WO2023142257A1 - 超临界流体清洗系统及清洗方法 - Google Patents

超临界流体清洗系统及清洗方法 Download PDF

Info

Publication number
WO2023142257A1
WO2023142257A1 PCT/CN2022/083624 CN2022083624W WO2023142257A1 WO 2023142257 A1 WO2023142257 A1 WO 2023142257A1 CN 2022083624 W CN2022083624 W CN 2022083624W WO 2023142257 A1 WO2023142257 A1 WO 2023142257A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
supercritical
cleaning fluid
fluid
pressure
Prior art date
Application number
PCT/CN2022/083624
Other languages
English (en)
French (fr)
Inventor
肖刚
刘亚飞
纪宇轩
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to JP2023555324A priority Critical patent/JP2024509593A/ja
Publication of WO2023142257A1 publication Critical patent/WO2023142257A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67057Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing with the semiconductor substrates being dipped in baths or vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B13/00Accessories or details of general applicability for machines or apparatus for cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02101Cleaning only involving supercritical fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/67034Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for drying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the invention relates to the technical field of cleaning devices, in particular to a supercritical fluid cleaning system and a cleaning method.
  • Semiconductor wafer is the most important material in the semiconductor industry, which has high requirements for its surface cleanliness.
  • the drying treatment of the wafer surface is an indispensable part, because after the wafer cleaning process is completed, there will still be a small amount of liquid (usually water) on the wafer surface.
  • the purpose of drying is to dry the wafer.
  • the liquid on the surface of the circle is removed to prevent re-contamination of the surface of the wafer or defects such as "water marks", which will affect the performance of the wafer and reduce the yield of the wafer.
  • IPA drying technology mainly including centrifugal drying technology, Marangoni drying technology, and isopropyl alcohol (IPA) drying technology.
  • the IPA drying method is mainly used. Before the wafers are dried, they need to be immersed in the IPA liquid. Due to the mutual solubility, the water on the wafer surface will dissolve into the IPA and be replaced by liquid IPA. IPA leaves the surface of the wafer through gravity, surface tension and volatilization to achieve the purpose of drying the surface of the wafer.
  • the existing method for processing residual IPA on the surface of the wafer is to slowly dissolve the IPA on the surface of the wafer with supercritical carbon dioxide fluid with a surface tension of almost 0, and finally replace all the IPA on the surface of the wafer with supercritical carbon dioxide fluid, and finally through cooling,
  • the depressurization causes the supercritical carbon dioxide fluid on the wafer surface to leave the wafer surface by evaporation.
  • this method is limited by the dissolution rate of IPA in supercritical carbon dioxide, so it cannot dry batches of wafers in a short period of time, and the drying efficiency is low.
  • the present invention provides a supercritical fluid cleaning system and cleaning method.
  • the pressure of the cleaning fluid is changed by pressurization or decompression, so that the cleaning fluid can be cleaned in an oscillating manner, and the pressurization process improves the supercritical cleaning.
  • the dissolution rate of the fluid to the liquid to be cleaned, the depressurization process can bring out the liquid to be cleaned, which improves the cleaning efficiency and is suitable for batch cleaning of samples to be cleaned.
  • the invention provides a supercritical fluid cleaning system, comprising: a cleaning chamber and a supercritical cleaning fluid supply device, the cleaning chamber is used to accommodate samples to be cleaned with at least part of the surface attached to the cleaned liquid; the supercritical cleaning fluid supply device provides cleaning the required cleaning fluid, and driving the cleaning fluid to enter the cleaning chamber with the pressure rising and higher than the supercritical pressure and the temperature rising and higher than the supercritical temperature, oscillating and cleaning the sample to be cleaned under the action of the fluctuating pressure; and The supercritical cleaning fluid is driven to flow out of the cleaning chamber in such a way that the pressure drop is not lower than the supercritical pressure.
  • the cleaning fluid oscillates and cleans the sample to be cleaned in the form of pressure fluctuations.
  • the pressurization process improves the dissolution rate of the supercritical cleaning fluid for the cleaned liquid, and the depressurization process can bring out the cleaned liquid. , which improves the cleaning efficiency and is suitable for cleaning a large number of samples to be cleaned.
  • the supercritical cleaning fluid supply device includes a cavity, a heating device and a cooling device, the outlet of the cavity communicates with the inlet of the heating device, the outlet of the heating device communicates with the inlet of the cleaning chamber, and the outlet of the cleaning chamber communicates with the inlet of the cleaning chamber.
  • the outlet communicates with the outlet of the cooling device, and the outlet of the cooling device communicates with the inlet of the cavity;
  • the cavity is used for accommodating the cleaning fluid, and a piston is arranged in the cavity.
  • One side of the piston is connected to the driving device, and the side of the piston away from the driving device is surrounded by the inner wall of the cavity to form a space occupied by the cleaning fluid. Move against the inner wall of the cavity to increase or decrease the pressure of the cleaning fluid;
  • the heating device is used to heat the cleaning fluid to form a supercritical cleaning fluid
  • the cooling device is used for cooling the supercritical cleaning fluid dissolved in the liquid to be cleaned flowing out of the cleaning chamber.
  • the separator also includes a separator for separating the cleaning fluid and the liquid to be cleaned
  • the separator includes a first interface, a second interface and a third interface
  • the cavity is provided with a first inlet and a first The outlet, the first inlet and the first outlet are respectively located at both ends of the cavity, and the first inlet is relatively far away from the piston, the first outlet is relatively close to the piston, the first interface communicates with the first outlet through the first pipeline, and the second interface It communicates with the first inlet through the second pipeline, and the third interface is the discharge port;
  • the first one-way valve is set on the first pipeline, and the second one-way valve is set on the second pipeline, and the first one-way valve controls the flow of fluid from The one-way flow from the cavity to the separator, and the second one-way valve controls the one-way flow of the cleaning fluid from the separator to the cavity; when the piston is located on the side of the first outlet away from the first inlet, the space occupied by the separator and the
  • the separator is connected to the cavity through two pipelines, and the flow direction of the fluid is controlled through the first check valve and the second check valve, so as to realize the recycling of the cleaning fluid, which is convenient and controllable, and simplifies the cleaning process.
  • the structure of the critical fluid cleaning system by changing the position of the piston, the separator and the space occupied by the fluid are connected or disconnected, the structure is simple, the operation is convenient, and the system structure is simplified.
  • it also includes a third one-way valve arranged between the cavity and the heating device, a fourth one-way valve arranged between the heating device and the cleaning chamber, and a fourth one-way valve arranged between the cooling device and the cavity. between the fifth one-way valve.
  • the setting of the one-way valve can prevent the liquid from flowing back and affect the cleaning effect.
  • the present invention also includes a cleaning fluid replenishing pipeline, the outlet of the cleaning fluid replenishing pipeline communicates with the pipeline between the outlet of the cavity and the inlet of the heating device, and a switch is also provided on the cleaning fluid replenishing pipeline valve.
  • the cleaning fluid replenishment pipeline has a simple structure, and can replenish fluid into the fluid supply device as required to meet the amount of cleaning fluid required for cleaning.
  • the driving device is an electric drive rod, or the driving device is a flywheel in a Stirling cycle system, and the flywheel is drivingly connected to the piston through a connecting rod.
  • the volume of the cavity is changed by using the electric drive rod to drive the piston, which is simple and easy to operate, and the electric drive improves the working efficiency of the cleaning system.
  • the flywheel drives the piston through the connecting rod to change the volume of the cavity.
  • a cleaning chamber can be equipped with a supercritical fluid supply device, so as to realize oscillation cleaning in different pressure fluctuation ranges, improve the applicability of the cleaning system to different supercritical cleaning fluids and liquids to be cleaned, and improve cleaning efficiency.
  • the supercritical cleaning fluid supply device includes an expansion chamber, a heating device, a regenerator, a cooling device, and a compression chamber that are sequentially connected to form a Stirling cycle, and the inlet of the cleaning chamber is connected to the outlet of the heater On the pipeline between the regenerator and the regenerator, the outlet of the cleaning chamber is connected to the pipeline between the regenerator and the cooling device.
