WO2023136538A1 - 식물성 복합 천연 계면활성제를 이용한 생체 삽입용 무세포 진피 기질 및 이의 제조방법 - Google Patents

식물성 복합 천연 계면활성제를 이용한 생체 삽입용 무세포 진피 기질 및 이의 제조방법 Download PDF

Info

Publication number
WO2023136538A1
WO2023136538A1 PCT/KR2023/000140 KR2023000140W WO2023136538A1 WO 2023136538 A1 WO2023136538 A1 WO 2023136538A1 KR 2023000140 W KR2023000140 W KR 2023000140W WO 2023136538 A1 WO2023136538 A1 WO 2023136538A1
Authority
WO
WIPO (PCT)
Prior art keywords
dermal matrix
acellular
acellular dermal
surfactant
implantation
Prior art date
Application number
PCT/KR2023/000140
Other languages
English (en)
French (fr)
Inventor
이형석
김수동
박동욱
김미란
김주희
김중현
Original Assignee
주식회사 이레텍코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이레텍코리아 filed Critical 주식회사 이레텍코리아
Publication of WO2023136538A1 publication Critical patent/WO2023136538A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • A61L27/3687Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment characterised by the use of chemical agents in the treatment, e.g. specific enzymes, detergents, capping agents, crosslinkers, anticalcification agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/362Skin, e.g. dermal papillae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • A61L27/3691Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment characterised by physical conditions of the treatment, e.g. applying a compressive force to the composition, pressure cycles, ultrasonic/sonication or microwave treatment, lyophilisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/60Materials for use in artificial skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • A61L2300/414Growth factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/80Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special chemical form
    • A61L2300/802Additives, excipients, e.g. cyclodextrins, fatty acids, surfactants

