WO2023140381A1 - インシュレータ、ステータ及びモータ - Google Patents

インシュレータ、ステータ及びモータ Download PDF

Info

Publication number
WO2023140381A1
WO2023140381A1 PCT/JP2023/001938 JP2023001938W WO2023140381A1 WO 2023140381 A1 WO2023140381 A1 WO 2023140381A1 JP 2023001938 W JP2023001938 W JP 2023001938W WO 2023140381 A1 WO2023140381 A1 WO 2023140381A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
coil
connecting wire
wire holding
holding portion
Prior art date
Application number
PCT/JP2023/001938
Other languages
English (en)
French (fr)
Inventor
伶 八川
良 河合
幸彦 杉本
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Publication of WO2023140381A1 publication Critical patent/WO2023140381A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/38Windings characterised by the shape, form or construction of the insulation around winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present disclosure relates to insulators, stators and motors.
  • Patent Document 1 A technique related to a motor including a stator including a stator core and coils, a rotor, and an insulator is known (see Patent Document 1, for example).
  • the insulator has a structure that improves the cooling efficiency of the cooling oil supplied to the coil wound around the stator core.
  • an insulator is desired in which the SN winding is fixed and the ABC phases are common while the basic structure of the insulator remains as it is. However, it is desired that the A, B, and C phases are shared to ensure the insulation capability.
  • An object of the present disclosure is to provide an insulator, a stator, and a motor that ensure insulation capability.
  • the insulator is arranged between a stator core and three-phase coils wound around the stator core, and includes a body portion that covers a portion of the stator core around which the coil is wound to insulate the stator core and the coil, and a connecting wire holding portion that holds the connecting wire of the coil, the connecting wire holding portion being arranged radially outside the main body portion.
  • An insulator is provided that has a second groove that accommodates a connecting wire of a second phase coil and that is arranged on the other side, and a third groove that accommodates a connecting wire of a third phase coil that is arranged on the other side in the axial direction of the second groove, and the first groove, the second groove, and the third groove are formed in different shapes.
  • a motor stator that includes the insulator described above, the stator core to which the insulator is attached, and a coil wound around the stator core via the insulator.
  • a motor that includes the stator described above and a rotor that rotates with respect to the stator.
  • insulators, stators, and motors are provided that ensure insulation capability.
  • FIG. 1 is a diagram schematically showing a stator having insulators according to the first embodiment.
  • FIG. 2 is a perspective view schematically showing a state in which no coil is arranged on the stator shown in FIG. 1.
  • FIG. 3 is an exploded perspective view of a stator having insulators shown in FIG. 2.
  • FIG. 4 is a perspective view of a first member of the insulator according to the first embodiment;
  • FIG. 5 is a perspective view of a first member of the insulator according to the first embodiment;
  • FIG. FIG. 6 is a schematic diagram of the first member of the insulator according to the first embodiment.
  • FIG. 7 is a cross-sectional view taken along the line AA of the first member of the insulator according to the first embodiment.
  • FIG. 8 is a cross-sectional view taken along the line BB of the first member of the insulator according to the first embodiment.
  • 9 is a plan view of the first member of the insulator according to the first embodiment;
  • FIG. 10 is a perspective view of a second member of the insulator according to the first embodiment;
  • FIG. 11 is a perspective view of a first member and a second member of the insulator according to the first embodiment;
  • FIG. FIG. 12 is a schematic diagram illustrating nozzle paths.
  • FIG. 13 is a schematic diagram illustrating the nozzle paths.
  • FIG. 1 is a diagram schematically showing a stator having insulators according to the first embodiment.
  • FIG. 2 is a perspective view schematically showing a state in which no coil is arranged on the stator shown in FIG. 1.
  • FIG. 3 is an exploded perspective view of a stator having insulators shown in FIG. 2.
  • a stator including an insulator is arranged in a 3-phase, 24-pole segment-type switched reluctance motor (not shown).
  • the motor includes a cylindrical stator 1 and a rotor (not shown) arranged inside the stator 1 .
  • the stator 1 has a cylindrical stator core 2 and coils 3 supported by the stator core 2 .
  • the inner peripheral surface of the stator 2 and the outer peripheral surface of the rotor face each other with a space therebetween.
  • the direction parallel to the rotation axis AX of the motor is called the axial direction.
  • the one side in the axial direction is called the one axial side, and the opposite side to the one axial side is called the other axial side.
  • the direction of rotation around the rotation axis AX is referred to as the circumferential direction.
  • the one side in the rotational direction in the circumferential direction is called the one side in the circumferential direction, and the opposite side to the one side in the circumferential direction is called the other side in the circumferential direction.
  • the radial direction of the rotation axis AX is called the radial direction.
  • the side in the radial direction away from the central axis AX is called the radial outer side, and the opposite side to the radial outer side is called the radial inner side.
  • the stator core 2 has a body portion 20 , teeth 21 , and slots 22 that accommodate the coils 3 .
  • the slot 22 is a recess that is recessed radially outward from the inner peripheral surface.
  • a plurality of slots 22 are provided in the inner peripheral surface of stator core 2 in the circumferential direction.
  • the stator core 2 has 24 slots 22 arranged in the circumferential direction.
  • the stator 2 has 24 slots.
  • Slot 22 extends axially.
  • the slots 22 are arranged on the inner peripheral surface. The slot 22 opens toward one axial side, the other axial side, and radially inward.
  • the stator core 2 has a plurality of teeth 21 arranged between slots 22 adjacent in the circumferential direction.
  • 24 teeth 21 are arranged in the stator core 2 in the circumferential direction.
  • Teeth 21 are portions of stator core 2 around which coils 3 are wound.
  • Teeth 21 support coil 3 .
  • Teeth 21 are inserted into openings of coil 3 .
  • the coils 3 are arranged around the teeth 21 .
  • Coil 3 is supported by teeth 21 .
  • Coil 3 has an opening.
  • a tooth 21 is inserted into the opening of the coil 3 .
  • the coil 3 is attached to the stator core 2 via the insulator 5 . Since the number of poles of the motor is reduced, the number of coils 3 wound around one tooth 21 is larger than that of a conventional 36-pole motor.
  • the coil 3 includes a coil body portion and coil end portions (not shown).
  • the portion of the coil 3 that is accommodated in the slot 22 is the coil main body.
  • a portion of the coil 3 that protrudes axially from the stator core 2 is a coil end portion.
  • the coil 3 is composed of, for example, a linear or belt-shaped conductor such as a rectangular wire, a round wire, or a plate-shaped segment conductor.
  • the coil 3 is composed of a spirally arranged conductor.
  • the coil 3 may be configured by spirally winding a single conductor, or may be configured by spirally connecting a plurality of conductors.
  • the winding method and connection method of the coil 3 are not limited.
  • the coils 3 include an A-phase coil (first-phase coil) 3A, a B-phase coil (second-phase coil) 3B, and a C-phase coil (third-phase coil) 3C.
  • the A-phase coil 3A, the B-phase coil 3B, and the C-phase coil 3C are referred to as coils 3 when it is not particularly necessary to distinguish between them.
  • the A-phase coil 3A and the B-phase coil 3B are adjacent in the circumferential direction.
  • B-phase coil 3B and C-phase coil 3C are adjacent in the circumferential direction.
  • C-phase coil 3C and A-phase coil 3A are adjacent in the circumferential direction.
  • a B-phase coil 3B is arranged next to one side of the A-phase coil 3A in the circumferential direction.
  • a C-phase coil 3C is arranged next to one side of the B-phase coil 3B in the circumferential direction.
  • the A-phase coil 3A is arranged adjacent to one circumferential side of the C-phase coil 3C.
  • the insulator 5 is made of a member made of resin. Insulator 5 is interposed between coil 3 and stator core 2 .
  • the insulator 5 is divided into a plurality of pieces in the circumferential direction. In this embodiment, the insulator 5 is divided into 12 parts.
  • the insulator 5 is divided into two in the axial direction. In other words, the insulator 5 is divided into a first member 6 on one side and a second member 7 on the other side in the axial direction.
  • One insulator 5 divided in the circumferential direction has a double structure. Since one insulator 5 divided in the circumferential direction has a double structure, the A phase, B phase and C phase cannot be fixed. Therefore, one insulator 5 divided in the circumferential direction has the SN winding fixed, and the A-phase, B-phase and C-phase are shared.
  • FIG. 4 is a perspective view of a first member of the insulator according to the first embodiment
  • FIG. 5 is a perspective view of a first member of the insulator according to the first embodiment
  • FIG. 6 is a schematic diagram of the first member of the insulator according to the first embodiment.
  • FIG. 6 is a schematic diagram in which the circumferential direction is linear for explanation.
  • the first member 6 has a wall portion 60 , a body portion 61 , a locking portion 62 and a connecting wire holding portion 63 .
  • the wall portion 60 has a shape obtained by dividing a disk into a plurality of parts in the circumferential direction. When all the circumferentially divided wall portions 60 of the first member 6 of the insulator 5 are connected, they are formed into a disc shape.
  • the body portion 61 protrudes radially inward from the radially inner end portion of the wall portion 60 .
  • the body portion 61 is a portion around which the coil 3 is wound.
  • the body portion 61 is connected to the end portion of the body portion 71 of the second member 7 on one side in the axial direction.
  • the body portion 61 is arranged to cover the teeth 21 of the stator core 2 around which the coil 3 is wound while being assembled with the body portion 71 of the second member 7 .
  • the body portion 61 is arranged to cover one axial side of the teeth 21 .
  • the locking portion 62 restricts the coil 3 from coming off the body portion 61 .
  • the locking portion 62 is longer than the main body portion 61 in one axial direction and widens in the circumferential direction.
  • the locking portion 62 is formed to be higher in the axial direction than the locking portion of the conventional insulator.
  • the locking portion 62 is arranged radially inside the body portion 61 .
  • the locking portion 62 is connected to one axial end of the locking portion 72 of the second member 7 .
  • the crossover wire holding unit 63 holds the crossover wires of each phase of the coil 3 .
  • the crossover wire holding portion 63 holds the crossover wire 3AT, the crossover wire 3BT, and the crossover wire 3CT.
  • the crossover wire holding portion 63 is arranged on one axial side of the wall portion 60 .
  • the crossover wire holding portion 63 is arranged radially outside the main body portion 61 .
  • the crossover wire holding portion 63 is divided into a plurality in the circumferential direction.
  • the crossover wire holding portion 63 is divided into a crossover wire holding portion 63_1 , a crossover wire holding portion 63_2 , a crossover wire holding portion 63_3 , a crossover wire holding portion 63_4 , and a crossover wire holding portion 63_5 .
  • the crossover wire holding portion 63_1 , the crossover wire holding portion 63_2 , the crossover wire holding portion 63_3 , the crossover wire holding portion 63_4 and the crossover wire holding portion 63_5 are formed in different shapes.
  • crossover wire holding portion 63_1 The planar shapes of the crossover wire holding portion 63_1 , the crossover wire holding portion 63_2 , the crossover wire holding portion 63_3 , the crossover wire holding portion 63_4 , and the crossover wire holding portion 63_5 will be described later. If it is not necessary to distinguish between the crossover wire holding portion 63_1 , the crossover wire holding portion 63_2 , the crossover wire holding portion 63_3 , the crossover wire holding portion 63_4 , and the crossover wire holding portion 63_5 , the crossover wire holding portion 63 will be described.
  • a first groove 64A, a second groove 64B, and a third groove 64C are formed in the crossover wire holding portion 63 .
  • the first groove 64A, the second groove 64B, and the third groove 64C are spaced apart in the axial direction.
  • the first groove 64A, the second groove 64B, and the third groove 64C are formed in different shapes.
  • the first groove 64A, the second groove 64B, and the third groove 64C have, for example, different radial depths.
  • the first groove 64A, the second groove 64B, and the third groove 64C have shapes with different widths in the axial direction.
  • the first groove 64A is a groove that holds the connecting wire 3AT of the A-phase coil 3A.
  • the first groove 64A is formed in the outer peripheral portion of the connecting wire holding portion 63 .
  • the first groove 64A opens radially outward.
  • the first groove 64A is located on one side of the connecting wire holding portion 63 in the axial direction.
  • the connecting wire 3AT accommodated in the first groove 64A does not intersect with the connecting wires 3BT and 3CT of the other phases on the route to the slots 22 of the stator core 2 .
  • the second groove 64B is a groove that holds the crossover wire 3BT of the B-phase coil 3B.
  • the second groove 64B is formed in the outer peripheral portion of the connecting wire holding portion 63 .
  • the second groove 64B opens radially outward.
  • the second groove 64B is positioned on the other side in the axial direction from the first groove 64A of the connecting wire holding portion 63 .
  • the connecting wire 3BT accommodated in the second groove 64B does not intersect with the connecting wires 3AT and 3CT of the other phases on the route to the slots 22 of the stator core 2.
  • the third groove 64C is a groove that holds the connecting wire 3CT of the C-phase coil 3C.
  • the third groove 64 ⁇ /b>C is formed in the outer peripheral portion of the connecting wire holding portion 63 .
  • the third groove 64C opens radially outward.
  • the third groove 64C is located on the other side in the axial direction from the second groove 64B of the connecting wire holding portion 63 .
  • the connecting wire 3CT accommodated in the third groove 64C does not intersect with the connecting wires 3AT and 3BT of the other phases on the route to the slots 22 of the stator core 2 .
  • the first coil end portion of the connecting wire 3AT of the A-phase coil 3A in the first groove 64A, the second coil end portion of the connecting wire 3BT of the B-phase coil 3B in the second groove 64B, and the third coil end portion of the connecting wire 3CT of the C-phase coil 3C in the third groove 64C are located at different positions in the radial direction. There is.
  • FIG. 7 is a cross-sectional view taken along the line AA of the first member of the insulator according to the first embodiment. 6, as shown in FIG. 7, the radial height of the connecting wire 3AT of the A-phase coil 3A housed in the first groove 64A is lower than the radial height of the connecting wire 3BT of the B-phase coil 3B housed in the second groove 64B. The radial height of the connecting wire 3BT of the B-phase coil 3B housed in the second groove 64B is lower than the radial height of the connecting wire 3CT of the C-phase coil 3C housed in the third groove 64C.
  • the radial height of the connecting wire 3AT of the A-phase coil 3A housed in the first groove 64A is, in other words, the height of the first groove 64A in the depth direction.
  • the radial height of the crossover wire 3BT of the B-phase coil 3B accommodated in the second groove 64B is, in other words, the height in the depth direction of the second groove 64B.
  • the radial height of the connecting wire 3CT of the C-phase coil 3C housed in the third groove 64C is, in other words, the height of the third groove 64C in the depth direction.
  • FIG. 8 is a cross-sectional view taken along the line BB of the first member of the insulator according to the first embodiment. 6, as shown in FIG. 8, the radial height of the connecting wire 3AT of the A-phase coil 3A housed in the first groove 64A is lower than the radial height of the connecting wire 3BT of the B-phase coil 3B housed in the second groove 64B. The radial height of the connecting wire 3BT of the B-phase coil 3B housed in the second groove 64B is lower than the radial height of the connecting wire 3CT of the C-phase coil 3C housed in the third groove 64C.
  • FIG. 9 is a plan view of the first member of the insulator according to the first embodiment; FIG.
  • the first member 6 is one of a plurality of divided members in the circumferential direction.
  • the members shown in FIG. 9 are connected in the circumferential direction to form the first member 6 having an annular planar shape.
  • the crossover wire holding portion 63-1 is connected to the crossover wire holding portion 63-5 of another member located adjacently on one side in the circumferential direction.
  • the crossover wire holding portion 63-5 is connected to the crossover wire holding portion 63-1 of another member located adjacently on one side in the circumferential direction.
  • the crossover wire holding portion 63-2 is located radially outside the main body portion 61-2 .
  • the crossover wire holding portion 63-2 is positioned on the axis passing through the center of the main body portion 61-2 in the circumferential direction.
  • the crossover wire holding portion 63-4 is located radially outside the main body portion 61-4 .
  • the crossover wire holding portion 63-4 is positioned on the axis passing through the center of the main body portion 61-4 in the circumferential direction.
  • the crossover wire holding portion 63_1 , the crossover wire holding portion 63_3 , and the crossover wire holding portion 63_5 are positioned circumferentially off the axis passing through the center of the main body 61-2 and the center of the main body 61-4 in the circumferential direction.
  • a crossover wire holding portion 63-3 is positioned between the crossover wire holding portion 63-2 and the crossover wire holding portion 63-4 located on the other side in the circumferential direction. Between the connecting wire holding portion 63-4 and the connecting wire holding portion 63-1 positioned on the other side in the circumferential direction, the connecting wire holding portion 63-5 and the connecting wire holding portion 63-1 are positioned.
  • At least one of the connecting wire holding portion 63-1 , the connecting wire holding portion 63-2 , the connecting wire holding portion 63-3 , the connecting wire holding portion 63-4 , and the connecting wire holding portion 63-5 has a radial outer circumferential length that is shorter than a radial inner circumferential length when viewed in the axial direction.
  • the crossover wire holding portion 63_2 and the crossover wire holding portion 63_4 are formed such that the circumferential length at the radially outer side is shorter than the circumferential length at the radially inner side.
  • the distance on the radially outer side of the connecting wire holding portions 63 that are adjacent in the circumferential direction is greater than the distance on the radially inner side.
  • a gap extending in a direction inclined with respect to the radial direction is generated between the connecting wire holding portions 63 adjacent in the circumferential direction. This gap becomes the passage Q of the nozzle 100 used when winding the coil 3 around the stator core 2 .
  • the passage Q of the nozzle 100 is defined by a gap extending in a direction inclined with respect to the radial direction between the connecting wire holding portions 63 adjacent in the circumferential direction and a circumferential gap between the locking portions 62 adjacent in the circumferential direction.
  • a passage Q of the nozzle 100 is indicated by a dashed line in FIG.
  • the passages Q are arranged in a direction in which the centerline intersects the radial direction.
  • Passage Q includes passage Q1 , passage Q2 , passage Q3 , and passage Q4 .
  • Passage Q1 , passage Q2 , passage Q3 , and passage Q4 are described as passage Q when it is not particularly necessary to distinguish them.
  • the passage Q1 passes between the connecting wire holding portion 63-1 and the connecting wire holding portion 63-2 .
  • a passage Q1 is formed between a straight line L11 and a straight line L12.
  • the straight line L11 is a straight line that connects the radially inner end portion of the connecting wire holding portion 63 1 on the other circumferential side and the radially inner end portion of the locking portion 62 4 of the main body portion 61 4 positioned radially inside the connecting wire holding portion 63 4 adjacent to the connecting wire holding portion 63 5 connected to the connecting wire holding portion 63 1 on the one circumferential side.
  • the straight line L12 is a straight line extending from the end surface of the connecting wire holding portion 632 on one side in the circumferential direction.
  • the passage Q2 passes between the connecting wire holding portion 63-2 and the connecting wire holding portion 63-3 .
  • Passage Q2 is formed between straight line L21 and straight line L22.
  • the straight line L21 is an extension straight line of the end surface of the connecting wire holding portion 632 on the other side in the circumferential direction.
  • the straight line L22 is a straight line that connects the radially inner end portion of the connecting wire holding portion 633 on one circumferential side and the radially inner end portion of the locking portion 624 of the main body portion 614 that is positioned radially inside the connecting wire holding portion 634 that is adjacent to the connecting wire holding portion 633 on the other circumferential side of the connecting wire holding portion 633.
  • the passage Q3 passes between the connecting wire holding portion 63-3 and the connecting wire holding portion 63-4 .
  • a passage Q3 is formed between a straight line L31 and a straight line L32.
  • the straight line L31 is a straight line that connects the radially inner end portion of the connecting wire holding portion 633 on the other circumferential side and the radially inner end portion of the locking portion 622 of the main body portion 612 that is positioned radially inside the connecting wire holding portion 632 that is adjacent to the connecting wire holding portion 633 on the one circumferential side of the connecting wire holding portion 633.
  • a straight line L32 is a straight line extending from the end surface of the connecting wire holding portion 634 on one side in the circumferential direction.
  • the passage Q4 passes between the connecting wire holding portion 63-4 and the connecting wire holding portion 63-5 .
  • a passage Q4 is formed between a straight line L41 and a straight line L42.
  • the straight line L41 is an extension straight line of the end surface of the connecting wire holding portion 634 on the other side in the circumferential direction.
  • the straight line L42 is a straight line that connects the radially inner end of the connecting wire holding portion 635 on one circumferential side and the connecting wire holding portion 632 that is adjacent to the connecting wire holding portion 635 on the other side in the circumferential direction.
  • the passage Q 1 and the passage Q 4 intersect between the locking portion 62 4 of the main body portion 61 4 located radially inside the connecting wire holding portion 63 4 and the locking portion 62 2 located next to the locking portion 62 4 on the other side in the circumferential direction.
  • the passage Q2 and the passage Q3 intersect between the locking portion 622 of the main body portion 612 located radially inside the connecting wire holding portion 632 and the locking portion 624 located next to the locking portion 622 on the other side in the circumferential direction.
  • the one end of the engaging portion 62-2 in the circumferential direction is positioned on the extension of the end surface of the connecting wire holding portion 63-2 on the one side in the circumferential direction.
  • the one end of the engaging portion 624 in the circumferential direction is positioned on the extension of the one end face of the connecting wire holding portion 634 in the circumferential direction.
  • the end portion of the engaging portion 62-2 on the other circumferential side is positioned on the extension of the end surface of the connecting wire holding portion 63-2 on the other circumferential side.
  • the end portion of the locking portion 624 on the other circumferential side is positioned on the extension of the end surface of the connecting wire holding portion 634 on the other circumferential side.
  • Distance d is, for example, 6.3 mm.
  • the interval between the locking portions 62 adjacent in the circumferential direction is, for example, 7.2 mm at the narrowest portion.
  • the interval between the connecting wire holding portions 63 adjacent in the circumferential direction is, for example, 6.3 mm or more and 6.6 mm or less at the narrowest portion.
  • the angle ⁇ 1 between the end portion of the connecting wire holding portion 63_2 on the other side in the circumferential direction and the end portion of the connecting wire holding portion 63_3 on the one side in the circumferential direction is, for example, 16.4°.
  • the angle ⁇ 2 between the end of the connecting wire holding portion 63_3 on the other side in the circumferential direction and the end of the connecting wire holding portion 63_4 on the one side in the circumferential direction is, for example, 9.5°.
  • An angle ⁇ 3 between the end portion of the crossover wire holding portion 63_2 on one side in the circumferential direction and the end portion of the crossover wire holding portion 63_3 on the one side in the circumferential direction is, for example, 3°.
  • the angle ⁇ 4 between the end portion of the connecting wire holding portion 63_3 on the other circumferential side and the end portion of the connecting wire holding portion 63_4 on the other circumferential side is, for example, 5°.
  • An angle ⁇ 5 between the end portion of the crossover wire holding portion 63_1 on the other circumferential side and the end portion of the crossover wire holding portion 63_3 on the one side in the circumferential direction is, for example, 11.5°.
  • An angle ⁇ 6 between the end portion of the crossover wire holding portion 63-3 on the other circumferential side and the end portion of the crossover wire holding portion 63-5 on the one side in the circumferential direction is, for example, 10.5°.
  • the angle formed by the facing ends of the connecting wire holding portions 63 adjacent in the circumferential direction is, for example, 9° or more and 17° or less.
  • FIG. 10 is a perspective view of a second member of the insulator according to the first embodiment
  • FIG. 11 is a perspective view of a first member and a second member of the insulator according to the first embodiment
  • FIG. The second member 7 has a wall portion 70 , a body portion 71 and a locking portion 72 .
  • the shape shown in FIGS. 10 and 11 is one of a plurality of members obtained by dividing the second member 7 in the circumferential direction. In other words, the members shown in FIG. 10 are connected in the circumferential direction to form the second member 7 having an annular planar shape.
  • the wall portion 70 has a shape obtained by dividing a cylinder into a plurality of parts in the circumferential direction. When all the wall portions 70 of the second member 7 of the insulator 5 that are divided in the circumferential direction are connected, the insulator 5 is formed in a cylindrical shape.
  • the main body portion 71 protrudes radially inward from the radially inward facing surface of the wall portion 70 .
  • the body portion 71 is a portion around which the coil 3 is wound.
  • the body portion 71 is connected to the other end portion of the body portion 61 of the first member 6 in the axial direction.
  • the body portion 71 is arranged to cover the teeth 21 of the stator core 2 around which the coil 3 is wound while being assembled with the body portion 61 of the first member 6 .
  • the body portion 71 is arranged to cover the other axial side of the teeth 21 .
  • the locking portion 72 restricts the coil 3 from coming off from the body portion 71 .
  • the locking portion 72 is longer than the main body portion 71 toward the other side in the axial direction and spreads in the circumferential direction.
  • the locking portion 72 is arranged radially inside the body portion 71 .
  • the locking portion 72 is connected to the other axial end of the locking portion 62 of the first member 6 .
  • FIG. 12 is a schematic diagram illustrating nozzle paths.
  • a coil 3 is wound using a nozzle 100 on the stator core 2 assembled in one piece.
  • the nozzles 100 are positioned along the radial direction. As shown in FIGS. 12(a) and 13(a), the engaging portion 62 protrudes more than in the conventional art. Therefore, if the nozzle 100 enters the body portion 61 side of the insulator 6 as it is, the locking portion 62 interferes.
  • the nozzle 100 is tilted with respect to the radial direction and is made to enter the main body 61 side of the insulator 6 .
  • the narrowest portion between the adjacent connecting wire holding portions 63 is separated by a distance d through which the nozzle 100 can pass. Therefore, the nozzle 100 can enter through this gap.
  • the nozzle 100 is moved toward the locking portion 62 side of the insulator 6 while being obliquely tilted.
  • the nozzle 100 passes between adjacent connecting wire holding portions 63 and reaches between adjacent locking portions 62 .
  • the nozzle 100 is returned to the radial direction. Then, the position of the nozzle 100 is moved to start winding the coil 3 around the body portion 61 .
  • the coil 3 is wound around the main body portion 61 while changing the inclination of the nozzle 100 .
  • the shapes of the first groove 64A, the second groove 64B, and the third groove 64C provided in the connecting wire holding portion 63 are different.
  • it is possible to secure the insulation capacity between the phases by taking the spatial distances between the connecting wires 3AT, 3BT, and 3CT of the respective phases and the coils 3A, 3B, and 3C of the respective phases that enter the slots. In this manner, the present embodiment can ensure insulation capability between the three phases.
  • the first groove 64A, the second groove 64B, and the third groove 64C have different widths in the axial direction.
  • the first groove 64A, the second groove 64B, and the third groove 64C have shapes with different depths in the radial direction.
  • the first coil end portion of the connecting wire 3AT in the first groove 64A, the second coil end portion of the connecting wire 3BT in the second groove 64B, and the third coil end portion of the connecting wire 3CT in the third groove 64C are located at different positions in the radial direction.
  • the coils of each phase that enter the slot 22 from the first coil end portion, the second coil end portion, and the third coil end portion of each phase are separated from the connecting wires of the coils of the other phases. According to this embodiment, it is possible to avoid crossing the three-phase connecting wires 3AT, 3BT, and 3CT.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

ステータコアと、ステータコアに巻回される3相のコイルとの間に配置されるインシュレータ5であって、ステータコアにおけるコイルが巻回される部分を覆ってステータコアとコイルとを絶縁する本体部と、本体部の径方向外側に配置された、コイルの渡り線を保持する渡り線保持部63と、を備え、渡り線保持部63は、A相コイルの渡り線3ATが収容される第1溝64Aと、第1溝64Aに対して軸方向他方側に配置された、B相コイルの渡り線3BTが収容される第2溝64Bと、第2溝64Bに対して軸方向他方側に配置された、C相コイルの渡り線3CTが収容される第3溝64Cと、を有し、第1溝64Aと第2溝64Bと第3溝64Cとは異なる形状に形成されている。

Description

インシュレータ、ステータ及びモータ
 本開示は、インシュレータ、ステータ及びモータに関する。
 ステータコアとコイルとを含むステータと、ロータと、インシュレータとを備えたモータに関する技術が知られている(例えば、特許文献1参照)。特許文献1に記載の技術では、インシュレータは、ステータコアに巻回されたコイルに対して供給される冷却油による冷却効率を向上させる構造を有する。
特開2012‐213275号公報
 モータを小型化して出力を向上するため、極数を減少させる必要があった。そこで、インシュレータの基本構造はそのままに、SN巻きを固定し、ABC相を共通にしたインシュレータが望まれる。しかしながら、ABC相が共通となることにより、絶縁能力を確保することが望まれる。
 本開示は、絶縁能力を確保したインシュレータ、ステータ及びモータを提供することを目的とする。
 本開示に従えば、ステータコアと、前記ステータコアに巻回される3相のコイルとの間に配置されるインシュレータであって、前記ステータコアにおける前記コイルが巻回される部分を覆って前記ステータコアと前記コイルとを絶縁する本体部と、前記本体部の径方向外側に配置された、前記コイルの渡り線を保持する渡り線保持部と、を備え、前記渡り線保持部は、第1相コイルの渡り線が収容される第1溝と、前記第1溝に対して軸方向他方側に配置された、第2相コイルの渡り線が収容される第2溝と、前記第2溝に対して軸方向他方側に配置された、第3相コイルの渡り線が収容される第3溝と、を有し、前記第1溝と前記第2溝と前記第3溝とは異なる形状に形成されている、インシュレータが提供される。
 本開示に従えば、上記のインシュレータと、前記インシュレータが装着される前記ステータコアと、前記インシュレータを介して前記ステータコアに巻回されるコイルと、を備えるモータのステータが提供される。
 本開示に従えば、上記のステータと、前記ステータに対して回転するロータと、を備えるモータが提供される。
 本開示によれば、絶縁能力を確保したインシュレータ、ステータ及びモータが提供される。
図1は、第1実施形態に係るインシュレータを有するステータを模式的に示す図である。 図2は、図1に示すステータにコイルが配置されていない状態を模式的に示す斜視図である。 図3は、図2に示すインシュレータを有するステータの分解斜視図である。 図4は、第1実施形態に係るインシュレータの第1部材の斜視図である。 図5は、第1実施形態に係るインシュレータの第1部材の斜視図である。 図6は、第1実施形態に係るインシュレータの第1部材の模式図である。 図7は、第1実施形態に係るインシュレータの第1部材のA-A線断面図である。 図8は、第1実施形態に係るインシュレータの第1部材のB-B線断面図である。 図9は、第1実施形態に係るインシュレータの第1部材の平面図である。 図10は、第1実施形態に係るインシュレータの第2部材の斜視図である。 図11は、第1実施形態に係るインシュレータの第1部材及び第2部材の斜視図である。 図12は、ノズルの経路を説明する概略図である。 図13は、ノズルの経路を説明する概略図である。
 以下、本開示に係る実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。以下で説明する実施形態の構成要素は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。
[第1実施形態]
<モータ>
 図1は、第1実施形態に係るインシュレータを有するステータを模式的に示す図である。図2は、図1に示すステータにコイルが配置されていない状態を模式的に示す斜視図である。図3は、図2に示すインシュレータを有するステータの分解斜視図である。各図において、コイル3の形状を模式的に示している。インシュレータを含むステータは、図示しない、3相で24極のセグメント型スイッチトリラクタンスモータに配置される。モータは、円筒形状のステータ1と、ステータ1の内側に配置された図示しないロータとを備える。ステータ1は、円筒形状のステータコア2と、ステータコア2に支持されるコイル3とを有する。ステータ2の内周面とロータの外周面とは間隔を空けて対向する。
 以下の説明において、モータの回転軸AXと平行な方向を軸方向という。軸方向における一方側を軸方向一方側といい、軸方向一方側の反対側を軸方向他方側という。また、回転軸AXの周囲を周回する方向を周方向という。周方向おける回転方向の一方側を周方向一方側といい、周方向一方側の反対側を周方向他方側という。さらに、回転軸AXの放射方向を径方向という。径方向において中心軸AXから離れる方向側を径方向外側といい、径方向外側の反対側を径方向内側という。
<ステータコア>
 ステータコア2は、本体部20と、ティース21と、コイル3を収容するスロット22を有する。スロット22は、内周面から径方向外側に凹んだ凹部である。スロット22は、ステータコア2の内周面において周方向に複数設けられる。本実施形態では、ステータコア2には、周方向に24個のスロット22が配置されている。本実施形態では、ステータ2のスロット数は、24スロットである。スロット22は、軸方向に延在する。スロット22は、内周面に配置されている。スロット22は、軸方向一方側及び軸方向他方側と、径方向内側とに向かって開口している。
 ステータコア2は、周方向において隣接するスロット22の間に配置された、複数のティース21を有する。本実施形態では、ステータコア2には、周方向に24個のティース21が配置されている。ティース21は、ステータコア2におけるコイル3が巻回される部分である。ティース21は、コイル3を支持する。ティース21は、コイル3の開口に挿入される。
 コイル3は、ティース21の周囲に配置される。コイル3は、ティース21に支持される。コイル3は、開口を有する。コイル3の開口に、ティース21が挿入される。コイル3は、インシュレータ5を介してステータコア2に装着される。モータの極数を減少させたため、1つのティース21に巻回されるコイル3は、従来の36極のモータに比べて多くなっている。
 コイル3は、図示しないコイル本体部とコイルエンド部とを含む。コイル3のうちスロット22に収容される部分がコイル本体部である。コイル3のうちステータコア2から軸方向に突出する部分がコイルエンド部である。
 コイル3は、例えば、平角線、丸線、又は、板状のセグメント導体等の線状又は帯状の導体により構成される。コイル3は、螺旋状に配置された導体により構成される。コイル3は、1本の導体を螺旋状に巻き付けて構成されてもよいし、複数の導体を螺旋状に接続して構成されてもよい。コイル3の巻付け方法及び接続方法は限定されない。
 コイル3は、A相コイル(第1相コイル)3Aと、B相コイル(第2相コイル)3Bと、C相コイル(第3相コイル)3Cとを含む。A相コイル3AとB相コイル3BとC相コイル3Cとの区別を特に要しない場合、コイル3として記載する。
 周方向において、A相コイル3AとB相コイル3Bとは隣接する。周方向において、B相コイル3BとC相コイル3Cとは隣接する。周方向において、C相コイル3CとA相コイル3Aとは隣接する。A相コイル3Aの周方向一方側の隣にB相コイル3Bが配置される。B相コイル3Bの周方向一方側の隣にC相コイル3Cが配置される。C相コイル3Cの周方向一方側の隣にA相コイル3Aが配置される。
<インシュレータ>
 インシュレータ5は、樹脂製の部材で形成されている。インシュレータ5は、コイル3とステータコア2との間に介在する。インシュレータ5は、周方向において、複数分割されている。本実施形態では、インシュレータ5は、12分割されている。また、インシュレータ5は、軸方向において、2つに分割されている。言い換えると、インシュレータ5は、軸方向において、一方側の第1部材6と、他方側の第2部材7とに分割されている。
 周方向に分割された1つのインシュレータ5は、2連構造である。周方向に分割された1つのインシュレータ5は、2連構造であるため、A相、B相及びC相を固定することができない。そこで、周方向に分割された1つのインシュレータ5は、SN巻きを固定し、A相、B相及びC相を共通にする。
 図4ないし図6を用いて、周方向に分割された1つのインシュレータ5の第1部材6について説明する。図4は、第1実施形態に係るインシュレータの第1部材の斜視図である。図5は、第1実施形態に係るインシュレータの第1部材の斜視図である。図6は、第1実施形態に係るインシュレータの第1部材の模式図である。図6は、説明のために、周方向を直線状にした模式図である。第1部材6は、壁部60と、本体部61と、係止部62と、渡り線保持部63とを有する。
 壁部60は、円板を周方向において複数に分割した形状である。周方向に分割された、インシュレータ5の第1部材6の壁部60がすべて接続されると円板状に形成される。
 本体部61は、壁部60の径方向内側の端部から、径方向内側に突設されている。本体部61は、コイル3が巻回される部分である。本体部61は、第2部材7の本体部71の軸方向一方側の端部と接続される。本体部61は、第2部材7の本体部71と組み付けられた状態で、コイル3が巻回されたステータコア2のティース21を覆って配置される。本体部61は、ティース21の軸方向一方側を覆って配置される。
 係止部62は、コイル3が本体部61から抜けることを規制する。係止部62は、本体部61より、軸方向一方側に長く、周方向に広がっている。係止部62は、従来のインシュレータの係止部よりも軸方向の高さが高く形成されている。係止部62は、本体部61の径方向内側に配置される。係止部62は、第2部材7の係止部72の軸方向一方側の端部と接続される。
 渡り線保持部63は、コイル3の各相の渡り線を保持する。渡り線保持部63は、渡り線3AT、渡り線3BT及び渡り線3CTを保持する。渡り線保持部63は、壁部60より軸方向一方側に配置されている。渡り線保持部63は、本体部61より径方向外側に配置されている。
 渡り線保持部63は、周方向に複数に分かれている。本実施形態では、渡り線保持部63は、渡り線保持部63と、渡り線保持部63と、渡り線保持部63と、渡り線保持部63と、渡り線保持部63とに分かれている。渡り線保持部63と渡り線保持部63と渡り線保持部63と渡り線保持部63と渡り線保持部63とは、異なる形状に形成されている。渡り線保持部63と渡り線保持部63と渡り線保持部63と渡り線保持部63と渡り線保持部63の平面形状については後述する。渡り線保持部63と渡り線保持部63と渡り線保持部63と渡り線保持部63と渡り線保持部63との区別を特に要しない場合、渡り線保持部63として説明する。
 渡り線保持部63には、第1溝64Aと第2溝64Bと第3溝64Cとが形成されている。第1溝64Aと第2溝64Bと第3溝64Cとは、軸方向に離間して配置されている。第1溝64Aと第2溝64Bと第3溝64Cとは、異なる形状に形成されている。第1溝64Aと第2溝64Bと第3溝64Cとは、例えば、径方向の深さが異なる形状である。第1溝64Aと第2溝64Bと第3溝64Cとは、例えば、軸方向の幅が異なる形状である。
 第1溝64Aは、A相コイル3Aの渡り線3ATを保持する溝である。第1溝64Aは、渡り線保持部63の外周部に形成されている。第1溝64Aは、径方向外側に向かって開口している。第1溝64Aは、渡り線保持部63の軸方向一方側に位置する。第1溝64Aに収容された渡り線3ATは、ステータコア2のスロット22までの経路上において、他相の渡り線3BT及び渡り線3CTと交差しない。
 第2溝64Bは、B相コイル3Bの渡り線3BTを保持する溝である。第2溝64Bは、渡り線保持部63の外周部に形成されている。第2溝64Bは、径方向外側に向かって開口している。第2溝64Bは、渡り線保持部63の第1溝64Aより軸方向他方側に位置する。第2溝64Bに収容された渡り線3BTは、ステータコア2のスロット22までの経路上において、他相の渡り線3AT及び渡り線3CTと交差しない。
 第3溝64Cは、C相コイル3Cの渡り線3CTを保持する溝である。第3溝64Cは、渡り線保持部63の外周部に形成されている。第3溝64Cは、径方向外側に向かって開口している。第3溝64Cは、渡り線保持部63の第2溝64Bより軸方向他方側に位置する。第3溝64Cに収容された渡り線3CTは、ステータコア2のスロット22までの経路上において、他相の渡り線3AT及び渡り線3BTと交差しない。
 このように構成された第1溝64Aと第2溝64Bと第3溝64Cとを有する渡り線保持部63において、第1溝64AにおけるA相コイル3Aの渡り線3ATの第1コイルエンド部と、第2溝64BにおけるB相コイル3Bの渡り線3BTの第2コイルエンド部と、第3溝64CにおけるC相コイル3Cの渡り線3CTの第3コイルエンド部とは、径方向に異なる位置にある。
 図7を用いて、渡り線保持部63について説明する。図7は、第1実施形態に係るインシュレータの第1部材のA-A線断面図である。図6に示すA-A線の位置においては、図7に示すように、第1溝64Aに収容されたA相コイル3Aの渡り線3ATの径方向の高さは、第2溝64Bに収容されたB相コイル3Bの渡り線3BTの径方向の高さより低い。第2溝64Bに収容されたB相コイル3Bの渡り線3BTの径方向の高さは、第3溝64Cに収容されたC相コイル3Cの渡り線3CTの径方向の高さより低い。図6に示すA-A線の位置においては、図7に示すように、第2溝64Bに収容されたB相コイル3Bの渡り線3BTのみが、ステータコア2のスロット22へ延びている。これにより、図6に示すA-A線の位置においては、図7に示すように、第2溝64Bに収容された渡り線3BTは、ステータコア2のスロット22までの経路上において、他相の渡り線3AT及び渡り線3CTと交差しない。
 第1溝64Aに収容されたA相コイル3Aの渡り線3ATの径方向の高さとは、言い換えると、第1溝64Aの深さ方向の高さである。第2溝64Bに収容されたB相コイル3Bの渡り線3BTの径方向の高さとは、言い換えると、第2溝64Bの深さ方向の高さである。第3溝64Cに収容されたC相コイル3Cの渡り線3CTの径方向の高さとは、言い換えると、第3溝64Cの深さ方向の高さである。
 図8を用いて、渡り線保持部63について説明する。図8は、第1実施形態に係るインシュレータの第1部材のB-B線断面図である。図6に示すB-B線の位置においては、図8に示すように、第1溝64Aに収容されたA相コイル3Aの渡り線3ATの径方向の高さは、第2溝64Bに収容されたB相コイル3Bの渡り線3BTの径方向の高さより低い。第2溝64Bに収容されたB相コイル3Bの渡り線3BTの径方向の高さは、第3溝64Cに収容されたC相コイル3Cの渡り線3CTの径方向の高さより低い。図6に示すB-B線の位置においては、第1溝64Aに収容されたA相コイル3Aの渡り線3ATのみが、ステータコア2のスロット22へ延びている。これにより、図6に示すB-B線の位置においては、図8に示すように、第1溝64Aに収容された渡り線3ATは、ステータコア2のスロット22までの経路上において、他相の渡り線3BT及び渡り線3CTと交差しない。
 図9を用いて、インシュレータの第1部材の平面形状について説明する。図9は、第1実施形態に係るインシュレータの第1部材の平面図である。図9に示す形状は、第1部材6が周方向において分割された複数のうちの1つの部材である。言い換えると、図9に示す部材が、周方向に連結されて、平面形状が円環状の第1部材6が形成される。
 渡り線保持部63は、周方向一方側において隣に位置する他の部材の渡り線保持部63と連結される。渡り線保持部63は、周方向一方側において隣に位置する他の部材の渡り線保持部63と連結される。
 渡り線保持部63は、本体部61の径方向外側に位置する。渡り線保持部63は、本体部61の周方向の中心を通る軸線上に位置する。渡り線保持部63は、本体部61の径方向外側に位置する。渡り線保持部63は、本体部61の周方向の中心を通る軸線上に位置する。渡り線保持部63と渡り線保持部63と渡り線保持部63とは、本体部61の周方向の中心を通る軸線上、及び、本体部61の周方向の中心を通る軸線上から周方向に外れて位置する。渡り線保持部63と、周方向他方側に位置する渡り線保持部63との間には、渡り線保持部63が位置する。渡り線保持部63と、周方向他方側に位置する渡り線保持部63との間には、連結された渡り線保持部63及び渡り線保持部63が位置する。
 渡り線保持部63と渡り線保持部63と渡り線保持部63と渡り線保持部63と渡り線保持部63とのうちの少なくとも1つは、軸方向視において、径方向外側における周方向の長さが径方向内側における周方向の長さより短く形成されている。本実施形態では、渡り線保持部63と渡り線保持部63とは、径方向外側における周方向の長さが径方向内側における周方向の長さより短く形成されている。これにより、周方向において隣接する渡り線保持部63は、径方向外側における距離が径方向内側における距離より広くなる。また、周方向において隣接する渡り線保持部63の間に、径方向に対して傾いた方向に延びる隙間が生じる。この隙間は、コイル3をステータコア2に巻回する際に使用されるノズル100の通路Qになる。
 ノズル100の通路Qは、周方向において隣接する渡り線保持部63の間に、径方向に対して傾いた方向に延びる隙間と、周方向において隣接する係止部62の周方向の隙間とによって規定される。ノズル100の通路Qは、図9において、破線で示している。実施形態では、通路Qは、中心線が径方向と交差する方向に配置される。
 通路Qは、通路Qと通路Qと通路Qと通路Qとを含む。通路Qと通路Qと通路Qと通路Qとの区別を特に要しない場合、通路Qとして記載する。
 通路Qは、渡り線保持部63と渡り線保持部63との間を通過する。通路Qは、直線L11と直線L12との間に形成される。直線L11は、渡り線保持部63の周方向他方側で径方向内側の端部と、渡り線保持部63と連結された渡り線保持部63の周方向一方側において隣に位置する渡り線保持部63の径方向内側に位置する本体部61の係止部62の周方向他方側の端部とを結ぶ直線である。直線L12は、渡り線保持部63の周方向一方側の端面の延長上の直線である。
 通路Qは、渡り線保持部63と渡り線保持部63との間を通過する。通路Qは、直線L21と直線L22との間に形成される。直線L21は、渡り線保持部63の周方向他方側の端面の延長上の直線である。直線L22は、渡り線保持部63の周方向一方側で径方向内側の端部と、渡り線保持部63の周方向他方側において隣に位置する渡り線保持部63の径方向内側に位置する本体部61の係止部62の周方向一方側の端部とを結ぶ直線である。
 通路Qは、渡り線保持部63と渡り線保持部63との間を通過する。通路Qは、直線L31と直線L32との間に形成される。直線L31は、渡り線保持部63の周方向他方側で径方向内側の端部と、渡り線保持部63の周方向一方側において隣に位置する渡り線保持部63の径方向内側に位置する本体部61の係止部62の周方向他方側の端部とを結ぶ直線である。直線L32は、渡り線保持部63の周方向一方側の端面の延長上の直線である。
 通路Qは、渡り線保持部63と渡り線保持部63との間を通過する。通路Qは、直線L41と直線L42との間に形成される。直線L41は、渡り線保持部63の周方向他方側の端面の延長上の直線である。直線L42は、渡り線保持部63の周方向一方側で径方向内側の端部と、渡り線保持部63と連結された渡り線保持部63の周方向他方側において隣に位置する渡り線保持部63の径方向内側に位置する本体部61の係止部62の周方向一方側の端部とを結ぶ直線である。
 通路Qと通路Qとは、渡り線保持部63の径方向内側に位置する本体部61の係止部62と、係止部62と周方向他方側の隣に位置する係止部62との間において交差する。通路Qと通路Qとは、渡り線保持部63の径方向内側に位置する本体部61の係止部62と、係止部62と周方向他方側の隣に位置する係止部62との間において交差する。
 渡り線保持部63の周方向一方側の端面の延長上に係止部62の周方向一方側の端部が位置する。渡り線保持部63の周方向一方側の端面の延長上に係止部62の周方向一方側の端部が位置する。渡り線保持部63の周方向他方側の端面の延長上に係止部62の周方向他方側の端部が位置する。渡り線保持部63の周方向他方側の端面の延長上に係止部62の周方向他方側の端部が位置する。
 渡り線保持部63と渡り線保持部63との間、渡り線保持部63と渡り線保持部63との間、渡り線保持部63と渡り線保持部63との間、及び、渡り線保持部63と渡り線保持部63との間は、径方向内側において最も狭くなっている。渡り線保持部63と渡り線保持部63との間が最も狭くなっている部分の距離d、渡り線保持部63と渡り線保持部63との間が最も狭くなっている部分の距離d、渡り線保持部63と渡り線保持部63との間が最も狭くなっている部分の距離d、渡り線保持部63と渡り線保持部63との間が最も狭くなっている部分の距離dは、コイル3をステータコア2に巻回する際に使用されるノズル100が通過可能な距離になっている。距離dは、例えば、6.3mmである。
 本実施形態では、軸方向視において、周方向に隣り合う係止部62の間隔は、最も狭い部分において例えば、7.2mmである。本実施形態では、軸方向視において、周方向に隣り合う渡り線保持部63の間隔は、最も狭い部分において例えば、6.3mm以上6.6mm以下である。
 渡り線保持部63の周方向他方側の端部と渡り線保持部63の周方向一方側の端部との間の角度θ1は、例えば、16.4°である。渡り線保持部63の周方向他方側の端部と渡り線保持部63の周方向一方側の端部の間の角度θ2は、例えば、9.5°である。渡り線保持部63の周方向一方側の端部と渡り線保持部63の周方向一方側の端部との間の角度θ3は、例えば、3°である。渡り線保持部63の周方向他方側の端部と渡り線保持部63の周方向他方側の端部との間の角度θ4は、例えば、5°である。渡り線保持部63の周方向他方側の端部と渡り線保持部63の周方向一方側の端部との間の角度θ5は、例えば、11.5°である。渡り線保持部63の周方向他方側の端部と渡り線保持部63の周方向一方側の端部との間の角度θ6は、例えば、10.5°である。
 本実施形態では、軸方向視において、周方向に隣り合う渡り線保持63部の向かい合う端部がなす角度は、例えば、9°以上17°以下である。
 図10、図11を用いて、周方向に分割された1つのインシュレータ5の第2部材7について説明する。図10は、第1実施形態に係るインシュレータの第2部材の斜視図である。図11は、第1実施形態に係るインシュレータの第1部材及び第2部材の斜視図である。第2部材7は、壁部70と、本体部71と、係止部72とを有する。図10、図11に示す形状は、第2部材7が周方向において分割された複数のうちの1つの部材である。言い換えると、図10に示す部材が、周方向に連結されて、平面形状が円環状の第2部材7が形成される。
 壁部70は、円筒を周方向において複数に分割した形状である。周方向に分割された、インシュレータ5の第2部材7の壁部70がすべて接続されると円筒状に形成される。
 本体部71は、壁部70の径方向内側に向いた面から、径方向内側に突設されている。本体部71は、コイル3が巻回される部分である。本体部71は、第1部材6の本体部61の軸方向他方側の端部と接続される。本体部71は、第1部材6の本体部61と組み付けられた状態で、コイル3が巻回されたステータコア2のティース21を覆って配置される。本体部71は、ティース21の軸方向他方側を覆って配置される。
 係止部72は、コイル3が本体部71から抜けることを規制する。係止部72は、本体部71より、軸方向他方側に長く、周方向に広がっている。係止部72は、本体部71の径方向内側に配置される。係止部72は、第1部材6の係止部62の軸方向他方側の端部と接続される。
<コイルの巻回時の経路>
 図12、図13を用いて、コイル3をステータコア2に巻回する際に使用されるノズル100の経路について説明する。図12は、ノズルの経路を説明する概略図である。図13は、ノズルの経路を説明する概略図である。図12、図13は、説明のために、周方向を直線状にした模式図である。一体として組み付けられたステータコア2に、ノズル100を使用してコイル3が巻回される。
 図12(a)、図13(a)においては、ノズル100が径方向に沿って位置している。図12(a)、図13(a)に示すように、係止部62が従来に比べて大きく張り出している。このため、このままノズル100がインシュレータ6の本体部61側へ進入すると、係止部62が干渉する。
 そこで、図12(b)、図13(b)に示すように、ノズル100を径方向に対して斜めに傾けた状態にして、インシュレータ6の本体部61側へ進入させる。図9に示したように、隣接する渡り線保持部63間の最も狭い部分は、ノズル100が通過可能な距離d、離間している。このため、この隙間からノズル100が進入可能である。
 そして、図12(c)、図13(c)に示すように、ノズル100を斜めに傾けた状態のまま、インシュレータ6の係止部62側へ進入させる。ノズル100は、隣接する渡り線保持部63間を通過して、隣接する係止部62の間までで到達する。
 そして、図12(d)、図13(d)に示すように、ノズル100を径方向に沿った向きに戻す。そして、本体部61へのコイル3の巻回を開始するために、ノズル100の位置を移動させる。
 そして、図12(e)、図13(e)に示すように、ノズル100の傾きを変えて、本体部61へコイル3を巻回する。
 このようにして、コイル3がステータコア2に巻回される。
<効果>
 以上説明したように、本実施形態は、渡り線保持部63に設けられた第1溝64Aと第2溝64Bと第3溝64Cとは形状が異なる。本実施形態は、これにより、インシュレータ5の基本構造は共通のまま、各相の渡り線3AT、渡り線3BT及び渡り線3CTとスロット内に入る各相のコイル3A、コイル3B及びコイル3Cとの空間距離を取り相間の絶縁能力の確保できる。このように、本実施形態は、3相間の絶縁能力を確保できる。
 本実施形態では、第1溝64Aと第2溝64Bと第3溝64Cとは、軸方向の幅が異なる形状である。これにより、本実施形態は、3相の渡り線3AT、渡り線3BT及び渡り線3CTと交差しないようにできる。
 本実施形態では、第1溝64Aと第2溝64Bと第3溝64Cとは、径方向の深さが異なる形状である。これにより、本実施形態は、3相の渡り線3AT、渡り線3BT及び渡り線3CTと交差しないようにできる。
 本実施形態では、第1溝64Aにおける渡り線3ATの第1コイルエンド部と、第2溝64Bにおける渡り線3BTの第2コイルエンド部と、第3溝64Cにおける渡り線3CTの第3コイルエンド部とは、径方向に異なる位置にある。これにより、本実施形態は、3相の渡り線3AT、渡り線3BT及び渡り線3CTと交差しないようにできる。
 本実施形態では、各相の第1コイルエンド部、第2コイルエンド部及び第3コイルエンド部のそれぞれからスロット22内へ入る各相のコイルは、他相のコイルの渡り線から離間している。本実施形態によれば、3相の渡り線3AT、渡り線3BT及び渡り線3CTと交差しないようにできる。
 1…ステータ、2…ステータコア、21…ティース、22…スロット、3…コイル、3A…A相コイル(第1相コイル)、3AT…渡り線、3B…B相コイル(第2相コイル)、3BT…渡り線、3C…C相コイル(第3相コイル)、3CT…渡り線、5…インシュレータ、6…第1部材、60…壁部、61…本体部、62…係止部、63…渡り線保持部、64A…第1溝、64B…第2溝、64C…第3溝、7…第2部材、70…壁部、71…本体部、72…係止部、100…ノズル、AX…回転軸、d…距離、Q…通路。

Claims (7)

  1.  ステータコアと、前記ステータコアに巻回される3相のコイルとの間に配置されるインシュレータであって、
     前記ステータコアにおける前記コイルが巻回される部分を覆って前記ステータコアと前記コイルとを絶縁する本体部と、
     前記本体部の径方向外側に配置された、前記コイルの渡り線を保持する渡り線保持部と、
     を備え、
     前記渡り線保持部は、第1相コイルの渡り線が収容される第1溝と、前記第1溝に対して軸方向他方側に配置された、第2相コイルの渡り線が収容される第2溝と、前記第2溝に対して軸方向他方側に配置された、第3相コイルの渡り線が収容される第3溝と、を有し、
     前記第1溝と前記第2溝と前記第3溝とは異なる形状に形成されている、
     インシュレータ。
  2.  前記第1溝と前記第2溝と前記第3溝とは、径方向の深さが異なる、
     請求項1に記載のインシュレータ。
  3.  前記第1溝と前記第2溝と前記第3溝とは、軸方向の幅が異なる、
     請求項1または2に記載のインシュレータ。
  4.  前記第1溝における前記第1相コイルの渡り線の第1コイルエンド部と、前記第2溝における前記第2相コイルの渡り線の第2コイルエンド部と、前記第3溝における前記第3相コイルの渡り線の第3コイルエンド部とは、径方向に異なる位置にある、
     請求項1から3のいずれか一項に記載のインシュレータ。
  5.  前記第1コイルエンド部、前記第2コイルエンド部及び前記第3コイルエンド部のそれぞれからスロット内へ入る前記コイルは、他相の前記コイルの渡り線から離間している、
     請求項4に記載のインシュレータ。
  6.  請求項1から5のいずれか一項に記載のインシュレータと、
     前記インシュレータが装着される前記ステータコアと、
     前記インシュレータを介して前記ステータコアに巻回されるコイルと、
     を備えるモータのステータ。
  7.  請求項6に記載のステータと、
     前記ステータに対して回転するロータと、
     を備えるモータ。
PCT/JP2023/001938 2022-01-24 2023-01-23 インシュレータ、ステータ及びモータ WO2023140381A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-008911 2022-01-24
JP2022008911A JP2023107626A (ja) 2022-01-24 2022-01-24 インシュレータ、ステータ及びモータ

Publications (1)

Publication Number Publication Date
WO2023140381A1 true WO2023140381A1 (ja) 2023-07-27

Family

ID=87348394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001938 WO2023140381A1 (ja) 2022-01-24 2023-01-23 インシュレータ、ステータ及びモータ

Country Status (2)

Country Link
JP (1) JP2023107626A (ja)
WO (1) WO2023140381A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3049249U (ja) * 1997-11-28 1998-06-09 国産電機株式会社 回転電機用回転子
JP2000134844A (ja) * 1998-10-20 2000-05-12 Matsushita Electric Ind Co Ltd 電動機
JP2013211956A (ja) * 2012-03-30 2013-10-10 Mitsubishi Electric Corp 回転電機
JP2015163014A (ja) * 2014-02-28 2015-09-07 日本電産テクノモータ株式会社 モータ用ステータ及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3049249U (ja) * 1997-11-28 1998-06-09 国産電機株式会社 回転電機用回転子
JP2000134844A (ja) * 1998-10-20 2000-05-12 Matsushita Electric Ind Co Ltd 電動機
JP2013211956A (ja) * 2012-03-30 2013-10-10 Mitsubishi Electric Corp 回転電機
JP2015163014A (ja) * 2014-02-28 2015-09-07 日本電産テクノモータ株式会社 モータ用ステータ及びその製造方法

Also Published As

Publication number Publication date
JP2023107626A (ja) 2023-08-03

Similar Documents

Publication Publication Date Title
KR100385684B1 (ko) 회전전기의 고정자
US7569964B2 (en) Variable reluctance type angle detector
US7994677B2 (en) Stator for rotary electric machine, and rotary electric machine using the stator
US7923885B2 (en) Stator for rotary electric machine, and rotary electric machine using the stator
US11063482B2 (en) Stator and motor having the same
JP5301868B2 (ja) 埋込磁石型モータ
KR101998508B1 (ko) 회전 전기
JP6872289B1 (ja) 回転電機およびその製造方法
CN111555509A (zh) 一种电机定子及电机
WO2019073724A1 (ja) 回転電機の固定子
US20230105198A1 (en) Stator of rotary electric machine
US20220286006A1 (en) Motor
CN111564921A (zh) 一种电机定子及电机
US20230369921A1 (en) Stator and motor
US20120001516A1 (en) Stator for electric rotating machine and method of manufacturing the same
WO2023140381A1 (ja) インシュレータ、ステータ及びモータ
WO2023140380A1 (ja) インシュレータ、ステータ及びモータ
JP5481302B2 (ja) 外転型の電動機
JP6651426B2 (ja) 回転電機の固定子、及びこれを備えた回転電機
JP7004164B2 (ja) 回転電機のステータ、回転電機、及び回転電機のステータの製造方法
CN111564920A (zh) 一种电机定子及电机
JP2012019575A (ja) 電動機の突極集中巻きステータの製造方法
JP5256835B2 (ja) 回転電機の固定子及び回転電機
KR102350229B1 (ko) 구동 모터용 터미널 어셈블리
CN212462900U (zh) 一种电机定子及电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743373

Country of ref document: EP

Kind code of ref document: A1