WO2024037496A1 - 用于超声雾化器的阻抗识别方法与超声雾化器 - Google Patents

用于超声雾化器的阻抗识别方法与超声雾化器 Download PDF

Info

Publication number
WO2024037496A1
WO2024037496A1 PCT/CN2023/112888 CN2023112888W WO2024037496A1 WO 2024037496 A1 WO2024037496 A1 WO 2024037496A1 CN 2023112888 W CN2023112888 W CN 2023112888W WO 2024037496 A1 WO2024037496 A1 WO 2024037496A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
impedance
current
switch
ultrasonic
Prior art date
Application number
PCT/CN2023/112888
Other languages
English (en)
French (fr)
Inventor
李新军
徐中立
李永海
Original Assignee
深圳市合元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210976844.4A external-priority patent/CN117619636A/zh
Priority claimed from CN202210976858.6A external-priority patent/CN117619637A/zh
Application filed by 深圳市合元科技有限公司 filed Critical 深圳市合元科技有限公司
Publication of WO2024037496A1 publication Critical patent/WO2024037496A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations

Definitions

  • the present application relates to the technical field of ultrasonic atomization, for example, to an impedance identification method for an ultrasonic atomizer and an ultrasonic atomizer.
  • Ultrasonic atomizer is a device that uses ultrasonic atomization technology to achieve atomization function.
  • ultrasonic atomizers there is a problem that the atomization performance of ultrasonic atomizers varies greatly due to the electrical characteristics of different ultrasonic atomizer sheets.
  • the main reasons are as follows: On the one hand, the ultrasonic atomizer sheets It is made of piezoelectric materials, and the electrical properties of the piezoelectric materials themselves are quite different, which will lead to differences in the electrical properties of different ultrasonic atomization sheets.
  • Differences in assembly structural stress, pressure on the ultrasonic atomization chip, contact resistance, etc. will also lead to differences in the electrical characteristics of the ultrasonic atomization chip.
  • the usual way to solve the above problems is to identify the impedance of the ultrasonic atomizer. Specifically, it is realized by combining the Direct Digital Frequency Synthesis (DDS) algorithm, phase detection circuit and amplitude detection circuit, that is, by collecting The amplitude and phase of the ultrasonic atomization piece and the load are then sent to the processor to determine the impedance of the ultrasonic atomization piece.
  • DDS Direct Digital Frequency Synthesis
  • the embodiments of the present application aim to provide an impedance identification method for an ultrasonic atomizer and an ultrasonic atomizer, which can identify the impedance of the ultrasonic atomizer sheet through a simpler method, reduce costs, and have strong practicability.
  • the present application provides an impedance identification method for an ultrasonic atomizer, which is characterized in that it is used to identify the impedance of the ultrasonic atomizer sheet in the ultrasonic atomizer.
  • the method includes: obtaining the first Current, wherein the first current is the current output by the power supply in the ultrasonic atomizer when the ultrasonic atomizer sheet works at the resonant frequency; the first current is determined according to the corresponding relationship between the preset current and the impedance interval.
  • the impedance interval corresponding to a current. .
  • determining the first impedance branch that matches the impedance of the ultrasonic atomizer sheet in the ultrasonic atomizer includes: obtaining a first current, wherein the first current is the ultrasonic mist When the atomizer is working at the resonant frequency, the current output by the power supply in the ultrasonic atomizer; according to the corresponding relationship between the first current, the preset current and the impedance interval, the impedance interval corresponding to the first current is determined ; According to the impedance interval, determine the impedance branch that matches the impedance interval to determine the first impedance branch that matches the impedance of the ultrasonic atomizer sheet in the ultrasonic atomizer.
  • the corresponding relationship between the preset current and the impedance interval includes the corresponding relationship between the preset current interval and the impedance interval; according to the first current, the preset current and the impedance interval, The corresponding relationship between the impedance intervals and determining the impedance interval corresponding to the first current includes: determining the current interval in which the first current is located; determining the corresponding relationship between the preset current interval and the impedance interval. The impedance interval corresponding to the first current interval.
  • the preset current intervals include multiple, and the preset impedance intervals include multiple; at least one preset impedance interval is within [5 ⁇ -50 ⁇ ], and at least one preset impedance interval is within [5 ⁇ -50 ⁇ ].
  • the set current range is within [0.5A-2.2A].
  • the method before obtaining the first current, further includes: controlling the power supply to output an initial voltage to enable the ultrasonic atomization sheet to start working, wherein the initial voltage is [5V, 6V] any value.
  • obtaining the first current includes: outputting multiple driving frequencies; collecting the output current of the power supply at each driving frequency at at least part of the multiple driving frequencies; determining The maximum current in the output current; the first current is determined based on the maximum current.
  • collecting the output current of the power supply at each driving frequency at at least part of the plurality of driving frequencies includes: at least part of the plurality of driving frequencies. Under certain driving frequencies, collect K output current values of the power supply at each driving frequency, where K is an integer ⁇ 1; perform average calculation or root mean square value calculation based on the K output current values, to determine the output current.
  • the method further includes: determining a first impedance branch matching the impedance interval according to the impedance interval corresponding to the first current;
  • the first impedance branch is connected between the ultrasonic atomizing piece and the driving branch, so that the combined impedance of the first impedance branch and the ultrasonic atomizing piece is equal to the impedance of the driving branch.
  • the present application provides an ultrasonic atomizer, including: a liquid storage chamber for storing a liquid substrate; an ultrasonic atomization sheet that is in liquid communication with the liquid storage chamber, and the ultrasonic atomization sheet is used to generate oscillations To atomize the liquid matrix; control circuit and power supply; wherein, the control circuit includes: a controller and a driving branch, the driving branch is connected to the power supply and the controller respectively, and the driving branch Used to generate a driving voltage in response to the first pulse signal, the driving voltage is used to drive the ultrasonic atomization sheet; N first switch branches and N impedance branches, the driving branches pass through one of the The first switch branch and one of the impedance branches are connected to the ultrasonic atomization piece, and the first switch branch is also connected to the controller.
  • N is an integer ⁇ 2; the controller is used to Output the first pulse signal, and control the target first switch branch among the N first switch branches to be turned on, and control other first switch branches to be turned off, so that the first impedance branch and all The combined impedance of the ultrasonic atomizing sheet matches the impedance of the driving branch, wherein the first impedance branch is connected to the first switched branch that is turned on.
  • one end of the impedance branch is grounded, and the control circuit further includes N second switch branches.
  • One of the second switch branches is connected to one of the impedance branches and the ultrasonic mist. Between the chips, the second switch branch is also connected to the controller; the controller is also used to control the second switch branch connected to the first impedance branch to conduct, so that the first impedance branch The impedance of the combination of the circuit and the ultrasonic atomizing piece matches the impedance of the driving branch.
  • the combined impedance of the first impedance branch and the ultrasonic atomization sheet includes a real part of impedance and an imaginary part of impedance, where the real part of the impedance is equal to the impedance of the driving branch, and the When the imaginary part of the impedance is less than the first preset threshold, the combined impedance of the first impedance branch and the ultrasonic atomization sheet matches the impedance of the driving branch.
  • control circuit further includes a current detection branch; the current detection branch is connected to the power supply, the driving branch and the controller respectively, and the current detection branch is used to detect The output current of the power supply generates a first detection signal; the controller is also used to: determine the output current of the power supply according to the first detection signal, and determine the output current of the power supply according to the output current, the preset current and the The corresponding relationship between the impedance intervals, determining the impedance interval corresponding to the output current, and determining the first impedance branch according to the impedance interval corresponding to the output current to control the first switch connected to the first impedance branch The branch is open.
  • the current detection branch includes an amplifier and a first resistor, the first resistor is connected to the amplifier, the power supply and the ultrasonic atomization sheet respectively, and the amplifier is connected to the control The amplifier is configured to output the first detection signal to the controller according to the voltage across the first resistor, so that the controller determines the output current of the power supply according to the first detection signal.
  • the driving branch includes: a power sub-branch, the power sub-branch is connected to the power supply, the power sub-branch is used to generate DC power according to the power supply; a switch sub-branch , the switch sub-branch is connected to the controller and the power supply sub-branch respectively, and the switch sub-branch is used to turn on and off in response to the first pulse signal, so as to adjust according to the DC
  • the power supply generates a pulse voltage;
  • the resonator branch is connected to the power supply sub-branch and the switch sub-branch respectively, and is used to resonate in response to the conduction and disconnection of the switch sub-branch to adjust according to the A pulse voltage output drives the drive voltage.
  • the power sub-branch includes a first inductor; a first end of the first inductor is connected to the power source, and a second end of the first inductor is connected to the switch sub-branch and the switch sub-branch respectively.
  • the resonator branches are connected.
  • the switch sub-branch includes a switch tube; the first end of the switch tube is connected to the controller, the second end of the switch tube is grounded, and the third end of the switch tube is respectively Connected to the power supply sub-branch and the resonator sub-branch.
  • the switch sub-branch further includes a first capacitor, the first end of the first capacitor is connected to the third end of the switch tube, and the second end of the first capacitor is connected to ground;
  • the first capacitor is used for charging when the switch tube is turned off and the current flowing through the resonator branch is less than a first current threshold, and for charging when the switch tube is turned off and the current flowing through the resonant branch is less than a first current threshold.
  • the current of the sub-branch is greater than or equal to the first current threshold, it resonates with the resonator sub-branch and discharges; wherein, when the first capacitor is discharged to the second current threshold, the switch tube is turned on.
  • the resonator branch includes a second capacitor and a second inductor; the first end of the second capacitor is connected to the power supply sub-branch and the switch sub-branch respectively, and the third The second of the two capacitors The terminal is connected to the first terminal of the second inductor, and the second terminal of the second inductor is connected to the first switch branch.
  • the first switch branch includes a first switch; the first switch is connected between the drive branch and the impedance branch.
  • the impedance branch includes a third inductor; the third inductor is connected between the first switch branch and the ultrasonic atomization sheet.
  • the impedance branch includes a fourth inductor, a third capacitor and a fifth inductor; a first end of the first end of the fourth inductor is connected to the first switch branch, and the third The second ends of the four inductors are respectively connected to the first end of the third capacitor and the first end of the fifth inductor.
  • the second end of the third capacitor is connected to ground.
  • the second end of the fifth inductor is connected to the first end of the third capacitor.
  • the second switch branch is connected.
  • the second switch branch includes a second switch; the second switch is connected between the impedance branch and the ultrasonic atomization sheet.
  • the impedance identification method for an ultrasonic atomizer provided by the application is used to identify the impedance of the ultrasonic atomizer sheet in the ultrasonic atomizer.
  • the method includes obtaining a first current, wherein the first The current is the current output by the power supply in the ultrasonic atomizer when the ultrasonic atomizer piece works at the resonant frequency. According to the preset corresponding relationship between the current and the impedance interval, the impedance interval corresponding to the first current is determined.
  • the impedance interval in which the impedance of the ultrasonic atomization piece lies can be determined, that is, the process of identifying the impedance of the ultrasonic atomization piece is realized.
  • this implementation method is simpler and the cost is lower. , and its practicality is also strong.
  • Figure 1 is a schematic structural diagram of an ultrasonic atomizer provided in Embodiment 1 of the present application;
  • Figure 2 is a schematic structural diagram of an ultrasonic atomizer provided in Embodiment 2 of the present application;
  • FIG. 3 is a schematic structural diagram of a control circuit provided in Embodiment 1 of the present application.
  • FIG. 4 is a schematic structural diagram of a control circuit provided in Embodiment 2 of the present application.
  • FIG. 5 is a schematic structural diagram of a control circuit provided in Embodiment 3 of the present application.
  • Figure 6 is a schematic circuit structure diagram of the current detection circuit provided in Embodiment 1 of the present application.
  • Figure 7 is a schematic circuit structure diagram of the first switch branch and the driving branch provided in Embodiment 1 of the present application;
  • Figure 8 is a schematic structural diagram of a control circuit provided in Embodiment 4 of the present application.
  • Figure 9 is a schematic circuit structure diagram of the first switch branch, the second switch branch and the drive branch provided in Embodiment 1 of the present application;
  • Figure 10 is a schematic circuit structure diagram of the first switch branch, the second switch branch and the drive branch provided in Embodiment 2 of the present application;
  • Figure 11 is a schematic circuit structure diagram of the first switch branch, the second switch branch and the drive branch provided in Embodiment 3 of the present application;
  • Figure 12 is a flow chart of the impedance identification method for an ultrasonic atomizer provided in Embodiment 1 of the present application;
  • Figure 13 is a schematic diagram of an implementation of step 1201 shown in Figure 12 provided by Embodiment 1 of the present application;
  • Figure 14 is a schematic diagram of the method performed after step 1202 is performed according to Embodiment 1 of the present application.
  • the ultrasonic atomizer 100 includes a liquid storage chamber 11 , an ultrasonic atomizer sheet 12 , a control circuit 13 and a power supply 14 .
  • the liquid storage chamber 11 is used to store a liquid matrix, which may include different substances according to different usage scenarios.
  • a liquid matrix which may include different substances according to different usage scenarios.
  • it may include nicotine and/or aromatics and/or aerosol-generating substances (such as , glycerin); and in the field of medical atomization, it can include solvents such as drugs and/or physiological saline that have disease treatment or health benefits.
  • the ultrasonic atomizing piece 12 is in fluid communication with the liquid storage chamber 11.
  • the ultrasonic atomizing piece 12 can be directly arranged in the liquid storage cavity 11, or the atomizing cavity where the ultrasonic atomizing piece 12 is located is directly connected to the liquid storage cavity 11, or it can be Can
  • the liquid is transmitted between the ultrasonic atomization piece 12 and the liquid storage chamber 11 through the liquid-absorbing medium.
  • the ultrasonic atomizing piece 12 is used to generate oscillations to atomize the liquid substrate, that is, the liquid substrate transferred to or near the ultrasonic atomizing piece 12 is atomized into an aerosol through vibration.
  • the ultrasonic atomizing tablet 12 disperses the liquid matrix through high-frequency vibration (preferably the vibration frequency is 1.7 MHz to 4.0 MHz, which exceeds the human hearing range and belongs to the ultrasonic frequency band) to generate an aerosol in which particles are naturally suspended.
  • high-frequency vibration preferably the vibration frequency is 1.7 MHz to 4.0 MHz, which exceeds the human hearing range and belongs to the ultrasonic frequency band
  • the control circuit 13 is electrically connected to the ultrasonic atomization sheet 12, and the control circuit 13 is used to provide driving voltage and driving current to the ultrasonic atomization sheet 12 according to the power supply 14.
  • the control circuit 13 may be disposed on a printed circuit board (PCB).
  • Power supply 14 is used for power supply.
  • power source 14 is a battery.
  • the battery can be a lithium-ion battery, a lithium metal battery, a lead-acid battery, a nickel-cadmium battery, a nickel-hydrogen battery, a lithium-sulfur battery, a lithium-air battery, a sodium-ion battery, etc., which are not limited here.
  • the battery in the embodiment of the present application can be a single cell, or a battery module composed of multiple cells connected in series and/or in parallel, etc., which is not limited here.
  • the battery may also include more or fewer components, or have different component configurations, which are not limited by the embodiments of the present application.