  • the cleaning fluid is carbon dioxide
  • the sample to be cleaned is a wafer.
  • the present invention also provides a cleaning method for a supercritical fluid system, comprising the following steps:
  • Pressurization step drive the cleaning fluid to flow out and enter the cleaning chamber at a pressure higher than the supercritical pressure
  • Heating step heating the cleaning fluid to form a supercritical cleaning fluid
  • the supercritical cleaning fluid oscillates and cleans the sample to be cleaned under the action of fluctuating pressure
  • Depressurization step drive the supercritical cleaning fluid dissolved in the liquid to be cleaned to flow out of the cleaning chamber in such a way that the pressure drop is not lower than its supercritical pressure;
  • Cooling step cooling the supercritical cleaning fluid in which the liquid to be cleaned is dissolved to obtain the liquid to be cleaned and the cleaning fluid.
  • Fig. 1 is a schematic structural view of a supercritical fluid cleaning system in the first embodiment of the present invention.
  • Fig. 2 is a schematic diagram of the first pressure change law in the first embodiment of the present invention.
  • Fig. 3 is a schematic diagram of the second pressure change law in the first embodiment of the present invention.
  • Fig. 4 is a schematic diagram of the third pressure change law in the first embodiment of the present invention.
  • Fig. 5 is a schematic structural diagram of a supercritical fluid cleaning system in a second embodiment of the present invention.
  • Fig. 6 is a schematic diagram of a pressure change law in the second embodiment of the present invention.
  • Cavity 1 first outlet 11; first inlet 12; piston 13; electric drive rod 14; heating device 2; cleaning chamber 3; cooling device 4; separator 5; first interface 51; second interface 52; third Interface 53; first one-way valve 61; second one-way valve 62; third one-way valve 63; fourth one-way valve 64; fifth one-way valve 65; sixth one-way valve 66; seventh one-way valve 67 ; cleaning fluid supply line 71 ; expansion chamber 81 ; regenerator 82 ; compression chamber 83 .
  • the invention provides a supercritical fluid cleaning system, comprising: one or more medium circulation loops, each medium circulation loop includes a chamber 1, a heating device 2, a cleaning chamber 3 and a cooling device 4 connected in sequence through pipelines;
  • the device 2 is used to heat the cleaning fluid to form a supercritical cleaning fluid;
  • the cleaning chamber 3 is used to accommodate the sample to be cleaned (not shown in the figure) and the supercritical cleaning fluid with at least part of the surface to be cleaned.
  • the fluid oscillates and cleans the sample to be cleaned under the action of fluctuating pressure;
  • the cooling device 4 is used to cool the supercritical cleaning fluid that flows out of the cleaning chamber 3 and is dissolved with the liquid to be cleaned;
  • the cavity 1 is provided with a piston 13, and one side of the piston 13 Connected with the driving device, the side of the piston 13 away from the driving device is surrounded by the inner wall of the cavity 1 to form a space occupied by the cleaning fluid, and the electric drive rod 14 drives the piston 13 to move along the inner wall of the cavity 1 to change the space occupied by the cleaning fluid size, thereby raising or lowering the pressure of the cleaning fluid.
  • the present invention changes the pressure of the cleaning fluid by changing the space occupied by the cleaning fluid in the cavity 1, which not only provides the driving force for the flow of the cleaning fluid, but also makes the cleaning fluid oscillate and clean the samples to be cleaned in the form of pressure fluctuations, pressurizing
  • the process improves the dissolving speed of the supercritical cleaning fluid for the liquid to be cleaned, and the depressurization process can bring out the liquid to be cleaned, which improves the cleaning efficiency and is suitable for cleaning a large number of samples to be cleaned.
  • the heating device 2 before the cleaning fluid enters the medium circulation loop, no heating pretreatment is required, which simplifies the system structure at the front end of the cavity 1; and compared with the cleaning fluid that is heated before entering the medium circulation loop,
  • the heating device 2 is arranged on the pipeline between the outlet of the chamber body 1 and the inlet of the cleaning chamber 3, and can cooperate with the cooling device 4 to realize the cycle process of boosting, heating, cleaning, depressurizing and cooling the cleaning fluid, thereby Realize multiple oscillations to clean the sample to be cleaned; further, the heating device 2 heats the cleaning fluid at the outlet of the cavity 1, and the heating device 2 is equipped with an automatic temperature control device (not shown in the figure), and the cleaning fluid in the heating device 2 The temperature is controlled near the set temperature, so that the cleaning chamber 3 is kept at a constant temperature.
  • the pressure of the system (the pressure everywhere in the system is the same) is not lower than the supercritical pressure of the cleaning fluid.
  • the temperature is not lower than the supercritical temperature of the cleaning fluid; the temperature in the cleaning chamber 3 can be kept not lower than the supercritical temperature of the cleaning fluid by heating the cleaning chamber 3, and the cleaning chamber 3 is monitored by setting a pressure sensor in the cleaning chamber 3
  • the control module can be configured to increase the overall pressure of the system by replenishing the cleaning fluid through the supplementary pipeline 71 when the minimum pressure in the cleaning chamber 3 is lower than the supercritical pressure of the cleaning fluid.
  • the driving device is an electric drive rod 14 or a flywheel (not shown in the figure) in the Stirling cycle system, and the flywheel is connected with the piston 13 through a connecting rod.
  • the electric drive rod 14 to drive the piston to change the volume of the cavity 1 is simple and easy to operate, and the electric drive improves the working efficiency of the cleaning system; the flywheel in the Stirling cycle system is used to drive the piston to change the volume of the cavity through the connecting rod, which is not necessary.
  • An additional power source for the movement of the piston in the cavity 1 is required, and only a certain external heat source (ie, a heating device) is required.
  • the heating device 2 can be in the form of electric heating, solar heating, etc. The present invention does not limit the heating method .
  • the pressure fluctuation law of the cleaning fluid in the cavity 1 is shown in Figure 2, and the pressure fluctuation interval P1-P2 should be within the range of the cleaning fluid.
  • the time length of boosting pressure and the time length of depressurization can be the same or different, and it can be adjusted according to actual needs, and the pressure fluctuates between P1-P2;
  • the pressure maintenance that is, when the boost pressure reaches the specified pressure, the pressure is maintained for a period of time, and when the pressure is reduced to the specified pressure, the pressure is maintained for a period of time.
  • One cycle is completed after depressurization; in the pressure-holding mode, the position of the piston 13 remains unchanged, the system pressure remains unchanged, and the supercritical cleaning fluid dissolves more with the fluid to be cleaned, and can bring out more The liquid to be cleaned improves the cleaning efficiency.
  • the purpose of constant pressure is to make the supercritical cleaning fluid dissolve more with the liquid to be cleaned.
  • the pressure fluctuation law can be that when the pressure is increased or decreased to reach the specified pressure, the pressure is maintained. Pressure, pressure holding, and pressure reduction complete a cycle. Although not shown, the pressure fluctuation rule can also complete a cycle after boosting, reducing, and pressure maintaining.
  • the time sequence of boosting and reducing pressure can be raised first and then lowered, or the pressure can be lowered first and then raised, and technicians can adjust the change rule of the pressure according to the actual situation, which is not limited to the examples given in the embodiments of the present invention.
  • Fig. 2, Fig. 3 and Fig. 4 show that the boost and step-down are linearly increasing or linearly decreasing, it is not limited to this, and the pressure change curve can also be a sine function, a cosine function change, or a Other ways vary.
  • the supercritical fluid cleaning system also includes one or more separators 5, the separator 5 is connected to the cavity 1, and the separator 5 is used to separate the cleaning fluid and the liquid to be cleaned from the cleaning chamber 3 ;
  • the separator 5 communicates with the space occupied by the cleaning fluid; when the space occupied by the cleaning fluid decreases, the separator 5 does not communicate with the space occupied by the cleaning fluid.
  • it can be a gas-liquid separator or a liquid-liquid separation device, etc.
  • the structure of the gas-liquid separator and the liquid-liquid separator can refer to conventional practices in the prior art.
  • the separated cleaning fluid can be reused, saving cleaning cost; and the fluid after separating the cleaned liquid re-enters the system for circulation, which improves the cleanliness of the cleaning fluid and avoids the use of cleaning fluid contaminated by the cleaning liquid.
  • the fluid cleans the sample to be cleaned; the cleaning fluid of the present invention is cleaned in the form of circulation, which realizes the continuity and repeatability of the sample oscillation cleaning, and is beneficial to improve the cleaning efficiency.
