WO2023142514A1 - 一种空中运输车的升降机构控制方法及系统 - Google Patents

一种空中运输车的升降机构控制方法及系统 Download PDF

Info

Publication number
WO2023142514A1
WO2023142514A1 PCT/CN2022/123431 CN2022123431W WO2023142514A1 WO 2023142514 A1 WO2023142514 A1 WO 2023142514A1 CN 2022123431 W CN2022123431 W CN 2022123431W WO 2023142514 A1 WO2023142514 A1 WO 2023142514A1
Authority
WO
WIPO (PCT)
Prior art keywords
lifting
speed
control
clamping mechanism
transport vehicle
Prior art date
Application number
PCT/CN2022/123431
Other languages
English (en)
French (fr)
Inventor
杜宝宝
缪峰
Original Assignee
弥费科技(上海)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 弥费科技(上海)股份有限公司 filed Critical 弥费科技(上海)股份有限公司
Publication of WO2023142514A1 publication Critical patent/WO2023142514A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C1/00Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles
    • B66C1/10Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means
    • B66C1/42Gripping members engaging only the external or internal surfaces of the articles
    • B66C1/44Gripping members engaging only the external or internal surfaces of the articles and applying frictional forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/16Applications of indicating, registering, or weighing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67733Overhead conveying

Definitions

  • the present application relates to the technical field of semiconductor wafer manufacturing equipment, in particular to a method and system for controlling the lifting mechanism of an aerial transport vehicle in an automatic material handling system.
  • the aerial transport vehicle in the automatic material handling system needs to move the target clamping object from one place to the set position as required. Since the aerial transport vehicle runs above the production equipment, it is therefore The aerial transport vehicle includes a relatively fixed lifting mechanism and a liftable clamping mechanism, and then the lifting mechanism controls the lifting of the clamping mechanism, so that the clamping mechanism reaches a predetermined position to pick up the target item (such as a wafer box), Movements such as transport and release.
  • the clamping mechanism and the lifting mechanism are often connected flexibly with a belt, and the flexible characteristics of the belt make the lifting mechanism cause the clamping mechanism to Relative to the lifting mechanism, there is a certain degree of shaking, swinging, etc., so the clamping mechanism cannot accurately reach the predetermined position corresponding to the target item to clamp or release the target item.
  • the clamping mechanism In order to accurately reach the predetermined position, it is necessary to adjust the clamping multiple times The position of the mechanism prolongs the clamping or releasing time of the target item, which causes the entire clamping or releasing action cycle to be lengthened and affects production efficiency.
  • the present application provides a method for controlling the lifting mechanism of the aerial transport vehicle, which is applied to the lifting mechanism of the aerial transport vehicle to control the clamping mechanism to perform lifting movement, the clamping mechanism is connected with the lifting mechanism by a flexible belt, and the aerial transport
  • the lifting mechanism control method of the car comprises:
  • the segmentation control includes:
  • the lifting motion is controlled to enter the acceleration phase
  • the acceleration control is performed on the lifting motion, and when it is detected that the speed value of the lifting motion accelerates to a second threshold, the lifting motion is controlled to enter the deceleration phase;
  • the deceleration control is performed on the lifting motion, and when it is detected that the speed value of the lifting motion decelerates to a third threshold, the lifting motion is controlled to enter a stable phase;
  • the lifting movement is controlled according to a preset steady control strategy, so that the clamping mechanism stops at a set position.
  • the present application also provides a method for controlling the lifting mechanism of the aerial transport vehicle, which is applied to the lifting mechanism of the aerial transport vehicle to control the clamping mechanism to carry out the lifting movement.
  • the clamping mechanism is connected with the lifting mechanism by a flexible belt.
  • the method for controlling the lifting mechanism of the transport vehicle includes:
  • the lifting mechanism When the aerial transport vehicle moves to a predetermined position in the track, the lifting mechanism is started to drive the clamping mechanism, so that the clamping mechanism performs lifting movement;
  • the segmentation control includes:
  • the lifting motion is controlled to enter the acceleration phase
  • the acceleration control is performed on the lifting motion, and when it is detected that the speed value of the lifting motion accelerates to a second threshold, the lifting motion is controlled to enter the deceleration phase;
  • the lifting motion In the deceleration phase, the lifting motion is decelerated, and when it is detected that the speed value of the lifting motion decelerates to a third threshold, the lifting motion is controlled to enter a steady phase;
  • the lifting movement is controlled according to a preset steady control strategy, so that the clamping mechanism stops at a set position.
  • the present application also provides a control system for the lifting mechanism of the aerial transport vehicle, which is applied to the lifting mechanism of the aerial transport vehicle to control the clamping mechanism to carry out the lifting movement.
  • the flexible belt between the clamping mechanism and the lifting mechanism is connected.
  • the lifting mechanism control system of the transport vehicle includes:
  • the first control module is used to obtain the outer diameter speed corresponding to the belt roll of the flexible belt during the lifting movement of the clamping mechanism;
  • the first adjustment module is used to adjust the lifting speed of the clamping mechanism according to the outer diameter speed, so as to control the lifting movement of the clamping mechanism according to the preset target lifting speed in different segmental control;
  • the segmentation control includes:
  • the lifting motion is controlled to enter the acceleration phase
  • the acceleration control is performed on the lifting motion, and when it is detected that the speed value of the lifting motion accelerates to a second threshold, the lifting motion is controlled to enter the deceleration phase;
  • the deceleration control is performed on the lifting motion, and when it is detected that the speed value of the lifting motion decelerates to a third threshold, the lifting motion is controlled to enter a stable phase;
  • the lifting movement is controlled according to a preset steady control strategy, so that the clamping mechanism stops at a set position.
  • the present application also provides a control system for the lifting mechanism of the aerial transport vehicle, which is applied to the lifting mechanism of the aerial transport vehicle to control the clamping mechanism to carry out the lifting movement.
  • the flexible belt between the clamping mechanism and the lifting mechanism is connected.
  • the lifting mechanism control system of the transport vehicle includes:
  • the control mechanism is used to start the servo motor in the lifting mechanism to drive the clamping mechanism to carry out the lifting movement;
  • a detection mechanism used to obtain the speed value of the lifting movement
  • control mechanism and the detection mechanism are also used to perform coordinated segmental control according to the speed value of the lifting motion
  • the segmentation control includes:
  • the control mechanism controls the lifting motion to enter the acceleration phase
  • the control mechanism performs acceleration control on the lifting motion, and when the detection mechanism detects that the speed value of the lifting motion accelerates to a second threshold, the control mechanism controls the lifting motion to enter deceleration stage;
  • the control mechanism performs deceleration control on the lifting motion, and when the detection mechanism detects that the speed value of the lifting motion decelerates to a third threshold, the control mechanism controls the lifting motion to enter a stable state. stage;
  • control mechanism controls the lifting movement according to a preset steady control strategy, so that the clamping mechanism stops at a set position.
  • Fig. 1 is a schematic diagram of the structure between the lifting mechanism and the clamping mechanism of the aerial transport vehicle
  • Fig. 2 is a schematic diagram of carrying out uniform lifting motion in the air transport vehicle
  • Fig. 3 is a schematic diagram of segmental control in the lifting mechanism control scheme of the air transport vehicle provided by the present application;
  • Fig. 4 is the schematic diagram of segmental control in the lifting mechanism control scheme of the air transport vehicle provided by the present application.
  • Fig. 5 is a schematic diagram of segmental control in the lifting mechanism control scheme of the air transport vehicle provided by the present application.
  • Fig. 6 is the flow chart of the lifting mechanism control method of the air transport vehicle provided by the present application.
  • Fig. 7 is a schematic diagram of accelerated descent in the lifting mechanism control method of the aerial transport vehicle provided by the present application.
  • Fig. 8 is a schematic diagram of a uniform descent in the lifting mechanism control method of the aerial transport vehicle provided by the present application.
  • Fig. 9 is a schematic diagram of deceleration and descent in the lifting mechanism control method of the aerial transport vehicle provided by the present application.
  • Fig. 10 is a schematic diagram of a steady descent in the lifting mechanism control method of the aerial transport vehicle provided by the present application.
  • Fig. 11 is a schematic diagram of encoder feedback detection provided by the present application.
  • Fig. 12 is a schematic diagram of the feedback detection of the encoder for each sub-section control provided by the present application.
  • Fig. 13 is a flow chart of the control method of the lifting mechanism of the aerial transport vehicle provided by the present application.
  • Fig. 14 is a schematic diagram of speed compensation in the lifting mechanism control method of the aerial transport vehicle provided by the present application.
  • Fig. 15 is a schematic diagram of the lifting mechanism control system of the air transport vehicle provided by the present application.
  • Fig. 16 is a schematic diagram of the lifting mechanism control system of the aerial transport vehicle provided by the present application.
  • the lifting mechanism 2 in the transport vehicle controls the clamping mechanism 4 to carry out the lifting movement, so that the clamping mechanism 4 is lifted to the specified position.
  • the height is convenient for grabbing or releasing the target object (such as a wafer box), wherein the lifting mechanism 2 and the clamping mechanism 4 are connected by a flexible belt 3 .
  • the control of the lifting mechanism 2 on the clamping mechanism 4 includes: for example, from the beginning of lowering the belt to the clamping mechanism descending to a specified height, the motor speed is constant, that is, the clamping mechanism 4 performs constant speed. decline. Therefore, in order to lower the belt smoothly and without shaking, only a low-speed control method can be used, so the lifting time is longer; and if the lowering action is completed in a short time, only a high-speed control method can be used, resulting in The belt obviously shakes or swings during the lowering process, which is not conducive to accurately grasping the target object, and in order to accurately grasp the target object, it is necessary to adjust the clamping mechanism several times, which also lengthens the entire action cycle time.
  • the average transfer time of an unoptimized AMHS system may take 5-6 minutes, and if the AMHS system is optimized, the index can reach 2.5-3 minutes, even if the difference is 2 minutes , 1200 times will save about 2400 minutes, that is, after optimization, the wafer cycle time (wafer cycle time) can be gained about 40 hours, which is very valuable for the ever-changing semiconductor market.
  • the clamping mechanism is lowered to release the target object (such as a wafer box ) as an example for schematic illustration, when the aerial transport vehicle 1 travels to a predetermined position on the aerial track, wherein the predetermined position is the position where the aerial transport vehicle stays in the track when grabbing or releasing the wafer box, the aerial transport vehicle 1 can pass through the internal
  • the lifting mechanism 2 controls the lowering of the clamping mechanism 4, wherein the speed of the lowering movement of the clamping mechanism 4 is controlled in segments, and the optimization of the entire lowering motion can be realized by optimizing each segmental control.
  • the descending motion can be divided into a start-up phase, an acceleration phase, a deceleration phase and a steady phase
  • the start-up phase can be the period in which the lifting mechanism drives the clamping mechanism to open the movement, so that the clamping mechanism obtains a start speed, and then enter the acceleration stage, so that the clamping mechanism 4 accelerates the running speed in a short time, reduces the descending height in a short time with a faster running speed, and then enters the deceleration stage, starts to decelerate from a higher speed, and can be used in a short time
  • the lowering height is further reduced, and finally the clamping mechanism 4 can be stably and accurately docked at the wafer box placement position through the steady stage, which is conducive to releasing the wafer box at the accurate placement position.
  • the descending motion can be divided into a start-up phase, an acceleration phase, a constant speed phase, a deceleration phase and a steady phase
  • the start-up phase can be the period in which the lifting mechanism drives the clamping mechanism to open the movement, so that the clamping mechanism acquires to a start-up speed, and then enter the acceleration stage, so that the clamping mechanism 4 speeds up the running speed in a short time, reduces the descending height in a short time at a faster running speed, and then enters the constant speed stage, and performs a constant speed decline at a higher speed , can further reduce the descending height in a short time, and then start to decelerate from a higher speed, further reduce the descending height in a short time, and finally pass the steady stage so that the clamping mechanism 4 can be stably and accurately docked at the wafer cassette placement position , which is beneficial for the clamping mechanism 4 to quickly, smoothly and accurately reach the placement position of the wafer cassette in a short time
