WO2023139768A1 - エアバッグ装置 - Google Patents
エアバッグ装置 Download PDFInfo
- Publication number
- WO2023139768A1 WO2023139768A1 PCT/JP2022/002279 JP2022002279W WO2023139768A1 WO 2023139768 A1 WO2023139768 A1 WO 2023139768A1 JP 2022002279 W JP2022002279 W JP 2022002279W WO 2023139768 A1 WO2023139768 A1 WO 2023139768A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- airbag
- vehicle
- occupant
- condition
- threshold
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62J—CYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
- B62J27/00—Safety equipment
- B62J27/20—Airbags specially adapted for motorcycles or the like
Definitions
- the present invention relates to an airbag device.
- Patent Literature 1 discloses a structure in which an airbag is supported by a slide frame, and when the impact at the time of a collision is large, the slide frame slides forward and separates from the guide rail, thereby allowing the occupant to leave the motorcycle while being restrained by the airbag.
- the slide frame absorbs the impact, but the airbag does not reduce the speed at which the passenger is separated from the vehicle at the time of collision (detachment speed).
- An airbag device mounted on a vehicle and equipped with an airbag that deploys around an occupant is characterized by comprising a separation unit that separates the airbag from the vehicle, and an airbag control unit that detects the elapsed time after the airbag is deployed and separates the airbag by the separation unit when a predetermined condition including the elapse of a predetermined time is satisfied.
- FIG. 1 is a side view of a straddle-type vehicle according to an embodiment of the invention.
- FIG. 2 is a block diagram of an airbag device.
- FIG. 3 is a left side view showing a state in which the airbag is deployed to protect the driver.
- FIG. 4 is a front view of a state in which an airbag is deployed to protect a driver, viewed from the front.
- FIG. 5 is a flow chart showing the operation of the airbag control section.
- FIG. 6 is a flow chart showing an example of processing after step S2 in the flow chart of FIG.
- FIG. 7 is a sequence diagram illustrating separation timing of the airbag when at least a frontal collision occurs.
- FIG. 8 is a sequence diagram illustrating the separation timing of the airbag in the case of a rear or side collision.
- FIG. 9 is a side view showing an airbag device according to a modification together with a saddle-ride type vehicle. 10 is a left side view showing a state in which the airbag shown in FIG. 9 is deployed to protect the driver.
- FIG. FIG. 11 is a block diagram showing a modification of the airbag device.
- FIG. 1 is a side view of a straddle-type vehicle 10 according to an embodiment of the invention.
- a straddle-type vehicle 10 includes a vehicle body frame 11, a power unit 12 supported by the vehicle body frame 11, a front fork 14 steerably supporting a front wheel 13, a swing arm 16 supporting a rear wheel 15, and a seat 17 for an occupant.
- the saddle-ride type vehicle 10 is a vehicle in which an occupant sits astride a seat 17 .
- the seat 17 is provided above the rear portion of the body frame 11 .
- the body frame 11 includes a head pipe 18 provided at the front end of the body frame 11 , a front frame 19 positioned behind the head pipe 18 , and a rear frame 20 positioned behind the front frame 19 .
- a front end portion of the front frame 19 is connected to the head pipe 18 .
- Seat 17 is supported by rear frame 20 .
- the front fork 14 is supported by a head pipe 18 so as to be steerable left and right.
- the front wheel 13 is supported by an axle 13 a provided at the lower end of the front fork 14 .
- a steering handle 21 gripped by a passenger is attached to the upper end of the front fork 14 .
- the swing arm 16 is supported by a pivot shaft 22 supported by the vehicle body frame 11 .
- the pivot shaft 22 is a shaft extending horizontally in the vehicle width direction.
- a pivot shaft 22 is inserted through the front end of the swing arm 16 .
- the swing arm 16 swings up and down around the pivot shaft 22 .
- the rear wheel 15 is supported by an axle 15 a provided at the rear end of the swing arm 16 .
- Power unit 12 is arranged between front wheel 13 and rear wheel 15 and supported by body frame 11 .
- Power unit 12 is an internal combustion engine.
- the power unit 12 includes a crankcase 23 and a cylinder portion 24 that houses reciprocating pistons.
- An exhaust device 25 is connected to an exhaust port of the cylinder portion 24 .
- the output of power unit 12 is transmitted to rear wheels 15 by a driving force transmission member that connects power unit 12 and rear wheels 15 .
- the saddle-riding type vehicle 10 is provided with a front fender 26 covering the front wheel 13 from above, a rear fender 27 covering the rear wheel 15 from above, a step 28 on which an occupant puts his/her feet, and a fuel tank 29 for storing fuel used by the power unit 12. - ⁇
- a front fender 26 is attached to the front fork 14 .
- the rear fender 27 and step 28 are provided below the seat 17 .
- the fuel tank 29 is supported by the vehicle body frame 11 .
- the saddle-ride type vehicle 10 is a scooter type motorcycle provided with a floor-like step 28 in front and below the seat 17 .
- the power unit 12 is a unit swing engine in which the internal combustion engine and the swing arm 16 are integrally formed.
- the power unit 12 is arranged directly below the seat 17 and the rear frame 20 .
- the straddle-type vehicle 10 includes a vehicle body cover 30 that covers the vehicle body such as the vehicle body frame 11 and the power unit 12 .
- the seat 17 is provided behind the handle 21 and above the rear frame 20 .
- the seat 17 includes a front seat 31 on which a driver R (occupant) sits, and a rear seat 32 arranged behind the front seat 31 .
- the rear seat 32 is formed to be stepped higher than the front seat 31 .
- a fellow passenger (passenger) can sit on the rear seat 32, or luggage can be placed thereon.
- the straddle-type vehicle 10 includes an airbag device 40 that protects the driver R.
- FIG. 2 is a block diagram of the airbag device 40.
- the airbag device 40 includes an inflator 41, an airbag 42 inflated by gas emitted by the inflator 41, a separation part 43 for separating the airbag 42 from the saddle type vehicle 10, an airbag control part 44 for controlling the operation of the airbag device 40, and a storage part 45.
- the inflator 41 releases gas into the airbag 42 under the control of the airbag controller 44 .
- the airbag 42 is formed by sewing a base fabric, and is inflated and deployed by gas pressure.
- the airbag 42 is stored in the airbag storage portion 33 (FIG. 1) in a folded state.
- the airbag storage section 33 is arranged in the rear part of the seat 17 and behind the front seat 31, so that it is arranged behind the seating position 17a of the driver R. That is, the vehicle body supporting position of the airbag 42 is behind the driver R.
- the separation part 43 separates the airbag 42 from the saddle-ride type vehicle 10 .
- the separating portion 43 separates the airbag portion, in which the airbag 42 can protect the driver R, from the saddle-ride type vehicle 10 .
- the separated airbag portion may include the inflator 41 .
- the airbag control section 44 is a section that controls each section of the airbag device 40, and inputs the detection result of the vehicle sensor 10S.
- the vehicle sensor 10S is a group of sensors that detect information indicating the longitudinal acceleration (including deceleration), vehicle speed, tilt angle, pitch angle, yaw angle, and the like of the straddle-type vehicle 10 .
- the tilt angle is the tilt angle of the vehicle body with respect to the vertical direction.
- the vehicle sensor 10S includes a vehicle speed sensor, front and rear wheel rotation speed sensors, and an inertial sensor such as an IMU (Inertial Measurement Unit).
- the inertial sensor detects front, rear, left, and right accelerations, three-axis angular velocities, and the like.
- the roll angle, pitch angle, and yaw angle of the saddle-ride type vehicle 10 can be identified by performing a predetermined conversion to the angular velocities of the three axes, and the tilt angle of the saddle-ride type vehicle 10 can be identified from the roll angle.
- the roll angle is, for example, the angle of inclination from the road surface, and the angle of inclination of the saddle-ride type vehicle 10 is the angle of inclination of the saddle-ride type vehicle 10 to the left and right with respect to the vertical axis.
- the airbag control unit 44 is composed of a CPU and peripheral circuits, and functions as a collision determination unit 44A, a deployment control unit 44B, a detection unit 44C, and a separation control unit 44D by the CPU executing a control program stored in the storage unit 45.
- the collision determination unit 44A identifies whether or not a collision of the saddle-riding vehicle 10 has occurred, and identifies the direction of the collision (frontal collision (also referred to as a frontal collision), rear collision (also referred to as a rearward collision or rear-end collision), or side collision (also referred to as a side collision)) based on detection results of the vehicle sensor 10S (for example, longitudinal acceleration and lateral acceleration of the saddle-riding vehicle 10).
- the collision determination unit 44A of the present embodiment determines that overturning is predicted when at least one of the tilt angle and angular velocity of the saddle-ride type vehicle 10 satisfies a predetermined condition for predicting overturning. For example, a predetermined condition describing the combination of the tilt angle and the angular velocity when it is regarded as a fall is set, and the collision determination unit 44A determines that the fall is predicted when the detected combination of the tilt angle and the angular velocity satisfies the predetermined condition.
- map data in which an angular velocity threshold value is set for each tilt angle is prepared in advance, and the collision determination unit 44A performs processing for determining that a turnover is predicted when the detected angular velocity is equal to or greater than the angular velocity threshold value specified from the map data based on the detected tilt angle.
- the processing is not limited to the above processing using a combination of the tilt angle and the angular velocity.
- a threshold value for the tilt angle for determining a fall or a threshold value for an angular velocity for determining a fall may be set in advance, and the collision determination unit 44A may perform processing for determining that a fall is predicted when the tilt angle or the angular velocity is equal to or greater than the threshold.
- the deployment control section 44B determines whether or not to activate the inflator 41 based on the determination result of the collision determination section 44A, and activates the inflator 41 to deploy the airbag 42 according to the determination result.
- the detection unit 44 ⁇ /b>C detects various pieces of information regarding separation timing for separating the airbag 42 from the saddle-ride type vehicle 10 .
- the information to be detected includes the elapsed time TA after the deployment of the airbag 42 (hereinafter referred to as "airbag deployment time TA”) and the movement distance LA of the driver R relative to the saddle-ride type vehicle 10 (hereinafter referred to as "passenger movement distance LA").
- the detector 44C has a timer function, and detects the airbag deployment time TA by measuring the elapsed time after the inflator 41 is ignited.
- the detection unit 44C also detects the occupant movement distance LA by acquiring the front, rear, left, and right accelerations of the saddle-ride type vehicle 10 via the vehicle sensor 10S, and performing arithmetic processing for estimating the occupant movement distance LA based on these accelerations. A method of calculating the occupant movement distance LA will be described.
- the travel distance of the saddle-ride type vehicle 10 can be calculated by second-order integration of the acceleration obtained by the vehicle sensor 10S. When the saddle-ride type vehicle 10 does not collide, the saddle-ride type vehicle 10 and the driver R move together.
- the occupant movement distance LA used in actual calculations is not the constant integrated value of the output of the acceleration sensor that detects acceleration, but the integrated value from which the DC component of the output of the acceleration sensor is removed or the integrated value for a certain period of time.
- an estimated value of the occupant movement distance LA can be calculated by calculating the difference in the movement distance of the saddle-ride type vehicle 10 when the vehicle 10 does not decelerate without collision and when it decelerates due to the collision, based on the acceleration after the collision.
- the occupant travel distance LA is the travel distance with respect to the saddle-ride type vehicle 10 from the time of collision.
- the separation control section 44D operates the separation section 43 to separate the airbag 42 after the deployment of the airbag 42 starts based on the detection result of the detection section 44C and the detection result of the vehicle sensor 10S.
- the airbag 42 can be separated from the saddle-ride type vehicle 10 together with the driver R by separating the airbag 42 .
- FIG. 3 is a left side view showing a state in which the airbag 42 is deployed to protect the driver R.
- FIG. 4 is a front view of the state in which the airbag 42 is deployed to protect the driver R, viewed from the front.
- the airbag 42 includes a vehicle body support side deployment portion 49 positioned on the rear side of the vehicle body support position (which can also be called the inflator 41 side or the airbag housing portion 33 side) with respect to the driver R when deployed, and an opposite side deployment portion 50 positioned on the front side of the driver R opposite to the vehicle body support position.
- the vehicle body support side deploying portion 49 functions as a rear covering portion that covers the torso R1 of the driver R from behind, and has a shape extending upward from the airbag storage portion 33 .
- the opposite side deployment portion 50 functions as a front covering portion that covers the torso R1 from the front, and has a shape that extends upward to the vicinity of the driver's R head R2.
- the opposite side deployment portion 50 includes a forward extension portion 51 extending forward from both sides of the vehicle body support side deployment portion 49 on the vehicle width direction outer side, and an inner bent portion 52 that bends inward in the vehicle width direction from the front extension portion 51 and extends inward in the vehicle width direction.
- the opposite side deployment portion 50 includes a downward extension portion 53 that bends from the inner bent portion 52 and extends downward, and a folded portion 54 that folds back from the downward extension portion 53 toward the forward extension portion 51 .
- the forward extending portion 51 covers the trunk R1 from the outside under the arm R3 of the driver R and protects the trunk R1 from the outside.
- the opposite side deployment portion 50 covers the torso R1 of the driver R from the front and from the left and right.
- the deployed airbag 42 covers the driver R from the surroundings, it can protect the driver R from the front, left, right, and rear. Since the airbag 42 is fixed to the saddle-ride type vehicle 10 behind the driver R, by delaying the separation of the airbag 42, as shown in FIG. 3, in the case of a frontal collision, that is, when the inertia force F (FIG. 3) that moves the driver R forward of the saddle-ride type vehicle 10 is generated, the forward movement speed of the driver R can be reduced by the tension FT of the airbag 42.
- the tension FT of the airbag 42 can reduce the lateral movement speed of the driver R to some extent. Further, since the airbag 42 also covers the driver R from behind, even when an inertial force F is generated to move the driver R rearward of the saddle-riding type vehicle 10, the tension FT of the airbag 42 can reduce the rearward moving speed of the driver R to some extent.
- the driver R and the saddle-riding vehicle 10 are connected via the airbag 42, so that the relative movement of the driver R with respect to the saddle-riding vehicle 10 is suppressed, and the moving speed of the driver R can be reduced.
- the separation speed can also be reduced.
- FIG. 5 is a flow chart showing the operation of the airbag control section 44.
- the collision determination section 44A of the airbag control section 44 determines whether or not a collision or overturn is predicted based on the detection result of the vehicle sensor 10S (step S1). If neither a collision nor a fall is predicted (step S1: NO), the airbag control section 44 terminates the flowchart shown in FIG. This flowchart is repeatedly executed at a predetermined cycle to continuously monitor whether or not a collision or overturn is predicted.
- step S1 When a collision or overturn is predicted (step S1: YES), that is, when the calculated acceleration value of the straddle-type vehicle 10 is equal to or greater than a predetermined threshold, or when at least one of the tilt angle and the angular velocity satisfies a predetermined condition for predicting overturn, the airbag control unit 44 causes the deployment control unit 44B to operate the inflator 41 (step S2).
- the airbag 42 does not function effectively, such as in a light collision or a low-speed collision, the inflator 41 is not activated as in the conventional case.
- Collisions and rollovers in this description refer to collisions and rollovers in which the airbag 42 effectively functions, unless otherwise specified.
- the airbag control section 44 determines whether or not a predetermined early separation condition is satisfied by the separation control section 44D (step S3).
- the early separation condition is a condition that specifies a situation in which it is desirable to separate the airbag 42 earlier than when the airbag 42 is separated by maximum delay separation processing, which will be described later.