  • the ultrasonic atomizer 100 further includes a liquid transfer medium 15 and an air outlet channel 16 .
  • the liquid transfer element 15 is used to transfer the liquid matrix between the liquid storage chamber 11 and the ultrasonic atomization sheet 12 .
  • the air outlet channel 16 is used to output the inhalable vapor or aerosol generated by the liquid matrix for the user to inhale.
  • the ultrasonic atomizer 100 may be integrated or assembled. In one embodiment, when the ultrasonic atomizer 100 is assembled, the ultrasonic atomizer 100 further includes a power supply mechanism and an ultrasonic atomizer, wherein the ultrasonic atomizer includes a first housing 17 and the power supply mechanism includes a second Housing 18.
  • the first housing 17 and the second housing 18 are detachably connected.
  • the first housing 17 and the second housing 18 can be detachably connected through a buckle structure or a magnetic structure.
  • the first housing 17 and the second housing 18 jointly serve to accommodate and protect other components.
  • the liquid storage chamber 11 , the ultrasonic atomization sheet 12 , the liquid transfer element 15 and the air outlet channel 16 are all arranged in the first housing 17
  • the control circuit 13 and the power supply 14 are both arranged in the second housing 18 .
  • the first housing 17 and the second housing 18 are removably aligned in a functional relationship.
  • Various mechanisms may be utilized to connect the second housing 18 to the first housing 17, resulting in a threaded engagement, a press fit engagement, an interference fit, a magnetic engagement, and the like.
  • the ultrasonic atomizer 100 may be substantially in the shape of a rod, a flat cylinder, a rod, a column, etc.
  • the first housing 17 and the second housing 18 may be formed from any suitable structurally sound material.
  • the first housing 17 and the second housing 18 may be formed of metal or alloy such as stainless steel, aluminum.
  • Other suitable materials include various plastics (e.g., polycarbonate), metal-plating over plastic, ceramics, and the like.
  • the hardware structure of the ultrasonic nebulizer 100 shown in Figure 1 is only an example, and the ultrasonic nebulizer 100 may have more or fewer components than those shown in the figure. Two or more components may be combined, or may have different component configurations.
  • the various components shown in the figures may be implemented in hardware, software, or hardware including one or more signal processing and/or application specific integrated circuits. implemented in combination with software.
  • the ultrasonic atomizing sheet 12 can be disposed in the liquid storage chamber 11 , thereby simplifying the structure.
  • the ultrasonic atomizer 100 shown in Figure 1 or Figure 2 can be used in a variety of different situations and play different roles, and the embodiments of the present application do not specifically limit this.
  • the ultrasonic atomizer 100 is used in the medical field.
  • the ultrasonic atomizer 100 can be a medical atomizer, which can atomize the medicinal liquid added inside it. and allow the patient to inhale it to achieve the effect of auxiliary treatment.
  • the ultrasonic atomizer 100 can also be used as an electronic product, such as an electronic cigarette.
  • An electronic cigarette is a product that turns nicotine solution into aerosol through atomization and other means for the user to smoke.
  • An electronic product is a product that turns nicotine solution into aerosol through atomization and other means for the user to smoke.
  • FIG. 3 shows a schematic structural diagram of the control circuit 13 connected to the power supply 14 and the ultrasonic atomization sheet 12 respectively.
  • the control circuit 13 includes a controller 131, a driving branch 132, N first switch branches and N impedance branches.
  • the driving branch 132 is connected to the power supply 14 and the controller 131 respectively.
  • the driving branch 132 passes through a first switch branch and an impedance branch in sequence and is connected to the ultrasonic atomization piece 12.
  • N first switch branches are also connected to the controller, and N is an integer ⁇ 2.
  • the N first switch branches include the first switch branch K11, the first switch branch K12... the first switch branch K1N, and the N impedance branches include the impedance branch A1, the impedance branch A2... the impedance branch AN.
  • the driving branch 132 is connected to the ultrasonic atomization piece 12 through the first switch branch K11 and the impedance branch A1; the driving branch 132 is connected to the ultrasonic atomization piece 12 through the first switch branch K12 and the impedance branch A2...
  • the driving branch Path 132 is connected to the ultrasonic atomizing piece 12 through the first switch branch K1N and the impedance branch AN.
  • the controller 131 is connected to the first switch branch K11, the first switch branch K12... the first switch branch K1N respectively.
  • the controller 131 is used to output a first pulse signal
  • the driving branch 132 is used to generate a driving voltage in response to the first pulse signal
  • the driving voltage is used to drive the ultrasonic atomization sheet 12 .
  • the controller 131 is also used to control the target first switch branch among the N first switch branches to be turned on, and to control the other first switch branches to be turned off, so that the first impedance branch and the ultrasonic atomizing sheet 12 are connected.
  • the combined impedance matches the impedance of the drive branch 132 , wherein the first impedance branch is connected to the conductive first switch branch.
  • the target first switch branch is the first switch branch K11
  • the controller 131 controls the first switch branch K11 to be turned on, and controls the first switch branch K12 and the first switch branch K11.
  • K13...the first switch branch K1N is disconnected.
  • a path is formed between the driving branch 132 , the first switch branch K11 , the impedance branch A1 and the ultrasonic atomizing piece 12 , and the combined impedance of the impedance branch A1 and the ultrasonic atomizing piece 12 is equal to the impedance of the driving branch 132 . match.
  • the impedance branch A1 is the first impedance branch.
  • the ultrasonic atomizer 12 can be equivalent to a capacitive load, and the driving branch 132 is a purely resistive output. If the two (i.e., the capacitive load and the purely resistive output) are compared, If energy is transmitted directly, a large amount of reactive power will be generated, which will lead to a significant reduction in the efficiency of driving the ultrasonic atomizer sheet 12 . Based on this, by matching the impedance of the first impedance branch and the ultrasonic atomization sheet 12 with the impedance of the driving branch 132 , the reactive power of the combination of the first impedance branch and the ultrasonic atomization sheet 12 can be reduced. In order to reduce the power loss, the ultrasonic atomizer sheet 12 can obtain higher driving energy, which improves the efficiency of driving the ultrasonic atomizer sheet 12 and also improves the working efficiency of the ultrasonic atomizer 100.
  • the ultrasonic atomizer 100 there is a problem that the atomization performance of the ultrasonic atomizer is greatly different due to the electrical characteristics of the different ultrasonic atomizer pieces 12.
  • the main reasons are as follows: First, the ultrasonic atomizer The atomizing piece 12 is made of piezoelectric material, and the electrical characteristics of the piezoelectric material itself are relatively different, which will lead to differences in the electrical characteristics between different ultrasonic atomizing pieces 12; secondly, in the ultrasonic atomizing piece After 12 is assembled, differences in the stress of the assembly structure, pressure on the ultrasonic atomization piece 12, contact resistance, etc. will also lead to differences in the electrical characteristics of the ultrasonic atomization piece 12.
  • the embodiment of the present application sets N impedance branches, and sets different parameter values for the N impedance branches to meet the matching requirements of different ultrasonic atomization sheets 12 .
  • the impedance branch i.e., the first impedance branch
  • the first switch branch i.e., the target third impedance branch
  • the switch branch it is possible to match the currently used ultrasonic atomizer piece 12 to a suitable impedance branch, which has a better matching effect and is conducive to further reducing the power loss and further improving the driving ultrasonic The efficiency of the atomizer sheet 12.
  • the control circuit 13 further includes a current detection branch 133 .
  • the current detection branch 133 is connected to the power supply 14, the driving branch 132 and the controller 131 respectively.
  • the current detection branch 133 is used to detect the output current of the power supply 14 and generate a first detection signal.
  • the controller 131 is also used to receive the first detection signal and determine the output current of the power supply 14 according to the first detection signal.
  • the controller 131 is also used to determine the impedance interval corresponding to the output current according to the corresponding relationship between the output current, the preset current and the impedance interval. This impedance interval is the impedance interval where the impedance of the ultrasonic atomizing sheet 12 is located, thereby achieving The purpose of identifying the impedance of the ultrasonic atomizer sheet 12.
  • the controller 131 is also used to determine the first impedance branch according to the impedance interval corresponding to the output current, so as to control the conduction of the first switch branch connected to the first impedance branch.
  • the impedance of the ultrasonic atomizer sheet 12 can be accurately identified by combining the DDS algorithm, phase detection circuit, and amplitude detection circuit.
  • this method is more expensive, the circuit is more complex, and it is more difficult to implement.
  • the price of ultrasonic atomizers is relatively low. If the methods in related technologies are used, the net profit may be too low, making them unsuitable for mass production and having poor practicality.
  • the circuit structure used is simple and the implementation difficulty is low, which can greatly reduce the cost and is beneficial to Realize the mass production of ultrasonic atomizer 100, which is highly practical.
  • the corresponding impedance branch can be matched according to the impedance interval to reduce the interference between the ultrasonic atomization sheet 12 and the impedance branch.
  • the capacitive or inductive part of the impedance of the first circuit is to reduce the phase difference between the current and voltage of the first circuit.
  • the phase difference between the current and voltage of the first circuit can be kept less than 30°, thereby reducing the number of the ultrasonic atomizing piece 12
  • the reactive power part is beneficial to improving the working efficiency of the ultrasonic atomizer sheet 12.
  • the corresponding heating control curve can be matched, that is, the corresponding power control interval can be matched, so that the liquid matrix in the ultrasonic atomizer 100 can be better heated.
  • the impedance corresponding to the impedance can be found in multiple preset impedance branches (including impedance branch A1, impedance branch A2...impedance branch AN)
  • the impedance branch with a high degree of interval matching i.e. the first impedance branch
  • there is a small phase difference between the current and voltage of the first circuit composed of the ultrasonic atomization piece 12 and the first impedance branch the first impedance branch is connected to the circuit for use, which has a better matching effect and the efficiency of the ultrasonic atomization sheet 12 is higher.
  • the driving branch 132 includes a power sub-branch 1321 , a switch sub-branch 1322 and a resonator sub-branch 1323 .
  • the power sub-branch 1321 is connected to the power supply 14 through the current detection branch 133
  • the switch sub-branch 1322 is connected to the controller 131 and the power sub-branch 1321 respectively
  • the resonator sub-branch 1323 is connected to the power sub-branch 1321 and the switch respectively.
  • Sub-branch 1322 is connected.
  • power sub-branch 1321 is used to generate DC power from power source 14 .
  • the switch sub-branch 1322 is used to turn on and off in response to the first pulse signal output by the controller 131 to generate a pulse voltage according to the DC power supply.
  • the resonator branch 1323 is used to resonate in response to the on and off of the switch sub-branch 1322 to output a driving voltage according to the pulse voltage.
  • the power supply 14 is converted into a DC power output after passing through the power sub-branch 1321.
  • the controller 131 outputs a first pulse signal to control the switch sub-circuit.
  • Branch 1322 continuously switches between on and off, thereby converting the DC power output by power sub-branch 1321 into AC power, that is, pulse voltage.
  • the resonator branch 1323 can boost the received pulse voltage, and use the boosted driving voltage to drive the ultrasonic atomizing sheet 12 .
  • the resonator branch 1323 since the resonator branch 1323 achieves resonance, the resonator branch 1323 is essentially purely resistive, which can reduce the reactive power of the resonator branch 1323, that is, reduce the power loss, thereby improving the ultrasonic atomization
  • the working efficiency of the machine is 100.
  • the impedance of the resonator branch 1323 is the smallest and the current is the largest, and a larger driving voltage can be output to drive the ultrasonic atomizing sheet 12 to operate stably.
  • the current detection branch 133 includes an amplifier U1 and a first resistor R1.
  • the first resistor R1 is connected to the amplifier U1, the power supply 14 and the power sub-branch 1321 respectively, and the amplifier U1 is connected to the controller 131.
  • the first end of the first resistor R1 is connected to the power supply 14 and the non-inverting input end of the amplifier U1 respectively, and the second end of the first resistor R1 is connected to the inverting input end of the amplifier U1 and the power sub-branch 1321 respectively.
  • the amplifier The output terminal of U1 is connected to the controller 131, the ground terminal of the amplifier U1 is connected to the ground GND, and the power terminal of the amplifier U1 is connected to the voltage V1.
  • the amplifier U1 is configured to output a first detection signal according to the voltage across the first resistor R1 so that the controller 132 determines the output current of the power supply 14 according to the first detection signal.
  • the amplifier U1 can amplify the received voltage across the first resistor R1 by K times and then output the first detection signal, where K is a positive integer. Then, after acquiring the first detection signal, the controller 131 can determine the current output by the power supply 14 according to the relationship between the first detection signal and the current output by the power supply 14 .
  • the current detection branch 131 further includes a fourth capacitor C4, a fifth capacitor C5, a second resistor R2 and a third resistor R3.
  • the fourth capacitor C4 and the fifth capacitor C5 are filter capacitors
  • the second resistor R2 is a current limiting resistor
  • the third resistor R3 is a pull-down resistor.
  • the power sub-branch 1321 includes a first inductor L1.
  • the first end of the first inductor L1 is connected to the power supply 14 through the current detection branch 133, and the second end of the first inductor L1 is connected to the switch sub-branch 1322 and the resonator sub-branch 1323 respectively.
  • the first inductor L1 is a high-frequency choke coil.
  • the high-frequency choke coil only has a greater blocking effect on high-frequency alternating current, has a very small blocking effect on low-frequency alternating current, and has a greater blocking effect on DC. It is small, so it can be used to "pass DC, block AC, pass low frequencies, and block high frequencies.” Therefore, the first inductor L1 can allow DC to pass to provide energy for subsequent circuits, that is, to implement the process of outputting DC power according to the power supply 14 .
  • the first inductor L1 can also be used to prevent high-frequency short circuit.
  • FIG. 7 also illustrates a structure of the switch sub-branch 1322.
  • the switch sub-branch 1322 includes a switch transistor Q1.
  • the first end of the switch Q1 is connected to the controller 131, the second end of the switch Q1 is connected to the ground GND, and the third end of the switch Q1 is connected to the power sub-branch 1321 and the resonator sub-branch 1323 respectively.
  • the switch Q1 is an N-type metal oxide semiconductor field effect transistor (that is, an NMOS transistor) as an example.
  • the gate of the NMOS tube is the first terminal of the switch tube Q1
  • the gate of the NMOS tube The source is the second terminal of the switch Q1
  • the drain of the NMOS tube is the third terminal of the switch Q1.
  • the switch tube Q1 can also be a P-type metal oxide semiconductor field effect transistor or a signal relay.
  • the switch tube Q1 can also be a transistor, an insulated gate bipolar transistor, an integrated gate commutation thyristor,
  • the gate can turn off at least one of a thyristor, a junction gate field effect transistor, a MOS controlled thyristor, a gallium nitride-based power device, a silicon carbide-based power device, and a thyristor.
  • the switch sub-branch 1322 further includes a fourth resistor R4 and a fifth resistor R5 connected in series.
  • the first end of the circuit composed of the fourth resistor R4 and the fifth resistor R5 connected in series is connected to the controller 131, and the second end of the circuit composed of the fourth resistor R4 and the fifth resistor R5 connected in series is connected to the ground GND.
  • the fourth resistor The connection point between R4 and the fifth resistor R5 is connected to the first end of the switching tube Q1.
  • the fourth resistor R4 and the fifth resistor R5 are used to divide the voltage of the first pulse signal output by the controller 131 to obtain the voltage at the first end of the switching tube Q1.
  • the divided voltage on the fifth resistor R5 is greater than the turn-on voltage of the switch Q1, the switch Q1 is turned on; otherwise, the switch Q1 is turned off.
  • the switch sub-branch 1322 further includes a first capacitor C1.
  • the first terminal of the first capacitor C1 is connected to the third terminal of the switch Q1.
  • the second terminal of the first capacitor C1 is connected to the ground GND.
  • the first capacitor C1 is used for charging when the switch Q1 is turned off and the current flowing through the resonator branch 1323 is less than the first current threshold, and is used for charging when the switch Q1 is turned off and the current flowing through the resonator branch 1323 is less than the first current threshold.
  • the current of the path 1323 is greater than or equal to the first current threshold, it resonates with the resonator branch 1323 and discharges.