Definitions

  • the present invention relates to an acellular dermal matrix for in vivo implantation using a vegetable composite natural surfactant and a method for manufacturing the same, and more particularly, to a technology using a vegetable composite natural surfactant to reduce cell residual and toxic influx, and has excellent human body compatibility. It relates to an acellular dermal matrix for in vivo implantation and a manufacturing method.
  • the skin tissue of the human body is largely divided into three parts, consisting of the outermost layer of the skin, the epidermis, the lower layer of the dermis, and the subcutaneous tissue.
  • the double epidermal layer consists of the basementmembrane, which allows the epidermal layer and the dermal layer to firmly bond, to epithelial cells differentiated into several layers, melanocytes, and immune cells. It is composed of several secreted extracellular substances.
  • methods for regenerating damaged skin tissue include autograft, transplantation of the patient's own skin, There are three methods: allograft transplantation and xenograft transplantation of animal skin.
  • autograft is the most ideal, but if the burned area is extensive, there is a limit to the area where tissue can be secured, and new trauma occurs in the healthy area where the skin is removed, increasing the patient's pain and taking time to heal. It takes a lot of money, and the economic burden is also great.
  • autologous transplantation cannot be applied or transplantation must be performed several times.
  • the most commonly used method at present is to remove the epidermis using the skin of a donated cadaver, and then use the acellular dermis in which cells in the dermis are removed to eliminate immune rejection.
  • the donor's cells remain in the dermis, it can cause an immune rejection reaction in the transplant recipient, so the process of removing the cells is very important.
  • surfactants that exhibit sufficient cell removal effects contain substances such as SDS (Sodium Dodecyl Sulfate) that are toxic to the human body, so a new surfactant that is harmless to the human body and exhibits sufficient cell removal effects is needed.
  • the acellular dermal matrix prepared through this can be used as a filler for living body transplantation or living body insertion.
  • conventional particulate acellular dermal matrices are degraded in vivo by proteolytic enzymes including collagenase at a certain rate, and thus have low biostorability of about 6 to 12 months.
  • HA Hyaluronic acid
  • Hyaluronic acid which has excellent moisturizing properties with a water content of 50 to 200 times, provides elasticity to the skin, and has an excellent anti-inflammatory effect, is extracted from living tissues such as cow eyes and chicken combs or produced through microbial culture. and is used as a material.
  • Hyaluronic acid has been developed as a filler for various purposes because it can be purified to various molecular weights and the particle size can be controlled through cross-linking.
  • the present invention was made to solve the problems of the prior art as described above, and a non-cellular dermal matrix for in vivo implantation and a manufacturing method with reduced cell residual amount and toxic inflow using a vegetable complex natural surfactant and excellent human body compatibility. It is intended to provide technical information.
  • the method for manufacturing an acellular dermal matrix for in vivo implantation of the present invention includes the steps of (i) removing the epidermal layer from skin tissue (ii) plant composite natural skin tissue from which the epidermal layer is removed. Preparing acellular dermis by removing cells of the dermal layer by treatment with a surfactant; (iii) pulverizing the acellular dermis into particles to prepare a powder form.
  • step (iii) crosslinking by adding a crosslinking agent and hyaluronic acid may be included, and after step (iii), adding epidermal growth factor (EGF) as an additive may be included. can do.
  • EGF epidermal growth factor
  • step (ii) may include removing cells of the dermal layer by performing ultrasonic treatment on the skin tissue removed from the epidermal layer in parallel.
  • dicholine may be further included in the cross-linking agent, and the particulate acellular dermis may have a particle size of 300-800 ⁇ m.
  • the vegetable composite natural surfactant is based on 100 parts by weight of the vegetable composite natural surfactant, 5 to 13 parts by weight of an anionic surfactant, 1 to 9 parts by weight of an organic acid, 2 to 10 parts by weight of sodium chloride (NaCl) or sodium hydroxide (NaOH) It is prepared by including 68 to 92 parts by weight of sterile distilled water by weight and the balance, and the anionic surfactant is LES (Disodium Lauryl Sulfosuccinate), olive surfactant (Sodium PEG-7 Olive oil carboxylate), Coco Clucoside (Coco -Glucoside), apple wash (Sodium Cocoyl Apple Amino Acids), and xanthan gum (Xanthan Gum) may include at least one selected from the group consisting of.
  • an acellular dermal matrix for implantation into a living body prepared by the method for manufacturing an acellular dermal matrix for implantation into a living body.
  • the method for manufacturing an acellular dermal matrix for in vivo insertion according to the present invention has the effect of reducing cell residual amount and toxic influx while minimizing cellular tissue damage by removing cells using a vegetable complex natural surfactant. It has excellent suitability and has the effect of showing remarkably low inflammatory and immune responses.
  • the acellular dermal matrix for in vivo implantation according to the present invention has high viscoelasticity and a feeling of filling, and has excellent skin regeneration effects.
  • FIG. 1 is a flow chart showing a step-by-step method of manufacturing an acellular dermal matrix for in vivo implantation using a vegetable composite natural surfactant according to an embodiment of the present invention.
  • FIG. 2 is a photograph showing an acellular dermal matrix prepared according to an embodiment of the present invention.
  • Example 3 is a photograph showing the result of observing the remaining cells of the acellular dermal matrix of Example 1 and Comparative Examples of the present invention.
  • the method for manufacturing an acellular dermal matrix for in vivo implantation using a vegetable composite natural surfactant of the present invention includes (i) removing the epidermal layer from skin tissue, (ii) treating the skin tissue from which the epidermal layer is removed with a vegetable composite natural surfactant to prepare acellular dermis by removing cells of the dermal layer, and (iii) pulverizing the acellular dermis into particles to prepare a powder form. .
  • the skin tissue is allogeneic skin, and cells in the dermal layer are removed after the epidermal layer is removed to eliminate immune rejection.
  • the process of removing the epidermal layer may include a process of treating a mixture of one or more selected from the group consisting of antibiotics, sodium chloride (NaCl), hydrogen peroxide (H2O2) and trypsin EDTA (Trypsin EDTA), but is not limited thereto. .
  • the antibiotic is at least one selected from the group consisting of penicillin, streptomycin, kanamycin, neomycin, bacitracin, gentamicin and vancomycin. used, but is not limited thereto.
  • Removal of the skin layer may be performed according to various methods known in the art, and there is no particular limitation thereto.
  • Cells of the dermal layer may be removed by treating the vegetable composite natural surfactant to prepare acellular dermis, and may be removed in parallel with the vegetable composite natural surfactant and ultrasonic treatment.
  • the vegetable compound natural surfactant and solvent may be mixed and treated.
  • the solvent tri(n-butyl) phosphate (TNBP) may be used, but is not limited thereto.
  • concentration of the tri (n-butyl) phosphate (TNBP) is preferably 0.001% or more and 0.4% or less. If less than 0.001% is treated, the treatment time becomes longer, and there is concern about damage by other chemicals. When treated in excess of 0.4%, it affects the extracellular matrix constituting the cadaver skin, making it difficult to create angiogenesis and engraftment.
  • Cells of the dermal layer may be removed by a chemical method and a physical method in parallel, and may be removed by treating the dermal layer with ultrasonic waves at 10 to 100 kHz for 5 to 60 minutes.
  • the vegetable composite natural surfactant is based on 100 parts by weight of the vegetable composite natural surfactant, 5 to 13 parts by weight of anionic surfactant, 1 to 9 parts by weight of organic acid, 2 to 10 parts by weight of sodium chloride (NaCl) or sodium hydroxide (NaOH) And it may be prepared by including 68 to 92 parts by weight of sterile distilled water of the balance, but is not limited thereto.
  • the anionic surfactant is LES (Disodium Lauryl Sulfosuccinate), Olive Surfactant (Sodium PEG-7 Olive oil carboxylate), Coco-Glucoside, Sodium Cocoyl Isethionate , Apple wash (Sodium Cocoyl Apple Amino Acids) and may be one or more selected from the group consisting of xanthan gum (Xanthan Gum), but is not limited thereto.
  • the anionic surfactant is a plant-derived natural surfactant and is synthesized using only materials derived from natural products.
  • the anionic surfactant has higher cell washing power than existing sodium dodecyl sulfate (SDS, Sodium Dodecyl Sulfate), so that cell residual amount It has the characteristic of significantly reducing toxic surfactant, so it can reduce the inflow of toxicity when implanted into a patient, minimize the immune rejection reaction by reducing the residual amount of cells in the dermal matrix, and at the same time lower the probability of bacterial or viral infection. there is.
  • SDS sodium dodecyl sulfate
  • the organic acid may be one or more selected from the group consisting of sulfuric acid, phosphoric acid, acetic acid, oxalic acid, tartaric acid and citric acid, but , but is not limited thereto.
  • a washing step may be included to remove the surfactant remaining in the dermal layer from which the cells are removed, and a freeze-drying step may be included to pulverize the washed acellular dermis into particles.
  • the washing in the washing step may be washing with a mixture of one or more selected from the group consisting of ethyl alcohol, isopropyl alcohol, butanol, and propanol, It is not limited thereto.
  • the lyophilization step may further include a step of treating the prepared cryoprotectant composition including a cryoprotectant, phosphate buffer, EDTA or citric acid prior to lyophilization, and more specifically, Putting the skin tissue from which the cells are removed into a cryoprotective composition may further include stirring at room temperature for 90 to 120 minutes, but is not limited thereto.
  • the freeze-drying may be performed at -70 ° C or less for 48 hours, but is not limited thereto.
  • the cryoprotectant may include one or more selected from the group consisting of maltitol, sorbitol, lactose, maltose, glucose, and galactose as a cryoprotectant composition.
  • step (iii) a step of crosslinking by adding a crosslinking agent and hyaluronic acid may be included, and dicholine may be further included in the crosslinking agent.
  • the crosslinking agent may be included in an amount of 5 ⁇ L to 10 ⁇ L per 1 mL of the acellular dermal matrix for implantation in vivo, but is not limited thereto.
  • the hyaluronic acid which is a polysaccharide having a very high reactivity with water, is a non-branched chain in which glucuronic acid/glucosamine disaccharide unit is continuously linked.
  • a polysaccharide it is a substance that is widely present in the extracellular matrix of various tissues such as skin or cartilage.
  • As the main functions of the hyaluronic acid space-filling, structure-stabilizing, cell-coating, cell-protecting, and the like are known. In addition, it structurally forms an integrated system with fibrous proteins in the extracellular space to provide a matrix with elasticity, viscosity, protection, lubrication, and stabilization functions.
  • the cross-linked hyaluronic acid gel in which the hyaluronic acid is cross-linked, has excellent biocompatibility and is degraded with time in vivo.
  • the cross-linked hyaluronic acid gel may be prepared by stirring and mixing the hyaluronic acid and the cross-linking agent in an aqueous solution, and chemically binding the hyaluronic acid polymer chains with the cross-linking agent.
  • crosslinked hyaluronic acid gel when administered in vivo, after the gel is decomposed in vivo, the remaining crosslinking agent component is recognized as a foreign substance in the living body and may cause adverse effects such as causing an inflammatory reaction.
  • hyaluronic acid with a low crosslinking rate can be prepared by stirring a mixture containing a small amount of a crosslinking agent and water in a high viscosity gel phase at a high concentration condition in the boundary phase of the solid powder phase and the solution phase under acidic or alkaline conditions.
  • the hyaluronic acid can exhibit excellent viscoelasticity despite a low cross-linking rate, and when the cross-linked hyaluronic acid gel is prepared for insertion into a living body, when hyaluronic acid is injected into a living body, it easily spreads to surrounding tissues or has a poor sense of filling. can solve the problem.
  • the dicholine is also called small type dermatan sulfate proteoglycan, bone proteoglycan II, PG-40, PG-II, PG-2, DS-PGII, and is a core protein with a molecular weight of 38,000 It is a proteoglycin with a mixed chain of chodroitin sulfae/dermatan sulate, which is present in combination with collagen fibers.
  • the dicholine When the dicholine is further included in the hyaluronic acid and the crosslinking agent, it exhibits a significantly lower inflammatory or fibrotic response than when only the hyaluronic acid and the crosslinking agent are added.
  • the additive may include a growth factor or cytokine as an active ingredient, and the additive may include epidermal growth factor (EGF).
  • EGF epidermal growth factor
  • antioxidants may include one or more selected from the group consisting of, preferably epidermal growth factor (EGF) or may further include tropoelastin.
  • EGF epidermal growth factor
  • the epidermal growth factor is a protein composed of 53 amino acids, which promotes the growth of epidermal cells by inducing cell division, and synthesizes collagen, which is a component of epidermal cells and endothelial cells and the dermis. It is a component that promotes the proliferation of fibroblasts and has an excellent skin regeneration effect.
  • the epidermal growth factor (EGF) is a growth factor secreted in humans and animals and has physiological activity, so even a small amount of EGF (EPIDERMAL GROWTH FACTOR) can stimulate cell growth and accelerate cell metabolism .
  • the tropoelastin is an elastin precursor protein molecule that can improve the biological or mechanical properties of tissues inserted into the human body and can be useful in breast implant surgery because of its enhanced elasticity.
  • the acellular dermal matrix for living body implantation using a vegetable complex natural surfactant according to the present invention acts as a scaffold in vivo, acts as a physiological space in which cells of the implanted body can move and grow, and forms angiogenesis ( Capillaries are formed by angiogenesis, which can become tissue of the implanted recipient over time, and can be used for repair and shaping of damaged tissue.
  • a vegetable composite natural surfactant of the present invention was prepared.
  • the vegetable natural surfactant 5 to 13 parts by weight of an anionic surfactant, 1 to 9 parts by weight of an organic acid, 2 to 10 parts by weight of sodium chloride (NaCl) or sodium hydroxide (NaOH), relative to 100 parts by weight of a vegetable composite natural surfactant It was prepared by including 68 to 92 parts by weight of sterile distilled water of parts and balance.
  • the anionic surfactant is LES (Disodium Lauryl Sulfosuccinate), olive surfactant (Sodium PEG-7 Olive oil carboxylate), Coco-Glucoside, Apple Wash (Sodium Cocoyl Apple Amino Acids) and xanthan gum It may be one or more selected from the group consisting of (Xanthan Gum).
  • the organic acid may be one or more selected from the group consisting of sulfuric acid, phosphoric acid, acetic acid, oxalic acid, tartaric acid, and citric acid.
  • the skin tissue on which the cell removal process is completed is washed with a mixture of one or more selected from the group consisting of ethyl alcohol, isopropyl alcohol, butanol, and propanol to obtain skin tissue Remaining reagents or unnecessary tissues were removed.
  • the cryoprotectant composition includes at least one selected from the group consisting of maltitol, sorbitol, lactose, maltose, glucose and galactose; phosphate buffer saline; ethylenediaminetetraacetic acid (EDTA) or citric acid; Sterile distilled water may be mixed at a weight ratio of 0.5 to 1.5: 0.01 to 0.5: 0.6 to 1.2: 5 to 10, and more specifically, a mixture at a weight ratio of 1: 0.1: 0.9: 8 is used, but is limited thereto It is not.
  • the stirred skin tissue is freeze-dried at -70 ° C or less for 48 hours to prepare the acellular dermal matrix of the present invention, and a moisture test is performed using a moisture meter. Re-freeze-dried.
  • the acellular dermal matrix having less than 10% water content was ground to a size of 300-800 ⁇ m using a cutting mill.
  • the acellular dermal matrix pulverized in Example 1 was sufficiently hydrated in 10 mL of sterile distilled water, stirred at room temperature for about 20 minutes, and 50 ⁇ L of a cross-linking agent was added to a 1 mg/mL aqueous solution of hyaluronic acid whose pH was adjusted to between 11 and 12. After cross-linking by adding , the acellular dermal tissue was washed with sterile distilled water, freeze-dried, and pulverized.
  • An acellular dermal matrix was prepared by including a step of removing cells using sodium dodecyl sulfate (SDS) instead of the step of removing cells using the vegetable composite natural surfactant of the present invention.
  • SDS sodium dodecyl sulfate
  • Example 1 cell-free Comparative Example 1 through the same process as in Example 1, except that 5 to 10% by weight of Sodium Dodecyl Sulfate (SDS) was used instead of the natural surfactant of Preparation Example 1.
  • SDS Sodium Dodecyl Sulfate
  • Comparative Example 2 was prepared by changing the anionic surfactant in the preparation method of Preparation Example 1 to include 20 parts by weight of anionic surfactant
  • Comparative Example 3 was prepared by including 15 parts by weight of organic acid, sodium chloride or sodium hydroxide What was prepared including 15 parts by weight was set as Comparative Example 4.
  • the present invention despite the use of natural surfactants, is characterized in that it exhibits a cell removal effect higher than that of conventionally commonly used SDS, and the acellular dermal matrix of Example 1 and Comparative Examples 1 to 4 Residual cells were confirmed as targets.
  • Example 1 using a natural surfactant did not confirm any remaining cells, but Comparative Example 1 using SDS (FIG. 3b) confirmed that many remaining cells were detected.
  • the natural surfactant of the present invention is prepared using only raw materials derived from natural products, and is expected to have significantly lower cytotoxicity than SDS, which was previously used as a surfactant. The results were confirmed.
  • the cytotoxicity according to the surfactant and SDS treatment of Preparation Example 1 was evaluated.
  • MTT-assay was performed to confirm the survival rate for each treatment concentration.
  • the experimental results were obtained from a total of two independent experiments, and a surfactant non-treated group was used as a control group.
  • the natural surfactant of the present invention is a substance with low cytotoxicity, This means that the side effects associated with manufacturing and administration into the body are significantly reduced, and when manufactured as a filler, the acellular dermal matrix of the present invention can reduce the amount of cell residual and toxic inflow, and hyaluronic acid, crosslinking agent and dicorin When added, it can be manufactured into a product that can exhibit significantly lower inflammatory and immune responses.
  • thermogravimetric analyzer TGA
  • TGA analysis was used to analyze the cross-linking ratio of hyaluronic acid to acellular dermis.
  • TGA measurement conditions were measured from room temperature to 800 °C at a temperature rise rate of 10 °C/min, and the atmospheric state during measurement was performed by injecting N2 gas at a rate of 100 mL/min to prevent thermal oxidation of the sample.
  • Weight analysis of cross-linked hyaluronic acid was conducted for the section where the change in weight of pure hyaluronic acid was greatest, and the analysis showed that 0.5 to 3% of the acellular dermis was cross-linked.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Zoology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

