WO2023138625A1 - 一种微通道矩阵光波导平板及其制备方法 - Google Patents

一种微通道矩阵光波导平板及其制备方法 Download PDF

Info

Publication number
WO2023138625A1
WO2023138625A1 PCT/CN2023/072931 CN2023072931W WO2023138625A1 WO 2023138625 A1 WO2023138625 A1 WO 2023138625A1 CN 2023072931 W CN2023072931 W CN 2023072931W WO 2023138625 A1 WO2023138625 A1 WO 2023138625A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
film layer
optical waveguide
target
optical element
Prior art date
Application number
PCT/CN2023/072931
Other languages
English (en)
French (fr)
Inventor
王侃
郝雅棋
张兵
Original Assignee
像航(如东)科技有限公司
像航(上海)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 像航(如东)科技有限公司, 像航(上海)科技有限公司 filed Critical 像航(如东)科技有限公司
Publication of WO2023138625A1 publication Critical patent/WO2023138625A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3639Multilayers containing at least two functional metal layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • C03C2218/156Deposition methods from the vapour phase by sputtering by magnetron sputtering

Definitions

  • the invention relates to the technical field of medium-free aerial imaging, in particular to a microchannel matrix optical waveguide plate and a preparation method thereof.
  • the mediumless aerial imaging technology mainly adopts the micro-channel matrix optical waveguide plate, which is achieved through the two reflections of two layers of transparent materials arranged orthogonally through the optical path, so as to re-converge in the air. It can reflect point light source, line light source, and surface light source. , and put forward higher requirements for application scenarios, resulting in great constraints on the commercial promotion and large-scale application of mediumless aerial imaging technology.
  • the medium-free aerial imaging technology reproduces the light field through the optical micromirror structure, and reproduces a three-dimensional real image in three-dimensional space.
  • the optical micromirror structure records information such as the intensity, angle, wavelength and other information of each ray of light from the real light source in the "object space” to the light plate, and replicates the light that is a complete mirror image of the recorded light in the "image space” on the other side of the array.
  • the strip-shaped glass plates are bonded in parallel to form a light-transmitting laminate, and then two pieces of light-transmitting laminates are pasted to form a whole optical imaging element. When the quality is high, it will inevitably cause a change in the direction of propagation, forming a refraction phenomenon, which will affect the reflection path of the optical path, and then affect the aerial imaging effect.
  • the present application provides a microchannel matrix optical waveguide plate and a preparation method thereof, in which magnetic materials are used to attract instead of adhesives to achieve close bonding of optical elements, which can reduce the influence of adhesives on reflected light from optical elements, and the prepared microchannel matrix optical waveguide plates have the characteristics of high imaging definition and simple preparation process.
  • the present invention provides a micro-channel matrix optical waveguide flat plate.
  • the micro-channel matrix optical waveguide flat plate is formed by vertically stacking two optical element groups.
  • the optical element group is composed of several optical elements arranged in parallel.
  • the optical element includes a glass original sheet, and the glass original sheet is divided into an air surface and a reflection surface. The air surface is sequentially provided with a first metal film layer, a magnetic material film layer and a second metal film layer.
  • the present invention also provides a method for preparing a microchannel matrix optical waveguide plate, the microchannel matrix optical waveguide plate is the microchannel matrix optical waveguide plate described in claim 1, comprising the following steps:
  • Steps 1-8 are used to obtain two optical element groups, and the two optical element groups are superimposed on each other, the reflective surfaces of the two optical element groups are perpendicular to each other, and bonded by a high-transmittance adhesive to obtain the microchannel matrix optical waveguide plate.
  • the preparation method of the original glass sheet described in S1 of the present invention is:
  • Step 1 Ingredients: prepare glass raw materials according to the following components: 70-85% of silica sand, 10-20% of kaolin, 5-10% of calcite and 1-5% of dolomite. Put the glass raw materials in a grinder and grind them until the particle size is 600-800 mesh.
  • Step 2 Melting: put the glass raw material ground in step 1 in a pool kiln filled with nitrogen and hydrogen to melt to obtain molten glass, and the melting temperature is 1200-1800°C;
  • Step 3 Forming: When the melted glass obtained in step 2 is cooled to below 1000°C, it is passed into a tin bath filled with inert gas and left to cool for 1-3 hours to obtain a flat glass ribbon.
  • Step 4 annealing: move the glass ribbon in step 3 into an annealing kiln for annealing, and the annealing temperature ranges from 550°C to 750°C.
  • the parameters for depositing the first metal film layer by magnetron sputtering in S3 of the present invention are as follows: the thickness of the Al target is 5-10mm, the magnetic field strength is 50-100Gs, the power of the Al target is 80-150W, the sputtering pressure is 0.5-1.5Pa, Ar: 100-250mL/min, the deposition temperature is 100-150°C, and the sputtering deposition time is 5-10min.
  • the parameters of the magnetron sputtering deposition of the magnetic material film in S4 of the present invention are as follows: the thickness of the magnetic target is 2-3mm, the magnetic field strength is 600-900Gs, the power of the magnetic target is 2-5Kw, the sputtering pressure is 1.5-2.5Pa, Ar: 200-400mL/min, the deposition temperature is 100-120°C, and the sputtering deposition time is 10-20min.
  • the magnetically permeable target described in S4 of the present invention is one of ferrite, alnico alloy, samarium cobalt alloy, neodymium iron boron alloy, and iron chromium cobalt alloy.
  • the parameters for depositing the second metal film layer by magnetron sputtering in S5 of the present invention are as follows: the thickness of the Al target is 5-10mm, the magnetic field strength is 100-200Gs, the power of the Al target is 3-9Kw, the sputtering pressure is 0.5-1.5Pa, Ar: 100-250mL/min, the deposition temperature is 100-120°C, and the sputtering deposition time is 10-20min.
  • the first metal target in S3 and the second metal target in S5 of the present invention are one of Ti, Sn, Cr, Al or Ag.
  • the high light transmittance adhesive described in S9 of the present invention is calculated in parts by weight, and its raw material composition and content are as follows: 60-80 parts of aliphatic urethane acrylate, 15-25 parts of acrylate monomer, 0.1-0.5 parts of hexanediol, 2-8 parts of isoborneol acrylate, 1-10 parts of photoinitiator, 0.01-0.5 parts of leveling agent, and 0.1-1 part of defoaming agent.
  • the present invention realizes the close bonding of the optical elements by attracting the magnetic material instead of the adhesive, which not only reduces the influence of the adhesive on the reflected light of the optical elements, improves the imaging definition of the microchannel matrix optical waveguide plate, but also saves the step of adhesive bonding, greatly simplifies the manufacturing process, and improves the production efficiency.
  • the air surface of the optical element of the present invention is deposited with a first metal film layer, a magnetic material film layer and a second metal film layer, which can reflect all the light entering the optical element, and ensure that the light can converge in the air after being reconstructed by the light field to realize aerial imaging.
  • the adhesive with high light transmittance of the present invention is prepared by photopolymerization of acrylic monomer and aliphatic urethane acrylate under the action of a photoinitiator.
  • the prepared adhesive not only has high bonding strength with glass, but also has high light transmittance, which can effectively weaken the reflection phenomenon when light enters the adhesive.