  • the switch Q1 is turned on.
  • the settings of the first current threshold and the second current threshold are related to the parameters of the first capacitor C1 and the resonator branch 1323 .
  • different first current thresholds and second current thresholds can be obtained, and the embodiments of the present application do not specifically limit this.
  • setting the first capacitor C1 can play the role of voltage hysteresis. Specifically, when the switch Q1 is turned off, the voltage between the second terminal and the third terminal of the switch Q1 will not suddenly rise, but first maintain the voltage across the first capacitor C1. After the current between the second terminal and the third terminal of the switch Q1 drops to zero, the voltage between the second terminal and the third terminal of the switch Q1 starts to rise again. As a result, the soft turn-off of the switching tube Q1 is realized.
  • the current flowing through the resonator branch 1323 is less than the first current threshold, and the first capacitor C1 is charged. Then, the current of the resonator branch 1323 gradually increases until it is greater than or equal to the first current threshold. value, the current of the resonator branch 1323 is greater than the current of the first inductor L1, and the first capacitor C1 resonates with the resonator branch 1323 and discharges. Then, when the first capacitor C1 is discharged to the second current threshold, the switch Q1 is turned on. It can be seen that by selecting appropriate first capacitor C1 and resonator branch 1323 so that the second current threshold is zero, zero-voltage conduction of switch Q1 can be achieved, that is, soft turn-on of switch Q1 can be achieved.
  • the soft switching process (including soft turn-on and soft turn-off) of the switching tube Q1 can be realized, that is, the switching tube Q1 can be kept on and off.
  • the product of voltage and current is always zero. Therefore, the switching loss of the switching tube Q1 is also close to zero, and the switching efficiency of the switching tube Q1 is high, which further improves the working efficiency of the ultrasonic atomizer 100.
  • FIG. 7 also exemplarily shows a structure of the resonator branch 1323.
  • the resonator branch 1323 includes a second capacitor C2 and a second inductor L2.
  • the first end of the second capacitor C2 is connected to the power sub-branch 1321 (ie, the second end of the first inductor L1) and the switch sub-branch 1322 (ie, the third end of the switch transistor Q1) respectively.
  • the second capacitor C2 The second end of is connected to the first end of the second inductor L2, and the second end of the second inductor L2 is connected to the first switch branch K11, the first switch branch K12... the first switch branch K1N.
  • the circuit composed of the second capacitor C2 and the second inductor L2 is purely resistive. At this time, the impedance is minimum and the current is maximum.
  • a high voltage N times greater than the pulse voltage input to the resonator branch 1323 will be generated on C2 and the second inductor L2, where N is greater than 1.
  • the high voltage is used as the driving voltage for driving the ultrasonic atomizing sheet 12 . Then, the ultrasonic atomization piece 12 can obtain sufficient driving energy, which is beneficial to maintaining the stable operation of the ultrasonic atomization piece 12 .
  • each first switch branch includes a switch, and each switch is connected between the driving branch 132 and an impedance branch. That is, the first switch branch K11 includes the first switch S11, the first switch branch K12 includes the first switch S12... the first switch branch K1N includes the first Switch S1N.
  • the first switch S11 is connected between the driving branch 132 and the impedance branch A1
  • the first switch S12 is connected between the driving branch 132 and the impedance branch A2...
  • the first switch S1N is connected between the driving branch 132 and the impedance branch between AN.
  • the impedance branch is connected to the circuit when the switch connected to the impedance branch is closed.
  • the impedance branch A1 is the first impedance branch that matches the current ultrasonic atomization sheet 12
  • both the first switches S11 are closed to connect the impedance branch A1 to the circuit, so that the impedance branch A1 and The impedance of the ultrasonic atomizing piece 12 matches the impedance of the driving branch 132 .
  • any impedance branch includes a third inductor.
  • Each third inductor is connected between a first switch branch and the ultrasonic atomization piece 12 .
  • the impedance branch A1 includes a third inductor L11
  • the impedance branch A2 includes a third inductor L12
  • the impedance branch AN includes a third inductor L1N.
  • the third inductor L11 is connected between the first switch branch K11 and the ultrasonic atomizer sheet 12
  • the third inductor L12 is connected between the first switch branch K12 and the ultrasonic atomizer sheet 12...
  • the third inductor L1N is connected between the first switch branch K11 and the ultrasonic atomizer sheet 12. Between the switch branch K1N and the ultrasonic atomizer piece 12.
  • FIG. 7 only illustrates one structure of the impedance branch.
  • the impedance branch can also be implemented with other structures.
  • the embodiments of the present application do not specifically limit this. It is only necessary that the impedance of the combination of the impedance branch and the ultrasonic atomizing sheet 12 matches the impedance of the drive branch 133 .
  • each impedance branch should not be connected to the ground GND.
  • the control circuit 13 further includes N second switch branches. Among them, a second switch branch is connected between an impedance branch and the ultrasonic atomization piece 12 .
  • the N second switch branches include the second switch branch K21, the second switch branch K22... Switch branch K2N.
  • the second switch branch K21 is connected between the impedance branch A1 and the ultrasonic atomization piece 12
  • the second switch branch K22 is connected between the impedance branch A2 and the ultrasonic atomization piece 12...
  • the second switch branch K2N is connected between Between the impedance branch AN and the ultrasonic atomizer piece 12.
  • the second switch branch K21, the second switch branch K22... the second switch branch K2N are all connected to the controller 131.
  • the controller 131 is also used to: control the conduction of the second switch branch connected to the first impedance branch, so that the combined impedance of the first impedance branch and the ultrasonic atomization sheet 12 matches the impedance of the driving branch 132 .
  • the impedance branch when the impedance branch has one end connected to the ground GND, it needs to be connected to the first impedance at the same time. Only when the first switch branch and the second switch branch are connected by the branches can the first impedance branch be connected to the circuit for use, that is, only then can the combined impedance of the first impedance branch and the ultrasonic atomizing sheet 12 be the same as that of the first impedance branch.
  • the impedances of the drive branches 132 are matched. Among them, by setting N second switch branches, mutual interference between the impedance branches can be prevented, which is beneficial to improving the stability of the ultrasonic atomizer.
  • each of the first switch branch and the second switch branch includes at least one of a relay, a triode, or a metal oxide semiconductor field effect transistor.
  • each second switch branch includes a switch, and each switch is connected between the ultrasonic atomizing sheet 12 and an impedance branch. That is, the second switch branch K21 includes the second switch S11, the second switch branch K22 includes the second switch S22... the second switch branch K2N includes the second switch S2N.
  • the second switch S21 is connected between the ultrasonic atomization piece 12 and the impedance branch A1
  • the second switch S22 is connected between the ultrasonic atomization piece 12 and the impedance branch A2...
  • the second switch S2N is connected between the ultrasonic atomization piece 12 and the impedance branch A2. between impedance branches AN.
  • the impedance branch is connected to the circuit when the switch connected to the impedance branch is closed.
  • the impedance branch A1 is the first impedance branch that matches the current ultrasonic atomization sheet 12
  • both the first switches S11 are closed to connect the impedance branch A1 to the circuit, so that the impedance branch A1 and The impedance of the ultrasonic atomizing piece 12 matches the impedance of the driving branch 132 .
  • any impedance branch includes a third capacitor, a fourth inductor and a fifth inductor.
  • the first end of the first end of the fourth inductor is connected to the first switch branch, the second end of the fourth inductor is connected to the first end of the third capacitor and the first end of the fifth inductor respectively, and the third capacitor
  • the second end of the fifth inductor is connected to the ground, and the second end of the fifth inductor is connected to the second switch branch.
  • the impedance branch A1 includes a third capacitor C11, a fourth inductor L21, and a fifth inductor L31.
  • the first end of the first end of the fourth inductor L21 is connected to the first switch branch K11, and the second end of the fourth inductor L21 is respectively connected to the first end of the third capacitor C11 and the first end of the fifth inductor L31.
  • the second end of the third capacitor C11 is connected to the ground GND, and the second end of the fifth inductor L31 is connected to the second switch branch K21.
  • any impedance branch also includes only the first The three capacitors and the fifth inductor, for example, the impedance branch A2 only includes the third capacitor C12 and the fifth inductor L32.
  • any impedance branch further includes a third capacitor, a fourth capacitor and a fifth inductor as shown in FIG. 11 .
  • the impedance branch A1 also includes a third capacitor C11 and a fourth capacitor. C21 and fifth inductor L21.
  • FIG 12 is a flow chart of an impedance identification method for an ultrasonic atomizer provided by an embodiment of the present application. This method is used to identify the impedance of the ultrasonic atomizer piece in the ultrasonic atomizer.
  • the specific structure of the ultrasonic atomizer can be realized by the structure shown in Figures 1 to 11. The specific implementation process has been described in detail in the above embodiments and will not be described again here.
  • the impedance identification method includes the following steps:
  • Step 1201 Obtain the first current, where the first current is the current output by the power supply in the ultrasonic atomizer when the ultrasonic atomizer sheet operates at the resonant frequency.
  • the ultrasonic atomization sheet when the ultrasonic atomization sheet operates at the resonant frequency, by obtaining the current output by the power supply (that is, the first current), the current impedance range of the current ultrasonic atomization sheet can be determined correspondingly.
  • the first current can be obtained through the current detection branch 133 as shown in FIG. 4 .
  • the impedance identification method before executing step 1201, the impedance identification method further includes: controlling the power supply to output an initial voltage to start the ultrasonic atomizer sheet, where the initial voltage is any value in [5V, 6V].
  • the initial voltage when the ultrasonic atomization tablet is started should be kept consistent to maintain current collection at the same initial voltage. This current is used to determine the impedance range of the ultrasonic atomizer.
  • the initial voltage is set to any value in [5V, 6V], it can be ensured that when the ultrasonic atomization piece works at the resonant frequency, the current of the ultrasonic atomization piece will not be too large to prevent the ultrasonic atomization piece from being damaged. The temperature is too high.
  • the process of obtaining the first current in step 1201 includes the following steps:
  • multiple driving frequencies are output to change the output current of the power supply, so that the resonant frequency of the ultrasonic atomizing sheet can be determined based on the output current of the power supply.
  • the output current of the power supply is the maximum current. current, and the output current of the power supply is usually a sine wave, so if the detected output current of the power supply shows a decreasing trend as the driving frequency increases, then the subsequent driving frequency does not need to collect current to improve the work. efficiency. That is, it may be necessary to collect the output current of the power supply at only part of the multiple driving frequencies, or it may be necessary to collect the output current of the power supply at all of the multiple driving frequencies.
  • the process of collecting the output current of the power supply at each driving frequency at at least part of the plurality of driving frequencies includes the following steps: at least part of the plurality of driving frequencies. Under the driving frequency, collect K output current values of the power supply at each driving frequency, where K is an integer ⁇ 1. Perform average calculation or root mean square value calculation based on K output current values to determine the output current.
  • the output current of the power supply at the first 3 driving frequencies needs to be collected.
  • the average is taken, and then the square root (i.e., the root mean square value calculation is performed) is the output current, thus determining the output current at the first driving frequency.
  • the output current at the second driving frequency and the output current at the third driving frequency are determined in sequence.
  • an average value calculation or a root mean square value calculation is performed after obtaining K output current values to determine the output current as an example.
  • other methods may be used to determine the output current, such as taking the median value among K output currents as the output current.
  • step 1302 it can be known from step 1302 that under at least part of the driving frequencies among the plurality of driving frequencies, the output current under each of at least part of the driving frequencies can be determined. Then, the determined output currents can be compared in magnitude to determine the maximum current among the output currents.
  • the output current at the second driving frequency and the output current at the third driving frequency after determining the output current at the first driving frequency, the output current at the second driving frequency and the output current at the third driving frequency, a total of three output currents are obtained.
  • the maximum current in is the first current.
  • Step 1202 According to the corresponding relationship between the first current, the preset current and the impedance interval, determine Determine the impedance interval corresponding to the first current.
  • the corresponding relationship between the preset current and the impedance interval includes the corresponding relationship between the preset current interval and the impedance interval, then in step 1202, according to the first current, the preset The corresponding relationship between current and impedance interval, the process of determining the impedance interval corresponding to the first current includes the following steps: determining the current interval in which the first current is located. According to the preset corresponding relationship between the current interval and the impedance interval, the impedance interval corresponding to the first current interval is determined.
  • the current interval in which the first current is located can be found based on the preset corresponding relationship between the current interval and the impedance interval, and the impedance interval corresponding to the current interval in which the first current is located can be determined, thereby determining the first The impedance interval corresponding to the current.
  • This impedance interval is the impedance interval in which the impedance of the ultrasonic atomization piece lies, thereby achieving the purpose of identifying the impedance of the ultrasonic atomization piece.
  • the preset current intervals include multiple preset impedance intervals. At least one preset impedance interval is within [5 ⁇ -50 ⁇ ], and at least one preset current interval is within [0.5A-2.2A].
  • the preset impedance intervals are [5,10], [11,15], [16,20], [21,25], [26,30], [31,35] respectively.
  • the preset current intervals are [2.1,2.2], [2,2.1], [1.7,1.9], [1.5,1.6], [1.3,1.4], [1.1,1.2], [0.9,1.0], [0.7,0.8], [0.5,0.6] and an impedance interval corresponds to a current interval, such as the impedance interval [5,10] corresponds to the current Interval [2.1,2.2].
  • the impedance interval corresponding to the first current can be determined based on the corresponding relationship between the impedance interval and the current interval.
  • the preset impedance ranges are all within [5 ⁇ -50 ⁇ ]
  • the preset current ranges are all within [0.5A-2.2A].
  • other setting methods may also be adopted, and the embodiments of this application do not specifically limit this.
  • the impedance interval corresponding to the first current is the impedance interval in which the impedance of the ultrasonic atomizing piece 12 is located. After determining the impedance interval in which the impedance of the ultrasonic atomization piece 12 lies, a corresponding impedance branch can be matched for the current ultrasonic atomization piece 12, and this impedance branch is the first impedance branch.
  • the first impedance branch includes at least one of an L-shaped matching branch, a T-shaped matching branch, and a ⁇ -shaped matching branch.
  • the impedance identification method further includes the following steps:
  • Step 1401 Based on the impedance interval corresponding to the first current, determine the first impedance branch that matches the impedance of the ultrasonic atomization sheet in the ultrasonic atomizer.
  • Step 1402 Connect the first impedance branch between the ultrasonic atomization piece and the driving branch, so that the combined impedance of the first impedance branch and the ultrasonic atomizing piece matches the impedance of the driving circuit.
  • the driving branch is a circuit that drives the ultrasonic atomizing sheet 12.
  • the impedance branch can be connected at Between the driving branch 132 and the ultrasonic atomizing piece 12, the combined impedance of the impedance branch AN and the ultrasonic atomizing piece 12 can be matched with the impedance of the driving circuit 132, and the impedance branch AN and the ultrasonic atomizing piece can be reduced.
  • the reactive power part of the combination of 12 is used to reduce power loss.
  • the ultrasonic atomizer sheet 12 can obtain higher driving energy, which improves the efficiency of driving the ultrasonic atomizer sheet 12 and also improves the working efficiency of the ultrasonic atomizer 100. .

