WO2023137763A1 - 一种资源指示方法、资源确定方法及其装置 - Google Patents

一种资源指示方法、资源确定方法及其装置 Download PDF

Info

Publication number
WO2023137763A1
WO2023137763A1 PCT/CN2022/073586 CN2022073586W WO2023137763A1 WO 2023137763 A1 WO2023137763 A1 WO 2023137763A1 CN 2022073586 W CN2022073586 W CN 2022073586W WO 2023137763 A1 WO2023137763 A1 WO 2023137763A1
Authority
WO
WIPO (PCT)
Prior art keywords
irb
index
resource allocation
domain resource
sci
Prior art date
Application number
PCT/CN2022/073586
Other languages
English (en)
French (fr)
Inventor
赵文素
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280000223.0A priority Critical patent/CN114586390A/zh
Priority to PCT/CN2022/073586 priority patent/WO2023137763A1/zh
Publication of WO2023137763A1 publication Critical patent/WO2023137763A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of communications, and in particular to a resource indication method, a resource determination method and a device thereof.
  • terminal direct communication also called sidelink, Sidelink, SL
  • SL terminal direct communication
  • SL-U terminal direct communication
  • Embodiments of the present application provide a resource indication method, a resource determination method, and a device thereof, which can be applied to an SL-U system.
  • the subchannel or comb-tooth resource block (IRB) is used as the resource allocation indication method for frequency domain resource allocation granularity, which can meet OCB requirements on unlicensed frequency bands, thereby meeting potential diversified application scenarios and requirements in the future.
  • the embodiment of the present application provides a resource indication method, which is applied to an unlicensed frequency band for terminal direct communication, and the method is executed by a first terminal device, and the method includes:
  • the first stage SCI Based on the frequency domain resource allocation granularity, send the first stage direct link control information SCI to the second terminal device; the first stage SCI includes a frequency domain resource allocation field, and the frequency domain resource allocation field is used to indicate the frequency domain resource occupied by the first terminal device.
  • the OCB requirements can be met on the unlicensed frequency band, so as to meet the potential diversified application scenarios and requirements in the future.
  • the frequency-domain resource allocation granularity is a sub-channel; the sending of the first-stage direct link control information SCI to the second terminal device based on the frequency-domain resource allocation granularity includes:
  • the determining the mapping relationship between the subchannel and the comb-tooth resource block IRB includes:
  • the mapping relationship between the sub-channel and the IRB is determined as one sub-channel corresponds to one IRB index, wherein the number of sub-channels included in a given listen-before-talk LBT subband is the same as the number of IRB indexes.
  • the determining the mapping relationship between the subchannel and the comb-tooth resource block IRB includes:
  • Determining the mapping relationship between the subchannel and the IRB is that each physical resource block PRB in a subchannel is mapped to a specific PRB of multiple IRB indexes; wherein, a given LBT subband includes M subchannels and N IRB indexes, and M and N are positive integers respectively.
  • the frequency-domain resource allocation granularity is IRB; the sending of the first-stage direct link control information SCI to the second terminal device based on the frequency-domain resource allocation granularity includes:
  • the frequency domain resource allocation field in the first-stage SCI is used to indicate the size and/or position of the frequency domain resource for the first direct communication Sidelink transmission of the first terminal device, and the starting position and size of the frequency domain resource reserved for the direct communication Sidelink resource.
  • the frequency-domain resource allocation field includes a first part, the first part is used to indicate the number and/or position of IRB indexes within an LBT subband occupied by Sidelink transmission, and the first part includes X bits, where X is a positive integer.
  • the X is L-1, the L is the number of IRB indexes included in one LBT subband, and L is a positive integer; wherein, the direct link control information SCI is located on the lowest IRB index among the allocated IRB indexes, and the frequency domain resource allocation supports discrete IRB index allocation; or, the X is [log 2 (L)], and the L is the number of IRB indexes included in an LBT subband, and L is a positive integer; The lowest IRB index among the IRB indexes, and the frequency domain resource allocation supports continuous IRB index allocation.
  • the X is L, and the L is the number of IRB indexes included in one LBT subband, and L is a positive integer; wherein, the direct link control information SCI is located on a non-lowest IRB index among the allocated IRB indexes, and the frequency domain resource allocation supports discrete IRB index allocation; or, the X is The L is the number of IRB indexes included in one LBT subband, and L is a positive integer; wherein, the direct link control information SCI is located on the non-lowest IRB index among the allocated IRB indexes, and the frequency domain resource allocation supports continuous IRB index allocation.
  • the frequency domain resource allocation field further includes a second part, the second part is used to indicate the number and/or position of LBT subbands occupied by Sidelink transmission, and the second part includes Y bits, where Y is a positive integer.
  • the Y is The K is the number of resource block sets contained in the directly connected communication bandwidth part BWP, and K is a positive integer; wherein, the frequency domain resource allocation supports resource allocation of continuous resource block sets, and supports SCI to reserve one resource; or, the Y is The K is the number of resource block sets contained in the direct communication bandwidth part BWP, and K is a positive integer; wherein, the frequency domain resource allocation supports resource allocation of continuous resource block sets, and supports SCI to reserve resources twice.
  • the Y is K-1+K; wherein, the K is the number of resource block sets contained in the direct communication bandwidth part BWP, and K is a positive integer; wherein, the frequency domain resource allocation supports resource allocation of discrete resource block sets, and supports SCI to reserve resources once; or, the Y is 3K-1; wherein, the K is the number of resource block sets contained in the direct communication bandwidth part BWP, and K is a positive integer; wherein the frequency domain resource allocation supports discrete resource block sets resource allocation, and supports SCI to reserve 2 resources.
  • the first-stage SCI further includes a first offset field, and the first offset field is used to indicate the offset of the IRB index in the adjacent resource block set in the resource for initial transmission, or indicate the offset of the IRB index in the adjacent resource block set in the reserved first resource, or indicate the offset of the IRB index in the adjacent resource block set in the reserved second resource; wherein, the number of bits in the first offset field is [log 2 (L)]; wherein, the L is one The number of IRB indices included in the LBT subband.
  • the first-stage SCI further includes a second offset field
  • the second offset field is used to indicate the offset of each resource block set in the reserved first resource relative to the IRB index in the corresponding resource block set in the initial transmission resource, or indicate the offset of each resource block set in the reserved second resource relative to the IRB index in the corresponding resource block set in the initial transmission resource; wherein, the number of bits in the second offset field is [log 2 (L)]; wherein, the L is one The number of IRB indices included in the LBT subband.
  • the frequency domain resource allocation supports an offset of a cyclic IRB index.
  • the embodiment of the present application provides a method for determining resources, which is applied to an unlicensed frequency band for direct communication between terminals.
  • the method is executed by a second terminal device, and the method includes:
  • the first-stage SCI includes a frequency-domain resource allocation field, and the frequency-domain resource allocation field is used to indicate frequency domain resources occupied by the first terminal device;
  • the OCB requirements can be met on the unlicensed frequency band, so as to meet the potential diversified application scenarios and requirements in the future.
  • the frequency-domain resource allocation granularity is a sub-channel; the receiving the first-stage direct link control information SCI sent by the first terminal device based on the frequency-domain resource allocation granularity includes: determining the mapping relationship between the sub-channel and the comb tooth resource block IRB; receiving the first-stage SCI sent by the first terminal device based on the sub-channel for the frequency-domain resource allocation granularity and the mapping relationship.
  • the determining the mapping relationship between the subchannel and the comb tooth resource block IRB includes: determining the mapping relationship between the subchannel and the IRB that one subchannel corresponds to one IRB index, wherein the number of subchannels included in a given LBT subband is the same as the number of IRB indexes.
  • the determining the mapping relationship between the subchannel and the comb tooth resource block IRB includes: determining the mapping relationship between the subchannel and the IRB so that each physical resource block PRB in a subchannel is mapped to a specific PRB of multiple IRB indexes; wherein, a given LBT subband includes M subchannels and N IRBs, and M and N are positive integers respectively.
  • the frequency-domain resource allocation granularity is IRB; the receiving the first-stage direct link control information SCI sent by the first terminal device based on the frequency-domain resource allocation granularity includes: receiving the first-stage SCI sent by the first terminal device based on the frequency-domain resource allocation granularity based on the IRB; wherein, the frequency-domain resource allocation field in the first-stage SCI is used to indicate the frequency domain resource size and/or position of the first direct-connect communication Sidelink transmission of the first terminal device, and to reserve the starting position and size of the direct-connect communication Sidelink resource .
  • the frequency-domain resource allocation field includes a first part, the first part is used to indicate the number and/or position of IRB indexes within an LBT subband occupied by Sidelink transmission, and the first part includes X bits, where X is a positive integer.
  • the X is L-1, the L is the number of IRB indexes included in one LBT subband, and L is a positive integer; wherein, the direct link control information SCI is located on the lowest IRB index among the allocated IRB indexes, and the frequency domain resource allocation supports discrete IRB index allocation; or, the X is [log 2 (L)], and the L is the number of IRB indexes included in an LBT subband, and L is a positive integer; The lowest IRB index among the IRB indexes, and the frequency domain resource allocation supports continuous IRB index allocation.
  • the X is L, and the L is the number of IRB indexes included in one LBT subband, and L is a positive integer; wherein, the direct link control information SCI is located on a non-lowest IRB index among the allocated IRB indexes, and the frequency domain resource allocation supports discrete IRB index allocation; or, the X is The L is the number of IRB indexes included in one LBT subband, and L is a positive integer; wherein, the direct link control information SCI is located on the non-lowest IRB index among the allocated IRB indexes, and the frequency domain resource allocation supports continuous IRB index allocation.
  • the frequency domain resource allocation field further includes a second part, the second part is used to indicate the number and/or position of LBT subbands occupied by Sidelink transmission, and the second part includes Y bits, where Y is a positive integer.
  • the Y is The K is the number of resource block sets contained in the directly connected communication bandwidth part BWP, and K is a positive integer; wherein, the frequency domain resource allocation supports resource allocation of continuous resource block sets, and supports SCI to reserve one resource; or, the Y is The K is the number of resource block sets contained in the direct communication bandwidth part BWP, and K is a positive integer; wherein, the frequency domain resource allocation supports resource allocation of continuous resource block sets, and supports SCI to reserve resources twice.
  • the Y is K-1+K; wherein, the K is the number of resource block sets contained in the direct communication bandwidth part BWP, and K is a positive integer; wherein, the frequency domain resource allocation supports resource allocation of discrete resource block sets, and supports SCI to reserve resources once; or, the Y is 3K-1; wherein, the K is the number of resource block sets contained in the direct communication bandwidth part BWP, and K is a positive integer; wherein the frequency domain resource allocation supports discrete resource block sets resource allocation, and supports SCI to reserve 2 resources.
  • the first-stage SCI further includes a first offset field, and the first offset field is used to indicate the offset of the IRB index in the adjacent resource block set in the resource for initial transmission, or indicate the offset of the IRB index in the adjacent resource block set in the reserved first resource, or indicate the offset of the IRB index in the adjacent resource block set in the reserved second resource; wherein, the number of bits in the first offset field is [log 2 (L)]; wherein, the L is one The number of IRB indices included in the LBT subband.
  • the first-stage SCI further includes a second offset field
  • the second offset field is used to indicate the offset of each resource block set in the reserved first resource relative to the IRB index in the corresponding resource block set in the initial transmission resource, or indicate the offset of each resource block set in the reserved second resource relative to the IRB index in the corresponding resource block set in the initial transmission resource; wherein, the number of bits in the second offset field is [log 2 (L)]; wherein, the L is one The number of IRB indices included in the LBT subband.
  • the frequency domain resource allocation supports an offset of a cyclic IRB index.
  • the embodiment of the present application provides a communication device, which is applied to an unlicensed frequency band for terminal direct communication, and the communication device includes:
  • the transceiver module is configured to send the first-stage direct link control information SCI to the second terminal device based on the frequency-domain resource allocation granularity; the first-stage SCI includes a frequency-domain resource allocation field, and the frequency-domain resource allocation field is used to indicate the frequency-domain resources occupied by the first terminal device.
  • the OCB requirements can be met in the unlicensed frequency band, so as to meet the potential diversified application scenarios and requirements in the future.
  • the frequency domain resource allocation granularity is a subchannel; the communication device further includes:
  • a processing module configured to determine a mapping relationship between the subchannel and the comb-tooth resource block IRB;
  • the transceiving module is configured to send the first-stage SCI to the second terminal device based on the frequency-domain resource allocation granularity of the sub-channel and the mapping relationship.
  • the processing module is configured to: determine that the mapping relationship between the subchannel and the IRB is that one subchannel corresponds to one IRB index, where a given LBT subband contains the same number of subchannels and IRB indexes.
  • the processing module is configured to: determine the mapping relationship between the subchannel and the IRB so that each physical resource block PRB in a subchannel is mapped to a specific PRB of multiple IRB indexes; wherein, a given LBT subband includes M subchannels and N IRB indexes, and M and N are positive integers respectively.
  • the frequency domain resource allocation granularity is IRB; the transceiver module is configured to: send the first phase SCI to the second terminal device based on the IRB being the frequency domain resource allocation granularity; wherein, the frequency domain resource allocation field in the first phase SCI is used to indicate the frequency domain resource size and/or position of the first direct communication Sidelink transmission of the first terminal device, and the frequency domain resource start position and size of reserved direct communication Sidelink resources.
  • the frequency-domain resource allocation field includes a first part, the first part is used to indicate the number and/or position of IRB indexes within an LBT subband occupied by Sidelink transmission, and the first part includes X bits, where X is a positive integer.
  • the X is L-1, the L is the number of IRB indexes included in one LBT subband, and L is a positive integer; wherein, the direct link control information SCI is located on the lowest IRB index among the allocated IRB indexes, and the frequency domain resource allocation supports discrete IRB index allocation; or, the X is [log 2 (L)], and the L is the number of IRB indexes included in an LBT subband, and L is a positive integer; The lowest IRB index among the IRB indexes, and the frequency domain resource allocation supports continuous IRB index allocation.
  • the X is L, and the L is the number of IRB indexes included in one LBT subband, and L is a positive integer; wherein, the direct link control information SCI is located on a non-lowest IRB index among the allocated IRB indexes, and the frequency domain resource allocation supports discrete IRB index allocation; or, the X is The L is the number of IRB indexes included in one LBT subband, and L is a positive integer; wherein, the direct link control information SCI is located on the non-lowest IRB index among the allocated IRB indexes, and the frequency domain resource allocation supports continuous IRB index allocation.
  • the frequency domain resource allocation field further includes a second part, the second part is used to indicate the number and/or position of LBT subbands occupied by Sidelink transmission, and the second part includes Y bits, where Y is a positive integer.
  • the Y is The K is the number of resource block sets contained in the directly connected communication bandwidth part BWP, and K is a positive integer; wherein, the frequency domain resource allocation supports resource allocation of continuous resource block sets, and supports SCI to reserve one resource; or, the Y is The K is the number of resource block sets contained in the direct communication bandwidth part BWP, and K is a positive integer; wherein, the frequency domain resource allocation supports resource allocation of continuous resource block sets, and supports SCI to reserve resources twice.
  • the Y is K-1+K; wherein, the K is the number of resource block sets contained in the direct communication bandwidth part BWP, and K is a positive integer; wherein, the frequency domain resource allocation supports resource allocation of discrete resource block sets, and supports SCI to reserve resources once; or, the Y is 3K-1; wherein, the K is the number of resource block sets contained in the direct communication bandwidth part BWP, and K is a positive integer; wherein the frequency domain resource allocation supports discrete resource block sets resource allocation, and supports SCI to reserve 2 resources.
  • the first-stage SCI further includes a first offset field, and the first offset field is used to indicate the offset of the IRB index in the adjacent resource block set in the resource for initial transmission, or indicate the offset of the IRB index in the adjacent resource block set in the reserved first resource, or indicate the offset of the IRB index in the adjacent resource block set in the reserved second resource; wherein, the number of bits in the first offset field is [log 2 (L)]; wherein, the L is one The number of IRB indices included in the LBT subband.
  • the first-stage SCI further includes a second offset field
  • the second offset field is used to indicate the offset of each resource block set in the reserved first resource relative to the IRB index in the corresponding resource block set in the initial transmission resource, or indicate the offset of each resource block set in the reserved second resource relative to the IRB index in the corresponding resource block set in the initial transmission resource; wherein, the number of bits in the second offset field is [log 2 (L)]; wherein, the L is one The number of IRB indices included in the LBT subband.
  • the frequency domain resource allocation supports an offset of a cyclic IRB index.
  • the embodiment of the present application provides another communication device, which is applied to an unlicensed frequency band for terminal direct communication, and the communication device includes:
  • the transceiver module is configured to receive the first-stage direct link control information SCI sent by the first terminal device based on frequency-domain resource allocation granularity; the first-stage SCI includes a frequency-domain resource allocation field, and the frequency-domain resource allocation field is used to indicate the frequency-domain resources occupied by the first terminal device;
  • a processing module configured to determine frequency domain resources occupied by the first terminal device according to the first-stage SCI and the frequency domain resource allocation granularity, and determine frequency domain resources available to the second terminal device according to the frequency domain resources occupied by the first terminal device.
  • the OCB requirements can be met on the unlicensed frequency band, so as to meet the potential diversified application scenarios and requirements in the future.
  • the frequency-domain resource allocation granularity is a sub-channel; the processing module is further configured to: determine a mapping relationship between the sub-channel and the comb tooth resource block IRB; the transceiver module is configured to receive the first-stage SCI sent by the first terminal device based on the sub-channel as the frequency-domain resource allocation granularity and the mapping relationship.
  • the processing module is configured to: determine that the mapping relationship between the subchannel and the IRB is that one subchannel corresponds to one IRB index, where a given LBT subband contains the same number of subchannels and IRB indexes.
  • the processing module is configured to: determine the mapping relationship between the subchannel and the IRB so that each physical resource block PRB in a subchannel is mapped to a specific PRB of multiple IRB indexes; wherein, a given LBT subband includes M subchannels and N IRBs, and M and N are positive integers respectively.
  • the frequency-domain resource allocation granularity is IRB; the transceiver module is configured to: receive the first-stage SCI sent by the first terminal device based on the IRB as the frequency-domain resource allocation granularity; wherein, the frequency-domain resource allocation field in the first-stage SCI is used to indicate the size and/or position of the frequency-domain resource for the first direct-connection communication Sidelink transmission of the first terminal device, and the starting position and size of the frequency-domain resource of the reserved direct-connection communication Sidelink resource.
  • the frequency-domain resource allocation field includes a first part, the first part is used to indicate the number and/or position of IRB indexes within an LBT subband occupied by Sidelink transmission, and the first part includes X bits, where X is a positive integer.
  • the X is L-1, the L is the number of IRB indexes included in one LBT subband, and L is a positive integer; wherein, the direct link control information SCI is located on the lowest IRB index among the allocated IRB indexes, and the frequency domain resource allocation supports discrete IRB index allocation; or, the X is [log 2 (L)], and the L is the number of IRB indexes included in an LBT subband, and L is a positive integer; The lowest IRB index among the IRB indexes, and the frequency domain resource allocation supports continuous IRB index allocation.
  • the X is L, and the L is the number of IRB indexes included in one LBT subband, and L is a positive integer; wherein, the direct link control information SCI is located on a non-lowest IRB index among the allocated IRB indexes, and the frequency domain resource allocation supports discrete IRB index allocation; or, the X is The L is the number of IRB indexes included in one LBT subband, and L is a positive integer; wherein, the direct link control information SCI is located on the non-lowest IRB index among the allocated IRB indexes, and the frequency domain resource allocation supports continuous IRB index allocation.
  • the frequency domain resource allocation field further includes a second part, the second part is used to indicate the number and/or position of LBT subbands occupied by Sidelink transmission, and the second part includes Y bits, where Y is a positive integer.
  • the Y is The K is the number of resource block sets contained in the directly connected communication bandwidth part BWP, and K is a positive integer; wherein, the frequency domain resource allocation supports resource allocation of continuous resource block sets, and supports SCI to reserve one resource; or, the Y is The K is the number of resource block sets contained in the direct communication bandwidth part BWP, and K is a positive integer; wherein, the frequency domain resource allocation supports resource allocation of continuous resource block sets, and supports SCI to reserve resources twice.
  • the Y is K-1+K; wherein, the K is the number of resource block sets contained in the direct communication bandwidth part BWP, and K is a positive integer; wherein, the frequency domain resource allocation supports resource allocation of discrete resource block sets, and supports SCI to reserve resources once; or, the Y is 3K-1; wherein, the K is the number of resource block sets contained in the direct communication bandwidth part BWP, and K is a positive integer; wherein the frequency domain resource allocation supports discrete resource block resource allocation.
  • the first-stage SCI further includes a first offset field, and the first offset field is used to indicate the offset of the IRB index in the adjacent resource block set in the resource for initial transmission, or indicate the offset of the IRB index in the adjacent resource block set in the reserved first resource, or indicate the offset of the IRB index in the adjacent resource block set in the reserved second resource; wherein, the number of bits in the first offset field is [log 2 (L)]; wherein, the L is one The number of IRB indices included in the LBT subband.
  • the first-stage SCI further includes a second offset field
  • the second offset field is used to indicate the offset of each resource block set in the reserved first resource relative to the IRB index in the corresponding resource block set in the initial transmission resource, or indicate the offset of each resource block set in the reserved second resource relative to the IRB index in the corresponding resource block set in the initial transmission resource; wherein, the number of bits in the second offset field is [log 2 (L)]; wherein, the L is one The number of IRB indices included in the LBT subband.
  • the frequency domain resource allocation supports an offset of a cyclic IRB index.
  • an embodiment of the present application provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the first aspect above.
  • an embodiment of the present application provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the second aspect above.
  • an embodiment of the present application provides a communication device, the communication device includes a processor and a memory, and the memory stores a computer program; the processor executes the computer program stored in the memory, so that the communication device executes the method described in the first aspect above.
  • an embodiment of the present application provides a communication device, the communication device includes a processor and a memory, and the memory stores a computer program; the processor executes the computer program stored in the memory, so that the communication device executes the method described in the second aspect above.
  • the embodiment of the present application provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the device execute the method described in the first aspect above.
  • the embodiment of the present application provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the device execute the method described in the second aspect above.
  • the embodiment of the present application provides a communication system, the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect and the communication device described in the sixth aspect, or the system includes the communication device described in the seventh aspect and the communication device described in the eighth aspect, or the system includes the communication device described in the ninth aspect and the communication device described in the tenth aspect.
  • an embodiment of the present invention provides a computer-readable storage medium for storing instructions used by the above-mentioned terminal device, and when the instructions are executed, the terminal device executes the method described in the above-mentioned first aspect.
  • an embodiment of the present invention provides a readable storage medium for storing instructions used by the above-mentioned network equipment, and when the instructions are executed, the network equipment executes the method described in the above-mentioned second aspect.
  • the present application further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present application further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a flow chart of a resource indication method provided by an embodiment of the present application.
  • FIG. 3 is a structural example diagram 1 of a comb-teeth resource block IRB according to an embodiment of the present application
  • FIG. 4 is a structural example diagram 2 of a comb-teeth resource block IRB according to an embodiment of the present application
  • Fig. 5 is an exemplary diagram of the relationship between the resource block set RB set and the IRB index of the embodiment of the present application
  • FIG. 6 is a flow chart of another resource indication method provided by an embodiment of the present application.
  • FIG. 7 is an example diagram of a mapping relationship between a subchannel and an IRB in an embodiment of the present application.
  • Fig. 8 is a flowchart of another resource indication method provided by the embodiment of the present application.
  • Fig. 9 is the example figure that the SCI of the embodiment of the present application is located on the lowest (i.e. initial) IRB index in the allocated IRB index;
  • Fig. 10 is the example figure that the SCI of the embodiment of the present application is located on the non-lowest (i.e. non-starting) IRB index in the allocated IRB index;
  • FIG. 11 is an example diagram 1 of frequency domain resource allocation according to an embodiment of the present application.
  • FIG. 12 is an example diagram 2 of frequency domain resource allocation according to an embodiment of the present application.
  • FIG. 13 is a third example of frequency domain resource allocation in the embodiment of the present application.
  • FIG. 14 is a flow chart of a method for determining resources provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Fig. 16 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • terminal direct communication also called sidelink, Sidelink, SL
  • SL terminal direct communication
  • SL-U terminal direct communication
  • this application proposes a resource indication method, a resource determination method and its device, which can be applied to the SL-U system.
  • the resource allocation indication method based on the frequency domain resource allocation granularity based on sub-channels or comb-tooth resource blocks IRB in the first stage of SCI, the OCB requirements can be met on the unlicensed frequency band. For example, each transmission can occupy 80% of the LBT sub-band bandwidth, thereby meeting potential diversified application scenarios and requirements in the future.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include, but is not limited to, a first terminal device and a second terminal device.
  • the number and configuration of the devices shown in FIG. 1 are for example only and constitute a limitation to the embodiment of the present application. In practical applications, two or more first terminal devices and two or more second terminal devices may be included.
  • the communication system shown in FIG. 1 includes a first terminal device 101 and a second terminal device 102 as an example.
  • long term evolution long term evolution, LTE
  • 5th generation 5G mobile communication system
  • 5G new radio new radio, NR
  • SL-U future new mobile communication systems
  • the first terminal device and the second terminal device in the embodiment of the present application are entities on the user side for receiving or transmitting signals, such as mobile phones.
  • the first terminal device and the second terminal device may also be referred to as terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT), etc.
  • Terminal devices can be automobiles with communication functions, smart cars, mobile phones, wearable devices, tablet computers (Pad), computers with wireless transceiver functions, virtual reality (virtual reality, VR) terminal devices, augmented reality (augmented reality, AR) terminal devices, wireless terminal devices in industrial control (industrial control), wireless terminal devices in self-driving (self-driving), remote medicals wireless terminal equipment in surgery, wireless terminal equipment in smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • the communication system described in the embodiment of the present application is to illustrate the technical solution of the embodiment of the present application more clearly, and does not constitute a limitation to the technical solution provided by the embodiment of the present application.
  • Those of ordinary skill in the art know that with the evolution of the system architecture and the emergence of new business scenarios, the technical solution provided by the embodiment of the present application is also applicable to similar technical problems.
  • FIG. 2 is a flowchart of a resource indication method provided by an embodiment of the present application. It should be noted that the resource indication method in the embodiment of the present application is applied to an unlicensed frequency band for terminal direct communication, and the resource indication method may be executed by the first mobile terminal. As shown in Fig. 2, the resource indication method may include but not limited to the following steps.
  • the first-stage direct link control information SCI is sent to the second terminal device; the first-stage SCI includes a frequency-domain resource allocation field, and the frequency-domain resource allocation field is used to indicate frequency domain resources occupied by the first terminal device.
  • the frequency domain resource allocation granularity may be a subchannel or a comb tooth resource block IRB.
  • the interlaced resource block (Interlaced Resource Block, IRB) is introduced in the NR-U system, that is, two consecutive comb resource blocks are separated by M resource blocks.
  • the physical resource block PRB included is ⁇ m, M+m, 2M+m, 3M+m,... ⁇ , where m ⁇ 0,1,...,M-1 ⁇ .
  • the IRB structure is defined for two subcarrier spacings of 15kHz and 30kHz, as shown in the following table.