  • Fig. 1 is a schematic diagram of the structure of the microchannel matrix optical waveguide plate of the present invention.
  • Fig. 2 is a schematic structural diagram of the optical element of the present invention.
  • a microchannel matrix optical waveguide plate and its preparation method of the present invention will be described in detail below in conjunction with specific preferred embodiments.
  • the present embodiment provides a microchannel matrix optical waveguide plate
  • the microchannel matrix optical waveguide plate is formed by vertically stacking two optical element groups
  • the optical element group is composed of several optical elements 1 arranged in parallel
  • the optical element 1 includes a glass original sheet 2
  • the glass original sheet 2 is divided into an air surface and a reflection surface
  • the air surface is provided with a first metal film layer 3, a magnetic material film layer 4 and a second metal film layer 5 in sequence.
  • the preparation method of the microchannel matrix optical waveguide plate comprises the following steps:
  • the original glass sheet 2 is ultrasonically cleaned with acetone for 10 minutes, then cleaned with ethanol for 5 minutes, dried with nitrogen, and then put into a magnetron sputtering coating machine;
  • the deposition parameters of magnetron sputtering are: the Al target thickness is 5mm, the magnetic field strength is 50Gs, the Al target power is 80W, the sputtering pressure is 1.5Pa, Ar: 100mL/min, the deposition temperature is 150°C, the sputtering deposition time is 10min, and the deposition thickness is 0.2um;
  • Fe3O4 magnetic material film layer Deposit a Fe3O4 magnetic material film layer on the first metal film layer.
  • the parameters of magnetron sputtering are: the thickness of the Fe3O4 target is 2mm, the magnetic field strength is 900Gs, the power of the magnetic permeation target is 2Kw, the sputtering pressure is 2.5Pa, Ar: 200mL/min, the deposition temperature is 120°C, the sputtering deposition time is 10min, and the deposition thickness is 50um;
  • the parameters of magnetron sputtering are that the Al target thickness is 10mm, the magnetic field strength is 200Gs, the Al target power is 9Kw, the sputtering pressure is 1.5Pa, Ar: 250mL/ min , the deposition temperature is 100°C, the sputtering deposition time is 20min, and the deposition thickness is 0.2um;
  • the glass element obtained in S5 is cut with a carbon dioxide laser cutting machine to obtain a glass strip with a width of 0.1 mm and a length of 600 mm;
  • S9 adopt steps 1-8 to obtain two optical element groups, superimpose the two optical element groups, the reflection surfaces of the two optical element groups are perpendicular to each other, and bond with a high light transmittance adhesive to obtain the microchannel matrix optical waveguide plate;
  • the high light transmittance adhesive is calculated in parts by weight, and its raw material composition and content are as follows: 70 parts of aliphatic urethane acrylate, 15 parts of acrylate monomer, 8 parts of isoborneol acrylate, 1 part of photoinitiator, 0.5 part of leveling agent, and 1 part of defoamer.
  • the preparation method of the original glass sheet described in S1 is:
  • Step 1 Ingredients: Prepare glass raw materials according to the following components: 70% silica sand, 20% kaolin, 10% calcite and 1% dolomite. Put the glass raw materials in a grinder and grind them to a particle size of 800 mesh.
  • Step 2 Melting: put the glass raw material ground in step 1 in a pool kiln filled with nitrogen and hydrogen to melt to obtain molten glass, and the melting temperature is 1800°C;
  • Step 3 Forming: When the melted glass obtained in step 2 is cooled to below 1000°C, it is passed into a tin bath filled with inert gas, and is left to cool for 3 hours to obtain a flat glass ribbon.
  • Step 4 annealing: move the glass ribbon in step 3 into an annealing kiln for annealing, and the annealing temperature range is 750°C.
  • This embodiment provides a micro-channel matrix optical waveguide plate, the micro-channel matrix optical waveguide plate is formed by vertically stacking two optical element groups, the optical element group is composed of several optical elements 1 arranged in parallel, the optical element 1 includes a glass original sheet 2, and the glass original sheet 2 is divided into an air surface and a reflection surface, and the air surface is sequentially provided with a first metal film layer 3, a magnetic material film layer 4 and a second metal film layer 5.
  • the preparation method of the microchannel matrix optical waveguide plate comprises the following steps:
  • the deposition parameters of magnetron sputtering are: Ag target thickness is 10mm, magnetic field strength is 50Gs, Ag target power is 150W, sputtering pressure is 1.5Pa, Ar: 100mL/min, deposition temperature is 100°C, sputtering deposition time is 5min, and deposition thickness is 0.05um;
  • the parameters of magnetron sputtering are: the thickness of the AlNiCo alloy target is 3mm, the magnetic field strength is 900Gs, the power of the magnetic guide target is 5Kw, the sputtering pressure is 2.5Pa, Ar: 400mL/min, the deposition temperature is 100°C, the sputtering deposition time is 20min, and the deposition thickness is 0.1um;
  • the parameters of magnetron sputtering are that the Al target thickness is 10mm, the magnetic field strength is 100Gs, the Ag target power is 9Kw, the sputtering pressure is 0.5Pa, Ar: 100mL/min, the deposition temperature is 120°C, the sputtering deposition time is 10min, and the deposition thickness is 0.05um;
  • the glass element obtained in S5 is cut by a carbon dioxide laser cutting machine to obtain a glass strip with a width of 0.3 mm and a length of 100 mm;
  • Steps 1-8 are used to obtain two optical element groups, and the two optical element groups are superimposed on each other, the reflective surfaces of the two optical element groups are perpendicular to each other, and bonded by a high light transmittance adhesive to obtain the microchannel Matrix optical waveguide plate;
  • the high light transmittance adhesive is calculated in parts by weight, and its raw material composition and content are as follows: 60 parts of aliphatic urethane acrylate, 25 parts of acrylate monomer, 8 parts of isobornyl acrylate, 10 parts of photoinitiator, 0.01 part of leveling agent, and 0.1 part of defoamer.
  • the preparation method of the original glass sheet described in S1 is:
  • Step 1 Ingredients: prepare glass raw materials according to the following components: 70-85% of silica sand, 10-20% of kaolin, 5-10% of calcite and 1-5% of dolomite. Put the glass raw materials in a grinder and grind them until the particle size is 600-800 mesh.
  • Step 2 Melting: put the glass raw material ground in step 1 in a pool kiln filled with nitrogen and hydrogen to melt to obtain molten glass, and the melting temperature is 1200-1800°C;
  • Step 3 Forming: When the melted glass obtained in step 2 is cooled to below 1000°C, it is passed into a tin bath filled with inert gas and left to cool for 1-3 hours to obtain a flat glass ribbon.
  • Step 4 annealing: move the glass ribbon in step 3 into an annealing kiln for annealing, and the annealing temperature ranges from 550°C to 750°C.
  • This embodiment provides a micro-channel matrix optical waveguide plate, the micro-channel matrix optical waveguide plate is formed by vertically stacking two optical element groups, the optical element group is composed of several optical elements arranged in parallel, the optical element includes a glass original sheet, the glass original sheet is divided into an air surface and a reflection surface, and the air surface is sequentially provided with a first metal film layer, a magnetic material film layer and a second metal film layer.
  • the preparation method of the microchannel matrix optical waveguide plate comprises the following steps:
  • the deposition parameters of magnetron sputtering are: the thickness of the Ti target is 8mm, the magnetic field strength is 68Gs, the power of the Ti target is 120W, the sputtering pressure is 1.1Pa, Ar: 180mL/min, the deposition temperature is 125°C, the sputtering deposition time is 8min, and the deposition thickness is 0.15um;
  • NdFeB alloy magnetic material film layer on the Ti film layer.