- the early separation condition can also be said to be a condition specifying a situation in which it is desirable to separate the airbag 42 before the airbag 42 is fully deployed to a necessary and sufficient capacity.
- a state in which the airbag 42 is fully deployed is a state in which the airbag 42 is deployed to its maximum capacity.
- the early separation condition is a condition specifying that the saddle-riding vehicle 10 is in a state where there is a possibility of overturning, i.e., the vehicle is immediately traveling at high speed.
- the early separation conditions are stored in the storage unit 45 as information for specifying each state, as information for specifying respective ranges and combinations of vehicle speed, acceleration, inclination angle (roll angle), pitch angle, yaw angle, and/or angular velocity.
- the state in which there is a possibility of overturning includes the state in which the saddle-ride type vehicle 10 is banked left and right and the vehicle is traveling on a curve, and the tilt angle is equal to or greater than a predetermined tilt threshold, and can be specified by the tilt angle of the saddle-ride type vehicle 10 or the like.
- the separation control unit 44D acquires vehicle information such as the vehicle speed, acceleration, and tilt angle of the saddle-ride type vehicle 10 via the vehicle sensor 10S, and determines whether or not the early separation condition is satisfied based on the acquired vehicle information. If the early separation condition is satisfied (step S3: YES), the airbag control unit 44 performs early separation processing (step S31). As early separation processing, the airbag control section 44 causes the airbag 42 to be separated early by the separation control section 44D.
- the separation control section 44D causes the separation section 43 to separate the airbag 42 without waiting until the airbag 42 is completely deployed (during the deployment of the airbag 42).
- the airbag 42 is quickly separated in a state in which it is deployed to a predetermined state, and the airbag 42 does not hinder the shift of the driver R to the road surface sliding.
- the airbag 42 can be expected to have the effect of protecting the occupant.
- the airbag control part 44 separates the airbag 42 by the separating part 43 without waiting until the airbag 42 is completely deployed (during the deployment of the airbag 42).
- the airbag 42 can follow the driver R who leaves the saddle-ride type vehicle 10 in a short time, and the effect of mitigating the impact acting on the driver R after leaving can be expected.
- the airbag control unit 44 determines whether or not the predetermined separation condition is satisfied by the separation control unit 44D (step S4).
- the predetermined separation condition is a condition specifying a state in which it is desirable that the timing of separation of the airbag 42 is earlier than the separation of the airbag 42 by the maximum delay separation processing described later.
- the predetermined separation conditions correspond to the "predetermined conditions" of the present invention.
- the airbag 42 is fixed to the saddle-ride type vehicle 10 behind the driver R, so that when the driver R moves forward with respect to the saddle-ride type vehicle 10, the forward movement speed of the driver R can be effectively reduced by delaying the timing of releasing the airbag 42.
- the driver R does not move forward with respect to the saddle-ride type vehicle 10, for example, in the case of a rear-end collision or a side-end collision, it is difficult to effectively reduce the detachment speed of the driver R even if the timing of releasing the airbag 42 is delayed.
- the separation control unit 44D acquires the vehicle information of the saddle-ride type vehicle 10 via the detection unit 44C, and when it is determined that the predetermined delay condition is satisfied based on the acquired vehicle information (step S4: YES), the separation control unit 44D performs separation processing for separating the airbag 42 at a predetermined timing (step S41). On the other hand, when it is determined that the predetermined delay condition is not satisfied (step S4: NO), the separation control unit 44D performs maximum delay separation processing (step S5).
- the maximum delay separation process is a process in which the airbag 42 is separated by the separating section 43 after the airbag 42 is completely deployed. Also in the separation process of step S41, the airbag 42 may be separated by the separating section 43 after the airbag 42 is completely deployed according to the delay condition.
- FIG. 6 is a flow chart showing an example of processing after step S2 in the flow chart of FIG.
- the airbag control unit 44 determines whether or not the airbag deployment time TA has passed a preset time threshold DT (step S1A).
- the time threshold DT defines a time period equal to or greater than the lower limit value SB of the necessary and sufficient deployment state in which the airbag 42 can sufficiently protect the driver R (referred to as "necessary and sufficient deployment state SB"), for example, defines the deployment time until the airbag 42 deploys to 70%.
- the necessary and sufficiently deployed state SB is a state in which the impact force acting between the airbag 42 and the driver R can be reduced, and the impact force acting between the driver R and the road surface can be reduced when the driver R coming out of the saddle type vehicle 10 contacts the road surface.
- the necessary and sufficient deployment state SB may also be set appropriately by the manufacturer or the like of the straddle-type vehicle 10, and is defined by the deployment time TT (FIG. 7) from the start of deployment.
- step S1A the airbag control unit 44 determines whether or not the vehicle is overturned or is predicted to be overturned by the collision determination unit 44A (step S2A). If the overturned state or the overturn is predicted (step S2A: YES), the airbag control unit 44 performs separation processing for the overturn (step S1B). Separation processing for overturning is processing for separating the airbag 42 at a suitable timing when overturning. For example, the airbag 42 is separated after waiting until the necessary and sufficient deployment state SB, so that the airbag 42 is separated after waiting for the state where the airbag 42 is inflated to the extent necessary for gripping the occupant. As a result, the driver R can be released together with the airbag 42 quickly when the vehicle falls.
- the fall-prevention separation process may be delayed from the timing corresponding to the necessary and sufficient deployment state SB.
- the timing at which the separation is to be performed may be appropriately set by the manufacturer of the straddle-type vehicle 10 or the like.
- a threshold value for determining whether or not there is a margin before grounding is provided by using an angular velocity or an inclination angle, and if there is a margin before grounding, waiting until the airbag 42 is completely deployed may be performed to separate the airbag 42.
- step S2A determines whether or not the saddle-ride type vehicle 10 is running at high speed, and more specifically determines whether or not the saddle-ride type vehicle 10 is running at high speed immediately before a collision or overturn is predicted (step S3A). If the vehicle is in the high-speed running state (step S3A; YES), the airbag control unit 44 performs separation processing with priority given to follow-up of the occupant (step S1C).
- Separation processing prioritizing occupant follow-up is processing for separating the airbag 42 without waiting until the airbag 42 is completely deployed, if the airbag 42 is inflated to the extent necessary for gripping the occupant because it is predicted that the driver R will leave before the airbag 42 is fully deployed.
- the state in which the airbag 42 expands to the extent necessary to grip the occupant is defined by the timing set by the manufacturer of the straddle-type vehicle 10, that is, the deployment time from the start of deployment. Therefore, the airbag control section 44 separates the airbag 42 at the timing when the airbag deployment time TA detected by the detection section 44C reaches the deployment time.
- the airbag 42 is separated when the airbag 42 is deployed to a predetermined state even before the necessary and sufficient deployment state SB of FIG. 7, which will be described later, has passed. Note that the airbag 42 may be separated at the timing of the necessary and sufficient deployment state SB.
- the airbag control unit 44 determines whether or not the occupant movement distance LA detected by the detection unit 44C has reached a predetermined distance threshold DL (step S4A).
- the distance threshold DL is set to a value within the range of the occupant movement distance LA that allows the driver R's movement speed to be reduced. Therefore, the moving speed of the driver R is reduced using the tension FT of the airbag 42 illustrated in FIG. 3 until the passenger moving distance LA reaches the distance threshold DL.
- step S5A determines whether the airbag deployment time TA has exceeded a preset maximum delay time DM (step S5A). When the airbag deployment time TA has not passed the maximum delay time DM (step S5A; NO), the airbag control unit 44 proceeds to the process of step S4A. When the occupant movement distance LA reaches the distance threshold DL (step S4A; YES), or when the airbag deployment time TA exceeds the maximum delay time DM (step S5A; YES), the airbag control unit 44 separates the airbag 42 (step S6A).
- the maximum delay time DM is set at a timing that guarantees separation of the airbag 42 after the airbag 42 has been fully deployed. As a result, even if the occupant movement distance LA does not reach the distance threshold value DL, the airbag 42 is reliably separated in a time-limited manner, and the driver R can be easily separated from the saddle-ride type vehicle 10 together with the airbag 42. ⁇ The maximum delay time DM may be set to an appropriate time by the manufacturer of the straddle-type vehicle 10 or the like.
- FIG. 7 is a sequence diagram illustrating separation timing of the airbag 42 when at least a frontal collision occurs.
- the “X integral value” indicates the passenger moving distance LA forward of the driver R
- the “Y integral value” indicates the passenger moving distance LA in the left and right direction of the driver R
- the “XY composite G integral value” indicates the composite value of the X integral value and the Y integral value
- the horizontal axis indicates time.
- the change characteristic of the "X integral value” is denoted by symbol fx, and indicates the case where the driver R moves forward.
- Symbols fy1, fy2, and fy3 denote the change characteristics of the "Y integral value", and the case where the lateral movement amount of the driver R increases in the order of the change characteristics fy1, fy2, and fy3 is shown.
- the change characteristic of "the integrated value of the XY composite G" indicates the composite characteristic fxy of the change characteristics fx and fy.
- the distance threshold DL is set for each of the X integral value and the Y integral value.
- the distance threshold DL for the X integral value is indicated by “distance threshold DL(X)”
- the distance threshold DL for the Y integral value is indicated by “distance threshold DL(Y)”.
- the distance threshold DL(X) corresponds to the "first distance threshold” of the invention
- the distance threshold DL(Y) corresponds to the "second distance threshold” of the invention.
- the timing of collision is time T1
- the timing of inflator ignition is time T2
- the timing of the necessary and sufficient deployment state SB is time T3.
- the deployment time TT from the inflator ignition T2 to the necessary and sufficient deployment state SB is a constant value.
- the change characteristic fx When a collision occurs and the change characteristic fx of the X integral value and the change characteristic fy1 of the Y integral value, the change characteristic fx reaches the distance threshold DL(X) at time Ta, and the change characteristic fy1 is less than the distance threshold DL(Y) at time Ta.
- the time T3 of the necessary and sufficient deployment state SB (the timing at which the airbag deployment time TA reaches the time threshold DT) has passed, so the airbag 42 is released at the timing of time Ta.
- the airbag 42 Since the airbag 42 is not separated until the X integral value (occupant moving distance LA in the longitudinal direction) reaches the distance threshold DL(X), the moving speed of the driver R is effectively reduced by the airbag 42, and the driver R can be protected by the airbag 42 deployed more than the necessary and sufficiently deployed state SB.
- the change characteristic fx of the X integral value and the change characteristic fy2 of the Y integral value reaches the distance threshold DL(Y) at time Tb.
- This time Tb is before the time Ta when the change characteristic fx reaches the distance threshold DL(X), and the time T3 of the necessary and sufficient deployment state SB has passed. Therefore, the airbag 42 is separated at the timing of time Tb. Since the airbag 42 is not separated until the Y integral value (the occupant moving distance LA to the side) reaches the distance threshold DL(Y), the airbag 42 effectively reduces the lateral moving speed of the driver R while protecting the driver R by the airbag 42 deployed more than the necessary and sufficient deployed state SB.
- the change characteristic of the Y integral value is fy3.
- the change characteristic fy3 reaches the distance threshold DL(Y) at time Tc.
- This time Tc is before time T3 in the necessary and sufficiently deployed state SB. Therefore, the airbag 42 is not separated at the time Tc, and is separated after the time T3 of the necessary and sufficient deployment state SB has passed. Since the airbag 42 is not separated until the necessary and sufficiently deployed state SB is reached even when the Y integral value (sideward occupant movement distance LA) reaches the distance threshold DL (Y), the driver R can be protected by the airbag 42 deployed more than the necessary and sufficiently deployed state SB while effectively reducing the lateral movement speed of the driver R by the airbag 42.
- FIG. 8 is a sequence diagram illustrating separation timing of the airbag 42 in the event of a rear or side collision.
- the distance threshold DL (corresponding to the first distance threshold) of the X integral value is indicated by “distance threshold DL (+X)” in the deceleration direction and “distance threshold DL (-X)” in the acceleration direction.
- the “distance threshold DL(+X)” in the deceleration direction corresponds to a threshold in one direction of the vehicle longitudinal direction in which the driver R is positioned with respect to the vehicle support position of the airbag 42 .
- the “distance threshold DL(-X)” for the acceleration direction corresponds to the threshold for the other direction, which is the opposite direction to the one direction.
- the “distance threshold DL (+X)” is set to a value larger than the “distance threshold DL ( ⁇ X)” and the Y integral value distance threshold DL (corresponding to the second distance threshold).
- the distance threshold DL for the Y integral value is a rightward “distance threshold DL(+Y)” and a leftward “distance threshold DL( ⁇ Y)”.
- the change characteristic fx2 reaches the distance threshold DL(-X) at time Te. Since this time Te is before time T3 in the necessary and sufficient deployment state SB, the airbag 42 is not separated at time Te, and the airbag 42 is released after the time T3 in the necessary and sufficient deployment state SB.
- the distance threshold DL(-X) is set to a small value so that the airbag 42 can be released quickly, and the airbag 42 is released at the timing of the necessary and sufficient deployment state SB at the time of rear-end collision.
- the change characteristic fy4 reaches the distance threshold DL(-Y) at time Tf.
- the time point T3 of the necessary and sufficient deployment state SB has passed, so the airbag 42 is released at the timing of the time point Tf. Since the airbag 42 is not separated until the Y integral value (the occupant moving distance LA to the side) reaches the distance threshold DL(Y), the airbag 42 effectively reduces the lateral moving speed of the driver R while protecting the driver R by the airbag 42 deployed more than the necessary and sufficient deployed state SB.
- the airbag device 40 includes the separation section 43 that separates the airbag 42 deployed around the driver R from the saddle-ride type vehicle 10, the detection section 44C that detects the elapsed time (airbag deployment time TA, etc.) after deployment of the airbag 42, and the separation control section 44D that separates the airbag 42 by the separation section 43 when the separation condition (predetermined condition) including the first condition that the elapsed time detected by the detection section 44C exceeds the time threshold value DT is satisfied. and
- the separation condition predetermined condition
- the time threshold DT is longer than the time required for the airbag 42 to deploy to the predetermined state (necessarily and sufficiently deployed state SB). According to this configuration, the separation timing of the airbag 42 is delayed, and the protective effect of the airbag 42 can be easily obtained when the driver R leaves the saddle-ride type vehicle 10 .
- the detection unit 44 ⁇ /b>C performs arithmetic processing for estimating the occupant movement distance LA, which is the movement distance of the driver R with respect to the saddle-ride type vehicle 10 , based on the acceleration of the saddle-ride type vehicle 10 .
- the separation conditions further include a second condition that the occupant movement distance LA exceeds a predetermined distance threshold DL, and the separation control unit 44D causes the separation unit 43 to separate the airbag 42 when at least the first and second conditions are satisfied.
- the separation timing of the airbag 42 can be delayed in consideration of the occupant moving distance LA, and the release speed of the driver R is reduced using the airbag 42, making it easier to reduce the release speed of the driver R.
- an acceleration sensor provided in an existing saddle-riding type vehicle can be used, it becomes easier to reduce costs and reduce the number of parts compared to the case of using other sensors for detecting the occupant movement distance LA.
- the detection unit 44C acquires acceleration in the longitudinal direction of the vehicle and acceleration in the lateral direction of the vehicle, estimates the distance traveled by the driver R in the longitudinal direction of the vehicle relative to the saddle-ride type vehicle 10 (X integral value in FIGS. 7 and 8) based on the acceleration in the longitudinal direction of the vehicle, and estimates the travel distance of the driver R in the lateral direction of the vehicle relative to the saddle-ride type vehicle 10 (Y integral value in FIGS. 7 and 8) based on the acceleration in the lateral direction of the vehicle.