  • the comb-tooth resource block contained in the comb-tooth index is PRB ⁇ 0,5,10,15,20,25,30,35,40,45 ⁇ .
  • the comb-tooth resource block contained in the comb-tooth index is PRB ⁇ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 ⁇ .
  • the relationship between the IRB and the resource block set RB set is as follows: In NR-U, one LBT subband, that is, 20MHZ, is collectively referred to as the resource block set RB-Set, and the entire carrier bandwidth is divided into multiple resource block sets.
  • the network maps the resource block set to the BWP by configuring a partial bandwidth BWP.
  • the protocol stipulates that the BWP configured by the network must contain an integer number of resource block sets. As shown in Figure 5, it is the relationship between the resource block set RB set and the IRB index, and one resource block set RB set contains multiple IRB indexes.
  • the first terminal device may determine frequency domain resource allocation granularity.
  • the frequency domain resource allocation granularity may be a sub-channel, or may also be a comb tooth resource block IRB.
  • the first terminal device may reuse the original subchannel (subchannel)-based frequency domain resource indication method in SCI 1-A (that is, the first stage SCI), and increase the design of the mapping from the subchannel to the IRB. That is to say, the first terminal device can reuse the original subchannel-based frequency-domain resource indication method in the first-stage SCI, in which the mapping relationship between sub-channels and IRBs needs to be determined, so as to implement sub-channel-based resource indication at the granularity of frequency-domain resource allocation.
  • the IRB is a distributed set of equally spaced PRBs
  • the sub-channel is a set of continuous PRBs.
  • the first terminal device may send the first-phase SCI to the second terminal device based on the determined frequency-domain resource allocation granularity.
  • the BWP may be divided according to the size of the bandwidth part BWP and the frequency-domain resource allocation granularity to obtain N units, and the first-stage SCI may be sent to the second terminal device, wherein the first-stage SCI may include a frequency-domain resource allocation field, and the frequency-domain resource allocation field is used to indicate the unit allocated to the first terminal device among the N units, that is, to indicate the frequency-domain resource occupied by the first terminal device.
  • the OCB requirements can be met on the unlicensed frequency band, thereby meeting potential diversified application scenarios and requirements in the future.
  • FIG. 6 is a flowchart of another resource indication method provided in the embodiment of the present application. It should be noted that the resource indication method in the embodiment of the present application is applied to an unlicensed frequency band for direct communication between terminals, and the resource indication method may be executed by the first terminal device. As shown in FIG. 6, the resource indication method may include but not limited to the following steps.
  • step 601 a mapping relationship between subchannels and comb-tooth resource blocks IRB is determined.
  • step 602 the frequency domain resources are allocated granularity and mapping relationship based on the sub-channel, and the first-stage SCI is sent to the second terminal device.
  • this application can reuse the original subchannel-based frequency domain resource indication method in the first-stage SCI, in which the mapping relationship between subchannels and IRBs needs to be determined.
  • the mapping relationship between subchannels and IRBs may be determined in the following manner: determining the mapping relationship between subchannels and IRBs is that one subchannel corresponds to one IRB index, wherein a given LBT subband includes the same number of subchannels and IRB indexes.
  • mapping relationship between the subchannels and IRBs is a one-to-one mapping relationship, that is, one IRB index is mapped to one subchannel.
  • SCS 30kHz, assuming that there are 50 PRBs in one LBT subband (for example, 20MHz), and one subchannel contains 10 PRBs, then there are 5 subchannels, and there are 5 IRB indexes (that is, IRB indexes).
  • the number of subchannels and IRB indexes is the same, and 1 subchannel is mapped to each IRB index, so that one subchannel corresponds to one IRB index.
  • the mapping relationship between the subchannel and the comb tooth resource block IRB can be determined in the following manner: the mapping relationship between the subchannel and the IRB is determined as each physical resource block PRB in a subchannel is mapped to a specific PRB of multiple IRB indexes; wherein, a given LBT subband includes M subchannels and N IRB indexes, and M and N are positive integers respectively.
  • a 1-to-1 mapping rule can be established from continuous resource blocks RB in an LBT subband to distributed PRBs in the subband, and each physical resource block PRB in a subchannel is mapped to specific PRBs in multiple IRBs according to the above mapping rule.
  • the first phase SCI may be sent to the second terminal device, where the first phase SCI may include a frequency domain resource allocation field, and the frequency domain resource allocation field is used to indicate the frequency domain resource occupied by the first terminal device. That is to say, after determining the mapping relationship between IRBs, the first terminal device may continue to use the original subchannel-based frequency domain resource indication manner in the first-stage SCI.
  • the first terminal device determines the mapping relationship between subchannels and IRBs, it can reuse the original subchannel-based frequency domain resource indication method in the first-stage SCI, thereby indicating to the second terminal device the frequency domain resources occupied by the first terminal device, which can meet the OCB requirements in the unlicensed frequency band, such as making each transmission can occupy 80% of the LBT subband bandwidth, and can better ensure resource utilization, thereby meeting potential diversified application scenarios and requirements in the future.
  • FIG. 8 is a flowchart of another resource indication method provided in the embodiment of the present application. It should be noted that the resource indication method in the embodiment of the present application can be applied to an unlicensed frequency band for terminal direct communication, and the resource indication method can be executed by the first terminal device. As shown in FIG. 8, the resource indication method may include but not limited to the following steps.
  • step 801 based on the frequency domain resource allocation granularity of the IRB, the first phase SCI is sent to the second terminal device.
  • the frequency domain resource allocation field in the SCI of the first stage is used to indicate the size and/or position of the frequency domain resource for the first direct communication Sidelink transmission of the first terminal device, and the starting position and size of the frequency domain resource of the reserved direct communication Sidelink resource.
  • the first terminal device may determine to use comb-tooth resource blocks (IRBs) as frequency-domain resource allocation granularity. That is to say, the present application can redesign the frequency domain resource allocation field in SCI 1-A (that is, the first-stage SCI), that is, the resource indication can be performed based on the frequency domain resource allocation granularity based on the IRB. That is to say, in the embodiment of the present application, the frequency domain resource allocation field in SCI 1-A (that is, the first stage SCI) no longer performs resource indication for frequency domain resource allocation granularity based on subchannels, but performs resource indication for frequency domain resource allocation granularity based on IRB.
  • IRBs comb-tooth resource blocks
  • the first terminal device may divide the BWP according to the size of the bandwidth part BWP and the frequency domain resource allocation granularity using the IRB to obtain N units, and send the first-stage SCI to the second terminal device, wherein the first-stage SCI may include a frequency domain resource allocation field, and the frequency domain resource allocation field is used to indicate the first terminal device.
  • a subchannel is a set of continuous PRBs.
  • a subchannel contains a continuous number of PRBs of N
  • an IRB is a distributed set of equally spaced PRBs
  • the number of resource blocks spaced between two consecutive comb-toothed resource blocks is M.
  • the frequency domain resource allocation field in the SCI indicates the size and/or position of the frequency domain resource for the initial Sidelink transmission, and the starting position and size of the frequency domain resource of the reserved Sidelink resource.
  • the frequency domain resource allocation domain includes a first part, wherein the first part may indicate the number and/or position of the IRB index in one LBT subband occupied by the sidelink transmission (that is, the resource block set RB set), assuming that it includes X bits, and X is a positive integer; optionally, the frequency domain resource allocation domain may also include a second part, which may indicate that the sidelink transmission occupies the LBT subband ( That is, the number and/or position of the resource block set (RB set) is assumed to include Y bits, and Y is a positive integer.
  • the design of the frequency domain resource allocation domain in SCI 1-A may cause the number of bits in the first part and the second part to be different. Implementations for determining the number X of bits in the first part and the number of bits in the second part will be respectively given below.
  • the number X of bits in the first part may be L-1, L is the number of IRB indexes included in one LBT subband, and L is a positive integer; wherein, the direct link control information SCI is located on the lowest IRB index among the allocated IRB indexes, and the frequency domain resource allocation supports discrete IRB index allocation.
  • the present application can reuse the design method of R16, support SCI to be located on the lowest (i.e., starting) IRB index among the allocated IRB indexes, and frequency domain resource allocation supports discrete IRB index allocation, and it can be determined that the number of bits X of the first part can be L-1.
  • the terminal device can know the position of the initial IRB index of the allocated frequency domain resources through blind detection of the SCI, so it is not necessary to indicate the initial position of the initial IRB index sent in the frequency domain resource allocation field of SCI 1-A.
  • three IRB indexes ⁇ 1, 2, 3 ⁇ are assigned to the PSSCH, where the PSCCH carrying control information SCI 1-A is located on the lowest (ie starting) IRB index, that is, IRB index 1.
  • a bitmap can be used to indicate that in SCI 1-A, only an IRB index higher than the allocated initial IRB index is occupied; at this time, the number of bits X in the first part of SCI 1-A is L-1.
  • a subband has a total of L IRBs, so L-1 bits are required for indication. (Although if the occupied IRB is not IRB index 0, you don't need so many bits, but the size of the information field in the SCI should not change dynamically, and can only take the maximum value L-1).
  • the number X of bits in the first part is [log 2 (L)], L is the number of IRB indexes included in one LBT subband, and L is a positive integer; wherein, the direct link control information SCI is located on the lowest IRB index among the allocated IRB indexes, and frequency domain resource allocation supports continuous IRB index allocation.
  • the present application can reuse the design method of R16, support SCI to be located on the lowest (i.e., starting) IRB index among the allocated IRB indexes, and frequency domain resource allocation supports continuous IRB index allocation, and it can be determined that the number of bits X of the first part can be [log 2 (L)].
  • the terminal device can know the position of the start IRB index of the allocated frequency domain resource through blind detection of the SCI, so there is no need to indicate the position of the start IRB index sent for the first time in the frequency domain resource allocation field of SCI 1-A.
  • the present application reuses the design method of R16, supports SCI to be located at the lowest (i.e., starting) IRB index among the allocated IRB indexes, and frequency-domain resource allocation only supports continuous IRB index allocation, and SCI 1-A does not indicate the position of the initial IRB index occupied by the initial transmission, but only indicates the number of consecutively occupied IRB indexes; at this time, the number of bits X in the first part of SCI 1-A is [log 2 (L)]. Among them, "[]" can indicate rounding up.
  • the initial IRB index is 0, there are five possibilities of IRB lengths: 1, 2, 3, 4, and 5, and if the initial IRB index is 3, then there are two possibilities for the length of the IRB: 1 (for example, only occupying IRB index 3), and 2 (for example, occupying IRB indexes 3 and 4), so there are at most L possibilities.
  • the number of bits X in the first part is L
  • L is the number of IRB indexes included in one LBT subband
  • L is a positive integer
  • the direct link control information SCI is located on a non-lowest IRB index among the allocated IRB indexes, and frequency domain resource allocation supports discrete IRB index allocation.
  • the present application does not reuse the R16 design method, and the SCI may be located on the non-lowest (i.e. non-initial) IRB index among the allocated IRB indexes.
  • the SCI may be located on the non-lowest (i.e. non-initial) IRB index among the allocated IRB indexes.
  • it is necessary to indicate the position of the initial IRB index sent for the first time because the SCI is not located on the initial IRB index, the position of the initial IRB index cannot be obtained by blindly detecting the SCI, so the initial IRB index needs to be indicated).
  • three IRBs ⁇ 1, 2, 3 ⁇ are assigned to the PSSCH, where the PSCCH carrying control information SCI 1-A is located on the non-lowest (ie non-starting) IRB index, that is, on the IRB index 2.
  • the SCI in response to the application not reusing the design method of R16, can be located on the non-lowest (i.e. non-starting) IRB index among the allocated IRB indexes, and the frequency-domain resource allocation supports discrete IRB index allocation, then it can be indicated by using a bitmap.
  • the number of bits X in the first part is L, indicating the starting IRB index position and the number of occupied IRBs.
  • the number X of bits in the first part is L is the number of IRB indexes included in one LBT subband, and L is a positive integer; wherein, the direct link control information SCI is located on the non-lowest IRB index among the allocated IRB indexes, and frequency domain resource allocation supports continuous IRB index allocation.
  • the present application does not reuse the design method of R16, and the SCI may be located on the non-lowest (i.e., non-initial) IRB index among the allocated IRB indexes.
  • the SCI may be located on the non-lowest (i.e., non-initial) IRB index among the allocated IRB indexes.
  • it is necessary to indicate the position of the initial IRB index sent for the first time because the SCI is not located on the initial IRB index, the position of the initial IRB index cannot be obtained by blindly detecting the SCI, so the initial IRB index needs to be indicated).
  • the SCI in response to the application not reusing the design method of R16, can be located on the non-lowest (ie non-starting) IRB index among the allocated IRB indexes, and frequency domain resource allocation supports continuous IRB index allocation, then the number of bits in the first part can be determined It can indicate the starting position of the IRB index and the number of consecutive IRBs occupied.
  • R16NR-U the design idea of R16NR-U can be followed, and only continuous RB set resource allocation can be supported, and the bit number Y of the second part can be determined from two aspects of supporting SCI to reserve 1 resource or supporting SCI to reserve 2 resources.
  • the number Y of bits in the second part can be K is the number of resource block sets contained in the direct communication bandwidth part BWP, and K is a positive integer; among them, frequency domain resource allocation supports resource allocation of continuous resource block sets, and supports SCI to reserve resources once.
  • this application follows the design concept of R16NR-U, only supports resource allocation of continuous RB set, and supports SCI to reserve one resource, then determine the number of bits Y in the second part as It is used to indicate the starting RB set of one reserved resource and the quantity of one continuous RB set.
  • the number of bits Y in the second part is K is the number of resource block sets contained in the direct communication bandwidth part BWP, and K is a positive integer; among them, frequency domain resource allocation supports resource allocation of continuous resource block sets, and supports SCI to reserve 2 resources.
  • this application follows the design idea of R16NR-U, only supports resource allocation of continuous RB set, and supports SCI to reserve 2 resources, then determine the number of bits Y in the second part as It is used to indicate the starting RB set and the number of 1 continuous RB set of reserved resources for two times.
  • the resource allocation of discrete RB sets can be supported, and a bitmap bitmap can be used to indicate that each bit indicates whether the RB set is occupied.
  • the number Y of bits in the second part can be determined from the two aspects of supporting SCI to reserve 1 resource or supporting SCI to reserve 2 resources.
  • the number of bits Y in the second part is K-1+K; wherein, K is the number of resource block sets contained in the directly connected communication bandwidth part BWP, and K is a positive integer; wherein, frequency domain resource allocation supports resource allocation of discrete resource block sets, and supports SCI to reserve resources once.
  • this application does not follow the design idea of R16NR-U, supports discrete RB set resource allocation, and supports SCI to reserve 1 resource, then the number of bits Y in the second part can be determined as K-1+K, which is used to indicate the RBset occupied by this transmission (but only indicates whether the RB set higher than the occupied RB set is occupied, so it is K-1 bit), and at the same time indicates the starting position of the reserved 1 resource and the occupied RB set, which requires K bits.
  • the first 4 bits "0011” in "0011 10001" indicate the RBset occupied by this transmission, occupying the RBsets with serial numbers 2, 3 and 4 (because "0011” is whether the corresponding RBsets with serial numbers 1, 2, 3, 4 are occupied, indicating the serial number 3 and 4 are occupied, because it indicates whether the RB set higher than the occupied RB set is occupied, so it means that the RB set with the sequence number 2 is also occupied), and the last 5 bits "10011" use bitmap to indicate the reserved RB set occupied by one resource.
  • the number of bits Y in the second part is 3K-1; wherein, K is the number of resource block sets contained in the direct connection communication bandwidth part BWP, and K is a positive integer; wherein frequency domain resource allocation supports resource allocation of discrete resource block sets, and supports SCI to reserve 2 resources.
  • this application does not need to follow the design idea of R16NR-U, supports discrete RB set resource allocation, and supports SCI to reserve 2 resources, then it can be determined that the number of bits Y in the second part is 3K-1, which is used to indicate the RB set occupied by this transmission (but only indicates whether the RB set higher than the occupied RB set is occupied, so it is K-1 bits), and at the same time indicates the starting position of the reserved first resource and the number of K bits of the occupied RB set , and indicates the starting position of the reserved second resource and the number of K bits of the occupied RB set.
  • the starting position and the number of occupied RB sets are 5 bits (such as the fifth bit to the ninth bit "10001" in "0011 10001 11100"), and the starting position of the reserved second resource and the number of occupied RB sets are 5 bits (such as the last five bits "11100" in "0011 10001 11100").
  • the embodiment of the present application introduces a new information field in SCI 1-A, or called an IRB index offset field (IRB index offset).
  • the first stage SCI may also include a first offset field, which is used to indicate the offset of the IRB index in the adjacent resource block set in the resource for the initial transmission, or indicate the offset of the IRB index in the adjacent resource block set in the reserved first resource, or indicate the offset of the IRB index in the adjacent resource block set in the reserved second resource; where the number of bits in the first offset field is [log 2 (L)]; where L is an LBT subband includes The number of IRB indexes.
  • the frequency domain resource allocation supports the offset of the cyclic IRB index.
  • the first offset field (IRB index offset) introduced in SCI 1-A is used to indicate the offset of the IRB index in the adjacent set of resource blocks in the resource for the initial transmission, or indicate the offset of the IRB index in the set of adjacent resource blocks in the reserved first resource, or indicate the offset of the IRB index in the set of adjacent resource blocks in the reserved second resource.
  • the offset value of the first offset field is 0, it means that the distribution law of the IRB index in the RB set occupied by the resource for the first transmission is the same, or that the distribution law of the IRB index in the RB set occupied by the reserved resource is the same, or that the distribution law of the IRB index in the RB set occupied by the reserved resource for the second time is the same.
  • the offset of the first offset field has five possibilities ⁇ 0, 1, 2, 3, 4 ⁇ , that is, L possibilities, and supports 2 resource reservations.
  • 3 RB sets ⁇ 0, 1, 2 ⁇ are allocated.
  • the distribution of the IRB index is ⁇ 1, 2 ⁇
  • the IRB index in the second RB set index 1 in the resource for the initial transmission The offset is 1 IRB index, which has an offset relative to IRB index ⁇ 1,2 ⁇ in the first RB set, and the offset is 1 IRB index
  • the distribution of IRB index in the second RB set index 1 is ⁇ 2, 3 ⁇
  • the IRB index in the third RB set index 2 has 1 offset relative to the IRB index ⁇ 2,3 ⁇ in the second RB set index 1, and the offset is also 1 IRB index, then the distribution of IRB index in the third RB set index 2 is ⁇ 3, 4 ⁇ .
  • 3 RB sets ⁇ 1, 2, 3 ⁇ are also allocated.
  • the distribution of IRB index in the first RB set index 1, the distribution of IRB index is ⁇ 2, 3 ⁇ ; then in the second RB set index 2, there is an offset relative to IRB index ⁇ 2, 3 ⁇ in the RB set with index 1, and the offset is 1 IRB index, so in RB set index 2
  • the distribution of the IRB index in RB set is ⁇ 3, 4 ⁇ .
  • the IRB index in RB set index 3 has an offset relative to the IRB index ⁇ 3, 4 ⁇ in RB set index 2, and the offset of the index is also 1 IRB index. Therefore, the distribution of the IRB index in RB set index 3 is ⁇ 4, 0 ⁇ . Because the offset of the IRB index that supports the cycle, there are 5 IRB indexes ⁇ 0, 1, 2, 3, 4 ⁇ , so , when the IRB index is 4, after offsetting by 1 PRB index, the IRB index is 0.
  • RB set ⁇ 1,3,4 ⁇ is allocated.
  • the IRB index is ⁇ 3,4 ⁇ .
  • the IRB index has 1 offset, and the offset is 1 IRB index. Therefore, the distribution of IRB index in RB set index 3 is ⁇ 4,0 ⁇ ;
  • the first-stage SCI also includes a second offset field, which is used to indicate the offset of each resource block set in the reserved first resource relative to the IRB index in the resource block set corresponding to the resource block set for the initial transmission, or indicate the offset of each resource block set in the reserved second resource relative to the IRB index in the corresponding resource block set in the resource block set for the initial transmission; where the number of bits in the second offset field is [log 2 (L)]; The number of IRB indexes to include.
  • the second offset field (IRB index offset) introduced in SCI 1-A is used for the offset of each resource block set in the reserved first resource relative to the IRB index in the corresponding resource block set in the initial transmission resource, or indicates the offset of each resource block set in the reserved second resource relative to the IRB index in the corresponding resource block set in the initial transmission resource.
  • the offset value of the second offset field is 0, it means that the distribution law of the IRB index in each resource block set in the reserved first resource is the same as that in the corresponding resource block set in the resource block set for the initial transmission, or that the distribution law of the IRB index in each resource block set in the reserved second resource is the same as that in the corresponding resource block set in the resource block set in the initial transmission.
  • the RB set distribution of the reserved first resource is ⁇ 0, 3, 4 ⁇ , where the offset of the IRB index of the RB set index 0 of the reserved first resource relative to the RB set index 2 of the initial transmission is 1, then the reserved first resource’s
  • the distribution of IRB index in RB set index 0 is ⁇ 0, 3, 4 ⁇ ;
  • the offset of IRB index in RB set index 3 of reserved resources for the first time relative to the IRB index of RB set index 3 in initial transmission is 1, then the distribution of IRB index in RB set index 3 of reserved resources for the first time is ⁇ 0, 3, 4 ⁇ ;
  • the IRB index in RB set index 4 of reserved first resources is relative to the RB set in initial transmission
  • the IRB index offset of index 4 is 1, and the distribution of the IRB index in the RB set index 4 of the reserved resource
  • the distribution of the IRB index in the RB set index 0 of the reserved resource is ⁇ 0,3,4 ⁇ ; the offset of the IRB index in the RB set index 1 of the second reserved resource relative to the IRB index 3 of the first transmission is 1, then the distribution of the IRB index in the RB set index 1 of the reserved resource for the second time is ⁇ 0,3,4 ⁇ ; the IRB in the RB set index 2 of the reserved resource for the second time.
  • the index relative to the IRB index offset of the RB set index 4 of the initial transmission is 1, and the distribution of the IRB index in the RB set index 2 of the resource reserved for the second time is ⁇ 0, 3, 4 ⁇ .
  • the OCB requirements can be met on the unlicensed frequency band, such as allowing each transmission to occupy 80% of the LBT sub-band bandwidth, which can better ensure resource utilization;
  • the application supports SCIs located on the lowest (i.e., initial) or non-lowest (i.e., non-initial) IRB index among the allocated IRB indexes, and the SCI relative to R16 can only be in the lowest (i.e. initial) sub-band
  • the design on the channel is more flexible, so as to meet the potential diverse application scenarios and requirements in the future.
  • FIG. 14 is a flow chart of a resource determination method provided by an embodiment of the present application. It should be noted that the resource determination method in the embodiment of the present application is applied to an unlicensed frequency band for terminal direct communication, and may be executed by the second terminal device. As shown in FIG. 14 , the resource determination method may include but not limited to the following steps.
  • step 1401 receive the first stage direct link control information SCI sent by the first terminal device based on frequency domain resource allocation granularity; the first stage SCI includes a frequency domain resource allocation field, and the frequency domain resource allocation field is used to indicate the frequency domain resources occupied by the first terminal device.
  • the frequency-domain resource allocation granularity may be a sub-channel or a comb-tooth resource block IRB.
  • the first terminal device may determine frequency domain resource allocation granularity.
  • the frequency domain resource allocation granularity may be a sub-channel, or may also be a comb tooth resource block IRB.
  • the first terminal device may reuse the original subchannel (subchannel)-based frequency domain resource indication method in SCI 1-A (that is, the first stage SCI), and increase the design of the mapping from the subchannel to the IRB.
  • the first terminal device can reuse the original subchannel-based frequency-domain resource indication method in the first-stage SCI, in which the mapping relationship between sub-channels and IRBs needs to be determined, so as to implement sub-channel-based resource indication at the granularity of frequency-domain resource allocation.
  • the IRB is a distributed set of equally spaced PRBs
  • the sub-channel is a set of continuous PRBs.
  • the first terminal device may send the first-phase SCI to the second terminal device based on the determined frequency-domain resource allocation granularity, so that the second terminal device may receive the first-phase SCI sent by the first terminal device based on the frequency-domain resource allocation granularity.
  • the first terminal device may divide the BWP according to the size of the bandwidth part BWP and the frequency domain resource allocation granularity to obtain N units, and send the first phase SCI to the second terminal device, so that the second terminal device can receive the first phase SCI sent by the first terminal device, wherein the first phase SCI may include a frequency domain resource allocation field, and the frequency domain resource allocation field is used to indicate the unit allocated to the first terminal device among the N units, that is, indicate the frequency domain resource occupied by the first terminal device.
  • step 1402 the frequency domain resources occupied by the first terminal device are determined according to the first stage SCI and frequency domain resource allocation granularity.
  • the second terminal device may determine the frequency-domain resource occupied by the first terminal device from the frequency-domain resource allocation field in the first-stage SCI.
  • step 1403 the frequency domain resources available to the second terminal device are determined according to the frequency domain resources occupied by the first terminal device.
  • the second terminal device determines the frequency domain resources occupied by the first terminal device, it can determine the frequency domain resources available to the second terminal device itself.
  • this application can reuse the original subchannel-based frequency domain resource indication method in the first stage of SCI, in which the mapping relationship between subchannels and IRBs needs to be determined, and the subchannel-based resource indication of frequency domain resource allocation granularity can be realized.
  • the second terminal device may determine the mapping relationship between the sub-channel and the comb tooth resource block IRB, and receive the first-stage SCI sent by the first terminal device based on the sub-channel as the frequency-domain resource allocation granularity and the mapping relationship.
  • this application reuses the original subchannel-based frequency domain resource indication method in the first-stage SCI, in which the mapping relationship between subchannels and IRBs needs to be determined.
  • the mapping relationship between subchannels and IRBs may be determined in the following manner: determining the mapping relationship between subchannels and IRBs is that one subchannel corresponds to one IRB index, wherein a given LBT subband includes the same number of subchannels and IRB indexes.
  • mapping relationship between the subchannels and IRBs is a one-to-one mapping relationship, that is, one IRB index is mapped to one subchannel.
  • SCS 30kHz, assuming that there are 50 PRBs in one LBT subband (for example, 20MHz), and one subchannel contains 10 PRBs, then there are 5 subchannels, and there are 5 IRB indexes (that is, IRB indexes).
  • the number of subchannels and IRB indexes is the same, and 1 subchannel is mapped to each IRB index, so that one subchannel corresponds to one IRB index.
  • the mapping relationship between the subchannel and the comb tooth resource block IRB can be determined in the following manner: the mapping relationship between the subchannel and the IRB is determined as each physical resource block PRB in a subchannel is mapped to a specific PRB of multiple IRB indexes; wherein, a given LBT subband includes M subchannels and N IRB indexes, and M and N are positive integers respectively.
  • a 1-to-1 mapping rule can be established from continuous resource blocks RB in an LBT subband to distributed PRBs in the subband, and each physical resource block PRB in a subchannel is mapped to specific PRBs in multiple IRBs according to the above mapping rule.
  • the first terminal device may send the first-stage SCI to the second terminal device based on the mapping relationship and the subchannel as frequency domain resource allocation granularity.
  • the second terminal device may determine the mapping relationship between the subchannel and the IRB, and receive the first-stage SCI sent by the first terminal device based on the sub-channel for frequency-domain resource allocation granularity and the mapping relationship, where the first-stage SCI may include a frequency-domain resource allocation field, and the frequency-domain resource allocation field is used to indicate the frequency-domain resource occupied by the first terminal device. That is to say, after the mapping relationship between IRBs is determined, the first terminal device and the second terminal device can continue to use the original subchannel-based frequency domain resource indication manner in the first-stage SCI.
  • resource indication may be performed based on the granularity of resource allocation in the frequency domain based on the IRB. That is to say, the present application can redesign the frequency-domain resource allocation information field in the first-stage SCI, that is, can perform resource indication for the frequency-domain resource allocation granularity based on the IRB. That is to say, in the embodiment of the present application, the frequency domain resource allocation field in SCI 1-A (that is, the first stage SCI) no longer performs resource indication for frequency domain resource allocation granularity based on subchannels, but performs resource indication for frequency domain resource allocation granularity based on IRB.
  • the first terminal device may divide the BWP according to the size of the bandwidth part BWP and the IRB as frequency domain resource allocation granularity to obtain N units, and send the first-stage SCI to the second terminal device.
  • the second terminal device may receive the first-stage SCI sent by the first terminal device based on the IRB for frequency-domain resource allocation granularity, wherein the frequency-domain resource allocation field in the first-stage SCI is used to indicate the size and/or position of the frequency-domain resource for the first direct-connection communication Sidelink transmission of the first terminal device, and the starting position and size of the frequency-domain resource of the reserved direct-connection communication Sidelink resource.
  • a subchannel is a set of continuous PRBs.
  • a subchannel contains a continuous number of PRBs of N
  • an IRB is a distributed set of equally spaced PRBs
  • the number of resource blocks spaced between two consecutive comb-toothed resource blocks is M.
  • the frequency domain resource allocation field in the SCI indicates the size and/or position of the frequency domain resource for the initial Sidelink transmission, and the starting position and size of the frequency domain resource of the reserved Sidelink resource.