  • the parameters of magnetron sputtering are: the thickness of the NdFeB alloy target is 2mm, the magnetic field strength is 755Gs, the power of the magnetic permeation target is 3.5Kw, the sputtering pressure is 2Pa, Ar: 240mL/min, the deposition temperature is 108°C, the sputtering deposition time is 15min, and the deposition thickness is 18um;
  • the parameters of the magnetron sputtering are that the Cr target thickness is 8mm, the magnetic field strength is 140Gs, the Cr target power is 7Kw, the sputtering pressure is 1Pa, Ar: 150mL/min, the deposition temperature is 110°C, the sputtering deposition time is 10min, and the deposition thickness is 0.01um;
  • the glass element obtained in S5 is cut with a carbon dioxide laser cutting machine to obtain a glass strip with a width of 0.1 mm and a length of 600 mm;
  • Steps 1-8 are used to obtain two optical element groups, and the two optical element groups are superimposed on each other, and the reflective surfaces of the two optical element groups are perpendicular to each other, and are bonded by a high-transmittance adhesive to obtain the microchannel matrix optical waveguide plate;
  • the high-transmittance adhesive is calculated in parts by weight, and its raw material composition and content are as follows Bottom: 75 parts of aliphatic urethane acrylate, 20 parts of acrylate monomer, 5 parts of isobornyl acrylate, 5 parts of photoinitiator, 0.03 part of leveling agent, and 0.8 part of defoamer.
  • the preparation method of the original glass sheet in the S1 is:
  • Step 1 Ingredients: Prepare glass raw materials according to the following components: 75% silica sand, 12% kaolin, 8% calcite and 2% dolomite. Put the glass raw materials in a grinder and grind them until the particle size is 680 mesh.
  • Step 2 Melting: put the glass raw material ground in step 1 in a pool kiln filled with nitrogen and hydrogen to melt to obtain molten glass, and the melting temperature is 1600°C;
  • Step 3 Forming: When the melted glass obtained in Step 2 is cooled to below 1000°C, it is passed into a tin bath filled with inert gas, and a flat glass ribbon is obtained after standing for 2 hours.
  • Step 4 annealing: move the glass ribbon in step 3 into an annealing kiln for annealing, and the annealing temperature range is 650°C.
  • This embodiment provides a micro-channel matrix optical waveguide plate, the micro-channel matrix optical waveguide plate is formed by vertically stacking two optical element groups, the optical element group is composed of several optical elements arranged in parallel, the optical element includes a glass original sheet, the glass original sheet is divided into an air surface and a reflection surface, and the air surface is sequentially provided with a first metal film layer, a magnetic material film layer and a second metal film layer.
  • the preparation method of the microchannel matrix optical waveguide plate comprises the following steps:
  • Cr target thickness is 8mm
  • magnetic field strength is 85Gs
  • Cr target power is 135W
  • sputtering pressure is 1.2Pa
  • Ar 220mL/min
  • deposition temperature is 140°C
  • sputtering deposition time is 8min
  • deposition thickness is 0.15um
  • the parameters of magnetron sputtering are: the thickness of the iron-chromium-cobalt alloy target is 2.2mm, the magnetic field strength is 752Gs, the power of the magnetic permeation target is 3.4Kw, the sputtering pressure is 2.1Pa, Ar: 285mL/min, the deposition temperature is 110°C, the sputtering deposition time is 12min, and the deposition thickness is 35um;
  • the parameters of magnetron sputtering are that the thickness of the Cr target is 6mm, the magnetic field strength is 170Gs, the power of the Cr target is 8Kw, the sputtering pressure is 1Pa, Ar: 180mL/min, the deposition temperature is 100°C, the sputtering deposition time is 20min, and the deposition thickness is 0.085um;
  • the glass element obtained in S5 is cut by a carbon dioxide laser cutting machine to obtain a glass strip with a width of 0.25mm and a length of 450mm;
  • the high light transmittance adhesive is calculated in parts by weight, and its raw material composition and content are as follows: 68 parts of aliphatic urethane acrylate, 22 parts of acrylate monomer, 6 parts of isoborneol acrylate, 7 parts of photoinitiator, 0.25 parts of leveling agent, and 0.85 parts of defoaming agent.
  • the preparation method of the original glass sheet described in S1 is:
  • Step 1 Ingredients: Prepare glass raw materials according to the following components: 75% silica sand, 10% kaolin, 10% calcite and 5% dolomite. Put the glass raw materials in a grinder and grind them to a particle size of 600 mesh.
  • Step 2 Melting: put the glass raw material ground in step 1 into a pool kiln filled with nitrogen and hydrogen to melt to obtain molten glass, and the melting temperature is 1200°C;
  • Step 3 Forming: When the melted glass obtained in step 2 is cooled to below 1000°C, it is passed into a tin bath filled with inert gas, and is left to cool for 1 hour to obtain a flat glass ribbon.
  • Step 4 annealing: move the glass ribbon in step 3 into an annealing kiln for annealing, and the annealing temperature ranges from 550°C to 750°C.
  • This embodiment provides a micro-channel matrix optical waveguide plate, the micro-channel matrix optical waveguide plate is formed by vertically stacking two optical element groups, the optical element group is composed of several optical elements arranged in parallel, the optical element includes a glass original sheet, the glass original sheet is divided into an air surface and a reflection surface, and the air surface is sequentially provided with a first metal film layer, a magnetic material film layer and a second metal film layer.
  • the preparation method of the microchannel matrix optical waveguide plate comprises the following steps:
  • the deposition parameters of magnetron sputtering are: the thickness of the Sn target is 8mm, the magnetic field strength is 65Gs, the power of the Sn target is 90W, the sputtering pressure is 0.6Pa, Ar: 146mL/min, the deposition temperature is 121°C, the sputtering deposition time is 8min, and the deposition thickness is 0.2um;
  • the parameters of magnetron sputtering are: the thickness of the samarium-cobalt alloy target is 2.8mm, the magnetic field strength is 720Gs, the power of the magnetic permeation target is 3Kw, the sputtering pressure is 1.8Pa, Ar: 280mL/min, the deposition temperature is 100°C, the sputtering deposition time is 12min, and the deposition thickness is 18um;
  • the magnetron sputtering parameters are as follows: the Sn target thickness is 8mm, the magnetic field strength is 200Gs, the Cr target power is 3Kw, the sputtering pressure is 0.5Pa, Ar: 100mL/min, the deposition temperature is 112°C, the sputtering deposition time is 16min, and the deposition thickness is 0.1um;
  • the glass element obtained in S5 is cut with a carbon dioxide laser cutting machine to obtain a glass strip with a width of 0.1 mm and a length of 300 mm;
  • the high light transmittance adhesive is calculated in parts by weight, and its raw material composition and content are as follows: 72 parts of aliphatic urethane acrylate, 18 parts of acrylate monomer, 6 parts of isoborneol acrylate, 3 parts of photoinitiator, 0.2 part of leveling agent, and 0.6 part of defoaming agent.
  • the preparation method of the original glass sheet described in S1 is:
  • Step 1 Ingredients: prepare glass raw materials according to the following components: 75% silica sand, 15% kaolin, 8% calcite and 3% dolomite. Put the glass raw materials in a grinder and grind them to a particle size of 700 mesh.
  • Step 2 Melting: put the glass raw material ground in step 1 into a pool kiln filled with nitrogen and hydrogen to melt to obtain molten glass, and the melting temperature is 1500°C;
  • Step 3 Forming: When the melted glass obtained in step 2 is cooled to below 1000°C, it is passed into a tin bath filled with inert gas and left to cool for 1.5 hours to obtain a flat glass ribbon.
  • Step 4 annealing: move the glass ribbon in step 3 into an annealing kiln for annealing, and the annealing temperature range is 650°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明提出了一种微通道矩阵光波导平板,所述微通道矩阵光波导平板由两个光学元件组垂直叠加而成,所述光学元件组由数个平行排列的光学元件组成,所述光学元件包括玻璃原片,所述玻璃原片分为空气面和反射面,所述空气面上依次设置有第一金属膜层、磁性材料膜层和第二金属膜层。本发明通过磁性材料吸引代替粘结剂实现光学元件的紧密贴合,可降低粘结剂对光学元件反射光的影响,制备得到的微通道矩阵光波导平板具有成像清晰度高,制备工艺简单的特点。