  • each separator 5 includes a first interface 51, a second interface 52, and a third interface 53.
  • the cavity 1 is provided with a first inlet 12 and a first outlet 11, and the first inlet 12 and the first outlet 11 are respectively Located at both ends of the cavity 1, and the first inlet 12 is relatively far away from the piston 13, the first outlet 11 is relatively close to the piston 13, the first interface 51 communicates with the first outlet 11 through the first pipeline, and the second interface 52 through the first
  • the second pipeline communicates with the first inlet 12, and the third interface 53 is a discharge port.
  • the first pipeline is provided with a first check valve 61, and the second pipeline is provided with a second check valve.
  • the first check valve 61 controls The one-way flow of the fluid from the cavity 1 to the separator 5, the second one-way valve 62 controls the one-way flow of the cleaning fluid from the separator 5 to the cavity 1; by moving the piston 13 toward the first outlet 11, the piston 13 is located at When the first outlet 11 is away from the side of the first inlet (the left side of the piston 13 in the figure), the separator 5 communicates with the space occupied by the cleaning fluid. At this time, the space occupied by the cleaning fluid increases and the pressure decreases; The piston 13 is moved in the direction of the inlet 12, so that when the piston 13 is located between the first inlet 12 and the first outlet 11, the separator 5 does not communicate with the space occupied by the cleaning fluid.
  • the separator 5 is connected to the cavity 1 through two pipelines, and the one-way flow of the fluid is controlled through the first one-way valve 61 and the second one-way valve 62, so as to realize the recycling of the cleaning fluid, which is convenient, It is controllable and simplifies the structure of the supercritical fluid cleaning system; and by moving the piston 13 to control whether the separator 5 is connected or not connected to the space occupied by the cleaning fluid, the on-off valve is omitted, the system structure is simplified, and the cost is saved.
  • two or more medium circulation circuits share one cleaning chamber 3 .
  • one cleaning chamber 3 can be equipped with two or more medium circulation circuits, so as to realize oscillation cleaning in different pressure fluctuation ranges, improve cleaning efficiency and cleaning effect;
  • the medium circulation circuit at least includes chamber body 1, heating device 2, cleaning chamber 3,
  • the cooling device 4 is sequentially connected to form; as shown in Figure 1, it shows that a cleaning chamber 3 is equipped with two medium circulation circuits, including two chambers 1, two pistons 13, etc., when the system includes multiple medium circulation circuits , the range and rate of pressure change in the system are determined by the scavenging volume, phase difference (0-180°) of the piston 13 in the multiple chambers 1, and the speed of the piston 13 movement.
  • the technician can adjust the scavenging volume according to the actual situation , phase difference, moving speed of the piston 13 and other parameters are not limited in this embodiment of the present invention.
  • the present invention also includes a cleaning fluid supplementary pipeline 71, the outlet of the cleaning fluid supplementary pipeline 71 communicates with the pipeline between the outlet of the cavity 1 and the inlet of the heating device 2, and the cleaning fluid supplementary pipeline 71 There is also an on-off valve.
  • the cleaning fluid can be supplemented into the cavity 1 as required to meet the cleaning fluid volume required for cleaning; compared with directly adding supercritical cleaning fluid into the cleaning cavity 3, the cleaning fluid is set before the heating device 2 Supplement pipeline 71, make cleaning fluid be sent into cleaning chamber 3 after being heated, can guarantee the temperature and pressure of the supercritical cleaning fluid in cleaning chamber 3 and the temperature of the supercritical cleaning fluid of heating device outlet consistent, pressure is consistent, and have It is beneficial to simplify the structure of the system.
  • the present invention also includes a third one-way valve 63 arranged between the cavity 1 and the heating device 2, a fourth one-way valve 64 arranged between the heating device 2 and the cleaning chamber 3, and a The fifth one-way valve 65 between the cooling device 4 and the cavity 1 .
  • the cleaning fluid is carbon dioxide
  • the sample to be cleaned is a wafer.
  • the supercritical fluid cleaning system according to the embodiment of the present invention can be used for cleaning wafers.
  • Supercritical carbon dioxide with a surface tension of almost 0 is used as the cleaning fluid, combined with oscillations caused by pressure fluctuations to clean the wafers, to solve the existing wafer cleaning problems.
  • the IPA dissolves defects that are inefficient and fragile to the wafer structure.
  • the present invention also provides a working method of a supercritical fluid cleaning system, comprising the following steps:
  • Pressurization step driving the cleaning fluid to flow out of the cavity 1 with a pressure raised and higher than the supercritical pressure
  • Heating step heating the pressurized cleaning fluid to form a supercritical cleaning fluid, and the supercritical cleaning fluid enters the cleaning chamber 3 under fluctuating pressure;
  • the supercritical cleaning fluid oscillates and cleans the sample to be cleaned under the action of fluctuating pressure
  • Depressurization step driving the supercritical cleaning fluid dissolved in the liquid to be cleaned to flow out of the cleaning chamber 3 in such a way that the pressure drop is not lower than the supercritical pressure;
  • Cooling step cooling the supercritical cleaning fluid in which the liquid to be cleaned is dissolved to obtain the liquid to be cleaned and the cleaning fluid.
  • the present invention also includes the step of separating the liquid to be cleaned and the cleaning fluid: adjusting the position of the piston 13 so that the piston 13 is located on the left side of the first outlet, and then connects the space occupied by the cleaning fluid with the separator 5, the cleaning chamber
  • the cleaning fluid and the liquid to be cleaned in 3 enter the separator 5 through the first outlet 11 , the liquid to be cleaned is discharged from the discharge port, and the cleaning fluid flows into the cavity 1 through the first inlet 12 .
  • the second embodiment of the present invention provides a supercritical fluid cleaning system, which differs from the first embodiment in that in the first embodiment, the reason for the decrease in system pressure is that the volume occupied by the cleaning fluid in the cavity increases Combined with temperature reduction, in the second embodiment, the volume of the system remains unchanged, mainly due to the reduction in pressure caused by temperature reduction, and no power source is required, and only an external heat source is used to achieve cyclic cleaning.
  • the changing law of the pressure in the second embodiment of the present invention is shown in FIG. 6 , which is basically the same as the changing trend of the pressure in the first embodiment, and will not be repeated here.
  • the supercritical cleaning fluid supply device includes an expansion chamber 81, a heating device 2, a regenerator 82, a cooling device 4, and a compression chamber 83 that are sequentially connected to form a Stirling cycle, and the inlet of the cleaning chamber 3 is connected to the heater 2.
  • the outlet of the cleaning chamber 3 is connected to the pipeline between the regenerator 82 and the cooling device 4 .
  • the inlet pipeline of the cleaning chamber 3 is provided with a sixth one-way valve 66
  • the outlet pipeline of the cleaning chamber 3 is provided with a seventh one-way valve 67
  • the sixth one-way valve 66 controls the cleaning fluid from the heating device 2 to the cleaning fluid.
  • One-way flow of the chamber 3, the seventh one-way valve 67 controls the one-way flow of cleaning fluid from the cleaning chamber 3 to the cooling device 4 .
  • a separator 5 is also included.
  • the first interface and the second interface of the separator 5 are connected to the pipeline between the cooling device 4 and the compression chamber 83 through pipelines.
  • the first interface, the second interface A first one-way valve 61 and a second one-way valve 62 are arranged on the corresponding pipelines to prevent the cleaning fluid dissolved in the cleaning liquid from entering the compression chamber 83 without passing through the separator.
  • the structure of the Stirling circulatory system is ⁇ -type, ⁇ -type or ⁇ -type, and may also be single-acting or multi-acting.
  • the cleaning method corresponding to the second embodiment of the present invention is: in the process of constant volume heating of the Stirling cycle, the left and right pistons move to the left synchronously, The low-temperature cleaning fluid is heated and pressurized by the regenerator 82 to form a supercritical cleaning fluid, and a part of the supercritical cleaning fluid enters the cleaning chamber 3; during the isovolumetric cooling process of the Stirling cycle, the left and right pistons are synchronized Moving to the right, the supercritical cleaning fluid flows out of the cleaning chamber 3 into the cooling device 4, the temperature of the supercritical cleaning fluid decreases, and the pressure decreases.
  • the fluctuation law of the pressure during the entire cycle is shown in Figure 6. In this working process, the range of pressure fluctuation can be adjusted by designing the volume ratio of the two piston cylinders and the phase difference between the two pistons.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

