当驱动频率为2.92MHz时,第一波形的变化范围为[840mv,842mv],预设变化阈值为2mv,则第一波形对应的第二电压可以为841mv;当驱动频率为2.94MHz时,第一波形的变化范围为[733mv,735mv],预设变化阈值为2mv,则第一波形对应的第二电压可以为734mv;当驱动频率为2.96MHz时,第一波形的变化范围为[1.36v,1.38v],预设变化阈值为2mv,则第一波形对应的第二电压可以为1.37v。可见,当驱动频率为2.94MHz,恰好为谐振频率时,第一波形对应的第二电压最小,且反之亦成立,因此,若获取到M个驱动频率下的M个第二电压中的最小值,则该最小值对应的频率即为超声雾化片12的谐振频率。
在一实施例中,请返回参照图5,第一转换支路134还包括第一预处理子支路1342、整流子支路1343、限压与限流子支路1344。其中,第一预处理子支路1342与超声雾化片12连接,整流子支路1343与第一预处理子支路1342连接,限压与限流子支路1344分别与整流子支路1343、储能子支路1341及控制器131 连接。
具体地,第一预处理子支路1342的第一端与超声雾化片12的第一端连接,第一预处理子支路1342的第二端与整流子支路1343的第一端连接,整流子支路1343的第二端分别与储能子支路1341的第一端及限压与限流子支路1344的第一端连接,限压与限流子支路1344的第二端与控制器131连接。
其中,第一预处理子支路1342被配置为对超声雾化片12的第一电压进行分压与滤波,并输出第一子电压。整流子支路1343被配置为对第一子电压进行整流,以使储能子支路1341响应于第一子电压而储能,并输出第一检测电压。限压与限流子支路1344被配置为对第一检测电压进行限压与限流后输出在预设范围内波动的第一波形至控制器131,以使控制器131根据第一波形对应的第二电压确定超声雾化片12的谐振频率。
在该实施例中,在超声雾化片12的工作过程中,为了确定第一电压的大小,首先,采用第一预处理子支路1342对第一电压进行分压以及滤波处理。其中,通过分压处理,则能够对第一驱动信号进行幅值缩小,以减小输入至控制器131的电压,有利于对控制器131起到保护作用。通过滤波处理,则用以滤除可能出现的高压脉冲信号,以对后续的电子元件,例如控制器131等起到保护作用。
接着,第一预处理子支路1342输出第一子电压,第一子电压被整流子支路1343进行整流,以将第一子电压整流成能够为储能子支路1341充电的信号。
继而,储能子支路1341基于整流后的第一子电压而储能,储能子支路1341的电压逐渐升高,直至储能子支路1341的电压保持为较为稳定的状态,例如,储能子支路1341的电压在处于预设电压范围内,即可认为储能子支路1341的电压保持为较为稳定的状态。此时,储能子支路1341的电压记为第一检测电压,并将第一检测电压传输至限压与限流子支路1344。其中,即使第一电压为快速变化的量(即频率较高的信号),储能子支路1341能够根据第一子电压进行多个累积,得到一个能反映第一子电压的幅值与频率的变量,再输入至控制器131。可见,控制器131所接收到的信号并非为快速变化的量,而是累积得到的变量,则对控制器131的处理要求不高。换言之,即使选择采样频率较低的控制器131,也能够满足对第一检测电压的采样需求。而随着采样频率的降低,控制器131的价格也降低,从而通过选择采样频率较低的控制器131,能够达到节省成本的 目的。
限压与限流子支路1344在接收到第一检测电压后,对第一检测电压进行限压,以避免其电压上升幅度过大,并对第一检测电压进行限流,以防止过大的电流流入至控制器131,能够对控制器131起到保护作用。继而,限压与限流子支路1344还输出第一波形至控制器131。控制器131在接收到第一波形后,即可根据第一波形对应的第二电压确定超声雾化片12的谐振频率。
在一实施例中,第一预处理子支路1342包括第三电容C3、第三电阻R3与第四电阻R4。其中,第三电阻R3的第一端与超声雾化片12的第一端连接,第三电阻R3的第二端分别与第三电容C3的第一端、第四电阻R4的第一端及整流子支路1343连接,第三电容C3的第二端及第四电阻R4的第二端接地GND。
在该实施例中,第三电阻R3与第四电阻R4的组合用于起到分压的作用,第三电容C3用于起到滤波的作用。
在一实施例中,整流子支路1343包括第一二极管D1。其中,第一二极管D1的阳极与第一预处理子支路1342中第三电阻R3与第四电阻R4之间的连接点连接,第一二极管D1的阴极分别与储能子支路1341及限压与限流子支路1344连接。
在该实施例中,由于第一二极管D1的单向导电性,所以第一二极管D1仅允许大于0的信号,相当于滤除掉了第一预处理子支路1342输出的第一驱动子信号的负半部分,只留下正半部分。同时,第一二极管D1还能够有效防止第一二极管D1的阴极所连接的电路的电压倒流回至第一二极管D1的阳极所连接的电路,能够对第一二极管D1的阳极所连接的电路(例如超声雾化片12)起到保护作用。