  • the elevating mechanism 2 controls the lifting of the clamping mechanism 4, it can also adopt segmental control similar to the descending control, that is, it can still be divided into a start-up phase, an acceleration phase, a deceleration phase and a steady phase, or divided into Start-up phase, acceleration phase, constant speed phase, deceleration phase and steady phase.
  • the ascending movement and the descending movement are collectively referred to as lifting movement here, wherein the descending movement can be the descending process that the clamping mechanism needs to descend to the position of the wafer box to grab the wafer box, and the descending movement can also be the clamping mechanism in the When clamping and transporting the wafer box to the set position, it needs to descend to the placement position of the wafer box during the descending process.
  • the upward movement can be used for the clamping mechanism to return to the preset position after the clamping mechanism grabs the wafer box.
  • the rising movement can also be the rising process in which the clamping mechanism needs to rise back to the set position after the clamping mechanism releases the clamped wafer box to the placement position.
  • the application provides a method for controlling the lifting mechanism of the aerial transport vehicle, which can be applied to the AMHS system in the semiconductor automation factory, and is used for the lifting mechanism of the aerial transport vehicle to control the clamping mechanism to carry out the lifting movement, wherein the clamping mechanism and the Flexible belt connection between lifting mechanism.
  • the lifting mechanism control method of the aerial transport vehicle includes:
  • Step S102 determine whether the aerial transport vehicle has reached the predetermined position along the track, and when it is determined that the predetermined position has been reached, then execute step S104.
  • the driving position of the aerial transport vehicle along the track can be obtained in real time through the AMHS system, and then it can be determined according to the real-time driving position whether the aerial transport vehicle has reached the predetermined position, so as to facilitate air transportation
  • the car reaches the predetermined position it triggers the internal lifting mechanism to control the lifting of the clamping mechanism.
  • the predetermined position may be the stop position of the aerial transport vehicle in the track when the target object (such as a wafer box) needs to be grasped or released.
  • a detection mark such as a sensor, barcode, etc.
  • the holding mechanism performs lifting control. Therefore, when the aerial transport vehicle is running along the track, the control mechanism in the transport vehicle can determine whether the aerial transport vehicle has reached the predetermined position in real time, as a trigger condition for lifting control, so that once the aerial transport vehicle arrives at the predetermined position When staying, the lifting mechanism can quickly open the clamping mechanism for lifting movement.
  • Step S104 start the lifting mechanism to control the lifting of the clamping mechanism, so that the clamping mechanism performs lifting movement.
  • the aerial transport vehicle can be set as a trigger condition when it travels along the track to reach a predetermined position, and this trigger condition can be set inside the control mechanism as a trigger condition for the control mechanism to carry out lifting control, such as PLC (Programmable Logic Controller, programmable logic controller) sets the trigger condition, so that once the PLC detects that the trigger condition is established, it can quickly start the lifting control process of the clamping mechanism.
  • PLC Programmable Logic Controller, programmable logic controller
  • the servo motor in the lifting mechanism can be driven by a control mechanism (such as PLC), so that the servo motor drives the belt shaft of the flexible belt to rotate, so that the belt can be released by rotating the belt shaft to realize the downward movement of the clamping mechanism or the belt can be wound to realize clamping. Support the upward movement of the mechanism. Therefore, by controlling the driving of the lifting mechanism, the lifting motion control of the clamping mechanism can be realized.
  • a control mechanism such as PLC
  • Step S106 during the lifting motion, acquire the speed value of the lifting motion in real time, and perform segmental control according to the speed value of the lifting motion.
  • the section control may include a startup phase, an acceleration phase, a deceleration phase and a steady phase.
  • the lifting motion is controlled to enter the acceleration phase.
  • a low speed that can make the belt drop can be given first, so as to start the clamping mechanism more smoothly and start the lifting movement, and then when the speed after starting reaches the first threshold smoothly, the lifting speed can be lowered.
  • the movement quickly switches to the acceleration phase.
  • the start-up phase is a low-speed and smooth lift
  • the start-up phase can also be called the first stable phase
  • the stable phase entered after the deceleration phase is called the second stable phase.
  • the clamping mechanism can still perform the lifting motion of the acceleration stage relatively smoothly in the acceleration stage, that is, the movement time of the acceleration stage is effectively compressed in the smooth motion.
  • acceleration control is performed on the lifting motion, and when it is detected that the speed value of the lifting motion accelerates to a second threshold, the lifting motion is controlled to enter a deceleration phase.
  • linear acceleration control can be used in the acceleration phase, such as acceleration control with small acceleration changes, which can shorten the time during the acceleration motion and make the acceleration motion more stable. And, after accelerating to a certain speed, switch to the deceleration phase.
  • deceleration control is performed on the lifting motion, and when it is detected that the speed value of the lifting motion decelerates to a third threshold, the lifting motion is controlled to enter a steady phase.
  • a short-term smooth switch when switching from the acceleration stage to the deceleration stage, can be made between the end of the acceleration stage and the beginning of the deceleration stage, and then the linear relationship can be used for deceleration control, and the lifting speed is gradually reduced through the deceleration stage. The movement is smoother while the deceleration shortens the time.
  • the lifting movement is controlled according to a preset steady control strategy, so that the clamping mechanism stops at a set position.
  • the set position can be the position where the clamping mechanism should stop after the lifting movement.
  • the set position can be the position of the wafer box, so that the clamping mechanism can grasp the wafer box.
  • the set position can be the position where the clamping mechanism returns to the transport vehicle to carry the wafer box after grabbing the wafer box. Therefore, the set position can be determined according to the actual lifting motion, which is not limited here.
  • the speed of the lifting movement can be gradually transitioned from a small speed to zero according to the preset smooth control strategy, and then stop at the set position.
  • the smooth control strategy can be a slow deceleration control process that makes the clamping mechanism stop steadily to a set position, such as a control process that makes the clamping mechanism stop at a low speed state and stop to a set position in a short time.
  • first threshold, second threshold, third threshold and the preset smooth control strategy can be preset parameters after installation and commissioning in actual factory applications, or can be parameters based on actual operating conditions in the future.
  • the empirical data obtained by summarizing can be specifically determined according to actual applications, and is not limited here.
  • the duration of the acceleration phase and the deceleration phase can be controlled to make the duration of the acceleration phase and the deceleration phase shorter, for example, the duration can be lower than the duration of the steady phase, and efficient
  • the short-term movement can pass through the long-term stable stage, and the clamping mechanism can be stopped at the set position more smoothly and accurately.
  • a constant speed phase can be added between the acceleration phase and the deceleration phase.
  • the segmented control may also include: a constant speed phase, that is, when it is detected in the acceleration phase that the speed value of the lifting motion accelerates to the second threshold, control the The lifting motion enters a constant speed phase, and in the constant speed phase, the lifting motion is controlled at a constant speed, and when the duration of the constant speed phase reaches a fourth threshold, the lifting motion is controlled to enter the deceleration phase.
  • a constant speed phase that is, when it is detected in the acceleration phase that the speed value of the lifting motion accelerates to the second threshold
  • control the The lifting motion enters a constant speed phase, and in the constant speed phase, the lifting motion is controlled at a constant speed, and when the duration of the constant speed phase reaches a fourth threshold, the lifting motion is controlled to enter the deceleration phase.
  • the operation of the servo motor can be controlled by the pulses sent by the PLC, that is, different control pulse frequencies are output through the PLC, and then these control pulses are used to drive the servo motor, so that the speed of the servo motor is controlled by the number of pulses, so the number of pulses corresponds to
  • the rotation angle of the motor, that is, the pulse frequency can determine the rotation speed of the belt, and then the speed control of the lifting motion can be realized by controlling the pulse frequency. It should be noted that the relationship between the motor speed and the pulse frequency can be determined according to specific motor characteristics, which is not limited here.
  • the PLC can change according to the set pulse frequency
  • the mode is changed to control the pulse frequency of the servo motor, so that the clamping mechanism 4 enters the accelerated descent stage, so that the flexible belt 3 and the clamping mechanism 4 enter the accelerated descent smoothly.
  • the PLC will change the output pulse frequency according to the set requirements, so that the flexible belt 3 and the clamping mechanism 4 Enter the uniform speed descent of high-speed operation.
  • the PLC will change the pulse frequency corresponding to the deceleration phase according to the set requirements, so that the flexible belt 3 and the clamping mechanism Mechanism 4 carries out smooth deceleration and descends.
  • the PLC will change the pulse frequency corresponding to the stable stage according to the set requirements, so that the flexible belt 3 and the clamping mechanism
  • the mechanism 4 descends steadily and slowly and stops at a specified height, that is, stays at a position convenient for grabbing the target object 5 (such as a wafer box).
  • the speed value corresponding to the lifting motion can be obtained, and then segmental control can be realized according to the number of pulses.
  • the servo motor in the lifting mechanism can be driven according to the preset number of pulses, and the flexible belt can be driven by the servo motor to realize the release or winding of the flexible belt, and then realize the clamping Driven by the supporting organization. And, by acquiring the number of pulses, and determining the speed value of the lifting motion according to the number of pulses.
  • a feedback detection mechanism can be used to perform real-time feedback control on the speed control of the lifting motion in the segmental control.
  • a servo motor with an encoder can be used to drive the belt reel to rotate, wherein the encoder can compare the actual travel information of the servo motor with the pulses sent by the PLC to the driver. For example, if the comparison information of the stroke of the servo motor fed back by the encoder and the pulse sent by the PLC is correct, the PLC will continue to send pulses to the driver according to the original requirements, and if the comparison information fed back by the encoder is abnormal, the encoder will send this information to the driver , and then the driver will feed back the fault information to the PLC. When the PLC receives the abnormal information, it indicates that the action of the previous program has not been completed and will not send the instruction of the next program to the driver.
  • the lifting mechanism control method of the aerial transport vehicle further includes: acquiring stroke data of the servo motor fed back by a stroke encoder, and determining whether the lifting motion is normal according to the stroke data of the servo motor and the number of pulses.
  • the encoder compares the stroke information with the number of pulses sent by the PLC to form comparative information, which can be used for real-time monitoring.
  • the aforementioned real-time feedback control can be applied to each stage of the subsection control, and the next stage can only be performed after the encoder comparison information is normal.
  • the encoder is used to judge whether the comparison information is normal. If it is normal, the speed control can be continued. If it is abnormal, the encoder feedback information is abnormal to the driver, and the PLC will deal with the abnormality, such as controlling the buzzer to issue a buzzer alarm. Display the problem information on the body display of the transport vehicle, and then perform manual intervention and so on.
  • the control method of the lifting mechanism of the aerial transport vehicle when it is determined that the lifting movement is in an abnormal state, further includes: stopping sending drive commands to the lifting mechanism, and/or issuing a voice alarm, and/or Display alert information.
  • the abnormalities are found in real-time feedback detection, the abnormalities are dealt with in a timely manner.
  • two pairs of sensors can be arranged in the clamping mechanism, and the relative position between the clamping mechanism and the target object can be judged in real time by the two pairs of sensors.
  • the lifting mechanism control method of the aerial transport vehicle further includes: acquiring the first signal output by the first through-beam sensor and the second signal output by the second through-beam sensor, and the first through-beam sensor is used to detect the The clamping mechanism stops at an abnormal position, and the second through-beam sensor is used to detect whether the clamping mechanism stops at the set position; and, according to the first signal and the second signal, it is determined that the The relationship between the clamping mechanism and the set position.
  • a first through-beam sensor and a second through-beam sensor are arranged on the clamping mechanism, wherein the first through-beam sensor is arranged above the second through-beam sensor, and the second through-beam sensor is used for Detecting whether the clamping mechanism stops at the set position, the first through-beam sensor is used to detect that the clamping mechanism stops at an abnormal position.