Description

一种微通道矩阵光波导平板及其制备方法 技术领域
本发明涉及无介质空中成像技术领域,具体涉及一种微通道矩阵光波导平板及其制备方法。
背景技术
无介质空中成像技术主要采用微通道矩阵光波导平板,是通过光路经过正交排列的两层透明材料的两次反射,从而在空中重新汇聚实现的,能够反射点光源、线光源、面光源,在空中汇聚后仍然是点光源、线光源、面光源,这一特殊的光路反射效果使得空中成像技术走向了实际引用,但是,现在所采用的两层正交排列的透明材料实现的微通道矩阵光波导平板,空中成像的分辨率和清晰度不够,不仅影响用户体验,还对应用场景提出了更高的要求,导致无介质空中成像技术的商业推广和大规模应用受到了极大的制约。
无介质空中成像技术是通过光学微镜结构来复制光场,在三维空间重现一个三维立体的实像。光学微镜结构记录来自“物空间”实物光源射向光板的每一条光线的强度、角度、波长等信息,并在阵列另一侧“像空间”复制出与记录光线完全镜像的光线,这些复制光线通过再聚焦过程,在“像空间”对称位置处形成与“物空间”物体完全镜像的实像,而微通道矩阵光波导平板就是我们所说的光学微晶结构,而现有的微通道矩阵光波导平板的制备方法为先将玻璃板材切割成若干条状,再将条状玻璃板材平行粘接成一块透光层叠体,再将两块透光层叠体粘贴构成一整块光学成像元件,但是采用粘结剂粘结方式实现拼接,由于粘结剂与玻璃属于不同介质,当光路从一种介质斜射入另一种介 质时,必然会引起传播方向的改变,形成折射现象,从而会影响光路的反射路径,进而影响空中成像效果。
发明内容
针对现有技术存在的上述问题,本申请提供了一种微通道矩阵光波导平板及其制备方法,通过磁性材料吸引代替粘结剂实现光学元件的紧密贴合,可降低粘结剂对光学元件反射光的影响,制备得到的微通道矩阵光波导平板具有成像清晰度高,制备工艺简单的特点。
本发明的技术方案如下:
本发明提供了一种微通道矩阵光波导平板,所述微通道矩阵光波导平板由两个光学元件组垂直叠加而成,所述光学元件组由数个平行排列的光学元件组成,所述光学元件包括玻璃原片,所述玻璃原片分为空气面和反射面,所述空气面上依次设置有第一金属膜层、磁性材料膜层和第二金属膜层。
本发明还提供了一种微通道矩阵光波导平板的制备方法,所述微通道矩阵光波导平板为权利要求1所述的微通道矩阵光波导平板,包括如下步骤:
S1、将玻璃原片进行丙酮超声波清洗5-10min,再用乙醇清洗5-10min,用氮气吹干后进磁控溅射镀膜机;
S2、对镀膜机工作仓内进行抽真空处理,使真空度达到1.0×10-3-5×10-3Pa,加热到100-150℃;
S3、在玻璃原片空气面上,使用第一金属靶磁控溅射沉积得到第一金属膜层,沉积厚度为0.05-0.2um;
S4、在第一金属膜层上,使用导磁靶材进行磁控溅射沉积得到磁性材料膜层,沉积厚度为0.1-50um;
S5、在磁性材料膜层上,使用第二金属靶进行磁控溅射沉积第二金属膜层得到玻璃元件,沉积厚度为0.05-0.2um;
S6、对S5得到的玻璃元件采用二氧化碳激光切割机进行切割,得到宽度为0.1-0.3mm,长度为100-600mm的玻璃条;
S7、将玻璃条用超声波进行清洗后得到光学元件;
S8、将数个光学元件按照反射面同一方向平行摆放,并放入特制夹具中夹紧,之后用双面磨抛盘进行磨平抛亮,得到光学元件组;
S9、采用步骤1-8得到两个光学元件组,将两个光学元件组相互叠加,两个光学元件组反射面相互垂直,并通过高透光率粘结剂粘结,得到所述微通道矩阵光波导平板。
本发明S1中所述玻璃原片的制备方法为:
步骤一、配料:按以下组分配备玻璃原料:硅砂70-85%、高岭土10-20%、方解石5-10%和白云石1-5%,将玻璃原料置于研磨机中研磨,至粒径为600-800目。
步骤二、熔融:将步骤一中研磨得到的玻璃原料置于充满氮气和氢气的池窑中熔融得到玻璃液,熔融温度为1200-1800℃;
步骤三、成型:待步骤二熔融得到的玻璃液冷却至1000℃以下时,通入充满惰性气体的锡槽中,静置冷却1-3h后得到平整的玻璃带。
步骤四、退火:将步骤三中的玻璃带移入退火窑中退火,退火温度范围为550℃~750℃。
本发明S3中所述磁控溅射沉积第一金属膜层的参数为:Al靶厚度为5-10mm,磁场强度为50~100Gs,Al靶功率为80-150W,溅射气压为0.5-1.5Pa,Ar:100-250mL/min,沉积温度为100-150℃,溅射沉积时间为5-10min。
本发明S4中所述磁控溅射沉积磁性材料膜层的参数为:导磁靶的厚度为2-3mm,磁场强度为600~900Gs,导磁靶功率为2-5Kw,溅射气压为1.5-2.5Pa,Ar:200-400mL/min,沉积温度100-120℃,溅射沉积时间10-20min。
本发明S4中所述导磁靶为铁氧体、铝镍钴合金、钐钴系合金、钕铁硼合金、铁铬钴合金中的一种。
本发明S5中所述磁控溅射沉积第二金属膜层的参数为:Al靶厚度为5-10mm,磁场强度为100~200Gs,Al靶功率为3-9Kw,溅射气压为0.5-1.5Pa,Ar:100-250mL/min,沉积温度为100-120℃,溅射沉积时间为10-20min。
本发明S3中所述第一金属靶和S5中所述第二金属靶为Ti、Sn、Cr、Al或Ag中的一种。
本发明S9中所述高透光率粘结剂按重量份数计算,其原料组成及含量如下:脂肪族聚氨酯丙烯酸酯60-80份,丙烯酸酯单体15-25份,己二醇0.1-0.5份,异冰片丙烯酸酯2-8份,光引发剂1-10份,流平剂0.01-0.5份,消泡剂0.1-1份。
本发明有益的技术效果在于:
(1)本发明通过磁性材料吸引代替粘结剂实现光学元件的紧密贴合,不仅能降低粘结剂对光学元件反射光的影响,提高微通道矩阵光波导平板成像清晰度的同时,省去粘结剂粘结步骤,大大简化制造工艺,提高了生产效率。
(2)本发明的光学元件的空气面沉积有第一金属膜层、导磁材料膜层和第二金属膜层,能将进入光学元件的光线全部反射出去,保证光线通过光场重构后能汇聚在空中,实现空中成像。
(3)本发明的高透光率粘结剂通过丙烯酸单体与脂肪族聚氨酯丙烯酸酯在光引发剂作用下发生光聚合反应制得,制备得到的粘结剂不仅与玻璃的结合强度高,而且具有高透光性,能有效减弱光线进入粘合剂时的反射现象。
附图说明
图1为本发明微通道矩阵光波导平板的结构示意图。
图2为本发明光学元件的结构示意图。
附图标记:1、光学元件,2、玻璃原片,3、第一金属膜层,4、磁性材料膜层,5、第二金属膜层。
具体实施方式
下面结合附图和实施例,对本发明进行具体描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下结合具体优选实施例对本发明一种微通道矩阵光波导平板及其制备方法进行详细阐述。
实施例1:
如图1和图2所示,本实施例提供了一种微通道矩阵光波导平板,所述微通道矩阵光波导平板由两个光学元件组垂直叠加而成,所述光学元件组由数个平行排列的光学元件1组成,所述光学元件1包括玻璃原片2,所述玻璃原片 2分为空气面和反射面,所述空气面上依次设置有第一金属膜层3、磁性材料膜层4和第二金属膜层5。