- the distance threshold DL includes a first distance threshold (distance threshold DL(X) in FIG. 7, distance threshold DL(+X) in FIG.
- distance threshold DL( ⁇ X) that is a distance threshold in the longitudinal direction of the vehicle
- a second distance threshold that is a distance threshold in the lateral direction of the vehicle (distance threshold DL(Y) in FIG. 7, distance threshold DL(+Y) in FIG. 8, and distance threshold DL( ⁇ Y)).
- the detection unit 44C determines that the second condition is satisfied when either the distance traveled by the driver R in the longitudinal direction of the vehicle exceeds the first distance threshold or the distance traveled in the lateral direction of the vehicle by the driver R exceeds the second distance threshold. According to this configuration, the moving speed of the driver R can be reduced by the airbag 42 until the driver R moves to one of the set distance threshold values DL in the front, rear, left, and right directions, and the speed of moving the driver R in the front, rear, left, and right is suppressed, and the driver R is easily released from the saddle-ride type vehicle 10. ⁇
- the first distance threshold has a distance threshold DL (+X) corresponding to a threshold in one direction (forward direction) in which the driver R is positioned with respect to the vehicle support position where the airbag 42 is supported by the saddle type vehicle 10, and a distance threshold DL (-X) corresponding to a threshold in the other direction (backward).
- a part of the airbag 42 (opposite side deployment portion 50) is deployed in at least one direction with respect to the driver R, and the threshold in one direction (distance threshold DL (+X)) is set to a value larger than the threshold in the other direction (distance threshold DL (-X)) and the second distance threshold (distance threshold DL (+Y), distance threshold DL (-Y)).
- the airbag 42 deploys in one direction with the driver R sandwiched therebetween, so that the airbag 42 can easily reduce the movement speed of the driver R in one direction.
- the movement speed of the driver R is effectively reduced by the airbag 42, and in the movement of the driver R in the other direction, the airbag 42 is quickly separated, so that the driver R can be easily released from the saddle type vehicle 10 early together with the airbag 42.
- the airbag control unit 44 separates the airbag 42 when the airbag 42 deploys to a predetermined state even before the occupant movement distance LA exceeds the distance threshold DL (equivalent to when the second condition does not hold). According to this configuration, it becomes easier to quickly let the driver R leave the vehicle when the overturn is predicted. For example, in the case of a fall in a curve, the impact force from the road surface on the driver R is relatively small, and priority can be given to the driver R leaving the vehicle.
- the airbag 42 is deployed when a collision is detected, and the separation control unit 44D separates the airbag 42 when the airbag 42 is deployed to a predetermined state even before the occupant movement distance LA exceeds the distance threshold DL (equivalent to even when the second condition is not satisfied) in a predetermined high-speed driving state when the collision is detected.
- the driver R is protected by the airbag 42 and quickly separated from the saddle-ride type vehicle 10, so that the driver R can easily avoid contact with other vehicles or the like.
- the airbag 42 is positioned behind the driver R to support the vehicle.
- FIG. 9 is a side view showing the airbag device 40 according to the modification together with the saddle-ride type vehicle 10.
- FIG. 10 is a left side view showing a state in which the airbag 42 shown in FIG. 9 is deployed to protect the driver R.
- FIG. The same reference numerals are assigned to the same components as those of the members described above, and repeated explanations will be omitted.
- the airbag device 40 according to the modification includes an airbag 42 that is supported by the saddle-ride type vehicle 10 in front of the driver R and deploys around the driver R including behind it. More specifically, as shown in FIG. 9, an airbag storage portion 33 is arranged at the rear end portion of the fuel tank 29, and the airbag 42 is stored in the airbag storage portion 33 in a folded state.
- the airbag 42 is arranged at the center in the vehicle width direction like the front wheels 13 .
- the airbag 42 includes a vehicle body support side deployment portion 49 positioned on the front side of the driver R at the vehicle body support position (which can also be called the inflator 41 side or the airbag housing portion 33 side) when deployed, and an opposite side deployment portion 50 positioned on the front side of the driver R opposite the vehicle body support position.
- the vehicle body support side deploying portion 49 functions as a front covering portion that covers the torso R1 of the driver R from the front, and has a shape extending upward from the airbag storage portion 33 .
- the opposite side deployment portion 50 functions as a rear covering portion that covers the trunk R1 from the rear, and has a shape that extends upward to the vicinity of the driver's R head R2.
- the opposite side deployment portion 50 includes a forward extension portion 51 extending rearward from both sides of the vehicle body support side deployment portion 49 on the vehicle width direction outer side, and an inner bent portion 52 that bends inward in the vehicle width direction from the front extension portion 51 and extends inward in the vehicle width direction. Further, the opposite side deployment portion 50 includes a downward extension portion 53 that bends from the inner bent portion 52 and extends downward, and a folded portion 54 that folds back from the downward extension portion 53 toward the forward extension portion 51 .
- the forward extending portion 51 covers the trunk R1 from the outside under the arm R3 of the driver R and protects the trunk R1 from the outside. Accordingly, the opposite side deployment portion 50 covers the torso R1 of the driver R from the rear and from the left and right.
- the deployed airbag 42 covers the driver R from the surroundings, it can protect the driver R from the front, left, right, and rear. Since the airbag 42 is fixed to the saddle-ride type vehicle 10 in front of the driver R, by delaying the separation of the airbag 42, as shown in an example in FIG.
- the tension FT of the airbag 42 can reduce the lateral movement speed of the driver R to some extent. Further, since the airbag 42 also covers the driver R from the front, even when the inertial force F for moving the driver R forward of the saddle type vehicle 10 is generated, the forward movement speed of the driver R can be reduced to some extent by the tension FT of the airbag 42. ⁇ Therefore, in the airbag device 40 as well, the airbag control section 44 detects the elapsed time from the deployment of the airbag 42 (airbag deployment time TA, etc.) and separates the airbag 42 by the separation section 43 when separation conditions (predetermined conditions) including the elapse of a predetermined time (corresponding to the time threshold value DT) are satisfied. be done.
- the occupant movement distance LA which is the movement distance of the driver R with respect to the saddle-ride type vehicle 10
- the release timing of the airbag 42 is delayed in consideration of the occupant movement distance LA, but the configuration is not limited to this.
- the airbag control section 44 is provided with a load detection section 144C that detects the tension FT with which the airbag 42 is pulled by the driver's R movement.
- the separation conditions further include a third condition that the tension FT exceeds a predetermined tension threshold, and the separation control section 44D causes the separation section 43 to separate the airbag 42 when the first and third conditions are satisfied.
- the separation timing of the airbag 42 can be delayed until the tension FT exceeds the tension threshold, and the detachment speed of the driver R can be effectively reduced.
- the tension threshold may be set to an appropriate value by the manufacturer or the like of the straddle-type vehicle 10.
- the tension threshold is set to the upper limit of tension at which the airbag 42 does not break or a value in the vicinity thereof.
- the saddle-ride type vehicle 10 may be provided with a load sensor for detecting the tension FT as one of the vehicle sensors 10S, and the load detection section 144C may acquire the detection result of this load sensor.
- the load detection section 144C has a configuration in which the function regarding the occupant movement distance LA is removed from the detection section 44C, and the function regarding the tension FT is added instead.
- the separation timing of the airbag 42 may be delayed in consideration of both the tension FT and the occupant movement distance LA by configuring the load detection section 144C by adding a function related to the tension FT to the detection section 44C.
- the occupant moving distance LA in the longitudinal direction (corresponding to the X integrated value) and the occupant moving distance LA in the lateral direction (corresponding to the Y integrated value) are calculated.
- the occupant moving distance LA in the lateral direction may not be calculated.
- the acceleration in the left-right direction or the acceleration in the other direction exceeds a predetermined threshold before the moving distance (corresponding to X integrated value) in one direction (forward direction in FIG. 3, backward direction in FIG. 4) of the driver R with respect to the saddle-ride type vehicle 10 exceeds the first distance threshold value (distance threshold DL(X) in FIG.
- the moving distance in one direction exceeds the above-mentioned threshold value.
- the airbag 42 may be deployed before the one distance threshold is exceeded.
- the velocity by the first-order integral may be used instead of the acceleration.
- the separation condition includes a fourth condition in which at least one of the acceleration in the lateral direction of the vehicle, the acceleration in the other direction that is the opposite direction of the one direction, the speed in the lateral direction of the vehicle, and the speed in the other direction that is the opposite direction of the one direction exceeds a predetermined threshold value before the moving distance in the one direction in which the driver R is positioned with respect to the vehicle support position where the airbag 42 is supported by the saddle-type vehicle 10 in the longitudinal direction of the vehicle (corresponding to the X integrated value) exceeds the first distance threshold. Then, the separation control section 44D may cause the separation section 43 to separate the airbag 42 when the first condition and the fourth condition are satisfied.
- the present invention is applied to the airbag device 40 for the driver R
- it may be applied to an airbag device for passengers including fellow passengers.
- the present invention is not limited to this, and the present invention may be applied to other motorcycles and saddle-riding vehicles including three-wheeled and four-wheeled vehicles.
- An airbag device mounted on a vehicle and equipped with an airbag that deploys around an occupant comprising: a separation unit that separates the airbag from the vehicle; a detection unit that detects the elapsed time after deployment of the airbag; According to this configuration, by delaying the release timing of the airbag in consideration of the elapsed time after the airbag is deployed, the release speed of the occupant is reduced using the airbag, making it easier to reduce the release speed of the occupant.
- (Arrangement 3) The airbag device according to Arrangement 1 or 2, wherein the detection unit performs arithmetic processing for estimating the travel distance of the occupant relative to the vehicle based on the acceleration of the vehicle, the predetermined condition further includes a second condition in which the travel distance exceeds a predetermined distance threshold, and the separation control unit causes the separation unit to separate the airbag when at least the first condition and the second condition are satisfied.
- the release timing of the airbag can be delayed in consideration of the travel distance of the occupant relative to the vehicle. Since the acceleration sensor provided in the vehicle can be used, it becomes easier to reduce the cost and the number of parts compared to the case of using other sensors for detecting the movement distance.
- the detection unit acquires acceleration in the longitudinal direction of the vehicle and acceleration in the lateral direction of the vehicle, estimates a distance traveled by the occupant relative to the vehicle in the longitudinal direction based on the acceleration in the longitudinal direction of the vehicle, and estimates a distance traveled by the occupant relative to the vehicle in the lateral direction of the vehicle based on the acceleration in the lateral direction of the vehicle.
- the moving speed of the occupant can be reduced by the airbag until the occupant moves to one of the distance thresholds set in the front, rear, left, and right directions, and the occupant can be easily released from the vehicle by suppressing the moving speed in the front, rear, left, and right directions.
- (Configuration 5) The airbag device according to configuration 4, wherein the first distance threshold has a threshold in one direction in which the occupant is positioned with respect to the vehicle support position where the airbag is supported by the vehicle, and a threshold in the other direction in the longitudinal direction of the vehicle, a part of the airbag deploys at least in the one direction with respect to the occupant, and the threshold in the one direction is greater than the threshold in the other direction and the second distance threshold.
- the airbag deploys in one direction with respect to the occupant, so that the airbag can easily reduce the moving speed of the occupant in one direction.
- the movement speed of the occupant can be effectively reduced by the airbag, while the airbag can be quickly separated for the movement of the occupant in other directions, so that the occupant can be easily released from the vehicle at an early stage together with the airbag.