  • signals from two sets of on-beam sensors can be used for combined control of signals in the plateau phase.
  • determining the relationship between the clamping mechanism and the set position according to the first signal and the second signal includes: when determining that the first signal and the second signal conform to a preset When the determination condition of is , it is determined that the clamping mechanism stops at the set position.
  • the PLC reads that the information from the shooting sensor and the encoder is consistent and judges that the descending process is over.
  • the clamping mechanism 4 is abnormally lowered, such as excessive decline, such as the deviation of the position of the wafer box, which causes the clamping mechanism to drop excessively, such as other objects placed on the wafer box, Causes the upper set of through-fire sensors to be triggered, etc.
  • the movement position of the belt can be detected in real time by a sensor, that is, a position sensor is installed at the origin position of the belt roll, and the position of the flexible belt is detected by the position sensor.
  • the method for controlling the lifting mechanism of the aerial transport vehicle further includes: acquiring an output result of the first position sensor to determine whether the flexible belt is at the origin position.
  • the present application also provides a method for controlling the lifting mechanism of the aerial transport vehicle, which is applied to the lifting mechanism of the aerial transport vehicle to control the clamping mechanism to carry out the lifting movement.
  • the belt is connected to more accurately adjust the speed of the lifting movement to achieve a more precise control of the speed of the lifting movement, so that the clamping mechanism can reach the set position more smoothly and accurately for grabbing or releasing the wafer cassette.
  • the lifting mechanism control method of the aerial transport vehicle includes:
  • Step S201 during the lifting movement of the clamping mechanism, acquire the outer diameter speed corresponding to the belt roll of the flexible belt.
  • the acquisition of the outer diameter speed can be done through acquisition methods such as sensors, or it can be calculated and determined in combination with sensors.
  • the driving pulse can be output by the PLC
  • the motor in the lifting mechanism can drive the belt reel to release or wind the flexible belt under the control of the driving pulse, wherein one revolution of the motor corresponds to one revolution of the belt reel. Therefore, when the PLC controls the belt reel to release or wind the flexible belt by outputting pulses, the outer diameter speed can be determined by reading the number of pulses output by the PLC, and then according to the motor speed corresponding to the number of pulses, and the outer diameter speed corresponds to The lifting speed of the clamping mechanism.
  • the outer diameter speed can be compared with the expected running speed, and then the lifting speed of the clamping mechanism can be adjusted in real time according to the comparison result.
  • segmental control includes: start-up phase, acceleration phase, acceleration phase and steady phase.
  • the clamping mechanism can operate as expected at different stages.
  • the set target lifting speed is used to carry out the lifting movement to improve the stability and accuracy of the lifting movement of the clamping structure.
  • the PLC controls the operation of the servo motor by sending pulses
  • the number of pulses corresponds to the rotation angle of the motor
  • the servo motor drives the belt reel
  • the pulse frequency output by the PLC can be used to determine the rotational speed of the belt reel, that is, it can be obtained by obtaining
  • the rotation speed of the belt roll is used to obtain the moving speed of the flexible belt driven by the belt roll, wherein the moving speed of the flexible belt corresponds to the lifting speed of the clamping mechanism.
  • the pulse of a certain increment can be sent out according to the belt roll PLC to compensate for the linear decline phenomenon that the motor rotates at a constant speed and the flexible belt gradually slows down, so that the moving speed of the flexible belt (that is, the lifting speed of the clamping mechanism) can be adjusted according to the predetermined speed. Achieve control.
  • the speed control is illustrated by taking the uniform speed control as an example.
  • the thickness of the flexible belt 3 is y
  • the total radius of the belt roll is R before the belt is lowered
  • the number of turns that is, the number of turns of the belt on the belt shaft
  • the height is 2 ⁇ R
  • the driving speed of the belt reel can be determined by obtaining the number of pulses output by the PLC.
  • obtaining the driving speed of the belt reel by the lifting mechanism may include: obtaining a first pulse number corresponding to the current lifting speed, and the first pulse number is used for the lifting mechanism to control the belt roll.
  • the number of pulses corresponding to the driving speed of the coil may include: obtaining a first pulse number corresponding to the current lifting speed, and the first pulse number is used for the lifting mechanism to control the belt roll. The number of pulses corresponding to the driving speed of the coil;
  • adjusting the lifting speed of the clamping mechanism according to the driving speed and the target radius includes: outputting a second number of pulses according to the driving speed, so that the lifting mechanism can operate at the second number of pulses Under the action of driving the belt reel to rotate, adjust the lifting speed of the clamping mechanism, wherein the second pulse number is the number of pulses corresponding to the first pulse data and ⁇ t when the lifting speed is assumed to be constant
  • the increment here refers to the change value of the number of pulses corresponding to ⁇ t, so the increment can be a positive change value or a negative change value.
  • the speed of the lifting movement can be adjusted smoothly and accurately Adjust to target lift speed.
  • the stroke of the servo motor can be fed back through the encoder, so that the speed adjustment is more stable, controllable and accurate.
  • the method for controlling the lifting mechanism of the aerial transport vehicle further includes: obtaining the stroke of the servo motor in the lifting mechanism, and determining whether the lifting motion is normal according to the stroke and the second pulse number, if yes If it is normal, continue to send the next program instruction, and if it is abnormal, stop sending the next program instruction.
  • the embodiment of this specification also provides a lifting mechanism control system of an aerial transport vehicle, which is applied to the lifting mechanism of the aerial transport vehicle to control the clamping mechanism to perform lifting movement.
  • a lifting mechanism control system of an aerial transport vehicle which is applied to the lifting mechanism of the aerial transport vehicle to control the clamping mechanism to perform lifting movement.
  • the lifting mechanism control system 1000 of the aerial transport vehicle includes:
  • the control mechanism 1010 is used to start the servo motor in the lifting mechanism to drive the clamping mechanism to carry out the lifting movement;
  • the detection mechanism 1030 is used to obtain the speed value of the lifting movement
  • control mechanism and the detection mechanism are also used to perform coordinated segmental control according to the speed value of the lifting motion
  • the segmentation control includes:
  • the control mechanism 1010 controls the lifting motion to enter the acceleration phase;
  • the control mechanism 1010 performs acceleration control on the lifting motion, and when the detection mechanism 1030 detects that the speed value of the lifting motion accelerates to a second threshold, the control mechanism 1010 controls the lifting motion to enter the deceleration phase;
  • the control mechanism 1010 performs deceleration control on the lifting motion, and when the detection mechanism 1030 detects that the speed value of the lifting motion decelerates to a third threshold, the control mechanism 1010 controls the lifting motion to enter a steady phase;
  • control mechanism 1010 controls the lifting movement according to a preset steady control strategy, so that the clamping mechanism stops at a set position.
  • the clamping mechanism In the control system, based on the speed information obtained by the detection mechanism in real time, the clamping mechanism is controlled in real time and segmented, which can ensure the stability of the lifting and lowering, and optimize the lifting time at the same time, so that the clamping can be effectively lowered and clamped in a relatively short period of time.
  • the mechanism can effectively shorten the handling cycle in wafer production and improve the production efficiency of semiconductor factories.
  • control mechanism includes a PLC controller, and the detection mechanism is electrically connected to the PLC controller;
  • the control mechanism and the detection mechanism are also used to perform coordinated segmental control according to the speed value of the lifting movement, including: the PLC controller and the detection mechanism are also used to perform coordinated segmental control according to the speed value of the lifting movement Coordinated segment control.
  • PLC As the control core of the control mechanism, PLC is simpler, easier to operate, and highly modifiable.
  • a first through-beam sensor and a second through-beam sensor are arranged on the clamping mechanism, the first through-beam sensor is arranged above the second through-beam sensor, and the second through-beam sensor The sensor is used to detect whether the clamping mechanism stops at the set position, the first through-beam sensor is used to detect whether the clamping mechanism stops at an abnormal position, the first through-beam sensor and the second The through-beam sensor is connected with the PLC controller point;
  • the PLC controller is also used to: acquire the first signal output by the first through-beam sensor and the second signal output by the second through-beam sensor, and determine according to the first signal and the second signal The relationship between the clamping mechanism and the set position.
  • the steady stage is controlled by two sets of sensors on the clamping mechanism, which can improve the stability of the steady stage control and shorten the time of the steady stage, and optimize the entire rising or falling time.
  • the servo motor is electrically connected to the PLC controller, and the PLC controller is also used to drive the servo motor in the lifting mechanism according to the preset number of pulses, and determine the Velocity value for lift motion.
  • the servo motor is a servo motor comprising a stroke encoder, and the stroke encoder is electrically connected to the PLC controller:
  • the PLC controller is also used for: obtaining the stroke data of the servo motor fed back by the stroke encoder, and determining whether the lifting motion is normal according to the stroke data of the servo motor and the number of pulses.
  • the PLC controller is electrically connected to the alarm circuit
  • the PLC controller is further configured to: stop sending drive instructions to the driver of the servo motor, and/or issue a voice alarm, and/or display alarm information.
  • a first position sensor is provided at the origin position of the flexible belt, and the first position sensor is electrically connected to the PLC controller;
  • the PLC controller is also used to obtain the output result of the first position sensor before driving the servo motor in the lifting mechanism according to the preset number of pulses, so as to determine whether the flexible belt is at the origin position.
  • the embodiment of this specification also provides a lifting mechanism control system of the aerial transport vehicle, which is applied to the lifting mechanism of the aerial transport vehicle to control the clamping mechanism to perform the lifting movement, preferably for speed compensation of the lifting movement, wherein
  • the clamping mechanism is connected with the lifting mechanism by a flexible belt.
  • the lifting mechanism control system 2000 of the aerial transport vehicle includes:
  • the first control module 2020 is configured to obtain the outer diameter speed corresponding to the belt roll of the flexible belt during the lifting movement of the clamping mechanism;
  • the first adjustment module 2040 is configured to adjust the lifting speed of the clamping mechanism according to the outer diameter speed, so as to control the lifting movement of the clamping mechanism according to the preset target lifting speed in different segmental controls;
  • the segmentation control includes:
  • the lifting motion is controlled to enter the acceleration phase
  • the acceleration control is performed on the lifting motion, and when it is detected that the speed value of the lifting motion accelerates to a second threshold, the lifting motion is controlled to enter the deceleration phase;
  • the deceleration control is performed on the lifting motion, and when it is detected that the speed value of the lifting motion decelerates to a third threshold, the lifting motion is controlled to enter a stable phase;
  • the lifting movement is controlled according to a preset steady control strategy, so that the clamping mechanism stops at a set position.
  • obtaining the outer diameter speed corresponding to the belt reel of the flexible belt includes: obtaining the driving speed of the belt reel by the lifting mechanism;
  • Adjusting the lifting speed of the clamping mechanism according to the outer diameter speed includes:
  • n is the number of turns
  • y is the thickness of the flexible belt
  • ⁇ t is the time difference of each turn of the belt roll
  • V is the lifting speed of the clamping mechanism.
  • obtaining the driving speed of the lifting mechanism for the belt reel includes: obtaining a first pulse number corresponding to the current lifting speed, the first pulse number is used for controlling the lifting mechanism The number of pulses corresponding to the driving speed of the belt reel;
  • Adjust the lifting speed of the clamping mechanism including:
  • the second number of pulses is output, so that the lifting mechanism drives the belt roll to rotate under the action of the second number of pulses, and adjusts the lifting speed of the clamping mechanism, wherein the second The number of pulses is the sum of increments of the number of pulses corresponding to the first pulse data and ⁇ t when the lifting speed is assumed to be constant.
  • the lifting mechanism control system of the aerial transport vehicle further includes: an encoder, the encoder is used to obtain the stroke of the servo motor in the lifting mechanism;
  • the first control module is also used to determine whether the lifting movement is normal according to the stroke and the second pulse number, if it is normal, continue to issue the next program instruction, and if it is abnormal, stop issuing the next program instruction. program instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