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种用于超声雾化器(100)的阻抗识别方法与超声雾化器(100),阻抗识别方法用于识别超声雾化器(100)中超声雾化片(12)的阻抗,方法包括获取第一电流,其中,第一电流为超声雾化片(12)工作在谐振频率处时,超声雾化器(100)中电源(14)输出的电流。根据预设定的电流与阻抗区间之间的对应关系,确定第一电流对应的阻抗区间。

Description

用于超声雾化器的阻抗识别方法与超声雾化器
相关申请的交叉参考
本申请要求于2022年08月15日提交中国专利局,申请号为202210976858.6,申请名称为“用于超声雾化器的阻抗识别方法与超声雾化器”的中国专利申请,其全部内容通过引用结合在本申请中,以及要求于2022年08月15日提交中国专利局,申请号为202210976844.4,申请名称为“超声雾化器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及超声雾化技术领域,例如涉及一种用于超声雾化器的阻抗识别方法与超声雾化器。
背景技术
超声雾化器是利用超声波雾化技术以实现雾化功能的装置。目前,在超声雾化器的使用过程中,存在着因不同超声雾化片的电特性而导致的超声雾化器的雾化性能差异大的问题,主要原因如下:一方面,超声雾化片由压电材料制成,而压电材料自身的电特性存在比较大的差异,会导致不同的超声雾化片之间的电特性存在差异,另一方面,在对超声雾化片进行组装后,组装结构应力、超声雾化片上压力、接触电阻等的不同,也会导致超声雾化片的电特性产生差异。
目前,通常解决上述问题的方法为通过识别超声雾化片阻抗,具体为,结合直接数字式频率合成器(Direct Digital Frequency Synthesis,DDS)算法、相位检测电路与幅度检测电路进行实现,即通过采集超声雾化片与负载的幅度及相位,然后将采集到的数据送入处理器,以通过处理器确定超声雾化片的阻抗。
然而,上述方式的成本较高,电路也较为复杂,实现难度较高,从而导致实用性较差。
发明内容
本申请实施例旨在提供一种用于超声雾化器的阻抗识别方法与超声雾化器,能够通过更加简单的方法识别超声雾化片的阻抗,降低成本,实用性较强。
为实现上述目的,第一方面,本申请提供一种用于超声雾化器的阻抗识别方法,其特征在于,用于识别超声雾化器中超声雾化片的阻抗,方法包括:获取第一电流,其中,第一电流为所述超声雾化片工作在谐振频率处时,超声雾化器中电源输出的电流;根据预设定的电流与阻抗区间之间的对应关系,确定所述第一电流对应的阻抗区间。。
在一实施例中,所述确定与所述超声雾化器中超声雾化片的阻抗匹配的第一阻抗支路,包括:获取第一电流,其中,所述第一电流为所述超声雾化片工作在谐振频率处时,超声雾化器中电源输出的电流;根据所述第一电流、预设定的电流与阻抗区间之间的对应关系,确定所述第一电流对应的阻抗区间;根据所述阻抗区间,确定与所述阻抗区间匹配的阻抗支路,以确定与所述超声雾化器中超声雾化片的阻抗匹配的第一阻抗支路。
在一实施例中,预设定的电流与阻抗区间之间的对应关系包括预设定的电流区间与阻抗区间之间的对应关系;所述根据所述第一电流、预设定的电流与阻抗区间之间的对应关系,确定所述第一电流对应的阻抗区间,包括:确定所述第一电流所在的电流区间;根据预设定的电流区间与阻抗区间之间的对应关系,确定所述第一电流区间所对应的阻抗区间。
在一实施例中,所述预设定的电流区间包括多个,所述预设定的阻抗区间包括多个;至少一个预设定的阻抗区间在[5Ω-50Ω]之内,至少一个预设定的电流区间在[0.5A-2.2A]之内。
在一实施例中,在所述获取第一电流之前,所述方法还包括:控制电源输出初始电压,以使所述超声雾化片启动工作,其中所述初始电压为[5V,6V]中的任一数值。
在一实施例中,所述获取第一电流,包括:输出多个驱动频率;在所述多个驱动频率中的至少部分驱动频率下,采集所述电源在每一个驱动频率的输出电流;确定所述输出电流中的最大电流;根据所述最大电流,确定所述第一电流。
在一实施例中,所述在所述多个驱动频率中的至少部分驱动频率下,采集所述电源在每一个驱动频率的输出电流,包括:在所述多个驱动频率中的至少 部分驱动频率下,采集所述电源在每一个驱动频率的的K个输出电流值,其中,K为≥1的整数;根据所述K个输出电流值进行平均值运算或者均方根值运算,以确定所述输出电流。
在一实施例中,在所述确定所述第一电流对应的阻抗区间之后,还包括:根据所述第一电流对应的阻抗区间,确定与所述阻抗区间匹配的第一阻抗支路;将所述第一阻抗支路连接在所述超声雾化片与驱动支路之间,以使所述第一阻抗支路和所述超声雾化片的组合阻抗与所述驱动支路的阻抗相匹配,其中,所述驱动支路为驱动所述超声雾化片的电路。
第二方面,本申请提供一种超声雾化器,包括:储液腔,用于存储液体基质;超声雾化片,与所述储液腔液体连通,所述超声雾化片用于产生振荡以雾化所述液体基质;控制电路及电源;其中,所述控制电路包括:控制器与驱动支路,所述驱动支路分别与所述电源及所述控制器连接,所述驱动支路用于响应于第一脉冲信号而产生驱动电压,所述驱动电压用于驱动所述超声雾化片;N个第一开关支路与N个阻抗支路,所述驱动支路依次通过一个所述第一开关支路、一个所述阻抗支路后与所述超声雾化片连接,所述第一开关支路还与所述控制器连接,N为≥2的整数;所述控制器用于输出所述第一脉冲信号,以及控制所述N个第一开关支路中的目标第一开关支路导通,并控制其他第一开关支路断开,以使第一阻抗支路和所述超声雾化片的组合阻抗与所述驱动支路的阻抗相匹配,其中,所述第一阻抗支路与导通的第一开关支路连接。
在一实施例中,所述阻抗支路的一端接地,所述控制电路还包括N个第二开关支路,一个所述第二开关支路连接于一个所述阻抗支路与所述超声雾化片之间,所述第二开关支路还与所述控制器连接;所述控制器还用于控制与第一阻抗支路连接的第二开关支路导通,以使第一阻抗支路和所述超声雾化片的组合的阻抗与所述驱动支路的阻抗相匹配。
在一实施例中,所述第一阻抗支路和所述超声雾化片的组合阻抗包括阻抗实部与阻抗虚部,在所述阻抗实部与所述驱动支路的阻抗相等、且所述阻抗虚部小于第一预设阈值时,所述第一阻抗支路和所述超声雾化片的组合的阻抗与所述驱动支路的阻抗相匹配。
在一实施例中,所述控制电路还包括电流检测支路;所述电流检测支路分别与所述电源、所述驱动支路及所述控制器连接,所述电流检测支路用于检测 所述电源的输出电流,而产生第一检测信号;所述控制器还用于:根据所述第一检测信号确定所述电源的输出电流,并根据所述输出电流、预设定的电流与阻抗区间的对应关系,确定所述输出电流对应的阻抗区间,以及根据所述输出电流对应的阻抗区间确定所述第一阻抗支路,以控制与所述第一阻抗支路连接的第一开关支路导通。
在一实施例中,所述电流检测支路包括放大器与第一电阻,所述第一电阻分别与所述放大器、所述电源及所述超声雾化片连接,且所述放大器与所述控制器连接;所述放大器用于根据所述第一电阻两端的电压输出所述第一检测信号至所述控制器,以使所述控制器根据所述第一检测信号确定所述电源的输出电流。
在一实施例中,所述驱动支路包括:电源子支路,所述电源子支路与所述电源连接,所述电源子支路用于根据所述电源产生直流电源;开关子支路,所述开关子支路分别与所述控制器及所述电源子支路连接,所述开关子支路用于响应于所述第一脉冲信号而导通与断开,以根据所述直流电源产生脉冲电压;谐振子支路,分别与所述电源子支路及所述开关子支路连接,用于响应于所述开关子支路的导通与断开而谐振,以根据所述脉冲电压输出驱动所述驱动电压。
在一实施例中,所述电源子支路包括第一电感;所述第一电感的第一端与所述电源连接,所述第一电感的第二端分别与所述开关子支路及所述谐振子支路连接。
在一实施例中,所述开关子支路包括开关管;所述开关管的第一端与所述控制器连接,所述开关管的第二端接地,所述开关管的第三端分别与所述电源子支路及所述谐振子支路连接。
在一实施例中,所述开关子支路还包括第一电容,所述第一电容的第一端与所述开关管的第三端连接,所述第一电容的第二端接地;所述第一电容用于在所述开关管断开,且流过所述谐振子支路的电流小于第一电流阈值时充电,以及用于在所述开关管断开,且流过所述谐振子支路的电流大于或等于所述第一电流阈值时与所述谐振子支路进行谐振而放电;其中,在所述第一电容放电至第二电流阈值时,所述开关管导通。
在一实施例中,所述谐振子支路包括第二电容与第二电感;所述第二电容的第一端分别与所述电源子支路及所述开关子支路连接,所述第二电容的第二 端与所述第二电感的第一端连接,所述第二电感的第二端与所述第一开关支路连接。
在一实施例中,所述第一开关支路包括第一开关;所述第一开关连接于所述驱动支路及所述阻抗支路之间。
在一实施例中,所述阻抗支路包括第三电感;所述第三电感连接于所述第一开关支路及所述超声雾化片之间。
在一实施例中,所述阻抗支路包括第四电感、第三电容与第五电感;所述第四电感的第一端的第一端与所述第一开关支路连接,所述第四电感的第二端分别与所述第三电容的第一端及所述第五电感的第一端连接,所述第三电容的第二端接地,所述第五电感的第二端与所述第二开关支路连接。
在一实施例中,所述第二开关支路包括第二开关;所述第二开关连接于所述阻抗支路及所述超声雾化片之间。
本申请实施例的有益效果是:本申请提供的用于超声雾化器的阻抗识别方法,用于识别超声雾化器中超声雾化片的阻抗,方法包括获取第一电流,其中,第一电流为超声雾化片工作在谐振频率处时,超声雾化器中电源输出的电流。根据预设定的电流与阻抗区间之间的对应关系,确定第一电流对应的阻抗区间。通过上述方式,能够确定超声雾化片的阻抗所在的阻抗区间,即实现了识别超声雾化片的阻抗的过程,并且,相对于相关技术中的方案,该实现方式更加简单,成本也较低,实用性也较强。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本申请实施例一提供的超声雾化器的结构示意图;
图2为本申请实施例二提供的超声雾化器的结构示意图;
图3为本申请实施例一提供的控制电路的结构示意图;
图4为本申请实施例二提供的控制电路的结构示意图;
图5为本申请实施例三提供的控制电路的结构示意图;
图6为本申请实施例一提供的电流检测电路的电路结构示意图;
图7为本申请实施例一提供的第一开关支路与驱动支路的电路结构示意图;
图8为本申请实施例四提供的控制电路的结构示意图;
图9为本申请实施例一提供的第一开关支路、第二开关支路与驱动支路的电路结构示意图;
图10为本申请实施例二提供的第一开关支路、第二开关支路与驱动支路的电路结构示意图;
图11为本申请实施例三提供的第一开关支路、第二开关支路与驱动支路的电路结构示意图;
图12为本申请实施例一提供的用于超声雾化器的阻抗识别方法的流程图;
图13为本申请实施例一提供的图12中示出的步骤1201的一实施方式的示意图;
图14为本申请实施例一提供的在执行步骤1202之后所执行的方法的示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参照图1,图1为本申请实施例提供的超声雾化器的结构示意图。如图1所示,该超声雾化器100包括用于储液腔11、超声雾化片12、控制电路13与电源14。
其中,储液腔11用于存储液体基质,该液体基质根据不同的使用场景可包括不同的物质,例如在电子烟雾化领域,可包含尼古丁和/或芳香剂和/或气溶胶生成物质(例如,甘油);又如在医疗雾化领域,可包括具有疾病治疗或者有利于健康的药物和/或生理盐水等溶剂。
超声雾化片12与储液腔11流体连通,可以是超声雾化片12直接设置在储液腔11,也可以是超声雾化片12所在的雾化腔与储液腔11直接贯通,也可以 是超声雾化片12与储液腔11之间通过吸液介质进行液体传输。超声雾化片12用于产生振荡以雾化液体基质,即通过振动将传递至超声雾化片12上或者附近的液体基质雾化成气溶胶。具体地,超声雾化片12在使用中通过高频振动(优选振动频率为1.7MHz~4.0MHz,超过人的听觉范围属于超声频段)将液体基质打散而产生微粒自然悬浮的气溶胶。
控制电路13与超声雾化片12电性连接,控制电路13用于根据电源14为超声雾化片12提供驱动电压与驱动电流。在一实施方式中,控制电路13可以设置于印刷电路板(PCB)上。
电源14用于供电。在一实施方式中,电源14为电池。其中,电池可以为锂离子电池、锂金属电池、铅酸电池、镍镉电池、镍氢电池、锂硫电池、锂空气电池或者钠离子电池等,在此不做限定。从规模而言,本申请实施例中的电池可以为电芯单体,也可以是为由多个电芯单体串联和/或并联组成的电池模组等等,在此不做限定。当然,在其他的实施例中,电池也可以包括更多或更少的元件,或者具有不同的元件配置,本申请实施例对此不作限制。
在一实施例中,超声雾化器100还包括液体传递介质15、出气通道16。其中,液体传递元件15用于在储液腔11与超声雾化片12之间传递液体基质。出气通道16用于将由液体基质所产生的可吸入蒸汽或气溶胶输出,以供用户抽吸。
超声雾化器100可以为一体式的,也可以为组装式的。在一实施方式中,当超声雾化器100为组装式时,超声雾化器100还包括电源机构与超声雾化器,其中,超声雾化器包括第一壳体17,电源机构包括第二壳体18。
在一实施例中,第一壳体17与第二壳体18之间可拆卸连接,例如第一壳体17与第二壳体18可以通过卡扣结构或磁吸结构等实现可拆卸连接。第一壳体17与第二壳体18共同起到收容及保护其他元器件的作用。其中,储液腔11、超声雾化片12、液体传递元件15与出气通道16均设置于第一壳体17内,且控制电路13与电源14均设置于第二壳体18内。
第一壳体17与第二壳体18以功能性关系可拆卸地对齐。可以利用各种机构将第二壳体18连接到第一壳体17,从而产生螺纹接合、压入配合接合、过盈配合、磁性接合等等。在一些实施方式中,当第一壳体17与第二壳体18处于组装配置时,超声雾化器100可基本上是棒状、扁筒状、杆状或者柱状形状等。