본 발명은 식물성 복합 천연 계면활성제를 이용한 생체 삽입용 무세포 진피 기질 및 이의 제조방법에 관한 기술로, 보다 상세하게는 식물성 복합 천연 계면활성제를 이용하여 세포 잔류량 및 독성 유입량이 감소하고 인체 적합성이 우수한 생체 삽입용 무세포 진피 기질 및 제조방법에 관한 것이다. 본 발명에 따른 생체 삽입용 무세포 진피 기질의 제조방법은 (i) 피부 조직에서 표피층을 제거하는 단계 (ii) 상기 표피층이 제거된 피부조직에 식물성 복합 천연 계면활성제를 처리하여 진피층의 세포를 제거하여 무세포 진피를 제조하는 단계 (iii) 상기 무세포 진피를 입자형으로 분쇄하여 분말 형태로 제조하는 단계를 포함한다. 본 발명에 따른 생체 삽입용 무세포 진피 기질 제조방법은 식물성 복합 천연 계면활성제를 이용하여 세포를 제거하여 세포 조직 손상을 최소화 하면서도 세포 잔류량 및 독성 유입량을 감소시킬 수 있는 효과가 있으며, 생체 주입 시 인체 적합성이 우수하고, 현저히 낮은 염증 및 면역 반응을 나타내는 효과가 있다.