- the predetermined condition includes a fourth condition in which at least one of acceleration in the lateral direction of the vehicle, acceleration in the other direction that is the opposite direction of the one direction, speed in the lateral direction of the vehicle, and speed in the other direction that is the opposite direction of the one direction exceeds a predetermined threshold before the travel distance of the occupant with respect to the vehicle in one direction in which the occupant is positioned with respect to the vehicle support position where the airbag is supported by the vehicle in the longitudinal direction of the vehicle exceeds the distance threshold
- the separation control unit includes: The airbag device according to configuration 3, wherein the airbag is separated by the separation unit when the first condition and the fourth condition are satisfied. According to this configuration, it becomes easier to quickly separate the airbag in the event of a side collision. In addition, since the airbag can be separated at the time of a side collision without calculating the movement distance in the left-right direction, etc., the processing capacity required for the airbag control section can be reduced, which is advantageous for cost reduction.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Air Bags (AREA)
Abstract
エアバッグを利用して乗員の離脱速度を低減し易くすること。 車両(10)に搭載され、乗員の周囲に展開するエアバッグ42を備えるエアバッグ装置40において、前記エアバッグ42を前記車両(10)から分離させる分離部43と、前記エアバッグ(42)が展開してからの経過時間を検知する検知部44Cと、前記検知部44Cで検知された経過時間が時間閾値を超える第1条件を含む所定条件を満足した場合に、前記分離部43により前記エアバッグ42を分離させる分離制御部44Dとを備える。
Description
本発明は、エアバッグ装置に関する。
鞍乗り型車両には、乗員の周囲に展開するエアバッグを備えるエアバッグ装置を搭載したものが提案されている(例えば、特許文献1)。特許文献1には、エアバッグをスライドフレームに支持し、衝突時の衝撃が大きい場合、スライドフレームが前方にスライド移動して案内レールから離れることによって、乗員がエアバッグにより拘束されたまま自動二輪車から離れるようにした構造が開示されている。
従来の構成は、スライドフレームにより衝撃吸収を行っているが、衝突時に乗員が車両から切り離される速度(離脱速度)をエアバッグによって低減することは行っていない。
本発明は、上述した事情に鑑みてなされたものであり、エアバッグを利用して乗員の離脱速度を低減し易くすることを目的とする。
本発明は、上述した事情に鑑みてなされたものであり、エアバッグを利用して乗員の離脱速度を低減し易くすることを目的とする。
車両に搭載され、乗員の周囲に展開するエアバッグを備えるエアバッグ装置において、前記エアバッグを前記車両から分離させる分離部と、前記エアバッグが展開してからの経過時間を検知し、所定時間の経過を含む所定条件を満足した場合に、前記分離部により前記エアバッグを分離させるエアバッグ制御部とを備えることを特徴とする。
エアバッグを利用して乗員の離脱速度を低減し易くなる。
以下、図面を参照して本発明の実施の形態について説明する。なお、説明中、前後左右および上下といった方向の記載は、特に記載がなければ車体に対する方向と同一とする。また、各図に示す符号FRは車体前方を示し、符号UPは車体上方を示し、符号LHは車体左方を示す。
[実施の形態]
図1は、本発明の実施の形態に係る鞍乗り型車両10の側面図である。
鞍乗り型車両10は、車体フレーム11と、車体フレーム11に支持されるパワーユニット12と、前輪13を操舵自在に支持するフロントフォーク14と、後輪15を支持するスイングアーム16と、乗員用のシート17とを備える車両である。
鞍乗り型車両10は、乗員がシート17に跨るようにして着座する車両である。シート17は、車体フレーム11の後部の上方に設けられる。
図1は、本発明の実施の形態に係る鞍乗り型車両10の側面図である。
鞍乗り型車両10は、車体フレーム11と、車体フレーム11に支持されるパワーユニット12と、前輪13を操舵自在に支持するフロントフォーク14と、後輪15を支持するスイングアーム16と、乗員用のシート17とを備える車両である。
鞍乗り型車両10は、乗員がシート17に跨るようにして着座する車両である。シート17は、車体フレーム11の後部の上方に設けられる。
車体フレーム11は、車体フレーム11の前端部に設けられるヘッドパイプ18と、ヘッドパイプ18の後方に位置するフロントフレーム19と、フロントフレーム19の後方に位置するリアフレーム20とを備える。フロントフレーム19の前端部は、ヘッドパイプ18に接続される。
シート17は、リアフレーム20に支持される。
シート17は、リアフレーム20に支持される。
フロントフォーク14は、ヘッドパイプ18によって左右に操舵自在に支持される。前輪13は、フロントフォーク14の下端部に設けられる車軸13aに支持される。乗員が把持する操舵用のハンドル21は、フロントフォーク14の上端部に取り付けられる。
スイングアーム16は、車体フレーム11に支持されるピボット軸22に支持される。ピボット軸22は、車幅方向に水平に延びる軸である。スイングアーム16の前端部には、ピボット軸22が挿通される。スイングアーム16は、ピボット軸22を中心に上下に揺動する。
後輪15は、スイングアーム16の後端部に設けられる車軸15aに支持される。
後輪15は、スイングアーム16の後端部に設けられる車軸15aに支持される。
パワーユニット12は、前輪13と後輪15との間に配置され、車体フレーム11に支持される。
パワーユニット12は、内燃機関である。パワーユニット12は、クランクケース23と、往復運動するピストンを収容するシリンダー部24とを備える。シリンダー部24の排気ポートには、排気装置25が接続される。
パワーユニット12の出力は、パワーユニット12と後輪15とを接続する駆動力伝達部材によって後輪15に伝達される。
パワーユニット12は、内燃機関である。パワーユニット12は、クランクケース23と、往復運動するピストンを収容するシリンダー部24とを備える。シリンダー部24の排気ポートには、排気装置25が接続される。
パワーユニット12の出力は、パワーユニット12と後輪15とを接続する駆動力伝達部材によって後輪15に伝達される。
また、鞍乗り型車両10は、前輪13を上方から覆うフロントフェンダー26と、後輪15を上方から覆うリアフェンダー27と、乗員が足を載せるステップ28と、パワーユニット12が使用する燃料を蓄える燃料タンク29とを備える。
フロントフェンダー26は、フロントフォーク14に取り付けられる。リアフェンダー27及びステップ28は、シート17よりも下方に設けられる。燃料タンク29は、車体フレーム11に支持される。
フロントフェンダー26は、フロントフォーク14に取り付けられる。リアフェンダー27及びステップ28は、シート17よりも下方に設けられる。燃料タンク29は、車体フレーム11に支持される。
鞍乗り型車両10は、シート17の前下方に床状のステップ28を備えるスクーター型の自動二輪車である。パワーユニット12は、上記内燃機関とスイングアーム16とが一体に形成されたユニットスイングエンジンである。パワーユニット12は、シート17及びリアフレーム20の真下に配置される。
鞍乗り型車両10は、車体フレーム11及びパワーユニット12等の車体を覆う車体カバー30を備える。
鞍乗り型車両10は、車体フレーム11及びパワーユニット12等の車体を覆う車体カバー30を備える。
シート17は、ハンドル21の後方で、リアフレーム20の上方に設けられる。シート17は、運転者R(乗員)が着座する前側シート31と、前側シート31の後方に配置される後側シート32とを備える。
後側シート32は、前側シート31に対し段状に高く形成される。後側シート32には、同乗者(乗員)が着座したり、荷物を載せたりすることができる。
後側シート32は、前側シート31に対し段状に高く形成される。後側シート32には、同乗者(乗員)が着座したり、荷物を載せたりすることができる。
鞍乗り型車両10は、運転者Rを保護するエアバッグ装置40を備える。
図2は、エアバッグ装置40のブロック図である。
エアバッグ装置40は、インフレーター41と、インフレーター41が放出するガスによって膨張するエアバッグ42と、エアバッグ42を鞍乗り型車両10から分離させる分離部43と、エアバッグ装置40の動作を制御するエアバッグ制御部44と、記憶部45とを備えている。
インフレーター41は、エアバッグ制御部44の制御の下、エアバッグ42内にガスを放出する。エアバッグ42は、基布を縫製して形成され、ガスの圧力で膨張し、展開する。エアバッグ42は、折り畳まれた状態でエアバッグ収納部33(図1)に収納される。
図2は、エアバッグ装置40のブロック図である。
エアバッグ装置40は、インフレーター41と、インフレーター41が放出するガスによって膨張するエアバッグ42と、エアバッグ42を鞍乗り型車両10から分離させる分離部43と、エアバッグ装置40の動作を制御するエアバッグ制御部44と、記憶部45とを備えている。
インフレーター41は、エアバッグ制御部44の制御の下、エアバッグ42内にガスを放出する。エアバッグ42は、基布を縫製して形成され、ガスの圧力で膨張し、展開する。エアバッグ42は、折り畳まれた状態でエアバッグ収納部33(図1)に収納される。
エアバッグ収納部33は、シート17の後部であって、前側シート31よりも後方に配置されることにより、運転者Rの着座位置17aよりも後方に配置される。つまり、エアバッグ42の車体支持位置は、運転者Rの後方となっている。
分離部43は、エアバッグ42を鞍乗り型車両10から分離させる。図1に示す例では、分離部43は、エアバッグ42による運転者Rの保護が図れるエアバッグ部分を鞍乗り型車両10から分離させる。これによって、鞍乗り型車両10から運転者Rが離脱した場合に、離脱後の運転者Rに作用する衝撃を緩和する効果を期待できる。この分離部43には、エアバッグ42全てまたは一部を分離させる任意な構成を適用可能である。なお、分離されるエアバッグ部分に、インフレーター41が含まれてもよい。
エアバッグ制御部44は、エアバッグ装置40の各部を制御する部分であり、車両センサー10Sの検出結果を入力する。車両センサー10Sは、鞍乗り型車両10の前後左右の加速度(減速度を含む)、車速、傾斜角度、ピッチ角、及びヨー角等を示す情報を検出するセンサー群である。なお、傾斜角度は、鉛直方向を基準とした車体の傾斜角度であり、傾斜角度が90°に近づくほど、鞍乗り型車両10の側面は路面に近づく。
例えば、車両センサー10Sは、車速センサー、前後輪の回転数センサー、及び、IMU(Inertial Measurement Unit)等の慣性センサーを含んでいる。慣性センサーは、前後左右の加速度と、三軸の角速度等を検出する。三軸の角速度に所定の変換を行うことによって、鞍乗り型車両10のロール角、ピッチ角、及びヨー角を特定でき、ロール角から鞍乗り型車両10の傾斜角度を特定できる。なお、ロール角は、例えば路面からの傾斜角度であり、鞍乗り型車両10の傾斜角度は、鉛直軸を基準とする鞍乗り型車両10の左右への傾斜角度である。
例えば、車両センサー10Sは、車速センサー、前後輪の回転数センサー、及び、IMU(Inertial Measurement Unit)等の慣性センサーを含んでいる。慣性センサーは、前後左右の加速度と、三軸の角速度等を検出する。三軸の角速度に所定の変換を行うことによって、鞍乗り型車両10のロール角、ピッチ角、及びヨー角を特定でき、ロール角から鞍乗り型車両10の傾斜角度を特定できる。なお、ロール角は、例えば路面からの傾斜角度であり、鞍乗り型車両10の傾斜角度は、鉛直軸を基準とする鞍乗り型車両10の左右への傾斜角度である。
エアバッグ制御部44は、CPU及び周辺回路によって構成され、CPUが記憶部45に記憶された制御プログラムを実行することによって、衝突判定部44A、展開制御部44B、検知部44C、及び、分離制御部44Dとして機能する。衝突判定部44Aは、車両センサー10Sの検出結果(例えば、鞍乗り型車両10の前後方向の加速度、及び左右方向の加速度)に基づいて、鞍乗り型車両10の衝突が発生したか否かを特定したり、衝突の方向(前面衝突(前方衝突とも称される)、後面衝突(後方衝突、後方からの追突とも称される)、側面衝突(側方衝突とも称される)を特定したりする。
本実施形態の衝突判定部44Aは、鞍乗り型車両10の傾斜角度及び角速度の少なくともいずれかが、転倒を予測するための所定の条件を満たす場合に、転倒が予測されると判定する。
例えば、転倒とみなす場合の傾斜角度と角速度の組み合わせを記述した所定の条件を設定し、衝突判定部44Aは、検出した傾斜角度と角速度の組み合わせが所定の条件を満たす場合に、転倒が予測されると判定する処理を行う。より具体的には、所定の条件として、傾斜角度毎に、角速度の閾値を設定したマップデータを予め用意し、衝突判定部44Aは、検出した角速度が、検出した傾斜角度に基づきマップデータから特定した角速度の閾値以上の場合に、転倒が予測されると判定する処理を行う。
また、傾斜角度と角速度の組み合わせを利用する上記処理に限定されない。例えば、転倒とみなす場合の傾斜角度の閾値、または、転倒とみなす場合の角速度の閾値を設定しておき、衝突判定部44Aは、傾斜角度または角速度が上記閾値以上の場合に、転倒が予測されると判定する処理を行ってもよい。
展開制御部44Bは、衝突判定部44Aの判定結果に基づいてインフレーター41を作動させるか否かを判定し、判定結果に応じてインフレーター41を作動させてエアバッグ42を展開させる。
例えば、転倒とみなす場合の傾斜角度と角速度の組み合わせを記述した所定の条件を設定し、衝突判定部44Aは、検出した傾斜角度と角速度の組み合わせが所定の条件を満たす場合に、転倒が予測されると判定する処理を行う。より具体的には、所定の条件として、傾斜角度毎に、角速度の閾値を設定したマップデータを予め用意し、衝突判定部44Aは、検出した角速度が、検出した傾斜角度に基づきマップデータから特定した角速度の閾値以上の場合に、転倒が予測されると判定する処理を行う。
また、傾斜角度と角速度の組み合わせを利用する上記処理に限定されない。例えば、転倒とみなす場合の傾斜角度の閾値、または、転倒とみなす場合の角速度の閾値を設定しておき、衝突判定部44Aは、傾斜角度または角速度が上記閾値以上の場合に、転倒が予測されると判定する処理を行ってもよい。
展開制御部44Bは、衝突判定部44Aの判定結果に基づいてインフレーター41を作動させるか否かを判定し、判定結果に応じてインフレーター41を作動させてエアバッグ42を展開させる。
検知部44Cは、エアバッグ42を鞍乗り型車両10から分離させる分離タイミングに関する各種の情報を検知する。検知対象の情報は、エアバッグ42が展開してからの経過時間TA(以下、「エアバッグ展開時間TA」と表記する)、及び鞍乗り型車両10に対する運転者Rの移動距離LA(以下、「乗員移動距離LA」と表記する)を含んでいる。