一种空中运输车(1)的升降机构(2)控制方法及系统,应用于半导体晶圆制造设备技术领域,其中空中运输车(1)的升降机构(2)控制方法包括:当空中运输车(1)在轨道中运行到预定位置时,启动升降机构(2)对夹持机构(4)的驱动,以使夹持机构(4)进行升降运动;获取升降运动的速度值,并根据升降运动的速度值对夹持机构(4)的升降运动进行分段控制。通过实时获取升降运动的速度值,并依据实时速度值对升降运动进行平稳、快速的分段控制,不仅使整个升降运动平稳运行,且运行的行程周长得到明显优化,极大提升了半导体工厂自动化应用中晶圆搬运效率,有助于提高晶圆生产效率。

Description

一种空中运输车的升降机构控制方法及系统
本申请基于申请号为“202210096683.X”、申请日为2022年01月26日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请涉及半导体晶圆制造设备技术领域,具体涉及一种自动物料搬送系统中空中运输车的升降机构控制方法及系统。
背景技术
自动物料搬送系统(AMHS,AutomaticMaterialHandlingSystem,也称天车系统)中的空中运输车需要将目标夹取物按要求从一个地方搬送到设定位置,由于空中运输车是在生产设备的上方运行,因而空中动输车包含相对固定的升降机构和可升降的夹持机构,进而由升降机构对夹持机构进行升降控制,使得夹持机构到达预定位置进行目标物品(如晶圆盒)的夹取、搬送及释放等动作。
在相关技术涉及的空中运输车中,处于生产需要,夹持机构和升降机构之间往往使用皮带实现柔性连接,而皮带的柔性特性使得升降机构在下放夹持机构的过程中,造成夹持机构相对于升降机构出现一定幅度的晃动、摆动等情况,因而夹持机构并不能精准地到达目标物品对应的预定位置进行夹持或释放目标物品,同时为了精准到达预定位置,需要多次调整夹持机构的位置,延长了目标物品的夹持或释放时间,造成整个夹持或释放动作周期加长而影响生产效率。
因此,亟需一种新的升降机构控制方案,使得升降机构能够精准地将夹持机构下放到目标物品对应预定位置。
发明内容
本申请提供一种空中运输车的升降机构控制方法,应用于空中运输车的升 降机构控制夹持机构进行升降运动,所述夹持机构与所述升降机构之间柔性皮带连接,所述空中运输车的升降机构控制方法包括:
在所述夹持机构的升降运动中,获取所述柔性皮带的皮带卷对应的外径速度;
根据所述外径速度调整所述夹持机构的升降速度,以控制所述夹持机构在不同分段控制中按预设的目标升降速度进行升降运动;
其中,所述分段控制包括:
启动阶段中,当检测到所述升降运动的速度值达到第一阈值时,控制所述升降运动进入加速阶段;
加速阶段中,对所述升降运动进行加速控制,并当检测到所述升降运动的速度值加速到第二阈值时,控制所述升降运动进入减速阶段;
减速阶段中,对所述升降运动进行减速控制,并当检测到所述升降运动的速度值减速到第三阈值时,控制所述升降运动进入平稳阶段;
平稳阶段中,按预设的平稳控制策略对所述升降运动进行控制,以使所述夹持机构停止在设定位置。
本申请还提供一种空中运输车的升降机构控制方法,应用于空中运输车的升降机构控制夹持机构进行升降运动,所述夹持机构与所述升降机构之间柔性皮带连接,所述空中运输车的升降机构控制方法包括:
当空中运输车在轨道中运行到预定位置时,启动升降机构对夹持机构的驱动,以使夹持机构进行升降运动;
获取所述升降运动的速度值,并根据所述升降运动的速度值进行分段控制;
其中,所述分段控制包括:
启动阶段中,当检测到所述升降运动的速度值达到第一阈值时,控制所述升降运动进入加速阶段;
加速阶段中,对所述升降运动进行加速控制,并当检测到所述升降运动的速度值加速到第二阈值时,控制所述升降运动进入减速阶段;
减速阶段中,对所述升降运动进行减速控制,并当检测到所述升降运动的 速度值减速到第三阈值时,控制所述升降运动进入平稳阶段;
平稳阶段中,按预设的平稳控制策略对所述升降运动进行控制,以使所述夹持机构停止在设定位置。
本申请还提供一种空中运输车的升降机构控制系统,应用于空中运输车的升降机构控制夹持机构进行升降运动,所述夹持机构与所述升降机构之间柔性皮带连接,所述空中运输车的升降机构控制系统包括:
第一控制模块,用于在所述夹持机构的升降运动中,获取所述柔性皮带的皮带卷对应的外径速度;
第一调整模块,用于根据所述外径速度调整所述夹持机构的升降速度,以控制所述夹持机构在不同分段控制中按预设的目标升降速度进行升降运动;
其中,所述分段控制包括:
启动阶段中,当检测到所述升降运动的速度值达到第一阈值时,控制所述升降运动进入加速阶段;
加速阶段中,对所述升降运动进行加速控制,并当检测到所述升降运动的速度值加速到第二阈值时,控制所述升降运动进入减速阶段;
减速阶段中,对所述升降运动进行减速控制,并当检测到所述升降运动的速度值减速到第三阈值时,控制所述升降运动进入平稳阶段;
平稳阶段中,按预设的平稳控制策略对所述升降运动进行控制,以使所述夹持机构停止在设定位置。
本申请还提供一种空中运输车的升降机构控制系统,应用于空中运输车的升降机构控制夹持机构进行升降运动,所述夹持机构与所述升降机构之间柔性皮带连接,所述空中运输车的升降机构控制系统包括:
控制机构,用于启动升降机构中的伺服电机,以驱动所述夹持机构进行升降运动;
检测机构,用于获取所述升降运动的速度值;
其中,所述控制机构和所述检测机构还用于根据所述升降运动的速度值进行协同的分段控制;
其中,所述分段控制包括:
启动阶段中,当所述检测机构检测到所述升降运动的速度值达到第一阈值时,所述控制机构控制所述升降运动进入加速阶段;
加速阶段中,所述控制机构对所述升降运动进行加速控制,并当所述检测机构检测到所述升降运动的速度值加速到第二阈值时,所述控制机构控制所述升降运动进入减速阶段;
减速阶段中,所述控制机构对所述升降运动进行减速控制,并当所述检测机构检测到所述升降运动的速度值减速到第三阈值时,所述控制机构控制所述升降运动进入平稳阶段;
平稳阶段中,所述控制机构按预设的平稳控制策略对所述升降运动进行控制,以使所述夹持机构停止在设定位置。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是空中运输车的升降机构与夹持机构之间的结构示意图;
图2是空中运输车中进行匀速升降运动的示意图;
图3是本申请提供的空中运输车的升降机构控制方案中进行分段控制的示意图;
图4是本申请提供的空中运输车的升降机构控制方案中分段控制的示意图;
图5是本申请提供的空中运输车的升降机构控制方案中分段控制的示意图;
图6是本申请提供的空中运输车的升降机构控制方法的流程图;
图7是本申请提供的空中运输车的升降机构控制方法中加速下降的示意图;
图8是本申请提供的空中运输车的升降机构控制方法中匀速下降的示意图;
图9是本申请提供的空中运输车的升降机构控制方法中减速下降的示意图;
图10是本申请提供的空中运输车的升降机构控制方法中平稳下降的示意图;
图11是本申请提供的编码器反馈检测的示意图;
图12是本申请提供的编码器对各分段控制进行反馈检测的示意图;
图13是本申请提供的空中运输车的升降机构控制方法的流程图;
图14是本申请提供的空中运输车的升降机构控制方法中速度补偿的示意图;
图15是本申请提供的空中运输车的升降机构控制系统的示意图;
图16是本申请提供的空中运输车的升降机构控制系统的示意图。
具体实施方式
下面结合附图对本申请实施例进行详细描述。
以下通过特定的具体实例说明本申请的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本申请的其他优点与功效。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。本申请还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本申请的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
要说明的是,下文描述在所附权利要求书的范围内的实施例的各种方面。应显而易见,本文中所描述的方面可体现于广泛多种形式中,且本文中所描述的任何特定结构及/或功能仅为说明性的。基于本申请,所属领域的技术人员应了解,本文中所描述的一个方面可与任何其它方面独立地实施,且可以各种方式组合这些方面中的两者或两者以上。举例来说,可使用本文中所阐述的任何数目和方面来实施设备及/或实践方法。另外,可使用除了本文中所阐述的方面中的一或多者之外的其它结构及/或功能性实施此设备及/或实践此方法。
还需要说明的是,以下实施例中所提供的图示仅以示意方式说明本申请的基本构想,图式中仅显示与本申请中有关的组件而非按照实际实施时的组件数 目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
另外,在以下描述中,提供具体细节是为了便于透彻理解实例。然而,所属领域的技术人员将理解,可在没有这些特定细节的情况下实践所述方面。术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等描述的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
目前,如图1所示,当空中运输车1沿着空中轨道运行到设定位置时,运输车中的升降机构2,通过控制夹持机构4进行升降运动,使得夹持机构4升降到指定高度,方便抓取或释放目标物(如晶圆盒),其中升降机构2与夹持机构4之间通过柔性皮带3连接。
如图2所示,升降机构2对夹持机构4的控制包括:比如从开始下放皮带到夹持机构下降到指定高度,均是采用电机转速不变的控制方式,即夹持机构4进行匀速下降。因此,如果为了使皮带平稳、不晃动地下降,只能采用低转速的控制方法,因而升降时间较长;而如果为了在短时间内完成此下放动作,只能采用高转速的控制方法,造成皮带在下放过程中明显晃动或摆动,不利于精准地夹取目标物品,而且为了精准抓取目标物品,还需要多次调整夹持机构,同样造成整个动作周期时间加长。
例如,针对应用于半导体制造工厂中的AMHS系统,一个完整的半导体工艺大约需要400个步骤来完成整个处理过程,而在这400个步骤,需要搬运晶圆盒的次数累计约1200次。一般而言,未优化过的AMHS系统,每次平均搬送时间可能需要5-6分钟,而假如AMHS系统经优化后,使得该指标能达到2.5-3分钟,这时即使取差值为2分钟,1200次将可节省约2400分种,即优化后可为晶圆周期时间(wafer cycle time)多争取到大约40小时,该时间对于瞬息万变的半导体市场而言,是非常宝贵的。
因此,在对AMHS系统进行优化中,可能对每个机械结构、每一步的动作 控制实现了很小的优化,但可能对整个搬送系统的周期可以带来巨大影响。
有鉴于此,通过对升降机构的升降控制过程进行深入研究及改进探索后,提出了一种新的升降控制方案:如图3所示,以下放夹持机构去释放目标物体(比如晶圆盒)为例进行示意说明,当空中运输车1在空中轨道行驶到预定位置时,其中预定位置为抓取或释放晶圆盒时空中运输车在轨道中停留位置,空中运输车1可以通过内部的升降机构2对夹持机构4进行下降控制,其中对夹持机构4的下降运动进行速度分段控制,可通过优化各个分段控制,实现整个下降运动的优化。
例如,如图4所示,可将下降运动分为启动阶段、加速阶段、减速阶段和平稳阶段,其中启动阶段可以为升降机构驱动夹持机构开启运动的时段,使得夹持机构获取到一个启动速度,然后进入到加速阶段,使得夹持机构4在短时间内加快运行速度,以较快运行速度在短时间内减少下降高度,接着进入减速阶段,从较高速度开始减速,可以在短时间内进一步减少下降高度,最后通过平稳阶段使得夹持机构4可以稳定、精准地停靠在晶圆盒安放位置,有利于将晶圆盒释放在准确的安放位置上。