本发明提供一种超临界流体清洗系统及清洗方法,系统包括:清洗腔及超临界清洗流体供给装置,清洗腔用于容置有表面至少部分附着有被清洗液体的待清洗样品;超临界清洗流体供给装置提供清洗所需的清洗流体,并驱动清洗流体以压力升高并高于超临界压力、温度升高并高于超临界温度的方式进入清洗腔,在波动压力的作用下振荡清洗待清洗样品;以及驱动超临界清洗流体以压力下降并不低于超临界压力的方式从清洗腔内流出。本发明通过改变清洗流体的压力,使得清洗流体以压力波动的形式对待清洗样品进行振荡清洗,加压过程提高了超临界清洗流体对被清洗液体的溶解速度,降压过程可以带出被清洗液体,提高了清洗效率,且适于清洗大批量的待清洗样品。

Description

超临界流体清洗系统及清洗方法 技术领域
本发明涉及清洗装置技术领域,具体为一种超临界流体清洗系统及清洗方法。
背景技术
半导体晶圆是半导体工业中最重要的一种材料,对于其表面洁净度有着很高的要求。在半导体晶圆清洗工艺中,晶圆表面干燥处理是不可缺少的一个环节,因为在晶圆清洗工艺完成后,晶圆表面仍会存在少量的液体(通常是水),干燥的目的是把晶圆表面的液体除尽,防止晶圆表面再污染或出现“水痕”等缺陷,影响晶圆的性能,降低晶圆片的成品率。
目前,已经发展出了很多晶圆表面的干燥技术,主要有离心甩干技术、Marangoni干燥技术以及异丙醇(Isopropyl alcohol,IPA)干燥技术等。对于批量清洗的晶圆主要采用IPA干燥法,晶片在干燥之前,需要浸入IPA液体中,由于互溶性,晶圆表面的水会溶解到IPA中,取而代之的是液态的IPA。IPA则通过重力、表面张力和挥发等多重作用离开晶圆表面,达到晶圆表面干燥的目的。
在晶圆清洗领域,随着半导体工艺节点的进一步减小以及图形的深宽比越来越大,IPA离开晶圆表面过程中,由于其表面张力的作用,会破坏晶圆的图形结构,甚至使结构发生粘连、塌陷等,从而导致晶圆产品失效。
现有的处理晶圆表面残留IPA的方法是采用表面张力几乎为0的超临界二氧化碳流体缓慢溶解晶圆表面的IPA,最终将晶圆表面的IPA全部置换为超临界二氧化碳流体,最后通过降温、降压使晶圆表面的超临界二氧化碳流体通过蒸发的方式离开晶圆表面。但此方法受IPA在超临界二氧化碳中溶解速率的限制,无法在较短时间内对批量晶圆进行干燥处理,干燥效率低。
发明内容
针对以上问题,本发明提供了一种超临界流体清洗系统及清洗方法,通过加压或降压改变清洗流体的压力,使得清洗流体能够以振荡的方式 进行清洗,加压过程提高了超临界清洗流体对于被清洗液体的溶解速度,降压过程可以带出被清洗液体,提高了清洗效率,适合批量清洗待清洗样品。
本发明提供一种超临界流体清洗系统,包括:清洗腔及超临界清洗流体供给装置,清洗腔用于容置有表面至少部分附着有被清洗液体的待清洗样品;超临界清洗流体供给装置提供清洗所需的清洗流体,并驱动清洗流体以压力升高并高于超临界压力、温度升高并高于超临界温度的方式进入清洗腔,在波动压力的作用下振荡清洗待清洗样品;以及驱动超临界清洗流体以压力下降并不低于超临界压力的方式从清洗腔内流出。
本发明通过改变清洗流体的压力,使得清洗流体以压力波动的形式对待清洗样品进行振荡清洗,加压过程提高了超临界清洗流体对于被清洗液体的溶解速度,降压过程可以带出被清洗液体,提高了清洗效率,且适于清洗大批量的待清洗样品。
本发明的可选技术方案中,超临界清洗流体供给装置包括腔体、加热装置及冷却装置,腔体的出口与加热装置的入口连通,加热装置的出口与清洗腔的入口连通,清洗腔的出口与冷却装置的出口连通,冷却装置的出口与腔体的入口连通;
腔体用于容置清洗流体,腔体内设有活塞,活塞的一侧与驱动装置连接,活塞远离驱动装置的一侧与腔体的内壁围设形成清洗流体占据的空间,驱动装置驱动活塞沿着腔体的内壁移动升高或降低清洗流体的压力;
加热装置用于对清洗流体加热形成超临界清洗流体;
冷却装置用于冷却自清洗腔流出的溶解有被清洗液体的超临界清洗流体。
本发明的可选技术方案中,还包括用于分离清洗流体和被清洗液体的分离器,分离器包括第一接口、第二接口及第三接口,腔体上设有第一入口和第一出口,第一入口和第一出口分别位于腔体的两端,且第一入口相对远离活塞设置,第一出口相对靠近活塞,第一接口通过第一管路与第一出口连通,第二接口通过第二管路与第一入口连通,第三接口为排放口;第一管路上设有第一单向阀,第二管路上设有第二单向阀,第一单向阀控制流体自腔体向分离器的单向流动,第二单向阀控制清洗流体自分离器向腔体的单向流动;活塞位于第一出口远离第一入口的一侧时,分离器与清洗流体占据的空间连通,活塞位于第一入口与第一出口之间时,分离器与 清洗流体占据的空间不连通。
根据该技术方案,分离器通过两个管路与腔体连接,并通过第一单向阀、第二单向阀控制流体的流向,实现清洗流体的循环利用,方便、可控,简化了超临界流体清洗系统的结构;通过改变活塞的位置实现分离器与流体占据空间的连通或不连通,结构简单、操作方便,简化了系统结构。
本发明的可选技术方案中,还包括设置在腔体与加热装置之间的第三单向阀、设置在加热装置与清洗腔之间的第四单向阀及设置在冷却装置与腔体之间的第五单向阀。
根据该技术方案,单向阀的设置能够防止液体回流,影响清洗效果。
本发明的可选技术方案中,还包括清洗流体补充管路,清洗流体补充管路的出口与腔体的出口和加热装置的入口之间的管路连通,清洗流体补充管路上还设有开关阀。
根据该技术方案,清洗流体补充管路结构简单,能够根据需要向流体供给装置内补充流体,满足清洗所需的清洗流体量。
本发明的可选技术方案中,驱动装置为电驱动杆,或者驱动装置为斯特林循环系统中的飞轮,飞轮通过连杆与活塞驱动连接。
根据该技术方案,采用电驱动杆驱动活塞改变腔体的体积,简单、易操作,且电驱动提高了清洗系统的工作效率。采用斯特林循环系统中飞轮通过连杆驱动活塞改变腔体的体积,不需要额外配置活塞在腔体内运动的动力源,只须一定的外部热源即可。
本发明的可选技术方案中,超临界清洗流体供给装置为一个或多个。
根据该技术方案,一个清洗腔可以配置超临界流体供给装置,从而实现不同压力波动范围的振荡清洗,提高清洗系统对不同超临界清洗流体和被清洗液体的适用性,提高清洗效率。