検知部44Cは、計時機能を有し、インフレーター41を点火させてからの経過時間を計時することにより、エアバッグ展開時間TAを検知する。
検知部44Cは、計時機能を有し、インフレーター41を点火させてからの経過時間を計時することにより、エアバッグ展開時間TAを検知する。
また、検知部44Cは、車両センサー10Sを介して鞍乗り型車両10の前後左右の加速度を取得し、これら加速度に基づいて乗員移動距離LAを推定する演算処理を行うことによって、乗員移動距離LAを検知する。
乗員移動距離LAの算出方法について説明する。
鞍乗り型車両10の移動距離は、車両センサー10Sによって得られた加速度を二階積分することによって算出できる。鞍乗り型車両10が衝突していない場合、鞍乗り型車両10と運転者Rとは一体に移動する。
実際の演算で使用する乗員移動距離LAは、加速度を検出する加速度センサーの出力の常時積算値ではなく、加速度センサー出力の直流成分を除去した積算値や一定期間の積算値を使用する。
乗員移動距離LAの算出方法について説明する。
鞍乗り型車両10の移動距離は、車両センサー10Sによって得られた加速度を二階積分することによって算出できる。鞍乗り型車両10が衝突していない場合、鞍乗り型車両10と運転者Rとは一体に移動する。
実際の演算で使用する乗員移動距離LAは、加速度を検出する加速度センサーの出力の常時積算値ではなく、加速度センサー出力の直流成分を除去した積算値や一定期間の積算値を使用する。
これに対し、鞍乗り型車両10が衝突した場合、衝突により鞍乗り型車両10が減速しても運転者Rは鞍乗り型車両10に拘束されていないため慣性運動を続けようとする。したがって、運転者Rの移動量は、本体衝突しなかった場合の鞍乗り型車両10の移動量に近似する、と考えることができる。
そこで、衝突時以降の加速度に基づいて、衝突せずに減速しなかった場合と衝突により減速した場合の鞍乗り型車両10の移動距離の差分を算出することによって、乗員移動距離LAの推定値を算出することができる。なお、乗員移動距離LAは衝突時からの鞍乗り型車両10に対する移動距離である。
そこで、衝突時以降の加速度に基づいて、衝突せずに減速しなかった場合と衝突により減速した場合の鞍乗り型車両10の移動距離の差分を算出することによって、乗員移動距離LAの推定値を算出することができる。なお、乗員移動距離LAは衝突時からの鞍乗り型車両10に対する移動距離である。
分離制御部44Dは、検知部44Cの検知結果、及び、車両センサー10Sの検出結果に基づいて、エアバッグ42の展開開始後に分離部43を作動させ、エアバッグ42を分離させる。鞍乗り型車両10の衝突が発生した場合に、エアバッグ42を分離させることによって、運転者Rと共にエアバッグ42を鞍乗り型車両10から離脱させることが可能になる。
図3は、エアバッグ42が展開して運転者Rを保護している状態を示す左側面図である。図4は、エアバッグ42が展開して運転者Rを保護している状態を前方から見た正面図である。
このエアバッグ42は、展開時において、運転者Rに対して車体支持位置(インフレーター41側またはエアバッグ収納部33側と言うこともできる)側である後側に位置する車体支持側展開部49と、運転者Rに対して車体支持位置の反対側である前側に位置する反対側展開部50とを備える。
このエアバッグ42は、展開時において、運転者Rに対して車体支持位置(インフレーター41側またはエアバッグ収納部33側と言うこともできる)側である後側に位置する車体支持側展開部49と、運転者Rに対して車体支持位置の反対側である前側に位置する反対側展開部50とを備える。
車体支持側展開部49は、運転者Rの胴体R1を後方から覆う後方覆い部として機能し、エアバッグ収納部33から上方に延びる形状を有している。また、反対側展開部50は、胴体R1を前方から覆う前方覆い部として機能し、運転者Rの頭部R2の近傍まで上方に延びる形状を有している。
反対側展開部50は、車体支持側展開部49の車幅方向外側の両側部からそれぞれ前方に延出する前方延出部51と、前方延出部51から車幅方向内側に屈曲して車幅方向内側に延びる内側屈曲部52とを備える。さらに、反対側展開部50は、内側屈曲部52から屈曲して下方に延びる下方延出部53と、下方延出部53から前方延出部51に向けて折り返す折り返し部54とを備える。前方延出部51は、運転者Rの腕R3の下方で胴体R1を外側方から覆い、胴体R1を外側方から保護する。これによって反対側展開部50は、運転者Rの胴体R1を前方及び左右から覆う。
反対側展開部50は、車体支持側展開部49の車幅方向外側の両側部からそれぞれ前方に延出する前方延出部51と、前方延出部51から車幅方向内側に屈曲して車幅方向内側に延びる内側屈曲部52とを備える。さらに、反対側展開部50は、内側屈曲部52から屈曲して下方に延びる下方延出部53と、下方延出部53から前方延出部51に向けて折り返す折り返し部54とを備える。前方延出部51は、運転者Rの腕R3の下方で胴体R1を外側方から覆い、胴体R1を外側方から保護する。これによって反対側展開部50は、運転者Rの胴体R1を前方及び左右から覆う。
展開したエアバッグ42は、運転者Rを周囲から覆うので、運転者Rを前方、左右及び後方から保護できる。このエアバッグ42は、運転者Rの後方にて鞍乗り型車両10に固定されているので、エアバッグ42の分離を遅らせることによって、図3に一例を示すように、前方衝突の場合、つまり、運転者Rを鞍乗り型車両10の前方に移動させる慣性力F(図3)が発生している場合に、エアバッグ42の張力FTによって運転者Rの前方への移動速度を低減することが可能になる。
また、運転者Rを鞍乗り型車両10の側方に移動させる慣性力Fが発生している場合でも、エアバッグ42の張力FTによって運転者Rの側方への移動速度をある程度、低減することができる。また、このエアバッグ42は運転者Rを後方からも覆うので、運転者Rを鞍乗り型車両10の後方に移動させる慣性力Fが発生している場合でも、エアバッグ42の張力FTによって運転者Rの後方への移動速度をある程度、低減することができる。
このように、運転者Rが前後左右に移動している場合に、運転者Rと鞍乗り型車両10とがエアバッグ42を介して連結されるので、運転者Rの鞍乗り型車両10に対する相対移動が抑制され、運転者Rの移動速度を低減できる。運転者Rの移動速度が低減されることによって、運転者Rが鞍乗り型車両10から離脱した場合に、離脱速度も低減できる。
図5は、エアバッグ制御部44の動作を示すフローチャートである。
図5に示すように、エアバッグ制御部44は、衝突判定部44Aにより、車両センサー10Sの検出結果に基づいて、衝突または転倒が予測されるか否かを判定する(ステップS1)。
衝突及び転倒のいずれも予測されない場合(ステップS1:NO)、エアバッグ制御部44は、図5に示すフローチャートを終了する。このフローチャートは、所定の周期で繰り返し実行され、衝突または転倒が予測されるか否かが継続的に監視される。
衝突または転倒が予測された場合(ステップS1:YES)、つまり、鞍乗り型車両10の加速度の演算値が所定の閾値以上の場合、または、傾斜角度及び角速度の少なくともいずれかが、転倒を予測するための所定の条件を満たす場合に、エアバッグ制御部44は、展開制御部44Bによりインフレーター41を作動させる(ステップS2)。軽度の衝突や低速度での衝突といったエアバッグ42が有効に機能しない場合には、従来と同様に、インフレーター41は作動させない。本説明における衝突及び転倒は、特に説明しない限り、エアバッグ42が有効に機能する衝突及び転倒を意味している。
図5に示すように、エアバッグ制御部44は、衝突判定部44Aにより、車両センサー10Sの検出結果に基づいて、衝突または転倒が予測されるか否かを判定する(ステップS1)。
衝突及び転倒のいずれも予測されない場合(ステップS1:NO)、エアバッグ制御部44は、図5に示すフローチャートを終了する。このフローチャートは、所定の周期で繰り返し実行され、衝突または転倒が予測されるか否かが継続的に監視される。
衝突または転倒が予測された場合(ステップS1:YES)、つまり、鞍乗り型車両10の加速度の演算値が所定の閾値以上の場合、または、傾斜角度及び角速度の少なくともいずれかが、転倒を予測するための所定の条件を満たす場合に、エアバッグ制御部44は、展開制御部44Bによりインフレーター41を作動させる(ステップS2)。軽度の衝突や低速度での衝突といったエアバッグ42が有効に機能しない場合には、従来と同様に、インフレーター41は作動させない。本説明における衝突及び転倒は、特に説明しない限り、エアバッグ42が有効に機能する衝突及び転倒を意味している。
次に、エアバッグ制御部44は、分離制御部44Dにより、予め定めた早期分離条件を満たすか否かを判定する(ステップS3)。早期分離条件は、後述する最大遅延分離処理でエアバッグ42を分離させる場合よりも、早期にエアバッグ42を分離させることが望ましい状況を特定する条件である。早期分離条件は、エアバッグ42が必要十分な容量に展開した完全に展開する前に、エアバッグ42を分離させることが望ましい状況を特定する条件とも言える。
エアバッグ42が完全に展開した状態とは、エアバッグ42が最大容量まで展開した状態である。
エアバッグ42が完全に展開した状態とは、エアバッグ42が最大容量まで展開した状態である。
本実施形態において、早期分離条件は、鞍乗り型車両10が転倒する可能性のある状態、即座に高速走行状態であることを特定する条件である。早期分離条件は、各状態を特定するための情報として、車速、加速度、傾斜角度(ロール角)、ピッチ角、ヨー角、及び/または、角速度のそれぞれの範囲や組み合わせを特定する情報として、記憶部45に記憶されている。
なお、転倒する可能性のある状態は、鞍乗り型車両10を左右にバンクさせてカーブ走行している状態からの傾斜角度が所定の傾斜閾値以上の状態を含み、鞍乗り型車両10の傾斜角度等によって特定することができる。
なお、転倒する可能性のある状態は、鞍乗り型車両10を左右にバンクさせてカーブ走行している状態からの傾斜角度が所定の傾斜閾値以上の状態を含み、鞍乗り型車両10の傾斜角度等によって特定することができる。
つまり、分離制御部44Dは、車両センサー10Sを介して鞍乗り型車両10の車速、加速度、傾斜角度等の車両情報を取得し、取得した車両情報に基づいて、早期分離条件を満たすか否かを判定する。
早期分離条件を満たす場合(ステップS3:YES)、エアバッグ制御部44は、早期分離処理を行う(ステップS31)。早期分離処理として、エアバッグ制御部44は、分離制御部44Dにより、早期にエアバッグ42を分離させる。
より具体的には、分離制御部44Dは、鞍乗り型車両10の傾斜角度及び角速度の少なくともいずれかが、転倒を予測するための所定の条件を満たす場合、エアバッグ42が完全に展開するまで待たずに(エアバッグ42の展開途中に)、分離部43によってエアバッグ42を分離させる。これにより、鞍乗り型車両10が転倒する可能性のある状態の場合に、エアバッグ42が所定状態まで展開した状態で速やかに分離され、エアバッグ42が運転者Rの路面滑走への移行を妨げない。また、エアバッグ42が運転者Rの保護に必要な分だけ展開していれば、エアバッグ42による乗員保護効果も期待できる。
早期分離条件を満たす場合(ステップS3:YES)、エアバッグ制御部44は、早期分離処理を行う(ステップS31)。早期分離処理として、エアバッグ制御部44は、分離制御部44Dにより、早期にエアバッグ42を分離させる。
より具体的には、分離制御部44Dは、鞍乗り型車両10の傾斜角度及び角速度の少なくともいずれかが、転倒を予測するための所定の条件を満たす場合、エアバッグ42が完全に展開するまで待たずに(エアバッグ42の展開途中に)、分離部43によってエアバッグ42を分離させる。これにより、鞍乗り型車両10が転倒する可能性のある状態の場合に、エアバッグ42が所定状態まで展開した状態で速やかに分離され、エアバッグ42が運転者Rの路面滑走への移行を妨げない。また、エアバッグ42が運転者Rの保護に必要な分だけ展開していれば、エアバッグ42による乗員保護効果も期待できる。
エアバッグ制御部44は、鞍乗り型車両10が、高速走行状態の場合、より詳述すると、衝突時点または衝突直前の速度が、予め定めた速度閾値以上の場合、エアバッグ42が完全に展開するまで待たずに(エアバッグ42の展開途中に)、分離部43によってエアバッグ42を分離させる。
高速走行状態での衝突の場合、エアバッグ42が完全に展開する前に、運転者Rが鞍乗り型車両10から離脱する可能性が高い。上記早期分離処理によって、鞍乗り型車両10から短時間で離脱する運転者Rにエアバッグ42を追従させることができ、離脱後の運転者Rに作用する衝撃を緩和する効果を期待できる。
高速走行状態での衝突の場合、エアバッグ42が完全に展開する前に、運転者Rが鞍乗り型車両10から離脱する可能性が高い。上記早期分離処理によって、鞍乗り型車両10から短時間で離脱する運転者Rにエアバッグ42を追従させることができ、離脱後の運転者Rに作用する衝撃を緩和する効果を期待できる。
早期分離条件を満たさない場合(ステップS3:NO)、エアバッグ制御部44は、分離制御部44Dにより、所定の分離条件を満たすか否かを判定する(ステップS4)。所定の分離条件は、後述する最大遅延分離処理でエアバッグ42を分離させるよりも、エアバッグ42を分離させるタイミングが早いことが望ましい状態を特定する条件である。
所定の分離条件は、本発明の「所定条件」に相当する。
所定の分離条件は、本発明の「所定条件」に相当する。
本構成では、エアバッグ42は、運転者Rの後方にて鞍乗り型車両10に固定されるので、運転者Rが鞍乗り型車両10に対して前方に移動する場合に、エアバッグ42を分離させるタイミングを遅延させることによって、運転者Rの前方への移動速度を効果的に低減することができる。
本構成では、運転者Rが鞍乗り型車両10に対して前方に移動しない場合、例えば、後面衝突、及び、側面衝突の場合、エアバッグ42分離させるタイミングを遅延させても運転者Rの離脱速度を効果的に低減することは難しい。
本構成では、運転者Rが鞍乗り型車両10に対して前方に移動しない場合、例えば、後面衝突、及び、側面衝突の場合、エアバッグ42分離させるタイミングを遅延させても運転者Rの離脱速度を効果的に低減することは難しい。
分離制御部44Dは、検知部44Cを介して鞍乗り型車両10の車両情報を取得し、取得した車両情報に基づいて所定の遅延条件を満たすと判定した場合(ステップS4:YES)、エアバッグ42を所定のタイミングで分離させる分離処理を行う(ステップS41)。
一方、所定の遅延条件を満たさないと判定した場合(ステップS4:NO)、分離制御部44Dは、最大遅延分離処理を行う(ステップS5)。最大遅延分離処理は、エアバッグ42が完全に展開した後に、分離部43によってエアバッグ42を分離させる処理である。なお、ステップS41の分離処理においても、遅延条件に応じて、エアバッグ42が完全に展開した後に、分離部43によってエアバッグ42を分離させるようにしてもよい。
一方、所定の遅延条件を満たさないと判定した場合(ステップS4:NO)、分離制御部44Dは、最大遅延分離処理を行う(ステップS5)。最大遅延分離処理は、エアバッグ42が完全に展開した後に、分離部43によってエアバッグ42を分離させる処理である。なお、ステップS41の分離処理においても、遅延条件に応じて、エアバッグ42が完全に展開した後に、分離部43によってエアバッグ42を分離させるようにしてもよい。
図6は、図5のフローチャートのステップS2以降の処理例を示すフローチャートである。
図6に示すように、ステップS2の処理によってインフレーター41が作動した場合、エアバッグ制御部44は、エアバッグ展開時間TAが予め設定した時間閾値DTを経過したか否かを判定する(ステップS1A)。
図6に示すように、ステップS2の処理によってインフレーター41が作動した場合、エアバッグ制御部44は、エアバッグ展開時間TAが予め設定した時間閾値DTを経過したか否かを判定する(ステップS1A)。
時間閾値DTは、エアバッグ42が運転者Rを十分に保護可能な必要十分な展開状態の下限値SB(「必要十分展開状態SB」と言う)以上の時間を規定し、例えば、エアバッグ42が70%まで展開するまでの展開時間を規定している。この必要十分展開状態SBは、エアバッグ42と運転者Rとの間に作用する衝撃力を緩和でき、かつ、鞍乗り型車両10から離脱する運転者Rが路面に接触した場合に、運転者Rと路面との間に作用する衝撃力を緩和できる状態であり、また、運転者Rを把持する状態まで展開している状態であることが好ましい。