第一壳体17与第二壳体18可由任何适合的结构上完好的材料形成。在一些示例中,第一壳体17与第二壳体18可由诸如不锈钢、铝之类的金属或合金形成。其它适合的材料包括各种塑料(例如,聚碳酸酯)、金属电镀塑料(metal-plating over plastic)、陶瓷等等。
需要说明的是,如图1所示的超声雾化器100的硬件结构仅是一个示例,并且,超声雾化器100可以具有比图中所示出的更多的或者更少的部件,可以组合两个或更多的部件,或者可以具有不同的部件配置,图中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。例如,如图2所示,可将超声雾化片12设于储液腔11中,则可以简化结构。
同时,可以理解的是,图1或图2所示的超声雾化器100可应用于多种不同的场合,并起到不同的作用,本申请实施例对此不做具体限制。例如,在一实施例中,超声雾化器100应用于医学领域,此时,超声雾化器100可以为医用雾化器,该医用雾化器可实现通过对加入其内部的药液进行雾化,并使患者吸入,以达到辅助治疗的效果。又如,在另一实施例中,超声雾化器100还可以作为一种电子产品,比如电子烟,电子烟为通过雾化等手段,将尼古丁溶液等变成气雾后,供用户吸食的一种电子产品。
请参照图3,图3示出了控制电路13分别与电源14及超声雾化片12连接的结构示意图。如图3所示,控制电路13包括控制器131、驱动支路132、N个第一开关支路与N个阻抗支路。
驱动支路132分别与电源14及控制器131连接。驱动支路132依次通过一个第一开关支路、一个阻抗支路后与超声雾化片12连接,N个第一开关支路还与控制器连接,N为≥2的整数。其中,N个第一开关支路包括第一开关支路K11、第一开关支路K12…第一开关支路K1N,N个阻抗支路包括阻抗支路A1、阻抗支路A2…阻抗支路AN。驱动支路132通过第一开关支路K11、阻抗支路A1连接至超声雾化片12;驱动支路132通过第一开关支路K12、阻抗支路A2连接至超声雾化片12…驱动支路132通过第一开关支路K1N、阻抗支路AN连接至超声雾化片12。控制器131分别与第一开关支路K11、第一开关支路K12…第一开关支路K1N连接。
具体地,控制器131用于输出第一脉冲信号,驱动支路132用于响应于第一脉冲信号而产生驱动电压,驱动电压用于驱动超声雾化片12。控制器131还用于控制N个第一开关支路中的目标第一开关支路导通,并控制其他第一开关支路断开,以使第一阻抗支路和超声雾化片12的组合阻抗与驱动支路132的阻抗相匹配,其中,第一阻抗支路与导通的第一开关支路连接。
例如,在一实施方式中,目标第一开关支路为第一开关支路K11,则控制器131控制第一开关支路K11导通,并控制第一开关支路K12、第一开关支路K13…第一开关支路K1N断开。继而,驱动支路132、第一开关支路K11、阻抗支路A1与超声雾化片12之间形成通路,阻抗支路A1与超声雾化片12的组合阻抗与驱动支路132的阻抗相匹配。其中,阻抗支路A1即为第一阻抗支路。
在实际应用中,一方面,超声雾化片12可等效为一容性负载,而驱动支路132为纯阻性输出,若将二者(即容性负载与纯阻性输出)之间直接进行能量传输,则会有较大的无功功率产生,进而导致驱动超声雾化片12的效率大幅度降低。基于此,通过实现第一阻抗支路和超声雾化片12的组合的阻抗与驱动支路132的阻抗相匹配,可减少第一阻抗支路和超声雾化片12的组合的无功功率的部分,以减少功率的损耗,超声雾化片12能够获得较高的驱动能量,提高了驱动超声雾化片12的效率,也提高了超声雾化器100的工作效率。
另一方面,在超声雾化器100的使用过程中,存在着因不同超声雾化片12的电特性而导致的超声雾化器的雾化性能差异大的问题,主要原因如下:首先,超声雾化片12由压电材料制成,而压电材料自身的电特性存在比较大的差异,会导致不同的超声雾化片12之间的电特性存在差异;其次,在对超声雾化片12进行组装后,组装结构应力、超声雾化片12上压力、接触电阻等的不同,也会导致超声雾化片12的电特性产生差异。基于此,本申请实施例设置了N个阻抗支路,通过为N个阻抗支路设置不同的参数值,以满足不同超声雾化片12的匹配需求。具体为,在确定当前实际使用的超声雾化片12所需匹配的阻抗支路(即第一阻抗支路)后,只需将与该阻抗支路连接的第一开关支路(即目标第一开关支路)导通,就能够实现为当前实际使用的超声雾化片12匹配到适合的阻抗支路,具有较佳的匹配效果,有利于进一步减小功率的损耗,以进一步提高驱动超声雾化片12的效率。
在一实施方式中,第一阻抗支路和超声雾化片12的组合的阻抗(Zh)包括阻抗实部(Rh)与阻抗虚部(j*Xh),在阻抗实部与驱动支路132的阻抗(Z0)相等、且阻抗虚部小于第一预设阈值时,第一阻抗支路和超声雾化片12的组合的阻抗与驱动支路132的阻抗相匹配。其中,Zh=Rh+j*Xh。且由于驱动支路132的阻抗为纯电阻性,则Z0=R0,其中,R0表示驱动支路132的电阻。从而,若要满足第一阻抗支路和超声雾化片12的组合的阻抗与驱动支路132的阻抗相匹配,所需满足的条件为:Rh=R0,且j*Xh小于第一预设阈值。其中,j*Xh越接近于0,第一阻抗支路和超声雾化片12的组合的阻抗与驱动支路132的阻抗相匹配的效果越好,超声雾化片12的工作效率越高。
在一实施例中,如图4所示,控制电路13还包括电流检测支路133。其中,电流检测支路133分别与电源14、驱动支路132及控制器131连接。
具体地,电流检测支路133用于检测电源14的输出电流,而产生第一检测信号。控制器131还用于接收第一检测信号,并根据第一检测信号确定电源14的输出电流。控制器131还用于根据输出电流、预设定的电流与阻抗区间的对应关系,确定输出电流对应的阻抗区间,该阻抗区间即为超声雾化片12的阻抗所在的阻抗区间,从而达到了识别超声雾化片12的阻抗的目的。控制器131还用于根据输出电流对应的阻抗区间确定第一阻抗支路,以控制与第一阻抗支路连接的第一开关支路导通。
在相关技术中,通过结合DDS算法、相位检测电路与幅度检测电路能够准确识别超声雾化片12的阻抗大小,但该种方式的成本较高,电路也较为复杂,实现难度较高。特别是在超声雾化器领域,超声雾化器的售价较低,若采用相关技术中的方式,可能导致净利润过低,不适于进行量产,实用性较差。
而对于本申请而言,虽然未识别出超声雾化片12的阻抗实际大小,而仅确定所在的阻抗区间,但采用的电路结构简单,实现难度较低,能够较大程度降低成本,有利于实现超声雾化器100的量产,实用性较强。
同时,也已经足够满足后续功能设计的需求。例如,在一实施方式中,在识别到超声雾化片12的阻抗所在的阻抗区间后,能够根据该阻抗区间匹配相应的阻抗支路,以减小超声雾化片12与阻抗支路组成的第一电路的阻抗中的容性或感性部分,即减小第一电路的电流与电压之间的相位差。在一实施例中,在 识别到超声雾化片12的阻抗所在的阻抗区间并匹配相应的阻抗支路后,可将第一电路的电流与电压之间的相位差保持在小于30°,从而可减少超声雾化片12无功功率的部分,有利于提高超声雾化片12的工作效率。
其次,在识别到超声雾化片12的阻抗所在的阻抗区间后,可以匹配对应的加热控制曲线,即匹配对应的功率控制区间,可以更好的加热超声雾化器100中的液体基质。
此外,在确定超声雾化片12的阻抗所在的阻抗区间后,可在已预设的多个阻抗支路(包括阻抗支路A1、阻抗支路A2…阻抗支路AN)中找到与该阻抗区间匹配度较高的阻抗支路(即第一阻抗支路),此时,超声雾化片12与第一阻抗支路组成的第一电路的电流与电压之间具有较小的相位差,然后再将第一阻抗支路接入电路中使用,具有较佳的匹配效果,超声雾化片12的效率较高。
在一实施例中,如图5所示,驱动支路132包括电源子支路1321、开关子支路1322与谐振子支路1323。其中,电源子支路1321通过电流检测支路133与电源14连接,开关子支路1322分别与控制器131及电源子支路1321连接,谐振子支路1323分别与电源子支路1321及开关子支路1322连接。
具体地,电源子支路1321用于根据电源14产生直流电源。开关子支路1322用于响应于控制器131输出的第一脉冲信号而导通与断开,以根据直流电源产生脉冲电压。谐振子支路1323用于响应于开关子支路1322的导通与断开而谐振,以根据脉冲电压输出驱动驱动电压。
在该实施例中,在超声雾化片12需要被驱动时,首先,电源14在经过电源子支路1321后转换为直流电源输出,同时,控制器131输出第一脉冲信号,以控制开关子支路1322在导通与断开之间不断循环切换,从而将电源子支路1321所输出的直流电源转换为交流电源,即脉冲电压。继而,谐振子支路1323在发生谐振后,能够将所接收到的脉冲电压进行升压,并使用升压后的驱动电压驱动超声雾化片12。其中,由于谐振子支路1323实现了谐振,则谐振子支路1323实质上呈现纯电阻性,可减少谐振子支路1323无功功率的部分,即减少了功率损耗,从而提高了超声雾化器100的工作效率。并且,在该种情况下,谐振子支路1323的阻抗最小,电流最大,可输出较大的驱动电压以驱动超声雾化片12稳定运行。
请参照图6,图6中示例性示出了电流检测支路133的一种结构。如图6所示,电流检测支路133包括放大器U1与第一电阻R1。其中,第一电阻R1分别与放大器U1、电源14及电源子支路1321连接,且放大器U1与控制器131连接。
具体地,第一电阻R1的第一端分别与电源14及放大器U1的同相输入端连接,第一电阻R1的第二端分别与放大器U1的反相输入端、电源子支路1321连接,放大器U1的输出端与控制器131连接,放大器U1的接地端接地GND,放大器U1的电源端与电压V1连接。
在此实施例中,放大器U1被配置为根据第一电阻R1两端的电压输出第一检测信号,以使控制器132根据第一检测信号确定电源14的输出电流。具体地,放大器U1能够对接收到的第一电阻R1两端的电压进行放大K倍后输出第一检测信号,其中,K为正整数。继而,控制器131在获取到第一检测信号后可根据第一检测信号与电源14输出的电流之间的关系,确定电源14输出的电流。
在一实施例中,电流检测支路131还包括第四电容C4、第五电容C5、第二电阻R2与第三电阻R3。其中,第四电容C4与第五电容C5为滤波电容,第二电阻R2为限流电阻,第三电阻R3为下拉电阻。
在一实施例中,如图7所示,电源子支路1321包括第一电感L1。其中,第一电感L1的第一端通过电流检测支路133与电源14连接,第一电感L1的第二端分别与开关子支路1322及谐振子支路1323连接。
具体地,第一电感L1为高频扼流圈,高频扼流圈只对高频交变电流有较大的阻碍作用,对低频交变电流的阻碍作用很小,对直流的阻碍作用更小,因此可以用来“通直流,阻交流,通低频,阻高频”。从而,第一电感L1可允许直流通过以为后续电路提供能量,即实现根据电源14输出直流电源的过程。另外,第一电感L1还可用于防止高频短路。
图7还示例性示出了开关子支路1322的一种结构,如图7所示,开关子支路1322包括开关管Q1。其中,开关管Q1的第一端与控制器131连接,开关管Q1的第二端接地GND,开关管Q1的第三端分别与电源子支路1321及谐振子支路1323连接。
其中,在该实施例中,以开关管Q1为N型金属氧化物半导体场效应晶体管(即NMOS管)为例。具体地,NMOS管的栅极为开关管Q1的第一端,NMOS管的 源极为开关管Q1的第二端,NMOS管的漏极为开关管Q1的第三端。
除此之外,在其他实施例中,开关管Q1也可以P型金属氧化物半导体场效应晶体管或信号继电器,开关管Q1还可以是三极管、绝缘栅双极晶体管、集成栅极换向晶闸管、栅极可关断晶闸管、结栅场效应晶体管、MOS控制晶闸管、氮化镓基功率器件、碳化硅基功率器件、可控硅中的至少一种。
在一实施例中,开关子支路1322还包括串联连接的第四电阻R4与第五电阻R5。其中,第四电阻R4与第五电阻R5串联连接组成的电路的第一端与控制器131连接,第四电阻R4与第五电阻R5串联连接组成的电路的第二端接地GND,第四电阻R4与第五电阻R5之间的连接点与开关管Q1的第一端连接。
在该实施例中,第四电阻R4与第五电阻R5用于对控制器131输出的第一脉冲信号的电压进行分压,以获得开关管Q1的第一端的电压。当第五电阻R5上的分压大于开关管Q1的导通电压时,开关管Q1导通,反之,开关管Q1断开。
在一实施例中,开关子支路1322还包括第一电容C1,第一电容C1的第一端与开关管Q1的第三端连接,第一电容C1的第二端接地GND。
具体地,第一电容C1用于在开关管Q1断开,且流过谐振子支路1323的电流小于第一电流阈值时充电,以及用于在开关管Q1断开,且流过谐振子支路1323的电流大于或等于第一电流阈值时与谐振子支路1323进行谐振而放电。其中,在第一电容C1放电至第二电流阈值时,开关管Q1导通。
可以理解的是,第一电流阈值和第二电流阈值的设置均与第一电容C1以及谐振子支路1323的参数相关。换言之,在不同的应用场景中,选择不同的第一电容C1与谐振子支路1323,可获得不同的第一电流阈值与第二电流阈值,本申请实施例对此不作具体限制。
在该实施例中,设置第一电容C1可起到电压滞后的作用。具体为,当开关管Q1断开瞬间,开关管Q1的第二端与第三端之间的电压不会突然上升,而是先维持第一电容C1两端的电压。直至开关管Q1的第二端与第三端之间的电流降到为零之后,开关管Q1的第二端与第三端之间的电压再开始上升。从而,实现了开关管Q1的软关断。
与此同时,流过谐振子支路1323的电流小于第一电流阈值,第一电容C1被充电。接着,谐振子支路1323的电流逐渐增大,直至大于或等于第一电流阈 值时,谐振子支路1323的电流大于第一电感L1上的电流,第一电容C1与谐振子支路1323进行谐振而放电。继而,在第一电容C1放电至第二电流阈值时,开关管Q1导通。可见,通过选择合适的第一电容C1与谐振子支路1323,以使第二电流阈值为零,则可实现开关管Q1的零电压导通,亦即,实现了开关管Q1的软开通。