本发明的可选技术方案中,超临界清洗流体供给装置包括依次连接形成斯特林循环的膨胀腔、加热装置、回热器、冷却装置及压缩腔,清洗腔的入口连接于加热器的出口与回热器之间的管路上,清洗腔的出口连接于回热器与冷却装置之间的管路上。
本发明的可选技术方案中,清洗流体为二氧化碳,待清洗样品为晶圆。
根据该技术方案,采用表面张力几乎为0的超临界二氧化碳作为清洗流体,结合压力波动造成的振荡清洗晶圆,能够解决现有的晶圆清洗存在的IPA溶解效率低下、晶圆结构易损坏的缺陷。
本发明另提供一种超临界流体系统的清洗方法,包括以下步骤:
加压步骤:驱动清洗流体以压力升高并高于超临界压力的方式流出并进入清洗腔;
加热步骤:对清洗流体加热形成超临界清洗流体;
清洗步骤:超临界清洗流体在波动压力的作用下振荡清洗待清洗样品;
降压步骤:驱动溶解了被清洗液体的超临界清洗流体以压力下降并不低于其超临界压力的方式从清洗腔内流出;
冷却步骤:对溶解了被清洗液体的超临界清洗流体进行冷却,得到被清洗液体和清洗流体。
附图说明
图1为本发明第一实施方式中超临界流体清洗系统的结构示意图。
图2为本发明第一实施方式中第一种压力变化规律示意图。
图3为本发明第一实施方式中第二种压力变化规律示意图。
图4为本发明第一实施方式中第三种压力变化规律示意图。
图5为本发明第二实施方式中超临界流体清洗系统的结构示意图。
图6为本发明第二实施方式中一种压力变化规律示意图。
附图标记:
腔体1;第一出口11;第一入口12;活塞13;电驱动杆14;加热装置2;清洗腔3;冷却装置4;分离器5;第一接口51;第二接口52;第三接口53;第一单向阀61;第二单向阀62;第三单向阀63;第四单向阀64;第五单向阀65;第六单向阀66;第七单向阀67;清洗流体补充管路71;膨胀腔81;回热器82;压缩腔83。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
【第一实施方式】
本发明提供一种超临界流体清洗系统,包括:一个或多个介质循环回路,每个介质循环回路包括通过管路依次连接的腔体1、加热装置2、清洗腔3及冷却装置4;加热装置2用于对清洗流体加热形成超临界清洗流体;清洗腔3内用于容置表面至少部分附着有被清洗液体的待清洗样品(图中未示出)及超临界清洗流体,超临界清洗流体在波动压力的作用下振荡清洗待清洗样品;冷却装置4用于冷却自清洗腔3流出的溶解有被清洗液体的超临界清洗流体;腔体1内设有活塞13,活塞13的一侧与驱动装置连接,活塞13远离驱动装置的一侧与腔体1的内壁围设形成清洗流体占据的空间,电驱动杆14驱动活塞13沿着腔体1的内壁移动改变清洗流体所占据的空间大小,从而升高或降低清洗流体的压力。
本发明通过改变腔体1中清洗流体所占据的空间的方式改变清洗流体的压力,既提供了清洗流体流动的驱动力,又使得清洗流体以压力波动的形式对待清洗样品进行振荡清洗,加压过程提高了超临界清洗流体对于被清洗液体的溶解速度,降压过程可以带出被清洗液体,提高了清洗效率,且适于清洗大批量的待清洗样品。
具体来说,本发明实施方式中,在清洗流体进入介质循环回路之前,无需进行加热预处理,简化了腔体1前端的系统结构;且与清洗流体在进入介质循环回路之前进行加热相比,加热装置2设于腔体1的出口与清洗腔3的入口之间的管路上,能够与冷却装置4配合,实现对清洗流体进行升压、加热、清洗、降压、冷却的循环过程,从而实现多次振荡清洗待清洗样品;进一步地,加热装置2对腔体1出口的清洗流体进行加热,加热装置2配有自动控温装置(图中未示出),将加热装置2内清洗流体的温度控制在设定温度附近,使清洗腔3内保持恒温。本发明实施方式中,系统的压力(系统内各处压力相同)不低于清洗流体的超临界压力,升压、降压均是以不低于超临界压力为基础进行,清洗腔3内的温度不低于清洗流体的超临界温度;通过对清洗腔3进行加热可以保持清洗腔3内的温度不低于清洗流体的超临界温度,通过在清洗腔3内设置压力传感器,监测清洗腔3内的压力,控制模块可以被配置为在清洗腔3内的最低压力低于清洗流体的超临界压力时,通过补充管路71补充清洗流体的方式提高系统整体压力。
本发明的优选实施方式中,驱动装置为电驱动杆14或斯特林循环系统中的飞轮(图中未示出),飞轮通过连杆与活塞13连接。采用电驱动杆 14驱动活塞改变腔体1的体积,简单、易操作,且电驱动提高了清洗系统的工作效率;采用斯特林循环系统中飞轮通过连杆驱动活塞改变腔体的体积,不需要额外配置活塞在腔体1内运动的动力源,只须一定的外部热源(即加热装置)即可,加热装置2可以是电加热、太阳能加热等形式,本发明对加热的方式不做限定。
具体地,如图2所示,通过改变腔体1中清洗流体所占据的空间,腔体1中的清洗流体的压力波动规律如2所示,压力波动的区间P1-P2应位于清洗流体的超临界压力以上;在t1-t2时间段,增加清洗流体所占据的空间实现降压,在t2-t3时间段,减小清洗流体所占据的空间实现升压,经过升压、降压后完成一个循环,升压的时间长度与降压的时间长度可以相同,也可以不同,根据实际需要进行调整,压力在P1-P2之间波动;如图3所示,压力波动规律除了升压、降压外,还包括保压,即升压达到规定压力时,进行一段时间的保压,在降压达到规定压力时,进行一段时间的保压,系统经过升压、保压、降压、保压后完成一个循环;在保压模式下,活塞13的位置不变,系统的压力不变,超临界清洗流体更多地与被清洗流体相互溶解,在降压时,可以带出更多的被清洗液体,提高清洗效率。恒压的目的是使得超临界清洗流体更多地与被清洗液体相互溶解,如图4所示,压力波动规律可以是,在升压或降压达到规定压力时,进行保压,系统经过升压、保压、降压完成一个循环,虽未示出,压力波动规律也可以经过升压、降压、保压后完成一个循环,其中,在一个循环中,升压、降压的时间顺序不做限定,可以先升压,再降压,也可以先降压,再升压,技术人员可以根据实际情况调整压力的变化规律,不以本发明实施方式所举示例为限。另外,图2、图3及图4中虽然示出了升压、降压为线性增加或线性降低,但是并不以此为限,压力变化曲线也可以是正弦函数、余弦函数变化,也可以其它方式变化。