  • the frequency domain resource allocation domain includes a first part, wherein the first part may indicate the number and/or position of the IRB index in one LBT subband occupied by the sidelink transmission (that is, the resource block set RB set), assuming that it includes X bits, and X is a positive integer; optionally, the frequency domain resource allocation domain may also include a second part, which may indicate that the sidelink transmission occupies the LBT subband ( That is, the number and/or position of the resource block set (RB set) is assumed to include Y bits, and Y is a positive integer.
  • the design of the frequency domain resource allocation domain in SCI 1-A (that is, the first-stage SCI) may be different, which may cause the number of bits in the first part and the second part to be different. Implementations for determining the number X of bits in the first part and the number of bits in the second part will be respectively given below.
  • the number X of bits in the first part may be L-1, L is the number of IRB indexes included in one LBT subband, and L is a positive integer; wherein, the direct link control information SCI is located on the lowest IRB index among the allocated IRB indexes, and the frequency domain resource allocation supports discrete IRB index allocation.
  • the present application can reuse the design method of R16, support SCI to be located on the lowest (i.e., starting) IRB index among the allocated IRB indexes, and frequency domain resource allocation supports discrete IRB index allocation, and it can be determined that the number of bits X of the first part can be L-1.
  • the terminal device can know the position of the initial IRB index of the allocated frequency domain resources through blind detection of the SCI, so it is not necessary to indicate the initial position of the initial IRB index sent in the frequency domain resource allocation field of SCI 1-A.
  • three IRB indexes ⁇ 1, 2, 3 ⁇ are assigned to the PSSCH, where the PSCCH carrying control information SCI 1-A is located on the lowest (ie starting) IRB index, that is, IRB index 1.
  • a bitmap can be used to indicate that in SCI 1-A, only an IRB index higher than the allocated initial IRB index is occupied; at this time, the number of bits X in the first part of SCI 1-A is L-1.
  • the number X of bits in the first part is [log 2 (L)], L is the number of IRB indexes included in one LBT subband, and L is a positive integer; wherein, the direct link control information SCI is located on the lowest IRB index among the allocated IRB indexes, and frequency domain resource allocation supports continuous IRB index allocation.
  • the present application can reuse the design method of R16, support SCI to be located on the lowest (i.e., starting) IRB index among the allocated IRB indexes, and frequency domain resource allocation supports continuous IRB index allocation, and it can be determined that the number of bits X of the first part can be [log 2 (L)].
  • the terminal device can know the position of the start IRB index of the allocated frequency domain resource through blind detection of the SCI, so there is no need to indicate the position of the start IRB index sent for the first time in the frequency domain resource allocation field of SCI 1-A.
  • the present application reuses the design method of R16, supports SCI to be located at the lowest (i.e., starting) IRB index among the allocated IRB indexes, and frequency-domain resource allocation only supports continuous IRB index allocation, and SCI 1-A does not indicate the position of the initial IRB index occupied by the initial transmission, but only indicates the number of consecutively occupied IRB indexes; at this time, the number of bits X in the first part of SCI 1-A is [log 2 (L)]. Among them, "[]" can indicate rounding up.
  • the initial IRB index is 0, there are five possibilities of IRB lengths: 1, 2, 3, 4, and 5, and if the initial IRB index is 3, then there are two possibilities for the length of the IRB: 1 (for example, only occupying IRB index 3), and 2 (for example, occupying IRB indexes 3 and 4), so there are at most L possibilities.
  • the number of bits X in the first part is L
  • L is the number of IRB indexes included in one LBT subband
  • L is a positive integer
  • the direct link control information SCI is located on a non-lowest IRB index among the allocated IRB indexes, and frequency domain resource allocation supports discrete IRB index allocation.
  • the present application does not reuse the R16 design method, and the SCI may be located on the non-lowest (i.e. non-initial) IRB index among the allocated IRB indexes.
  • the SCI may be located on the non-lowest (i.e. non-initial) IRB index among the allocated IRB indexes.
  • it is necessary to indicate the position of the initial IRB index sent for the first time because the SCI is not located on the initial IRB index, the position of the initial IRB index cannot be obtained by blindly detecting the SCI, so the initial IRB index needs to be indicated).
  • three IRBs ⁇ 1, 2, 3 ⁇ are assigned to the PSSCH, where the PSCCH carrying control information SCI 1-A is located on the non-lowest (ie non-starting) IRB index, that is, on the IRB index 2.
  • the SCI in response to the application not reusing the design method of R16, can be located on the non-lowest (i.e. non-starting) IRB index among the allocated IRB indexes, and the frequency-domain resource allocation supports discrete IRB index allocation, then it can be indicated by using a bitmap.
  • the number of bits X in the first part is L, indicating the starting IRB index position and the number of occupied IRBs.
  • the number X of bits in the first part is L is the number of IRB indexes included in one LBT subband, and L is a positive integer; wherein, the direct link control information SCI is located on the non-lowest IRB index among the allocated IRB indexes, and frequency domain resource allocation supports continuous IRB index allocation.
  • the present application does not reuse the design method of R16, and the SCI may be located on the non-lowest (i.e., non-initial) IRB index among the allocated IRB indexes.
  • the SCI may be located on the non-lowest (i.e., non-initial) IRB index among the allocated IRB indexes.
  • it is necessary to indicate the position of the initial IRB index sent for the first time because the SCI is not located on the initial IRB index, the position of the initial IRB index cannot be obtained by blindly detecting the SCI, so the initial IRB index needs to be indicated).
  • the SCI in response to the application not reusing the design method of R16, can be located on the non-lowest (ie non-starting) IRB index among the allocated IRB indexes, and frequency domain resource allocation supports continuous IRB index allocation, then the number of bits in the first part can be determined It can indicate the starting position of the IRB index and the number of consecutive IRBs occupied.
  • R16NR-U the design idea of R16NR-U can be followed, and only continuous RB set resource allocation can be supported, and the bit number Y of the second part can be determined from two aspects of supporting SCI to reserve 1 resource or supporting SCI to reserve 2 resources.
  • the number Y of bits in the second part can be K is the number of resource block sets contained in the direct communication bandwidth part BWP, and K is a positive integer; among them, frequency domain resource allocation supports resource allocation of continuous resource block sets, and supports SCI to reserve resources once.
  • this application follows the design concept of R16NR-U, only supports resource allocation of continuous RB set, and supports SCI to reserve one resource, then determine the number of bits Y in the second part as It is used to indicate the starting RB set of one reserved resource and the quantity of one continuous RB set.
  • the number of bits Y in the second part is K is the number of resource block sets contained in the direct communication bandwidth part BWP, and K is a positive integer; among them, frequency domain resource allocation supports resource allocation of continuous resource block sets, and supports SCI to reserve 2 resources.
  • this application follows the design idea of R16NR-U, only supports resource allocation of continuous RB set, and supports SCI to reserve 2 resources, then determine the number of bits Y in the second part as It is used to indicate the starting RB set and the number of 1 continuous RB set of reserved resources for two times.
  • the resource allocation of discrete RB sets can be supported, and a bitmap bitmap can be used to indicate that each bit indicates whether the RB set is occupied.
  • the number Y of bits in the second part can be determined from the two aspects of supporting SCI to reserve 1 resource or supporting SCI to reserve 2 resources.
  • the number of bits Y in the second part is K-1+K; wherein, K is the number of resource block sets contained in the directly connected communication bandwidth part BWP, and K is a positive integer; wherein, frequency domain resource allocation supports resource allocation of discrete resource block sets, and supports SCI to reserve resources once.
  • this application does not follow the design idea of R16NR-U, supports discrete RB set resource allocation, and supports SCI to reserve 1 resource, then the number of bits Y in the second part can be determined as K-1+K, which is used to indicate the RBset occupied by this transmission (but only indicates whether the RB set higher than the occupied RB set is occupied, so it is K-1 bit), and at the same time indicates the starting position of the reserved 1 resource and the occupied RB set, which requires K bits.
  • the first 4 bits "0011” in "0011 10001" indicate the RBset occupied by this transmission, occupying the RBsets with serial numbers 2, 3 and 4 (because "0011” is whether the corresponding RBsets with serial numbers 1, 2, 3, 4 are occupied, indicating the serial number 3 and 4 are occupied, because it indicates whether the RB set higher than the occupied RB set is occupied, so it means that the RB set with the sequence number 2 is also occupied), and the last 5 bits "10011" use bitmap to indicate the reserved RB set occupied by one resource.
  • the number of bits Y in the second part is 3K-1; wherein, K is the number of resource block sets contained in the direct connection communication bandwidth part BWP, and K is a positive integer; wherein frequency domain resource allocation supports resource allocation of discrete resource block sets, and supports SCI to reserve 2 resources.
  • this application does not need to follow the design idea of R16NR-U, supports discrete RB set resource allocation, and supports SCI to reserve 2 resources, then it can be determined that the number of bits Y in the second part is 3K-1, which is used to indicate the RB set occupied by this transmission (but only indicates whether the RB set higher than the occupied RB set is occupied, so it is K-1 bits), and at the same time indicates the starting position of the reserved first resource and the number of K bits of the occupied RB set , and indicates the starting position of the reserved second resource and the number of K bits of the occupied RB set.
  • the starting position and the number of occupied RB sets are 5 bits (such as the fifth bit to the ninth bit "10001" in "0011 10001 11100"), and the starting position of the reserved second resource and the number of occupied RB sets are 5 bits (such as the last five bits "11100" in "0011 10001 11100").
  • the embodiment of the present application introduces a new information field in SCI 1-A, or called an IRB index offset field (IRB index offset).
  • the first stage SCI may also include a first offset field, which is used to indicate the offset of the IRB index in the adjacent resource block set in the resource for the initial transmission, or indicate the offset of the IRB index in the adjacent resource block set in the reserved first resource, or indicate the offset of the IRB index in the adjacent resource block set in the reserved second resource; where the number of bits in the first offset field is [log 2 (L)]; where L is an LBT subband includes The number of IRB indexes.
  • the frequency domain resource allocation supports the offset of the cyclic IRB index.
  • the first offset field (IRB index offset) introduced in SCI 1-A is used to indicate the offset of the IRB index in the adjacent set of resource blocks in the resource for the initial transmission, or indicate the offset of the IRB index in the set of adjacent resource blocks in the reserved first resource, or indicate the offset of the IRB index in the set of adjacent resource blocks in the reserved second resource.
  • the offset value of the first offset field is 0, it means that the distribution law of the IRB index in the RB set occupied by the resource for the first transmission is the same, or that the distribution law of the IRB index in the RB set occupied by the reserved resource is the same, or that the distribution law of the IRB index in the RB set occupied by the reserved resource for the second time is the same.
  • the offset of the first offset field has five possibilities ⁇ 0, 1, 2, 3, 4 ⁇ , that is, L possibilities, and supports 2 resource reservations.
  • 3 RB sets ⁇ 0, 1, 2 ⁇ are allocated.
  • the distribution of the IRB index is ⁇ 1, 2 ⁇
  • the IRB index in the second RB set index 1 in the resource for the initial transmission The offset is 1 IRB index, which has an offset relative to IRB index ⁇ 1,2 ⁇ in the first RB set, and the offset is 1 IRB index
  • the distribution of IRB index in the second RB set index 1 is ⁇ 2, 3 ⁇
  • the IRB index in the third RB set index 2 has 1 offset relative to the IRB index ⁇ 2,3 ⁇ in the second RB set index 1, and the offset is also 1 IRB index, then the distribution of IRB index in the third RB set index 2 is ⁇ 3, 4 ⁇ .
  • 3 RB sets ⁇ 1, 2, 3 ⁇ are also allocated.
  • the distribution of IRB index in the first RB set index 1, the distribution of IRB index is ⁇ 2, 3 ⁇ ; then in the second RB set index 2, there is an offset relative to IRB index ⁇ 2, 3 ⁇ in the RB set with index 1, and the offset is 1 IRB index, so in RB set index 2
  • the distribution of the IRB index in RB set is ⁇ 3, 4 ⁇ .
  • the IRB index in RB set index 3 has an offset relative to the IRB index ⁇ 3, 4 ⁇ in RB set index 2, and the offset of the index is also 1 IRB index. Therefore, the distribution of the IRB index in RB set index 3 is ⁇ 4, 0 ⁇ . Because the offset of the IRB index that supports the cycle, there are 5 IRB indexes ⁇ 0, 1, 2, 3, 4 ⁇ , so , when the IRB index is 4, after offsetting by 1 PRB index, the IRB index is 0.
  • RB set ⁇ 1,3,4 ⁇ is allocated.
  • the IRB index is ⁇ 3,4 ⁇ .
  • the IRB index has 1 offset, and the offset is 1 IRB index. Therefore, the distribution of IRB index in RB set index 3 is ⁇ 4,0 ⁇ ;
  • the first-stage SCI also includes a second offset field, which is used to indicate the offset of each resource block set in the reserved first resource relative to the IRB index in the resource block set corresponding to the resource block set for the initial transmission, or indicate the offset of each resource block set in the reserved second resource relative to the IRB index in the corresponding resource block set in the resource block set for the initial transmission; where the number of bits in the second offset field is [log 2 (L)]; The number of IRB indexes to include.
  • the second offset field (IRB index offset) introduced in SCI 1-A is used for the offset of each resource block set in the reserved first resource relative to the IRB index in the corresponding resource block set in the initial transmission resource, or indicates the offset of each resource block set in the reserved second resource relative to the IRB index in the corresponding resource block set in the initial transmission resource.
  • the offset value of the second offset field is 0, it means that the distribution law of the IRB index in each resource block set in the reserved first resource is the same as that in the corresponding resource block set in the resource block set for the initial transmission, or that the distribution law of the IRB index in each resource block set in the reserved second resource is the same as that in the corresponding resource block set in the resource block set in the initial transmission.
  • the RB set distribution of the reserved first resource is ⁇ 0, 3, 4 ⁇ , where the offset of the IRB index of the RB set index 0 of the reserved first resource relative to the RB set index 2 of the initial transmission is 1, then the reserved first resource’s
  • the distribution of IRB index in RB set index 0 is ⁇ 0, 3, 4 ⁇ ;
  • the offset of IRB index in RB set index 3 of reserved resources for the first time relative to the IRB index of RB set index 3 in initial transmission is 1, then the distribution of IRB index in RB set index 3 of reserved resources for the first time is ⁇ 0, 3, 4 ⁇ ;
  • the IRB index in RB set index 4 of reserved resources for the first time is relative to the RB set index in initial transmission If the IRB index offset of 4 is 1, the distribution of the IRB index in the RB set index 4 of
  • the OCB requirements can be met on the unlicensed frequency band, such as allowing each transmission to occupy 80% of the LBT sub-band bandwidth, which can better ensure resource utilization;
  • the application supports SCIs located on the lowest (i.e., initial) or non-lowest (i.e., non-initial) IRB index among the allocated IRB indexes, and the SCI relative to R16 can only be in the lowest (i.e. initial) sub-band
  • the design on the channel is more flexible, so as to meet the potential diverse application scenarios and requirements in the future.
  • the methods provided in the embodiments of the present application are introduced from the perspectives of the first terminal device and the second terminal device respectively.
  • the first terminal device and the second terminal device may include a hardware structure and a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 15 is a schematic structural diagram of a communication device 150 provided by an embodiment of the present application.
  • the communication device 150 shown in FIG. 15 may include a transceiver module 1501 and a processing module 1502 .
  • the transceiver module 1501 may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module 1501 can realize the sending function and/or the receiving function.
  • the communication device 150 may be the first terminal device, may also be a device in the first terminal device, and may also be a device that can be matched and used with the first terminal device.
  • the communication device 150 may be the second terminal device, may also be a device in the second terminal device, or may be a device that can be matched and used with the second terminal device.
  • the communication device 150 is the first terminal device: in the embodiment of the present application, the transceiver module 1501 is configured to send the first-stage direct link control information SCI to the second terminal device based on frequency-domain resource allocation granularity; the first-stage SCI includes a frequency-domain resource allocation field, and the frequency-domain resource allocation field is used to indicate frequency-domain resources occupied by the first terminal device.
  • the frequency-domain resource allocation granularity is a sub-channel; the processing module 1502 is used to determine the mapping relationship between the sub-channel and the comb-tooth resource block IRB; wherein the transceiver module 1501 is used to assign the frequency-domain resource allocation granularity and mapping relationship based on the sub-channel, and send the first-stage SCI to the second terminal device.
  • the processing module 1502 is configured to: determine the mapping relationship between subchannels and IRBs as one subchannel corresponds to one IRB index, wherein a given LBT subband contains the same number of subchannels and IRB indexes.
  • the processing module 1502 is configured to: determine the mapping relationship between subchannels and IRBs, and map each physical resource block PRB in a subchannel to specific PRBs of multiple IRB indexes; wherein, a given LBT subband includes M subchannels and N IRB indexes, and M and N are positive integers respectively.
  • the frequency domain resource allocation granularity is IRB; the transceiver module 1501 is configured to: based on the IRB as the frequency domain resource allocation granularity, send the first phase SCI to the second terminal device; wherein, the frequency domain resource allocation field in the first phase SCI is used to indicate the size and/or position of the frequency domain resource for the first direct communication Sidelink transmission of the first terminal device, and the starting position and size of the frequency domain resource reserved for the direct communication Sidelink resource.
  • the frequency-domain resource allocation field includes a first part, the first part is used to indicate the number and/or position of IRB indexes within one LBT subband occupied by Sidelink transmission, and the first part includes X bits, where X is a positive integer.
  • X is L-1, L is the number of IRB indexes included in an LBT subband, and L is a positive integer; wherein, the direct link control information SCI is located on the lowest IRB index in the allocated IRB index, and frequency domain resource allocation supports discrete IRB index allocation; or, X is [log 2 (L)], L is the number of IRB indexes included in an LBT subband, and L is a positive integer; wherein, the direct link control information SCI is located in the allocated IRB index The lowest IRB index, and frequency domain resource allocation supports continuous IRB index allocation.
  • X is L, L is the number of IRB indexes included in one LBT subband, and L is a positive integer; wherein, the direct link control information SCI is located on the non-lowest IRB index among the allocated IRB indexes, and the frequency domain resource allocation supports discrete IRB index allocation; or, X is L is the number of IRB indexes included in one LBT subband, and L is a positive integer; wherein, the direct link control information SCI is located on the non-lowest IRB index among the allocated IRB indexes, and frequency domain resource allocation supports continuous IRB index allocation.
  • the frequency domain resource allocation field further includes a second part, the second part is used to indicate the number and/or position of the LBT subbands occupied by Sidelink transmission, and the second part includes Y bits, where Y is a positive integer.
  • Y is K is the number of resource block sets contained in the directly connected communication bandwidth part BWP, and K is a positive integer; among them, frequency domain resource allocation supports resource allocation of continuous resource block sets, and supports SCI to reserve 1 resource; or, Y is K is the number of resource block sets contained in the direct communication bandwidth part BWP, and K is a positive integer; among them, frequency domain resource allocation supports resource allocation of continuous resource block sets, and supports SCI to reserve 2 resources.
  • Y is K-1+K; wherein, K is the number of resource block sets contained in the direct communication bandwidth part BWP, and K is a positive integer; wherein, frequency-domain resource allocation supports resource allocation of discrete resource block sets, and supports SCI to reserve one resource; or, Y is 3K-1; wherein, K is the number of resource block sets contained in the direct communication bandwidth part BWP, and K is a positive integer; wherein frequency-domain resource allocation supports resource allocation of discrete resource block sets, and supports SCI reserves 2 resources.
  • the first-stage SCI further includes a first offset field, which is used to indicate the offset of the IRB index in the adjacent resource block set in the resource for the initial transmission, or indicate the offset of the IRB index in the adjacent resource block set in the reserved first resource, or indicate the offset of the IRB index in the adjacent resource block set in the reserved second resource; where the number of bits in the first offset field is [log 2 (L)]; where L is an LBT subband The number of IRB indexes to include.
  • the first-stage SCI further includes a second offset field, which is used to indicate the offset of each resource block set in the reserved first resource relative to the IRB index in the resource block set corresponding to the resource block set for the initial transmission, or indicate the offset of the IRB index in each resource block set in the reserved second resource relative to the corresponding resource block set in the resource block set for the initial transmission; wherein, the number of bits in the second offset field is [log 2 (L)]; where L is an LBT subband The number of IRB indexes to include.
  • the frequency domain resource allocation supports the offset of the cyclic IRB index.
  • the communication device 150 is the second terminal device: in the embodiment of this application, the transceiver module 1501 is used to receive the first-stage direct link control information SCI sent by the first terminal device based on the frequency-domain resource allocation granularity; the first-stage SCI includes a frequency-domain resource allocation field, and the frequency-domain resource allocation field is used to indicate the frequency-domain resources occupied by the first terminal device; Frequency domain resources available to terminal equipment.
  • the frequency-domain resource allocation granularity is a sub-channel; the processing module 1502 is also used to: determine the mapping relationship between the sub-channel and the comb tooth resource block IRB; the transceiver module 1501 is used to receive the first-stage SCI sent by the first terminal device based on the sub-channel for the frequency domain resource allocation granularity and the mapping relationship.
  • the processing module 1502 is configured to: determine the mapping relationship between subchannels and IRBs as one subchannel corresponds to one IRB index, wherein a given LBT subband contains the same number of subchannels and IRB indexes.
  • the processing module 1502 is configured to: determine the mapping relationship between subchannels and IRBs, and map each physical resource block PRB in a subchannel to specific PRBs of multiple IRB indexes; wherein, a given LBT subband includes M subchannels and N IRBs, and M and N are positive integers respectively.
  • the frequency-domain resource allocation granularity is IRB; the transceiver module 1501 is configured to: receive the first-stage SCI sent by the first terminal device based on the IRB as the frequency-domain resource allocation granularity; wherein, the frequency-domain resource allocation field in the first-stage SCI is used to indicate the size and/or position of the frequency-domain resource for the first direct-connection communication Sidelink transmission of the first terminal device, and the starting position and size of the frequency-domain resource reserved for the direct-connection communication Sidelink resource.
  • the frequency-domain resource allocation field includes a first part, the first part is used to indicate the number and/or position of IRB indexes within one LBT subband occupied by Sidelink transmission, and the first part includes X bits, where X is a positive integer.
  • X is L-1, L is the number of IRB indexes included in an LBT subband, and L is a positive integer; wherein, the direct link control information SCI is located on the lowest IRB index in the allocated IRB index, and frequency domain resource allocation supports discrete IRB index allocation; or, X is [log 2 (L)], L is the number of IRB indexes included in an LBT subband, and L is a positive integer; wherein, the direct link control information SCI is located in the allocated IRB index The lowest IRB index, and frequency domain resource allocation supports continuous IRB index allocation.
  • X is L, L is the number of IRB indexes included in one LBT subband, and L is a positive integer; wherein, the direct link control information SCI is located on the non-lowest IRB index among the allocated IRB indexes, and the frequency domain resource allocation supports discrete IRB index allocation; or, X is L is the number of IRB indexes included in one LBT subband, and L is a positive integer; wherein, the direct link control information SCI is located on the non-lowest IRB index among the allocated IRB indexes, and frequency domain resource allocation supports continuous IRB index allocation.
  • the frequency domain resource allocation field further includes a second part, the second part is used to indicate the number and/or position of the LBT subbands occupied by Sidelink transmission, and the second part includes Y bits, where Y is a positive integer.
  • Y is K is the number of resource block sets contained in the directly connected communication bandwidth part BWP, and K is a positive integer; among them, frequency domain resource allocation supports resource allocation of continuous resource block sets, and supports SCI to reserve 1 resource; or, Y is K is the number of resource block sets contained in the direct communication bandwidth part BWP, and K is a positive integer; among them, frequency domain resource allocation supports resource allocation of continuous resource block sets, and supports SCI to reserve 2 resources.
  • Y is K-1+K; wherein, K is the number of resource block sets contained in the direct communication bandwidth part BWP, and K is a positive integer; wherein, frequency-domain resource allocation supports resource allocation of discrete resource block sets, and supports SCI to reserve one resource; or, Y is 3K-1; wherein, K is the number of resource block sets contained in the direct communication bandwidth part BWP, and K is a positive integer; wherein frequency-domain resource allocation supports resource allocation of discrete resource block sets, and supports SCI reserves 2 resources.
  • the first-stage SCI further includes a first offset field, which is used to indicate the offset of the IRB index in the adjacent resource block set in the resource for the initial transmission, or indicate the offset of the IRB index in the adjacent resource block set in the reserved first resource, or indicate the offset of the IRB index in the adjacent resource block set in the reserved second resource; where the number of bits in the first offset field is [log 2 (L)]; where L is an LBT subband The number of IRB indexes to include.
  • the first-stage SCI further includes a second offset field, which is used to indicate the offset of each resource block set in the reserved first resource relative to the IRB index in the resource block set corresponding to the resource block set for the initial transmission, or indicate the offset of the IRB index in each resource block set in the reserved second resource relative to the corresponding resource block set in the resource block set for the initial transmission; wherein, the number of bits in the second offset field is [log 2 (L)]; where L is an LBT subband The number of IRB indexes to include.
  • the frequency domain resource allocation supports the offset of the cyclic IRB index.
  • FIG. 16 is a schematic structural diagram of another communication device 160 provided by an embodiment of the present application.
  • the communication device 160 may be a first terminal device or a second terminal device, or may be a chip, a chip system, or a processor that supports the first terminal device to implement the above method, or may be a chip, a chip system, or a processor that supports the second terminal device to implement the above method.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • Communications device 160 may include one or more processors 1601 .
  • the processor 1601 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.), execute computer programs, and process computer program data.
  • the communication device 160 may further include one or more memories 1602, on which a computer program 1604 may be stored, and the processor 1601 executes the computer program 1604, so that the communication device 160 executes the methods described in the foregoing method embodiments.
  • data may also be stored in the memory 1602 .
  • the communication device 160 and the memory 1602 can be set separately or integrated together.
  • the communication device 160 may further include a transceiver 1605 and an antenna 1606 .
  • the transceiver 1605 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1605 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 160 may further include one or more interface circuits 1607 .
  • the interface circuit 1607 is used to receive code instructions and transmit them to the processor 1601 .
  • the processor 1601 runs the code instructions to enable the communication device 160 to execute the methods described in the foregoing method embodiments.
  • the communication device 160 is the first terminal device: the transceiver 1605 is used to execute step 201 in FIG. 2 ; execute step 602 in FIG. 6 ; and execute step 801 in FIG. 8 .
  • the processor 1601 is configured to execute step 601 in FIG. 6 .
  • the communication device 160 is a second terminal device: the transceiver 1605 is used to execute step 1401 in FIG. 14 .
  • the processor 1601 is configured to execute step 1402 and step 1403 in FIG. 14 .
  • the processor 1601 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the processor 1601 may store a computer program 1603 , and the computer program 1603 runs on the processor 1601 to enable the communication device 160 to execute the methods described in the foregoing method embodiments.
  • the computer program 1603 may be solidified in the processor 1601, and in this case, the processor 1601 may be implemented by hardware.
  • the communication device 160 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processor and transceiver described in this application may be implemented on an integrated circuit (integrated circuit, IC), analog IC, radio frequency integrated circuit RFIC, mixed signal IC, application specific integrated circuit (application specific integrated circuit, ASIC), printed circuit board (printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT) , bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be the first terminal device or the second terminal device, but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG. 16 .
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the embodiment of the present application also provides a communication system, the system includes the communication device as the first terminal device and the communication device as the second terminal device in the aforementioned embodiment of Figure 15, or the system includes the communication device as the first terminal device and the communication device as the second terminal device in the embodiment of Figure 16 above.
  • the present application also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present application also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present application will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program may be transmitted from one website, computer, server or data center to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)), etc.
  • a magnetic medium for example, a floppy disk, a hard disk, or a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in this application can also be described as one or more, and multiple can be two, three, four or more, and this application does not make a limitation.
  • the technical features in this technical feature are distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc., and the technical features described in the "first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude.
  • the corresponding relationships shown in the tables in this application can be configured or predefined.
  • the values of the information in each table are just examples, and may be configured as other values, which are not limited in this application.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the titles of the above tables may also adopt other names understandable by the communication device, and the values or representations of the parameters may also be other values or representations understandable by the communication device.
  • other data structures can also be used, for example, arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables can be used.
  • Predefined in this application can be understood as defining, predefining, storing, prestoring, prenegotiating, preconfiguring, curing, or prefiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种资源指示方法、资源确定方法及其装置,可以应用于应用在非授权频段上的终端直连通信技术中,该方法包括:第一终端设备基于频域资源分配粒度,向第二终端设备发送第一阶段直连链路控制信息SCI;第一阶段SCI中包括频域资源分配域,该频域资源分配域用于指示第一终端设备占用的频域资源。通过实施本申请实施例,可以在非授权频段上满足OCB要求,从而可以满足未来潜在的多样化应用场景和需求。