Description

식물성 복합 천연 계면활성제를 이용한 생체 삽입용 무세포 진피 기질 및 이의 제조방법
본 발명은 식물성 복합 천연 계면활성제를 이용한 생체 삽입용 무세포 진피 기질 및 이의 제조방법에 관한 기술로, 보다 상세하게는 식물성 복합 천연 계면활성제를 이용하여 세포 잔류량 및 독성 유입량이 감소하고 인체 적합성이 우수한 생체 삽입용 무세포 진피 기질 및 제조방법에 관한 것이다.
인체의 피부조직은 크게 세 부분으로 나뉘어지는데, 피부의 가장 바깥쪽을 이루는 표피층과 그 아래층의 진피층, 그리고 피하조직으로 이루어진다. 이중 표피층은 표피층과 진피층이 단단하게 결합할 수 있도록 하는 기저막(basementmembrane)으로부터 여러 층으로 분화된 상피세포와 그 밖에 멜라닌세포, 면역세포로 이루어지며, 표피층 아래의 진피층은 주로 섬유아세포와 이 세포가 분비한 여러 세포외간물질(extracellular matrix)로 이루어진다.
심한 화상, 외상, 상피암 절제 및 피부 질환 등으로 피부가 심각하게 손실된 환자의 경우, 손상된 피부 조직을 재생시키기 위한 방법으로는 환자 자신의 피부를 이식하는 자가 이식(autograft), 다른 사람의 피부를 이식하는 동종이식(allograft), 동물의 피부를 이식하는 이종이식(xenograft)의 세 가지 방법이 있다.
이들 방법 중 자가이식이 가장 이상적이지만, 화상부위가 광범위한 경우 조직을 확보할 수 있는 부위에 제한이 따르며, 피부를 떼어낸 건강한 부위에 새로운 외상이 발생하여 환자의 고통이 증가하고, 완치되는데 시간이 많이 소요되며, 경제적 부담 또한 크다. 게다가 심한 화상환자와 같이 건강한 신체부위가 충분히 남아있지 않는 경우에는 자가 이식방법을 적용할 수 없거나 여러 차례에 걸쳐 이식수술을 시행하여야 한다는 문제점이 있다.
상기와 같은 문제점을 해결하기 위하여, 다른 사람의 피부를 이용하는 동종이식, 돼지 등과 같은 다른 동물의 피부를 이용하는 이종이식 등이 시도되고 있으나, 면역거부 반응뿐만 아니라 다른 부작용을 종종 초래하고 있다.
따라서, 현재 가장 일반적으로 사용되는 방법은 기증된 사체의 피부를 이용하여 표피를 제거한 후, 면역거부반응을 없애기 위해 진피 내 세포들을 제거한 무세포 진피를 이용하는 것이다.
진피 내 공여자의 세포가 잔존하는 경우, 이식자에게 면역거부 반응을 유발할 수 있어 세포를 제거하는 과정이 매우 중요하다. 하지만, 충분한 세포 제거 효과를 나타내는 계면활성제는 인체에 독성을 나타내는 소듐도데실 설페이트(SDS, Sodium Dodecyl Sulfate)와 같은 물질을 포함하고 있어, 인체에 무해하면서도 충분한 세포 제거효과를 보이는 새로운 계면활성제가 필요하며, 이를 통해 제조된 무세포 진피 기질을 생체 이식 또는 생체 삽입용 필러로 활용할 수 있다. 그러나 종래 입자형 무세포 진피 기질은 생체 내에서 콜라게나제를 비롯한 단백질 분해효소들에 의해 일정 속도로 분해되어 약 6~12 개월 정도의 낮은 생체보존성을 보이는 단점을 가지고 있다.
생체 삽입용 물질인 필러는 결손된 신체 부위 및 조직 복원용으로 사용될 뿐만 아니라, 성형외과 분야에서 매우 일상적으로 사용되고 있다. 이들 필러의 성분은 생체 적합도가 높은 생분해성 생체재료 및 합성재료가 주를 이루어 왔다. 필러 성분 중에 주류를 이루고 있는 히알루론산 (hyaluronic acid (HA))은 피부, 관절, 눈, 혈관, 뇌 등에 존재하는 생체 구성물질로서 안전성이 입증된 생체재료이다. 수분 함유량이 50 ~ 200 배에 달할 정도로 보습성이 뛰어나고 피부에 탄력을 제공할 뿐만 아니라, 염증억제 효과가 뛰어난 히알루론산은 소의 눈, 닭 벼슬과 같은 생체조직에서 추출하여 사용하거나 미생물 배양을 통해 생산하여 재료로 이용되고 있다. 히알루론산은 다양한 분자량으로 정제될 수 있으며 가교화 (cross-linking)를 통해 입자의 크기를 조절할 수 있어 다양한 목적의 필러로 개발되었다.
하지만, 생체 내에 히알루론산이 주입되었을 때, 쉽게 주변 조직으로 퍼져 버리거나 충진감이 떨어지는 문제가 있으며, 무세포 진피기질을 제조할 시 화학계면활성제로 인해 독성이 잔존하는 문제가 있어, 이를 보완할 수 있는 무세포 진피 기질 생체 이식 조성물과 제조방법에 대한 연구가 필요하다.
본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위해 안출된 것으로, 식물성 복합 천연 계면활성제를 이용하여 세포 잔류량 및 독성 유입량이 감소하고 인체 적합성이 우수한 생체 삽입용 무세포 진피 기질 및 제조방법에 대한 기술 내용을 제공하고자 하는 것이다.
상기한 바와 같은 기술적 과제를 달성하기 위해서, 본 발명의 생체 삽입용 무세포 진피 기질의 제조방법은 (i) 피부 조직에서 표피층을 제거하는 단계 (ii) 상기 표피층이 제거된 피부조직에 식물성 복합 천연 계면활성제를 처리하여 진피층의 세포를 제거하여 무세포 진피를 제조하는 단계 (iii) 상기 무세포 진피를 입자형으로 분쇄하여 분말 형태로 제조하는 단계를 포함한다.
또한, 상기 (iii) 단계 이후에, 가교제 및 히알루론산을 첨가하여 가교결합시키는 단계를 포함할 수 있으며, 상기 (iii) 단계 이후에, 첨가제로 표피세포성장인자(EGF)를 첨가하는 단계를 포함할 수 있다.
또한, 상기 (ii) 단계는, 상기 표피층에 제거된 피부조직에 초음파 처리를 병행하여 진피층의 세포를 제거하는 단계를 포함할 수 있다.
또한, 상기 가교제에 디코린을 추가로 포함할 수 있으며, 상기 입자형 무세포 진피는 300-800μm의 입자크기를 포함할 수 있다.
그리고, 상기 식물성 복합 천연 계면활성제는 식물성 복합 천연 계면활성제 100중량부를 기준으로, 음이온성 계면활성제 5 내지 13 중량부, 유기산 1 내지 9 중량부, 염화나트륨(NaCl) 또는 수산화나트륨(NaOH) 2 내지 10 중량부 및 잔부의 멸균증류수 68 내지 92 중량부를 포함하여 제조된 것이고, 상기 음이온성 계면활성제는 LES(Disodium Lauryl Sulfosuccinate), 올리브계면활성제(Sodium PEG-7 Olive oil carboxylate), 코코클루코사이드(Coco-Glucoside), 애플워시(Sodium Cocoyl Apple Amino Acids) 및 잔탄검(Xanthan Gum)으로 구성된 군에서 하나 이상 선택된 것을 포함할 수 있다.
본 발명의 또 다른 하나의 측면에 따르면, 상기 생체 삽입용 무세포 진피 기질의 제조방법에 의하여 제조된 생체 삽입용 무세포 진피 기질을 제공할 수 있다.
본 발명에 따른 생체 삽입용 무세포 진피 기질 제조방법은 식물성 복합 천연 계면활성제를 이용하여 세포를 제거하여 세포 조직 손상을 최소화 하면서도 세포 잔류량 및 독성 유입량을 감소시킬 수 있는 효과가 있으며, 생체 주입 시 인체 적합성이 우수하고, 현저히 낮은 염증 및 면역 반응을 나타내는 효과가 있다.
또한, 본 발명에 따른 생체 삽입용 무세포 진피 기질은 높은 점탄성 및 충진감을 가지고 있으며, 피부 재생효과가 우수한 특징이 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 청구 범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 일실시예에 따라 식물성 복합 천연 계면활성제를 이용한 생체 삽입용 무세포 진피 기질의 제조방법을 단계별로 나타낸 순서도이다.
도 2는 본 발명의 일실시예에 따라 제조된 무세포 진피 기질을 나타낸 사진이다.
도 3은 본 발명의 실시예1 및 비교예들의 무세포 진피 기질의 잔존 세포를 관찰한 결과를 나타낸 사진이다.
이하, 구체적인 예를 들어 본 발명에 따른 식물성 복합 천연 계면활성제를 이용한 생체 삽입용 무세포 진피 기질 및 이의 제조방법을 더욱 상세히 설명한다. 다만 다음에 소개되는 실시예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위한 예로서 제공되는 것이다.
따라서 본 발명은 이하 제시되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있으며, 이하 제시되는 실시예들은 본 발명의 사상을 명확하게 하기 위해 기재된 것일 뿐, 본 발명이 이에 제한되는 것은 아니다.
이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
또한 명세서 및 첨부된 특허청구범위에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다.
이하, 본 발명을 상세히 설명하도록 한다.
본 발명의 식물성 복합 천연 계면활성제를 이용한 생체 삽입용 무세포 진피 기질 제조방법은 (i) 피부 조직에서 표피층을 제거하는 단계, (ii) 상기 표피층이 제거된 피부조직에 식물성 복합 천연 계면활성제를 처리하여 진피층의 세포를 제거하여 무세포 진피를 제조하는 단계, (iii) 상기 무세포 진피를 입자형으로 분쇄하여 분말 형태로 제조하는 단계를 포함하는 생체 삽입용 무세포 진피 기질의 제조방법을 제공한다.
구체적으로, 상기 피부 조직은 동종 피부로 면역거부반응을 없애기 위하여 표피층이 제거된 후 진피층 내 세포가 제거된다.
상기 표피층을 제거하는 과정은 항생제, 염화나트륨(NaCl), 과산화수소(H2O2) 및 트립신 EDTA(Trypsin EDTA)로 구성되는 군에서 하나 이상 선택된 것의 혼합물을 처리하는 과정을 포함할 수 있으나, 이에 제한되는 것은 아니다.