本发明的优选实施方式中,超临界流体清洗系统还包括一个或多个分离器5,分离器5与腔体1连接,分离器5用于分离自清洗腔3流出的清洗流体和被清洗液体;清洗流体占据的空间增加时,分离器5与清洗流体所占据的空间连通;清洗流体占据的空间减小时,分离器5与清洗流体所占据的空间不连通。进一步地,根据清洗流体冷却后回到腔体1内状态的不同可以为气液分离器或液液分离设备等,气液分离器、液液分离器的结构可参照现有技术的常规做法,在此不再赘述,分离出来的清洗流体可以重 复使用,节约清洗成本;且分离出被清洗液体后的流体重新进入系统中循环,提高了清洗流体的洁净度,避免使用被清洗液体污染的清洗流体清洗待清洗样品;本发明清洗流体以循环的形式进行清洗,实现了样品振荡清洗的连续性以及重复性,有利于提高清洗效率。
具体地,每个分离器5包括第一接口51、第二接口52及第三接口53,腔体1上设有第一入口12和第一出口11,第一入口12和第一出口11分别位于腔体1的两端,且第一入口12相对远离活塞13设置,第一出口11相对靠近活塞13,第一接口51通过第一管路与第一出口11连通,第二接口52通过第二管路与第一入口12连通,第三接口53为排放口,第一管路上设有第一单向阀61,第二管路上设有第二单向阀,第一单向阀61控制流体自腔体1向分离器5的单向流动,第二单向阀62控制清洗流体自分离器5向腔体1的单向流动;通过向第一出口11方向移动活塞13,活塞13位于第一出口11远离第一入口的一侧时(图中活塞13的左侧),分离器5与清洗流体占据的空间连通,此时清洗流体占据的空间增大,压力降低;通过向第一入口12方向移动活塞13,使活塞13位于第一入口12与第一出口11之间时,分离器5与清洗流体占据的空间不连通。本发明实施方式中,分离器5通过两个管路与腔体1连接,并通过第一单向阀61、第二单向阀62控制流体单向流动,实现清洗流体的循环利用,方便、可控,简化了超临界流体清洗系统的结构;且通过移动活塞13控制分离器5与清洗流体所占据的空间连通或不连通,省去了开关阀,简化了系统结构,节约了成本。
本发明的优选实施方式中,两个或多个介质循环回路共用一个清洗腔3。即一个清洗腔3可以配置两个或多个介质循环回路,从而实现不同压力波动范围的振荡清洗,提高清洗效率及清洗效果;介质循环回路至少包括腔体1、加热装置2、清洗腔3、冷却装置4依次接通形成;如图1所示,示出了一个清洗腔3配置2条介质循环回路,包括两个腔体1、两个活塞13等,当系统包括多条介质循环回路时,系统的压力变化的范围和速率由多个腔体1中活塞13的扫气体积、相位差(0-180°)以及活塞13运动的速度共同决定,技术人员可以根据实际情况调整扫气体积、相位差、活塞13的运动速度等参数,本发明实施方式对此不做限定。
本发明的优选实施方式中,还包括清洗流体补充管路71,清洗流体补充管路71的出口与腔体1的出口和加热装置2的入口之间的管路连通,清 洗流体补充管路71上还设有开关阀。
根据该技术方案,能够根据需要向腔体1内补充清洗流体,满足清洗所需的清洗流体量;与直接向清洗腔3内补入超临界清洗流体相比,在加热装置2之前设置清洗流体补充管路71,使得清洗流体经过加热后送入清洗腔3,能够保证清洗腔3内的超临界清洗流体的温度和压力与加热装置出口的超临界清洗流体的温度一致、压力一致,且有利于简化系统的结构。
本发明的优选实施方式中,还包括设置在腔体1与加热装置2之间的第三单向阀63、设置在加热装置2与清洗腔3之间的第四单向阀64及设置在冷却装置4与腔体1之间的第五单向阀65。通过上述方式,能够防止液体回流,影响清洗效果。
本发明的优选实施方式中,清洗流体为二氧化碳,待清洗样品为晶圆。本发明实施方式的超临界流体清洗系统可以用于晶圆的清洗,采用表面张力几乎为0的超临界二氧化碳作为清洗流体,结合压力波动造成的振荡清洗晶圆,解决现有的晶圆清洗存在的IPA溶解效率低下、晶圆结构易损坏的缺陷。虽然本发明给出了上述示例,但是不构成对清洗流体的类型及待清洗样品类型的限制,技术人员可以根据实际需求选择不同的清洗流体,以及清洗不同的样品。
本发明另提供一种超临界流体清洗系统的工作方法,包括以下步骤:
加压步骤:驱动清洗流体以压力升高并高于超临界压力的方式从腔体1内流出;
加热步骤:对加压后的清洗流体加热形成超临界清洗流体,超临界清洗流体在波动压力下进入清洗腔3;
清洗步骤:超临界清洗流体在波动压力的作用下振荡清洗待清洗样品;
降压步骤:驱动溶解了被清洗液体的超临界清洗流体以压力下降并不低于超临界压力的方式从清洗腔3内流出;
冷却步骤:对溶解了被清洗液体的超临界清洗流体进行冷却,得到被清洗液体和清洗流体。
本发明的优选实施方式中,还包括被清洗液体和清洗流体分离步骤:调节活塞13的位置,使活塞13位于第一出口的左侧,进而连通清洗流体占据的空间与分离器5,清洗腔3中的清洗流体和被清洗液体经第一出口11进入分离器5,被清洗液体从排放口排出,清洗流体通过第一入口12流入腔体1。
【第二实施方式】
本发明的第二实施方式提供一种超临界流体清洗系统,与第一实施方式的不同之处在于,第一实施方式中,系统压力降低的原因在于腔体中清洗流体所占据的体积增大与温度降低的综合作用,第二实施方式中,系统的体积不变,主要是由温度降低导致压力的降低,且无需动力源,仅通过外部热源,即可实现循环清洗。本发明第二实施方式中压力的变化规律如图6所示,与第一实施方式中压力的变化趋势基本相同,在此不再赘述。
具体地,超临界清洗流体供给装置包括依次连接形成斯特林循环的膨胀腔81、加热装置2、回热器82、冷却装置4及压缩腔83,清洗腔3的入口连接于加热器2的出口与回热器82之间的管路上,清洗腔3的出口连接于回热器82与冷却装置4之间的管路上。进一步地,清洗腔3的入口管路上设有第六单向阀66,清洗腔3地出口管路上设有第七单向阀67,第六单向阀66控制清洗流体从加热装置2向清洗腔3的单向流动,第七单向阀67控制清洗流体从清洗腔3向冷却装置4的单向流动。
本发明第二实施方式中,还包括分离器5,分离器5的第一接口、第二接口通过管路连通于冷却装置4与压缩腔83之间的管路上,第一接口、第二接口对应的管路上分别设置第一单向阀61、第二单向阀62,防止溶解了被清洗液体的清洗流体不经过分离器进入压缩腔83。
本发明的优选实施方式中,斯特林循环系统的结构为α型、β型或γ型,也可以是单作用式或者多作用式。
以α型斯特林循环系统与清洗腔的耦合系统为例,本发明的第二实施方式对应的清洗方法为:在斯特林循环等容升温的过程中,左、右活塞同步左移,低温清洗流体经过回热器82内被加热升温、升压形成超临界清洗流体,并有一部分超临界清洗流体进入清洗腔3内;在斯特林循环等容冷却过程中,左、右活塞同步右移,超临界清洗流体从清洗腔3内流出进入冷却装置4,超临界清洗流体温度降低,压力降低,整个循环过程中压力的波动规律如图6所示。在这一工作过程中可以通过设计两活塞缸的体积比、两活塞的相位差调整压力波动的范围。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种超临界流体清洗系统,其特征在于,包括:清洗腔及超临界清洗流体供给装置,所述清洗腔用于容置有表面至少部分附着有被清洗液体的待清洗样品;所述超临界清洗流体供给装置提供清洗所需的清洗流体,并驱动所述清洗流体以压力升高并高于超临界压力、温度升高并高于超临界温度的方式进入所述清洗腔,在波动压力的作用下振荡清洗所述待清洗样品;以及驱动所述超临界清洗流体以压力下降并不低于超临界压力的方式从所述清洗腔内流出。
  2. 根据权利要求1所述的超临界流体清洗系统,其特征在于,所述超临界清洗流体供给装置包括腔体、加热装置及冷却装置,所述腔体的出口与所述加热装置的入口连通,所述加热装置的出口与所述清洗腔的入口连通,所述清洗腔的出口与所述冷却装置的出口连通,所述冷却装置的出口与所述腔体的入口连通;
    所述腔体用于容置清洗流体,所述腔体内设有活塞,所述活塞的一侧与驱动装置连接,所述活塞远离所述驱动装置的一侧与所述腔体的内壁围设形成所述清洗流体占据的空间,所述驱动装置驱动所述活塞沿着所述腔体的内壁移动升高或降低所述清洗流体的压力;
    所述加热装置用于对所述清洗流体加热形成超临界清洗流体;
    所述冷却装置用于冷却自所述清洗腔流出的溶解有所述被清洗液体的超临界清洗流体。
  3. 根据权利要求2所述的超临界流体清洗系统,其特征在于,还包括用于分离清洗流体和被清洗液体的分离器,所述分离器包括第一接口、第二接口及第三接口,所述腔体上设有第一入口和第一出口,所述第一入口和所述第一出口分别位于所述腔体的两端,且所述第一入口相对远离所述活塞设置,所述第一出口相对靠近所述活塞,所述第一接口通过第一管路与所述第一出口连通,所述第二接口通过第二管路与所述第一入口连通,所述第三接口为排放口;所述第一管路上设有第一单向阀,所述第二管路上设有第二单向阀,所述第一单向阀控制流体自所述腔体向所述分离器的单向流动,所述第二单向阀控制清洗流体自所述分离器向所述腔体的单向流动;所述活塞位于所述第一出口远离所述第一入口的一侧时,所述分离 器与所述清洗流体占据的空间连通,所述活塞位于所述第一入口与所述第一出口之间时,所述分离器与所述清洗流体占据的空间不连通。
  4. 根据权利要求3所述的超临界流体清洗系统,其特征在于,还包括设置在所述腔体与所述加热装置之间的第三单向阀、设置在所述加热装置与所述清洗腔之间的第四单向阀及设置在所述冷却装置与所述腔体之间的第五单向阀。
  5. 根据权利要求2所述的超临界流体清洗系统,其特征在于,还包括清洗流体补充管路,所述清洗流体补充管路的出口与所述腔体的出口和所述加热装置的入口之间的管路连通,所述清洗流体补充管路上还设有开关阀。
  6. 根据权利要求2至5中任一权利要求所述的超临界流体清洗系统,其特征在于,所述驱动装置为电驱动杆,或者所述驱动装置为斯特林循环系统中的飞轮,所述飞轮通过连杆与所述活塞驱动连接。
  7. 根据权利要求2至5中任一权利要求所述的超临界流体清洗系统,其特征在于,所述超临界清洗流体供给装置为一个或多个。
  8. 根据权利要求1所述的超临界流体清洗系统,其特征在于,所述超临界清洗流体供给装置包括依次连接形成斯特林循环的膨胀腔、加热装置、回热器、冷却装置及压缩腔,所述清洗腔的入口连接于所述加热器的出口与所述回热器之间的管路上,所述清洗腔的出口连接于所述回热器与所述冷却装置之间的管路上。
  9. 根据权利要求1所述的超临界流体清洗系统,其特征在于,所述清洗流体为二氧化碳,所述待清洗样品为晶圆。
  10. 一种如权利要求1至9中任一权利要求所述的超临界流体系统的清洗方法,其特征在于,包括以下步骤:
    加压步骤:驱动所述清洗流体以压力升高并高于超临界压力的方式流 出并进入所述清洗腔;
    加热步骤:对加压后的所述清洗流体加热形成超临界清洗流体,超临界清洗流体在波动压力下进入清洗腔;
    清洗步骤:所述超临界清洗流体在波动压力的作用下振荡清洗所述待清洗样品;
    降压步骤:驱动溶解了所述被清洗液体的超临界清洗流体以压力下降并不低于其超临界压力的方式从所述清洗腔内流出;
    冷却步骤:对溶解了被清洗液体的超临界清洗流体进行冷却,得到被清洗液体和清洗流体。
PCT/CN2022/083624 2022-01-28 2022-03-29 超临界流体清洗系统及清洗方法 WO2023142257A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023555324A JP2024509593A (ja) 2022-01-28 2022-03-29 超臨界流体洗浄システム及び洗浄方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210106871.6A CN116564848A (zh) 2022-01-28 2022-01-28 超临界流体清洗系统及清洗方法
CN202210106871.6 2022-01-28