但し、必要十分展開状態SBについても、鞍乗り型車両10の製造メーカー等が適宜に設定した状態とすればよく、展開開始からの展開時間TT(図7)で規定される。
但し、必要十分展開状態SBについても、鞍乗り型車両10の製造メーカー等が適宜に設定した状態とすればよく、展開開始からの展開時間TT(図7)で規定される。
エアバッグ展開時間TAが時間閾値DTを経過した場合(ステップS1A;YES)、エアバッグ制御部44は、衝突判定部44Aにより、転倒状態または転倒が予測されるか否かを判定する(ステップS2A)。転倒状態または転倒が予測された場合(ステップS2A:YES)、エアバッグ制御部44は、転倒対応の分離処理を行う(ステップS1B)。
転倒対応の分離処理は、転倒時に好適なタイミングでエアバッグ42を分離させる処理であり、例えば、必要十分展開状態SBまで待ってエアバッグ42を分離させることによって、エアバッグ42が乗員把持に必要な分だけ膨張する状態まで待ってエアバッグ42を分離させる。これにより、転倒したら速やかに運転者Rをエアバッグ42に共に離脱させることができる。
転倒対応の分離処理は、転倒時に好適なタイミングでエアバッグ42を分離させる処理であり、例えば、必要十分展開状態SBまで待ってエアバッグ42を分離させることによって、エアバッグ42が乗員把持に必要な分だけ膨張する状態まで待ってエアバッグ42を分離させる。これにより、転倒したら速やかに運転者Rをエアバッグ42に共に離脱させることができる。
なお、転倒対応の分離処理は、必要十分展開状態SBに相当するタイミングよりも遅くしてもよい。どのタイミングで分離させるかは、鞍乗り型車両10の製造メーカー等が適宜に設定すればよい。また、転倒対応の分離処理として、接地までに余裕があるか否かを角速度や傾斜角を利用して判定する閾値を設け、接地までに余裕がある場合はエアバッグ42が完全に展開するまで待ってエアバッグ42を分離させる処理を行うようにしてもよい。
ステップS2Aの判定が否定結果の場合(ステップS2;NO)、エアバッグ制御部44は、鞍乗り型車両10が高速走行状態であったか否かを判定し、より具体的には、衝突または転倒が予測される直前に、鞍乗り型車両10が高速走行状態であったか否かを判定する(ステップS3A)。
高速走行状態であった場合(ステップS3A;YES)、エアバッグ制御部44は、乗員追従優先の分離処理を行う(ステップS1C)。
高速走行状態であった場合(ステップS3A;YES)、エアバッグ制御部44は、乗員追従優先の分離処理を行う(ステップS1C)。
乗員追従優先の分離処理は、エアバッグ42が完全に展開するまでに運転者Rの離脱が予測されるため、エアバッグ42が乗員把持に必要な分だけ膨張していれば、エアバッグ42が完全に展開するまで待たずに、エアバッグ42を分離させる処理である。エアバッグ42が乗員把持に必要な分だけ膨張する状態は、鞍乗り型車両10の製造メーカー等が設定したタイミング、つまり、展開開始からの展開時間で規定される。
このため、エアバッグ制御部44は、検知部44Cによって検知されるエアバッグ展開時間TAが、その展開時間に至ったタイミングでエアバッグ42を分離させる。本実施形態では、後述する図7の必要十分展開状態SBの経過の前でも、エアバッグ42が所定状態まで展開すると、エアバッグ42を分離させる。なお、必要十分展開状態SBのタイミングでエアバッグ42を分離させてもよい。
このため、エアバッグ制御部44は、検知部44Cによって検知されるエアバッグ展開時間TAが、その展開時間に至ったタイミングでエアバッグ42を分離させる。本実施形態では、後述する図7の必要十分展開状態SBの経過の前でも、エアバッグ42が所定状態まで展開すると、エアバッグ42を分離させる。なお、必要十分展開状態SBのタイミングでエアバッグ42を分離させてもよい。
高速走行状態でなかった場合(ステップS3A;YES)、エアバッグ制御部44は、検知部44Cによって検知される乗員移動距離LAが、予め定めた距離閾値DLに達したか否かを判定する(ステップS4A)。
距離閾値DLは、運転者Rの移動速度を低減できる乗員移動距離LAの範囲内の値に設定される。したがって、乗員移動距離LAが距離閾値DLに至るまで、図3に例示するエアバッグ42の張力FTを利用して運転者Rの移動速度が低減される。
距離閾値DLは、運転者Rの移動速度を低減できる乗員移動距離LAの範囲内の値に設定される。したがって、乗員移動距離LAが距離閾値DLに至るまで、図3に例示するエアバッグ42の張力FTを利用して運転者Rの移動速度が低減される。
乗員移動距離LAが距離閾値DLに達していない場合(ステップS4A;NO)、エアバッグ制御部44は、エアバッグ展開時間TAが予め設定した最大遅延時間DMを経過したか否かを判定する(ステップS5A)。
エアバッグ制御部44は、エアバッグ展開時間TAが最大遅延時間DMを経過していない場合(ステップS5A;NO)、ステップS4Aの処理に移行する。
エアバッグ制御部44は、乗員移動距離LAが距離閾値DLに達した場合(ステップS4A;YES)、または、エアバッグ展開時間TAが最大遅延時間DMを経過した場合(ステップS5A;YES)、エアバッグ42の分離処理を行う(ステップS6A)。
エアバッグ制御部44は、エアバッグ展開時間TAが最大遅延時間DMを経過していない場合(ステップS5A;NO)、ステップS4Aの処理に移行する。
エアバッグ制御部44は、乗員移動距離LAが距離閾値DLに達した場合(ステップS4A;YES)、または、エアバッグ展開時間TAが最大遅延時間DMを経過した場合(ステップS5A;YES)、エアバッグ42の分離処理を行う(ステップS6A)。
最大遅延時間DMは、エアバッグ42が完全に展開した時点以降でのエアバッグ42の分離を保障するタイミングに設定される。これにより、乗員移動距離LAが距離閾値DLに達しなくても、時限的に確実にエアバッグ42を分離させ、運転者Rをエアバッグ42と共に鞍乗り型車両10から離脱させ易くなる。なお、最大遅延時間DMは、鞍乗り型車両10の製造メーカー等が適宜な時間に設定すればよい。
図7は、少なくとも前面が衝突した場合のエアバッグ42の分離タイミングを例示するシーケンス図である。図7中の「X積分値」は、運転者Rの前方への乗員移動距離LAを示し、「Y積分値」は、運転者Rの左右方向への乗員移動距離LAを示し、「XY合成Gの積分値」は、X積分値とY積分値の合成値を示し、横軸は時間を示している。
説明の便宜上、「X積分値」の変化特性を符号fxで示し、運転者Rの前方への移動が生じた場合を示している。「Y積分値」の変化特性を符号fy1,fy2,fy3で示し、変化特性fy1、fy2,fy3の順で運転者Rの側方への移動量が多くなる場合を示している。「XY合成Gの積分値」の変化特性は、変化特性fx、fyの合成の特性fxyを示している。
説明の便宜上、「X積分値」の変化特性を符号fxで示し、運転者Rの前方への移動が生じた場合を示している。「Y積分値」の変化特性を符号fy1,fy2,fy3で示し、変化特性fy1、fy2,fy3の順で運転者Rの側方への移動量が多くなる場合を示している。「XY合成Gの積分値」の変化特性は、変化特性fx、fyの合成の特性fxyを示している。
距離閾値DLは、X積分値とY積分値のそれぞれに設定され、図7には、X積分値の距離閾値DLを「距離閾値DL(X)」で示し、Y積分値の距離閾値DLを「距離閾値DL(Y)」で示している。
距離閾値DL(X)は、本発明の「第1距離閾値」に相当し、距離閾値DL(Y)は、本発明の「第2距離閾値」に相当する。
距離閾値DL(X)は、本発明の「第1距離閾値」に相当し、距離閾値DL(Y)は、本発明の「第2距離閾値」に相当する。
図7において、衝突のタイミングは時点T1であり、インフレーター点火(展開開始)のタイミングは時点T2であり、必要十分展開状態SBのタイミングは時点T3である。なお、インフレーター点火T2から必要十分展開状態SBに至るまでの展開時間TTは一定値である。
衝突が発生し、X積分値の変化特性fx、Y積分値の変化特性fy1の場合、変化特性fxが時点Taで距離閾値DL(X)に達しており、時点Taで変化特性fy1は、距離閾値DL(Y)未満である。時点Taは、必要十分展開状態SBの時点T3(エアバッグ展開時間TAが時間閾値DTのタイミング)を経過しているので、時点Taのタイミングでエアバッグ42が分離される。
X積分値(前後方向の乗員移動距離LA)が距離閾値DL(X)に達するまでエアバッグ42は分離されないので、運転者Rの移動速度をエアバッグ42で効果的に低減しながら、必要十分展開状態SBよりも展開したエアバッグ42によって、運転者Rを保護できる。
X積分値(前後方向の乗員移動距離LA)が距離閾値DL(X)に達するまでエアバッグ42は分離されないので、運転者Rの移動速度をエアバッグ42で効果的に低減しながら、必要十分展開状態SBよりも展開したエアバッグ42によって、運転者Rを保護できる。
一方、X積分値の変化特性fx、Y積分値の変化特性fy2の場合、変化特性fy2が時点Tbで距離閾値DL(Y)に達する。この時点Tbは、変化特性fxが距離閾値DL(X)に達する時点Taよりも前であり、必要十分展開状態SBの時点T3を経過している。したがって、時点Tbのタイミングでエアバッグ42が分離される。
Y積分値(側方への乗員移動距離LA)が距離閾値DL(Y)に達するまでエアバッグ42は分離されないので、運転者Rの側方への移動速度をエアバッグ42で効果的に低減しながら、必要十分展開状態SBよりも展開したエアバッグ42によって、運転者Rを保護できる。
Y積分値(側方への乗員移動距離LA)が距離閾値DL(Y)に達するまでエアバッグ42は分離されないので、運転者Rの側方への移動速度をエアバッグ42で効果的に低減しながら、必要十分展開状態SBよりも展開したエアバッグ42によって、運転者Rを保護できる。
また、側面衝突の度合いが強い場合、例えば、Y積分値の変化特性fy3となる。この場合、変化特性fy3が時点Tcで距離閾値DL(Y)に達する。この時点Tcは、必要十分展開状態SBの時点T3よりも前である。したがって、時点Tcではエアバッグ42は分離されず、必要十分展開状態SBの時点T3を経過した時点でエアバッグ42が分離される。
Y積分値(側方への乗員移動距離LA)が距離閾値DL(Y)に達しても、必要十分展開状態SBになるまではエアバッグ42が分離されないので、運転者Rの側方への移動速度をエアバッグ42で効果的に低減しながら、必要十分展開状態SBよりも展開したエアバッグ42によって、運転者Rを保護できる。
Y積分値(側方への乗員移動距離LA)が距離閾値DL(Y)に達しても、必要十分展開状態SBになるまではエアバッグ42が分離されないので、運転者Rの側方への移動速度をエアバッグ42で効果的に低減しながら、必要十分展開状態SBよりも展開したエアバッグ42によって、運転者Rを保護できる。
図8は、後面や側面が衝突した場合のエアバッグ42の分離タイミングを例示するシーケンス図である。図8には、X積分値の距離閾値DL(第1距離閾値に相当)を、減速方向の「距離閾値DL(+X)」と、加速方向の「距離閾値DL(-X)」とで示している。
減速方向の「距離閾値DL(+X)」は、車両前後方向のうち、エアバッグ42の車両支持位置に対して運転者Rが位置する一方向への閾値に相当する。加速方向の「距離閾値DL(-X)」は、一方向と逆方向である他方向への閾値に相当する。一方向は、エアバッグ42が最も運転者Rの移動を抑えることができる方向であるため、「距離閾値DL(+X)」は、「距離閾値DL(-X)」、及び、Y積分値の距離閾値DL(第2距離閾値に相当)よりも大きい値に設定される。
減速方向の「距離閾値DL(+X)」は、車両前後方向のうち、エアバッグ42の車両支持位置に対して運転者Rが位置する一方向への閾値に相当する。加速方向の「距離閾値DL(-X)」は、一方向と逆方向である他方向への閾値に相当する。一方向は、エアバッグ42が最も運転者Rの移動を抑えることができる方向であるため、「距離閾値DL(+X)」は、「距離閾値DL(-X)」、及び、Y積分値の距離閾値DL(第2距離閾値に相当)よりも大きい値に設定される。
Y積分値の距離閾値DLは、右方向の「距離閾値DL(+Y)」と、左方向の「距離閾値DL(-Y)」である。
後方からの追突が発生し、図8に示すように、X積分値の変化特性fx2、Y積分値の変化特性fy4であった場合、変化特性fx2が時点Teで距離閾値DL(-X)に達する。この時点Teは、必要十分展開状態SBの時点T3よりも前であるので、時点Teではエアバッグ42は分離されず、必要十分展開状態SBの時点T3を経過した時点でエアバッグ42が分離される。
後方からの追突が発生した場合は、エアバッグ42を迅速に分離させることで、後方の追突車から運転者Rを離間させることができる。このため、エアバッグ42を迅速に分離できるように、距離閾値DL(-X)は小さい値に設定され、追突のときは、必要十分展開状態SBのタイミングでエアバッグ42が分離されるようにしている。
後方からの追突が発生し、図8に示すように、X積分値の変化特性fx2、Y積分値の変化特性fy4であった場合、変化特性fx2が時点Teで距離閾値DL(-X)に達する。この時点Teは、必要十分展開状態SBの時点T3よりも前であるので、時点Teではエアバッグ42は分離されず、必要十分展開状態SBの時点T3を経過した時点でエアバッグ42が分離される。
後方からの追突が発生した場合は、エアバッグ42を迅速に分離させることで、後方の追突車から運転者Rを離間させることができる。このため、エアバッグ42を迅速に分離できるように、距離閾値DL(-X)は小さい値に設定され、追突のときは、必要十分展開状態SBのタイミングでエアバッグ42が分離されるようにしている。
仮に側面だけが衝突し、Y積分値の変化特性fy4であった場合、変化特性fy4が時点Tfで距離閾値DL(-Y)に達する。この時点Tfは、必要十分展開状態SBの時点T3を経過しているので、時点Tfのタイミングでエアバッグ42が分離される。
Y積分値(側方への乗員移動距離LA)が距離閾値DL(Y)に達するまでエアバッグ42は分離されないので、運転者Rの側方への移動速度をエアバッグ42で効果的に低減しながら、必要十分展開状態SBよりも展開したエアバッグ42によって、運転者Rを保護できる。
Y積分値(側方への乗員移動距離LA)が距離閾値DL(Y)に達するまでエアバッグ42は分離されないので、運転者Rの側方への移動速度をエアバッグ42で効果的に低減しながら、必要十分展開状態SBよりも展開したエアバッグ42によって、運転者Rを保護できる。
以上説明したように、エアバッグ装置40は、運転者Rの周囲に展開するエアバッグ42を鞍乗り型車両10から分離させる分離部43と、エアバッグ42が展開してからの経過時間(エアバッグ展開時間TAなど)を検知する検知部44Cと、検知部44Cで検知された経過時間が時間閾値DTを超える第1条件を含む分離条件(所定条件)を満足した場合に、分離部43によりエアバッグ42を分離させる分離制御部44Dとを備えている。
この構成によれば、エアバッグ42が展開してからの経過時間を考慮してエアバッグ42の分離タイミングを遅らせることで、エアバッグ42を利用して運転者Rの離脱速度を低減し、運転者Rの離脱速度を低減し易くなる。
この構成によれば、エアバッグ42が展開してからの経過時間を考慮してエアバッグ42の分離タイミングを遅らせることで、エアバッグ42を利用して運転者Rの離脱速度を低減し、運転者Rの離脱速度を低減し易くなる。
また、時間閾値DTは、エアバッグ42が所定状態(必要十分展開状態SB)に展開するまでの時間よりも大きい。この構成によれば、エアバッグ42の分離タイミングを遅らせると共に、運転者Rが鞍乗り型車両10から離脱したときにエアバッグ42による保護効果を得やすくなる。
また、検知部44Cは、鞍乗り型車両10の加速度に基づいて、鞍乗り型車両10に対する運転者Rの移動距離である乗員移動距離LAを推定する演算処理を行う。上記分離条件は、乗員移動距離LAが予め定めた距離閾値DLを超える第2条件をさらに含み、分離制御部44Dは、少なくとも上記第1条件及び第2条件を満たした場合に分離部43によりエアバッグ42を分離させる。この構成によれば、乗員移動距離LAを考慮してエアバッグ42の分離タイミングを遅らせることができ、エアバッグ42を利用して運転者Rの離脱速度を低減し、運転者Rの離脱速度を低減し易くなる。
また、既存の鞍乗り型車両が備える加速度センサーを使用することができるので、乗員移動距離LAを検知するための他のセンサーを使用する場合と比べて、コスト低減や、部品点数の低減を図り易くなる。
また、既存の鞍乗り型車両が備える加速度センサーを使用することができるので、乗員移動距離LAを検知するための他のセンサーを使用する場合と比べて、コスト低減や、部品点数の低減を図り易くなる。