상기 항생제는 페니실린(penicillin), 스트렙토마이신(streptomycin), 카나마이신(kanamycin), 네오마이신(neomycin), 바시트라신(bacitracin), 젠타마이신(gentamicin) 및 반코마이신(Vancomycin)으로 구성된 군에서 하나 이상 선택된 것을 사용하였으나, 이에 제한되는 것은 아니다.
상기 표피층의 제거는 당업계에 공지된 다양한 방법에 따라 수행될 수 있고 이에 특별한 제한은 없다.
상기 진피층의 세포의 제거는 상기 식물성 복합 천연 계면활성제를 처리하여 무세포 진피를 제조할 수 있으며, 상기 식물성 복합 천연 계면활성제와 초음파 처리를 병행하여 제거할 수 있다.
또한, 상기 진피층의 제거 시 세포 및 바이러스를 동시에 제거하기 위하여 상기 식물성 복합 천연 계면활성제 및 용매를 혼합하여 처리할 수 있다. 용매는 트리(n-부틸) 인산(tri(n-butyl) phosphate; TNBP)를 사용할 수 있으나, 이에 제한되는 것은 아니다. 상기 트리(n-부틸) 인산(tri(n-butyl) phosphate; TNBP)의 농도는 0.001% 이상 0.4% 이내가 바람직하다. 0.001% 미만를 처리하면 처리시간이 길어져, 다른 화학물질에 의한 손상이 우려된다. 0.4% 초과하여 처리하게 되면 사체피부를 구성하고 있는 세포외 기질에 영향을 주어 혈관형성 생성 및 생착이 어렵다.
상기 진피층의 세포의 제거는 화학적인 방법과 물리적인 방법을 병행하여 세포를 제거할 수 있으며, 상기 진피층에 5 내지 60분간 10 내지 100 ㎑의 초음파를 처리하여 제거할 수 있다.
상기 식물성 복합 천연 계면활성제는 식물성 복합 천연 계면활성제 100중량부를 기준으로, 음이온성 계면활성제 5 내지 13 중량부, 유기산 1 내지 9 중량부, 염화나트륨(NaCl) 또는 수산화나트륨(NaOH) 2 내지 10 중량부 및 잔부의 멸균증류수 68 내지 92 중량부를 포함하여 제조된 것일 수 있으나, 이에 제한되는 것은 아니다.
*이때, 상기 음이온성 계면활성제는 LES(Disodium Lauryl Sulfosuccinate), 올리브 계면활성제(Sodium PEG-7 Olive oil carboxylate), 코코클루코사이드(Coco-Glucoside), 소디움 코코일 이세치오네이트(Sodium Cocoyl Isethionate), 애플워시(Sodium Cocoyl Apple Amino Acids) 및 잔탄검(Xanthan Gum)으로 구성된 군에서 하나 이상 선택된 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 음이온성 계면활성제는 식물 유래의 천연 계면활성제로 천연물로부터 유래한 재료만을 이용하여 합성한 것으로서, 천연재료임에도 불구하고 기존 소듐도데실 설페이트(SDS, Sodium Dodecyl Sulfate) 보다 세포 세척력이 높아 세포 잔류량이 현저히 줄어드는 특징이 있으며, 독성이 있는 계면활성제를 사용하지 않아 환자에 이식 시 독성의 유입량을 줄이고, 진피 기질 내에 세포의 잔류량을 줄여 면역거부 반응을 최소화함과 동시에 세균이나 바이러스의 감염 확률을 낮출 수 있다.
이때, 상기 유기산은 황산(sulfuric acid), 인산(phosphoric acid), 아세트산(acetic acid), 옥살산(Oxalic Acid), 타르타르산(tartaric acid) 및 구연산(citric acid)으로 구성된 군에서 하나 이상 선택된 것일 수 있으나, 이에 제한되는 것은 아니다.
상기 세포가 제거된 진피층에 잔존하는 계면활성제를 제거하기 위해 세척 단계를 포함할 수 있고, 상기 세척이 완료된 무세포 진피를 입자형으로 분쇄하기 위해 동결건조하는 단계를 포함할 수 있다.
구체적으로, 상기 세척 단계의 세척은 에틸 알코올(ethyl alcohol), 이소프로필알코올(isopropyl alcohol), 뷰탄올(butanol) 및 프로판올(propanol)로 구성된 군에서 하나 이상 선택된 것의 혼합물로 세척하는 것일 수 있으나, 이에 제한되는 것은 아니다.
또한 구체적으로, 상기 동결건조 단계는 동결건조를 진행하기 앞서 동결보호제, 인산완충용액, EDTA 또는 구연산을 포함하여 제조된 동결보호 조성물을 처리하는 단계를 추가로 더 포함할 수 있으며, 더욱 구체적으로는 상기 세포가 제거된 피부조직을 동결보호 조성물에 넣어 상온에서 90분 내지 120분간 교반 하는 단계를 추가로 더 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 동결건조는 -70℃ 이하에서 48시간동안 이루어지는 것일 수 있으나, 이에 제한되는 것은 아니다.
상기 동결보호제는 동결보호 조성물로 말티톨(maltitol), 솔비톨(Sorbitol), 락토오스(lactose), 말토오스(maltose), 글루코스(glucose) 및 갈락토스(galactose)로 구성된 군에서 하나 이상 선택된 것을 포함할 수 있다.
또한, 상기 (iii) 단계 이후에, 가교제 및 히알루론산을 첨가하여 가교결합시키는 단계를 포함할 수 있고, 상기 가교제에 디코린을 추가로 포함할 수 있다.
상기 가교제는 상기 생체 삽입용 무세포 진피 기질 1 mL 당 5 μL 내지 10 μL로 포함되는 것일 수 있으나, 이에 제한되는 것은 아니다.
상기 히알루론산은 물과 매우 높은 반응성을 지닌 다당류인 히알루론산은 글루쿠로닌산/글루코스아민이탄당유닛(D-glucuronic acid/N-acetyl-D-glucosamine disaccharide unit)이 연속적으로 결합된 비 측쇄성 다당류로서 피부 또는 연골과 같은 여러 조직의 세포외 기질 내에 광범위하게 존재하는 물질이다. 상기 히알루론산의 주요 기능으로는 공간 채움(space-filling), 구조안정화(structure-stabilizing), 세포-코팅(cell-coating), 세포보호(cell-protecting) 등이 알려져 있다. 또한, 구조적으로 세포외 공간에서 섬유성 단백질과 함께 하나의 집적 시스템(integrated system)을 형성함으로써 탄성, 점성, 보호, 윤활, 안정화 기능을 갖춘 기질을 제공한다. 아울러, 히알루론산이 보유하는 높은 유동성은 세포외기질의 수화에 있어서, 중추적인 역할을 하고, 대사물질이 비교적 작은 농도에서도 확산을 통해 쉽게 이동할 수 있도록 하는 성질을 부여한다. 상기 히알루론산이 가교된 가교 히알루론산 겔은 생체 적합성이 우수함과 동시에 생체 내에서 경시적으로 분해가 진행되는 특징이 있다. 상기 가교 히알루론산 겔은 상기 히알루론산과 상기 가교제를 수용액 중에서 교반 혼합하고, 히알루론산 고분자 사슬간을 가교제에 의해 화학적으로 결합시킴으로써 제조할 수 있다. 다만, 가교 히알루론산 겔을 생체내에 투여하는 경우에는 생체내에서 겔이 분해된 후, 잔존하는 가교제 성분이 생체에서 이물질로서 인식되어, 염증 반응을 일으키는 등의 악영향을 미칠 수 있으므로, 생체 삽입용 목적으로 하는 경우에는 가능한 한 낮은 가교율로 가교 히알루론산 겔을 제조하는 것이 바람직하며, 가교제의 경우에도 인체적합성 및 생분해성 가교제를 사용하는 것이 바람직하다. 따라서 히알루론산을 고농도로 조건으로 고체 분말상과 용액상의 경계상으로 고점도의 겔상에 소량의 가교제 및 물을 포함하는 혼합물을 산 또는 알칼리 조건하에서 교반하여 가교율이 낮은 히알루론산을 제조할 수 있다.
상기 히알루론산은 가교율이 낮음에도 불구하고 우수한 점탄성을 나타낼 수 있고, 상기 가교 히알루론산 겔을 생체 삽입용으로 제조할 경우 생체 내에 히알루론산이 주입되었을 때, 쉽게 주변 조직으로 퍼져 버리거나 충진감이 떨어지는 문제점을 해결할 수 있다.
상기 디코린은 소형데르마탄황산프로테오글리칸(small type dermatan sulfate proteoglycan), 골격프로테오글리칸 Ⅱ(bone proteoglycan Ⅱ), PG-40, PG-Ⅱ, PG-2, DS-PGⅡ라고도 하며, 분자량 3.8만인 핵심단백질에 하나인 콘드로이틴황산(chodroitin sulfae)/데르마탄황산(dermatan sulate)의 혼합사슬을 갖춘 프로테오글리킨인데, 콜라겐섬유와 결합하여 존재한다. 상기 디코린은 상기 히알루론산 및 상기 가교제에 추가로 포함할 경우 상기 히알루론산 및 상기 가교제만 첨가한 경우에 비해 현저히 낮은 염증 또는 섬유증 반응을 나타낸다.
상기 첨가제는 성장 인자 또는 사이토카인을 유효 성분으로 포함할 수 있으며, 상기 첨가제는 표피세포성장인자(EGF)를 일 수 있다.
구체적으로, 항산화제, 멸균수, 생리식염수, PRP(platelet rich plasma) TIMP-2, MCP-1(CCL2), VEGF-A, MIG(CXCL9), IP-10(CXCL 10) 및 오스테오프로테게린(Osteoprotegerin)으로 구성된 군에서 선택된 1종 이상을 포함할 수 있으며, 바람직하게는 표피세포성장인자(EGF) 또는 트로포엘라스틴을 더 포함할 수 있다.
상기 표피세포성장인자(EGF)는 53개의 아미노산으로 구성된 단백질로서 세포의 분열을 유도해 표피세 포의 성장을 촉진하는 성분이며 표피세포 및 내피세포의 세포증식 및 진피의 구성성분인 콜라겐을 합성하는 섬유 아세포의 증식을 촉진 하는 성분이며 피부 재생효과가 우수한 성분이다. 상기 표피세포성장인자(EGF)는 인체와 동물 체내에서 분비되는 성장인자로서 생리 활성을 갖고 있어 미량의 EGF(EPIDERMAL GROWTH FACTOR)라 할지라도 세포의 성장을 자극하여 세포의 신진대사를 가속화 할 수 있다. 또한, 상기 트로포엘라스틴은 엘라스틴 전구체 단백질 분자로 인체에 삽입되는 조직의 생물학적 또는 기계적 성질을 개선할 수 있으며 탄성력이 강화되어 유방 삽입 수술에 유용할 수 있다.