Publications (1)

Publication Number Publication Date
WO2023142257A1 true WO2023142257A1 (zh) 2023-08-03

Family

ID=87470190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083624 WO2023142257A1 (zh) 2022-01-28 2022-03-29 超临界流体清洗系统及清洗方法

Country Status (3)

Country Link
JP (1) JP2024509593A (zh)
CN (1) CN116564848A (zh)
WO (1) WO2023142257A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117490268B (zh) * 2023-12-29 2024-03-26 广州广钢气体能源股份有限公司 芯片清洗用二氧化碳的伴冷系统及输送系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005072568A (ja) * 2003-08-06 2005-03-17 Sony Corp 微小構造体の洗浄方法及び洗浄装置、半導体装置とその製造方法、並びに微小構造体とその製造方法
JP3725629B2 (ja) * 1996-09-25 2005-12-14 シャープ株式会社 超臨界流体洗浄装置
CN103339316A (zh) * 2011-02-02 2013-10-02 Ykk株式会社 清洗方法和清洗装置
CN106733945A (zh) * 2016-12-30 2017-05-31 上海颐柏热处理设备有限公司 一种超临界状态清洗系统及方法
CN108356128A (zh) * 2016-12-20 2018-08-03 田大志 高压成形方法
CN212703441U (zh) * 2020-07-17 2021-03-16 上海复璐帝流体技术有限公司 一种超临界流体清洗装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3725629B2 (ja) * 1996-09-25 2005-12-14 シャープ株式会社 超臨界流体洗浄装置
JP2005072568A (ja) * 2003-08-06 2005-03-17 Sony Corp 微小構造体の洗浄方法及び洗浄装置、半導体装置とその製造方法、並びに微小構造体とその製造方法
CN103339316A (zh) * 2011-02-02 2013-10-02 Ykk株式会社 清洗方法和清洗装置
CN108356128A (zh) * 2016-12-20 2018-08-03 田大志 高压成形方法
CN106733945A (zh) * 2016-12-30 2017-05-31 上海颐柏热处理设备有限公司 一种超临界状态清洗系统及方法
CN212703441U (zh) * 2020-07-17 2021-03-16 上海复璐帝流体技术有限公司 一种超临界流体清洗装置

Also Published As

Publication number Publication date
CN116564848A (zh) 2023-08-08
JP2024509593A (ja) 2024-03-04

Similar Documents

Publication Publication Date Title
WO2023142257A1 (zh) 超临界流体清洗系统及清洗方法
TWI396248B (zh) 基板處理裝置及基板處理方法
TW421823B (en) Coating apparatus
US10046370B2 (en) Substrate processing apparatus, substrate processing method, fluid supplying method and storage medium
JP4841484B2 (ja) 基板処理装置
JP3177736B2 (ja) 処理装置
JP5716710B2 (ja) 基板処理装置、流体の供給方法及び記憶媒体
TW201808462A (zh) 液體處理方法、液體處理裝置及記憶媒體
CN109712910A (zh) 处理液供给装置、基板处理装置以及处理液供给方法
CN109427627A (zh) 液处理装置和液处理方法
KR20110036503A (ko) 기판 재치대의 온도 제어 방법 및 온도 제어 시스템
TWI748445B (zh) 基板乾燥腔
US20210020430A1 (en) Method for treating substrate
KR102509747B1 (ko) 고온 화학물 및 초음파 장치를 이용한 기판 세정 방법 및 장치
KR102188287B1 (ko) 유체 가열 장치
JPH09232271A (ja) 半導体ウェハの洗浄装置
KR20210158330A (ko) 액 처리 장치 및 액 처리 방법
CN100506403C (zh) 基板清洗系统与方法
CN110581095A (zh) 一种刻蚀装置及刻蚀方法
JP6895818B2 (ja) 処理液供給装置および処理液供給方法
JP4307973B2 (ja) 超臨界流体処理装置及びその方法
US20230091875A1 (en) Filter cleaning system and filter cleaning method
KR102254187B1 (ko) 기판 건조 장치
CN115873707B (zh) 一种细胞收获系统
JP4767205B2 (ja) 基板処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023555324

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923075

Country of ref document: EP

Kind code of ref document: A1