在一实施例中,储能子支路1341包括第十六电容C16。其中,第十六电容C16的第一端通过整流子支路1343及第一预处理子支路1342后,分别与第一升压支路142中第一电感L1的第二端、第一开关支路141中第一开关Q1的第三端及超声雾化片12连接,第十六电容C16的第二端接地GND。
具体地,整流子支路1343输出的第一子电压能够对第十六电容C16进行充电。当第十六电容C16两端的电压为一较为稳定的电压时,例如,第十六电容C16两端的电压处于预设电压范围内,此时,将第十六电容C16两端的电压记为 第一检测电压。可见,第十六电容C16能够在第一子电压的驱动下进行电荷的累积,得到一个能反映第一子电压的幅值与频率的变量,再输入至控制器131。因此,控制器131所接收到的信号并非为快速变化的量,而是累积得到的变量。换言之,对控制器131的处理要求不高,即使选择采样频率较低的控制器131,也能够满足对第一检测电压的采样需求,则可通过选择采样频率较低的控制器131,以达到节省成本的目的。
在一实施方式中,第十六电容C16的电容值小于或等于100nF。通过选择小于或等于100nF的第十六电容C16,可实现在以较快的速度生成稳定的第一检测电压的同时,能够降低第一电容C1因被击穿而损坏的风险,有利于提高超声雾化器100工作的稳定性。
在一实施例中,限压与限流子支路1344包括第六电阻R6与第七电阻R7。第六电阻R6的第一端分别与第七电阻R7的第一端、整流子支路1343及储能子支路1341连接,第六电阻R6的第二端接地GND,第七电阻R7的第二端与控制器131连接。
在该实施例中,第六电阻R6用于提供一较小的负载,以对第一检测电压进行限压,从而避免其电压上升幅度过大。第七电阻R7用于对第一检测电压进行限流,以防止过大的电流流入至控制器131,能够对控制器131起到保护作用。
在一实施例中,控制电路13还包括电压放大支路135。其中,电压放大支路135连接于储能子支路1341及控制器之131间。
具体地,电压放大支路135用于对储能子支路1341储能而获得的电压进行放大,并输出第二波形至控制器131。控制器131还用于根据第二波形对应的第三电压确定超声雾化片12的谐振频率。
在该实施例中,通过设置电压放大支路135,有助于获取更明显的波形以更加准确的确定超声雾化片12的谐振频率。
在一实施例中,电压放大支路135包括第一电阻R1、第二电阻R2、第四电容C4、第五电容C5与第一放大器U1。其中,各元件器之间的连接关系可参照图5所示,这里不再赘述。
具体地,第一放大器U1能够将储能子支路1341储能而获得的电压放大一定的倍数,该倍数由第一放大器U1的性能决定,以此加大了不同电压值的区分 度,有利于提高确定超声雾化片12的谐振频率的精度。
在另一些实施例中,请参照图7,控制电路13还包括第二转换支路136。其中,第二转换支路136连接于超声雾化片12及控制器131之间。
具体地,第二转换支路136用于将第一电压的波形转化为具有间隔电压信号的第三波形,并将第三波形输出至控制器131,其中,电压信号包括上升沿或下降沿。控制器131还用于根据第三波形中电压信号对应的第四电压,确定超声雾化片12的谐振频率。
其中,在未出现电压信号时,第三波形保持不变。并且,只有在每次达到预设定的电压位置时,才出现电压信号。例如,预设定的位置为第一电压的峰值,也就是在第一电压达到峰值时,第三波形出现一次电压信号。从而,根据电压信号对应的第四电压,就能够确定超声雾化片12的谐振频率。其中,第一电压的峰值可由控制器131根据第一电压的波形直接获取,也可以由电路结构确定。以下提供一种实现峰值获取的电路结构的实施例。
在一些实施例中,如图8所示,第二转换支路136包括峰值获取子支路1361。其中,峰值获取子支路1361连接于超声雾化片12及控制器131之间。
具体地,峰值获取子支路1361用于获取第一电压的波形中的峰值,以输出第三波形。其中,在每次获取到峰值时,第三波形产生一次电压信号。
进一步地,在一实施例中,控制器131具体用于:输出N个驱动频率驱动超声雾化片,N为≥2的整数。获取N个驱动频率中的M个驱动频率作用下的第三波形,以获取到M个第三波形。获取第三波形对应的第四电压。根据第四电压中的最小值所对应的频率,确定超声雾化片的谐振频率。
在实际应用中,若超声雾化片12工作在谐振频率点处,超声雾化片12的阻抗最小,则超声雾化片12两端的电压也最小,由于超声雾化片12两端的电压通常为正弦波,则超声雾化片12两端的电压中的峰值也最小。因此,通过确定超声雾化片12两端的电压中的峰值,也能够确定超声雾化片12的谐振频率。另外,由于当超声雾化片12工作在谐振频率处时,超声雾化片12两端的第一电压为最小电压,则此时第一电压的峰值也最小,从而若随着驱动频率的增大,所检测到的第一电压的峰值呈现增大的趋势,则后续的驱动频率可以无需再采集第一电压的峰值,即无需再采集第三波形,以提高工作效率。