본 발명에 따른 식물성 복합 천연 계면활성제를 이용한 생체 삽입용 무세포 진피 기질은 생체 내에서 스캐폴드(scaffold)로 작용하여 피삽입자의 세포들이 이동하여 생장할 수 있는 생리적 공간으로 작용하고 신생혈관형성(angiogenesis)으로 모세혈관이 생겨 시간이 흐름에 따라 피삽입자의 조직이 될 수 있어, 손상된 조직의 수복 및 성형의 용도로 활용할 수 있다.
이하, 실시예 및 비교예를 예로 들어 본 발명을 더욱 상세히 설명한다.
다만, 하기 실시예 및 비교예는 본 발명을 더욱 상세히 설명하기 위한 하나의 예시일 뿐, 본 발명이 하기 실시예 및 비교예에 제한되는 것은 아니다.
<제조예 1> - 식물성 복합 천연 계면활성제의 제조
본 발명의 식물성 복합 천연 계면활성제를 제조하였다.
구체적으로 상기 식물성 천연 계면활성제는, 식물성 복합 천연 계면활성제 100중량부 대비, 음이온성 계면활성제 5 내지 13 중량부, 유기산 1 내지 9 중량부, 염화나트륨(NaCl) 또는 수산화나트륨(NaOH) 2 내지 10 중량부 및 잔부의 멸균증류수 68 내지 92 중량부를 포함하여 제조하였다.
이때, 상기 음이온성 계면활성제는 LES(Disodium Lauryl Sulfosuccinate), 올리브 계면활성제(Sodium PEG-7 Olive oil carboxylate), 코코클루코사이드(Coco-Glucoside), 애플워시(Sodium Cocoyl Apple Amino Acids) 및 잔탄검(Xanthan Gum)으로 구성된 군에서 하나 이상 선택된 것일 수 있다.
상기 유기산은 황산(sulfuric acid), 인산(phosphoric acid), 아세트산(acetic acid), 옥살산(Oxalic Acid), 타르타르산(tartaric acid) 및 구연산(citric acid)으로 구성된 군에서 하나 이상 선택된 것일 수 있다.
<실시예 1>
기증자로부터 입수한 피부조직을 항생제와 1M의 염화나트륨(NaCl)이 포함된 용액에 넣어서 37℃에 12시간 교반 후 핀셋을 사용하여 표피층을 제거한 후, 표피층이 제거된 피부조직을 멸균증류수로 세척하여 남아있는 시약과 불필요 조직을 제거하고, 상기 제조예 1에서 제조한 식물성 복합 천연 계면활성제에 넣어 30℃에서 100분간 교반하여 세포를 제거하였다. 이때, 상기 식물성 복합 천연 계면활성제의 농도는 10%(w/w)로 조절하였다.
이후, 상기 세포 제거과정이 완료된 피부조직을 에틸 알코올(ethylalcohol), 이소프로필알코올(isopropyl alcohol), 뷰탄올(butanol) 및 프로판올(propanol)로 구성된 군에서 하나 이상 선택된 것의 혼합물로 세척하여 피부조직에 남아있는 시약이나 불필요 조직을 제거하였다.
세포가 제거된 피부조직을 동결보호 조성물에 넣어 상온에서 90분~120분간 교반하였다. 이때, 상기 동결보호 조성물은 말티톨(maltitol), 솔비톨(Sorbitol), 락토오스(lactose), 말토오스(maltose), 글루코스(glucose) 및 갈락토스(galactose)로 구성된 군에서 하나 이상 선택된 것을 포함하는 동결보호제; 인산완충용액(phosphate buffer saline); 에틸렌디아민테트라아세트산(EDTA) 또는 구연산(citric acid); 멸균증류수가 0.5~1.5 : 0.01~0.5 : 0.6~1.2 : 5~10의 중량비로 혼합된 것일 수 있고, 더욱 구체적으로는 1 : 0.1 : 0.9 : 8의 중량비로 혼합된 것을 사용하였으나, 이에 제한되는 것은 아니다.
교반이 완료된 피부조직을 -70℃ 이하에서 48시간 동결건조하여 본 발명의 무세포 진피 기질을 제조하고, 수분측정기를 이용하여 수분검사를 실시하여 10% 미만일 경우 다음 과정으로 넘어가고 10% 이상일 경우 재동결건조하였다. 수분이 10% 미만인 무세포 진피 기질은 커팅밀 장비를 이용하여 300-800μm 크기로 분쇄하였다.
<실시예 2>
상기 실시예1에서 분쇄한 무세포 진피 기질을 10 mL의 멸균증류수에서 충분히 수화하고, 상온에서 20분 정도 교반 후, pH가 11~12 사이로 조절된 1 mg/mL의 히알루론산 수용액에 가교제 50 μL를 첨가하여 가교한 후, 무세포 진피 조직을 멸균 증류수로 세척하고 동결 건조하여 분쇄하였다.
<비교예 1> - SDS를 사용하여 제조한 무세포 진피 기질
본 발명 식물성 복합 천연 계면활성제를 사용한 세포 제거 단계 대신에 소듐도데실설페이트(SDS,Sodium Dodecyl Sulfate)를 사용하여 세포를 제거하는 단계를 포함시켜 무세포 진피 기질을 제조하였다.
구체적으로, 제조예 1의 천연 계면활성제 대신 5~10중량%의 소듐도데실 설페이트(SDS,Sodium Dodecyl Sulfate)를 사용한 점을 제외하고는 상기 실시예 1과 동일한 과정을 거쳐 비교예 1의 무세포 진피 기질을 제조하였다.
<비교예 2 내지 4> - 비율을 달리하여 제조한 천연 계면활성제를 사용한 무세포 진피 기질의 제조
상기 제조예 1에서 제조한 천연 계면활성제를 구성하는 성분의 비율을 달리하여 비교예 2 내지 4의 계면활성제를 제조한 후 실시예 1과 동일한 방법을 이용하여 무세포 진피 기질을 제조하였다.
구체적으로, 제조예 1의 제조 방법에서 음이온성 계면활성제를 20 중량부 포함하는 것으로 변경하여 제조한 것을 비교예 2로, 유기산을 15 중량부 포함하여 제조한 것을 비교예 3로, 염화나트륨 또는 수산화나트륨을 15 중량부 포함하여 제조한 것을 비교예 4로 설정하였다.
<실험예 1> - 무세포 진피 기질 내 잔존 세포의 비율 확인
본 발명은 천연 계면활성제를 사용함에도 불구하고, 종래에 일반적으로 사용되던 SDS를 사용한 것 이상의 세포 제거효과를 나타내는 것을 특징으로 하는 바, 상기 실시예 1 및 비교예 1 내지 4의 무세포 진피 기질을 대상으로 잔존세포를 확인하였다.
구체적으로, 상기 실시예 및 비교예의 무세포 진피 기질을 H&E 염색법과 EVOS M5000 세포 이미징 시스템을 이용하여 관찰하고 그 결과를 도 3에 나타내었다.
그 결과, 도 3에 나타난 바와 같이 천연 계면활성제를 이용한 실시예 1(도 3a)은 잔존세포가 전혀 확인되지 않았으나, SDS를 이용한 비교예1(도 3b)은 잔존세포가 다수 검출되었음을 확인하였다.
나아가, 같은 성분을 사용하였음에도 그 혼합 비율을 달리한 비교예 2 내지 4의 경우, 실시예 1 대비 잔존 세포가 다수 검출된 것을 확인하였다(도 3c~e).
<실험예 2> - 천연 계면활성제의 세포 독성 확인
본 발명 천연 계면활성제는 천연물로부터 유래한 원료만을 사용하여 제조된 것으로서, 기존에 계면활성제로서 사용되던 SDS 대비 현저히 낮은 세포 독성을 가질 것으로 예상되는 바, MTT-assay를 통한 세포생존실험을 실시하고 그 결과를 확인하였다.
구체적으로, 본 실험예에서는 상기 제조예 1의 계면활성제 및 SDS 처리에 따른 세포 독성을 평가하고자 하였다. 이를 위하여, 인간 섬유아세포 세포주(Hs68)에 다양한 농도(0.1, 1, 10 및 15% (w/w))의 계면활성제를 처리한 후, MTT-assay를 실시하여 처리 농도별 생존율을 각각 확인하였다. 상기 실험 결과는 총 2 번의 독립적인 실험으로으로부터 얻어졌으며, 대조군으로는 계면활성제 비처리군을 사용하였다.
구 분 제조예1 비교예1 제조예1 비교예1 제조예1 비교예1 제조예1 비교예1
처리
농도
0.1 1 10 15
세포
생존율
104 105 110 98 108 86 106 71
그 결과, 표 1에 나타낸 바와 같이, 0.1~15% (w/w) 농도 범위 내에서, 제조예 1의 계면활성제를 처리한 경우는 인간 섬유아세포 세포주의 생존율에 유의적인 변화를 일으키지 않음을 확인할 수 있었다. 반면, SDS를 처리한 경우에는 농도가 1%를 넘어가는 순간부터 세포 생존율이 현저히 감소하는 것을 확인하였다.즉, 본 발명의 천연 계면활성제는 세포 독성이 낮은 물질로서, 이를 이용한 무세포 진피 기질의 제조 및 이의 체내 투여 시에도 수반되는 부작용이 현저히 감소함을 의미하는 것이며, 필러로 제조 시 본 발명의 무세포 진피 기질은 세포 잔류량 및 독성 유입량을 감소시킬 수 있으며, 히알루론산, 가교제 및 디코린을 첨가할 경우 현저히 낮은 염증 및 면역반응을 나타낼 수 있는 제품으로 제조할 수 있다.
<실험예 3> - 무세포 진피와 히알루론산의 가교 확인
실시예 2의 무세포 진피 기질을 열중량분석기(TGA)를 이용하여 무세포 진피와 히알루론산의 가교 중량을 확인하였다.
무세포진피에 히알루론산이 가교된 비율을 분석하기 위해 TGA 분석법을 사용했다. TGA 측정 조건은, 온도 상승률 10°C/min로 상온에서부터 800°C까지 측정하였고, 측정 시 대기상태는 시료의 열적 산화를 방지하기 위해 N2 가스를 100mL/min의 비율로 주입하며 진행했다. 가교된 히알루론산 중량 분석은 순수한 히알루론산의 중량변화가 가장 큰 구간을 대상으로 진행하였고, 분석 결과 무세포 진피의 0.5 내지 3%가 가교된 것으로 나타났다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 본 발명의 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 예를 들어, 당업자는 상술한 실시 예들에 기재된 각 구성을 서로 조합하는 방식으로 이용할 수 있다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
본 발명의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (8)