また、検知部44Cは、車両前後方向の加速度と車両左右方向の加速度とを取得し、車両前後方向の加速度に基づいて、鞍乗り型車両10に対する運転者Rの車両前後方向の移動距離(図7,図8のX積分値)を推定し、車両左右方向の加速度に基づいて、鞍乗り型車両10に対する運転者Rの車両左右方向の移動距離(図7,図8のY積分値)を推定する。そして、距離閾値DLは、車両前後方向の距離閾値である第1距離閾値(図7の距離閾値DL(X)、図8の距離閾値DL(+X)、距離閾値DL(-X))と、車両左右方向の距離閾値である第2距離閾値(図7の距離閾値DL(Y)、図8の距離閾値DL(+Y)、距離閾値DL(-Y))とを含む。
検知部44Cは、運転者Rの車両前後方向の移動距離が上記第1距離閾値を超えたこと、及び、運転者Rの車両左右方向の移動距離が上記第2距離閾値を超えたことのいずれかを満たした場合に上記第2条件を満たしたと判断する。
この構成によれば、運転者Rが前後及び左右のそれぞれに設定した距離閾値DLのいずれかに移動するまでは、エアバッグ42によって運転者Rの移動速度を低減でき、運転者Rの前後及び左右への移動速度を抑えて鞍乗り型車両10から離脱させ易くなる。
この構成によれば、運転者Rが前後及び左右のそれぞれに設定した距離閾値DLのいずれかに移動するまでは、エアバッグ42によって運転者Rの移動速度を低減でき、運転者Rの前後及び左右への移動速度を抑えて鞍乗り型車両10から離脱させ易くなる。
また、上記第1距離閾値は、図8に示したように、車両前後方向のうち、エアバッグ42が鞍乗り型車両10に支持される車両支持位置に対して運転者Rが位置する一方向(前方向)への閾値に相当する距離閾値DL(+X)と、他方向(後方向)への閾値に相当する距離閾値DL(-X)とを有している。エアバッグ42の一部(反対側展開部50)は、運転者Rに対して一方向へ少なくとも展開し、一方向への閾値(距離閾値DL(+X))は、他方向への閾値(距離閾値DL(-X))、及び第2距離閾値(距離閾値DL(+Y)、距離閾値DL(-Y))よりも大きい値に設定されている。
この構成によれば、エアバッグ42は運転者Rを挟んで一方向側へ展開するので、エアバッグ42は運転者Rの一方向側への移動速度を低減し易いものとなる。この一方向側への運転者Rの移動については、エアバッグ42によって運転者Rの移動速度を効果的に低減しながら、それ以外の方向への運転者Rの移動については素早くエアバッグ42を分離させ、エアバッグ42と共に運転者Rを早期に鞍乗り型車両10から離脱させ易くなる。
この構成によれば、エアバッグ42は運転者Rを挟んで一方向側へ展開するので、エアバッグ42は運転者Rの一方向側への移動速度を低減し易いものとなる。この一方向側への運転者Rの移動については、エアバッグ42によって運転者Rの移動速度を効果的に低減しながら、それ以外の方向への運転者Rの移動については素早くエアバッグ42を分離させ、エアバッグ42と共に運転者Rを早期に鞍乗り型車両10から離脱させ易くなる。
また、エアバッグ制御部44は、鞍乗り型車両10の傾斜角度及び角速度の少なくともいずれかが、転倒を予測するための所定の条件を満たす場合、乗員移動距離LAが距離閾値DLを超える前でも(第2条件が成立しない場合でも、に相当)、エアバッグ42が所定状態まで展開すると、エアバッグ42を分離させる。
この構成によれば、転倒を予測したら、速やかに運転者Rを離脱させ易くなる。例えば、カーブ中の転倒の場合は、運転者Rへの路面からの衝撃力は相対的に小さく、運転者Rの離脱を優先できる。
この構成によれば、転倒を予測したら、速やかに運転者Rを離脱させ易くなる。例えば、カーブ中の転倒の場合は、運転者Rへの路面からの衝撃力は相対的に小さく、運転者Rの離脱を優先できる。
また、衝突が検出された場合にエアバッグ42が展開され、分離制御部44Dは、衝突が検出されたときに予め定めた高速走行状態の場合、乗員移動距離LAが距離閾値DLを超える前でも(第2条件が成立しない場合でも、に相当)、エアバッグ42が所定状態まで展開すると、エアバッグ42を分離させる。この構成によれば、高速走行状態の場合、運転者Rをエアバッグ42で保護しつつ素早く鞍乗り型車両10から離脱させ、運転者Rの他車両等への接触を避けやすくなる。
上述の実施形態は本発明の一態様を示すものであり、本発明は上記実施形態に限定されるものではない。例えば、上述の実施形態では、エアバッグ42の車両支持位置を、運転者Rの後方にする場合を説明したが、これに限定されず、例えば運転者Rの前方にしてもよい。
図9は、変形例に係るエアバッグ装置40を鞍乗り型車両10と共に示す側面図である。図10は、図9に示すエアバッグ42が展開して運転者Rを保護している状態を示す左側面図である。なお、上記した部材と同様の構成には、同一の符号を付して示し、重複説明は省略する。
変形例に係るエアバッグ装置40は、運転者Rの前方にて鞍乗り型車両10に支持され、運転者Rの後方を含む周囲に展開するエアバッグ42を備えている。
詳述すると、図9に示すように、燃料タンク29の後端部にエアバッグ収納部33が配置され、このエアバッグ収納部33にエアバッグ42が折りたたまれた状態で収納される。エアバッグ42は、前輪13と同様に車幅方向の中央に配置される。
変形例に係るエアバッグ装置40は、運転者Rの前方にて鞍乗り型車両10に支持され、運転者Rの後方を含む周囲に展開するエアバッグ42を備えている。
詳述すると、図9に示すように、燃料タンク29の後端部にエアバッグ収納部33が配置され、このエアバッグ収納部33にエアバッグ42が折りたたまれた状態で収納される。エアバッグ42は、前輪13と同様に車幅方向の中央に配置される。
図10に示すように、エアバッグ42は、展開時において、運転者Rに対して車体支持位置(インフレーター41側、またはエアバッグ収納部33側と言うこともできる)側である前側に位置する車体支持側展開部49と、運転者Rに対して車体支持位置の反対側である前側に位置する反対側展開部50とを備える。
車体支持側展開部49は、運転者Rの胴体R1を前方から覆う前方覆い部として機能し、エアバッグ収納部33から上方に延びる形状を有している。また、反対側展開部50は、胴体R1を後方から覆う後方覆い部として機能し、運転者Rの頭部R2の近傍まで上方に延びる形状を有している。
反対側展開部50は、車体支持側展開部49の車幅方向外側の両側部からそれぞれ後方に延出する前方延出部51と、前方延出部51から車幅方向内側に屈曲して車幅方向内側に延びる内側屈曲部52とを備える。さらに、反対側展開部50は、内側屈曲部52から屈曲して下方に延びる下方延出部53と、下方延出部53から前方延出部51に向けて折り返す折り返し部54とを備える。前方延出部51は、運転者Rの腕R3の下方で胴体R1を外側方から覆い、胴体R1を外側方から保護する。これによって反対側展開部50は、運転者Rの胴体R1を後方及び左右から覆う。
車体支持側展開部49は、運転者Rの胴体R1を前方から覆う前方覆い部として機能し、エアバッグ収納部33から上方に延びる形状を有している。また、反対側展開部50は、胴体R1を後方から覆う後方覆い部として機能し、運転者Rの頭部R2の近傍まで上方に延びる形状を有している。
反対側展開部50は、車体支持側展開部49の車幅方向外側の両側部からそれぞれ後方に延出する前方延出部51と、前方延出部51から車幅方向内側に屈曲して車幅方向内側に延びる内側屈曲部52とを備える。さらに、反対側展開部50は、内側屈曲部52から屈曲して下方に延びる下方延出部53と、下方延出部53から前方延出部51に向けて折り返す折り返し部54とを備える。前方延出部51は、運転者Rの腕R3の下方で胴体R1を外側方から覆い、胴体R1を外側方から保護する。これによって反対側展開部50は、運転者Rの胴体R1を後方及び左右から覆う。
展開したエアバッグ42は、運転者Rを周囲から覆うので、運転者Rを前方、左右及び後方から保護できる。このエアバッグ42は、運転者Rの前方にて鞍乗り型車両10に固定されているので、エアバッグ42の分離を遅らせることによって、図10に一例を示すように、後方から追突された場合、つまり、運転者Rを鞍乗り型車両10の後方に移動させる慣性力Fが発生している場合に、エアバッグ42の張力FTによって運転者Rの後方への移動速度を低減することが可能になる。
また、運転者Rを鞍乗り型車両10の側方に移動させる慣性力Fが発生している場合でも、エアバッグ42の張力FTによって運転者Rの側方への移動速度をある程度、低減することができる。また、このエアバッグ42は運転者Rを前方からも覆うので、運転者Rを鞍乗り型車両10の前方に移動させる慣性力Fが発生している場合でも、エアバッグ42の張力FTによって運転者Rの前方への移動速度をある程度、低減することができる。
したがって、このエアバッグ装置40においても、エアバッグ42が展開してからの経過時間(エアバッグ展開時間TAなど)を検知し、所定時間(時間閾値DTに相当)の経過を含む分離条件(所定条件)を満足した場合に、分離部43によりエアバッグ42を分離させるエアバッグ制御部44を備えることによって、エアバッグ42を利用して運転者Rの離脱速度を低減し、運転者Rの離脱速度を低減し易くなる、といった上記実施形態の各種の効果が得られる。
したがって、このエアバッグ装置40においても、エアバッグ42が展開してからの経過時間(エアバッグ展開時間TAなど)を検知し、所定時間(時間閾値DTに相当)の経過を含む分離条件(所定条件)を満足した場合に、分離部43によりエアバッグ42を分離させるエアバッグ制御部44を備えることによって、エアバッグ42を利用して運転者Rの離脱速度を低減し、運転者Rの離脱速度を低減し易くなる、といった上記実施形態の各種の効果が得られる。
また、上記の実施形態では、鞍乗り型車両10の加速度に基づいて、鞍乗り型車両10に対する運転者Rの移動距離である乗員移動距離LAを推定し、乗員移動距離LAを考慮してエアバッグ42の分離タイミングを遅らせる場合を例示したが、この構成に限定しなくてもよい。
例えば、図11に示すように、エアバッグ制御部44が、エアバッグ42が運転者Rの移動により引っ張られる張力FTを検知する荷重検知部144Cを設ける。そして、上記分離条件は、張力FTが予め定めた張力閾値を超える第3条件をさらに含み、分離制御部44Dは、上記第1条件及び第3条件を満たした場合に分離部43によりエアバッグ42を分離させる。これにより、張力FTが張力閾値を超えるまでエアバッグ42の分離タイミングを遅らせ、運転者Rの離脱速度を効果的に低減することができる。
例えば、図11に示すように、エアバッグ制御部44が、エアバッグ42が運転者Rの移動により引っ張られる張力FTを検知する荷重検知部144Cを設ける。そして、上記分離条件は、張力FTが予め定めた張力閾値を超える第3条件をさらに含み、分離制御部44Dは、上記第1条件及び第3条件を満たした場合に分離部43によりエアバッグ42を分離させる。これにより、張力FTが張力閾値を超えるまでエアバッグ42の分離タイミングを遅らせ、運転者Rの離脱速度を効果的に低減することができる。
なお、張力閾値は、鞍乗り型車両10の製造メーカー等が適宜な値に設定すればよく、例えば、エアバッグ42が破断しない張力の上限値またはその近傍の値に設定される。
この場合、鞍乗り型車両10には、車両センサー10Sの一つとして、張力FTを検知する荷重センサーを設け、この荷重センサーの検知結果を荷重検知部144Cが取得するようにすればよい。例えば、荷重検知部144Cは、上記検知部44Cから、乗員移動距離LAに関する機能を除き、その代わりに、張力FTに関する機能を追加した構成である。但し、この構成に限定する必要はなく、荷重検知部144Cを、上記検知部44Cに張力FTに関する機能を追加した構成にすることによって、張力FTと乗員移動距離LAの双方を考慮してエアバッグ42の分離タイミングを遅らせるようにしてもよい。
この場合、鞍乗り型車両10には、車両センサー10Sの一つとして、張力FTを検知する荷重センサーを設け、この荷重センサーの検知結果を荷重検知部144Cが取得するようにすればよい。例えば、荷重検知部144Cは、上記検知部44Cから、乗員移動距離LAに関する機能を除き、その代わりに、張力FTに関する機能を追加した構成である。但し、この構成に限定する必要はなく、荷重検知部144Cを、上記検知部44Cに張力FTに関する機能を追加した構成にすることによって、張力FTと乗員移動距離LAの双方を考慮してエアバッグ42の分離タイミングを遅らせるようにしてもよい。
また、上記の実施形態では、前後方向の乗員移動距離LA(X積算値に相当)に加えて、左右方向の乗員移動距離LA(Y積分値に相当)を算出する場合を説明したが、左右方向の乗員移動距離LAの算出をしない構成にしてもよい。
例えば、エアバッグ制御部44は、鞍乗り型車両10に対する運転者Rの一方向(図3での前方向、図4での後方向)の移動距離(X積算値に相当)が、第1距離閾値(図7での距離閾値DL(X))を超える前に、左右方向への加速度、若しくは、他方向(図3での後方向、図4での前方向)への加速度が、所定の閾値を超える場合、上記一方向の移動距離(X積算値に相当)が上記第1距離閾値を超える前に、エアバッグ42を分離させるようにしてもよい。また、二階積分による移動距離を用いる場合に代えて、加速度でなく1階積分による速度を用いてもよい。
例えば、エアバッグ制御部44は、鞍乗り型車両10に対する運転者Rの一方向(図3での前方向、図4での後方向)の移動距離(X積算値に相当)が、第1距離閾値(図7での距離閾値DL(X))を超える前に、左右方向への加速度、若しくは、他方向(図3での後方向、図4での前方向)への加速度が、所定の閾値を超える場合、上記一方向の移動距離(X積算値に相当)が上記第1距離閾値を超える前に、エアバッグ42を分離させるようにしてもよい。また、二階積分による移動距離を用いる場合に代えて、加速度でなく1階積分による速度を用いてもよい。
つまり、分離条件は、車両前後方向のうち、エアバッグ42が鞍乗り型車両10に支持される車両支持位置に対して運転者Rが位置する一方向への移動距離(X積算値に相当)、が、第1距離閾値を超える前に、車両左右方向への加速度、上記一方向の逆方向である他方向への加速度、車両左右方向の速度、及び、上記一方向の逆方向である他方向への速度の少なくともいずれかが、所定の閾値を超える第4条件を含む。そして、分離制御部44Dは、上記第1条件及び第4条件を満たした場合に分離部43によりエアバッグ42を分離させてもよい。
この構成によれば、側方衝突時に、素早くエアバッグ42を分離させ易くなる。また、左右方向等への移動距離を演算する処理をしなくても側方衝突時にエアバッグ42を分離させることができるので、エアバッグ制御部44に要求される処理能力を低減でき、コスト低減に有利となる。
この構成によれば、側方衝突時に、素早くエアバッグ42を分離させ易くなる。また、左右方向等への移動距離を演算する処理をしなくても側方衝突時にエアバッグ42を分離させることができるので、エアバッグ制御部44に要求される処理能力を低減でき、コスト低減に有利となる。
また、本発明を、運転者R用のエアバッグ装置40に適用する場合を説明したが、同乗者を含む乗員のエアバッグ装置に適用してもよい。
また、本発明を、図1等に示す自動二輪車のエアバッグ装置40に適用する場合を説明したが、これに限定されず、本発明を、他の自動二輪車、及び、三輪タイプや四輪タイプを含む鞍乗り型車両、といった車両のエアバッグ装置に適用してもよい。
また、本発明を、図1等に示す自動二輪車のエアバッグ装置40に適用する場合を説明したが、これに限定されず、本発明を、他の自動二輪車、及び、三輪タイプや四輪タイプを含む鞍乗り型車両、といった車両のエアバッグ装置に適用してもよい。
[上記実施の形態によりサポートされる構成]
上記実施の形態は、以下の構成をサポートする。
上記実施の形態は、以下の構成をサポートする。
(構成1)車両に搭載され、乗員の周囲に展開するエアバッグを備えるエアバッグ装置において、前記エアバッグを前記車両から分離させる分離部と、前記エアバッグが展開してからの経過時間を検知する検知部と、前記検知部で検知された経過時間が時間閾値を超える第1条件を含む所定条件を満足した場合に、前記分離部により前記エアバッグを分離させる分離制御部とを備えることを特徴とするエアバッグ装置。
この構成によれば、エアバッグが展開してからの経過時間を考慮してエアバッグの分離タイミングを遅らせることで、エアバッグを利用して乗員の離脱速度を低減し、乗員の離脱速度を低減し易くなる。
この構成によれば、エアバッグが展開してからの経過時間を考慮してエアバッグの分離タイミングを遅らせることで、エアバッグを利用して乗員の離脱速度を低減し、乗員の離脱速度を低減し易くなる。
(構成2)前記時間閾値は、前記エアバッグ(42)が所定状態に展開するまでの時間よりも大きいことを特徴とする構成1に記載のエアバッグ装置。
この構成によれば、乗員が車両から離脱したときにエアバッグによる保護効果を得やすくなる。
この構成によれば、乗員が車両から離脱したときにエアバッグによる保護効果を得やすくなる。
(構成3)前記検知部は、前記車両の加速度に基づいて前記車両に対する前記乗員の移動距離を推定する演算処理を行い、前記所定条件は、前記移動距離が予め定めた距離閾値を超える第2条件をさらに含み、前記分離制御部は、少なくとも前記第1条件及び第2条件を満たした場合に前記分離部により前記エアバッグを分離させることを特徴とする構成1または2に記載のエアバッグ装置。
この構成によれば、車両に対する前記乗員の移動距離を考慮してエアバッグの分離タイミングを遅らせることができる。車両が備える加速度センサーを使用することができるので、移動距離を検知するための他のセンサーを使用する場合と比べて、コスト低減や、部品点数の低減を図り易くなる。
この構成によれば、車両に対する前記乗員の移動距離を考慮してエアバッグの分離タイミングを遅らせることができる。車両が備える加速度センサーを使用することができるので、移動距離を検知するための他のセンサーを使用する場合と比べて、コスト低減や、部品点数の低減を図り易くなる。
(構成4)前記検知部は、車両前後方向の加速度と車両左右方向の加速度とを取得し、前記車両前後方向の加速度に基づいて、前記車両に対する前記乗員の車両前後方向の移動距離を推定し、前記車両左右方向の加速度に基づいて、前記車両に対する前記乗員の車両左右方向の移動距離を推定し、前記距離閾値は、車両前後方向の距離閾値である第1距離閾値と、車両左右方向の距離閾値である第2距離閾値とを含み、前記乗員の車両前後方向の移動距離が前記第1距離閾値を超えたこと、及び、前記乗員の車両左右方向の移動距離が前記第2距離閾値を超えたことのいずれかを満たした場合に前記第2条件を満たしたと判断することを特徴とする構成3に記載のエアバッグ装置。
この構成によれば、乗員が前後及び左右のそれぞれに設定した距離閾値のいずれかに移動するまでは、エアバッグによって乗員の移動速度を低減でき、乗員の前後及び左右への移動速度を抑えて車両から離脱させ易くなる。
この構成によれば、乗員が前後及び左右のそれぞれに設定した距離閾値のいずれかに移動するまでは、エアバッグによって乗員の移動速度を低減でき、乗員の前後及び左右への移動速度を抑えて車両から離脱させ易くなる。
(構成5)前記第1距離閾値は、車両前後方向のうち、前記エアバッグが前記車両に支持される車両支持位置に対して前記乗員が位置する一方向への閾値と、他方向への閾値とを有し、前記エアバッグの一部は、前記乗員に対して前記一方向へ少なくとも展開し、前記一方向への閾値は、前記他方向への閾値、及び前記第2距離閾値よりも大きいことを特徴とする構成4に記載のエアバッグ装置。
この構成によれば、エアバッグは乗員に対して一方向側へ展開するので、エアバッグは乗員の一方向側への移動速度を低減し易いものとなる。この一方向側への乗員の移動については、エアバッグによって乗員の移動速度を効果的に低減しながら、それ以外の方向への乗員の移動については素早くエアバッグを分離させることができ、エアバッグと共に乗員を早期に車両から離脱させ易くなる。
この構成によれば、エアバッグは乗員に対して一方向側へ展開するので、エアバッグは乗員の一方向側への移動速度を低減し易いものとなる。この一方向側への乗員の移動については、エアバッグによって乗員の移動速度を効果的に低減しながら、それ以外の方向への乗員の移動については素早くエアバッグを分離させることができ、エアバッグと共に乗員を早期に車両から離脱させ易くなる。
(構成6)前記エアバッグが前記乗員の移動により引っ張られる張力を検知する荷重検知部を有し、前記所定条件は、前記張力が予め定めた張力閾値を超える第3条件をさらに含み、前記分離制御部は、前記第1条件及び第3条件を満たした場合に前記分離部により前記エアバッグを分離させることを含むことを特徴とする構成1または2に記載のエアバッグ装置。
この構成によれば、エアバッグが前記乗員の移動により引っ張られる張力を考慮してエアバッグの分離タイミングを遅らせることができ、エアバッグによって乗員の移動速度を効率良く低減し易くなる。
この構成によれば、エアバッグが前記乗員の移動により引っ張られる張力を考慮してエアバッグの分離タイミングを遅らせることができ、エアバッグによって乗員の移動速度を効率良く低減し易くなる。
(構成7)前記所定条件は、車両前後方向のうち、前記エアバッグが前記車両に支持される車両支持位置に対して前記乗員が位置する一方向への、前記車両に対する前記乗員の移動距離が、前記距離閾値を超える前に、車両左右方向への加速度、前記一方向の逆方向である他方向への加速度、車両左右方向の速度、及び、前記一方向の逆方向である他方向への速度の少なくともいずれかが、所定の閾値を超える第4条件を含み、前記分離制御部は、前記第1条件及び第4条件を満たした場合に前記分離部により前記エアバッグを分離させることを特徴とする構成3に記載のエアバッグ装置。
この構成によれば、側方衝突時に、素早くエアバッグを分離させ易くなる。また、左右方向等への移動距離を演算する処理をしなくても側方衝突時にエアバッグを分離させることができるので、エアバッグ制御部に要求される処理能力を低減でき、コスト低減に有利となる。
この構成によれば、側方衝突時に、素早くエアバッグを分離させ易くなる。また、左右方向等への移動距離を演算する処理をしなくても側方衝突時にエアバッグを分離させることができるので、エアバッグ制御部に要求される処理能力を低減でき、コスト低減に有利となる。
(構成8)前記検知部は、前記車両の傾斜角度及び角速度の少なくともいずれかが所定の条件を満たす場合、前記第2条件が成立しない場合でも、前記エアバッグが所定状態まで展開すると、前記エアバッグを分離させることを特徴とする構成3から5のいずれか一項に記載のエアバッグ装置。
この構成によれば、転倒を予測したら、速やかに乗員を離脱させ易くなる。
この構成によれば、転倒を予測したら、速やかに乗員を離脱させ易くなる。
(構成9)前記車両の衝突が検出された場合に前記エアバッグが展開され、前記分離制御部は、前記衝突が検出されたときに予め定めた高速走行状態の場合、前記第2条件が成立しない場合でも、前記エアバッグが所定状態まで展開すると、遅延させずに前記エアバッグを分離させることを特徴とする構成3から5、及び8のいずれか一項に記載のエアバッグ装置。
この構成によれば、高速走行状態の場合、乗員をエアバッグで保護しつつ素早く車両から離脱させ、乗員の他車両等への接触を避けやすくなる。
この構成によれば、高速走行状態の場合、乗員をエアバッグで保護しつつ素早く車両から離脱させ、乗員の他車両等への接触を避けやすくなる。
10 鞍乗り型車両
40 エアバッグ装置
41 インフレーター
42 エアバッグ
43 分離部
44 エアバッグ制御部
44A 衝突判定部
44B 展開制御部
44C 検知部
44D 分離制御部
45 記憶部
144C 荷重検知部
LA 乗員移動距離
R 運転者(乗員)
SB 必要十分展開状態
40 エアバッグ装置
41 インフレーター
42 エアバッグ
43 分離部
44 エアバッグ制御部
44A 衝突判定部
44B 展開制御部
44C 検知部
44D 分離制御部
45 記憶部
144C 荷重検知部
LA 乗員移動距離
R 運転者(乗員)
SB 必要十分展開状態
Claims (9)
- 車両(10)に搭載され、乗員の周囲に展開するエアバッグ(42)を備えるエアバッグ装置において、
前記エアバッグ(42)を前記車両(10)から分離させる分離部(43)と、
前記エアバッグ(42)が展開してからの経過時間を検知する検知部(44C)と、
前記検知部(44C)で検知された経過時間が時間閾値を超える第1条件を含む所定条件を満足した場合に、前記分離部(43)により前記エアバッグ(42)を分離させる分離制御部(44D)と、
を備えることを特徴とするエアバッグ装置。 - 前記時間閾値は、前記エアバッグ(42)が所定状態に展開するまでの時間よりも大きいことを特徴とする請求項1に記載のエアバッグ装置。
- 前記検知部(44C)は、前記車両(10)の加速度に基づいて前記車両(10)に対する前記乗員の移動距離を推定する演算処理を行い、
前記所定条件は、前記移動距離が予め定めた距離閾値を超える第2条件をさらに含み、
前記分離制御部(44D)は、少なくとも前記第1条件及び第2条件を満たした場合に前記分離部(43)により前記エアバッグ(42)を分離させることを特徴とする請求項1または2に記載のエアバッグ装置。 - 前記検知部(44C)は、車両前後方向の加速度と車両左右方向の加速度とを取得し、前記車両前後方向の加速度に基づいて、前記車両(10)に対する前記乗員の車両前後方向の移動距離を推定し、前記車両左右方向の加速度に基づいて、前記車両(10)に対する前記乗員の車両左右方向の移動距離を推定し、
前記距離閾値は、車両前後方向の距離閾値である第1距離閾値と、車両左右方向の距離閾値である第2距離閾値とを含み、
前記乗員の車両前後方向の移動距離が前記第1距離閾値を超えたこと、及び、前記乗員の車両左右方向の移動距離が前記第2距離閾値を超えたことのいずれかを満たした場合に前記第2条件を満たしたと判断することを含むことを特徴とする請求項3に記載のエアバッグ装置。 - 前記第1距離閾値は、車両前後方向のうち、前記エアバッグ(42)が前記車両に支持される車両支持位置に対して前記乗員が位置する一方向への閾値と、他方向への閾値とを有し、
前記エアバッグ(42)の一部は、前記乗員に対して前記一方向へ少なくとも展開し、
前記一方向への閾値は、前記他方向への閾値、及び前記第2距離閾値よりも大きいことを特徴とする請求項4に記載のエアバッグ装置。 - 前記エアバッグ(42)が前記乗員の移動により引っ張られる張力を検知する荷重検知部(144C)を有し、
前記所定条件は、前記張力が予め定めた張力閾値を超える第3条件をさらに含み、
前記分離制御部(44D)は、前記第1条件及び第3条件を満たした場合に前記分離部(43)により前記エアバッグ(42)を分離させることを特徴とする請求項1または2に記載のエアバッグ装置。 - 前記所定条件は、車両前後方向のうち、前記エアバッグ(42)が前記車両に支持される車両支持位置に対して前記乗員が位置する一方向への、前記車両(10)に対する前記乗員の移動距離が、前記距離閾値を超える前に、車両左右方向への加速度、前記一方向の逆方向である他方向への加速度、車両左右方向の速度、及び、前記一方向の逆方向である他方向への速度の少なくともいずれかが、所定の閾値を超える第4条件を含み、
前記分離制御部(44D)は、前記第1条件及び第4条件を満たした場合に前記分離部(43)により前記エアバッグ(42)を分離させることを特徴とする請求項3に記載のエアバッグ装置。 - 前記検知部(44C)は、前記車両(10)の傾斜角度及び角速度の少なくともいずれかが所定の条件を満たす場合、前記第2条件が成立しない場合でも、前記エアバッグ(42)が所定状態まで展開すると、前記エアバッグ(42)を分離させることを特徴とする請求項3から5のいずれか一項に記載のエアバッグ装置。
- 前記車両(10)の衝突が検出された場合に前記エアバッグ(42)が展開され、
前記分離制御部(44D)は、前記衝突が検出されたときに予め定めた高速走行状態の場合、前記第2条件が成立しない場合でも、前記エアバッグ(42)が所定状態まで展開すると、遅延させずに前記エアバッグ(42)を分離させることを特徴とする請求項3から5、及び8のいずれか一項に記載のエアバッグ装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/002279 WO2023139768A1 (ja) | 2022-01-21 | 2022-01-21 | エアバッグ装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/002279 WO2023139768A1 (ja) | 2022-01-21 | 2022-01-21 | エアバッグ装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023139768A1 true WO2023139768A1 (ja) | 2023-07-27 |
Family
ID=87348517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/002279 WO2023139768A1 (ja) | 2022-01-21 | 2022-01-21 | エアバッグ装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023139768A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006160171A (ja) * | 2004-12-10 | 2006-06-22 | Honda Motor Co Ltd | 車両用エアバッグ装置 |
JP2008183913A (ja) * | 2007-01-26 | 2008-08-14 | Honda Motor Co Ltd | 自動二輪車用エアバッグ装置 |
WO2021199334A1 (ja) * | 2020-03-31 | 2021-10-07 | 本田技研工業株式会社 | 鞍乗り型車両のエアバッグ装置 |
-
2022
- 2022-01-21 WO PCT/JP2022/002279 patent/WO2023139768A1/ja unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006160171A (ja) * | 2004-12-10 | 2006-06-22 | Honda Motor Co Ltd | 車両用エアバッグ装置 |
JP2008183913A (ja) * | 2007-01-26 | 2008-08-14 | Honda Motor Co Ltd | 自動二輪車用エアバッグ装置 |
WO2021199334A1 (ja) * | 2020-03-31 | 2021-10-07 | 本田技研工業株式会社 | 鞍乗り型車両のエアバッグ装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6357677B2 (ja) | 鞍乗型車両のエアバッグ装置 | |
TWI642585B (zh) | 跨騎型車輛 | |
JP6213875B2 (ja) | 鞍乗型車両のエアバッグ装置 | |
WO2010147186A1 (ja) | 鞍乗型車両のエアバッグ装置 | |
EP1762477B1 (en) | Airbag apparatus and motorcycle with airbag apparatus | |
JP6208514B2 (ja) | 鞍乗り型車両 | |
WO2023139768A1 (ja) | エアバッグ装置 | |
JP2005153613A (ja) | エアバッグ装置付自動二輪車 | |
JP5399139B2 (ja) | 鞍乗型車両のエアバッグ装置 | |
JP6964187B2 (ja) | 鞍乗り型車両のエアバッグ装置 | |
US8955873B2 (en) | Airbag apparatus and airbag cover | |
JP6964761B2 (ja) | 鞍乗型車両 | |
JP5799985B2 (ja) | 車両挙動制御装置 | |
JP5604135B2 (ja) | 鞍乗り型車両 | |
JP2012250624A (ja) | 鞍乗り型車両 | |
JP4339549B2 (ja) | エアバッグ装置 | |
JP5317793B2 (ja) | 二輪車用エアバック装置 | |
JP2012250624A5 (ja) | ||
EP3828066B1 (en) | Airbag device for saddle-type vehicle | |
JP7075502B2 (ja) | 鞍乗り型車両 | |
US20240317348A1 (en) | Saddle riding vehicle | |
JP2023085131A (ja) | オートバイ用エアバッグ装置 | |
TW201945234A (zh) | 跨坐型車輛之安全氣囊裝置 | |
JP2003300491A (ja) | 小型車両における車体ピッチング抑制構造 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22921925 Country of ref document: EP Kind code of ref document: A1 |