所述微通道矩阵光波导平板的制备方法,包括如下步骤:
S1、将玻璃原片2进行丙酮超声波清洗10min,再用乙醇清洗5min,用氮气吹干后进磁控溅射镀膜机;
S2、对镀膜机工作仓内进行抽真空处理,使真空度达到1.0×10-3Pa,加热到150℃;
S3、在玻璃原片空气面上沉积Al膜层,磁控溅射的沉积参数为:Al靶厚度为5mm,磁场强度为50Gs,Al靶功率为80W,溅射气压为1.5Pa,Ar:100mL/min,沉积温度为150℃,溅射沉积时间为10min,沉积厚度为0.2um;
S4、在第一金属膜层上沉积Fe3O4磁性材料膜层,磁控溅射的参数为:Fe3O4靶的厚度为2mm,磁场强度为900Gs,导磁靶功率为2Kw,溅射气压为2.5Pa,Ar:200mL/min,沉积温度120℃,溅射沉积时间10min,沉积厚度为50um;
S5、在Fe3O4磁性材料膜层上沉积Al膜层得到玻璃元件,磁控溅射的参数为Al靶厚度为10mm,磁场强度为200Gs,Al靶功率为9Kw,溅射气压为1.5Pa,Ar:250mL/min,沉积温度为100℃,溅射沉积时间为20min,沉积厚度为0.2um;
S6、对S5得到的玻璃元件采用二氧化碳激光切割机进行切割,得到宽度为0.1mm,长度为600mm的玻璃条;
S7、将玻璃条用超声波进行清洗后得到光学元件;
S8、将数个光学元件按照反射面同一方向平行摆放,并放入特制夹具中夹紧,之后用双面磨抛盘进行磨平抛亮,得到光学元件组;
S9、采用步骤1-8得到两个光学元件组,将两个光学元件组相互叠加,两个光学元件组反射面相互垂直,并通过高透光率粘结剂粘结,得到所述微通道矩阵光波导平板;所述高透光率粘结剂按重量份数计算,其原料组成及含量如下:脂肪族聚氨酯丙烯酸酯70份,丙烯酸酯单体15份,异冰片丙烯酸酯8份,光引发剂1份,流平剂0.5份,消泡剂1份。
优选的,S1中所述玻璃原片的制备方法为:
步骤一、配料:按以下组分配备玻璃原料:硅砂70%、高岭土20%、方解石10%和白云石1%,将玻璃原料置于研磨机中研磨,至粒径为800目。
步骤二、熔融:将步骤一中研磨得到的玻璃原料置于充满氮气和氢气的池窑中熔融得到玻璃液,熔融温度为1800℃;
步骤三、成型:待步骤二熔融得到的玻璃液冷却至1000℃以下时,通入充满惰性气体的锡槽中,静置冷却3h后得到平整的玻璃带。
步骤四、退火:将步骤三中的玻璃带移入退火窑中退火,退火温度范围为750℃。
实施例2:
本实施例提供了一种微通道矩阵光波导平板,所述微通道矩阵光波导平板由两个光学元件组垂直叠加而成,所述光学元件组由数个平行排列的光学元件1组成,所述光学元件1包括玻璃原片2,所述玻璃原片2分为空气面和反射面,所述空气面上依次设置有第一金属膜层3、磁性材料膜层4和第二金属膜层5。
所述微通道矩阵光波导平板的制备方法,包括如下步骤:
S1、将玻璃原片进行丙酮超声波清洗10min,再用乙醇清洗5min,用氮气吹干后进磁控溅射镀膜机;
S2、对镀膜机工作仓内进行抽真空处理,使真空度达到5×10-3Pa,加热到150℃;
S3、在玻璃原片空气面上沉积Ag膜层,磁控溅射的沉积参数为:Ag靶厚度为10mm,磁场强度为50Gs,Ag靶功率为150W,溅射气压为1.5Pa,Ar:100mL/min,沉积温度为100℃,溅射沉积时间为5min,沉积厚度为0.05um;
S4、在Ag膜层上沉积铝镍钴合金磁性材料膜层,磁控溅射的参数为:铝镍钴合金靶的厚度为3mm,磁场强度为900Gs,导磁靶功率为5Kw,溅射气压为2.5Pa,Ar:400mL/min,沉积温度100℃,溅射沉积时间20min,沉积厚度为0.1um;
S5、在铝镍钴合金磁性材料膜层上沉积Ag膜层得到玻璃元件,磁控溅射的参数为Al靶厚度为10mm,磁场强度为100Gs,Ag靶功率为9Kw,溅射气压为0.5Pa,Ar:100mL/min,沉积温度为120℃,溅射沉积时间为10min,沉积厚度为0.05um;
S6、对S5得到的玻璃元件采用二氧化碳激光切割机进行切割,得到宽度为0.3mm,长度为100mm的玻璃条;
S7、将玻璃条用超声波进行清洗后得到光学元件;
S8、将数个光学元件按照反射面同一方向平行摆放,并放入特制夹具中夹紧,之后用双面磨抛盘进行磨平抛亮,得到光学元件组;
S9、采用步骤1-8得到两个光学元件组,将两个光学元件组相互叠加,两个光学元件组反射面相互垂直,并通过高透光率粘结剂粘结,得到所述微通道 矩阵光波导平板;所述高透光率粘结剂按重量份数计算,其原料组成及含量如下:脂肪族聚氨酯丙烯酸酯60份,丙烯酸酯单体25份,异冰片丙烯酸酯8份,光引发剂10份,流平剂0.01份,消泡剂0.1份。
优选的,S1中所述玻璃原片的制备方法为:
步骤一、配料:按以下组分配备玻璃原料:硅砂70-85%、高岭土10-20%、方解石5-10%和白云石1-5%,将玻璃原料置于研磨机中研磨,至粒径为600-800目。
步骤二、熔融:将步骤一中研磨得到的玻璃原料置于充满氮气和氢气的池窑中熔融得到玻璃液,熔融温度为1200-1800℃;
步骤三、成型:待步骤二熔融得到的玻璃液冷却至1000℃以下时,通入充满惰性气体的锡槽中,静置冷却1-3h后得到平整的玻璃带。
步骤四、退火:将步骤三中的玻璃带移入退火窑中退火,退火温度范围为550℃~750℃。
实施例3
本实施例提供了一种微通道矩阵光波导平板,所述微通道矩阵光波导平板由两个光学元件组垂直叠加而成,所述光学元件组由数个平行排列的光学元件组成,所述光学元件包括玻璃原片,所述玻璃原片分为空气面和反射面,所述空气面上依次设置有第一金属膜层、磁性材料膜层和第二金属膜层。
所述微通道矩阵光波导平板的制备方法,包括如下步骤:
S1、将玻璃原片进行丙酮超声波清洗5min,再用乙醇清洗10min,用氮气吹干后进磁控溅射镀膜机;
S2、对镀膜机工作仓内进行抽真空处理,使真空度达到2.0×10-3Pa,加热到120℃;
S3、在玻璃原片空气面上沉积Ti膜层,磁控溅射的沉积参数为:Ti靶厚度为8mm,磁场强度为68Gs,Ti靶功率为120W,溅射气压为1.1Pa,Ar:180mL/min,沉积温度为125℃,溅射沉积时间为8min,沉积厚度为0.15um;
S4、在Ti膜层上沉积钕铁硼合金磁性材料膜层,磁控溅射的参数为:钕铁硼合金靶的厚度为2mm,磁场强度为755Gs,导磁靶功率为3.5Kw,溅射气压为2Pa,Ar:240mL/min,沉积温度108℃,溅射沉积时间15min,沉积厚度为18um;
S5、在钕铁硼合金磁性材料膜层上沉积Cr膜层得到玻璃元件,磁控溅射的参数为Cr靶厚度为8mm,磁场强度为140Gs,Cr靶功率为7Kw,溅射气压为1Pa,Ar:150mL/min,沉积温度为110℃,溅射沉积时间为10min,沉积厚度为0.01um;
S6、对S5得到的玻璃元件采用二氧化碳激光切割机进行切割,得到宽度为0.1mm,长度为600mm的玻璃条;
S7、将玻璃条用超声波进行清洗后得到光学元件;
S8、将数个光学元件按照反射面同一方向平行摆放,并放入特制夹具中夹紧,之后用双面磨抛盘进行磨平抛亮,得到光学元件组;
S9、采用步骤1-8得到两个光学元件组,将两个光学元件组相互叠加,两个光学元件组反射面相互垂直,并通过高透光率粘结剂粘结,得到所述微通道矩阵光波导平板;所述高透光率粘结剂按重量份数计算,其原料组成及含量如 下:脂肪族聚氨酯丙烯酸酯75份,丙烯酸酯单体20份,异冰片丙烯酸酯5份,光引发剂5份,流平剂0.03份,消泡剂0.8份。
所述S1中玻璃原片的制备方法为:
步骤一、配料:按以下组分配备玻璃原料:硅砂75%、高岭土12%、方解石8%和白云石2%,将玻璃原料置于研磨机中研磨,至粒径为680目。
步骤二、熔融:将步骤一中研磨得到的玻璃原料置于充满氮气和氢气的池窑中熔融得到玻璃液,熔融温度为1600℃;
步骤三、成型:待步骤二熔融得到的玻璃液冷却至1000℃以下时,通入充满惰性气体的锡槽中,静置冷却2h后得到平整的玻璃带。
步骤四、退火:将步骤三中的玻璃带移入退火窑中退火,退火温度范围为650℃。
实施例4
本实施例提供了一种微通道矩阵光波导平板,所述微通道矩阵光波导平板由两个光学元件组垂直叠加而成,所述光学元件组由数个平行排列的光学元件组成,所述光学元件包括玻璃原片,所述玻璃原片分为空气面和反射面,所述空气面上依次设置有第一金属膜层、磁性材料膜层和第二金属膜层。
所述微通道矩阵光波导平板的制备方法,包括如下步骤:
S1、将玻璃原片进行丙酮超声波清洗8min,再用乙醇清洗6min,用氮气吹干后进磁控溅射镀膜机;
S2、对镀膜机工作仓内进行抽真空处理,使真空度达到2×10-3Pa,加热到120℃;
S3、在玻璃原片空气面上沉积Cr膜层,磁控溅射的沉积参数为:Cr靶厚度为8mm,磁场强度为85Gs,Cr靶功率为135W,溅射气压为1.2Pa,Ar:220mL/min,沉积温度为140℃,溅射沉积时间为8min,沉积厚度为0.15um;
S4、在Cr膜层上沉积铁铬钴磁性材料膜层,磁控溅射的参数为:铁铬钴合金靶的厚度为2.2mm,磁场强度为752Gs,导磁靶功率为3.4Kw,溅射气压为2.1Pa,Ar:285mL/min,沉积温度110℃,溅射沉积时间12min,沉积厚度为35um;
S5、在铁铬钴磁性材料膜层上沉积Cr膜层得到玻璃元件,磁控溅射的参数为Cr靶厚度为6mm,磁场强度为170Gs,Cr靶功率为8Kw,溅射气压为1Pa,Ar:180mL/min,沉积温度为100℃,溅射沉积时间为20min,沉积厚度为0.085um;
S6、对S5得到的玻璃元件采用二氧化碳激光切割机进行切割,得到宽度为0.25mm,长度为450mm的玻璃条;
S7、将玻璃条用超声波进行清洗后得到光学元件;
S8、将数个光学元件按照反射面同一方向平行摆放,并放入特制夹具中夹紧,之后用双面磨抛盘进行磨平抛亮,得到光学元件组;
S9、采用步骤1-8得到两个光学元件组,将两个光学元件组相互叠加,两个光学元件组反射面相互垂直,并通过高透光率粘结剂粘结,得到所述微通道矩阵光波导平板;所述高透光率粘结剂按重量份数计算,其原料组成及含量如下:脂肪族聚氨酯丙烯酸酯68份,丙烯酸酯单体22份,异冰片丙烯酸酯6份,光引发剂7份,流平剂0.25份,消泡剂0.85份。
优选的,S1中所述玻璃原片的制备方法为:
步骤一、配料:按以下组分配备玻璃原料:硅砂75%、高岭土10%、方解石10%和白云石5%,将玻璃原料置于研磨机中研磨,至粒径为600目。
步骤二、熔融:将步骤一中研磨得到的玻璃原料置于充满氮气和氢气的池窑中熔融得到玻璃液,熔融温度为1200℃;
步骤三、成型:待步骤二熔融得到的玻璃液冷却至1000℃以下时,通入充满惰性气体的锡槽中,静置冷却1h后得到平整的玻璃带。
步骤四、退火:将步骤三中的玻璃带移入退火窑中退火,退火温度范围为550℃~750℃。
实施例5
本实施例提供了一种微通道矩阵光波导平板,所述微通道矩阵光波导平板由两个光学元件组垂直叠加而成,所述光学元件组由数个平行排列的光学元件组成,所述光学元件包括玻璃原片,所述玻璃原片分为空气面和反射面,所述空气面上依次设置有第一金属膜层、磁性材料膜层和第二金属膜层。
所述微通道矩阵光波导平板的制备方法,包括如下步骤:
S1、将玻璃原片进行丙酮超声波清洗5min,再用乙醇清洗10min,用氮气吹干后进磁控溅射镀膜机;
S2、对镀膜机工作仓内进行抽真空处理,使真空度达到5×10-3Pa,加热到100℃;
S3、在玻璃原片空气面上沉积Sn膜层,磁控溅射的沉积参数为:Sn靶厚度为8mm,磁场强度为65Gs,Sn靶功率为90W,溅射气压为0.6Pa,Ar:146mL/min,沉积温度为121℃,溅射沉积时间为8min,沉积厚度为0.2um;
S4、在Sn膜层上沉积钐钴系磁性材料膜层,磁控溅射的参数为:钐钴系合金靶的厚度为2.8mm,磁场强度为720Gs,导磁靶功率为3Kw,溅射气压为1.8Pa,Ar:280mL/min,沉积温度100℃,溅射沉积时间12min,沉积厚度为18um;
S5、在钐钴系磁性材料膜层上沉积Sn膜层得到玻璃元件,磁控溅射的参数为Sn靶厚度为8mm,磁场强度为200Gs,Cr靶功率为3Kw,溅射气压为0.5Pa,Ar:100mL/min,沉积温度为112℃,溅射沉积时间为16min,沉积厚度为0.1um;
S6、对S5得到的玻璃元件采用二氧化碳激光切割机进行切割,得到宽度为0.1mm,长度为300mm的玻璃条;
S7、将玻璃条用超声波进行清洗后得到光学元件;
S8、将数个光学元件按照反射面同一方向平行摆放,并放入特制夹具中夹紧,之后用双面磨抛盘进行磨平抛亮,得到光学元件组;
S9、采用步骤1-8得到两个光学元件组,将两个光学元件组相互叠加,两个光学元件组反射面相互垂直,并通过高透光率粘结剂粘结,得到所述微通道矩阵光波导平板;所述高透光率粘结剂按重量份数计算,其原料组成及含量如下:脂肪族聚氨酯丙烯酸酯72份,丙烯酸酯单体18份,异冰片丙烯酸酯6份,光引发剂3份,流平剂0.2份,消泡剂0.6份。
优选的,S1中所述玻璃原片的制备方法为:
步骤一、配料:按以下组分配备玻璃原料:硅砂75%、高岭土15%、方解石8%和白云石3%,将玻璃原料置于研磨机中研磨,至粒径为700目。
步骤二、熔融:将步骤一中研磨得到的玻璃原料置于充满氮气和氢气的池窑中熔融得到玻璃液,熔融温度为1500℃;
步骤三、成型:待步骤二熔融得到的玻璃液冷却至1000℃以下时,通入充满惰性气体的锡槽中,静置冷却1.5h后得到平整的玻璃带。
步骤四、退火:将步骤三中的玻璃带移入退火窑中退火,退火温度范围为650℃。
虽然已经参考优选实施例对本发明进行了描述,但在不脱离本发明的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (8)

  1. 一种微通道矩阵光波导平板,其特征在于,所述微通道矩阵光波导平板由两个光学元件组垂直叠加而成,所述光学元件组由数个平行排列的光学元件组成,所述光学元件包括玻璃原片,所述玻璃原片分为空气面和反射面,所述空气面上依次设置有第一金属膜层、磁性材料膜层和第二金属膜层;
    所述微通道矩阵光波导平板的制备方法,包括如下步骤:
    S1、将玻璃原片进行丙酮超声波清洗5-10min,再用乙醇清洗5-10min,用氮气吹干后进磁控溅射镀膜机;
    S2、对镀膜机工作仓内进行抽真空处理,使真空度达到1.0×10-3-5×10-3Pa,加热到100-150℃;
    S3、在玻璃原片空气面上,使用第一金属靶磁控溅射沉积得到第一金属膜层,沉积厚度为0.05-0.2um;
    S4、在第一金属膜层上,使用导磁靶材进行磁控溅射沉积得到磁性材料膜层,沉积厚度为0.1-50um;
    S5、在磁性材料膜层上,使用第二金属靶进行磁控溅射沉积第二金属膜层得到玻璃元件,沉积厚度为0.05-0.2um;
    S6、对S5得到的玻璃元件采用二氧化碳激光切割机进行切割,得到宽度为0.1-0.3mm,长度为100-600mm的玻璃条;
    S7、将玻璃条用超声波进行清洗后得到光学元件;
    S8、将数个光学元件按照反射面同一方向平行摆放,并放入特制夹具中夹紧,之后用双面磨抛盘进行磨平抛亮,得到光学元件组;
    S9、采用步骤1-8得到两个光学元件组,将两个光学元件组相互叠加,两个 光学元件组反射面相互垂直,并通过高透光率粘结剂粘结,得到所述微通道矩阵光波导平板。
  2. 根据权利要求1所述的一种微通道矩阵光波导平板,其特征在于,S1中所述玻璃原片的制备方法为:
    步骤一、配料:按以下组分配备玻璃原料:硅砂70-85%、高岭土10-20%、方解石5-10%和白云石1-5%,将玻璃原料置于研磨机中研磨,至粒径为600-800目。
    步骤二、熔融:将步骤一中研磨得到的玻璃原料置于充满氮气和氢气的池窑中熔融得到玻璃液,熔融温度为1200-1800℃;
    步骤三、成型:待步骤二熔融得到的玻璃液冷却至1000℃以下时,通入充满惰性气体的锡槽中,静置冷却1-3h后得到平整的玻璃带。
    步骤四、退火:将步骤三中的玻璃带移入退火窑中退火,退火温度范围为550℃~750℃。
  3. 根据权利要求1所述的一种微通道矩阵光波导平板,其特征在于,S3中所述磁控溅射沉积第一金属膜层的参数为:Al靶厚度为5-10mm,磁场强度为50~100Gs,Al靶功率为80-150W,溅射气压为0.5-1.5Pa,Ar:100-250mL/min,沉积温度为100-150℃,溅射沉积时间为5-10min。
  4. 根据权利要求1所述的一种微通道矩阵光波导平板,其特征在于,S4中所述磁控溅射沉积磁性材料膜层的参数为:导磁靶的厚度为2-3mm,磁场强度为600~900Gs,导磁靶功率为2-5Kw,溅射气压为1.5-2.5Pa,Ar:200-400mL/min,沉积温度100-120℃,溅射沉积时间10-20min。
  5. 根据权利要求1所述的一种微通道矩阵光波导平板,其特征在于,S4中所述导磁靶为铁氧体、铝镍钴合金、钐钴系合金、钕铁硼合金、铁铬钴合金中的一种。
  6. 根据权利要求1所述的一种微通道矩阵光波导平板,其特征在于,S5中所述磁控溅射沉积第二金属膜层的参数为:Al靶厚度为5-10mm,磁场强度为100~200Gs,Al靶功率为3-9Kw,溅射气压为0.5-1.5Pa,Ar:100-250mL/min,沉积温度为100-120℃,溅射沉积时间为10-20min。
  7. 根据权利要求1所述的一种微通道矩阵光波导平板,其特征在于,S3中所述第一金属靶和S5中所述第二金属靶为Ti、Sn、Cr、Al或Ag中的一种。
  8. 根据权利要求1所述的一种微通道矩阵光波导平板,其特征在于,S9中所述高透光率粘结剂按重量份数计算,其原料组成及含量如下:脂肪族聚氨酯丙烯酸酯60-80份,丙烯酸酯单体15-25份,己二醇0.1-0.5份,异冰片丙烯酸酯2-8份,光引发剂1-10份,流平剂0.01-0.5份,消泡剂0.1-1份。
PCT/CN2023/072931 2022-01-19 2023-01-18 一种微通道矩阵光波导平板及其制备方法 WO2023138625A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210060077.2A CN114397768B (zh) 2022-01-19 2022-01-19 一种微通道矩阵光波导平板及其制备方法
CN202210060077.2 2022-01-19

Publications (1)

Publication Number Publication Date
WO2023138625A1 true WO2023138625A1 (zh) 2023-07-27

Family

ID=81231396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072931 WO2023138625A1 (zh) 2022-01-19 2023-01-18 一种微通道矩阵光波导平板及其制备方法

Country Status (2)

Country Link
CN (1) CN114397768B (zh)
WO (1) WO2023138625A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114089445B (zh) * 2022-01-19 2022-04-29 像航(如东)科技有限公司 具有磁性反射层成像单元的光学成像元件及其制备方法
CN114397768B (zh) * 2022-01-19 2022-09-23 像航(如东)科技有限公司 一种微通道矩阵光波导平板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180045972A1 (en) * 2016-08-15 2018-02-15 Hon Hai Precision Industry Co., Ltd. Aerial display and image forming system having the same
CN107807417A (zh) * 2017-12-09 2018-03-16 安徽省东超科技有限公司 单列多排等效负折射率平板透镜
CN207799124U (zh) * 2018-02-23 2018-08-31 像航(上海)科技有限公司 一种光学成像元件
CN110596907A (zh) * 2019-10-25 2019-12-20 像航(上海)科技有限公司 光学成像元件、光学成像元件制造方法
CN114397768A (zh) * 2022-01-19 2022-04-26 像航(如东)科技有限公司 一种微通道矩阵光波导平板及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239307A1 (en) * 2001-03-09 2002-09-11 Sicpa Holding S.A. Magnetic thin film interference device
JP6165206B2 (ja) * 2015-09-08 2017-07-19 松浪硝子工業株式会社 光制御パネルの製造方法、光制御パネル、光学結像装置、及び、空中映像形成システム
CN108318948A (zh) * 2018-02-23 2018-07-24 像航(上海)科技有限公司 一种光学成像元件及光学成像元件的制造方法
CN109239819A (zh) * 2018-11-08 2019-01-18 像航(上海)科技有限公司 光学成像元件及光学成像元件制造方法
CN110058334A (zh) * 2019-04-25 2019-07-26 像航(上海)科技有限公司 光学成像元件及其制造方法
CN112647053A (zh) * 2020-12-17 2021-04-13 镇江晶鼎光电科技有限公司 一种通过磁控溅射镀膜机提高不同金属膜间结合力的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180045972A1 (en) * 2016-08-15 2018-02-15 Hon Hai Precision Industry Co., Ltd. Aerial display and image forming system having the same
CN107807417A (zh) * 2017-12-09 2018-03-16 安徽省东超科技有限公司 单列多排等效负折射率平板透镜
CN207799124U (zh) * 2018-02-23 2018-08-31 像航(上海)科技有限公司 一种光学成像元件
CN110596907A (zh) * 2019-10-25 2019-12-20 像航(上海)科技有限公司 光学成像元件、光学成像元件制造方法
CN114397768A (zh) * 2022-01-19 2022-04-26 像航(如东)科技有限公司 一种微通道矩阵光波导平板及其制备方法

Also Published As

Publication number Publication date
CN114397768A (zh) 2022-04-26
CN114397768B (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
WO2023138625A1 (zh) 一种微通道矩阵光波导平板及其制备方法
CN104718468A (zh) 光控制面板的制造方法
JP2019194148A (ja) ガラスミラー装置及びガラスミラー装置を作製する方法
CN108318948A (zh) 一种光学成像元件及光学成像元件的制造方法
CN102854726A (zh) 荧光粉层、器件及相应光源和投影系统、及相应制作方法
WO2023138616A1 (zh) 具有磁性反射层成像单元的光学成像元件及其制备方法
CN109837517A (zh) 一种基于磁控溅射的外反射银膜制备方法
CN107728366A (zh) 一种全密封触控液晶一体屏及其制造工艺
CN207799124U (zh) 一种光学成像元件
CN110058334A (zh) 光学成像元件及其制造方法
JPS6364003A (ja) 光学フイルタ−
JP2006064871A (ja) 偏光変換素子およびその製造方法
CN113067927A (zh) 一种柔性盖板结构及其生产方法
CN113791464B (zh) 一种同步溅射双面ar玻璃盖板功能膜系叠置方法
JP2003302509A (ja) リフレクタ及びそれを用いた投写型画像表示装置
CN100583305C (zh) 具有抗反射和防电磁辐射及滤光功能的安全保护屏
CN113917573B (zh) 无定形红外膜系结构及其制备方法
KR100583227B1 (ko) 다층 구조의 도광판 제조 방법
CN214429573U (zh) 一种防反光手机膜
CN216083323U (zh) 一种液晶显示背板
CN205374934U (zh) 投影液晶膜
JPS62239443A (ja) 光記録媒体
JPH11281806A (ja) 光学ブロック
TW200423865A (en) Shielding layer structure for electromagnetic wave and manufacturing method thereof
JP2022027727A (ja) 画像表示用導光板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23742940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023742940

Country of ref document: EP

Effective date: 20240307