例如,如图5所示,可将下降运动分为启动阶段、加速阶段、匀速阶段、减速阶段和平稳阶段,其中启动阶段可以为升降机构驱动夹持机构开启运动的时段,使得夹持机构获取到一个启动速度,然后进入到加速阶段,使得夹持机构4在短时间内加快运行速度,以较快运行速度在短时间内减少下降高度,接着进入匀速阶段,以较高的速度进行匀速下降,可以在短时间内进一步减少下降高度,再接着从较高速度开始减速,进一步在短时间内减少下降高度,最后通过平稳阶段使得夹持机构4可以稳定、精准地停靠在晶圆盒安放位置,有利于夹持机构4在短时间内快速、平稳、精确地到达晶圆盒安放位置。
需要说明的是,升降机构2对夹持机构4进行上升控制时,也可采用如下降控制类似的分段控制,即仍可以分为启动阶段、加速阶段、减速阶段和平稳阶段,或者分为启动阶段、加速阶段、匀速阶段、减速阶段和平稳阶段。因此,这里将上升运动、下降运动统称为升降运动,其中下降运动可为夹持机构需要 下降到晶圆盒所在位置以进行抓取晶圆盒的下降过程,下降运动也可为夹持机构在夹持并搬运晶圆盒到设定位置时需要下降到晶圆盒的安放位置的下降过程,上升运动可为夹持机构在抓取到晶圆盒后,需要上升恢复到预设位置后使得晶圆盒由空中运输车进行搬运的上升过程,上升运动也可为夹持机构在将所夹持的晶圆盒释放到安放位置后,夹持机构需要上升恢复到设定位置的上升过程。
另外,为便于说明,这里示意图示中以加速阶段、减速阶段为线性关系作示例性说明,实际应用中可根据实际控制需要进去其他曲线关系的控制,这里不做限定。
以下结合附图,说明本说明书中各实施例提供的技术方案。
本申请提供一种空中运输车的升降机构控制方法,可应用于半导体自动化工厂中的AMHS系统,用于空中运输车的升降机构控制夹持机构进行升降运动,其中所述夹持机构与所述升降机构之间柔性皮带连接。
如图6所示,所述空中运输车的升降机构控制方法包括:
步骤S102、确定空中运输车沿着轨道行驶是否已到达预定位置,并在确定出到达预定位置时,则执行步骤S104。
实施中,空中运输车沿着空中轨道进行行驶过程中,可通过AMHS系统实时获取空中运输车沿着轨道的行驶位置,进而根据实时行驶位置确定出空中运输车是否到达预定位置,以便于空中运输车在到达预定位置时,触发内部的升降机构进行夹持机构的升降控制。其中,预定位置可为需要抓取或释放目标物体(如晶圆盒)时,空中运输车在轨道中的停留位置。
实施中,可以在轨道中的预定位置设置检测标识,比如传感器、条码等,便于通过检测标识,快速获取到该预定位置,便于空中运输车在该预定位置进行停留,以及方便触发升降机构对夹持机构进行升降控制。因此,可在空中运输车沿着轨道行驶中,运输车中的控制机构可以通过实时确定空中运输车是否已到达预定位置,以此作为升降控制的触发条件,使得空中运输车一旦到达预定位置进行停留时,升降机构可以快速开启夹持机构进行升降运动。
步骤S104、启动升降机构对夹持机构的升降控制,以使夹持机构进行升降 运动。
实施中,可将空中运输车沿着轨道行驶到达预定位置设置为触发条件,并将该触发条件作为控制机构进行升降控制的触发条件设置于控制机构内部,比如在运输车中的PLC(Programmable Logic Controller,可编程逻辑控制器)设置该触发条件,使得PLC一旦检测到触发条件成立,可以快速地启动对夹持机构的升降控制过程。
实施中,可通过控制机构(如PLC)驱动升降机构中的伺服电机,使得伺服电机带动柔性皮带的皮带轴进行转动,从而通过转动皮带轴释放皮带实现夹持机构下降运动或者卷绕皮带实现夹持机构上升运动。因此,通过控制升降机构的驱动,可实现夹持机构的升降运动控制。
步骤S106、在升降运动中,实时获取所述升降运动的速度值,并根据所述升降运动的速度值进行分段控制。
其中,所述分段控制可包括启动阶段、加速阶段、减速阶段和平稳阶段。
启动阶段中,当检测到所述升降运动的速度值达到第一阈值时,控制所述升降运动进入加速阶段。
具体实施中,可在启动阶段之初,先给一个能使皮带下降的低速,以便更平稳地启动夹持机构开始升降运动,然后当启动后的速度平稳地达到第一阈值时,可将升降运动快速切换到加速阶段。需要说明的是,鉴于启动阶段为低速且平稳升降,因而启动阶段也可称为第一平稳阶段,而将从减速阶段所后进入的平稳阶段称为第二平稳阶段。
由于加速阶段是从平稳启动中进行,因而加速阶段中夹持机构仍可较平稳地进行加速阶段的升降运动,即在平稳运动中有效压缩了加速阶段的运动时间。
加速阶段中,对所述升降运动进行加速控制,并当检测到所述升降运动的速度值加速到第二阈值时,控制所述升降运动进入减速阶段。
具体实施中,加速阶段可以采用线性的加速控制,比如加速度变化较小的加速控制,可在加速运动中缩短时间的同时,加速运动更平稳。以及,在加速到一定速度后,切换到减速阶段。
减速阶段中,对所述升降运动进行减速控制,并当检测到所述升降运动的速度值减速到第三阈值时,控制所述升降运动进入平稳阶段。
具体实施中,由加速阶段切换到减速阶段时,可在加速阶段结束和减速阶段开始之间进行短时间的平稳切换,然后可以采用线性关系进行减速控制,通过减速阶段逐步降低升降速度,使得在减速缩短时间的同时,运动更平稳。
平稳阶段中,按预设的平稳控制策略对所述升降运动进行控制,以使所述夹持机构停止在设定位置。其中,设定位置可为夹持机构在升降运动后应该停止的位置,比如去抓取晶圆盒时,设定位置可为晶圆盒所在位置,以便于夹持机构对晶圆盒进行抓取,比如抓取晶圆盒后,设定位置可为抓取晶圆盒后夹持机构恢复到运输车中进行搬运晶圆盒的位置。因此,设定位置可根据实际的升降运动确定,这里不作限定。
具体实施中,可按预设的平稳控制策略将升降运动的速度从较小的速度逐步过渡到零,进而停止在设定位置。其中,平稳控制策略可为使得夹持机构平稳定停止到设定位置的缓慢减速控制过程,比如使得夹持机构从低速状态并在短时间内停止到设定位置的控制过程。
需要说明的是,前述第一阈值、第二阈值、第三阈值以及预设的平稳控制策略等,可为在实际工厂应用中进行安装调试后预设的参数,也可为后续根据实际运行情况总结所得的经验数据,具体可根据实际应用确定,这里不作限定。
通过在升降运动中对升降速度进行实时检测,并根据检测结果实时对升降运动进行分段控制,而且分段控制中进行平稳切换,进而有效地进行平稳的升降运动中,还能优化运动时间。
在一些实施方式中,可通过控制加速阶段的时长和减速阶段的时长,使得加速阶段和减速阶段的时长较短,比如时长均可低于平稳阶段的时长,既可通过加速、减速实现高效的短时运动,又能通过较长时长的平稳阶段,更平稳、更准确地将夹持机构停止在设定位置。
在一些实施方式中,可根据整体升降阶段的需要,比如行程较长时,可在加速阶段和减速阶段之间增加一个匀速阶段。
如图5所示的分段控制示意,所述分段控制还可包括:匀速阶段,即当在加速阶段中检测到所述升降运动的速度值加速到所述第二阈值时,控制所述升降运动进入匀速阶段,以及在匀速阶段中,对所述升降运动进行匀速控制,并当所述匀速阶段的时长达到第四阈值时,控制所述升降运动进入所述减速阶段。
通过在加速阶段和匀速阶段之间增加匀速阶段,既可在加速和减速之间通过匀速阶段进行更平稳切换,还能通过高速运行的匀速阶段,极大地压缩运动时间。
在一些实施方式中,可通过PLC发出的脉冲来控制伺服电机运行,即通过PLC输出不同控制脉冲频率,进而利用这些控制脉冲驱动伺服电机,使得伺服电机的转速由脉冲数量控制,因而脉冲数对应电机转动角度,即脉冲频率可以确定皮带的转速,进而可通过控制脉冲频率实现升降运动的速度控制。需要说明的是,电机转速与脉冲频率之间的关系,可根据具体电机特性进行确定,这里不作限定。
例如,如图7所示,当升降机构2在启动阶段将柔性皮带3和夹持机构4下放达到一定速度时,比如PLC输出脉冲量得到预设值时,PLC可按设定的脉冲频率变化方式改变控制伺服电机的脉冲频率,使得夹持机构4进入加速下降阶段,使柔性皮带3和夹持机构4平稳地进入加速下降。
例如,如图8所示,当升降机构2下放柔性皮带3和夹持机构4的速度到达切换进入匀速阶段时,PLC将按设定要求改变输出的脉冲频率,使柔性皮带3和夹持机构4进入高速运行的匀速下降。
例如,如图9所示,当升降机构2下放柔性皮带3和夹持机构4平稳地进入减速下降阶段时,PLC将按设定要求改变减速阶段对应的脉冲频率,使柔性皮带3和夹持机构4进行平稳减速下降。
例如,如图10所示,当柔性皮带3和夹持机构4经过减速下降平稳地进入最后的平稳下降时,PLC将按设定要求改变平稳阶段对应的脉冲频率,使柔性皮带3和夹持机构4平稳缓慢下降并停止到指定高度,即停留在方便抓取目标物体5(如晶圆盒)的位置。
在一些实施方式中,通过获取PLC输出的脉冲数量,可获取到升降运动对应的速度值,进而可以及脉冲数量实现分段控制。
实施中,正如前述示意说明,可按预设的脉冲数量驱动升降机构中的伺服电机,通过所述伺服电机驱动所述柔性皮带,实现对所述柔性皮带进行释放或卷绕,进而实现对夹持机构的驱动。以及,通过获取所述脉冲数量,并根据所述脉冲数量确定所述升降运动的速度值。
在一些实施方式中,可采用反馈检测机制,对分段控制中升降运动的速度控制进行实时反馈控制。
如图11所示,在升降机构2中,可采用带编码器的伺服电机驱动皮带卷转动,其中编码器可将伺服电机的实际行程信息与PLC发出脉冲形成比较信息给驱动器。例如,编码器反馈的伺服电机行程和PLC发出脉冲的对比信息无误,PLC将会按原要求持续地发脉冲给驱动器,而如编码反馈的对比信息有异常,编码器会将此信息发送给驱动器,再由驱动器将故障信息反馈给PLC,当PLC接收到异常信息后表明上一程序的动作未完成不会发下一程序的指令给驱动器。
具体实施中,所述空中运输车的升降机构控制方法还包括:获取行程编码器反馈的伺服电机行程数据,并根据所述伺服电机行程数据和所述脉冲数量,确定所述升降运动是否正常。
通过编码器对行程信息和PLC下发的脉冲数量进行对比,形成对比信息,可依据这些对比信息进行实时监控。
在一些实施方式中,如图12所示,前述实时反馈控制可应用于分段控制的各个阶段中,并在编码器对比信息正常后,方可进行下一个阶段。例如,通过编码器判断对比信息是否正常,若正常,可继续速度控制,若异常,则向驱动器反馈编码器对比信息异常,由PLC对异常进行相关处理,比如控制蜂鸣器发出蜂鸣警报,将问题信息显示在运输车的车身显示器上,然后进行人工干预处理等等。
在一些实施方式中,当确定所述升降运动处于异常状态时,所述空中运输车的升降机构控制方法还包括:停止向所述升降机构发送驱动指令,和/或发出 语音警报,和/或展示警报信息。通过在实时反馈检测中发现异常时,及时对异常进行相应处理。
在一些实施方式中,可通过在夹持机构中设置两对传感器,通过两对传感器对夹持机构与目标物体之间的相对位置实时判断。
实施中,所述空中运输车的升降机构控制方法还包括:获取第一对射传感器输出的第一信号和第二对射传感器输出的第二信号,所述第一对射传感器用于检测所述夹持机构停止在异常位置,所述第二对射传感器用于检测所述夹持机构是否停止在所述设定位置;以及,根据所述第一信号和所述第二信号确定所述夹持机构与所述设定位置之间的关系。
具体实施中,夹持机构上设置第一对射传感器和第二对射传感器,其中所述第一对射传感器设置于所述第二对射传感器的上方,所述第二对射传感器用于检测所述夹持机构是否停止在所述设定位置,所述第一对射传感器用于检测所述夹持机构停止在异常位置。通过获取两组对射传感器的信号,并依靠这些信号在平稳阶段中进行调整控制,可提高平稳阶段的控制准确性,同时缩短平稳阶段所需时长,有效优化整个上升或下降的运动时长。
在一些实施方式中,可利用两组对射传感器的信号进行平稳阶段中信号的组合控制。
实施中,根据所述第一信号和所述第二信号确定所述夹持机构与所述设定位置之间的关系,包括:当确定所述第一信号和所述第二信号符合预设的判定条件时,确定所述夹持机构停止在所述设定位置。
例如,当触发到下面一组对射传感器时,表明柔性皮带3和夹持机构4已下降到位,此时PLC读取到来自对射传器和编码器的信息一致后判断此下降过程结束。
例如,当触发到上面一组对射传感器时,表明夹持机构4下降异常,比如可能下降过度,如可能晶圆盒位置偏离导致夹持机构下降过量,比如晶圆盒上放置有其他物体,导致触发上方一组对射传感器等等。