继而,每一个第三波形可确定一个第四电压,M个第三波形总共可确定M个第四电压。获取到M个第四电压中的最小值,该最小值对应的频率即为超声雾化片12的谐振频率。
请返回参照图6,在实际应用中,当驱动频率为2.92MHz时,第一电压的峰值为29.18mv;当驱动频率为2.94MHz时,第一电压的峰值为26.67mv;当驱动频率为2.96MHz时,第一电压的峰值为44.92mv。可将,当驱动频率为2.94MHz,恰好为谐振频率时,第一电压的峰值最小,且反之亦成立。因此,若获取到M个驱动频率下的M个第四电压(即第一电压的峰值)中的最小值,则该最小值对应的频率即为超声雾化片12的谐振频率。
在一实施例中,峰值获取子支路1361包括第六电容C6、第七电容C7、第八电容C8、第九电容C9、第十电容C10、第十一电容C11、第二二极管D2、第三二极管D3、第七电阻R7、第八电阻R8、第九电阻R9、第十电阻R10、第二放大器U2与第三放大器U3。其中,各元器件之间的连接关系可参照图8所示,这里不再赘述。
在该实施例中,第九电容C9被第一电压充电,并充电至第九电容C9上的电压与第一电压中的峰值相等并保持。继而,当第一电压的峰值未来到时,第三放大器U3反相输入端的电压保持小于第三放大器U3同相输入端的电压。只有在第一电压的峰值达到时,第三放大器U3反相输入端的电压保持等于第三放大器U3同相输入端的电压,第三放大器U3输出的电压即为第一电压的峰值(即对应第三波形中的电压信号)。
在一实施例中,第二转换支路136还包括第二预处理子支路1362。第二预处理子支路1362连接于超声雾化片12与峰值获取子支路1361之间。
第二预处理子支路1362用于对第一电压进行整流、分压与滤波。
在一些实施方式中,第二预处理子支路1362包括第四二极管D4、稳压二极管DW1、第十一电阻R11、第十二电阻R12与第十二电容C12。其中,各元器件之间的连接关系可参照图8所示,这里不再赘述。
在该实施方式中,第四二极管D4用于进行整流,第十一电阻R11、第十二电阻R12用于进行分压,第十二电容C12用于进行滤波,稳压二极管DW1用于将输入至第三放大器U3同相输入端的电压进行钳位。
请参照图9,图9中示例性示出了另一实施例提供的控制电路13的结构示意图。如图9所示,控制电路13包括驱动器131、驱动支路132与阻抗支路133。其中,驱动支路132包括电源子支路1321、开关子支路1322、电容子支路1323与谐振子支路1324。
其中,电源子支路1321与电源14连接。开关子支路1322分别与控制器131及电源子支路1321连接。电容子支路1323与开关子支路1322连接。谐振子支路1324分别与电源子支路1321、开关子支路1322及阻抗支路133连接。阻抗支路133还与超声雾化片12连接。
具体地,电源子支路1321用于根据电源14产生直流电源。开关子支路1322用于响应于第一脉冲信号而导通与断开,以根据直流电源产生脉冲电压。电容子支路1323用于实现开关子支路1322的软开通与软关断。谐振子支路1324用于响应于开关子支路1322的导通与断开而谐振,以根据脉冲电压输出驱动电压,以驱动超声雾化片12。阻抗支路用于使阻抗支路133和超声雾化片12的组合阻抗与驱动支路132的阻抗相匹配。控制器131用于获取超声雾化片12的电压,并根据超声雾化片12的电压确定超声雾化片的谐振频率。
在该实施例中,在超声雾化片12需要被驱动时,首先,电源14在经过电源子支路1321后转换为直流电源输出,同时,控制器131输出第一脉冲信号,以控制开关子支路1322在导通与断开之间不断循环切换,从而将电源子支路1321所输出的直流电源转换为交流电源,即脉冲电压。继而,谐振子支路1324在发生谐振后,能够将所接收到的脉冲电压进行升压,并使用升压后的驱动电压驱动超声雾化片12。其中,由于谐振子支路1324实现了谐振,则谐振子支路1324实质上呈现纯电阻性,可减少谐振子支路1324无功功率的部分,即减少了功率损耗,从而提高了超声雾化器100的工作效率。并且,在该种情况下,谐振子支路1324的阻抗最小,电流最大,可输出较大的驱动电压以驱动超声雾化片12稳定运行。
此外,超声雾化片12可等效为一容性负载,而在谐振子支路1324发生谐振之后,电源子支路1321、开关子支路1322和谐振子支路1324的组合为纯阻性输出,若将二者(即容性负载与纯阻性输出)之间直接进行能量传输,则会有较大的无功功率产生,进而导致驱动超声雾化片12的效率大幅度降低。