Description

一种资源指示方法、资源确定方法及其装置 技术领域
本申请涉及通信技术领域,尤其涉及一种资源指示方法、资源确定方法及其装置。
背景技术
目前,多种新业务新应用的需求的持续产生,终端直连通信(也叫侧行链路,Sidelink,SL)对传输宽带、通信速域、通信时延、可靠性、可扩展性等性能要求会越来越高,如果仅仅依靠运营商有限的授权频谱上去无法满足未来潜在的多样化应用场景和需求,所以需要研究设计能应用在非授权频段上的终端直连通信(sidelink-unlicensed,SL-U)技术。
然而,目前在SL-U系统中尚且缺乏资源指示的有效手段。
发明内容
本申请实施例提供一种资源指示方法、资源确定方法及其装置,可以应用于SL-U系统,通过在第一阶段SCI中基于子信道或梳齿资源块IRB为频域资源分配粒度的资源分配指示方式,可以在非授权频段上满足OCB要求,从而可以满足未来潜在的多样化应用场景和需求。
第一方面,本申请实施例提供一种资源指示方法,应用于终端直连通信非授权频段,所述方法由第一终端设备执行,所述方法包括:
基于频域资源分配粒度,向第二终端设备发送第一阶段直连链路控制信息SCI;所述第一阶段SCI中包括频域资源分配域,所述频域资源分配域用于指示所述第一终端设备占用的频域资源。
在该技术方案中,通过在第一阶段SCI中基于子信道或梳齿资源块IRB为频域资源分配粒度的资源分配指示方式,可以在非授权频段上满足OCB要求,从而可以满足未来潜在的多样化应用场景和需求。
在一种实现方式中,所述频域资源分配粒度为子信道;所述基于频域资源分配粒度,向第二终端设备发送第一阶段直连链路控制信息SCI,包括:
确定所述子信道与梳齿资源块IRB之间的映射关系;
基于所述子信道为频域资源分配粒度和所述映射关系,向所述第二终端设备发送第一阶段SCI。
在一种可能的实现方式中,所述确定所述子信道与梳齿资源块IRB之间的映射关系,包括:
确定所述子信道与所述IRB之间的映射关系为一个子信道对应一个IRB索引,其中,一个给定先听后说LBT子带内包括的子信道和IRB索引的个数相同。
在一种可能的实现方式中,所述确定所述子信道与梳齿资源块IRB之间的映射关系,包括:
确定所述子信道与所述IRB之间的映射关系为一个子信道内的每个物理资源块PRB映射到多个IRB索引的特定PRB上;其中,一个给定LBT子带内包括M个子信道和N个IRB索引,所述M、N分别为正整数。
在一种可实现方式中,所述频域资源分配粒度为IRB;所述基于频域资源分配粒度,向第二终端设备发送第一阶段直连链路控制信息SCI,包括:
基于所述IRB为频域资源分配粒度,向第二终端设备发送第一阶段SCI;
其中,所述第一阶段SCI中的频域资源分配域用于指示所述第一终端设备初次直连通信Sidelink传输的频域资源大小和/或位置,以及预留直连通信Sidelink资源的频域资源起始位置和大小。
在一种可能的实现方式中,所述频域资源分配域包括第一部分,所述第一部分用于指示Sidelink传输占用一个LBT子带内的IRB索引的数目和/或位置,所述第一部分包括X个比特,X为正整数。
在一种可能的实现方式中,所述X为L-1,所述L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的最低IRB索引上,且所述频域资源分配支持离散的IRB索引分配;或者,所述X为[log 2(L)],所述L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的最低IRB索引上,且所述频域资源分配支持连续的IRB索引分配。
在一种可能的实现方式中,所述X为L,所述L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的非最低IRB索引上,且所述频域资源 分配支持离散的IRB索引分配;或者,所述X为
Figure PCTCN2022073586-appb-000001
所述L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的非最低IRB索引上,且所述频域资源分配支持连续的IRB索引分配。
在一种实现方式中,所述频域资源分配域还包括第二部分,所述第二部分用于指示Sidelink传输占用LBT子带的数目和/或位置,所述第二部分包括Y个比特,Y为正整数。
在一种可能的实现方式中,所述Y为
Figure PCTCN2022073586-appb-000002
所述K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中,所述频域资源分配支持连续的资源块集合的资源分配,且支持SCI预留1次资源;或者,所述Y为
Figure PCTCN2022073586-appb-000003
所述K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中,所述频域资源分配支持连续的资源块集合的资源分配,且支持SCI预留2次资源。
在一种可能的实现方式中,所述Y为K-1+K;其中,所述K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中,所述频域资源分配支持离散的资源块集合的资源分配,且支持SCI预留1次资源;或者,所述Y为3K-1;其中,所述K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中所述频域资源分配支持离散的资源块集合的资源分配,且支持SCI预留2次资源。
在一种可能的实现方式中,所述第一阶段SCI还包括第一偏移量域,所述第一偏移量域用于指示初次传输的资源中相邻的资源块集合中的IRB索引的偏移量,或者指示预留的第1次资源中相邻的资源块集合中的IRB索引的偏移量,或者指示预留的第2次资源中相邻的资源块集合中的IRB索引的偏移量;其中,所述第一偏移量域的比特个数为[log 2(L)];其中,所述L为一个LBT子带内包括的IRB索引的数量。
在一种可能的实现方式中,所述第一阶段SCI还包括第二偏移量域,所述第二偏移量域用于指示预留的第1次资源中每个资源块集合相对于初次传输的资源中对应的资源块集合中IRB索引的偏移量,或者指示预留的第2次资源中每个资源块集合相对于初次传输的资源中对应的资源块集合中IRB索引的偏移量;其中,所述第二偏移量域的比特个数为[log 2(L)];其中,所述L为一个LBT子带内包括的IRB索引的数量。
在一种可能的实现方式中,所述频域资源分配支持循环的IRB索引的偏移。
第二方面,本申请实施例提供一种资源确定方法,应用于终端直连通信非授权频段,所述方法由第二终端设备执行,所述方法包括:
接收第一终端设备基于频域资源分配粒度发送的第一阶段直连链路控制信息SCI;所述第一阶段SCI中包括频域资源分配域,所述频域资源分配域用于指示所述第一终端设备占用的频域资源;
根据所述第一阶段SCI和所述频域资源分配粒度,确定所述第一终端设备占用的频域资源;
根据所述第一终端设备占用的频域资源,确定所述第二终端设备可用的频域资源。
在该技术方案中,通过在第一阶段SCI中基于子信道或梳齿资源块IRB为频域资源分配粒度的资源分配指示方式,可以在非授权频段上满足OCB要求,从而可以满足未来潜在的多样化应用场景和需求。
在一种实现方式中,所述频域资源分配粒度为子信道;所述接收第一终端设备基于频域资源分配粒度发送的第一阶段直连链路控制信息SCI包括:确定所述子信道与梳齿资源块IRB之间的映射关系;接收第一终端设备基于所述子信道为频域资源分配粒度和所述映射关系发送的第一阶段SCI。
在一种可能的实现方式中,所述确定所述子信道与梳齿资源块IRB之间的映射关系,包括:确定所述子信道与所述IRB之间的映射关系为一个子信道对应一个IRB索引,其中,一个给定先听后说LBT子带内包括的子信道和IRB索引的个数相同。
在一种可能的实现方式中,所述确定所述子信道与梳齿资源块IRB之间的映射关系,包括:确定所述子信道与所述IRB之间的映射关系为一个子信道内的每个物理资源块PRB映射到多个IRB索引的特定PRB上;其中,一个给定LBT子带内包括M个子信道和N个IRB,所述M、N分别为正整数。
在一种实现方式中,所述频域资源分配粒度为IRB;所述接收第一终端设备基于频域资源分配粒度 发送的第一阶段直连链路控制信息SCI包括:接收第一终端设备基于所述IRB为频域资源分配粒度发送的第一阶段SCI;其中,所述第一阶段SCI中的频域资源分配域用于指示所述第一终端设备初次直连通信Sidelink传输的频域资源大小和/或位置,以及预留直连通信Sidelink资源的频域资源起始位置和大小。
在一种可能的实现方式中,所述频域资源分配域包括第一部分,所述第一部分用于指示Sidelink传输占用一个LBT子带内的IRB索引的数目和/或位置,所述第一部分包括X个比特,X为正整数。
在一种可能的实现方式中,所述X为L-1,所述L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的最低IRB索引上,且所述频域资源分配支持离散的IRB索引分配;或者,所述X为[log 2(L)],所述L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的最低IRB索引上,且所述频域资源分配支持连续的IRB索引分配。
在一种可能的实现方式中,所述X为L,所述L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的非最低IRB索引上,且所述频域资源分配支持离散的IRB索引分配;或者,所述X为
Figure PCTCN2022073586-appb-000004
所述L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的非最低IRB索引上,且所述频域资源分配支持连续的IRB索引分配。
在一种实现方式中,所述频域资源分配域还包括第二部分,所述第二部分用于指示Sidelink传输占用LBT子带的数目和/或位置,所述第二部分包括Y个比特,Y为正整数。
在一种可能的实现方式中,所述Y为
Figure PCTCN2022073586-appb-000005
所述K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中,所述频域资源分配支持连续的资源块集合的资源分配,且支持SCI预留1次资源;或者,所述Y为
Figure PCTCN2022073586-appb-000006
所述K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中,所述频域资源分配支持连续的资源块集合的资源分配,且支持SCI预留2次资源。
在一种可能的实现方式中,所述Y为K-1+K;其中,所述K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中,所述频域资源分配支持离散的资源块集合的资源分配,且支持SCI预留1次资源;或者,所述Y为3K-1;其中,所述K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中所述频域资源分配支持离散的资源块集合的资源分配,且支持SCI预留2次资源。
在一种可能的实现方式中,所述第一阶段SCI还包括第一偏移量域,所述第一偏移量域用于指示初次传输的资源中相邻的资源块集合中的IRB索引的偏移量,或者指示预留的第1次资源中相邻的资源块集合中的IRB索引的偏移量,或者指示预留的第2次资源中相邻的资源块集合中的IRB索引的偏移量;其中,所述第一偏移量域的比特个数为[log 2(L)];其中,所述L为一个LBT子带内包括的IRB索引的数量。
在一种可能的实现方式中,所述第一阶段SCI还包括第二偏移量域,所述第二偏移量域用于指示预留的第1次资源中每个资源块集合相对于初次传输的资源中对应的资源块集合中IRB索引的偏移量,或者指示预留的第2次资源中每个资源块集合相对于初次传输的资源中对应的资源块集合中IRB索引的偏移量;其中,所述第二偏移量域的比特个数为[log 2(L)];其中,所述L为一个LBT子带内包括的IRB索引的数量。
在一种可能的实现方式中,所述频域资源分配支持循环的IRB索引的偏移。
第三方面,本申请实施例提供一种通信装置,应用于终端直连通信非授权频段,所述通信装置包括:
收发模块,用于基于频域资源分配粒度,向第二终端设备发送第一阶段直连链路控制信息SCI;所述第一阶段SCI中包括频域资源分配域,所述频域资源分配域用于指示所述第一终端设备占用的频域资源。
在该技术方案中,通过在第一阶段SCI中基于子信道或梳齿资源块IRB为频域资源分配粒度的资源分配指示方式,可以在非授权频段上满足OCB要求,从而可以满足未来潜在的多样化应用场景和需 求。
在一种实现方式中,所述频域资源分配粒度为子信道;所述通信装置还包括:
处理模块,用于确定所述子信道与梳齿资源块IRB之间的映射关系;
其中,所述收发模块用于基于所述子信道为频域资源分配粒度和所述映射关系,向所述第二终端设备发送第一阶段SCI。
在一种可能的实现方式中,所述处理模块用于:确定所述子信道与所述IRB之间的映射关系为一个子信道对应一个IRB索引,其中,一个给定先听后说LBT子带内包括的子信道和IRB索引的个数相同。
在一种可能的实现方式中,所述处理模块用于:确定所述子信道与所述IRB之间的映射关系为一个子信道内的每个物理资源块PRB映射到多个IRB索引的特定PRB上;其中,一个给定LBT子带内包括M个子信道和N个IRB索引,所述M、N分别为正整数。
在一种可实现方式中,所述频域资源分配粒度为IRB;所述收发模块用于:基于所述IRB为频域资源分配粒度,向第二终端设备发送第一阶段SCI;其中,所述第一阶段SCI中的频域资源分配域用于指示所述第一终端设备初次直连通信Sidelink传输的频域资源大小和/或位置,以及预留直连通信Sidelink资源的频域资源起始位置和大小。
在一种可能的实现方式中,所述频域资源分配域包括第一部分,所述第一部分用于指示Sidelink传输占用一个LBT子带内的IRB索引的数目和/或位置,所述第一部分包括X个比特,X为正整数。
在一种可能的实现方式中,所述X为L-1,所述L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的最低IRB索引上,且所述频域资源分配支持离散的IRB索引分配;或者,所述X为[log 2(L)],所述L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的最低IRB索引上,且所述频域资源分配支持连续的IRB索引分配。
在一种可能的实现方式中,所述X为L,所述L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的非最低IRB索引上,且所述频域资源分配支持离散的IRB索引分配;或者,所述X为
Figure PCTCN2022073586-appb-000007
所述L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的非最低IRB索引上,且所述频域资源分配支持连续的IRB索引分配。
在一种实现方式中,所述频域资源分配域还包括第二部分,所述第二部分用于指示Sidelink传输占用LBT子带的数目和/或位置,所述第二部分包括Y个比特,Y为正整数。
在一种可能的实现方式中,所述Y为
Figure PCTCN2022073586-appb-000008
所述K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中,所述频域资源分配支持连续的资源块集合的资源分配,且支持SCI预留1次资源;或者,所述Y为
Figure PCTCN2022073586-appb-000009
所述K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中,所述频域资源分配支持连续的资源块集合的资源分配,且支持SCI预留2次资源。
在一种可能的实现方式中,所述Y为K-1+K;其中,所述K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中,所述频域资源分配支持离散的资源块集合的资源分配,且支持SCI预留1次资源;或者,所述Y为3K-1;其中,所述K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中所述频域资源分配支持离散的资源块集合的资源分配,且支持SCI预留2次资源。
在一种可能的实现方式中,所述第一阶段SCI还包括第一偏移量域,所述第一偏移量域用于指示初次传输的资源中相邻的资源块集合中的IRB索引的偏移量,或者指示预留的第1次资源中相邻的资源块集合中的IRB索引的偏移量,或者指示预留的第2次资源中相邻的资源块集合中的IRB索引的偏移量;其中,所述第一偏移量域的比特个数为[log 2(L)];其中,所述L为一个LBT子带内包括的IRB索引的数量。
在一种可能的实现方式中,所述第一阶段SCI还包括第二偏移量域,所述第二偏移量域用于指示预留的第1次资源中每个资源块集合相对于初次传输的资源中对应的资源块集合中IRB索引的偏移量,或者指示预留的第2次资源中每个资源块集合相对于初次传输的资源中对应的资源块集合中IRB索引 的偏移量;其中,所述第二偏移量域的比特个数为[log 2(L)];其中,所述L为一个LBT子带内包括的IRB索引的数量。
在一种可能的实现方式中,所述频域资源分配支持循环的IRB索引的偏移。
第四方面,本申请实施例提供另一种通信装置,应用于终端直连通信非授权频段,所述通信装置包括:
收发模块,用于接收第一终端设备基于频域资源分配粒度发送的第一阶段直连链路控制信息SCI;所述第一阶段SCI中包括频域资源分配域,所述频域资源分配域用于指示所述第一终端设备占用的频域资源;
处理模块,用于根据所述第一阶段SCI和所述频域资源分配粒度,确定所述第一终端设备占用的频域资源,并根据所述第一终端设备占用的频域资源,确定所述第二终端设备可用的频域资源。
在该技术方案中,通过在第一阶段SCI中基于子信道或梳齿资源块IRB为频域资源分配粒度的资源分配指示方式,可以在非授权频段上满足OCB要求,从而可以满足未来潜在的多样化应用场景和需求。
在一种实现方式中,所述频域资源分配粒度为子信道;所述处理模块还用于:确定所述子信道与梳齿资源块IRB之间的映射关系;所述收发模块用于接收第一终端设备基于所述子信道为频域资源分配粒度和所述映射关系发送的第一阶段SCI。
在一种可能的实现方式中,所述处理模块用于:确定所述子信道与所述IRB之间的映射关系为一个子信道对应一个IRB索引,其中,一个给定先听后说LBT子带内包括的子信道和IRB索引的个数相同。
在一种可能的实现方式中,所述处理模块用于:确定所述子信道与所述IRB之间的映射关系为一个子信道内的每个物理资源块PRB映射到多个IRB索引的特定PRB上;其中,一个给定LBT子带内包括M个子信道和N个IRB,所述M、N分别为正整数。
在一种实现方式中,所述频域资源分配粒度为IRB;所述收发模块用于:接收第一终端设备基于所述IRB为频域资源分配粒度发送的第一阶段SCI;其中,所述第一阶段SCI中的频域资源分配域用于指示所述第一终端设备初次直连通信Sidelink传输的频域资源大小和/或位置,以及预留直连通信Sidelink资源的频域资源起始位置和大小。
在一种可能的实现方式中,所述频域资源分配域包括第一部分,所述第一部分用于指示Sidelink传输占用一个LBT子带内的IRB索引的数目和/或位置,所述第一部分包括X个比特,X为正整数。
在一种可能的实现方式中,所述X为L-1,所述L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的最低IRB索引上,且所述频域资源分配支持离散的IRB索引分配;或者,所述X为[log 2(L)],所述L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的最低IRB索引上,且所述频域资源分配支持连续的IRB索引分配。
在一种可能的实现方式中,所述X为L,所述L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的非最低IRB索引上,且所述频域资源分配支持离散的IRB索引分配;或者,所述X为
Figure PCTCN2022073586-appb-000010
所述L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的非最低IRB索引上,且所述频域资源分配支持连续的IRB索引分配。
在一种实现方式中,所述频域资源分配域还包括第二部分,所述第二部分用于指示Sidelink传输占用LBT子带的数目和/或位置,所述第二部分包括Y个比特,Y为正整数。
在一种可能的实现方式中,所述Y为
Figure PCTCN2022073586-appb-000011
所述K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中,所述频域资源分配支持连续的资源块集合的资源分配,且支持SCI预留1次资源;或者,所述Y为
Figure PCTCN2022073586-appb-000012
所述K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中,所述频域资源分配支持连续的资源块集合的资源分配,且支持SCI预留2次资源。
在一种可能的实现方式中,所述Y为K-1+K;其中,所述K为直连通信带宽部分BWP中含有 的资源块集合的数目,K为正整数;其中,所述频域资源分配支持离散的资源块集合的资源分配,且支持SCI预留1次资源;或者,所述Y为3K-1;其中,所述K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中所述频域资源分配支持离散的资源块集合的资源分配,且支持SCI预留2次资源。
在一种可能的实现方式中,所述第一阶段SCI还包括第一偏移量域,所述第一偏移量域用于指示初次传输的资源中相邻的资源块集合中的IRB索引的偏移量,或者指示预留的第1次资源中相邻的资源块集合中的IRB索引的偏移量,或者指示预留的第2次资源中相邻的资源块集合中的IRB索引的偏移量;其中,所述第一偏移量域的比特个数为[log 2(L)];其中,所述L为一个LBT子带内包括的IRB索引的数量。
在一种可能的实现方式中,所述第一阶段SCI还包括第二偏移量域,所述第二偏移量域用于指示预留的第1次资源中每个资源块集合相对于初次传输的资源中对应的资源块集合中IRB索引的偏移量,或者指示预留的第2次资源中每个资源块集合相对于初次传输的资源中对应的资源块集合中IRB索引的偏移量;其中,所述第二偏移量域的比特个数为[log 2(L)];其中,所述L为一个LBT子带内包括的IRB索引的数量。
在一种可能的实现方式中,所述频域资源分配支持循环的IRB索引的偏移。
第五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本申请实施例提供一种通信系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第十三方面,本发明实施例提供一种可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述网络设备执行上述第二方面所述的方法。
第十四方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十七方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1为本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种资源指示方法的流程图;
图3为本申请实施例的梳齿资源块IRB的结构示例图一;
图4为本申请实施例的梳齿资源块IRB的结构示例图二;
图5为本申请实施例的资源块集合RB set与IRB索引的关系示例图;
图6是本申请实施例提供的另一种资源指示方法的流程图;
图7为本申请实施例的子信道与IRB之间映射关系的示例图;
图8是本申请实施例提供的又一种资源指示方法的流程图;
图9为本申请实施例的SCI位于分配的IRB index中的最低(即起始)的IRB index上的示例图;
图10为本申请实施例的SCI位于分配的IRB index中的非最低(即非起始)的IRB index上的示例图;
图11为本申请实施例的频域资源分配的示例图一;
图12为本申请实施例的频域资源分配的示例图二;
图13为本申请实施例的频域资源分配的示例图三;
图14是本申请实施例提供的一种资源确定方法的流程图;
图15是本申请实施例提供的一种通信装置的结构示意图;
图16是本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。其中,在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
目前,多种新业务新应用的需求的持续产生,终端直连通信(也叫侧行链路,Sidelink,SL)对传输宽带、通信速率、通信时延、可靠性、可扩展性等性能要求会越来越高,如果仅仅依靠运营商有限的授权频谱上去无法满足未来潜在的多样化应用场景和需求,所以需要研究设计能应用在非授权频段上的终端直连通信(sidelink-unlicensed,SL-U)技术。
在非授权频段,需要满足OCB(OccupiedChannel Bandwidth,在非授权频谱上针对发送信号的占用带宽)要求,即每次传输需要占满LBT(Listen before Talk,先听后说)子带(如20MHz)带宽的80%。但是,目前在SL-U系统中尚且缺乏资源指示的有效手段。
为此,本申请提出了一种资源指示方法、资源确定方法及其装置,可以应用于SL-U系统,通过在第一阶段SCI中基于子信道或梳齿资源块IRB为频域资源分配粒度的资源分配指示方式,可以在非授权频段上满足OCB要求,比如可以使得每次传输可以占满LBT子带带宽的80%,从而可以满足未来潜在的多样化应用场景和需求。
为了更好的理解本申请实施例公开的一种资源指示方法、资源确定方法及其装置,下面首先对本申请实施例使用的通信系统进行描述。
请参见图1,图1为本申请实施例提供的一种通信系统的架构示意图。该通信系统可以包括但不限于一个第一终端设备和第二终端设备,图1所示的设备数量和形态仅用于举例并构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的第一终端设备,两个或两个以上的第二终端设备。图1所示的通信系统以包括一个第一终端设备101和一个第二终端设备102为例。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统、SL-U系统,或者其他未来的新型移动通信系统等。
本申请实施例中的第一终端设备和第二终端设备是用户侧的一种用于接收或发射信号的实体,如手机。第一终端设备和第二终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial  control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本申请所提供的资源指示方法、资源确定方法及其装置进行详细地描述。
请参见图2,图2是本申请实施例提供的一种资源指示方法的流程图。需要说明的是,本申请实施例的资源指示方法应用于终端直连通信非授权频段,该资源指示方法可以由第一移动终端执行。如图2所示,该资源指示方法可以包括但不限于如下步骤。
在步骤201中,基于频域资源分配粒度,向第二终端设备发送第一阶段直连链路控制信息SCI;第一阶段SCI中包括频域资源分配域,频域资源分配域用于指示第一终端设备占用的频域资源。
其中,在本申请的实施例中,该频域资源分配粒度可以为子信道或梳齿资源块IRB。
需要说明的是,在NR-U系统中引入了梳齿资源块(Interlaced Resource Block,IRB),即连续的两个梳齿资源块间隔M个资源块,对于IRB索引m,其包括的物理资源块PRB为{m,M+m,2M+m,3M+m,…},其中m∈{0,1,…,M-1}。在NR-U系统中,针对15kHz和30kHz两种子载波间隔分别定义了IRB结构,如下表所示。
表4.4.4.6-1:资源块交错的数量
μ M
0 10
1 5
例如,如图3所示,SCS=30khz,M=5时,共有5个梳齿索引,对于1个IRB索引,如IRB索引0,该梳齿索引中含有梳齿资源块为PRB{0,5,10,15,20,25,30,35,40,45}。又如,如图4所示,SCS=15khz,M=10时,共有10个梳齿索引,共有100个PRB。其中,对于1个IRB索引,如IRB索引0,该梳齿索引中含有梳齿资源块为PRB{0,10,20,30,40,50,60,70,80,90}。
还需要说明的是,IRB与资源块集合RB set之间的关系如下:在NR-U中,1个LBT子带,即20MHZ,统称为资源块集合RB-Set,整个载波带宽被划分为多个资源块集合,网络通过配置部分带宽BWP,将资源块集合映射到BWP上,协议规定网络配置的BWP必须包含整数个资源块集合。如图5所示,为资源块集合RB set与IRB索引的关系,一个资源块集合RB set中包含多个IRB索引。
在本申请的实施例中,第一终端设备可以确定频域资源分配粒度。其中,该频域资源分配粒度可以是子信道,或者,还可以是梳齿资源块IRB。例如,第一终端设备可以重新使用SCI 1-A(即第一阶段SCI)中原有的基于子信道(subchannel)的频域资源指示方式,增加从子信道到IRB之间的映射的设计。也就是说,第一终端设备可以重用第一阶段SCI中原有的基于子信道的频域资源指示方式,其中需要确定子信道到IRB之间的映射关系,即可实现基于子信道为频域资源分配粒度的资源指示。其中,IRB为分布式的等间隔的PRB集合,子信道为连续的PRB集合。
在本申请的实施例中,第一终端设备可以基于确定的频域资源分配粒度向第二终端设备发送第一阶段SCI。例如,可以根据带宽部分BWP的大小和频域资源分配粒度,对BWP进行划分,得到N个单元,向第二终端设备发送第一阶段SCI,其中,该第一阶段SCI中可以包括频域资源分配域,该频域资源分配域用于指示N个单元中给该第一终端设备分配的单元,即指示该第一终端设备占用的频域资源。
通过实施本申请实施例,通过在第一阶段SCI中基于子信道或梳齿资源块IRB为频域资源分配粒度的资源分配指示方式,可以在非授权频段上满足OCB要求,从而可以满足未来潜在的多样化应用场景和需求。
值得注意的是,本申请可以重新使用第一阶段SCI中原有的基于子信道的频域资源指示方式,其中需要确定子信道到IRB之间的映射关系,即可实现基于子信道为频域资源分配粒度的资源指示。可选地,在本申请一些实施例中,图6是本申请实施例提供的另一种资源指示方法的流程图。需要说明的是,本申请实施例的资源指示方法应用于终端直连通信非授权频段,该资源指示方法可以由第一终端设备执行。如图6所示,该资源指示方法可以包括但不限于以下步骤。
在步骤601中,确定子信道与梳齿资源块IRB之间的映射关系。
在步骤602中,基于子信道为频域资源分配粒度和映射关系,向第二终端设备发送第一阶段SCI。
也就是说,本申请可以重新使用第一阶段SCI中原有的基于子信道的频域资源指示方式,其中需 要确定子信道到IRB之间的映射关系。
在一种实现方式中,可以通过以下方式确定子信道与IRB之间的映射关系:确定子信道与IRB之间的映射关系为一个子信道对应一个IRB索引,其中,一个给定先听后说LBT子带内包括的子信道和IRB索引的个数相同。
举例而言,假设一个给定LBT子带(例如20MHz)内包括的子信道和IRB索引的个数相同,则可确定子信道与IRB之间的映射关系为一对一的映射关系,即1个IRB索引映射到1个子信道上。
例如,如图7所示,SCS=30kHz,假设1个LBT子带(例如20MHz)内共有50个PRB,1个子信道含有10个PRB,则含有5个子信道,共有5个IRB index(即IRB索引),子信道和IRB索引的个数相同,且1个subchannel映射到每个IRB index上,使得一个子信道对应一个IRB index。
在一种可能的实现方式中,可以通过以下方式确定子信道与梳齿资源块IRB之间的映射关系:确定子信道与IRB之间的映射关系为一个子信道内的每个物理资源块PRB映射到多个IRB索引的特定PRB上;其中,一个给定LBT子带内包括M个子信道和N个IRB索引,M、N分别为正整数。
举例而言,假设一个给定LBT子带内包括M个子信道和N个IRB(其中M≠N),则可以建立一个LBT子带内连续的资源块RB到子带内的分布式的PRB的1对1映射规则,按照上述映射规则将一个子信道内的每个物理资源块PRB映射到多个IRB内的特定PRB上。
在本申请的实施例中,在确定子信道与IRB之间的映射关系之后,可以基于该映射关系和以子信道为频域资源分配粒度,向第二终端设备发送第一阶段SCI,其中,该第一阶段SCI中可以包括频域资源分配域,该频域资源分配域用于指示该第一终端设备占用的频域资源。也就是说,在确定IRB之间的映射关系之后,第一终端设备可以继续使用第一阶段SCI中原有的基于子信道的频域资源指示方式。
通过实施本申请实施例,第一终端设备在确定子信道与IRB之间的映射关系之后,可以重用第一阶段SCI中原有的基于子信道的频域资源指示方式,从而向第二终端设备指示该第一终端设备占用的频域资源,可以在非授权频段上满足OCB要求,如可以使得每次传输可以占满LBT子带带宽的80%,能够较好保证资源利用率,从而可以满足未来潜在的多样化应用场景和需求。
值得注意的是,本申请可以基于IRB为频域资源分配粒度进行资源指示。在本申请一些实施例中,图8是本申请实施例提供的又一种资源指示方法的流程图。需要说明的是,本申请实施例的资源指示方法可应用于终端直连通信非授权频段,该资源指示方法可以由第一终端设备执行。如图8所示,该资源指示方法可以包括但不限于以下步骤。
在步骤801中,基于IRB为频域资源分配粒度,向第二终端设备发送第一阶段SCI。
其中,在本申请的实施例中,该第一阶段SCI中的频域资源分配域用于指示第一终端设备初次直连通信Sidelink传输的频域资源大小和/或位置,以及预留直连通信Sidelink资源的频域资源起始位置和大小。
在本申请的实施例中,第一终端设备可以确定以梳齿资源块IRB为频域资源分配粒度。也就是说,本申请可以重新设计SCI 1-A(即第一阶段SCI)中的频域资源分配字段,即可以基于IRB为频域资源分配粒度进行资源指示。也就是说,本申请的实施例中,SCI 1-A(即第一阶段SCI)中的频域资源分配字段不再基于子信道为频域资源分配粒度进行资源指示,而是基于IRB为频域资源分配粒度进行资源指示。
在一种实现方式中,第一终端设备可以根据带宽部分BWP的大小和以IRB为频域资源分配粒度,对BWP进行划分,得到N个单元,向第二终端设备发送第一阶段SCI,其中,第一阶段SCI中可以包括频域资源分配域,该频域资源分配域用于指示第一终端设备初次直连通信Sidelink传输的频域资源大小和/或位置,以及预留直连通信Sidelink资源的频域资源起始位置和大小。
也就是说,子信道为连续的PRB集合,假设1个子信道中含有连续的数量为N的PRB,IRB为分布式的等间隔的PRB集合,连续两个梳齿资源块间间隔的资源块数量为M。本申请的实施例中可以沿用Rel-16NR的设计,SCI中的频域资源分配字段指示初次Sidelink传输的频域资源大小和/或位置,以及预留Sidelink资源的频域资源起始位置和大小。
举例而言,假设每个LBT子带内含有的IRB index(即IRB索引)的数量都是相同的,则频域资源分配域包括第一部分,其中,该第一部分可以指示sidelink传输占用的1个LBT子带内(即资源块集合RB set)的IRB index的数目和/或位置,假设包括X个比特,X为正整数;可选地,频域资源分配域还可以包括第二部分,该第二部分可以指示Sidelink传输占用LBT子带(即资源块集合RB set)的数目和/或位置,假设包括Y个比特,Y为正整数。可选地,当只有一个LBT子带的时候,则频域资源分配域可以只包含X个比特。例如,Y=0时,表示分配了一个LBT子带(即资源块集合)。
需要说明的是,SCI 1-A(即第一阶段SCI)中频域资源分配域的设计不同,则可能导致上述第一 部分和第二部分的比特个数也会不同。下面将分别给出确定第一部分的比特个数X和第二部分的比特个数的实现方式。
在一种实现方式中,第一部分的比特个数X可为L-1,L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的最低IRB索引上,且频域资源分配支持离散的IRB索引分配。作为一种示例,本申请可以重用R16的设计方法,支持SCI位于分配的IRB索引中的最低(即起始)的IRB索引上,且频域资源分配支持离散的IRB索引分配,可确定第一部分的比特个数X可为L-1。
可以理解,因为SCI位于分配的IRB索引中的最低IRB索引上,终端设备通过盲检SCI,就可以知道分配的频域资源的起始IRB index的位置,所以,不需要在SCI 1-A的频域资源分配域中指示初次发送的起始IRB index的位置。例如,如图9所示,为PSSCH分配了{1,2,3}3个IRB索引,其中PSCCH携带控制信息SCI 1-A位于的最低(即起始)的IRB index上,即IRB index 1上。
举例而言,假设本申请重用R16的设计方法,支持SCI位于分配的IRB索引中的最低(即起始)的IRB索引上,且频域资源分配支持离散的IRB索引分配,则可以使用位图bitmap来指示,在SCI 1-A中只指示比被分配的起始IRB index更高的IRB index是否被占用;此时SCI 1-A中第一部分的比特个数X为L-1。
作为一种示例,假设20MHz子带有5个IRB index{0,1,2,3,4},即L=5,为第一终端设备UE分配了{1,3,4}这3个IRB,分配的IRB中最低的IRB index为1,所以只需要指示索引2,3,4这3个IRB是否被占用,则需要“011”3比特(其中从高位到低位对应IRB index为2,3,4),如果为第一终端设备UE分配了{0,1,4}这3个IRB index,其中分配的IRB中最低的IRB index为0,则需要4比特“1001”(其中从高位到低位对应IRB index为1,2,3,4)来指示分配的IRB index,按照上述分析,设一个子带总共有L个IRB,故需要L-1个比特进行指示。(虽然如果占用的IRB不是IRB index 0的话不需要那么多比特,但是SCI中信息域的大小不应该动态变化,只能取最大值L-1)。
在一种实现方式中,第一部分的比特个数X为[log 2(L)],L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的最低IRB索引上,且频域资源分配支持连续的IRB索引分配。作为一种示例,本申请可以重用R16的设计方法,支持SCI位于分配的IRB索引中的最低(即起始)的IRB索引上,且频域资源分配支持连续的IRB索引分配,可确定第一部分的比特个数X可为[log 2(L)]。
可以理解,因为SCI位于分配的IRB索引中的最低IRB索引上,终端设备通过盲检SCI,就可以知道分配的频域资源的起始IRB index的位置,所以,不需要在SCI 1-A的频域资源分配域中指示初次发送的起始IRB index的位置。举例而言,假设本申请重用R16的设计方法,支持SCI位于分配的IRB索引中的最低(即起始)的IRB索引上,且频域资源分配只支持连续的IRB索引分配,以及在SCI 1-A中不指示初次发送占用的起始IRB index的位置,只指示连续占用的IRB index数量;此时SCI 1-A中第一部分的比特个数X为[log 2(L)]。其中“[]”可表示向上取整。例如,假设一个LBT子带内包括的IRB索引的数量L=5,若起始的IRB index为0,则IRB长度有1,2,3,4,5等5种可能,若起始IRB index为3,则IRB长度有1(如只占用IRB index 3),2(如占用IRB index 3,4)两种可能,所以最多是L种可能。
在一种实现方式中,第一部分的比特个数X为L,L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的非最低IRB索引上,且频域资源分配支持离散的IRB索引分配。
作为一种示例,本申请不重用R16的设计方法,SCI可以位于分配的IRB index中的非最低(即非起始的)的IRB index上,这时,是需要指示初次发送的起始的IRB index的位置(因为SCI不位于起始的IRB index上,起始的IRB index的位置是无法通过盲检测SCI来获得,所以,需要指示起始的IRB index的)。例如,如图10所示,为PSSCH分配了{1,2,3}这3个IRB,其中PSCCH携带控制信息SCI 1-A位于的非最低(即非起始)的IRB index上,即IRB index 2上。
举例而言,响应于本申请不重用R16的设计方法,SCI可以位于分配的IRB index中的非最低(即非起始的)的IRB index上,且频域资源分配支持离散的IRB索引分配,则可以使用bitmap来指示的,此时第一部分的比特个数X为L,指示了起始的IRB index位置和占用的IRB数量。
在一种实现方式中,第一部分的比特个数X为
Figure PCTCN2022073586-appb-000013
L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的非最低IRB索引上,且频域资源分配支持连续的IRB索引分配。
作为一种示例,本申请不重用R16的设计方法,SCI可以位于分配的IRB index中的非最低(即非起始的)的IRB index上,这时,是需要指示初次发送的起始的IRB index的位置(因为SCI不位于起始的IRB index上,起始的IRB index的位置是无法通过盲检测SCI来获得,所以,需要指示起始的IRB index的)。举例而言,响应于本申请不重用R16的设计方法,SCI可以位于分配的IRB index中的非最低(即非起始的)的IRB index上,且频域资源分配支持连续的IRB索引分配,则可以确定第一部分的比特个数
Figure PCTCN2022073586-appb-000014
可以指示IRB index起始位置和占用的连续的IRB数量。
可以理解,上述给出了SCI 1-A中第一部分的比特个数X的确定方式,下面将给出SCI 1-A中第二部分的比特个数Y的确定方式。
在本申请的实施例中,可以沿用R16NR-U的设计思想,只支持连续的RB set的资源分配,可以从支持SCI预留1次资源还是支持SCI预留2次资源这两个方面来确定第二部分的比特个数Y。
在一种实现方式中,第二部分的比特个数Y可为
Figure PCTCN2022073586-appb-000015
K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中,频域资源分配支持连续的资源块集合的资源分配,且支持SCI预留1次资源。
也就是说,本申请沿用R16NR-U的设计思想,只支持连续的RB set的资源分配,且支持SCI预留1次资源,则确定第二部分的比特个数Y为
Figure PCTCN2022073586-appb-000016
用于指示预留的1次资源的起始RB set和1次连续的RB set的数量。
在一种实现方式中,第二部分的比特个数Y为
Figure PCTCN2022073586-appb-000017
K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中,频域资源分配支持连续的资源块集合的资源分配,且支持SCI预留2次资源。
也就是说,本申请沿用R16NR-U的设计思想,只支持连续的RB set的资源分配,且支持SCI预留2次资源,则确定第二部分的比特个数Y为
Figure PCTCN2022073586-appb-000018
用于指示预留的2次资源的起RB set和1次连续的RB set数量。
在本申请的实施例中,不沿用R16NR-U的设计思想,支持离散的RB set的资源分配,可以使用位图bitmap指示,每位比特表示该RB set是否被占用的。下面可以从支持SCI预留1次资源还是支持SCI预留2次资源这两个方面来确定第二部分的比特个数Y。
在一种实现方式中,第二部分的比特个数Y为K-1+K;其中,K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中,频域资源分配支持离散的资源块集合的资源分配,且支持SCI预留1次资源。
也就是说,本申请可以不沿用R16NR-U的设计思想,支持离散的RB set的资源分配,且支持SCI预留1次资源,则可以确定第二部分的比特个数Y为K-1+K,用于指示本次传输占用的RBset(但只指示比被占用的RB set更高的RB set是否被占用,所以是K-1比特),同时指示预留的1次资源的起始位置和占用的RB set,需要K比特。
例如,支持SCI预留1次资源,确定第二部分的比特个数Y为K-1+K,假设K=5,则Y=9,如图11所示,“0011 10001”中前4比特“0011”指示了本次传输占用的RBset,占用序号为2、3和4的RB set(因为“0011”是对应的序号为1,2,3,4的RB set上是否被占用,表示序号3和4是被占用了,因为指示比被占用的RB set更高的RB set是否被占用,所以,说明序号为2的RB set也被占用了),后5比特“10011”使用bitmap指示了预留的1次资源占用的RB set。
在一种实现方式中,第二部分的比特个数Y为3K-1;其中,K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中频域资源分配支持离散的资源块集合的资源分配,且支持SCI预留2次资源。
也就是说,本申请可以不沿用R16NR-U的设计思想,支持离散的RB set的资源分配,且支持SCI预留2次资源,则可以确定第二部分的比特个数Y为3K-1,用于指示本次传输占用的RB set(但只指示比被占用的RB set更高的RB set是否被占用,所以是K-1比特),同时指示预留的第1次资源的起始位置和和占用的RB set的数量K比特,以及指示预留的第2次资源的起始位置和占用的RB set的数量K比特。
例如,支持SCI预留2次资源,如图12所示,假设K=5,则确定第二部分的比特个数Y为3K-1,即使用14比特来指示,比如使用“0011 10001 11100”来指示本次传输占用的RB set的数量4比特(如“0011 10001 11100”中的前4个比特“0011”),同时指示预留的第1次资源的起始位置和和占用的RB set的数量5比特(如“0011 10001 11100”中的第5个比特至第9个比特“10001”),以及指示预留的第2次资源的起始位置和占用的RB set的数量5比特(如“0011 10001 11100”中的最后5个比特“11100”)。
需要说明的是,本申请的实施例在SCI 1-A中引入一个新的信息字段,或者称为IRB索引偏移量域(IRB index offset)。在一种实现方式中,第一阶段SCI还可包括第一偏移量域,第一偏移量域用于指示初次传输的资源中相邻的资源块集合中的IRB索引的偏移量,或者指示预留的第1次资源中相邻的资源块集合中的IRB索引的偏移量,或者指示预留的第2次资源中相邻的资源块集合中的IRB索引的偏移量;其中,第一偏移量域的比特个数为[log 2(L)];其中,L为一个LBT子带内包括的IRB索引的数量。还需要说明的是,频域资源分配支持循环的IRB索引的偏移。
举例而言,在SCI 1-A中引入的第一偏移量域(IRB index offset),其用于指示初次传输的资源中相邻的资源块集合中的IRB索引的偏移量,或者指示预留的第1次资源中相邻的资源块集合中的IRB索引的偏移量,或者指示预留的第2次资源中相邻的资源块集合中的IRB索引的偏移量。假设当第一偏移量域的偏移量值为0,表示初次传输的资源占用的RB set中IRB index的分布规律是相同的,或者表示预留的1次资源占用的RB set中IRB index的分布规律是相同的,或者表示预留第2次资源占用的RB set中IRB index的分布规律是相同的。
作为一种示例,假设第一偏移量域的偏移量有{0,1,2,3,4}这5种可能,即L种可能,且支持2次资源预留,在初次传输的资源中,分配了3个RB set{0,1,2},其中在初次传输的资源中的第一个RB set索引0中,IRB index的分布是{1,2},那么在初次传输的资源中的第二个RB set索引1中IRB index的偏移量是1个IRB index,相对于第一个RB set中IRB index{1,2}有一个偏移量,且偏移量为1个IRB index,则在该第二个RB set索引1中IRB index的分布是{2,3},第三个RB set索引2中IRB index相对于第二个RB set索引1中的IRB index{2,3},有1个偏移量,且偏移量也是1个IRB index,则在该第三个RB set索引2中IRB index的分布是{3,4}。同样,对于第一次预留的资源,同样是分配了3个RB set{1,2,3},在这三个RB set中,在第一个RB set索引1中,IRB index的分布是{2,3};那么在第二个RB set索引2中IRB index相对于索引为1的RB set中IRB index{2,3}有一个偏移量,且偏移量是1个IRB index,所以在RB set索引2中IRB index的分布是{3,4},RB set索引3中IRB index相对于RB set索引2的IRB index{3,4}有1个偏移量,且index的偏移量也是1个IRB index,所以,RB set索引3中IRB index的分布是{4,0},因为支持循环的IRB index的偏移,共有5个IRB index{0,1,2,3,4},所以,IRB index为4时,偏移1个PRB index后,则IRB index为0。
又如,对于预留的第二次资源,分配了RB set{1,3,4},在RB set索引1中,IRB index是{3,4},RB set索引3中相对于RB set索引1的IRB index{3,4},IRB index有1个偏移量,偏移量为1个IRB index,所以,RB set索引3中IRB index的分布为{4,0};RB set索引4中相对于RB set索引3的IRB index{4,0},IRB index有1个偏移量,偏移量为1个IRB index,所以,RB set索引4中IRB index的分布为{0,1}。
在另一种实现方式中,第一阶段SCI还包括第二偏移量域,第二偏移量域用于指示预留的第1次资源中每个资源块集合相对于初次传输的资源中对应的资源块集合中IRB索引的偏移量,或者指示预留的第2次资源中每个资源块集合相对于初次传输的资源中对应的资源块集合中IRB索引的偏移量;其中,第二偏移量域的比特个数为[log 2(L)];其中,L为一个LBT子带内包括的IRB索引的数量。
举例而言,在SCI 1-A中引入的第二偏移量域(IRB index offset),其用于预留的第1次资源中每个资源块集合相对于初次传输的资源中对应的资源块集合中IRB索引的偏移量,或者指示预留的第2次资源中每个资源块集合相对于初次传输的资源中对应的资源块集合中IRB索引的偏移量。假设当第二偏移量域的偏移量值为0,表示预留的第1次资源中每个资源块集合相对于初次传输的资源中对应的资源块集合中IRB索引的分布规律是相同的,或者表示预留的第2次资源中每个资源块集合相对于初次传输的资源中对应的资源块集合中IRB索引的分布规律是相同的。
作为一种示例,如图13所示,假设初次传输的RB set分布为{2,3,4},这3个RB set中IRB index的分布都是{2,3,4},则预留的第一次资源的RB set分布为{0,3,4},其中预留的第一次资源的RB set索引0中IRB index相对于初次传输的RB set索引2的IRB index偏移量为1,则预留的第一次资源的RB set索引0中IRB index的分布为{0,3,4};预留的第一次资源的RB set索引3中IRB index相对于初次传输的RB set索引3的IRB index偏移量为1,则预留的第一次资源的RB set索引3中IRB index的 分布为{0,3,4};预留的第一次资源的RB set索引4中IRB index相对于初次传输的RB set索引4的IRB index偏移量为1,则预留的第一次资源的RB set索引4中IRB index的分布为{0,3,4};同理,对于预留的第二次预留的资源RB set{0,1,2},预留的第二次预留的资源的RB set索引0中IRB index相对于初次传输的RB set索引2的IRB index偏移量为1,则预留的第二次预留的资源的RB set索引0中IRB index的分布为{0,3,4};预留的第二次预留的资源的RB set索引1中IRB index相对于初次传输的RB set索引3的IRB index偏移量为1,则预留的第二次预留的资源的RB set索引1中IRB index的分布为{0,3,4};预留的第二次预留的资源的RB set索引2中IRB index相对于初次传输的RB set索引4的IRB index偏移量为1,则预留的第二次预留的资源的RB set索引2中IRB index的分布为{0,3,4}。
通过实现本申请实施例,通过基于梳齿资源块IRB为频域资源分配粒度的资源分配指示,可以在非授权频段上满足OCB要求,如可以使得每次传输可以占满LBT子带带宽的80%,能够较好保证资源利用率;另外,本申请支持SCI位于分配的IRB index中的最低(即起始的)或者非最低(即非起始的)的IRB index上,相对于R16的SCI只能在最低(即起始的)的子信道上的设计更加灵活,从而可以满足未来潜在的多样化应用场景和需求。
可以理解,上述实施例是从第一终端设备侧描述本申请实施例的资源指示方法的实现方式。本申请实施例还提出了一种资源确定方法,下面将从第二终端设备侧描述该资源确定方法的实现方式。请参见图14,图14是本申请实施例提供的一种资源确定方法的流程图。需要说明的是,本申请实施例的资源确定方法应用于终端直连通信非授权频段,可以由第二终端设备执行。如图14所示,该资源确定方法可以包括但不限于如下步骤。
在步骤1401中,接收第一终端设备基于频域资源分配粒度发送的第一阶段直连链路控制信息SCI;第一阶段SCI中包括频域资源分配域,频域资源分配域用于指示第一终端设备占用的频域资源。
在本申请的实施例中,该频域资源分配粒度可以为子信道或梳齿资源块IRB。第一终端设备可以确定频域资源分配粒度。其中,该频域资源分配粒度可以是子信道,或者,还可以是梳齿资源块IRB。例如,第一终端设备可以重新使用SCI 1-A(即第一阶段SCI)中原有的基于子信道(subchannel)的频域资源指示方式,增加从子信道到IRB之间的映射的设计。也就是说,第一终端设备可以重用第一阶段SCI中原有的基于子信道的频域资源指示方式,其中需要确定子信道到IRB之间的映射关系,即可实现基于子信道为频域资源分配粒度的资源指示。其中,IRB为分布式的等间隔的PRB集合,子信道为连续的PRB集合。
在本申请的实施例中,第一终端设备可以基于确定的频域资源分配粒度向第二终端设备发送第一阶段SCI,从而使得第二终端设备可以接收到第一终端设备基于频域资源分配粒度发送的第一阶段SCI。例如,第一终端设备可以根据带宽部分BWP的大小和频域资源分配粒度,对BWP进行划分,得到N个单元,向第二终端设备发送第一阶段SCI,从而使得第二终端设备可以接收到第一终端设备发送的第一阶段SCI,其中,该第一阶段SCI中可以包括频域资源分配域,该频域资源分配域用于指示N个单元中给该第一终端设备分配的单元,即指示该第一终端设备占用的频域资源。
在步骤1402中,根据第一阶段SCI和频域资源分配粒度,确定第一终端设备占用的频域资源。
也就是说,第二终端设备在接收到第一终端设备发送的第一阶段SCI,可以从该第一阶段SCI中的频域资源分配域,确定出第一终端设备占用的频域资源。
在步骤1403中,根据第一终端设备占用的频域资源,确定第二终端设备可用的频域资源。
也就是说,第二终端设备在确定第一终端设备占用的频域资源之后,即可确定出第二终端设备自身可用的频域资源。
值得注意的是,本申请可以重新使用第一阶段SCI中原有的基于子信道的频域资源指示方式,其中需要确定子信道到IRB之间的映射关系,即可实现基于子信道为频域资源分配粒度的资源指示。可选地,在本申请一些实施例中,假设频域资源分配粒度为子信道,则第二终端设备可以确定子信道与梳齿资源块IRB之间的映射关系,并接收第一终端设备基于子信道为频域资源分配粒度和映射关系发送的第一阶段SCI。
也就是说,本申请重用第一阶段SCI中原有的基于子信道的频域资源指示方式,其中需要确定子信道到IRB之间的映射关系。在一种实现方式中,可以通过以下方式确定子信道与IRB之间的映射关系:确定子信道与IRB之间的映射关系为一个子信道对应一个IRB索引,其中,一个给定先听后说LBT子带内包括的子信道和IRB索引的个数相同。
举例而言,假设一个给定LBT子带(例如20MHz)内包括的子信道和IRB索引的个数相同,则可确定子信道与IRB之间的映射关系为一对一的映射关系,即1个IRB索引映射到1个子信道上。
例如,如图7所示,SCS=30kHz,假设1个LBT子带(例如20MHz)内共有50个PRB,1个子 信道含有10个PRB,则含有5个子信道,共有5个IRB index(即IRB索引),子信道和IRB索引的个数相同,且1个subchannel映射到每个IRB index上,使得一个子信道对应一个IRB index。
在一种可能的实现方式中,可以通过以下方式确定子信道与梳齿资源块IRB之间的映射关系:确定子信道与IRB之间的映射关系为一个子信道内的每个物理资源块PRB映射到多个IRB索引的特定PRB上;其中,一个给定LBT子带内包括M个子信道和N个IRB索引,M、N分别为正整数。
举例而言,假设一个给定LBT子带内包括M个子信道和N个IRB(其中M≠N),则可以建立一个LBT子带内连续的资源块RB到子带内的分布式的PRB的1对1映射规则,按照上述映射规则将一个子信道内的每个物理资源块PRB映射到多个IRB内的特定PRB上。
在本申请的实施例中,第一终端设备在确定子信道与IRB之间的映射关系之后,可以基于该映射关系和以子信道为频域资源分配粒度,向第二终端设备发送第一阶段SCI。第二终端设备可以确定子信道与IRB之间的映射关系,并接收第一终端设备基于子信道为频域资源分配粒度和该映射关系发送的第一阶段SCI,其中,该第一阶段SCI中可以包括频域资源分配域,该频域资源分配域用于指示该第一终端设备占用的频域资源。也就是说,在确定IRB之间的映射关系之后,第一终端设备和第二终端设备可以继续使用第一阶段SCI中原有的基于子信道的频域资源指示方式。
值得注意的是,本申请可以基于IRB为频域资源分配粒度进行资源指示。也就是说,本申请可以重新设计第一阶段SCI中的频域资源分配信息字段,即可以基于IRB为频域资源分配粒度进行资源指示。也就是说,本申请的实施例中,SCI 1-A(即第一阶段SCI)中的频域资源分配字段不再基于子信道为频域资源分配粒度进行资源指示,而是基于IRB为频域资源分配粒度进行资源指示。
在一种实现方式中,第一终端设备可以根据带宽部分BWP的大小和以IRB为频域资源分配粒度,对BWP进行划分,得到N个单元,向第二终端设备发送第一阶段SCI。第二终端设备可以接收第一终端设备基于IRB为频域资源分配粒度发送的第一阶段SCI,其中,该第一阶段SCI中的频域资源分配域用于指示所述第一终端设备初次直连通信Sidelink传输的频域资源大小和/或位置,以及预留直连通信Sidelink资源的频域资源起始位置和大小。
也就是说,子信道为连续的PRB集合,假设1个子信道中含有连续的数量为N的PRB,IRB为分布式的等间隔的PRB集合,连续两个梳齿资源块间间隔的资源块数量为M。本申请的实施例中可以沿用Rel-16NR的设计,SCI中的频域资源分配字段指示初次Sidelink传输的频域资源大小和/或位置,以及预留Sidelink资源的频域资源起始位置和大小。
举例而言,假设每个LBT子带内含有的IRB index(即IRB索引)的数量都是相同的,则频域资源分配域包括第一部分,其中,该第一部分可以指示sidelink传输占用的1个LBT子带内(即资源块集合RB set)的IRB index的数目和/或位置,假设包括X个比特,X为正整数;可选地,频域资源分配域还可以包括第二部分,该第二部分可以指示Sidelink传输占用LBT子带(即资源块集合RB set)的数目和/或位置,假设包括Y个比特,Y为正整数。可选地,当只有一个LBT子带的时候,则频域资源分配域可以只包含X个比特。例如,Y=0时,表示分配了一个LBT子带(即资源块集合)。
需要说明的是,SCI 1-A(即第一阶段SCI)中频域资源分配域的设计不同,则可能导致上述第一部分和第二部分的比特个数也会不同。下面将分别给出确定第一部分的比特个数X和第二部分的比特个数的实现方式。
在一种实现方式中,第一部分的比特个数X可为L-1,L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的最低IRB索引上,且频域资源分配支持离散的IRB索引分配。作为一种示例,本申请可以重用R16的设计方法,支持SCI位于分配的IRB索引中的最低(即起始)的IRB索引上,且频域资源分配支持离散的IRB索引分配,可确定第一部分的比特个数X可为L-1。
可以理解,因为SCI位于分配的IRB索引中的最低IRB索引上,终端设备通过盲检SCI,就可以知道分配的频域资源的起始IRB index的位置,所以,不需要在SCI 1-A的频域资源分配域中指示初次发送的起始IRB index的位置。例如,如图9所示,为PSSCH分配了{1,2,3}这3个IRB索引,其中PSCCH携带控制信息SCI 1-A位于的最低(即起始)的IRB index上,即IRB index 1上。
举例而言,假设本申请重用R16的设计方法,支持SCI位于分配的IRB索引中的最低(即起始)的IRB索引上,且频域资源分配支持离散的IRB索引分配,则可以使用位图bitmap来指示,在SCI 1-A中只指示比被分配的起始IRB index更高的IRB index是否被占用;此时SCI 1-A中第一部分的比特个数X为L-1。
作为一种示例,假设20MHz子带有5个IRB index{0,1,2,3,4},即L=5,为第一终端设备UE分配了{1,3,4}这3个IRB,分配的IRB中最低的IRB index为1,所以只需要指示索引2,3,4这3个IRB是 否被占用,则需要“011”3比特(其中从高位到低位对应IRB index为2,3,4),如果为第一终端设备UE分配了{0,1,4}这3个IRB index,其中分配的IRB中最低的IRB index为0,则需要4比特“1001”(其中从高位到低位对应IRB index为1,2,3,4)来指示分配的IRB index,按照上述分析,设一个子带总共有L个IRB,故需要L-1个比特进行指示。(虽然如果占用的IRB不是IRB index 0的话不需要那么多比特,但是SCI中信息域的大小不应该动态变化,只能取最大值L-1)。
在一种实现方式中,第一部分的比特个数X为[log 2(L)],L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的最低IRB索引上,且频域资源分配支持连续的IRB索引分配。作为一种示例,本申请可以重用R16的设计方法,支持SCI位于分配的IRB索引中的最低(即起始)的IRB索引上,且频域资源分配支持连续的IRB索引分配,可确定第一部分的比特个数X可为[log 2(L)]。
可以理解,因为SCI位于分配的IRB索引中的最低IRB索引上,终端设备通过盲检SCI,就可以知道分配的频域资源的起始IRB index的位置,所以,不需要在SCI 1-A的频域资源分配域中指示初次发送的起始IRB index的位置。举例而言,假设本申请重用R16的设计方法,支持SCI位于分配的IRB索引中的最低(即起始)的IRB索引上,且频域资源分配只支持连续的IRB索引分配,以及在SCI 1-A中不指示初次发送占用的起始IRB index的位置,只指示连续占用的IRB index数量;此时SCI 1-A中第一部分的比特个数X为[log 2(L)]。其中“[]”可表示向上取整。例如,假设一个LBT子带内包括的IRB索引的数量L=5,若起始的IRB index为0,则IRB长度有1,2,3,4,5等5种可能,若起始IRB index为3,则IRB长度有1(如只占用IRB index 3),2(如占用IRB index 3,4)两种可能,所以最多是L种可能。
在一种实现方式中,第一部分的比特个数X为L,L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的非最低IRB索引上,且频域资源分配支持离散的IRB索引分配。
作为一种示例,本申请不重用R16的设计方法,SCI可以位于分配的IRB index中的非最低(即非起始的)的IRB index上,这时,是需要指示初次发送的起始的IRB index的位置(因为SCI不位于起始的IRB index上,起始的IRB index的位置是无法通过盲检测SCI来获得,所以,需要指示起始的IRB index的)。例如,如图10所示,为PSSCH分配了{1,2,3}这3个IRB,其中PSCCH携带控制信息SCI 1-A位于的非最低(即非起始)的IRB index上,即IRB index 2上。
举例而言,响应于本申请不重用R16的设计方法,SCI可以位于分配的IRB index中的非最低(即非起始的)的IRB index上,且频域资源分配支持离散的IRB索引分配,则可以使用bitmap来指示的,此时第一部分的比特个数X为L,指示了起始的IRB index位置和占用的IRB数量。
在一种实现方式中,第一部分的比特个数X为
Figure PCTCN2022073586-appb-000019
L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的非最低IRB索引上,且频域资源分配支持连续的IRB索引分配。
作为一种示例,本申请不重用R16的设计方法,SCI可以位于分配的IRB index中的非最低(即非起始的)的IRB index上,这时,是需要指示初次发送的起始的IRB index的位置(因为SCI不位于起始的IRB index上,起始的IRB index的位置是无法通过盲检测SCI来获得,所以,需要指示起始的IRB index的)。举例而言,响应于本申请不重用R16的设计方法,SCI可以位于分配的IRB index中的非最低(即非起始的)的IRB index上,且频域资源分配支持连续的IRB索引分配,则可以确定第一部分的比特个数
Figure PCTCN2022073586-appb-000020
可以指示IRB index起始位置和占用的连续的IRB数量。
可以理解,上述给出了SCI 1-A中第一部分的比特个数X的确定方式,下面将给出SCI 1-A中第二部分的比特个数Y的确定方式。
在本申请的实施例中,可以沿用R16NR-U的设计思想,只支持连续的RB set的资源分配,可以从支持SCI预留1次资源还是支持SCI预留2次资源这两个方面来确定第二部分的比特个数Y。
在一种实现方式中,第二部分的比特个数Y可为
Figure PCTCN2022073586-appb-000021
K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中,频域资源分配支持连续的资源块集合的资源分配,且支持SCI预留1次资源。
也就是说,本申请沿用R16NR-U的设计思想,只支持连续的RB set的资源分配,且支持SCI预留1次资源,则确定第二部分的比特个数Y为
Figure PCTCN2022073586-appb-000022
用于指示预留的1次资源的起始RB set 和1次连续的RB set的数量。
在一种实现方式中,第二部分的比特个数Y为
Figure PCTCN2022073586-appb-000023
K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中,频域资源分配支持连续的资源块集合的资源分配,且支持SCI预留2次资源。
也就是说,本申请沿用R16NR-U的设计思想,只支持连续的RB set的资源分配,且支持SCI预留2次资源,则确定第二部分的比特个数Y为
Figure PCTCN2022073586-appb-000024
用于指示预留的2次资源的起RB set和1次连续的RB set数量。
在本申请的实施例中,不沿用R16NR-U的设计思想,支持离散的RB set的资源分配,可以使用位图bitmap指示,每位比特表示该RB set是否被占用的。下面可以从支持SCI预留1次资源还是支持SCI预留2次资源这两个方面来确定第二部分的比特个数Y。
在一种实现方式中,第二部分的比特个数Y为K-1+K;其中,K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中,频域资源分配支持离散的资源块集合的资源分配,且支持SCI预留1次资源。
也就是说,本申请可以不沿用R16NR-U的设计思想,支持离散的RB set的资源分配,且支持SCI预留1次资源,则可以确定第二部分的比特个数Y为K-1+K,用于指示本次传输占用的RBset(但只指示比被占用的RB set更高的RB set是否被占用,所以是K-1比特),同时指示预留的1次资源的起始位置和占用的RB set,需要K比特。
例如,支持SCI预留1次资源,确定第二部分的比特个数Y为K-1+K,假设K=5,则Y=9,如图11所示,“0011 10001”中前4比特“0011”指示了本次传输占用的RBset,占用序号为2、3和4的RB set(因为“0011”是对应的序号为1,2,3,4的RB set上是否被占用,表示序号3和4是被占用了,因为指示比被占用的RB set更高的RB set是否被占用,所以,说明序号为2的RB set也被占用了),后5比特“10011”使用bitmap指示了预留的1次资源占用的RB set。
在一种实现方式中,第二部分的比特个数Y为3K-1;其中,K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中频域资源分配支持离散的资源块集合的资源分配,且支持SCI预留2次资源。
也就是说,本申请可以不沿用R16NR-U的设计思想,支持离散的RB set的资源分配,且支持SCI预留2次资源,则可以确定第二部分的比特个数Y为3K-1,用于指示本次传输占用的RB set(但只指示比被占用的RB set更高的RB set是否被占用,所以是K-1比特),同时指示预留的第1次资源的起始位置和和占用的RB set的数量K比特,以及指示预留的第2次资源的起始位置和占用的RB set的数量K比特。
例如,支持SCI预留2次资源,如图12所示,假设K=5,则确定第二部分的比特个数Y为3K-1,即使用14比特来指示,比如使用“0011 10001 11100”来指示本次传输占用的RB set的数量4比特(如“0011 10001 11100”中的前4个比特“0011”),同时指示预留的第1次资源的起始位置和和占用的RB set的数量5比特(如“0011 10001 11100”中的第5个比特至第9个比特“10001”),以及指示预留的第2次资源的起始位置和占用的RB set的数量5比特(如“0011 10001 11100”中的最后5个比特“11100”)。
需要说明的是,本申请的实施例在SCI 1-A中引入一个新的信息字段,或者称为IRB索引偏移量域(IRB index offset)。在一种实现方式中,第一阶段SCI还可包括第一偏移量域,第一偏移量域用于指示初次传输的资源中相邻的资源块集合中的IRB索引的偏移量,或者指示预留的第1次资源中相邻的资源块集合中的IRB索引的偏移量,或者指示预留的第2次资源中相邻的资源块集合中的IRB索引的偏移量;其中,第一偏移量域的比特个数为[log 2(L)];其中,L为一个LBT子带内包括的IRB索引的数量。还需要说明的是,频域资源分配支持循环的IRB索引的偏移。
举例而言,在SCI 1-A中引入的第一偏移量域(IRB index offset),其用于指示初次传输的资源中相邻的资源块集合中的IRB索引的偏移量,或者指示预留的第1次资源中相邻的资源块集合中的IRB索引的偏移量,或者指示预留的第2次资源中相邻的资源块集合中的IRB索引的偏移量。假设当第一偏移量域的偏移量值为0,表示初次传输的资源占用的RB set中IRB index的分布规律是相同的,或者表示预留的1次资源占用的RB set中IRB index的分布规律是相同的,或者表示预留第2次资源占用的 RB set中IRB index的分布规律是相同的。
作为一种示例,假设第一偏移量域的偏移量有{0,1,2,3,4}这5种可能,即L种可能,且支持2次资源预留,在初次传输的资源中,分配了3个RB set{0,1,2},其中在初次传输的资源中的第一个RB set索引0中,IRB index的分布是{1,2},那么在初次传输的资源中的第二个RB set索引1中IRB index的偏移量是1个IRB index,相对于第一个RB set中IRB index{1,2}有一个偏移量,且偏移量为1个IRB index,则在该第二个RB set索引1中IRB index的分布是{2,3},第三个RB set索引2中IRB index相对于第二个RB set索引1中的IRB index{2,3},有1个偏移量,且偏移量也是1个IRB index,则在该第三个RB set索引2中IRB index的分布是{3,4}。同样,对于第一次预留的资源,同样是分配了3个RB set{1,2,3},在这三个RB set中,在第一个RB set索引1中,IRB index的分布是{2,3};那么在第二个RB set索引2中IRB index相对于索引为1的RB set中IRB index{2,3}有一个偏移量,且偏移量是1个IRB index,所以在RB set索引2中IRB index的分布是{3,4},RB set索引3中IRB index相对于RB set索引2的IRB index{3,4}有1个偏移量,且index的偏移量也是1个IRB index,所以,RB set索引3中IRB index的分布是{4,0},因为支持循环的IRB index的偏移,共有5个IRB index{0,1,2,3,4},所以,IRB index为4时,偏移1个PRB index后,则IRB index为0。
又如,对于预留的第二次资源,分配了RB set{1,3,4},在RB set索引1中,IRB index是{3,4},RB set索引3中相对于RB set索引1的IRB index{3,4},IRB index有1个偏移量,偏移量为1个IRB index,所以,RB set索引3中IRB index的分布为{4,0};RB set索引4中相对于RB set索引3的IRB index{4,0},IRB index有1个偏移量,偏移量为1个IRB index,所以,RB set索引4中IRB index的分布为{0,1}。
在另一种实现方式中,第一阶段SCI还包括第二偏移量域,第二偏移量域用于指示预留的第1次资源中每个资源块集合相对于初次传输的资源中对应的资源块集合中IRB索引的偏移量,或者指示预留的第2次资源中每个资源块集合相对于初次传输的资源中对应的资源块集合中IRB索引的偏移量;其中,第二偏移量域的比特个数为[log 2(L)];其中,L为一个LBT子带内包括的IRB索引的数量。
举例而言,在SCI 1-A中引入的第二偏移量域(IRB index offset),其用于预留的第1次资源中每个资源块集合相对于初次传输的资源中对应的资源块集合中IRB索引的偏移量,或者指示预留的第2次资源中每个资源块集合相对于初次传输的资源中对应的资源块集合中IRB索引的偏移量。假设当第二偏移量域的偏移量值为0,表示预留的第1次资源中每个资源块集合相对于初次传输的资源中对应的资源块集合中IRB索引的分布规律是相同的,或者表示预留的第2次资源中每个资源块集合相对于初次传输的资源中对应的资源块集合中IRB索引的分布规律是相同的。
作为一种示例,如图13所示,假设初次传输的RB set分布为{2,3,4},这3个RB set中IRB index的分布都是{2,3,4},则预留的第一次资源的RB set分布为{0,3,4},其中预留的第一次资源的RB set索引0中IRB index相对于初次传输的RB set索引2的IRB index偏移量为1,则预留的第一次资源的RB set索引0中IRB index的分布为{0,3,4};预留的第一次资源的RB set索引3中IRB index相对于初次传输的RB set索引3的IRB index偏移量为1,则预留的第一次资源的RB set索引3中IRB index的分布为{0,3,4};预留的第一次资源的RB set索引4中IRB index相对于初次传输的RB set索引4的IRB index偏移量为1,则预留的第一次资源的RB set索引4中IRB index的分布为{0,3,4};同理,对于预留的第二次预留的资源RB set{0,1,2},预留的第二次预留的资源的RB set索引0中IRB index相对于初次传输的RB set索引2的IRB index偏移量为1,则预留的第二次预留的资源的RB set索引0中IRB index的分布为{0,3,4};预留的第二次预留的资源的RB set索引1中IRB index相对于初次传输的RB set索引3的IRB index偏移量为1,则预留的第二次预留的资源的RB set索引1中IRB index的分布为{0,3,4};预留的第二次预留的资源的RB set索引2中IRB index相对于初次传输的RB set索引4的IRB index偏移量为1,则预留的第二次预留的资源的RB set索引2中IRB index的分布为{0,3,4}。
通过实现本申请实施例,通过基于梳齿资源块IRB为频域资源分配粒度的资源分配指示,可以在非授权频段上满足OCB要求,如可以使得每次传输可以占满LBT子带带宽的80%,能够较好保证资源利用率;另外,本申请支持SCI位于分配的IRB index中的最低(即起始的)或者非最低(即非起始的)的IRB index上,相对于R16的SCI只能在最低(即起始的)的子信道上的设计更加灵活,从而可以满足未来潜在的多样化应用场景和需求。
上述本申请提供的实施例中,分别从第一终端设备、第二终端设备的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,第一终端设备、第二终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。 上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图15,为本申请实施例提供的一种通信装置150的结构示意图。图15所示的通信装置150可包括收发模块1501和处理模块1502。收发模块1501可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块1501可以实现发送功能和/或接收功能。
通信装置150可以是第一终端设备,也可以是第一终端设备中的装置,还可以是能够与第一终端设备匹配使用的装置。或者,通信装置150可以是第二终端设备,也可以是第二终端设备中的装置,还可以是能够与第二终端设备匹配使用的装置。
通信装置150为第一终端设备:在本申请的实施例中,收发模块1501用于基于频域资源分配粒度,向第二终端设备发送第一阶段直连链路控制信息SCI;第一阶段SCI中包括频域资源分配域,频域资源分配域用于指示第一终端设备占用的频域资源。
在一种实现方式中,频域资源分配粒度为子信道;处理模块1502用于确定子信道与梳齿资源块IRB之间的映射关系;其中,收发模块1501用于基于子信道为频域资源分配粒度和映射关系,向第二终端设备发送第一阶段SCI。
在一种可能的实现方式中,处理模块1502用于:确定子信道与IRB之间的映射关系为一个子信道对应一个IRB索引,其中,一个给定先听后说LBT子带内包括的子信道和IRB索引的个数相同。
在一种可能的实现方式中,处理模块1502用于:确定子信道与IRB之间的映射关系为一个子信道内的每个物理资源块PRB映射到多个IRB索引的特定PRB上;其中,一个给定LBT子带内包括M个子信道和N个IRB索引,M、N分别为正整数。
在一种可实现方式中,频域资源分配粒度为IRB;收发模块1501用于:基于IRB为频域资源分配粒度,向第二终端设备发送第一阶段SCI;其中,第一阶段SCI中的频域资源分配域用于指示第一终端设备初次直连通信Sidelink传输的频域资源大小和/或位置,以及预留直连通信Sidelink资源的频域资源起始位置和大小。
在一种可能的实现方式中,频域资源分配域包括第一部分,第一部分用于指示Sidelink传输占用一个LBT子带内的IRB索引的数目和/或位置,第一部分包括X个比特,X为正整数。
在一种可能的实现方式中,X为L-1,L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的最低IRB索引上,且频域资源分配支持离散的IRB索引分配;或者,X为[log 2(L)],L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的最低IRB索引上,且频域资源分配支持连续的IRB索引分配。
在一种可能的实现方式中,X为L,L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的非最低IRB索引上,且频域资源分配支持离散的IRB索引分配;或者,X为
Figure PCTCN2022073586-appb-000025
L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的非最低IRB索引上,且频域资源分配支持连续的IRB索引分配。
在一种实现方式中,频域资源分配域还包括第二部分,第二部分用于指示Sidelink传输占用LBT子带的数目和/或位置,第二部分包括Y个比特,Y为正整数。
在一种可能的实现方式中,Y为
Figure PCTCN2022073586-appb-000026
K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中,频域资源分配支持连续的资源块集合的资源分配,且支持SCI预留1次资源;或者,Y为
Figure PCTCN2022073586-appb-000027
K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中,频域资源分配支持连续的资源块集合的资源分配,且支持SCI预留2次资源。
在一种可能的实现方式中,Y为K-1+K;其中,K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中,频域资源分配支持离散的资源块集合的资源分配,且支持SCI预留1次资源;或者,Y为3K-1;其中,K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中频域资源分配支持离散的资源块集合的资源分配,且支持SCI预留2次资源。
在一种可能的实现方式中,第一阶段SCI还包括第一偏移量域,第一偏移量域用于指示初次传输的资源中相邻的资源块集合中的IRB索引的偏移量,或者指示预留的第1次资源中相邻的资源块集合中的IRB索引的偏移量,或者指示预留的第2次资源中相邻的资源块集合中的IRB索引的偏移量;其中,第一偏移量域的比特个数为[log 2(L)];其中,L为一个LBT子带内包括的IRB索引的数量。
在一种可能的实现方式中,第一阶段SCI还包括第二偏移量域,第二偏移量域用于指示预留的第1次资源中每个资源块集合相对于初次传输的资源中对应的资源块集合中IRB索引的偏移量,或者指示预留的第2次资源中每个资源块集合相对于初次传输的资源中对应的资源块集合中IRB索引的偏移量;其中,第二偏移量域的比特个数为[log 2(L)];其中,L为一个LBT子带内包括的IRB索引的数量。
在一种可能的实现方式中,频域资源分配支持循环的IRB索引的偏移。
通信装置150为第二终端设备:在本申请的实施例中,收发模块1501,用于接收第一终端设备基于频域资源分配粒度发送的第一阶段直连链路控制信息SCI;第一阶段SCI中包括频域资源分配域,频域资源分配域用于指示第一终端设备占用的频域资源;处理模块1502,用于根据第一阶段SCI和频域资源分配粒度,确定第一终端设备占用的频域资源,并根据第一终端设备占用的频域资源,确定第二终端设备可用的频域资源。
在一种实现方式中,频域资源分配粒度为子信道;处理模块1502还用于:确定子信道与梳齿资源块IRB之间的映射关系;收发模块1501用于接收第一终端设备基于子信道为频域资源分配粒度和映射关系发送的第一阶段SCI。
在一种可能的实现方式中,处理模块1502用于:确定子信道与IRB之间的映射关系为一个子信道对应一个IRB索引,其中,一个给定先听后说LBT子带内包括的子信道和IRB索引的个数相同。
在一种可能的实现方式中,处理模块1502用于:确定子信道与IRB之间的映射关系为一个子信道内的每个物理资源块PRB映射到多个IRB索引的特定PRB上;其中,一个给定LBT子带内包括M个子信道和N个IRB,M、N分别为正整数。
在一种实现方式中,频域资源分配粒度为IRB;收发模块1501用于:接收第一终端设备基于IRB为频域资源分配粒度发送的第一阶段SCI;其中,第一阶段SCI中的频域资源分配域用于指示第一终端设备初次直连通信Sidelink传输的频域资源大小和/或位置,以及预留直连通信Sidelink资源的频域资源起始位置和大小。
在一种可能的实现方式中,频域资源分配域包括第一部分,第一部分用于指示Sidelink传输占用一个LBT子带内的IRB索引的数目和/或位置,第一部分包括X个比特,X为正整数。
在一种可能的实现方式中,X为L-1,L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的最低IRB索引上,且频域资源分配支持离散的IRB索引分配;或者,X为[log 2(L)],L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的最低IRB索引上,且频域资源分配支持连续的IRB索引分配。
在一种可能的实现方式中,X为L,L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的非最低IRB索引上,且频域资源分配支持离散的IRB索引分配;或者,X为
Figure PCTCN2022073586-appb-000028
L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的非最低IRB索引上,且频域资源分配支持连续的IRB索引分配。
在一种实现方式中,频域资源分配域还包括第二部分,第二部分用于指示Sidelink传输占用LBT子带的数目和/或位置,第二部分包括Y个比特,Y为正整数。
在一种可能的实现方式中,Y为
Figure PCTCN2022073586-appb-000029
K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中,频域资源分配支持连续的资源块集合的资源分配,且支持SCI预留1次资源;或者,Y为
Figure PCTCN2022073586-appb-000030
K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中,频域资源分配支持连续的资源块集合的资源分配,且支持SCI预留2次资源。
在一种可能的实现方式中,Y为K-1+K;其中,K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中,频域资源分配支持离散的资源块集合的资源分配,且支持SCI预留1次资源;或者,Y为3K-1;其中,K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中频域资源分配支持离散的资源块集合的资源分配,且支持SCI预留2次资源。
在一种可能的实现方式中,第一阶段SCI还包括第一偏移量域,第一偏移量域用于指示初次传输的资源中相邻的资源块集合中的IRB索引的偏移量,或者指示预留的第1次资源中相邻的资源块集合中的IRB索引的偏移量,或者指示预留的第2次资源中相邻的资源块集合中的IRB索引的偏移量;其 中,第一偏移量域的比特个数为[log 2(L)];其中,L为一个LBT子带内包括的IRB索引的数量。
在一种可能的实现方式中,第一阶段SCI还包括第二偏移量域,第二偏移量域用于指示预留的第1次资源中每个资源块集合相对于初次传输的资源中对应的资源块集合中IRB索引的偏移量,或者指示预留的第2次资源中每个资源块集合相对于初次传输的资源中对应的资源块集合中IRB索引的偏移量;其中,第二偏移量域的比特个数为[log 2(L)];其中,L为一个LBT子带内包括的IRB索引的数量。
在一种可能的实现方式中,频域资源分配支持循环的IRB索引的偏移。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
请参见图16,图16是本申请实施例提供的另一种通信装置160的结构示意图。通信装置160可以是第一终端设备,也可以是第二终端设备,也可以是支持第一终端设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持第二终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置160可以包括一个或多个处理器1601。处理器1601可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置160中还可以包括一个或多个存储器1602,其上可以存有计算机程序1604,处理器1601执行所述计算机程序1604,以使得通信装置160执行上述方法实施例中描述的方法。可选的,所述存储器1602中还可以存储有数据。通信装置160和存储器1602可以单独设置,也可以集成在一起。
可选的,通信装置160还可以包括收发器1605、天线1606。收发器1605可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1605可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置160中还可以包括一个或多个接口电路1607。接口电路1607用于接收代码指令并传输至处理器1601。处理器1601运行所述代码指令以使通信装置160执行上述方法实施例中描述的方法。
通信装置160为第一终端设备:收发器1605用于执行图2中的步骤201;执行图6中的602;执行图8中的步骤801。处理器1601用于执行图6中的步骤601。
通信装置160为第二终端设备:收发器1605用于执行图14中的步骤1401。处理器1601用于执行图14中的步骤1402和步骤1403。
在一种实现方式中,处理器1601中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1601可以存有计算机程序1603,计算机程序1603在处理器1601上运行,可使得通信装置160执行上述方法实施例中描述的方法。计算机程序1603可能固化在处理器1601中,该种情况下,处理器1601可能由硬件实现。
在一种实现方式中,通信装置160可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是第一终端设备或者第二终端设备,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图16的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例还提供一种通信系统,该系统包括前述图15实施例中作为第一终端设备的通信装置和作为第二终端设备的通信装置,或者,该系统包括前述图16实施例中作为第一终端设备的通信装置和作为第二终端设备的通信装置。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (34)

  1. 一种资源指示方法,应用于终端直连通信非授权频段,其特征在于,所述方法由第一终端设备执行,所述方法包括:
    基于频域资源分配粒度,向第二终端设备发送第一阶段直连链路控制信息SCI;所述第一阶段SCI中包括频域资源分配域,所述频域资源分配域用于指示所述第一终端设备占用的频域资源。
  2. 根据权利要求1所述的方法,其特征在于,所述频域资源分配粒度为子信道;所述基于频域资源分配粒度,向第二终端设备发送第一阶段直连链路控制信息SCI,包括:
    确定所述子信道与梳齿资源块IRB之间的映射关系;
    基于所述子信道为频域资源分配粒度和所述映射关系,向所述第二终端设备发送第一阶段SCI。
  3. 根据权利要求2所述的方法,其特征在于,所述确定所述子信道与梳齿资源块IRB之间的映射关系,包括:
    确定所述子信道与所述IRB之间的映射关系为一个子信道对应一个IRB索引,其中,一个给定先听后说LBT子带内包括的子信道和IRB索引的个数相同。
  4. 根据权利要求2所述的方法,其特征在于,所述确定所述子信道与梳齿资源块IRB之间的映射关系,包括:
    确定所述子信道与所述IRB之间的映射关系为一个子信道内的每个物理资源块PRB映射到多个IRB索引的特定PRB上;其中,一个给定LBT子带内包括M个子信道和N个IRB索引,所述M、N分别为正整数。
  5. 根据权利要求1所述的方法,其特征在于,所述频域资源分配粒度为IRB;所述基于频域资源分配粒度,向第二终端设备发送第一阶段直连链路控制信息SCI,包括:
    基于所述IRB为频域资源分配粒度,向第二终端设备发送第一阶段SCI;
    其中,所述第一阶段SCI中的频域资源分配域用于指示所述第一终端设备初次直连通信Sidelink传输的频域资源大小和/或位置,以及预留直连通信Sidelink资源的频域资源起始位置和大小。
  6. 根据权利要求5所述的方法,其特征在于,所述频域资源分配域包括第一部分,所述第一部分用于指示Sidelink传输占用一个LBT子带内的IRB索引的数目和/或位置,所述第一部分包括X个比特,X为正整数。
  7. 根据权利要求6所述的方法,其特征在于,所述X为L-1,所述L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的最低IRB索引上,且所述频域资源分配支持离散的IRB索引分配;
    或者,所述X为[log 2(L)],所述L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的最低IRB索引上,且所述频域资源分配支持连续的IRB索引分配。
  8. 根据权利要求6所述的方法,其特征在于,所述X为L,所述L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的非最低IRB索引上,且所述频域资源分配支持离散的IRB索引分配;
    或者,所述X为
    Figure PCTCN2022073586-appb-100001
    所述L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的非最低IRB索引上,且所述频域资源分配支持连续的IRB索引分配。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,所述频域资源分配域还包括第二部分,所述第二部分用于指示Sidelink传输占用LBT子带的数目和/或位置,所述第二部分包括Y个比特,Y为正整数。
  10. 根据权利要求9所述的方法,其特征在于,所述Y为
    Figure PCTCN2022073586-appb-100002
    所述K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中,所述频域资源分配支持连续的资源块集合的资源分配,且支持SCI预留1次资源;
    或者,所述Y为
    Figure PCTCN2022073586-appb-100003
    所述K为直连通信带宽部分BWP中含有的资源块集合的数 目,K为正整数;其中,所述频域资源分配支持连续的资源块集合的资源分配,且支持SCI预留2次资源。
  11. 根据权利要求9所述的方法,其特征在于,所述Y为K-1+K;其中,所述K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中,所述频域资源分配支持离散的资源块集合的资源分配,且支持SCI预留1次资源;
    或者,所述Y为3K-1;其中,所述K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中所述频域资源分配支持离散的资源块集合的资源分配,且支持SCI预留2次资源。
  12. 根据权利要求9至11中任一项所述的方法,其特征在于,所述第一阶段SCI还包括第一偏移量域,所述第一偏移量域用于指示初次传输的资源中相邻的资源块集合中的IRB索引的偏移量,或者指示预留的第1次资源中相邻的资源块集合中的IRB索引的偏移量,或者指示预留的第2次资源中相邻的资源块集合中的IRB索引的偏移量;
    其中,所述第一偏移量域的比特个数为[log 2(L)];其中,所述L为一个LBT子带内包括的IRB索引的数量。
  13. 根据权利要求9至11中任一项所述的方法,其特征在于,所述第一阶段SCI还包括第二偏移量域,所述第二偏移量域用于指示预留的第1次资源中每个资源块集合相对于初次传输的资源中对应的资源块集合中IRB索引的偏移量,或者指示预留的第2次资源中每个资源块集合相对于初次传输的资源中对应的资源块集合中IRB索引的偏移量;
    其中,所述第二偏移量域的比特个数为[log 2(L)];其中,所述L为一个LBT子带内包括的IRB索引的数量。
  14. 根据权利要求12或13所述的方法,其特征在于,所述频域资源分配支持循环的IRB索引的偏移。
  15. 一种资源确定方法,应用于终端直连通信非授权频段,其特征在于,所述方法由第二终端设备执行,所述方法包括:
    接收第一终端设备基于频域资源分配粒度发送的第一阶段直连链路控制信息SCI;所述第一阶段SCI中包括频域资源分配域,所述频域资源分配域用于指示所述第一终端设备占用的频域资源;
    根据所述第一阶段SCI和所述频域资源分配粒度,确定所述第一终端设备占用的频域资源;
    根据所述第一终端设备占用的频域资源,确定所述第二终端设备可用的频域资源。
  16. 根据权利要求15所述的方法,其特征在于,所述频域资源分配粒度为子信道;所述接收第一终端设备基于频域资源分配粒度发送的第一阶段直连链路控制信息SCI包括:
    确定所述子信道与梳齿资源块IRB之间的映射关系;
    接收第一终端设备基于所述子信道为频域资源分配粒度和所述映射关系发送的第一阶段SCI。
  17. 根据权利要求16所述的方法,其特征在于,所述确定所述子信道与梳齿资源块IRB之间的映射关系,包括:
    确定所述子信道与所述IRB之间的映射关系为一个子信道对应一个IRB索引,其中,一个给定先听后说LBT子带内包括的子信道和IRB索引的个数相同。
  18. 根据权利要求16所述的方法,其特征在于,所述确定所述子信道与梳齿资源块IRB之间的映射关系,包括:
    确定所述子信道与所述IRB之间的映射关系为一个子信道内的每个物理资源块PRB映射到多个IRB索引的特定PRB上;其中,一个给定LBT子带内包括M个子信道和N个IRB,所述M、N分别为正整数。
  19. 根据权利要求15所述的方法,其特征在于,所述频域资源分配粒度为IRB;所述接收第一终端设备基于频域资源分配粒度发送的第一阶段直连链路控制信息SCI包括:
    接收第一终端设备基于所述IRB为频域资源分配粒度发送的第一阶段SCI;
    其中,所述第一阶段SCI中的频域资源分配域用于指示所述第一终端设备初次直连通信Sidelink传输的频域资源大小和/或位置,以及预留直连通信Sidelink资源的频域资源起始位置和大小。
  20. 根据权利要求19所述的方法,其特征在于,所述频域资源分配域包括第一部分,所述第一部分用于指示Sidelink传输占用一个LBT子带内的IRB索引的数目和/或位置,所述第一部分包括X个比特,X为正整数。
  21. 根据权利要求19所述的方法,其特征在于,所述X为L-1,所述L为一个LBT子带内包括的 IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的最低IRB索引上,且所述频域资源分配支持离散的IRB索引分配;
    或者,所述X为[log 2(L)],所述L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的最低IRB索引上,且所述频域资源分配支持连续的IRB索引分配。
  22. 根据权利要求19所述的方法,其特征在于,所述X为L,所述L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的非最低IRB索引上,且所述频域资源分配支持离散的IRB索引分配;
    或者,所述X为
    Figure PCTCN2022073586-appb-100004
    所述L为一个LBT子带内包括的IRB索引的数量,L为正整数;其中,直连链路控制信息SCI位于分配的IRB索引中的非最低IRB索引上,且所述频域资源分配支持连续的IRB索引分配。
  23. 根据权利要求19至22中任一项所述的方法,其特征在于,所述频域资源分配域还包括第二部分,所述第二部分用于指示Sidelink传输占用LBT子带的数目和/或位置,所述第二部分包括Y个比特,Y为正整数。
  24. 根据权利要求23所述的方法,其特征在于,所述Y为
    Figure PCTCN2022073586-appb-100005
    所述K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中,所述频域资源分配支持连续的资源块集合的资源分配,且支持SCI预留1次资源;
    或者,所述Y为
    Figure PCTCN2022073586-appb-100006
    所述K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中,所述频域资源分配支持连续的资源块集合的资源分配,且支持SCI预留2次资源。
  25. 根据权利要求23所述的方法,其特征在于,所述Y为K-1+K;其中,所述K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中,所述频域资源分配支持离散的资源块集合的资源分配,且支持SCI预留1次资源;
    或者,所述Y为3K-1;其中,所述K为直连通信带宽部分BWP中含有的资源块集合的数目,K为正整数;其中所述频域资源分配支持离散的资源块集合的资源分配,且支持SCI预留2次资源。
  26. 根据权利要求23至25中任一项所述的方法,其特征在于,所述第一阶段SCI还包括第一偏移量域,所述第一偏移量域用于指示初次传输的资源中相邻的资源块集合中的IRB索引的偏移量,或者指示预留的第1次资源中相邻的资源块集合中的IRB索引的偏移量,或者指示预留的第2次资源中相邻的资源块集合中的IRB索引的偏移量;
    其中,所述第一偏移量域的比特个数为[log 2(L)];其中,所述L为一个LBT子带内包括的IRB索引的数量。
  27. 根据权利要求23至25中任一项所述的方法,其特征在于,所述第一阶段SCI还包括第二偏移量域,所述第二偏移量域用于指示预留的第1次资源中每个资源块集合相对于初次传输的资源中对应的资源块集合中IRB索引的偏移量,或者指示预留的第2次资源中每个资源块集合相对于初次传输的资源中对应的资源块集合中IRB索引的偏移量;
    其中,所述第二偏移量域的比特个数为[log 2(L)];其中,所述L为一个LBT子带内包括的IRB索引的数量。
  28. 根据权利要求26或27所述的方法,其特征在于,所述频域资源分配支持循环的IRB索引的偏移。
  29. 一种通信装置,应用于终端直连通信非授权频段,其特征在于,所述通信装置包括:
    收发模块,用于基于频域资源分配粒度,向第二终端设备发送第一阶段直连链路控制信息SCI;所述第一阶段SCI中包括频域资源分配域,所述频域资源分配域用于指示所述第一终端设备占用的频域资源。
  30. 一种通信装置,应用于终端直连通信非授权频段,其特征在于,所述通信装置包括:
    收发模块,用于接收第一终端设备基于频域资源分配粒度发送的第一阶段直连链路控制信息SCI;所述第一阶段SCI中包括频域资源分配域,所述频域资源分配域用于指示所述第一终端设备占用的频域资源;
    处理模块,用于根据所述第一阶段SCI和所述频域资源分配粒度,确定所述第一终端设备占用的频域资源,并根据所述第一终端设备占用的频域资源,确定所述第二终端设备可用的频域资源。
  31. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1~14中任一项所述的方法。
  32. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求15~28中任一项所述的方法。
  33. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1~14中任一项所述的方法被实现。
  34. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求15~28中任一项所述的方法被实现。
PCT/CN2022/073586 2022-01-24 2022-01-24 一种资源指示方法、资源确定方法及其装置 WO2023137763A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280000223.0A CN114586390A (zh) 2022-01-24 2022-01-24 一种资源指示方法、资源确定方法及其装置
PCT/CN2022/073586 WO2023137763A1 (zh) 2022-01-24 2022-01-24 一种资源指示方法、资源确定方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/073586 WO2023137763A1 (zh) 2022-01-24 2022-01-24 一种资源指示方法、资源确定方法及其装置

Publications (1)

Publication Number Publication Date
WO2023137763A1 true WO2023137763A1 (zh) 2023-07-27

Family

ID=81769042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073586 WO2023137763A1 (zh) 2022-01-24 2022-01-24 一种资源指示方法、资源确定方法及其装置

Country Status (2)

Country Link
CN (1) CN114586390A (zh)
WO (1) WO2023137763A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024007126A1 (en) * 2022-07-04 2024-01-11 Mediatek Singapore Pte. Ltd. Methods for resource allocation of sl on unlicensed spectrum
WO2024021056A1 (zh) * 2022-07-29 2024-02-01 Oppo广东移动通信有限公司 侧行传输方法和终端
CN117596676A (zh) * 2022-08-08 2024-02-23 中信科智联科技有限公司 直通链路的资源选择方法、装置及终端
CN117676838A (zh) * 2022-08-11 2024-03-08 华为技术有限公司 一种非授权频谱的资源确定方法及装置
CN115915419A (zh) * 2022-09-30 2023-04-04 中兴通讯股份有限公司 一种资源指示方法、资源选择方法、电子设备和存储介质
WO2024060310A1 (en) * 2022-09-30 2024-03-28 Lenovo (Beijing) Limited Methods and apparatuses for multiple channel access for sidelink transmission on unlicensed spectrum
CN117812739A (zh) * 2022-09-30 2024-04-02 维沃移动通信有限公司 资源指示方法、终端及网络侧设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170245313A1 (en) * 2014-08-18 2017-08-24 Lg Electronics Inc. Method for device-to-device communication in wireless communication system and apparatus therefor
CN113785649A (zh) * 2019-05-02 2021-12-10 三星电子株式会社 无线通信系统中用于侧链路反馈的发送和接收的方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170245313A1 (en) * 2014-08-18 2017-08-24 Lg Electronics Inc. Method for device-to-device communication in wireless communication system and apparatus therefor
CN113785649A (zh) * 2019-05-02 2021-12-10 三星电子株式会社 无线通信系统中用于侧链路反馈的发送和接收的方法和装置

Also Published As

Publication number Publication date
CN114586390A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
WO2023137763A1 (zh) 一种资源指示方法、资源确定方法及其装置
WO2023130323A1 (zh) 一种资源分配指示方法、资源分配获取方法及其装置
WO2023130322A1 (zh) 确定共享信道占用时间的方法及其装置
WO2023197271A1 (zh) 一种资源配置的方法及其装置
WO2019037610A1 (zh) 数据传输方法、网络设备及终端设备
CN114667755A (zh) 数据传输方法和装置
CN113841430B (zh) 一种下行控制信息的对齐方法及其装置
WO2023197270A1 (zh) 一种资源配置的方法及其装置
WO2023201497A1 (zh) 一种确定非授权频谱中频域资源的方法及装置
CN114144992A (zh) 一种多载波聚合能力的上报方法及其装置
WO2024045078A1 (zh) 一种终端处理能力的上报方法、数据处理方法及其装置
WO2022226847A1 (zh) 一种直连测距的资源复用方法及其装置
WO2023201669A1 (zh) 一种pscch的发送/接收方法及其装置
WO2023193279A1 (zh) 频域资源配置方法及装置
WO2023201670A1 (zh) 一种反馈信息的发送/接收方法及其装置
WO2024000528A1 (zh) 一种非授权频段中占用信道的方法及其装置
WO2024098265A1 (zh) 一种上行数据传输方法及装置
WO2022266963A1 (zh) 资源分配方法及其装置
WO2023004653A1 (zh) 一种时隙结构的配置方法及其装置
WO2024026701A1 (zh) 一种信道占用时间cot的共享方法及其装置
WO2023197121A1 (zh) 一种发送直连测距信号的方法及装置
WO2023130332A1 (zh) 多用户正交频分复用ofdm子载波分配方法及其装置
WO2024031577A1 (zh) 时域资源分配方法、装置、设备及存储介质
WO2024000329A1 (zh) 一种信道占用信息的发送方法及其装置
WO2023178622A1 (zh) 一种dmrs端口指示方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921199

Country of ref document: EP

Kind code of ref document: A1