在一些实施方式中,可通过传感器对皮带的运动位置进行实时检测,即在 皮带卷的原点位置安装位置传感器,通过位置传感器检测柔性皮带的位置。
在一种实施方式中,在启动夹持机构的升降运动前,所述空中运输车的升降机构控制方法还包括:获取第一位置传感器的输出结果,以确定所述柔性皮带是否位于原点位置。
基于相同发明构思,本申请还提供一种空中运输车的升降机构控制方法,应用于空中运输车的升降机构控制夹持机构进行升降运动,所述夹持机构与所述升降机构之间采用柔性皮带连接,以更准确地调整升降运动的速度,实现更精确的升降运动速度控制,使得夹持机构更平稳、准确地到达设定位置进行晶圆盒的抓取或释放。
实施中,鉴于皮带存在一定厚度,在皮带卷跟随伺服电机转动中,皮带卷半径的变化将引起夹持机构升降速度存在微小变化,因而在考虑到电机转速外,将柔性皮带在下放过程中皮带卷外径变化和速度变化予以考虑,进而将柔性皮带厚度对速度的影响计算在内,并加入到控制当中,使得在设定位置抓取时可以达到更加精准,具体参见以下的各实施方式。
如图13所示,所述空中运输车的升降机构控制方法包括:
步骤S201、在所述夹持机构的升降运动中,获取所述柔性皮带的皮带卷对应的外径速度。
实施中,外径速度的获取可通过传感器等获取方式,也可结合传感器进行计算确定该外径速度。
实施中,可通过PLC输出驱动脉冲,由升降机构中的电机在驱动脉冲的控制下,带动皮带卷释放或卷绕柔性皮带,其中电机转动一圈对应于皮带卷转动一圈。因此,当PLC通过输出脉冲控制皮带卷释放或卷绕柔性皮带时,可通过读取PLC输出的脉冲数量,进而根据脉冲数量对应的电机转速,可确定该外径速度,而外径速度对应于夹持机构的升降速度。
S203、根据所述外径速度调整所述夹持机构的升降速度,以控制所述夹持机构在不同分段控制中按预设的目标升降速度进行升降运动。
实施中,在确定所述外径速度后,可将该外径速度与预计运行速度进行比 较,进而根据比较结果实时调整所述夹持机构的升降速度。
其中,分段控制包括:启动阶段、加速阶段、加速阶段和平稳阶段。其中这些阶段可参考前述说明,这里不再展开说明。
通过实时获取柔性皮带卷的外径速度,即柔性皮带释放或卷绕对应的外径速度,并根据该外径速度实时调整夹持机构的速度,使得夹持机构可以在不同阶段都能按预设的目标升降速度进行升降运动,提高夹持架构升降运动的平稳性、准确性。
在一些实施方式中,鉴于PLC通过发出的脉冲来控制伺服电机运行,脉冲数对应电机转动角度,而伺服电机驱动皮带卷,因而PLC输出的脉冲频率可用于确定皮带卷的转速,即可以通过获取皮带卷的转动速度,来获取所述柔性皮带在皮带卷带动下的运动速度,其中柔性皮带的运动速度对应于夹持机构的升降速度。
如图14所示,当柔性皮带3绕皮带轴6下降过程中,皮带卷外径与速度都在时刻变化,假如PLC发出的脉冲频率为一个定量,则虽然伺服电机的转速是匀速,但传送给柔性皮带3的线性速度是逐渐变慢。
实施中,可根据皮带卷PLC发出一定增量的脉冲来补尝电机匀速转动传递给柔性皮带逐渐变慢的直线下降现象,使柔性皮带的运动速度(即夹持机构的升降速度)按预定速度实现控制。
为便于理解,以匀速控制为例进行速度控制示意说明。
因皮带自身厚度的存在,虽然电机转一圈,皮带也会转一圈,但皮带每圈半径r并不相同,导致电机转速(即PLC输出的脉冲频率)虽然不变,但每转一圈皮带下降高度均不一样,即在相同的时间t内,夹持机构的路程s不一样,因为夹持机构的速度V将不同,因而夹持机构的匀速运动将不再是匀速控制的运动。
假设,柔性皮带3的厚度为y,皮带未下放前,皮带卷的总半径为R,圈数(即皮带在皮带轴上绕的圈数)为n,则速度
Figure PCTCN2022123431-appb-000001
因此, 要实现均速下降,即速度V要保持不变,则需要把皮带卷的外径速度计算在内,若假设皮带下降速度V为一个定量,即均速下降,皮带下降第一圈的高度是2πR,第二圈皮带下降的高度为:2π〔R-(n-1)*y〕,也就是说虽然速度V不变,但是路程S在变化,因而通过实时获取出每圈转动时间差Δt,可以通过计算出对应的脉冲增量来保持速度V不变,其中路程差ΔS=2πR-2π[R-(n-1)*y]=2π(n-1)*y,则可根据路程差除以时间差等于速度,可确定出
Figure PCTCN2022123431-appb-000002
其中,y为柔性皮带的厚度,Δt为皮带卷每圈转动时间差,V为夹持机构的升降速度。
在一些实施方式中,可通过获取PLC输出的脉冲数量来确定皮带卷的驱动转速。
实施中,获取所述升降机构对所述皮带卷的驱动转速,可包括:获取当前所述升降速度对应的第一脉冲数量,所述第一脉冲数量为用于所述升降机构控制所述皮带卷的驱动转速对应的脉冲数量;
以及,根据所述驱动转速和所述目标半径,调整所述夹持机构的升降速度,包括:根据所述驱动转速,输出第二脉冲数量,以使所述升降机构在所述第二脉冲数量的作用下驱动所述皮带卷转动,调整所述夹持机构的升降速度,其中所述第二脉冲数量为当假设所述升降速度不变时,所述第一脉冲数据与Δt对应的脉冲数量的增量之和。需要说明的是,这里的增量是指Δt对应的脉冲数量的变化值,因而增量可为正的变化值,也可为负的变化值。
通过获取夹持机构从第一位置下降(或上升)到第二位置中PLC输出的脉冲数,并根据脉冲数通过增量补偿方式,对速度进行补偿,可平稳、准确地将升降运动的速度调整到目标升降速度。
在一些实施方式中,可通过编码器反馈伺服电机的行程,使得速度调整更平稳、可控和准确。
实施中,所述空中运输车的升降机构控制方法还包括:获取所述升降机构中伺服电机的行程,并根据所述行程与所述第二脉冲数量,确定所述升降运动 是否正常,若为正常则继续下发下一程序指令,若为异常则停止下发下一程序指令。
其中,在对速度进行补偿的控制调整中,编码器的反馈过程与前述说明相同/相似,可参照前述示意说明,这里不展开。
基于相同发明构思,本说明书实施例还提供一种空中运输车的升降机构控制系统,应用于空中运输车的升降机构控制夹持机构进行升降运动,所述夹持机构与所述升降机构之间柔性皮带连接。
如图15所示,所述空中运输车的升降机构控制系统1000包括:
控制机构1010,用于启动升降机构中的伺服电机,以驱动所述夹持机构进行升降运动;
检测机构1030,用于获取所述升降运动的速度值;
其中,所述控制机构和所述检测机构还用于根据所述升降运动的速度值进行协同的分段控制;
其中,所述分段控制包括:
启动阶段中,当检测机构1030检测到所述升降运动的速度值达到第一阈值时,控制机构1010控制所述升降运动进入加速阶段;
加速阶段中,控制机构1010对所述升降运动进行加速控制,并当检测机构1030检测到所述升降运动的速度值加速到第二阈值时,控制所述升降运动进入减速阶段;
减速阶段中,控制机构1010对所述升降运动进行减速控制,并当检测机构1030检测到所述升降运动的速度值减速到第三阈值时,控制机构1010控制所述升降运动进入平稳阶段;
平稳阶段中,控制机构1010按预设的平稳控制策略对所述升降运动进行控制,以使所述夹持机构停止在设定位置。
通过在控制系统中,基于检测机构实时获取的速度信息,对夹持机构进行实时分段控制,可保障升降平稳性,同时优化升降时长,可在相对较短的时间内有效的平稳下放夹持机构,有效缩短晶圆生产中搬运周期,提高半导体工厂 的生产效率。
在一些实施方式中,所述控制机构包括PLC控制器,所述检测机构与所述PLC控制器电连接;
所述控制机构和所述检测机构还用于根据所述升降运动的速度值进行协同的分段控制,包括:所述PLC控制器和所述检测机构还用于根据所述升降运动的速度值进行协同的分段控制。
通过采用PLC作为控制机构的控制核心,PLC更简便、易操作,可更改性强。
在一些实施方式中,所述夹持机构上设置第一对射传感器和第二对射传感器,所述第一对射传感器设置于所述第二对射传感器的上方,所述第二对射传感器用于检测所述夹持机构是否停止在所述设定位置,所述第一对射传感器用于检测所述夹持机构停止在异常位置,所述第一对射传感器和所述第二对射传感器与所述PLC控制器点连接;
所述PLC控制器还用于:获取所述第一对射传感器输出的第一信号和所述第二对射传感器输出的第二信号,以及根据所述第一信号和所述第二信号确定所述夹持机构与所述设定位置之间的关系。
通过夹持机构上的两组传感器对平稳阶段进行控制,可提高平稳阶段控制的平稳性和缩短平稳阶段的时长,优化整个上升或下降的时长。
在一些实施方式中,所述伺服电机与所述PLC控制器电连接,所述PLC控制器还用于按预设的脉冲数量驱动升降机构中的伺服电机,以及根据所述脉冲数量确定所述升降运动的速度值。
在一些实施方式中,所述伺服电机为包含有行程编码器的伺服电机,所述行程编码器与所述PLC控制器电连接:
所述PLC控制器还用于:获取所述行程编码器反馈的伺服电机行程数据,以及根据所述伺服电机行程数据和所述脉冲数量,确定所述升降运动是否正常。
在一些实施方式中,本说明书提供的任意一个实施例中,所述PLC控制器与报警电路电连接;
当确定所述升降运动属于非正常时,所述PLC控制器还用于:停止向所述伺服电机的驱动器发送驱动指令,和/或发出语音警报,和/或展示警报信息。
在一些实施方式中,本说明书提供的任意一个实施例中,所述柔性皮带的原点位置处设置有第一位置传感器,所述第一位置传感器与所述PLC控制器电连接;
所述PLC控制器还用于:在按预设的脉冲数量驱动升降机构中的伺服电机前,获取所述第一位置传感器的输出结果,以确定所述柔性皮带是否位于所述原点位置。
基于相同发明构思,本说明书实施例还提供一种空中运输车的升降机构控制系统,应用于空中运输车的升降机构控制夹持机构进行升降运动,优选地,用于升降运动的速度补偿,其中所述夹持机构与所述升降机构之间柔性皮带连接。
如图16所示,所述空中运输车的升降机构控制系统2000包括:
第一控制模块2020,用于在所述夹持机构的升降运动中,获取所述柔性皮带的皮带卷对应的外径速度;
第一调整模块2040,用于根据所述外径速度调整所述夹持机构的升降速度,以控制所述夹持机构在不同分段控制中按预设的目标升降速度进行升降运动;
其中,所述分段控制包括:
启动阶段中,当检测到所述升降运动的速度值达到第一阈值时,控制所述升降运动进入加速阶段;
加速阶段中,对所述升降运动进行加速控制,并当检测到所述升降运动的速度值加速到第二阈值时,控制所述升降运动进入减速阶段;
减速阶段中,对所述升降运动进行减速控制,并当检测到所述升降运动的速度值减速到第三阈值时,控制所述升降运动进入平稳阶段;
平稳阶段中,按预设的平稳控制策略对所述升降运动进行控制,以使所述夹持机构停止在设定位置。
在一些实施方式中,获取所述柔性皮带的皮带卷对应的外径速度,包括: 获取所述升降机构对所述皮带卷的驱动转速;
根据所述外径速度调整所述夹持机构的升降速度,包括:
获取所述驱动转速对应的所述皮带卷的目标半径;
根据所述驱动转速和所述目标半径,调整所述夹持机构的升降速度,其中所述目标半径与所述升降速度满足以下关系:
Figure PCTCN2022123431-appb-000003
其中,n为圈数,y为柔性皮带的厚度,Δt为皮带卷每圈转动时间差,V为夹持机构的升降速度。
在一些实施方式中,获取所述升降机构对所述皮带卷的驱动转速,包括:获取当前所述升降速度对应的第一脉冲数量,所述第一脉冲数量为用于所述升降机构控制所述皮带卷的驱动转速对应的脉冲数量;
调整所述夹持机构的升降速度,包括:
根据所述驱动转速,输出第二脉冲数量,以使所述升降机构在所述第二脉冲数量的作用下驱动所述皮带卷转动,调整所述夹持机构的升降速度,其中所述第二脉冲数量为当假设所述升降速度不变时,所述第一脉冲数据与Δt对应的脉冲数量的增量之和。
在一些实施方式中,所述空中运输车的升降机构控制系统还包括:编码器,所述编码器用于获取所述升降机构中伺服电机的行程;
所述第一控制模块还用于根据所述行程与所述第二脉冲数量,确定所述升降运动是否正常,若为正常则继续下发下一程序指令,若为异常则停止下发下一程序指令。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例侧重说明的都是与其他实施例的不同之处。尤其,对于后面说明的实施例而言,由于其与前面的实施例是对应的,描述比较简单,相关之处参见在前实施例的部分说明即可。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到 的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种空中运输车的升降机构控制方法,其特征在于,应用于空中运输车的升降机构控制夹持机构进行升降运动,所述夹持机构与所述升降机构之间柔性皮带连接,所述空中运输车的升降机构控制方法包括:
    在所述夹持机构的升降运动中,获取所述柔性皮带的皮带卷对应的外径速度;
    根据所述外径速度调整所述夹持机构的升降速度,以控制所述夹持机构在不同分段控制中按预设的目标升降速度进行升降运动;
    其中,所述分段控制包括:
    启动阶段中,当检测到所述升降运动的速度值达到第一阈值时,控制所述升降运动进入加速阶段;
    加速阶段中,对所述升降运动进行加速控制,并当检测到所述升降运动的速度值加速到第二阈值时,控制所述升降运动进入减速阶段;
    减速阶段中,对所述升降运动进行减速控制,并当检测到所述升降运动的速度值减速到第三阈值时,控制所述升降运动进入平稳阶段;
    平稳阶段中,按预设的平稳控制策略对所述升降运动进行控制,以使所述夹持机构停止在设定位置。
  2. 根据权利要求1所述的空中运输车的升降机构控制方法,其特征在于,获取所述柔性皮带的皮带卷对应的外径速度,包括:获取所述升降机构对所述皮带卷的驱动转速;
    根据所述外径速度调整所述夹持机构的升降速度,包括:
    获取所述驱动转速对应的所述皮带卷的目标半径;
    根据所述驱动转速和所述目标半径,调整所述夹持机构的升降速度,其中所述目标半径与所述升降速度满足以下关系:
    Figure PCTCN2022123431-appb-100001
    其中,n为圈数,y为柔性皮带的厚度,Δt为皮带卷转动一圈的时间差,V为夹持机构的升降速度。
  3. 根据权利要求2所述的空中运输车的升降机构控制方法,其特征在于,获 取所述升降机构对所述皮带卷的驱动转速,包括:获取当前所述升降速度对应的第一脉冲数量,所述第一脉冲数量为用于所述升降机构控制所述皮带卷的驱动转速对应的脉冲数量;
    调整所述夹持机构的升降速度,包括:
    根据所述驱动转速,输出第二脉冲数量,以使所述升降机构在所述第二脉冲数量的作用下驱动所述皮带卷转动,调整所述夹持机构的升降速度,其中所述第二脉冲数量为当假设所述升降速度不变时,所述第一脉冲数据与Δt对应的脉冲数量的增量之和。
  4. 根据权利要求3所述的空中运输车的升降机构控制方法,其特征在于,所述空中运输车的升降机构控制方法还包括:
    获取所述升降机构中伺服电机的行程;
    根据所述行程与所述第二脉冲数量,确定所述升降运动是否正常,若为正常则继续下发下一程序指令,若为异常则停止下发下一程序指令。
  5. 一种空中运输车的升降机构控制方法,其特征在于,应用于空中运输车的升降机构控制夹持机构进行升降运动,所述夹持机构与所述升降机构之间采用柔性皮带连接,所述空中运输车的升降机构控制方法包括:
    当空中运输车在轨道中运行到预定位置时,启动升降机构对夹持机构的驱动,以使夹持机构进行升降运动;
    获取所述升降运动的速度值,并根据所述升降运动的速度值进行分段控制;
    其中,所述分段控制包括:
    启动阶段中,当检测到所述升降运动的速度值达到第一阈值时,控制所述升降运动进入加速阶段;
    加速阶段中,对所述升降运动进行加速控制,并当检测到所述升降运动的速度值加速到第二阈值时,控制所述升降运动进入减速阶段;
    减速阶段中,对所述升降运动进行减速控制,并当检测到所述升降运动的速度值减速到第三阈值时,控制所述升降运动进入平稳阶段;
    平稳阶段中,按预设的平稳控制策略对所述升降运动进行控制,以使所述 夹持机构停止在设定位置。
  6. 根据权利要求5所述的空中运输车的升降机构控制方法,其特征在于,启动升降机构对夹持机构的驱动,包括:按预设的脉冲数量驱动升降机构中的伺服电机,其中所述伺服电机用于驱动所述柔性皮带,以通过控制所述柔性皮带进行释放或卷绕对夹持机构的驱动;
    获取所述升降运动的速度值,包括:获取所述脉冲数量,并根据所述脉冲数量确定所述升降运动的速度值。
  7. 根据权利要求6所述的空中运输车的升降机构控制方法,其特征在于,所述空中运输车的升降机构控制方法还包括:
    获取行程编码器反馈的伺服电机行程数据;
    根据所述伺服电机行程数据和所述脉冲数量,确定所述夹持机构的升降运动是否正常。
  8. 根据权利要求5所述的空中运输车的升降机构控制方法,其特征在于,所述分段控制还包括:匀速阶段中,对所述升降运动进行匀速控制,当所述匀速阶段的时长达到第四阈值时,控制所述升降运动进入所述减速阶段;
    其中,当在加速阶段中检测到所述升降运动的速度值加速到所述第二阈值时,控制所述升降运动进入匀速阶段。
  9. 根据权利要求5所述的空中运输车的升降机构控制方法,其特征在于,所述空中运输车的升降机构控制方法还包括:
    获取第一对射传感器输出的第一信号和第二对射传感器输出的第二信号,所述第一对射传感器用于检测所述夹持机构停止在异常位置,所述第二对射传感器用于检测所述夹持机构是否停止在所述设定位置;
    根据所述第一信号和所述第二信号确定所述夹持机构与所述设定位置之间的关系。
  10. 根据权利要求9所述的空中运输车的升降机构控制方法,其特征在于,根据所述第一信号和所述第二信号确定所述夹持机构与所述设定位置之间的关系,包括:
    当确定所述第一信号和所述第二信号符合预设的判定条件时,确定所述夹持机构停止在所述设定位置。
  11. 一种空中运输车的升降机构控制系统,其特征在于,应用于空中运输车的升降机构控制夹持机构进行升降运动,所述夹持机构与所述升降机构之间柔性皮带连接,所述空中运输车的升降机构控制系统包括:
    第一控制模块,用于在所述夹持机构的升降运动中,获取所述柔性皮带的皮带卷对应的外径速度;
    第一调整模块,用于根据所述外径速度调整所述夹持机构的升降速度,以控制所述夹持机构在不同分段控制中按预设的目标升降速度进行升降运动;
    其中,所述分段控制包括:
    启动阶段中,当检测到所述升降运动的速度值达到第一阈值时,控制所述升降运动进入加速阶段;
    加速阶段中,对所述升降运动进行加速控制,并当检测到所述升降运动的速度值加速到第二阈值时,控制所述升降运动进入减速阶段;
    减速阶段中,对所述升降运动进行减速控制,并当检测到所述升降运动的速度值减速到第三阈值时,控制所述升降运动进入平稳阶段;
    平稳阶段中,按预设的平稳控制策略对所述升降运动进行控制,以使所述夹持机构停止在设定位置。
  12. 根据权利要求11所述的空中运输车的升降机构控制系统,其特征在于,获取所述柔性皮带的皮带卷对应的外径速度,包括:获取所述升降机构对所述皮带卷的驱动转速;
    根据所述外径速度调整所述夹持机构的升降速度,包括:
    获取所述驱动转速对应的所述皮带卷的目标半径;
    根据所述驱动转速和所述目标半径,调整所述夹持机构的升降速度,其中所述目标半径与所述升降速度满足以下关系:
    Figure PCTCN2022123431-appb-100002
    其中,n为圈数,y为柔性皮带的厚度,Δt为皮带卷转动一圈的时间差,V 为夹持机构的升降速度。
  13. 根据权利要求12所述的空中运输车的升降机构控制系统,其特征在于,获取所述升降机构对所述皮带卷的驱动转速,包括:获取当前所述升降速度对应的第一脉冲数量,所述第一脉冲数量为用于所述升降机构控制所述皮带卷的驱动转速对应的脉冲数量;
    调整所述夹持机构的升降速度,包括:
    根据所述驱动转速,输出第二脉冲数量,以使所述升降机构在所述第二脉冲数量的作用下驱动所述皮带卷转动,调整所述夹持机构的升降速度,其中所述第二脉冲数量为当假设所述升降速度不变时,所述第一脉冲数据与Δt对应的脉冲数量的增量之和。
  14. 根据权利要求13所述的空中运输车的升降机构控制系统,其特征在于,所述空中运输车的升降机构控制系统还包括:编码器,所述编码器用于获取所述升降机构中伺服电机的行程;
    所述第一控制模块还用于根据所述行程与所述第二脉冲数量,确定所述升降运动是否正常,若为正常则继续下发下一程序指令,若为异常则停止下发下一程序指令。
  15. 一种空中运输车的升降机构控制系统,其特征在于,应用于空中运输车的升降机构控制夹持机构进行升降运动,所述夹持机构与所述升降机构之间柔性皮带连接,所述空中运输车的升降机构控制系统包括:
    控制机构,用于启动升降机构中的伺服电机,以驱动所述夹持机构进行升降运动;
    检测机构,用于检测所述升降运动的速度值;
    其中,所述控制机构和所述检测机构还用于根据所述升降运动的速度值进行协同的分段控制;
    其中,所述分段控制包括:
    启动阶段中,当所述检测机构检测到所述升降运动的速度值达到第一阈值时,所述控制机构控制所述升降运动进入加速阶段;
    加速阶段中,所述控制机构对所述升降运动进行加速控制,并当所述检测机构检测到所述升降运动的速度值加速到第二阈值时,所述控制机构控制所述升降运动进入减速阶段;
    减速阶段中,所述控制机构对所述升降运动进行减速控制,并当所述检测机构检测到所述升降运动的速度值减速到第三阈值时,所述控制机构控制所述升降运动进入平稳阶段;
    平稳阶段中,所述控制机构按预设的平稳控制策略对所述升降运动进行控制,以使所述夹持机构停止在设定位置。
  16. 根据权利要求15所述的空中运输车的升降机构控制系统,其特征在于,所述控制机构包括PLC控制器,所述检测机构与所述PLC控制器电连接;
    所述控制机构和所述检测机构还用于根据所述升降运动的速度值进行协同的分段控制,包括:所述PLC控制器和所述检测机构还用于根据所述升降运动的速度值进行协同的分段控制。
  17. 根据权利要求16所述的空中运输车的升降机构控制系统,其特征在于,所述伺服电机与所述PLC控制器电连接,所述PLC控制器还用于按预设的脉冲数量驱动升降机构中的伺服电机,以及根据所述脉冲数量确定所述升降运动的速度值。
  18. 根据权利要求17所述的空中运输车的升降机构控制系统,其特征在于,所述伺服电机为包含有行程编码器的伺服电机,所述行程编码器与所述PLC控制器电连接:
    所述PLC控制器还用于:获取所述行程编码器反馈的伺服电机行程数据,以及根据所述伺服电机行程数据和所述脉冲数量,确定所述升降运动是否正常。
  19. 根据权利要求18所述的空中运输车的升降机构控制系统,其特征在于,所述PLC控制器与报警电路电连接;
    当确定所述升降运动属于非正常时,所述PLC控制器还用于:停止向所述伺服电机的驱动器发送驱动指令,和/或发出语音警报,和/或展示警报信息。
  20. 根据权利要求16-19中任意一项所述的空中运输车的升降机构控制系统, 其特征在于,所述柔性皮带的原点位置处设置有第一位置传感器,所述第一位置传感器与所述PLC控制器电连接;
    所述PLC控制器还用于:在按预设的脉冲数量驱动升降机构中的伺服电机前,获取所述第一位置传感器的输出结果,以确定所述柔性皮带是否位于所述原点位置。
PCT/CN2022/123431 2022-01-26 2022-09-30 一种空中运输车的升降机构控制方法及系统 WO2023142514A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210096683.X 2022-01-26
CN202210096683.XA CN114455454B (zh) 2022-01-26 2022-01-26 一种空中运输车的升降机构控制方法及系统

Publications (1)

Publication Number Publication Date
WO2023142514A1 true WO2023142514A1 (zh) 2023-08-03

Family

ID=81410728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123431 WO2023142514A1 (zh) 2022-01-26 2022-09-30 一种空中运输车的升降机构控制方法及系统

Country Status (3)

Country Link
CN (1) CN114455454B (zh)
TW (1) TW202337812A (zh)
WO (1) WO2023142514A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117215314A (zh) * 2023-10-17 2023-12-12 弥费科技(上海)股份有限公司 行走控制方法、装置、设备和存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114455454B (zh) * 2022-01-26 2023-03-21 弥费科技(上海)股份有限公司 一种空中运输车的升降机构控制方法及系统
CN114803604A (zh) * 2022-05-12 2022-07-29 广东韶钢松山股份有限公司 一种盘卷卷取机托盘定位方法、装置、盘卷卷取机及存储介质
CN116960040B (zh) * 2023-09-15 2023-11-24 季华实验室 空中运输车控制方法、系统、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002046985A (ja) * 2000-07-31 2002-02-12 Mitsubishi Heavy Ind Ltd クレーンおよびクレーン制御方法
CN108545614A (zh) * 2018-04-09 2018-09-18 武汉理工大学 全自动桥式仓储起重机作业自动控制方法
CN111977571A (zh) * 2019-05-21 2020-11-24 北京京东尚科信息技术有限公司 一种升降机构速度控制方法和装置
CN114455454A (zh) * 2022-01-26 2022-05-10 弥费实业(上海)有限公司 一种空中运输车的升降机构控制方法及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072299A (ja) * 1993-06-16 1995-01-06 Tokico Ltd 懸垂式給油装置
JP2001031369A (ja) * 1999-07-27 2001-02-06 Ishikawajima Harima Heavy Ind Co Ltd 吊荷振れ止め方法
US7631730B2 (en) * 2005-11-04 2009-12-15 Sky Climber, Llc Powered controlled acceleration suspension work platform hoist system
CN103449271B (zh) * 2013-08-20 2015-07-08 哈尔滨东建机械制造有限公司 基于dsp的变频施工升降装置的控制装置及采用该控制装置实现升降装置自动平层的方法
CN110543137A (zh) * 2019-09-19 2019-12-06 广西玉柴机器股份有限公司 一种基于发动机缸盖升降机构的控制方法
CN212358244U (zh) * 2020-07-14 2021-01-15 太原科技大学 一种直线电机电气升船机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002046985A (ja) * 2000-07-31 2002-02-12 Mitsubishi Heavy Ind Ltd クレーンおよびクレーン制御方法
CN108545614A (zh) * 2018-04-09 2018-09-18 武汉理工大学 全自动桥式仓储起重机作业自动控制方法
CN111977571A (zh) * 2019-05-21 2020-11-24 北京京东尚科信息技术有限公司 一种升降机构速度控制方法和装置
CN114455454A (zh) * 2022-01-26 2022-05-10 弥费实业(上海)有限公司 一种空中运输车的升降机构控制方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117215314A (zh) * 2023-10-17 2023-12-12 弥费科技(上海)股份有限公司 行走控制方法、装置、设备和存储介质
CN117215314B (zh) * 2023-10-17 2024-05-03 弥费科技(上海)股份有限公司 行走控制方法、装置、设备和存储介质

Also Published As

Publication number Publication date
CN114455454A (zh) 2022-05-10
TW202337812A (zh) 2023-10-01
CN114455454B (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
WO2023142514A1 (zh) 一种空中运输车的升降机构控制方法及系统
CN108100640A (zh) 基于视觉精确定位的短切纤维自动上纱系统
CN111302152A (zh) 一种控制管纱吸嘴准确送纱的装置及方法
CN109625937A (zh) 升降载台系统及其取料运行方法、放料运行方法
CN112011863A (zh) 一种用于捻线生产的自动落纱系统
CN108045969B (zh) 一种多摞纸带盘托盘提升平层装置及其控制方法
US8042441B2 (en) Method for cutting protective tape of semiconductor wafer and apparatus for cutting the protective tape
CN206088389U (zh) 一种空罐自动卸垛机
CN114056873B (zh) 一种筒纱输送装置
CN1603221A (zh) 电梯调速器
CN112466799A (zh) 升降机构运行速度的控制方法
CN209337869U (zh) 一种电缆卷绕蓄料式张力控制机构
CN109607314A (zh) 一种激光测距式电缆卷绕张力保持蓄料系统
JP7388555B2 (ja) 天井搬送車及び把持部の昇降制御方法
CN112173300B (zh) 一种锦纶丝饼卷筒抓取装置
CN214865343U (zh) 一种晶圆片厚度分选装置
JP2014189389A (ja) クレーンとその制御方法
CN109516306A (zh) 一种细纱管表面残纱退绕装置及其控制方法
CN113263614B (zh) 一种小型混凝土预制件生产设备
CN110342405B (zh) 一种集装箱跨运车起升机构精确定位的控制方法
CN113421843B (zh) 一种硅片存储装置及其位置控制、自动测量间距控制方法
CN117301116B (zh) 一种用于线缆收纳的机械臂
CN213354975U (zh) 一种卷筒抓取装置
CN103359537A (zh) 一种自动络筒机的气圈控制环
CN107932497B (zh) 一种内定心结构纸盘取放机械手及其控制系统、控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923318

Country of ref document: EP

Kind code of ref document: A1