  1. (i) 피부 조직에서 표피층을 제거하는 단계;
    (ii) 상기 표피층이 제거된 피부조직에 식물성 복합 천연 계면활성제를 처리하여 진피층의 세포를 제거하여 무세포 진피를 제조하는 단계;
    (iii) 상기 무세포 진피를 입자형으로 분쇄하여 분말 형태로 제조하는 단계;
    를 포함하는 것을 특징으로 하는 생체 삽입용 무세포 진피 기질의 제조방법.
  2. 제1항에 있어서,
    상기 (iii) 단계 이후에, 가교제 및 히알루론산을 첨가하여 가교결합시키는 단계;
    를 포함하는 것을 특징으로 하는 생체 삽입용 무세포 진피 기질의 제조방법.
  3. 제1항에 있어서,
    상기 (iii) 단계 이후에, 첨가제로 표피세포성장인자(EGF)를 첨가하는 단계;를 포함하는 것을 특징으로 하는 생체 삽입용 무세포 진피 기질의 제조방법.
  4. 제1항에 있어서,
    상기 (ii) 단계는, 상기 표피층에 제거된 피부조직에 초음파 처리를 병행하여 진피층의 세포를 제거하는 단계;
    를 포함하는 것을 특징으로 하는 생체 삽입용 무세포 진피 기질의 제조방법.
  5. 제2항에 있어서,
    상기 가교제에 디코린을 추가로 포함하는 것을 특징으로 하는 생체 삽입용 무세포 진피 기질의 제조방법.
  6. 제1항에 있어서,
    상기 입자형 무세포 진피는 300-800μm의 입자크기를 포함하는 것을 특징으로 하는 생체 삽입용 무세포 진피 기질의 제조방법.
  7. 제1항에 있어서,
    상기 식물성 복합 천연 계면활성제는 식물성 복합 천연 계면활성제 100중량부를 기준으로, 음이온성 계면활성제 5 내지 13 중량부, 유기산 1 내지 9 중량부, 염화나트륨(NaCl) 또는 수산화나트륨(NaOH) 2 내지 10 중량부 및 잔부의 멸균증류수 68 내지 92 중량부를 포함하여 제조된 것이고, 상기 음이온성 계면활성제는 LES(Disodium Lauryl Sulfosuccinate), 올리브계면활성제(Sodium PEG-7 Olive oil carboxylate), 코코클루코사이드(Coco-Glucoside), 애플워시(Sodium Cocoyl Apple Amino Acids) 및 잔탄검(Xanthan Gum)으로 구성된 군에서 하나 이상 선택된 것을 포함하는 것을 특징으로 하는 생체 삽입용 무세포 진피 기질의 제조방법.
  8. 제1항 내지 제7항 중 어느 한 항의 방법에 의하여 제조된 생체 삽입용 무세포 진피 기질.
PCT/KR2023/000140 2022-01-12 2023-01-04 식물성 복합 천연 계면활성제를 이용한 생체 삽입용 무세포 진피 기질 및 이의 제조방법 WO2023136538A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0004468 2022-01-12
KR1020220004468A KR20230108849A (ko) 2022-01-12 2022-01-12 식물성 복합 천연 계면활성제를 이용한 생체 삽입용 무세포 진피 기질 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2023136538A1 true WO2023136538A1 (ko) 2023-07-20