因此,在此实施例中,还通过设置阻抗支路133,以实现阻抗支路133和超声雾化片12的组合的阻抗与电源子支路1321、开关子支路1322和谐振子支路1324的组合的阻抗相匹配。从而,可减少阻抗支路133和超声雾化片12的组合的无功功率的部分,以减少功率的损耗,超声雾化片12能够获得较高的驱动能量,提高了驱动超声雾化片12的效率,也提高了超声雾化器100的工作效率。
具体地,在一实施方式中,阻抗支路133和超声雾化片12的组合的阻抗(Zh)包括阻抗实部(Rh)与阻抗虚部(j*Xh),在阻抗实部与电源子支路1321、开关子支路1322和谐振子支路1324的组合的阻抗(Z0)相等、且阻抗虚部为小于第一预设阈值时,阻抗支路133和超声雾化片12的组合的阻抗与电源子支路1321、开关子支路1322和谐振子支路1324的组合的阻抗相匹配。其中,第一预设阈值可根据实际应用情况进行设置,本申请实施例对此不作具体限制。
其中,Zh=Rh+j*Xh。且,由于电源子支路1321、开关子支路1322和谐振子支路1324的组合的阻抗为纯电阻性,则Z0=R0,其中,R0表示开关子支路1322和谐振子支路1324的组合的电阻。从而,若要满足阻抗支路133和超声雾化片12的组合的阻抗与电源子支路1321、开关子支路1322和谐振子支路1324的组合的阻抗相匹配,所需满足的条件为:Rh=R0,且j*Xh=0。此时,超声雾化片12的工作效率较高。
在一实施例中,如图10所示,电源子支路1321包括第一电感L1。其中,第一电感L1的第一端与电源14连接,第一电感L1的第二端分别与开关子支路1322及谐振子支路1324连接。
具体地,第一电感L1为高频扼流圈,高频扼流圈只对高频交变电流有较大的阻碍作用,对低频交变电流的阻碍作用很小,对直流的阻碍作用更小,因此可以用来“通直流,阻交流,通低频,阻高频”。从而,第一电感L1可允许直流通过以为后续电路提供能量,即实现根据电源14输出直流电源的过程。另外,第一电感L1还可用于防止高频短路。
图4还示例性示出了开关子支路1322的一种结构,如图4所示,开关子支路1322包括开关管Q1。其中,开关管Q1的第一端与控制器131连接,开关管Q1的第二端接地GND,开关管Q1的第三端分别与电源子支路1321及谐振子支路1324连接。
其中,在该实施例中,以开关管Q1为N型金属氧化物半导体场效应晶体管(即NMOS管)为例。具体地,NMOS管的栅极为开关管Q1的第一端,NMOS管的源极为开关管Q1的第二端,NMOS管的漏极为开关管Q1的第三端。
除此之外,在其他实施例中,开关管Q1也可以P型金属氧化物半导体场效应晶体管或信号继电器,开关管Q1还可以是三极管、绝缘栅双极晶体管、集成栅极换向晶闸管、栅极可关断晶闸管、结栅场效应晶体管、MOS控制晶闸管、氮化镓基功率器件、碳化硅基功率器件、可控硅中的至少一种。
在一实施例中,开关子支路1322还包括串联连接的第十三电阻R13与第十四电阻R14。其中,第十三电阻R13与第十四电阻R14串联连接组成的电路的第一端与控制器131连接,第十三电阻R13与第十四电阻R14串联连接组成的电路的第二端接地GND,第十三电阻R13与第十四电阻R14之间的连接点与开关管Q1的第一端连接。
在该实施例中,第十三电阻R13与第十四电阻R14用于对控制器131输出的第一脉冲信号的电压进行分压,以获得开关管Q1的第一端的电压。当第十四电阻R14上的分压大于开关管Q1的导通电压时,开关管Q1导通,反之,开关管Q1断开。
在一实施例中,电容子支路1323包括第十四电容C14,第十四电容C14的第一端与开关管Q1的第三端连接,第十四电容C14的第二端接地GND。
具体地,第十四电容C14用于在开关管Q1断开,且流过谐振子支路1324的电流小于第一电流阈值时充电,以及用于在开关管Q1断开,且流过谐振子支路1324的电流大于或等于第一电流阈值时与谐振子支路1324进行谐振而放电。其中,在第十四电容C14放电至第二电流阈值时,开关管Q1导通。
可以理解的是,第一电流阈值和第二电流阈值的设置均与第一电容C1以及谐振子支路1324的参数相关。换言之,在不同的应用场景中,选择不同的第十四电容C14与谐振子支路1324,可获得不同的第一电流阈值与第二电流阈值,本申请实施例对此不作具体限制。
在该实施例中,当开关管Q1断开瞬间,开关管Q1的第二端与第三端之间的电压不会突然上升,而是先维持第一电容C1两端的电压。直至开关管Q1的第二端与第三端之间的电流降到为零之后,开关管Q1的第二端与第三端之间的 电压再开始上升。从而,实现了开关管Q1的软关断。
与此同时,流过谐振子支路1324的电流小于第一电流阈值,第十四电容C14被充电。接着,谐振子支路1324的电流逐渐增大,直至大于或等于第一电流阈值时,谐振子支路1324的电流大于第一电感L1上的电流,第十四电容C14与谐振子支路1324进行谐振而放电。继而,在第十四电容C14放电至第二电流阈值时,开关管Q1导通。可见,通过选择合适的第十四电容C14与谐振子支路1324,以使第二电流阈值为零,则可实现开关管Q1的零电压导通,亦即,实现了开关管Q1的软开通。
在该实施例中,通过设置第十四电容C14与谐振子支路1324,可实现开关管Q1的软开关过程(包括软开通与软关断),即保持开关管Q1在导通与断开时,电压与电流的乘积始终为零。从而,开关管Q1的开关损耗也接近为零,开关管Q1的开关效率较高,进而也提高超声雾化器100的工作效率。
图4还示例性示出了谐振子支路1324的一种结构,如图4所示,谐振子支路1324包括第十三电容C2与第二电感L2。其中,第十三电容C2的第一端分别与电源子支路1321(即第一电感L1的第二端)及开关子支路1322(即开关管Q1的第三端)连接,第十三电容C2的第二端与第二电感L2的第一端连接,第二电感L2的第二端与阻抗支路133连接。
在该实施例中,当第十三电容C2与第二电感L2形成串联谐振时,第十三电容C2与第二电感L2组成的电路呈纯电阻性,此时阻抗最小,电流最大,在第十三电容C2与第二电感L2上会产生比输入至谐振子支路1324的脉冲电压大N倍的高电压,其中,N大于1。其中,该高电压即用于驱动超声雾化片12的驱动电压。继而,超声雾化片12可获得较充足的驱动能量,有利于保持超声雾化片12的稳定运行。
在一实施例中,如图4所示,阻抗支路133包括第十五电容C15、第三电感L3与第四电感L4。其中,第三电感L3的第一端分别与第十五电容C15的第一端及第四电感L4的第二端连接,第四电感L4的第一端与谐振子支路1324连接,第三电感L3的第二端与超声雾化片12连接,第十五电容C15的第二端接地GND。
需要说明的是,图10仅示例性示出了阻抗支路133的一种结构,而在其他的实施例中,阻抗支路133也可以为其他的结构,本申请实施例对此不作具体 限制,只需能够实现阻抗支路133和超声雾化片12的组合的阻抗与驱动支路133的阻抗相匹配即可。例如,在一实施方式中,阻抗支路133可以只包括第十五电容C15。此时,第十五电容C15的第一端分别与谐振子支路1324及超声雾化片12连接,第十五电容C15的第二端接地GND。
同时,图7所示的驱动支路132可以与图9所示的驱动路132具有相同的结构。当然,在其他的实施例中,图7所示的驱动支路132还可以为半桥电路的结构或全桥电路的结构等结构,只要在驱动支路132与超声雾化片12之间需要设置对应的阻抗支路133,就能够通过本申请实施例所提供的方案获取超声雾化片12的谐振频率。
请参照图11,图11为本申请实施例提供的基于超声雾化器的谐振频率确定方法的流程图。其中,在一些实施方式中,超声雾化器的具体结构可通过如图1-图5、图6-图10所示的结构实现,具体实现过程在上述实施例已进行详细描述,这里不再赘述。
如图11所示,该基于超声雾化器的谐振频率确定方法包括如下步骤:
步骤1101:输出N个驱动频率驱动超声雾化器中超声雾化片。
步骤1102:获取N个驱动频率中的M个驱动频率作用下超声雾化片的电压对应的检测信号,以获取到M个检测信号。
步骤1103:根据M个检测信号对应的电压中的最小值所对应的频率,确定超声雾化片的谐振频率。
其中,N为≥2的整数,2≤M≤N。
检测信号为与超声雾化片的电压相关的信号,例如超声雾化片的电压的峰值。从而,M个驱动频率的每一个驱动频率下可确定一个检测信号,M个驱动频率总共可确定M个检测信号。由于当超声雾化片12工作在谐振频率处时,超声雾化片12阻抗最小,则在该种情况下与超声雾化片的电压相关的信号也应为最小,即检测信号应为最小。从而,获取到M个检测信号中的最小值,该最小值对应的频率即为超声雾化片12的谐振频率。
在一实施例中,如图12所示,步骤1102中获取N个驱动频率中的M个驱动频率作用下超声雾化片的电压对应的检测信号的过程包括如下步骤:
步骤1201:根据超声雾化片的电压,执行电荷的累积操作。
步骤1202:若在第一时长内,由电荷的累积而获得的电压的最大变化值小于预设变化阈值,则将第一时长内由电荷的累积而获得的电压波形作为检测信号。
具体地,在超声雾化片的电压的驱动下,电荷不断累积。当在第一时长内,由电荷的累积而获得的电压的最大变化值(即第一时长内的最大值与最小值之间的差值)保持小于预设变化阈值,则将此时电荷的累积而获得的电压的波形作为检测信号。此时,可认为电荷保持为稳定的状态,即检测信号为稳定的信号。
在另一实施例中,如图13所示,步骤1102中获取N个驱动频率中的M个驱动频率作用下超声雾化片的电压对应的检测信号的过程包括如下步骤:
步骤1301:根据超声雾化片的电压,执行电荷的累积操作,直至由电荷的累积而获得的电压与超声雾化片的电压的最大值相等,并将由电荷的累积而获得的电压记为基准电压。
步骤1302:在超声雾化片的电压等于基准电压时输出电压信号,其中,电压信号为检测信号。
在该实施例中,基准电压即为超声雾化片的电压的最大值(即峰值)。只有在超声雾化片的电压等于基准电压时输出电压信号,则该电压信号也为超声雾化片的电压的最大值。亦即,实现了获取超声雾化片的电压的峰值的过程,并将该峰值对应的信号作为检测信号,基于该检测信号即可确定超声雾化片的谐振频率。
应理解,方法实施例中对超声雾化器的具体控制以及产生的有益效果,可以参考上述超声雾化器的实施例中的相应描述,为了简洁,这里不再赘述。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方 案的范围。

Claims (15)

  1. 一种超声雾化器,其特征在于,包括:
    储存腔,用于存储雾化基质;
    超声雾化片,用于产生振荡以雾化所述雾化基质;
    控制电路及电源;
    其中,所述控制电路包括:
    控制器与驱动支路,所述驱动支路分别与所述电源及所述控制器连接,所述驱动支路用于响应于所述控制器输出的第一脉冲信号而产生驱动电压,所述驱动电压用于驱动所述超声雾化片;
    阻抗支路,连接于所述驱动支路及所述超声雾化片之间,所述阻抗支路用于使所述阻抗支路和所述超声雾化片的组合阻抗与所述驱动支路的阻抗相匹配,其中,所述阻抗支路包括与所述超声雾化片并联连接的第一电容;
    所述控制器用于获取所述超声雾化片的第一电压,并根据所述第一电压确定所述超声雾化片的谐振频率。
  2. 根据权利要求1所述的超声雾化器,其特征在于,所述控制器具体用于:
    在第一时刻之后,获取所述第一电压,并根据所述第一电压确定所述超声雾化片的谐振频率,其中,所述第一时刻晚于所述超声雾化片启动的时刻。
  3. 根据权利要求2所述的超声雾化器,其特征在于,所述超声雾化片启动的时刻与所述第一时刻之间的时长为[10μs,100μs]中的任一时长。
  4. 根据权利要求1所述的超声雾化器,其特征在于,所述控制电路还包括第一转换支路;
    所述第一转换支路连接于所述超声雾化片及所述控制器之间,所述第一转换支路用于将所述第一电压的波形转化为在预设范围内波动的第一波形;
    所述控制器还用于根据所述第一波形对应的第二电压,确定所述超声雾化片的谐振频率。
  5. 根据权利要求4所述的超声雾化器,其特征在于,所述第一转换支路包 括储能子支路;
    所述储能子支路连接于所述超声雾化片及所述控制器之间,所述储能子支路用于响应于所述第一电压而储能;
    若在第一时长内,所述储能子支路储能而获得的电压的最大变化值小于预设变化阈值,则将所述储能子支路储能而获得的电压的波形作为所述第一波形。
  6. 根据权利要求5所述的超声雾化器,其特征在于,所述控制器具体用于:
    输出N个驱动频率驱动所述超声雾化片,N为≥2的整数;
    获取所述N个驱动频率中的M个驱动频率作用下的第一波形,以获取到M个第一波形,2≤M≤N;
    获取所述第一波形对应的第二电压;
    根据所述第二电压中的最小值所对应的频率,确定所述超声雾化片的谐振频率。
  7. 根据权利要求5所述的超声雾化器,其特征在于,所述控制电路还包括电压放大支路;
    所述电压放大支路,连接于所述储能子支路及所述控制器之间,所述电压放大支路用于对所述储能子支路储能而获得的电压进行放大,并输出第二波形至所述控制器;
    所述控制器还用于根据所述第二波形对应的第三电压,确定所述超声雾化片的谐振频率。
  8. 根据权利要求1所述的超声雾化器,其特征在于,所述控制电路还包括第二转换支路;
    所述第二转换支路连接于所述超声雾化片及所述控制器之间,所述第二转换支路用于将所述第一电压的波形转化为具有间隔电压信号的第三波形,并将所述第三波形输出至所述控制器;
    所述控制器还用于根据所述第三波形中电压信号对应的第四电压,确定所述超声雾化片的谐振频率。
  9. 根据权利要求8所述的超声雾化器,其特征在于,所述第二转换支路包括峰值获取子支路;
    所述峰值获取子支路,连接于所述超声雾化片及所述控制器之间,所述峰值获取子支路用于获取所述第一电压的波形中的峰值,以输出所述第三波形,其中,在每次获取到所述峰值时,所述第三波形产生一次所述电压信号。
  10. 根据权利要求8或9所述的超声雾化器,其特征在于,所述控制器具体用于:
    输出N个驱动频率驱动所述超声雾化片,N为≥2的整数;
    获取所述N个驱动频率中的M个驱动频率作用下的第三波形,以获取到M个第三波形,2≤M≤N;
    获取所述第三波形对应的第四电压;
    根据所述第四电压中的最小值所对应的频率,确定所述超声雾化片的谐振频率。
  11. 一种超声雾化器,其特征在于,包括:
    储存腔,用于存储雾化基质;
    超声雾化片,用于产生振荡以雾化所述雾化基质;
    控制电路及电源;
    其中,所述控制电路包括控制器、驱动支路与阻抗支路;
    所述驱动支路包括电源子支路、开关子支路、电容子支路与谐振子支路,所述电源子支路与所述电源连接,所述电源子支路用于根据所述电源产生直流电源,所述开关子支路分别与所述控制器及所述电源子支路连接,所述开关子支路用于响应于所述控制器输出的第一脉冲信号而导通与断开,以根据所述直流电源产生脉冲电压,所述电容子支路与所述开关子支路连接,所述电容子支路用于实现所述开关子支路的软开通与软关断,所述谐振子支路分别与所述电源子支路、所述开关子支路及所述阻抗支路连接,所述谐振子支路用于响应于所述开关子支路的导通与断开而谐振,以根据所述脉冲电压输出驱动电压,以驱动所述超声雾化片;
    所述阻抗支路连接于所述驱动支路及所述超声雾化片之间,所述阻抗支路 用于使阻抗支路和所述超声雾化片的组合阻抗与所述驱动支路的阻抗相匹配;
    所述控制器用于获取所述超声雾化片的电压,并根据所述超声雾化片的电压确定所述超声雾化片的谐振频率。
  12. 根据权利要求11所述的方法,其特征在于,所述控制器具体用于:
    输出N个驱动频率驱动所述超声雾化片,N为≥2的整数;
    获取所述N个驱动频率中的M个驱动频率作用下所述超声雾化片的电压对应的检测信号,以获取到M个检测信号,2≤M≤N;
    根据所述M个检测信号中的最小值所对应的频率,确定所述超声雾化片的谐振频率。
  13. 一种基于超声雾化器的谐振频率确定方法,其特征在于,所述方法包括:
    输出N个驱动频率驱动所述超声雾化器中超声雾化片,N为≥2的整数;
    获取所述N个驱动频率中的M个驱动频率作用下所述超声雾化片的电压对应的检测信号,以获取到M个检测信号,2≤M≤N;
    根据所述M个检测信号对应的电压中的最小值所对应的频率,确定所述超声雾化片的谐振频率。
  14. 根据权利要求13所述的方法,其特征在于,所述获取所述N个驱动频率中的M个驱动频率作用下所述超声雾化片的电压对应的检测信号,包括:
    根据所述超声雾化片的电压,执行电荷的累积操作;
    若在第一时长内,由电荷的累积而获得的电压的最大变化值小于预设变化阈值,则将所述第一时长内由电荷的累积而获得的电压波形作为所述检测信号。
  15. 根据权利要求13所述的方法,其特征在于,所述获取所述N个驱动频率中的M个驱动频率作用下所述超声雾化片的电压对应的检测信号,包括:
    根据所述超声雾化片的电压,执行电荷的累积操作,直至由电荷的累积而获得的电压与所述超声雾化片的电压的最大值相等,并将由电荷的累积而获得的电压记为基准电压;
    在所述超声雾化片的电压等于所述基准电压时输出电压信号,其中,所述 电压信号为所述检测信号。
PCT/CN2023/119425 2022-09-22 2023-09-18 超声雾化器及基于超声雾化器的谐振频率确定方法 WO2024061166A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211159798.5 2022-09-22
CN202211159798.5A CN117772505A (zh) 2022-09-22 2022-09-22 超声雾化器及基于超声雾化器的谐振频率确定方法

Publications (1)

Publication Number Publication Date
WO2024061166A1 true WO2024061166A1 (zh) 2024-03-28

Family

ID=90391415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/119425 WO2024061166A1 (zh) 2022-09-22 2023-09-18 超声雾化器及基于超声雾化器的谐振频率确定方法

Country Status (2)

Country Link
CN (1) CN117772505A (zh)
WO (1) WO2024061166A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557243A (ja) * 1991-09-02 1993-03-09 Sanden Corp 超音波振動発生装置
CN105661649A (zh) * 2016-03-14 2016-06-15 深圳市合元科技有限公司 烟雾发生器以及烟雾发生方法
CN108802529A (zh) * 2018-08-23 2018-11-13 西安拓尔微电子有限责任公司 一种雾化器换能片谐振点的快速确定方法
CN109007974A (zh) * 2017-06-08 2018-12-18 湖南中烟工业有限责任公司 一种超声波电子烟电路及该超声波电子烟
CN217342050U (zh) * 2022-04-27 2022-09-02 深圳市合元科技有限公司 超声雾化装置
CN217342045U (zh) * 2022-01-26 2022-09-02 深圳市合元科技有限公司 超声雾化器
CN218459952U (zh) * 2022-10-21 2023-02-10 深圳市朗科智能电气股份有限公司 一种雾化片自动扫频电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557243A (ja) * 1991-09-02 1993-03-09 Sanden Corp 超音波振動発生装置
CN105661649A (zh) * 2016-03-14 2016-06-15 深圳市合元科技有限公司 烟雾发生器以及烟雾发生方法
CN109007974A (zh) * 2017-06-08 2018-12-18 湖南中烟工业有限责任公司 一种超声波电子烟电路及该超声波电子烟
CN108802529A (zh) * 2018-08-23 2018-11-13 西安拓尔微电子有限责任公司 一种雾化器换能片谐振点的快速确定方法
CN217342045U (zh) * 2022-01-26 2022-09-02 深圳市合元科技有限公司 超声雾化器
CN217342050U (zh) * 2022-04-27 2022-09-02 深圳市合元科技有限公司 超声雾化装置
CN218459952U (zh) * 2022-10-21 2023-02-10 深圳市朗科智能电气股份有限公司 一种雾化片自动扫频电路

Also Published As

Publication number Publication date
CN117772505A (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
CN208367566U (zh) 一种超声雾化片工作控制电路及超声波电子烟
CN207383536U (zh) 一种超声波电子烟追频电路及超声波电子烟
EP1515408A3 (fr) Bougie de génération de plasma à inductance intégrée
CN217342045U (zh) 超声雾化器
US20220400747A1 (en) Ultrasonic atomizing sheet full-wave drive circuit and ultrasonic electronic cigarette
CN217342050U (zh) 超声雾化装置
CN205811875U (zh) 自动调节放电频率的等离子体电源
CN103208987B (zh) 音频设备外接终端的开机唤醒方法
WO2024061166A1 (zh) 超声雾化器及基于超声雾化器的谐振频率确定方法
CN218742781U (zh) 超声雾化器
CN218048634U (zh) 超声雾化器
CN216857168U (zh) 超声雾化器
CN217989794U (zh) 超声雾化器
CN108964459A (zh) 一种dc-dc升压电路和控制方法
WO2023143065A1 (zh) 超声雾化器及其工作状态确定方法
WO2024037496A1 (zh) 用于超声雾化器的阻抗识别方法与超声雾化器
CN114062758A (zh) 一种电信号检测方法、电路及开关电源
CN201174770Y (zh) 一种手机及其振动电路
WO2023143058A1 (zh) 超声雾化器
Zhao et al. Extending the bandwidth of piezo-electric energy harvesting through the use of bias flip
WO2023232112A1 (zh) 超声雾化器与超声雾化的功率控制方法
CN111220890A (zh) 一种功率半导体器件的参数特性检测装置
WO2023207794A1 (zh) 超声雾化装置
CN217213464U (zh) 雾化控制电路、雾化器和雾化设备
CN117619637A (zh) 用于超声雾化器的阻抗识别方法与超声雾化器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867455

Country of ref document: EP

Kind code of ref document: A1