可理解,当晶体管(例如开关管Q1)处于开关状态,理论上可以达到100%的效率。但由于晶体管势垒电容、扩散电容以及电路中分布电容的影响,晶体管由饱和到截止或由截止到饱和,都需要一定的转换时间。因而导致转换时间内管子的集电极电流和集电极电压均会有较大的数值致使管耗增加。通常,在寄生电容不太大,且工作频率较低时,可忽略其影响。然而工作频率较高时,管耗的增加就无法忽略,使效率降低,甚至使器件损坏。
因此,在该实施例中,通过设置第一电容C1与谐振子支路1333,可实现开关管Q1的软开关过程(包括软开通与软关断),即保持开关管Q1在导通与断开时,电压与电流的乘积始终为零。从而,开关管Q1的开关损耗也接近为零,开关管Q1的开关效率较高,进而也提高超声雾化器100的工作效率。
图7还示例性示出了谐振子支路1323的一种结构,如图7所示,谐振子支路1323包括第二电容C2与第二电感L2。其中,第二电容C2的第一端分别与电源子支路1321(即第一电感L1的第二端)及开关子支路1322(即开关管Q1的第三端)连接,第二电容C2的第二端与第二电感L2的第一端连接,第二电感L2的第二端与第一开关支路K11、第一开关支路K12…第一开关支路K1N连接。
在该实施例中,当第二电容C2与第二电感L2形成串联谐振时,第二电容C2与第二电感L2组成的电路呈纯电阻性,此时阻抗最小,电流最大,在第二电容C2与第二电感L2上会产生比输入至谐振子支路1323的脉冲电压大N倍的高电压,其中,N大于1。其中,该高电压即用于作为驱动超声雾化片12的驱动电压。继而,超声雾化片12可获得较充足的驱动能量,有利于保持超声雾化片12的稳定运行。
在一实施例中,如图7所示,每个第一开关支路均包括一个开关,且每个开关均连接于驱动支路132与一个阻抗支路之间。即第一开关支路K11包括第一开关S11,第一开关支路K12包括第一开关S12…第一开关支路K1N包括第一 开关S1N。第一开关S11连接于驱动支路132与阻抗支路A1之间,第一开关S12连接于驱动支路132与阻抗支路A2之间…第一开关S1N连接于驱动支路132与阻抗支路AN之间。
在该实施例中,当与阻抗支路所连接的开关闭合时,该阻抗支路接入电路。例如,若阻抗支路A1为与当前的超声雾化片12匹配的第一阻抗支路,则将第一开关S11均闭合,以将阻抗支路A1接入电路,从而使阻抗支路A1与超声雾化片12的阻抗与驱动支路132的阻抗相匹配。
在一实施例中,请继续参照图7,任一阻抗支路包括第三电感。其中,每个第三电感连接于一个第一开关支路及超声雾化片12之间。具体地,阻抗支路A1包括第三电感L11,阻抗支路A2包括第三电感L12…阻抗支路AN包括第三电感L1N。第三电感L11连接于第一开关支路K11与超声雾化片12之间,第三电感L12连接于第一开关支路K12与超声雾化片12之间…第三电感L1N连接于第一开关支路K1N与超声雾化片12之间。
需要说明的是,图7仅示例性示出了阻抗支路的一种结构,而在其他的实施例中,阻抗支路也可以采用其他的结构实现,本申请实施例对此不作具体限制,只需能够实现阻抗支路和超声雾化片12的组合的阻抗与驱动支路133的组合的阻抗相匹配即可。但需要注意的是,在图3、图4、图5与图7所示的实施例中,各阻抗支路应不接地GND。
进一步地,当阻抗支路存在一端接地GND时,控制电路13还包括N个第二开关支路。其中,一个第二开关支路连接于一个阻抗支路与超声雾化片12之间。
以在图3所示的结构上增加N个第二开关支路为例,如图8所示,N个第二开关支路包括第二开关支路K21、第二开关支路K22…第二开关支路K2N。第二开关支路K21连接于阻抗支路A1与超声雾化片12之间,第二开关支路K22连接于阻抗支路A2与超声雾化片12之间…第二开关支路K2N连接于阻抗支路AN与超声雾化片12之间。第二开关支路K21、第二开关支路K22…第二开关支路K2N均与控制器131连接。
控制器131还用于:控制与第一阻抗支路连接的第二开关支路导通,以使第一阻抗支路和超声雾化片12的组合的阻抗与驱动支路132的阻抗相匹配。
在该实施例中,当阻抗支路存在一端接地GND时,需同时导通与第一阻抗 支路连接的第一开关支路与第二开关支路,才能够将第一阻抗支路接入电路中使用,即才能够使第一阻抗支路和超声雾化片12的组合的阻抗与驱动支路132的阻抗相匹配。其中,通过设置N个第二开关支路,能够防止各阻抗支路之间的互相干扰,有利于提高超声雾化器工作的稳定性。
在一实施例中,各第一开关支路与第二开关支路均包括:继电器、三极管或金氧半场效晶体管中至少一种。
请参照图9,图9中示例性示出了第二开关支路的一种结构。如图9所示,每个第二开关支路均包括一个开关,且每个开关均连接于超声雾化片12与一个阻抗支路之间。即第二开关支路K21包括第二开关S11,第二开关支路K22包括第二开关S22…第二开关支路K2N包括第二开关S2N。第二开关S21连接于超声雾化片12与阻抗支路A1之间,第二开关S22连接于超声雾化片12与阻抗支路A2之间…第二开关S2N连接于超声雾化片12与阻抗支路AN之间。
在该实施例中,当与阻抗支路所连接的开关闭合时,该阻抗支路接入电路。例如,若阻抗支路A1为与当前的超声雾化片12匹配的第一阻抗支路,则将第一开关S11均闭合,以将阻抗支路A1接入电路,从而使阻抗支路A1与超声雾化片12的阻抗与驱动支路132的阻抗相匹配。
在一实施例中,请继续参照图9,任一阻抗支路包括第三电容、第四电感与第五电感。其中,第四电感的第一端的第一端与第一开关支路连接,第四电感的第二端分别与第三电容的第一端及第五电感的第一端连接,第三电容的第二端接地,第五电感的第二端与第二开关支路连接。
以阻抗支路A1为例,阻抗支路A1包括第三电容C11、第四电感L21与第五电感L31。其中,第四电感L21的第一端的第一端与第一开关支路K11连接,第四电感L21的第二端分别与第三电容C11的第一端及第五电感L31的第一端连接,第三电容C11的第二端接地GND,第五电感L31的第二端与第二开关支路K21连接。
需要说明的是,图9仅示例性示出了阻抗支路的一种结构,而在其他的实施例中,阻抗支路也可以为其他的结构,本申请实施例对此不作具体限制,只需能够实现阻抗支路和超声雾化片12的组合的阻抗与驱动支路132的组合的阻抗相匹配即可。例如,在一实施方式中,任一阻抗支路还如图10所示只包括第 三电容与第五电感,如阻抗支路A2只包括第三电容C12与第五电感L32。又如,在另一实施方式中,任一阻抗支路还如图11所示的包括第三电容、第四电容与第五电感,如阻抗支路A1还包括第三电容C11、第四电容C21与第五电感L21。
请参照图12,图12为本申请实施例提供的用于超声雾化器的阻抗识别方法的流程图。该方法用于识别超声雾化器中超声雾化片的阻抗。其中,在一些实施方式中,超声雾化器的具体结构可通过如图1-图11所示的结构实现,具体实现过程在上述实施例已进行详细描述,这里不再赘述。
如图12所示,该阻抗识别方法包括如下步骤:
步骤1201:获取第一电流,其中,第一电流为超声雾化片工作在谐振频率处时,超声雾化器中电源输出的电流。
具体地,当超声雾化片工作在谐振频率处时,通过获取电源输出的电流(即为第一电流),能够以该电流来对应确定当前的超声雾化片的阻抗范围。其中,在一实施方式中,第一电流可通过如图4所示的电流检测支路133获取。
在一实施例中,在执行步骤1201之前,该阻抗识别方法还包括:控制电源输出初始电压,以使超声雾化片启动工作,其中初始电压为[5V,6V]中的任一数值。
具体地,在不同的超声雾化片接入到超声雾化器中,并进行测试时,应保持超声雾化片启动时的初始电压一致,以保持在同一初始电压下采集电流,才能够采用该电流来对应确定超声雾化片的阻抗范围。同时,通过将初始电压设置为[5V,6V]中的任一数值,能够确保当超声雾化片工作在谐振频率处时,超声雾化片的电流不至于过大,以防止超声雾化片的温度过高。
在一实施方式中,如图13所示,步骤1201中获取第一电流的过程包括如下步骤:
1301:输出多个驱动频率。
在该实施例中,通过输出多个驱动频率,以改变电源的输出电流,从而根据电源的输出电流可确定超声雾化片的谐振频率。
1302:在多个驱动频率中的至少部分驱动频率下,采集电源在每一个驱动频率的输出电流。
其中,由于当超声雾化片工作在谐振频率处时,电源的输出电流为最大电 流,而且电源的输出电流通常为正弦波,所以若随着驱动频率的增大,所检测到的电源的输出电流呈现减小的趋势,则后续的驱动频率可以无需再采集电流,以提高工作效率。亦即,可能只需在多个驱动频率中的部分驱动频率下采集电源的输出电流,也可能需在多个驱动频率中的所有驱动频率下采集电源的输出电流。
具体地,在一实施方式中,步骤1302中在多个驱动频率中的至少部分驱动频率下,采集电源在每一个驱动频率的输出电流的过程包括如下步骤:在多个驱动频率中的至少部分驱动频率下,采集电源在每一个驱动频率的的K个输出电流值,其中,K为≥1的整数。根据K个输出电流值进行平均值运算或者均方根值运算,以确定输出电流。
例如,假设输出了5个驱动频率,而且在输出第4个驱动频率时,检测到电源的输出电流反而减小,则只需采集前3个驱动频率下,电源的输出电流。首先,在第1个驱动频率下,采集5(以K=5为例)个输出电流值,将该5个输出电流值进行求和后取平均值(即进行平均值运算)即为输出电流,或将该5个输出电流进行平方求和后取其均值,再开平方(即进行均方根值运算)即为输出电流,从而确定了第1个驱动频率下的输出电流。继而,以此类推,依次确定第2个驱动频率下的输出电流与第3个驱动频率下的输出电流。
可以理解的是,在该实施例中,以获取K个输出电流值后进行平均值运算或者均方根值运算,以确定输出电流为例。而在其他的实施例中,也可以采用其他的方式确定输出电流,例如取K个输出电流中的中值为输出电流等。
1303:确定输出电流中的最大电流。
1304:根据最大电流,确定第一电流。
其中,由步骤1302可知,在多个驱动频率中的至少部分驱动频率下,可确定至少部分驱动频率中每个驱动频率下的输出电流。继而,可将所确定的输出电流进行大小比较,以确定各输出电流中的最大电流。
继续以上述例子为例,在确定第1个驱动频率下的输出电流、第2个驱动频率下的输出电流与第3个驱动频率下的输出电流总共三个输出电流之后,获取这三个电流中的最大电流,即为第一电流。
步骤1202:根据第一电流、预设定的电流与阻抗区间之间的对应关系,确 定第一电流对应的阻抗区间。
其中,在一实施方式中,预设定的电流与阻抗区间之间的对应关系包括预设定的电流区间与阻抗区间之间的对应关系,则步骤1202中根据第一电流、预设定的电流与阻抗区间之间的对应关系,确定第一电流对应的阻抗区间的过程包括如下步骤:确定第一电流所在的电流区间。根据预设定的电流区间与阻抗区间之间的对应关系,确定第一电流区间所对应的阻抗区间。
具体地,根据第一电流找到其所在的电流区间,在结合根据预设定的电流区间与阻抗区间之间的对应关系,可确定第一电流所在的电流区间对应的阻抗区间,从而确定第一电流对应的阻抗区间。该阻抗区间即为超声雾化片的阻抗所在的阻抗区间,从而达到了识别超声雾化片的阻抗的目的。
在一实施方式中,预设定的电流区间包括多个,预设定的阻抗区间包括多个。至少一个预设定的阻抗区间在[5Ω-50Ω]之内,至少一个预设定的电流区间在[0.5A-2.2A]之内。
例如,在一实施例中,预设的阻抗区间分别为[5,10]、[11,15]、[16,20]、[21,25]、[26,30]、[31,35]、[36,40]、[41,45]、[46,50],预设的电流区间分别为[2.1,2.2]、[2,2.1]、[1.7,1.9]、[1.5,1.6]、[1.3,1.4]、[1.1,1.2]、[0.9,1.0]、[0.7,0.8]、[0.5,0.6],且一个阻抗区间与一个电流区间对应,如阻抗区间[5,10]对应电流区间[2.1,2.2]。从而,在确定第一电流之后,根据阻抗区间与电流区间的对应关系,能够确定第一电流所对应的阻抗区间。此外,在该实施例中,以预设的阻抗区间均在[5Ω-50Ω]之内,且预设的电流区间均在[0.5A-2.2A]之内为例,而在其他的实施例中,也可以采用其他的设置方式,本申请实施例对此不作具体限制。
第一电流所对应的阻抗区间即为超声雾化片12的阻抗所在的阻抗区间。在确定超声雾化片12的阻抗所在的阻抗区间后,能够为当前的超声雾化片12匹配对应的阻抗支路,该阻抗支路即为第一阻抗支路。
其中,在一实施方式中,第一阻抗支路包括L型匹配支路、T型匹配支路及π型匹配支路中的至少一个。
在一实施例中,如图14所示,在执行步骤1202之后,该阻抗识别方法还包括如下步骤:
步骤1401:根据第一电流对应的阻抗区间,确定与超声雾化器中超声雾化片的阻抗匹配的第一阻抗支路。
步骤1402:将第一阻抗支路连接在超声雾化片与驱动支路之间,以使第一阻抗支路和超声雾化片的组合阻抗与驱动电路的阻抗相匹配。
其中,驱动支路为驱动超声雾化片12的电路,具体可参照图3或图4所示的驱动支路132。
以图8所示的电路结构为例,若第一阻抗支路为阻抗支路AN,则通过将第一开关支路K1N与第二开关之路K2N导通,就能够使阻抗支路连接在驱动支路132与超声雾化片12之间,继而可实现使阻抗支路AN和超声雾化片12的组合阻抗与驱动电路132的阻抗相匹配,可减少阻抗支路AN和超声雾化片12的组合的无功功率部分,以减少功率的损耗,超声雾化片12能够获得较高的驱动能量,提高了驱动超声雾化片12的效率,也提高了超声雾化器100的工作效率。
应理解,方法实施例中对超声雾化器的具体控制以及产生的有益效果,可以参考上述超声雾化器的实施例中的相应描述,为了简洁,这里不再赘述。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (21)

  1. 一种用于超声雾化器的阻抗识别方法,其特征在于,用于识别超声雾化器中超声雾化片的阻抗,包括:
    获取第一电流,其中,所述第一电流为所述超声雾化片工作在谐振频率处时,超声雾化器中电源输出的电流;
    根据所述第一电流、预设定的电流与阻抗区间之间的对应关系,确定所述第一电流对应的阻抗区间。
  2. 根据权利要求1所述的阻抗识别方法,其特征在于,预设定的电流与阻抗区间之间的对应关系包括预设定的电流区间与阻抗区间之间的对应关系;
    所述根据所述第一电流、预设定的电流与阻抗区间之间的对应关系,确定所述第一电流对应的阻抗区间,包括:
    确定所述第一电流所在的电流区间;
    根据预设定的电流区间与阻抗区间之间的对应关系,确定所述第一电流区间所对应的阻抗区间。
  3. 根据权利要求2所述的阻抗识别方法,其特征在于,所述预设定的电流区间包括多个,所述预设定的阻抗区间包括多个;
    至少一个预设定的阻抗区间在[5Ω-50Ω]之内,至少一个预设定的电流区间在[0.5A-2.2A]之内。
  4. 根据权利要求1所述的阻抗识别方法,其特征在于,在所述获取第一电流之前,所述方法还包括:
    控制电源输出初始电压,以使所述超声雾化片启动工作,其中所述初始电压为[5V,6V]中的任一数值。
  5. 根据权利要求1所述的阻抗识别方法,其特征在于,所述获取第一电流,包括:
    输出多个驱动频率;
    在所述多个驱动频率中的至少部分驱动频率下,采集所述电源在每一个驱动频率的输出电流;
    确定所述输出电流中的最大电流;
    根据所述最大电流,确定所述第一电流。
  6. 根据权利要求5所述的阻抗识别方法,其特征在于,所述在所述多个驱 动频率中的至少部分驱动频率下,采集所述电源在每一个驱动频率的输出电流,包括:
    在所述多个驱动频率中的至少部分驱动频率下,采集所述电源在每一个驱动频率的的K个输出电流值,其中,K为≥1的整数;
    根据所述K个输出电流值进行平均值运算或者均方根值运算,以确定所述输出电流。
  7. 根据权利要求1所述的方法,其特征在于,在所述确定所述第一电流对应的阻抗区间之后,还包括:
    根据所述第一电流对应的阻抗区间,确定与所述阻抗区间匹配的第一阻抗支路;
    将所述第一阻抗支路连接在所述超声雾化片与驱动支路之间,以使所述第一阻抗支路和所述超声雾化片的组合阻抗与所述驱动支路的阻抗相匹配,其中,所述驱动支路为驱动所述超声雾化片的电路。
  8. 一种超声雾化器,其特征在于,包括:
    储液腔,用于存储液体基质;
    超声雾化片,与所述储液腔液体连通,所述超声雾化片用于产生振荡以雾化所述液体基质;
    控制电路及电源;
    其中,所述控制电路包括:
    控制器与驱动支路,所述驱动支路分别与所述电源及所述控制器连接,所述驱动支路用于响应于第一脉冲信号而产生驱动电压,所述驱动电压用于驱动所述超声雾化片;
    N个第一开关支路与N个阻抗支路,所述驱动支路依次通过一个所述第一开关支路、一个所述阻抗支路后与所述超声雾化片连接,所述第一开关支路还与所述控制器连接,N为≥2的整数;
    所述控制器用于输出所述第一脉冲信号,以及控制所述N个第一开关支路中的目标第一开关支路导通,并控制其他第一开关支路断开,以使第一阻抗支路和所述超声雾化片的组合阻抗与所述驱动支路的阻抗相匹配,其中,所述第一阻抗支路与导通的第一开关支路连接。
  9. 根据权利要求8所述的超声雾化器,其特征在于,所述阻抗支路的一端 接地,所述控制电路还包括N个第二开关支路,一个所述第二开关支路连接于一个所述阻抗支路与所述超声雾化片之间,所述第二开关支路还与所述控制器连接;
    所述控制器还用于控制与第一阻抗支路连接的第二开关支路导通,以使第一阻抗支路和所述超声雾化片的组合的阻抗与所述驱动支路的阻抗相匹配。
  10. 根据权利要求8所述的超声雾化器,其特征在于,所述第一阻抗支路和所述超声雾化片的组合阻抗包括阻抗实部与阻抗虚部,在所述阻抗实部与所述驱动支路的阻抗相等、且所述阻抗虚部小于第一预设阈值时,所述第一阻抗支路和所述超声雾化片的组合的阻抗与所述驱动支路的阻抗相匹配。
  11. 根据权利要求8所述的超声雾化器,其特征在于,所述控制电路还包括电流检测支路;
    所述电流检测支路分别与所述电源、所述驱动支路及所述控制器连接,所述电流检测支路用于检测所述电源的输出电流,而产生第一检测信号;
    所述控制器还用于:根据所述第一检测信号确定所述电源的输出电流,并根据所述输出电流、预设定的电流与阻抗区间的对应关系,确定所述输出电流对应的阻抗区间,以及根据所述输出电流对应的阻抗区间确定所述第一阻抗支路,以控制与所述第一阻抗支路连接的第一开关支路导通。
  12. 根据权利要求11所述的超声雾化器,其特征在于,所述电流检测支路包括放大器与第一电阻,所述第一电阻分别与所述放大器、所述电源及所述超声雾化片连接,且所述放大器与所述控制器连接;
    所述放大器用于根据所述第一电阻两端的电压输出所述第一检测信号至所述控制器,以使所述控制器根据所述第一检测信号确定所述电源的输出电流。
  13. 根据权利要求8所述的超声雾化器,其特征在于,所述驱动支路包括:
    电源子支路,所述电源子支路与所述电源连接,所述电源子支路用于根据所述电源产生直流电源;
    开关子支路,所述开关子支路分别与所述控制器及所述电源子支路连接,所述开关子支路用于响应于所述第一脉冲信号而导通与断开,以根据所述直流电源产生脉冲电压;
    谐振子支路,分别与所述电源子支路及所述开关子支路连接,用于响应于所述开关子支路的导通与断开而谐振,以根据所述脉冲电压输出驱动所述驱动 电压。
  14. 根据权利要求13所述的超声雾化器,其特征在于,所述电源子支路包括第一电感;
    所述第一电感的第一端与所述电源连接,所述第一电感的第二端分别与所述开关子支路及所述谐振子支路连接。
  15. 根据权利要求13所述的超声雾化器,其特征在于,所述开关子支路包括开关管;
    所述开关管的第一端与所述控制器连接,所述开关管的第二端接地,所述开关管的第三端分别与所述电源子支路及所述谐振子支路连接。
  16. 根据权利要求15所述的超声雾化器,其特征在于,所述开关子支路还包括第一电容,所述第一电容的第一端与所述开关管的第三端连接,所述第一电容的第二端接地;
    所述第一电容用于在所述开关管断开,且流过所述谐振子支路的电流小于第一电流阈值时充电,以及用于在所述开关管断开,且流过所述谐振子支路的电流大于或等于所述第一电流阈值时与所述谐振子支路进行谐振而放电;
    其中,在所述第一电容放电至第二电流阈值时,所述开关管导通。
  17. 根据权利要求13所述的超声雾化器,其特征在于,所述谐振子支路包括第二电容与第二电感;
    所述第二电容的第一端分别与所述电源子支路及所述开关子支路连接,所述第二电容的第二端与所述第二电感的第一端连接,所述第二电感的第二端与所述第一开关支路连接。
  18. 根据权利要求8所述的超声雾化器,其特征在于,所述第一开关支路包括第一开关;
    所述第一开关连接于所述驱动支路及所述阻抗支路之间。
  19. 根据权利要求8所述的超声雾化器,其特征在于,所述阻抗支路包括第三电感;
    所述第三电感连接于所述第一开关支路及所述超声雾化片之间。
  20. 根据权利要求9所述的超声雾化器,其特征在于,所述阻抗支路包括第四电感、第三电容与第五电感;
    所述第四电感的第一端的第一端与所述第一开关支路连接,所述第四电感 的第二端分别与所述第三电容的第一端及所述第五电感的第一端连接,所述第三电容的第二端接地,所述第五电感的第二端与所述第二开关支路连接。
  21. 根据权利要求9所述的超声雾化器,其特征在于,所述第二开关支路包括第二开关;
    所述第二开关连接于所述阻抗支路及所述超声雾化片之间。
PCT/CN2023/112888 2022-08-15 2023-08-14 用于超声雾化器的阻抗识别方法与超声雾化器 WO2024037496A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210976844.4A CN117619636A (zh) 2022-08-15 2022-08-15 超声雾化器
CN202210976858.6 2022-08-15
CN202210976844.4 2022-08-15
CN202210976858.6A CN117619637A (zh) 2022-08-15 2022-08-15 用于超声雾化器的阻抗识别方法与超声雾化器

Publications (1)

Publication Number Publication Date
WO2024037496A1 true WO2024037496A1 (zh) 2024-02-22

Family

ID=89940782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/112888 WO2024037496A1 (zh) 2022-08-15 2023-08-14 用于超声雾化器的阻抗识别方法与超声雾化器

Country Status (1)

Country Link
WO (1) WO2024037496A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10180204A (ja) * 1996-12-24 1998-07-07 Shibaura Eng Works Co Ltd 超音波洗浄装置及び駆動方法
CN204089230U (zh) * 2014-06-30 2015-01-07 深圳市合元科技有限公司 电子烟无线充电系统和可无线充电的电子烟及电池组件
CN207020508U (zh) * 2017-08-17 2018-02-16 湖南中烟工业有限责任公司 一种超声雾化片振荡控制电路及超声波电子烟
CN112731829A (zh) * 2020-12-15 2021-04-30 湖南瀚德微创医疗科技有限公司 一种医用超声波电源的动态匹配网络及其匹配方法
CN218048634U (zh) * 2022-08-15 2022-12-16 深圳市合元科技有限公司 超声雾化器
CN218742781U (zh) * 2022-08-15 2023-03-28 深圳市合元科技有限公司 超声雾化器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10180204A (ja) * 1996-12-24 1998-07-07 Shibaura Eng Works Co Ltd 超音波洗浄装置及び駆動方法
CN204089230U (zh) * 2014-06-30 2015-01-07 深圳市合元科技有限公司 电子烟无线充电系统和可无线充电的电子烟及电池组件
CN207020508U (zh) * 2017-08-17 2018-02-16 湖南中烟工业有限责任公司 一种超声雾化片振荡控制电路及超声波电子烟
CN112731829A (zh) * 2020-12-15 2021-04-30 湖南瀚德微创医疗科技有限公司 一种医用超声波电源的动态匹配网络及其匹配方法
CN218048634U (zh) * 2022-08-15 2022-12-16 深圳市合元科技有限公司 超声雾化器
CN218742781U (zh) * 2022-08-15 2023-03-28 深圳市合元科技有限公司 超声雾化器

Similar Documents

Publication Publication Date Title
WO2023143058A1 (zh) 超声雾化器
CN217342045U (zh) 超声雾化器
CN217342050U (zh) 超声雾化装置
CN111420308A (zh) 一种基于频率自动跟踪的超声理疗仪及频率自动跟踪方法
TW200832489A (en) RF power amplifier stability network
CN218048634U (zh) 超声雾化器
CN218742781U (zh) 超声雾化器
CN114223970A (zh) 一种声表面波驱动控制电路及电子烟
CN108093551A (zh) 用于激励产生均匀放电高活性等离子体的复合电源装置
WO2024037496A1 (zh) 用于超声雾化器的阻抗识别方法与超声雾化器
CN206566312U (zh) 用于网式雾化器的雾化率调节电路
WO2023207794A1 (zh) 超声雾化装置
CN103391068A (zh) 双运算放大器带通有源滤波器
CN117619636A (zh) 超声雾化器
CN117619637A (zh) 用于超声雾化器的阻抗识别方法与超声雾化器
CN206472855U (zh) 一种超声雾化片振荡控制电路及超声波电子烟
WO2024061166A1 (zh) 超声雾化器及基于超声雾化器的谐振频率确定方法
CN215916029U (zh) 雾化器驱动装置及雾化器设备
CN115067573A (zh) 电子雾化装置
CN217471272U (zh) 一种声表面波驱动控制电路及电子烟
CN217342047U (zh) 超声雾化器
CN211065049U (zh) 一种超声波雾化片工作电路、超声波电子烟
CN207885673U (zh) 一种超声波电子烟工作电路及该超声波电子烟
WO2023143065A1 (zh) 超声雾化器及其工作状态确定方法
CN107947571A (zh) 一种dc‑dc开关电源及其电感啸叫消除方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854397

Country of ref document: EP

Kind code of ref document: A1