Family

ID=87279500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/000140 WO2023136538A1 (ko) 2022-01-12 2023-01-04 식물성 복합 천연 계면활성제를 이용한 생체 삽입용 무세포 진피 기질 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR20230108849A (ko)
WO (1) WO2023136538A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100469661B1 (ko) * 2000-03-28 2005-02-02 한스바이오메드 주식회사 이식용 무세포 진피층 및 이의 제조방법
JP2015160040A (ja) * 2014-02-28 2015-09-07 株式会社Adeka 脱細胞組織の製造方法
KR20150143311A (ko) * 2014-06-11 2015-12-23 주식회사 엘앤씨바이오 무세포 진피의 가교 및 생체 이식 또는 삽입용 조성물의 제조방법
US10322835B1 (en) * 2009-01-02 2019-06-18 Lifecell Corporation Method for preparing collagen-based materials
KR102366303B1 (ko) * 2021-07-05 2022-02-23 주식회사 이레텍코리아 식물성 복합 천연 계면활성제를 이용한 무세포 진피 기질 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100469661B1 (ko) * 2000-03-28 2005-02-02 한스바이오메드 주식회사 이식용 무세포 진피층 및 이의 제조방법
US10322835B1 (en) * 2009-01-02 2019-06-18 Lifecell Corporation Method for preparing collagen-based materials
JP2015160040A (ja) * 2014-02-28 2015-09-07 株式会社Adeka 脱細胞組織の製造方法
KR20150143311A (ko) * 2014-06-11 2015-12-23 주식회사 엘앤씨바이오 무세포 진피의 가교 및 생체 이식 또는 삽입용 조성물의 제조방법
KR102366303B1 (ko) * 2021-07-05 2022-02-23 주식회사 이레텍코리아 식물성 복합 천연 계면활성제를 이용한 무세포 진피 기질 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE, HYEONG SUK: "A Study on the Manufacturing Method of Cell-Free Collagen Layer Applicable to Tissue Restoration", MASTER'S THESIS, August 2021 (2021-08-01), Korea, pages 1 - 30, XP009548126 *

Also Published As

Publication number Publication date
KR20230108849A (ko) 2023-07-19

Similar Documents

Publication Publication Date Title
Kargozar et al. “Hard” ceramics for “Soft” tissue engineering: Paradox or opportunity?
WO2010044577A2 (ko) 동물조직 분말을 이용한 다공성 3차원 지지체의 제조방법 및 이를 이용하여 제조된 다공성 3차원 지지체
KR101650957B1 (ko) 세포외 기질 조성물
KR101422689B1 (ko) 콜라겐, 히알루론산 유도체 및 포유류의 탯줄 유래 줄기세포를 포함하는 연골세포치료제
JP2019076093A (ja) 非哺乳動物組織からの脱細胞化生体材料
US20060182725A1 (en) Treatment of tissue with undifferentiated mesenchymal cells
CA2845516C (en) Muscle tissue regeneration using muscle fiber fragments
WO2010062059A2 (ko) 상처 치유를 위한 하이드로 겔 형태의 세포전달용 비히클 및 그 제조방법
WO2013172504A1 (ko) 연골조직 수복용 조성물과 제조방법 및 이의 사용방법
WO2021033899A1 (ko) 히알루론산과 동결건조된 줄기세포 유래 엑소좀의 조합을 유효성분으로 포함하는 창상 치료 또는 창상 치료 촉진용 조성물
Jiang et al. Decellularized extracellular matrix: a promising strategy for skin repair and regeneration
KR20050014817A (ko) 자가 섬유아세포를 이용한 치료
WO2011049265A1 (ko) 연골조직 수복용 조성물 및 그 제조방법
WO2019151611A1 (ko) 진피 재생 시트용 바이오 잉크 조성물, 이를 이용한 맞춤형 진피 재생 시트의 제조방법, 및 상기 제조방법을 이용하여 제조된 맞춤형 진피 재생 시트
WO2022050373A1 (ja) 間葉系幹細胞又はそれに由来する前駆細胞の培養上清の浄化濃縮物、及びその製造方法
WO2011126294A2 (ko) 콜라겐 하이드로겔 제조용 멀티 시린지
CN104740683A (zh) 一种双层结构角膜修复材料及其制备方法
WO2022154245A1 (ko) 개질된 세포외기질 기반 하이드로겔, 이의 제조방법 및 이의 용도
US20040033598A1 (en) Compositions and methods for generating skin
Katiyar et al. Novel strategies for designing regenerative skin products for accelerated wound healing
WO2023136538A1 (ko) 식물성 복합 천연 계면활성제를 이용한 생체 삽입용 무세포 진피 기질 및 이의 제조방법
CN114949358A (zh) 一种用于深部创面修复的复合材料及其制备方法
KR102366303B1 (ko) 식물성 복합 천연 계면활성제를 이용한 무세포 진피 기질 및 그 제조방법
Klama-Baryła et al. Experience in using fetal membranes: the present and new perspectives
CA2336443C (en) Biocompatible and biodegradable compositions containing hyaluronic acid and the derivatives thereof for the treatment of ulcers in the digestive apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23740382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE