WO2023136146A1 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
WO2023136146A1
WO2023136146A1 PCT/JP2022/048325 JP2022048325W WO2023136146A1 WO 2023136146 A1 WO2023136146 A1 WO 2023136146A1 JP 2022048325 W JP2022048325 W JP 2022048325W WO 2023136146 A1 WO2023136146 A1 WO 2023136146A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
pressure
sensitive adhesive
active energy
resin composition
Prior art date
Application number
PCT/JP2022/048325
Other languages
French (fr)
Japanese (ja)
Inventor
和通 加藤
周作 上野
高正 平山
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023136146A1 publication Critical patent/WO2023136146A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Definitions

  • the present invention relates to resin compositions. More particularly, the present invention relates to a resin composition that can be suitably used for forming a pressure-sensitive adhesive layer that is useful as a shock-absorbing layer used for transferring small electronic parts such as semiconductor chips and LED chips.
  • a semiconductor wafer is singulated by dicing in a state temporarily fixed on a dicing tape, and the singulated semiconductor chips are pushed by a pin member from the dicing tape side of the back surface of the wafer to form a collet. It is picked up by a suction jig called and mounted on a mounting board such as a circuit board (for example, Patent Document 1).
  • laser transfer As a means of solving the above problems, a technology called laser transfer is under consideration (see Patent Documents 2 and 3, for example).
  • small electronic components such as semiconductor chips (for example, squares with a size of 100 ⁇ m or less on each side) are arranged in a grid pattern on a temporary fixing material, and the surface on which the electronic components are arranged is arranged facing downward.
  • a transfer substrate for transferring (receiving) the electronic component is arranged with a gap so as to face the surface of the temporary fixing material on which the electronic component is arranged.
  • the temporary fixing is released and the electronic component is peeled off.
  • the electronic component transferred to the transfer substrate can be transferred to another carrier substrate and mounted on the mounting substrate, or can be mounted by directly transferring from the transfer substrate to the mounting substrate.
  • the temporary fixing material and the transfer substrate are arranged with a gap (clearance), so when the peeled electronic component collides with the transfer substrate, it is impacted and damaged, or bounces and shifts in position. Since there is a problem that the transferability deteriorates due to problems such as turning over and turning over, the surface of the transfer substrate has a shock absorbing layer to absorb the impact when the electronic component collides with the transfer substrate. provided (for example, Patent Document 2). Such impact absorbing layers are designed to have flexibility due to low elasticity so as to sufficiently absorb impacts when electronic parts collide.
  • thermocompression bonding is performed in order to improve the connection reliability of the electronic components to the electronic circuit provided on the mounting board (for example, patented Reference 3).
  • connection metal connection metal
  • the bumps should be sufficiently plastically deformed to ensure electrical connection to the circuit.
  • thermocompression bonding at a high temperature of 250° C. or higher (see, for example, Patent Document 4).
  • a separate A method of transferring an electronic component directly from a transfer substrate to a mounting substrate without using a carrier substrate is preferably performed (for example, Patent Document 3).
  • the impact-absorbing layer which has improved impact-absorbing properties due to its low elasticity, has low heat resistance, expands during thermocompression bonding, and outgassing occurs, causing misalignment of electronic components and deteriorating connection reliability. I had a problem.
  • the shock absorbing layer is made highly elastic in order to improve the heat resistance, there is a problem that the shock absorbing property is lowered and the transferability is impaired. As described above, there is a trade-off relationship between the impact absorption property and the heat resistance of the impact absorption layer, and it has been a difficult task to achieve both.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a resin composition suitable for forming a pressure-sensitive adhesive layer suitable as a shock absorbing layer that achieves both shock absorption and heat resistance. It is to be.
  • a first aspect of the present invention provides a resin composition.
  • the resin composition of the first aspect of the present invention is used for forming a pressure-sensitive adhesive layer.
  • the resin composition of the first aspect of the present invention is referred to as the "resin composition of the present invention”
  • the pressure-sensitive adhesive layer formed from the resin composition of the first aspect of the present invention is referred to as the "adhesive of the present invention.” It may be referred to as "agent layer”.
  • the pressure-sensitive adhesive layer of the present invention can be suitably used as a shock-absorbing layer for receiving electronic components placed on a temporary fixing material, and more specifically, it can be suitably used in the following steps. be. ⁇ The adhesive layer (shock absorption layer) is arranged on the temporary fixing material with a gap facing the surface on which the electronic components are arranged, and the electronic components are received ⁇ The adhesive layer (shock absorption layer) is received The process of transferring the electronic components to another carrier board or transferring them directly to the mounting board. From the viewpoint of preventing a decrease in positional accuracy, it is preferable to transfer the electronic component directly from the transfer substrate to the mounting substrate without using another carrier substrate.
  • the pressure-sensitive adhesive layer of the present invention has shock absorption properties for mitigating the impact when receiving the electronic component, and suppresses expansion and outgassing even in thermocompression bonding when transferring the electronic component to the mounting substrate. It also has excellent heat resistance that can be achieved.
  • the resin composition of the present invention can be suitably used to form the pressure-sensitive adhesive layer of the present invention that has both impact absorption and heat resistance.
  • the pressure-sensitive adhesive layer of the present invention has a storage modulus G' (100k) at 100 kHz and 25°C of 60 MPa or less.
  • G' storage modulus
  • the transfer of electronic parts is completed within an optical time scale, so the impact relaxation properties of the pressure-sensitive adhesive on this time scale are important.
  • the optical time scale is correlated with the sweeping frequency of the laser light, such as 100 kHz. When converted to a time scale, it is about 10 microseconds, and the adhesive needs to be deformed in response to the impact on this time scale.
  • the configuration in which the G' (100k) is 60 MPa or less realizes excellent impact absorption of the pressure-sensitive adhesive layer on an optical time scale, and the pressure-sensitive adhesive layer of the present invention is achieved. It is suitable in that excellent transferability can be imparted when used as an impact absorption layer of a transfer substrate.
  • the resin composition of the present invention contains an active energy ray-curable compound.
  • the pressure-sensitive adhesive layer of the present invention exhibits excellent impact absorption before irradiation with an active energy ray, and after irradiation with an active energy ray.
  • the elastic modulus of the pressure-sensitive adhesive layer of the present invention is improved by forming a crosslinked structure through the reaction of the active energy ray-curable compound, and even in thermocompression bonding when transferring electronic parts to a mounting substrate, expansion and outgassing are prevented. It is suitable in that it exhibits excellent heat resistance that can be suppressed, and in that the adhesive force is reduced to prevent adhesive residue on electronic parts and poor transfer of electronic parts.
  • the ratio (G 1 /G 0 ) of the gel fraction G 1 (%) after active energy ray irradiation to the gel fraction G 0 (%) before active energy ray irradiation of the pressure-sensitive adhesive layer of the present invention is 1. It is preferably 1 or more.
  • the pressure-sensitive adhesive layer of the present invention exhibits excellent impact absorption before active energy ray irradiation, and after active energy ray irradiation, the active energy
  • the elastic modulus of the pressure-sensitive adhesive layer of the present invention is improved by forming a crosslinked structure through the reaction of the ray-curable compound, and even in thermocompression bonding when transferring electronic parts to a mounting substrate, expansion and outgassing can be suppressed. It is suitable in that it exhibits heat resistance.
  • the linear expansion coefficient ⁇ (200 to 210) at 200 to 210° C. of the adhesive layer of the present invention after irradiation with active energy rays is preferably 500 ⁇ 10 ⁇ 5 /K or less.
  • the configuration in which the ⁇ (200 to 210) is 500 ⁇ 10 -5 /K or less is such that the elastic modulus of the pressure-sensitive adhesive layer of the present invention increases due to the formation of a crosslinked structure by the active energy ray-curable compound after irradiation with an active energy ray. It exhibits excellent heat resistance that can suppress the occurrence of expansion during thermocompression bonding when electronic components are transferred to a mounting substrate, and can prevent the positional accuracy of electronic components from declining due to linear expansion of the adhesive layer. preferable.
  • the tensile elastic modulus E'(200) at 200°C after the active energy ray irradiation of the pressure-sensitive adhesive layer of the present invention is preferably 0.3 MPa or more.
  • the elastic modulus of the pressure-sensitive adhesive layer of the present invention is improved by forming a crosslinked structure with the active energy ray-curable compound after irradiation with the active energy ray, and the mounting substrate It exhibits excellent heat resistance that can suppress expansion and outgassing in thermocompression bonding when transferring electronic parts to , and is suitable in that it can prevent deterioration of connection reliability due to deterioration of positional accuracy of electronic parts.
  • the linear expansion coefficient ⁇ (260-270) at 260-270° C. of the pressure-sensitive adhesive layer of the present invention after irradiation with active energy rays is preferably 500 ⁇ 10 ⁇ 5 /K or less.
  • the configuration in which the ⁇ (260 to 270) is 500 ⁇ 10 ⁇ 5 /K or less is such that the elastic modulus of the pressure-sensitive adhesive layer of the present invention increases due to the formation of a crosslinked structure by the active energy ray-curable compound after irradiation with an active energy ray.
  • thermocompression bonding is performed at a high temperature exceeding 250 ° C. in order to improve connection reliability, it has excellent heat resistance that can suppress the occurrence of expansion. It is preferable in that it exhibits good properties and prevents the positional accuracy of the electronic component from being lowered due to the linear expansion of the pressure-sensitive adhesive layer.
  • the tensile elastic modulus E'(260) at 260°C of the pressure-sensitive adhesive layer of the present invention after irradiation with active energy rays is preferably 0.05 MPa or more.
  • the configuration in which the tensile elastic modulus E′ (260) is 0.05 MPa or more is such that the elastic modulus of the pressure-sensitive adhesive layer of the present invention is improved by forming a crosslinked structure with the active energy ray-curable compound after irradiation with active energy rays,
  • thermocompression bonding is performed at a high temperature exceeding 250°C to improve connection reliability, it has excellent heat resistance that can suppress expansion and outgassing. , and is suitable in that it is possible to prevent a decrease in connection reliability due to a decrease in the positional accuracy of electronic components.
  • the active energy ray-curable compound is preferably a polyfunctional monomer and/or a polyfunctional oligomer.
  • the elastic modulus of the pressure-sensitive adhesive layer is further increased by forming a crosslinked structure with a plurality of reactive functional groups, and the mounting substrate It is preferable in terms of exhibiting superior heat resistance capable of suppressing expansion and generation of outgassing in thermocompression bonding when transferring an electronic component to a substrate.
  • the active energy ray-curable compound preferably has 3 or more reactive functional groups.
  • the configuration in which the active energy ray-curable compound has three or more reactive functional groups further increases the elastic modulus of the pressure-sensitive adhesive layer by forming a three-dimensional crosslinked structure with three or more reactive functional groups. It is preferable in that it exhibits excellent heat resistance that can suppress expansion and generation of outgassing in thermocompression bonding when transferring an electronic component to a mounting substrate.
  • the active energy ray-curable compound preferably has a molecular weight of less than 20,000.
  • the configuration in which the molecular weight of the active energy ray-curable compound is less than 20000 imparts flexibility to the pressure-sensitive adhesive layer of the present invention before active energy ray irradiation, and the G′ (100 k) is adjusted to 60 MPa or less.
  • the pressure-sensitive adhesive layer of the present invention is used as an impact-absorbing layer of a transfer substrate, it is preferable in that excellent impact-absorbing properties can be imparted.
  • the active-energy-ray-curable compound of this invention is a polymer (oligomer)
  • the said molecular weight shall include a weight average molecular weight (Mw).
  • the thickness of the adhesive layer of the present invention is preferably 1 ⁇ m or more and 500 ⁇ m or less.
  • the configuration in which the thickness of the pressure-sensitive adhesive layer of the present invention is 1 ⁇ m or more is preferable from the viewpoint of being excellent in shock absorption due to collision of electronic parts.
  • the configuration in which the thickness of the pressure-sensitive adhesive layer of the present invention is 500 ⁇ m or less is preferable from the viewpoint of transferability when transferring received electronic components to a mounting substrate.
  • the resin composition of the present invention is preferably an acrylic adhesive composition.
  • the configuration that the resin composition of the present invention is an acrylic pressure-sensitive adhesive composition facilitates the design of the pressure-sensitive adhesive that adjusts the G' (100 k) to 60 MPa or less, and crosslinks with the active energy ray-curable compound. It is preferable in that the structure can be formed to improve the heat resistance of the pressure-sensitive adhesive layer, transparency, adhesiveness, cost, and the like.
  • the adhesive layer of the present invention may be laminated with another adhesive layer.
  • the pressure-sensitive adhesive layer of the present invention can achieve both excellent impact absorption before irradiation with active energy rays and excellent heat resistance after irradiation with active energy rays, and furthermore, another pressure-sensitive adhesive layer to be laminated. can be attached to the base material constituting the transfer substrate, carrier substrate, or the like, and can be prevented from floating from the transfer substrate.
  • the pressure-sensitive adhesive layer of the present invention may be further laminated with a base material layer. It is preferable that the pressure-sensitive adhesive layer of the present invention further has a substrate layer, in that the stability and handleability when receiving the electronic component are improved.
  • another pressure-sensitive adhesive layer may be laminated on the surface of the base material layer on which the pressure-sensitive adhesive layer is not laminated.
  • another pressure-sensitive adhesive layer By laminating another pressure-sensitive adhesive layer on the surface of the base material layer on which the pressure-sensitive adhesive layer is not laminated, for example, another pressure-sensitive adhesive layer can be fixed to the carrier substrate, and from the viewpoint of workability preferred from
  • the base layer is formed from a light-transmitting heat-resistant film from the viewpoint of stability and handling when receiving the electronic component, and from the viewpoint of heat resistance in thermocompression bonding when transferring the electronic component to the mounting substrate. is preferred.
  • a second aspect of the present invention provides an adhesive layer formed from the resin composition of the present invention.
  • a third aspect of the present invention provides a pressure-sensitive adhesive sheet having the pressure-sensitive adhesive layer of the second aspect of the present invention.
  • the pressure-sensitive adhesive layer of the second aspect of the present invention and the pressure-sensitive adhesive sheet of the third aspect of the present invention have excellent impact absorption before active energy ray irradiation and excellent heat resistance after active energy ray irradiation. Since it has a compatible pressure-sensitive adhesive layer of the present invention, it can be suitably used to receive electronic components placed on the temporary fixing material. It is arranged with a gap facing the surface and can be preferably used to receive an electronic component.
  • the pressure-sensitive adhesive layer formed from the resin composition of the present invention exhibits excellent impact absorption before irradiation with active energy rays, and damage, misalignment, turning inside out, etc. when receiving electronic components. and exhibit excellent heat resistance after irradiation with active energy rays. A decrease in connection reliability can be prevented. Therefore, the resin composition of the present invention forms a pressure-sensitive adhesive layer having both impact absorption and heat resistance, which is used in laser transfer for directly transferring electronic components received on a transfer substrate onto a mounting substrate. It can be suitably used for
  • 6 is a schematic cross-sectional view showing a first step in an embodiment of a method for processing an electronic component using an adhesive sheet fixed to a carrier substrate shown in FIG. 5;
  • 6A and 6B are schematic cross-sectional views showing second to fourth steps in an embodiment of the electronic component processing method using the adhesive sheet fixed to the carrier substrate shown in FIG. 5;
  • the resin composition of the present invention is used to form an adhesive layer (the adhesive layer of the present invention).
  • the pressure-sensitive adhesive layer of the present invention is used in processing technology for transferring small electronic components such as semiconductor chips and LED chips to mounting substrates such as circuit boards. Specifically, it is suitable for the following processes. can be used for ⁇ The adhesive layer (shock absorption layer) is arranged on the temporary fixing material with a gap facing the surface on which the electronic components are arranged, and the electronic components are received ⁇ The adhesive layer (shock absorption layer) is received The process of transferring the electronic components to another carrier board or transferring them directly to the mounting board. In order to prevent deterioration of positional accuracy, it is preferable to transfer the electronic component directly from the transfer substrate to the mounting substrate without using another carrier substrate.
  • the pressure-sensitive adhesive layer of the present invention By using the pressure-sensitive adhesive layer of the present invention for transferring electronic components, it becomes possible to place a plurality of electronic components on the pressure-sensitive adhesive layer of the present invention on an optical time scale, eliminating the need to pick them up individually.
  • the pressure-sensitive adhesive layer of the present invention has excellent shock absorption properties for alleviating the impact when receiving the electronic component before irradiation with active energy rays, and after irradiation with active energy rays, the electronic component is thermocompression bonded. It has excellent heat resistance that prevents expansion and outgassing due to heating when transferred onto a mounting substrate.
  • the electronic component transferred to the pressure-sensitive adhesive layer of the present invention can be directly transferred from the pressure-sensitive adhesive layer of the present invention to the mounting substrate, the step of transferring to another carrier substrate and then transferring to the mounting substrate. can be omitted, and the manufacturing cost can be reduced. Further, it is possible to prevent the deterioration of the connection reliability due to the deterioration of the positional accuracy of the electronic parts caused by repeating the transfer twice.
  • the form of the pressure-sensitive adhesive layer of the present invention is not particularly limited.
  • a single-sided pressure-sensitive adhesive sheet having only one side with an adhesive surface may be configured, or a double-sided pressure-sensitive adhesive sheet with both sides having an adhesive surface may be configured.
  • the double-sided pressure-sensitive adhesive sheet may have a form in which both pressure-sensitive adhesive surfaces are provided by the pressure-sensitive adhesive layer of the present invention.
  • the adhesive surface is provided by the adhesive layer of the present invention, and the other adhesive surface is provided by an adhesive layer other than the adhesive layer of the present invention (in this specification, sometimes referred to as "another adhesive layer"). It may have a form to be
  • the pressure-sensitive adhesive layer of the present invention may constitute a so-called “substrate-less type” pressure-sensitive adhesive sheet that does not have a substrate (base layer), or may constitute a type pressure-sensitive adhesive sheet that has a substrate. good.
  • a "base-less type” pressure-sensitive adhesive sheet may be referred to as a “base-less pressure-sensitive adhesive sheet”
  • a type pressure-sensitive adhesive sheet having a base may be referred to as a “base-attached pressure-sensitive adhesive sheet”.
  • Examples of the substrate-less pressure-sensitive adhesive sheet include a double-sided pressure-sensitive adhesive sheet consisting only of the pressure-sensitive adhesive layer of the present invention, and a pressure-sensitive adhesive layer separate from the pressure-sensitive adhesive layer of the present invention (a pressure-sensitive adhesive layer other than the pressure-sensitive adhesive layer of the present invention).
  • a double-sided pressure-sensitive adhesive sheet consisting of Examples of the PSA sheet with a substrate include a single-sided PSA sheet having the PSA layer of the present invention on one side of the substrate, a double-sided PSA sheet having the PSA layer of the present invention on both sides of the substrate, and , a double-sided pressure-sensitive adhesive sheet having the pressure-sensitive adhesive layer of the present invention on one side of a substrate and another pressure-sensitive adhesive layer on the other side.
  • base material means a support, and when the pressure-sensitive adhesive layer of the present invention is used, it is a part that receives an electronic component together with the pressure-sensitive adhesive layer.
  • a release liner that is released when the pressure-sensitive adhesive layer is used is not included in the base material.
  • the meaning of an "adhesive tape” shall be included in an “adhesive sheet.” That is, the adhesive sheet may be an adhesive tape having a tape-like shape.
  • the adhesive surface of the adhesive layer of the present invention is preferably protected with a release liner.
  • the release liner is laminated on at least one adhesive surface in order to protect the impact absorbing properties of the adhesive layer of the present invention.
  • the release liner preferably protects the adhesive surface on which the adhesive layer of the present invention is to receive the electronic component, in which case the adhesive layer of the present invention is peeled off immediately before being used to receive the electronic component. is preferred.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer of the present invention, wherein 1 indicates a pressure-sensitive adhesive sheet, 10 indicates a pressure-sensitive adhesive layer, and R1 and R2 indicate release liners.
  • the adhesive sheet 1 has a laminated structure in which a release liner R1, an adhesive layer 10, and a release liner R2 are laminated in this order.
  • the adhesive sheet 1 is used in processing technology for mounting small electronic components such as semiconductor chips and LED chips on mounting substrates such as circuit boards.
  • the pressure-sensitive adhesive layer 10 is composed of the pressure-sensitive adhesive layer of the present invention, and is preferably used for separating the electronic components placed on the temporary fixing material and receiving the separated electronic components. It is what is done.
  • the release liner R1 is peeled off from the adhesive layer 10 before use and receives the electronic component with the exposed adhesive surface 10a.
  • the adhesive surface 10b exposed by peeling off the release liner R2 is adhered to a base material constituting a transfer substrate, a carrier substrate, or the like. Since the pressure-sensitive adhesive layer 10 in the pressure-sensitive adhesive sheet 1 is composed of the pressure-sensitive adhesive layer of the present invention, the pressure-sensitive adhesive layer 10 before irradiation with active energy rays has excellent impact absorption when receiving electronic components, and the active energy The pressure-sensitive adhesive layer 10 after irradiation exhibits excellent heat resistance when electronic components are transferred onto a mounting substrate by thermocompression bonding.
  • FIG. 2 is a schematic cross-sectional view showing another embodiment of the pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer of the present invention, wherein 2 is the pressure-sensitive adhesive sheet, 20 and 21 are pressure-sensitive adhesive layers, and R1 and R2 are release liners.
  • the adhesive sheet 2 has a laminated structure in which a release liner R1, an adhesive layer 20, an adhesive layer 21, and a release liner R2 are laminated in this order.
  • the adhesive sheet 2 is used in processing technology for mounting small electronic components such as semiconductor chips and LED chips on mounting substrates such as circuit boards.
  • the pressure-sensitive adhesive layer 20 is composed of the pressure-sensitive adhesive layer of the present invention, and is preferably used for separating the electronic components placed on the temporary fixing material and receiving the separated electronic components. It is what is done.
  • the pressure-sensitive adhesive layer 21 and the pressure-sensitive adhesive layer 20 are capable of adjusting the shock absorbing property when receiving electronic components.
  • the adhesive layer 21 may be composed of the adhesive layer of the present invention, or may be composed of an adhesive layer other than the adhesive layer of the present invention.
  • the release liner R1 is peeled off from the adhesive layer 20 before use and receives the electronic component with the exposed adhesive surface 20a.
  • the adhesive surface 21b exposed by peeling off the release liner R2 is adhered to a base material constituting a transfer substrate, a carrier substrate, or the like.
  • the pressure-sensitive adhesive layer 20 in the pressure-sensitive adhesive sheet 2 is composed of the pressure-sensitive adhesive layer of the present invention, the pressure-sensitive adhesive layer 20 before irradiation with active energy rays has excellent impact absorption when receiving electronic components, and the active energy The adhesive layer 20 after irradiation exhibits excellent heat resistance when the electronic component is transferred onto the mounting substrate by thermocompression bonding.
  • FIG. 3 is a schematic cross-sectional view showing another embodiment of the pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer of the present invention, wherein 3 is the pressure-sensitive adhesive sheet, 30 is the pressure-sensitive adhesive layer, S1 is the substrate, and R1 is the release liner. .
  • the adhesive sheet 3 has a laminated structure in which a release liner R1, an adhesive layer 30, and a substrate S1 are laminated in this order.
  • the adhesive sheet 3 is used in processing technology for mounting small electronic components such as semiconductor chips and LED chips on mounting substrates such as circuit boards.
  • the pressure-sensitive adhesive layer 30 is composed of the pressure-sensitive adhesive layer of the present invention. It is what is done.
  • the base material S1 improves the stability and handleability when receiving electronic components.
  • the release liner R1 is peeled off from the adhesive layer 30 before use and receives the electronic component with the exposed adhesive surface 30a.
  • the pressure-sensitive adhesive layer 30 in the pressure-sensitive adhesive sheet 3 is composed of the pressure-sensitive adhesive layer of the present invention, the pressure-sensitive adhesive layer 30 before irradiation with active energy rays has excellent impact absorption when receiving electronic components, and the active energy The adhesive layer 30 after irradiation exhibits excellent heat resistance when transferring an electronic component onto a mounting substrate by thermocompression bonding.
  • FIG. 4 is a schematic cross-sectional view showing another embodiment of a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer of the present invention, wherein 4 is a pressure-sensitive adhesive sheet, 40 and 41 are pressure-sensitive adhesive layers, S1 is a substrate, and R1 and R2 are A release liner is shown.
  • the adhesive sheet 4 has a laminate structure in which a release liner R1, an adhesive layer 40, a substrate S1, an adhesive layer 41, and a release liner R2 are laminated in this order.
  • the adhesive sheet 4 is used in processing technology for mounting small electronic components such as semiconductor chips and LED chips on mounting substrates such as circuit boards.
  • the pressure-sensitive adhesive layer 40 is composed of the pressure-sensitive adhesive layer of the present invention. It is what is done.
  • the base material S1 improves the stability and handleability when receiving electronic components.
  • the pressure-sensitive adhesive layer 41 and the pressure-sensitive adhesive layer 40 can adjust the shock absorption when receiving the electronic component.
  • the adhesive layer 41 may be composed of the adhesive layer of the present invention, or may be composed of an adhesive layer other than the adhesive layer of the present invention.
  • the release liner R1 is peeled off from the adhesive layer 40 before use and receives the electronic component with the exposed adhesive surface 40a.
  • the adhesive surface 41b exposed by peeling off the release liner R2 is adhered to a base material constituting a transfer substrate, a carrier substrate, or the like. Since the adhesive layer 40 in the adhesive sheet 4 is composed of the adhesive layer of the present invention, the adhesive layer 40 before the active energy ray irradiation has excellent impact absorption when receiving the electronic component, and the active energy
  • the adhesive layer 40 after irradiation exhibits excellent heat resistance when transferring an electronic component onto a mounting substrate by thermocompression bonding. Each configuration will be described below.
  • the pressure-sensitive adhesive layer of the present invention has a storage modulus G' (100k) at 100 kHz and 25°C of 60 MPa or less.
  • G' storage modulus
  • the transfer of electronic parts is completed within an optical time scale, so the impact relaxation properties of the pressure-sensitive adhesive on this time scale are important.
  • the optical time scale is correlated with the sweeping frequency of the laser light, such as 100 kHz. When converted to a time scale, it is about 10 microseconds, and the adhesive needs to be deformed in response to the impact on this time scale.
  • the G'(100k) is more preferably 30 MPa or less, still more preferably 15 MPa or less, and may be 10 MPa or less in terms of realizing better impact absorption of the pressure-sensitive adhesive layer on an optical time scale. .
  • the G'(100k) is preferably 0.03 MPa or more, more preferably 0.05 MPa or more, and even more preferably 0.1 MPa or more.
  • the adhesive layer of the present invention preferably has a tan ⁇ (100k) of 1 or more at 100kHz and 25°C. Tan ⁇ (loss factor) is one of the indicators of viscoelasticity represented by the ratio (G′′/G′) of loss elastic modulus (G′′) to storage elastic modulus (G′). It can be said that it is easy to plastically deform, and if it is low, it has high elasticity.
  • Tan ⁇ (100k) is 1 or more realizes excellent impact absorption of the pressure-sensitive adhesive layer on an optical time scale, and the pressure-sensitive adhesive layer of the present invention is used as a substrate for transfer.
  • the tan ⁇ (100k) is preferably 1.1 or more, more preferably 1.2 or more, in terms of achieving better impact absorption of the pressure-sensitive adhesive layer on an optical time scale. Moreover, from the viewpoint of preventing misalignment of received electronic components, the tan ⁇ (100k) is preferably 3 or less, and may be 2 or less.
  • G'(100k) and tan ⁇ (100k) represent the storage elastic modulus and loss factor of the pressure-sensitive adhesive layer before irradiation with active energy rays.
  • activation energy ray irradiation means "ultraviolet irradiation” in the examples described later, unless otherwise specified, and specifically, 8280 mJ/cm 2 of ultraviolet irradiation. .
  • the above G' (100k) and tan ⁇ (100k) are specifically measured by dynamic viscoelasticity measurement described in Examples below, and the resin constituting the pressure-sensitive adhesive layer of the present invention It can be adjusted by the type and composition (monomer composition) of the composition (the resin composition of the present invention), the type and amount of the active energy ray-curable compound described later, the type and amount of the cross-linking agent, and the like.
  • the ratio (G 1 /G 0 ) of the gel fraction G 1 (%) after active energy ray irradiation to the gel fraction G 0 (%) before active energy ray irradiation of the pressure-sensitive adhesive layer of the present invention is 1. It is preferably 1 or more.
  • the pressure-sensitive adhesive layer of the present invention exhibits excellent impact absorption before active energy ray irradiation, and after active energy ray irradiation, the active energy
  • the elastic modulus of the pressure-sensitive adhesive layer of the present invention is improved by forming a crosslinked structure through the reaction of the ray-curable compound, and even in thermocompression bonding when transferring electronic parts to a mounting substrate, expansion and outgassing can be suppressed. It is suitable in that it exhibits heat resistance.
  • the G 1 /G 0 is more preferably 1.15 or more, and 1.2 in terms of achieving a higher level of both the impact absorption property before the active energy ray irradiation and the heat resistance after the active energy ray irradiation. More preferably, it may be 1.3 or more.
  • the upper limit of G 1 /G 0 is not particularly limited, and the higher the better. , or 100 or less.
  • the gel fraction G 0 (%) of the pressure-sensitive adhesive layer of the present invention before active energy ray irradiation realizes excellent impact absorption of the pressure-sensitive adhesive layer, and the pressure-sensitive adhesive layer of the present invention is used as the impact absorption layer of the transfer substrate. 85% or less is preferable, and 80% or less is more preferable in terms of being able to impart excellent transferability when used as. Moreover, from the viewpoint of preventing misalignment of received electronic components, the G 0 (%) is preferably 10% or more, and may be 20% or more.
  • the gel fraction G 1 (%) of the pressure-sensitive adhesive layer of the present invention after irradiation with active energy rays is excellent heat resistance that can suppress expansion and outgassing even in thermocompression bonding when transferring electronic parts to a mounting substrate. is preferably 90% or more, more preferably 93% or more.
  • the upper limit of the gel fraction G 1 (%) is preferably as high as possible and is not particularly limited, but may be, for example, less than 100%.
  • the gel fractions G 0 , G 1 and the ratio G 1 /G 0 thereof are specifically measured by the gel fraction measurement described in Examples below, and the adhesive of the present invention It can be adjusted by the type and composition (monomer composition) of the resin composition (the resin composition of the present invention) constituting the layer, the type and amount of the active energy ray-curable compound described later, the type and amount of the cross-linking agent, and the like. can.
  • the linear expansion coefficient ⁇ (200 to 210) at 200 to 210° C. of the adhesive layer of the present invention after irradiation with active energy rays is preferably 500 ⁇ 10 ⁇ 5 /K or less.
  • the configuration in which the ⁇ (200 to 210) is 500 ⁇ 10 -5 /K or less is such that the elastic modulus of the pressure-sensitive adhesive layer of the present invention increases due to the formation of a crosslinked structure by the active energy ray-curable compound after irradiation with an active energy ray. It exhibits excellent heat resistance that can suppress the occurrence of expansion during thermocompression bonding when electronic components are transferred to a mounting substrate, and can prevent the positional accuracy of electronic components from declining due to linear expansion of the adhesive layer. preferable.
  • the ⁇ (200 to 210) is 250 ⁇ 10 -5 /K or less. More preferably, it is 150 ⁇ 10 ⁇ 5 /K or less.
  • the lower limit of ⁇ (200 to 210) is not particularly limited, and the lower the better, but it may be 1 ⁇ 10 ⁇ 5 /K or more.
  • the linear expansion coefficient ⁇ (260-270) at 260-270° C. of the pressure-sensitive adhesive layer of the present invention after irradiation with active energy rays is preferably 500 ⁇ 10 ⁇ 5 /K or less.
  • the configuration in which the ⁇ (260 to 270) is 500 ⁇ 10 ⁇ 5 /K or less is such that the elastic modulus of the pressure-sensitive adhesive layer of the present invention increases due to the formation of a crosslinked structure by the active energy ray-curable compound after irradiation with an active energy ray.
  • thermocompression bonding is performed at a high temperature exceeding 250 ° C. in order to improve connection reliability, it has excellent heat resistance that can suppress the occurrence of expansion.
  • the ⁇ (260 to 270) is 350 ⁇ 10 -5 /K or less is more preferable, and 200 ⁇ 10 ⁇ 5 /K or less is even more preferable.
  • the lower limit of ⁇ (260 to 270) is not particularly limited, and the lower the better, but it may be 1 ⁇ 10 ⁇ 5 /K or more.
  • ⁇ (200 to 210) and ⁇ (260 to 270) are measured in accordance with JIS K 7197, specifically by measuring the coefficient of linear expansion described in the Examples below,
  • the type and composition (monomer composition) of the resin composition constituting the pressure-sensitive adhesive layer of the present invention (the resin composition of the present invention), the type and amount of the active energy ray-curable compound described later, the type and amount of the cross-linking agent, It can be adjusted by the thickness of the pressure-sensitive adhesive layer.
  • the tensile elastic modulus E'(200) at 200°C after the active energy ray irradiation of the pressure-sensitive adhesive layer of the present invention is preferably 0.3 MPa or more.
  • the elastic modulus of the pressure-sensitive adhesive layer of the present invention is improved by forming a crosslinked structure with the active energy ray-curable compound after irradiation with the active energy ray, and the mounting substrate It exhibits excellent heat resistance that can suppress expansion and outgassing in thermocompression bonding when transferring electronic parts to , and is suitable in that it can prevent deterioration of connection reliability due to deterioration of positional accuracy of electronic parts.
  • E′(200) is more preferably 0.5 MPa or more from the viewpoint of exhibiting better heat resistance and being able to prevent a higher level of deterioration in positional accuracy of electronic components due to expansion of the adhesive layer and generation of outgassing. 0.9 MPa or more is more preferable.
  • the upper limit of E′ (200) is not particularly limited, and the higher the better. Therefore, it may be, for example, 1000 MPa or less.
  • the tensile elastic modulus E'(260) at 260°C of the pressure-sensitive adhesive layer of the present invention after irradiation with active energy rays is preferably 0.05 MPa or more.
  • the configuration in which the tensile elastic modulus E′ (260) is 0.05 MPa or more is such that the elastic modulus of the pressure-sensitive adhesive layer of the present invention is improved by forming a crosslinked structure with the active energy ray-curable compound after irradiation with active energy rays,
  • thermocompression bonding is performed at a high temperature exceeding 250°C to improve connection reliability, it has excellent heat resistance that can suppress expansion and outgassing.
  • E′(260) is 0.1 MPa or more from the viewpoint of exhibiting superior heat resistance at high temperatures and being able to prevent a higher level of deterioration in the positional accuracy of the bumps of the electronic component due to expansion of the adhesive layer and generation of outgassing. is more preferable, and 0.5 MPa or more is even more preferable.
  • the upper limit of E′ (260) is not particularly limited, and the higher the better. Therefore, it may be, for example, 1000 MPa or less.
  • E'(200) and E'(260) are specifically measured by the tensile elasticity test measurement described in the examples below, and the resin constituting the pressure-sensitive adhesive layer of the present invention
  • the type and composition (monomer composition) of the composition (the resin composition of the present invention), the type and amount of the active energy ray-curable compound described later, the type and amount of the cross-linking agent, the thickness of the pressure-sensitive adhesive layer, etc. can be adjusted. can be done.
  • thermomechanical analysis TMA
  • Probe diameter 1.0mm
  • Pushing load 0.05N
  • Measurement ambient temperature -40°C
  • Indentation load time 20 minutes
  • the physical properties of the adhesive in the frequency range of 100 kHz correspond to the physical properties of the adhesive in the low temperature range of -40°C according to the temperature-time conversion rule, so when a load is applied to the adhesive in this temperature range It means that the larger the amount of deformation, the better the impact relaxation property.
  • the above ratio (sinking depth/thickness ⁇ 100) when a load is applied to the pressure-sensitive adhesive layer at ⁇ 40° C. by thermomechanical analysis (TMA) can be used as an index of impact relaxation properties.
  • TMA thermomechanical analysis
  • the ratio is 5% or more can sufficiently absorb the impact caused by the collision of the electronic component, and the electronic component It is preferable in that it can be received without damage or misalignment.
  • the ratio is more preferably 10% or more, further preferably 30% or more, and particularly preferably 50% or more. From the viewpoint of transferability of received electronic components to a mounting board, the above ratio is preferably 95% or less, and may be 90% or less.
  • the ratio (sinking depth/thickness x 100) is specifically measured by the method described in Examples below, and the resin composition ( The resin composition of the present invention) can be adjusted by the type and composition (monomer composition), the type and amount of the active energy ray-curable compound described later, the type and amount of the cross-linking agent, the thickness of the pressure-sensitive adhesive layer, and the like.
  • the 5% weight loss temperature (T d5 ) of the pressure-sensitive adhesive layer of the present invention after irradiation with active energy rays is preferably 340° C. or higher.
  • the elastic modulus of the pressure-sensitive adhesive layer of the present invention is improved by forming a crosslinked structure by the active energy ray-curable compound after irradiation with active energy rays, and electronic components are attached to the mounting substrate.
  • T d5 is more preferably 345° C. or higher, even more preferably 350° C. or higher, from the viewpoint of exhibiting better heat resistance and being able to prevent a higher level of deterioration in positional accuracy of electronic components due to outgassing of the pressure-sensitive adhesive layer.
  • the upper limit of T d5 is not particularly limited, and although it is preferably as high as possible, it may be 500° C. or less.
  • the 5% weight loss temperature (T d5 ) of the pressure-sensitive adhesive layer of the present invention after irradiation with the energy beam is specifically measured by the method described in Examples below.
  • the thickness of the adhesive layer of the present invention is preferably 1 ⁇ m or more and 500 ⁇ m or less.
  • the configuration in which the thickness of the pressure-sensitive adhesive layer of the present invention is 1 ⁇ m or more is preferable from the viewpoint of excellent shock absorbing properties due to collision of electronic parts.
  • the thickness of the pressure-sensitive adhesive layer of the present invention is preferably 5 ⁇ m or more, and may be 10 ⁇ m or more, 20 ⁇ m or more, or 30 ⁇ m or more.
  • the configuration in which the thickness of the pressure-sensitive adhesive layer of the present invention is 500 ⁇ m or less is preferable from the viewpoint of transferability when transferring to a mounting substrate for electronic components, and may be 400 ⁇ m or less or 300 ⁇ m or less.
  • the thickness of the pressure-sensitive adhesive layer is the thickness of the entire laminated structure.
  • the thickness of the pressure-sensitive adhesive layer of the present invention that does not include another pressure-sensitive adhesive layer is preferably 1 ⁇ m or more and 450 ⁇ m or less.
  • the configuration in which the thickness of the pressure-sensitive adhesive layer of the present invention is 1 ⁇ m or more is preferable from the viewpoint of excellent shock absorbing properties due to collision of electronic parts, and is preferably 2 ⁇ m or more, and more preferably 5 ⁇ m or more.
  • the configuration in which the thickness of the pressure-sensitive adhesive layer of the present invention is 450 ⁇ m or less is preferable from the viewpoint of transferability when transferring to a mounting board for electronic components, and may be 350 ⁇ m or less or 250 ⁇ m or less.
  • the probe tack value at normal temperature of the pressure-sensitive adhesive layer before irradiation with active energy rays of the present invention is preferably 7 N/cm 2 or more and 42 N/cm 2 or less.
  • the configuration in which the probe tack value is 10 N/cm 2 or more can sufficiently absorb the impact caused by the collision of the electronic component or the like with the adhesive layer, and can suppress the displacement or turning inside out due to the bounce of the electronic component at the time of collision.
  • the probe tack value is preferably 9 N/cm 2 or more, and may be 11 N/cm 2 or more, or 13 N/cm 2 or more, in order to suppress misalignment or turning over of the electronic component.
  • the configuration that the probe tack value is 42 N/cm 2 or less is preferable from the viewpoint of preventing adhesion of the adhesive to the received electronic component and adhesive residue, and is 40 N/cm 2 or less, or 35 N/cm 2 or less. There may be.
  • the probe tack value is measured using a probe tack measuring machine (for example, manufactured by RHESCA, trade name "TACKINESS Model TAC-II"), and the resin composition (
  • the resin composition of the present invention can be adjusted by the type and composition (monomer composition), the type and amount of the active energy ray-curable compound described later, the type and amount of the cross-linking agent, the thickness of the pressure-sensitive adhesive layer, and the like.
  • the adhesive strength of the pressure-sensitive adhesive layer of the present invention to stainless steel after irradiation with active energy rays at room temperature is preferably 0.01 N/20 mm or more and 4.2 N/20 mm or less.
  • the configuration in which the adhesive strength of the adhesive layer to stainless steel after irradiation with the active energy ray is 0.01 N/20 mm or more at room temperature suppresses misalignment of received electronic components when transporting them to the next step. It is preferable in terms of retention, and the adhesive strength is more preferably 0.03 N/20 mm or more, and may be 0.05 N/20 mm or more.
  • the configuration in which the adhesive strength of the adhesive layer to stainless steel after irradiation with the active energy ray is 4.2 N/20 mm or less at normal temperature is preferable from the viewpoint of transferability to the mounting board of the received electronic component, and is 3.0 N. /20 mm or less, or 2.0 N/20 mm or less.
  • the adhesive strength of the pressure-sensitive adhesive layer of the present invention to stainless steel at room temperature after irradiation with active energy rays is more preferably 1 N/20 mm or less.
  • the adhesive layer has an adhesive strength of 1 N/20 mm or less at room temperature to stainless steel after irradiation with active energy rays, which improves the transferability of received electronic components to a mounting substrate and suppresses adhesive residue on electronic components. 0.75 N/20 mm or less, or 0.5 N/20 mm or less.
  • the adhesive strength of the pressure-sensitive adhesive layer to stainless steel after irradiation with active energy rays at room temperature may be 0.001 N/20 mm or more, or 0.005 N/20 mm or more.
  • the adhesive strength of the pressure-sensitive adhesive layer of the present invention to stainless steel at normal temperature before irradiation with active energy rays is preferably 0.01 N/20 mm or more.
  • a configuration in which the adhesive layer has an adhesive strength of 0.01 N/20 mm or more before irradiation with an active energy ray is preferable in terms of suppressing displacement and turning inside out due to splashing of electronic parts upon collision.
  • the adhesive strength of the adhesive layer before irradiation with the active energy ray is more preferably 0.02 N/20 mm or more, and may be 0.03 N/20 mm or more, in order to suppress misalignment and turning over of the electronic component.
  • the upper limit of the adhesive strength of the adhesive layer before the active energy ray irradiation is not particularly limited, but may be 20 N/20 mm or less, 18 N/20 mm or less, or 15 N/20 mm or less.
  • the adhesive strength is measured, for example, in accordance with JIS Z 0237, etc., and the type and composition (monomer composition) of the resin composition (the resin composition of the present invention) constituting the adhesive layer of the present invention. , the type and amount of the active energy ray-curable compound described later, the type and amount of the cross-linking agent, the thickness of the pressure-sensitive adhesive layer, and the like.
  • the impact absorption rate (%) in the falling ball test described later is preferably 10% or more, more preferably 15% or more, 20% or more, 25% or more. , 30% or more, 35% or more, or 40% or more.
  • the ratio of the depth of subduction of the adhesive layer to the thickness of the adhesive layer before irradiation with active energy rays was 7. % or more, more preferably 10% or more, and may be 15% or more, 20% or more, 25% or more, or 30% or more.
  • the configuration in which the ratio (sinking depth/thickness x 100) is 7% or more indicates that the pressure-sensitive adhesive layer of the present invention before irradiation with active energy rays exhibits excellent impact absorption, and when receiving an electronic component. , it is preferable in that it is possible to prevent troubles such as breakage, jumping to cause misalignment, and turning over.
  • the ratio (sinking depth/thickness ⁇ 100) is preferably 95% or less, more preferably 90% or less.
  • a falling ball test can be performed by the following method. First, a 2 kg hand roller was applied to a SUS plate (thickness 5 mm) via a double-sided adhesive tape on the entire surface opposite to the adhesive layer on the evaluation surface of the adhesive sheet (width 30 mm ⁇ length 30 mm). affix it. Using a falling ball tester, a 1 g iron ball is allowed to fall freely from a height of 1 m onto the adhesive layer surface of the evaluation sample obtained as described above. The depth of sinking of the iron ball into the pressure-sensitive adhesive layer surface is measured with a confocal laser microscope.
  • the subduction depth ( ⁇ m) is divided by the thickness ( ⁇ m) of the adhesive sheet, and the ratio of the subduction depth of the adhesive to the thickness of the adhesive (depth of subduction of the adhesive after the falling ball test/thickness ⁇ 100).
  • the impact load F when the impact is applied under the above conditions is measured using the falling ball tester, and the impact absorption rate (%) is obtained from the following formula.
  • Impact absorption rate (%) ⁇ ( F0 - F1 )/ F0 ⁇ x 100 (In the above formula, F 0 is the impact load when an iron ball hits only the SUS plate without sticking the adhesive sheet, and F 1 is the adhesive sheet of the structure consisting of the SUS plate and the adhesive sheet. It is the impact load when an iron ball collides with it.)
  • the impact absorption rate in the iron ball drop test depends on the type and composition (monomer composition ), the type and amount of the active energy ray-curable compound described later, the type and amount of the cross-linking agent, the thickness of the pressure-sensitive adhesive layer, and the like.
  • the resin composition (adhesive composition) constituting the adhesive layer of the present invention is not particularly limited, but examples include acrylic adhesives, rubber adhesives, vinyl alkyl ether adhesives, silicone adhesives, Examples include polyester-based adhesives, polyamide-based adhesives, urethane-based adhesives, fluorine-based adhesives, and epoxy-based adhesives.
  • acrylic pressure-sensitive adhesives and silicone-based pressure-sensitive adhesives are preferable.
  • the various desired physical properties of the pressure-sensitive adhesive layer of the present invention in particular, the G′(100k) is 60 MPa or less.
  • an acrylic pressure-sensitive adhesive is preferable from the viewpoints of ease of designing the pressure-sensitive adhesive to be adjusted to , transparency, adhesiveness, cost, and the like. That is, the pressure-sensitive adhesive layer of the present invention is preferably an acrylic pressure-sensitive adhesive layer composed of an acrylic pressure-sensitive adhesive composition.
  • the pressure-sensitive adhesives may be used alone or in combination of two or more.
  • the acrylic pressure-sensitive adhesive composition contains an acrylic polymer as a base polymer.
  • the above acrylic polymer is a polymer containing an acrylic monomer (a monomer having a (meth)acryloyl group in the molecule) as a monomer component constituting the polymer.
  • the acrylic polymer is preferably a polymer containing a (meth)acrylic acid alkyl ester as a monomer component constituting the polymer.
  • an acrylic polymer can be used individually or in combination of 2 or more types.
  • the adhesive composition forming the adhesive layer of the present invention may be in any form.
  • the pressure-sensitive adhesive composition may be an emulsion type, a solvent type (solution type), an active energy ray-curable type, a heat-melting type (hot-melt type), or the like.
  • solvent-type and active energy ray-curable pressure-sensitive adhesive compositions are preferable from the viewpoint of productivity and the ease with which a pressure-sensitive adhesive layer having excellent optical properties and appearance can be obtained.
  • An active energy ray-curable pressure-sensitive adhesive composition is preferable from the viewpoint of exhibiting excellent heat resistance capable of suppressing expansion by heating and generation of outgassing.
  • the pressure-sensitive adhesive layer of the present invention is an acrylic pressure-sensitive adhesive layer containing an acrylic polymer as a base polymer, and is preferably formed from an active energy ray-curable acrylic pressure-sensitive adhesive composition.
  • the active energy rays include ionizing radiation such as ⁇ -rays, ⁇ -rays, ⁇ -rays, neutron beams and electron beams, and ultraviolet rays, with ultraviolet rays being particularly preferred. That is, the active energy ray-curable pressure-sensitive adhesive composition is preferably an ultraviolet-curable pressure-sensitive adhesive composition.
  • the pressure-sensitive adhesive composition (acrylic pressure-sensitive adhesive composition) forming the acrylic pressure-sensitive adhesive layer includes, for example, an acrylic pressure-sensitive adhesive composition containing an acrylic polymer as an essential component, or a single Examples include acrylic pressure-sensitive adhesive compositions containing a mixture of monomers (sometimes referred to as a "monomer mixture") or a partial polymer thereof as an essential component.
  • the former includes, for example, a so-called solvent-type acrylic pressure-sensitive adhesive composition. again. Examples of the latter include so-called active energy ray-curable acrylic pressure-sensitive adhesive compositions.
  • the "monomer mixture” means a mixture containing monomer components that constitute a polymer.
  • the above-mentioned "partially polymerized product” may also be referred to as a "prepolymer", and means a composition in which one or more of the monomer components in the monomer mixture is partially polymerized. do.
  • the above acrylic polymer is a polymer composed (formed) of an acrylic monomer as an essential monomer component (monomer component).
  • the acrylic polymer is preferably a polymer composed (formed) of a (meth)acrylic acid alkyl ester as an essential monomer component. That is, the acrylic polymer preferably contains a (meth)acrylic acid alkyl ester as a structural unit.
  • “(meth)acryl” represents “acryl” and/or "methacryl” (either or both of "acryl” and “methacryl"), and so on.
  • the said acrylic polymer is comprised by 1 type, or 2 or more types of monomer components.
  • acrylic pressure-sensitive adhesive examples include, for example, an acrylic pressure-sensitive adhesive whose base polymer is an acrylic polymer (homopolymer or copolymer) using one or more of (meth)acrylic acid alkyl esters as a monomer component. etc.
  • (meth) acrylic acid alkyl esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, (meth) ) isobutyl acrylate, s-butyl (meth)acrylate, t-butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, octyl (meth)acrylate , 2-ethylhexyl (meth)acrylate, isooctyl (meth)acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, isodecyl (meth)acrylate, (meth)acrylic acid Undecyl, dodecyl
  • (meth)acrylic acid alkyl esters having a linear or branched alkyl group having 2 to 18 carbon atoms are preferably used.
  • the content of the (meth)acrylic acid alkyl ester structural unit in the acrylic polymer is preferably 70 parts by weight to 100 parts by weight, more preferably 75 parts by weight to 99 parts by weight, with respect to 100 parts by weight of the acrylic polymer. .9 parts by weight, more preferably 80 to 99.9 parts by weight.
  • the above acrylic polymer can be copolymerized with the above (meth)acrylic acid alkyl ester as necessary for the purpose of modifying cohesive strength, heat resistance, crosslinkability, etc., improving the dimensional stability of the adhesive layer, etc. It may contain structural units derived from other monomers. Examples of such monomers include the following monomers.
  • Carboxy group-containing monomers ethylenically unsaturated monocarboxylic acids such as acrylic acid (AA), methacrylic acid (MAA), crotonic acid; ethylenically unsaturated dicarboxylic acids such as maleic acid, itaconic acid, citraconic acid and their anhydrides (maleic anhydride, itaconic anhydride, etc.); hydroxyl group-containing monomers: hydroxyalkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate; Unsaturated alcohols such as vinyl alcohol and allyl alcohol; Ether compounds such as 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether and diethylene glycol monovinyl ether; amino group-containing monomers: for example aminoethyl (meth)acrylate, N,N-dimethylamino
  • Keto group-containing monomers for example diacetone (meth)acrylamide, diacetone (meth)acrylate, vinyl methyl ketone, vinyl ethyl ketone, allyl acetoacetate, vinyl acetoacetate; Monomers having a nitrogen atom-containing ring: such as N-vinyl-2-pyrrolidone, N-methylvinylpyrrolidone, N-vinylpyridine, N-vinylpiperidone, N-vinylpyrimidine, N-vinylpiperazine, N-vinylpyrazine, N-vinyl pyrrole, N-vinylimidazole, N-vinyloxazole, N-vinylmorpholine, N-vinylcaprolactam, N-(meth)acryloylmorpholine; Alkoxysilyl group-containing monomers: such as 3-(meth)acryloxypropyltrimethoxysilane, 3-
  • the acrylic polymer preferably contains structural units derived from a carboxy group-containing monomer.
  • the content of structural units derived from a carboxy group-containing monomer in the acrylic polymer is preferably 1 part by weight to 20 parts by weight, more preferably 2 parts by weight to 15 parts by weight, with respect to 100 parts by weight of the acrylic polymer. and more preferably 3 to 10 parts by weight.
  • the acrylic polymer containing a structural unit derived from a carboxy group-containing monomer is preferably used in combination with an epoxy-based cross-linking agent described below.
  • an acrylic polymer containing a structural unit derived from a carboxy group-containing monomer and an epoxy crosslinking agent When used in combination, a pressure-sensitive adhesive layer having excellent heat resistance and excellent dimensional stability at high temperatures can be formed.
  • the combined use of the acrylic polymer and the epoxy-based cross-linking agent is also advantageous in that a pressure-sensitive adhesive layer with little expansion or outgassing can be formed even in thermocompression bonding when transferring electronic components to a mounting substrate.
  • the acrylic polymer preferably contains structural units derived from hydroxyl group-containing monomers.
  • the content of structural units derived from a hydroxyl group-containing monomer is preferably 0.01 to 10 parts by weight, more preferably 0.05 to 10 parts by weight, with respect to 100 parts by weight of the acrylic polymer. 8 parts by weight, more preferably 0.1 to 5 parts by weight.
  • the acrylic polymer containing a structural unit derived from a hydroxyl group-containing monomer is preferably used in combination with an isocyanate-based cross-linking agent described below.
  • other monomers copolymerizable with (meth)acrylic acid alkyl esters include, for example, polyfunctional monomers.
  • the polyfunctional monomer include hexanediol di(meth)acrylate, butanediol di(meth)acrylate, (poly)ethylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, pentaerythritol di(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol hexa(meth)acrylate, trimethylolpropane tri(meth)acrylate, tetramethylolmethane tri(meth)acrylate, Allyl (meth)acrylate, vinyl (meth)acrylate, divinylbenzene, epoxy acrylate, polyester acrylate, urethane acrylate and the like
  • the proportion of the polyfunctional monomer in the total monomer components (100% by weight) constituting the acrylic polymer is although not particularly limited, it is preferably 5% by weight or less (e.g., more than 0% by weight and 5% by weight or less), more preferably 3% by weight or less (e.g., more than 0% by weight and 3% by weight or less), particularly preferably is 1% by weight or less (eg, more than 0% by weight and 1% by weight or less).
  • the acrylic polymer contains, as a monomer component constituting the polymer, a monomer having a low glass transition temperature (Tg) when forming a homopolymer (hereinafter sometimes referred to as a "low Tg monomer"). preferably included.
  • Tg glass transition temperature
  • the pressure-sensitive adhesive containing the acrylic polymer becomes soft, and the above-mentioned properties of the pressure-sensitive adhesive layer of the present invention (in particular, impact absorption) are controlled, and the impact of electronic parts It is preferable from the viewpoint of being able to absorb impacts and suppress misalignment and turning inside out of the electronic component.
  • the glass transition temperature when the homopolymer of the low Tg monomer is formed is not particularly limited, but is, for example, 0°C or lower, preferably -10°C or lower, more preferably -20°C or lower.
  • the Tg of the low Tg monomer is within the above range, the impact absorption of the pressure-sensitive adhesive layer is enhanced.
  • the above-mentioned low Tg monomer may be the above-mentioned monomers exemplified as the monomers contained in the monomer component constituting the acrylic polymer, or may be other monomers.
  • the monomer component constituting the acrylic polymer contains a monomer component exemplified as the monomer component constituting the acrylic polymer described above and which is a low Tg monomer.
  • the low Tg monomers may be of one kind, or may be of two or more kinds.
  • Examples of the low Tg monomer include, but are not limited to, 2-ethylhexyl acrylate (EHA, Tg of homopolymer: -70°C), butyl acrylate (BA, Tg of homopolymer: -55°C), acrylic acid Ethyl (EA, Tg of homopolymer: -24°C), Lauryl methacrylate (LMA, Tg of homopolymer: -65°C), Lauryl acrylate (LA, Tg of homopolymer: -23°C), Isononyl acrylate ( iNAA, homopolymer Tg: -58°C), etc., and 2-ethylhexyl acrylate, butyl acrylate, and lauryl methacrylate are preferred.
  • EHA 2-ethylhexyl acrylate
  • BA Tg of homopolymer: -55°C
  • acrylic acid Ethyl EA, Tg of homopolymer: -24°
  • the proportion of the low Tg monomer in the total monomer components (100% by weight) constituting the acrylic polymer is particularly limited. Although not required, it is preferably 40% by weight or more, and may be 60% by weight or more, or 80% by weight or more.
  • the upper limit of the proportion of the low Tg monomer is also not particularly limited, but may be 99% by weight or less, or 98% by weight or less.
  • the ratio of the low Tg monomer is within the above range, the above characteristics (especially impact absorption) can be controlled, the impact due to the collision of the electronic component can be absorbed, and the displacement and turning over of the electronic component can be suppressed. Therefore, it is preferable.
  • the above "proportion of low Tg monomers" is the sum of the proportions of the above two or more types of low Tg monomers.
  • the content of the base polymer (especially acrylic polymer) in the pressure-sensitive adhesive layer of the present invention is not particularly limited, but is 10% by weight or more (for example, 10 to 100% by weight), more preferably 15% by weight or more (eg, 15 to 100% by weight), and still more preferably 20% by weight or more (eg, 20 to 100% by weight).
  • the base polymer such as the acrylic polymer contained in the pressure-sensitive adhesive composition of the present invention is obtained by polymerizing monomer components.
  • the polymerization method is not particularly limited, but includes, for example, a solution polymerization method, an emulsion polymerization method, a bulk polymerization method, and a polymerization method using active energy ray irradiation (active energy ray polymerization method).
  • the solution polymerization method and the active energy ray polymerization method are preferable, and the active energy ray polymerization method is more preferable, from the viewpoints of the transparency of the pressure-sensitive adhesive layer and the cost.
  • various general solvents may be used in the polymerization of the above monomer components.
  • the solvent include esters such as ethyl acetate and n-butyl acetate; aromatic hydrocarbons such as toluene and benzene; aliphatic hydrocarbons such as n-hexane and n-heptane; cyclohexane, methylcyclohexane and the like. alicyclic hydrocarbons; and organic solvents such as ketones such as methyl ethyl ketone and methyl isobutyl ketone.
  • a solvent can be used individually or in combination of 2 or more types.
  • a polymerization initiator such as a thermal polymerization initiator or a photopolymerization initiator (photoinitiator) may be used depending on the type of polymerization reaction.
  • a polymerization initiator can be used individually or in combination of 2 or more types.
  • thermal polymerization initiator examples include, but are not limited to, azo polymerization initiators, peroxide polymerization initiators (eg, dibenzoyl peroxide, tert-butyl permaleate, etc.), redox polymerization initiators, and the like. is mentioned. Among them, a peroxide-based polymerization initiator is preferred.
  • the azo polymerization initiator examples include 2,2'-azobisisobutyronitrile (hereinafter sometimes referred to as "AIBN”), 2,2'-azobis-2-methylbutyronitrile (hereinafter, "AMBN”), 2,2′-azobis(2-methylpropionate)dimethyl, 4,4′-azobis-4-cyanovaleric acid and the like.
  • a thermal polymerization initiator can be used individually or in combination of 2 or more types.
  • the amount of the thermal polymerization initiator to be used is not particularly limited. 1 part by weight or more, preferably 0.5 parts by weight or less, more preferably 0.3 parts by weight or less.
  • the photopolymerization initiator is not particularly limited. Active oxime-based photopolymerization initiators, benzoin-based photopolymerization initiators, benzyl-based photopolymerization initiators, benzophenone-based photopolymerization initiators, ketal-based photopolymerization initiators, thioxanthone-based photopolymerization initiators, and the like are included. Other examples include acylphosphine oxide photopolymerization initiators and titanocene photopolymerization initiators.
  • benzoin ether-based photopolymerization initiator examples include benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 2,2-dimethoxy-1,2-diphenylethan-1-one, anisole methyl ether and the like.
  • acetophenone-based photopolymerization initiator examples include 2,2-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexylphenylketone, 4-phenoxydichloroacetophenone, 4-(t-butyl ) and dichloroacetophenone.
  • Examples of the ⁇ -ketol photopolymerization initiator include 2-methyl-2-hydroxypropiophenone, 1-[4-(2-hydroxyethyl)phenyl]-2-methylpropan-1-one, and the like. be done.
  • Examples of the aromatic sulfonyl chloride photopolymerization initiator include 2-naphthalenesulfonyl chloride.
  • Examples of the photoactive oxime photopolymerization initiator include 1-phenyl-1,1-propanedione-2-(O-ethoxycarbonyl)-oxime.
  • Examples of the benzoin-based photopolymerization initiator include benzoin.
  • Examples of the benzyl-based photopolymerization initiator include benzyl.
  • benzophenone-based photopolymerization initiator examples include benzophenone, benzoylbenzoic acid, 3,3′-dimethyl-4-methoxybenzophenone, polyvinylbenzophenone, ⁇ -hydroxycyclohexylphenyl ketone, and the like.
  • ketal photopolymerization initiator examples include benzyl dimethyl ketal.
  • Examples of the thioxanthone-based photopolymerization initiator include thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-diisopropylthioxanthone, and dodecylthioxanthone.
  • Examples of the acylphosphine oxide-based photopolymerization initiator include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide.
  • titanocene photopolymerization initiator examples include bis( ⁇ 5 -2,4-cyclopentadien-1-yl)-bis(2,6-difluoro-3-(1H-pyrrol-1-yl)-phenyl ) titanium and the like.
  • a photoinitiator can be used individually or in combination of 2 or more types.
  • the amount of the photopolymerization initiator used is not particularly limited. It is preferably 0.01 parts by weight or more, more preferably 0.1 parts by weight or more, and preferably 3 parts by weight or less, more preferably 1.5 parts by weight or less.
  • the resin composition (adhesive composition) of the present invention contains an active energy ray-curable compound.
  • the pressure-sensitive adhesive layer of the present invention exhibits excellent impact absorption before irradiation with active energy rays, and after irradiation with active energy rays,
  • the elastic modulus of the pressure-sensitive adhesive layer of the present invention is improved by the formation of a crosslinked structure through the reaction of the active energy ray-curable compound, and expansion and outgassing are suppressed even in thermocompression bonding when transferring electronic parts to a mounting substrate. It is suitable in terms of exhibiting excellent heat resistance that can be achieved.
  • the active energy ray-curable compound is preferably a polyfunctional monomer and/or a polyfunctional oligomer.
  • the elastic modulus of the pressure-sensitive adhesive layer is further increased by forming a crosslinked structure with a plurality of reactive functional groups, and the mounting substrate It is preferable in terms of exhibiting superior heat resistance capable of suppressing expansion and generation of outgassing in thermocompression bonding when transferring an electronic component to a substrate.
  • the active energy ray-curable compound preferably has 3 or more reactive functional groups.
  • the configuration in which the active energy ray-curable compound has three or more reactive functional groups further increases the elastic modulus of the pressure-sensitive adhesive layer by forming a three-dimensional crosslinked structure with three or more reactive functional groups. It is preferable in that it exhibits excellent heat resistance that can suppress expansion and generation of outgassing in thermocompression bonding when transferring an electronic component to a mounting substrate.
  • the number of reactive functional groups is more preferably 4 or more, more preferably 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, Or it may be 10 or more.
  • the active energy ray-curable compound preferably has a molecular weight of less than 20,000.
  • the configuration in which the molecular weight of the active energy ray-curable compound is less than 20000 imparts flexibility to the pressure-sensitive adhesive layer of the present invention before irradiation with a sexual energy ray, and the G′ (100 k) is adjusted to 60 MPa or less.
  • the pressure-sensitive adhesive layer of the present invention is used as an impact-absorbing layer of a transfer substrate, it is preferable in that excellent impact-absorbing properties can be imparted.
  • the molecular weight of the active energy ray-curable compound of the present invention is more preferably 10000 or less, more preferably 3000 or less, from the viewpoint of realizing more excellent impact absorption of the pressure-sensitive adhesive layer of the present invention before active energy ray irradiation. It may be 1500 or less. Although the molecular weight of the active energy ray-curable compound of the present invention is not particularly limited, it is preferably 100 or more, and may be 200 or more. In addition, when the active-energy-ray-curable compound of this invention is a polymer (oligomer), the said molecular weight shall include a weight average molecular weight (Mw).
  • Mw weight average molecular weight
  • the softening point of the active energy ray-curable compound of the present invention is not particularly limited.
  • the melting point of the active energy ray-curable compound of the present invention is not particularly limited, but is preferably -140°C or higher. , ⁇ 120° C. or higher.
  • the "softening point" is the temperature at which a material such as glass or resin begins to rise and deform, and is specifically measured by the method described in Examples below.
  • a low softening point compound is contained in the adhesive layer, it is extracted using an organic solvent in which the softening point compound is dissolved (for example, a polar solvent such as THF (tetrahydrofuran)), and the polar solvent is sufficiently removed.
  • a sample for evaluation can be prepared by volatilization, and the softening point can also be measured.
  • the softening point of the active energy ray-curable compound of the present invention can be measured, for example, by the following method. About 5.0 mg of a compound sample is collected in an aluminum pan having a diameter of 4.0 mm to obtain a sample sheet for evaluation. When the compound sample is diluted with an organic solvent, it is sufficiently volatilized at a temperature equal to or higher than the boiling point of the organic solvent to prepare a sample for evaluation.
  • the sheet of the evaluation sample obtained above is set in TMA Q400 (manufactured by TA-instruments), using a ⁇ 3.0 mm probe, nitrogen gas flow rate: 50.0 ml / min in penetration mode, pushing The thickness reduction of the sheet of the evaluation sample is measured while increasing the temperature under the following conditions: load: 0.01 N, ambient temperature range for measurement: -75°C to 40°C, temperature increase rate: 3°C/min. From the obtained data, the temperature at which the thickness reduction is 10% is extracted and taken as the softening point (10% heat distortion temperature).
  • polyfunctional (meth)acrylate monomer a polyfunctional (meth)acrylate monomer having a molecular weight of less than about 1000 can be preferably used.
  • polyfunctional (meth)acrylate monomers include trimethylolpropane tri(meth)acrylate, dipentaerythritol tri(meth)acrylate, propionic acid-modified dipentaerythritol tri(meth)acrylate, and pentaerythritol tri(meth)acrylate.
  • polyfunctional oligomer examples include polyester acrylate-based, epoxy acrylate-based, urethane acrylate-based, polyether acrylate-based, polybutadiene acrylate-based, and silicone acrylate-based oligomers. These may be used singly or in combination of two or more.
  • the weight-average molecular weight (Mw) of the polyfunctional oligomer is preferably less than 20,000, more preferably 10,000 or less, and further preferably less than 20,000, from the viewpoint of achieving better impact absorption of the pressure-sensitive adhesive layer of the present invention before irradiation with active energy rays. It is preferably 3000 or less, or may be 1500 or less, and the weight average molecular weight (Mw) of the polyfunctional oligomer is preferably 100 or more, and may be 200 or more.
  • the content is not particularly limited. After irradiation with an active energy ray, it is preferably 10 parts by weight or more with respect to 100 parts by weight of all the monomer components constituting the acrylic polymer in that the pressure-sensitive adhesive layer of the present invention exhibits excellent heat resistance. , more preferably 20 parts by weight or more, still more preferably 30 parts by weight or more, and preferably 1000 parts by weight or less, more preferably 500 parts by weight or less.
  • the resin composition (adhesive composition) of the present invention preferably contains a cross-linking agent.
  • a cross-linking agent in the resin composition of the present invention, an appropriate cross-linked structure is formed in the pressure-sensitive adhesive layer, and excellent workability can be imparted, and misalignment when receiving electronic parts can be suppressed. is. It is also advantageous in that it is excellent in heat resistance and can form a pressure-sensitive adhesive layer with little expansion or outgassing even in thermocompression bonding when transferring an electronic component to a mounting substrate.
  • a crosslinking agent can be used individually or in combination of 2 or more types.
  • the cross-linking agent is not particularly limited. cross-linking agents, metal salt-based cross-linking agents, carbodiimide-based cross-linking agents, oxazoline-based cross-linking agents, aziridine-based cross-linking agents, and amine-based cross-linking agents. Among them, an isocyanate-based cross-linking agent and an epoxy-based cross-linking agent are preferable, and an epoxy-based cross-linking agent is more preferable.
  • Examples of the isocyanate-based cross-linking agent include lower aliphatic polyisocyanates such as 1,2-ethylene diisocyanate, 1,4-butylene diisocyanate, and 1,6-hexamethylene diisocyanate; cyclopentylene diisocyanate; , cyclohexylene diisocyanate, isophorone diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated xylene diisocyanate and other alicyclic polyisocyanates; 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate and aromatic polyisocyanates such as xylylene diisocyanate.
  • lower aliphatic polyisocyanates such as 1,2-ethylene diisocyanate, 1,4-butylene diisocyanate, and 1,6-hexamethylene diisocyanate
  • cyclopentylene diisocyanate
  • isocyanate-based cross-linking agent examples include trimethylolpropane/tolylene diisocyanate adduct (trade name "Coronate L”, manufactured by Nippon Polyurethane Industry Co., Ltd.), trimethylolpropane/hexamethylene diisocyanate adduct (trade name " Coronate HL”, manufactured by Nippon Polyurethane Industry Co., Ltd.), trimethylolpropane/xylylene diisocyanate adduct (trade name "Takenate D-110N", manufactured by Mitsui Chemicals, Inc.), toluene diisocyanate adduct (trade name "Takenate D-101A , manufactured by Mitsui Chemicals, Inc.).
  • epoxy-based cross-linking agent examples include N,N,N',N'-tetraglycidyl-m-xylenediamine, diglycidylaniline, 1,3-bis(N,N-diglycidyl aminomethyl)cyclohexane, 1,6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, sorbitol polyglycidyl ether , glycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitan polyglycidyl ether, trimethylolpropane polyglycidyl ether,
  • the amount of the cross-linking agent used is not particularly limited.
  • the pressure-sensitive adhesive layer of the present invention When the pressure-sensitive adhesive layer of the present invention is used as a shock-absorbing layer of a transfer substrate, it provides excellent shock-absorbing properties and workability, and prevents misalignment of electronic parts. From the viewpoint that a pressure-sensitive adhesive layer with little expansion or outgassing can be formed even in thermocompression bonding when transferring electronic parts to a mounting substrate, the amount is 0.5 parts by weight or more with respect to 100 parts by weight of the base polymer. is preferred, more preferably 1.0 parts by weight or more, and still more preferably 1.5 parts by weight or more.
  • the upper limit of the amount used is preferably 10 parts by weight or less with respect to 100 parts by weight of the base polymer, more preferably 10 parts by weight or less, from the viewpoint of obtaining appropriate flexibility in the pressure-sensitive adhesive layer and improving the adhesive strength. is 5 parts by weight or less.
  • the acrylic pressure-sensitive adhesive composition of the present invention is not particularly limited, it may contain a cross-linking accelerator.
  • the type of cross-linking accelerator can be appropriately selected according to the type of cross-linking agent used.
  • the term "crosslinking accelerator” refers to a catalyst that increases the speed of the cross-linking reaction by the cross-linking agent.
  • Such crosslinking accelerators include tin (Sn)-containing compounds such as dioctyltin dilaurate, dibutyltin dilaurate, dibutyltin diacetate, dibutyltin diacetylacetonate, tetra-n-butyltin, trimethyltin hydroxide; amines such as N',N'-tetramethylhexanediamine and triethylamine; N-containing compounds such as imidazoles; Among them, Sn-containing compounds are preferred.
  • cross-linking accelerators are particularly effective when a hydroxyl group-containing monomer is used as the secondary monomer and an isocyanate-based cross-linking agent is used as the cross-linking agent.
  • the amount of the cross-linking accelerator contained in the adhesive composition is, for example, about 0.001 to 0.5 parts by mass (preferably about 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the acrylic polymer. ).
  • the pressure-sensitive adhesive layer of the present invention may be a pressure-sensitive adhesive layer (adhesion-reducing pressure-sensitive adhesive layer) capable of intentionally reducing the adhesive force by an external action, or may be an adhesive layer capable of reducing the adhesive force by an external action. may be an adhesive layer in which the adhesive force is hardly or not reduced at all (non-adhesive force-reducing adhesive layer), and can be appropriately selected according to the method and conditions for mounting electronic components.
  • the state in which the pressure-sensitive adhesive layer of the present invention exhibits a relatively high pressure-sensitive adhesive strength and the state in which the pressure-sensitive adhesive layer of the present invention exhibits a relatively low pressure-sensitive adhesive strength can be selectively used. It becomes possible.
  • the state in which the pressure-sensitive adhesive layer of the present invention exhibits relatively high adhesive strength is used to transfer the pressure-sensitive adhesive layer of the electronic component or the like. It can sufficiently absorb the impact caused by a collision, and can suppress misalignment and turning inside out due to bounces of electronic parts at the time of collision.
  • the transferability is improved and the adhesive residue on the electronic component is suppressed. can do.
  • the adhesive that forms such an adhesive layer capable of reducing adhesive strength examples include radiation-curable adhesives and heat-foamable adhesives, with radiation-curable adhesives being preferred in terms of operability. That is, the pressure-sensitive adhesive layer of the invention is preferably formed from a radiation-curable pressure-sensitive adhesive.
  • the adhesive for forming the adhesive force-reducing adhesive layer one kind of adhesive may be used, or two or more kinds of adhesives may be used.
  • the radiation-curable adhesive for example, an adhesive that is cured by irradiation with electron beams, ultraviolet rays, ⁇ -rays, ⁇ -rays, ⁇ -rays, or X-rays can be used.
  • Adhesives ultraviolet curable adhesives
  • an internal radiation-curable adhesive containing a base polymer having a radiation-polymerizable carbon-carbon double bond or other functional group in the polymer side chain, in the polymer main chain, or at the polymer main chain end. Also included are adhesives. The use of such an internal radiation-curable adhesive tends to suppress unintended changes in adhesive properties over time due to migration of low-molecular-weight components within the formed adhesive layer.
  • an acrylic polymer is preferable as the base polymer contained in the internal radiation-curable pressure-sensitive adhesive.
  • a method for introducing a radiation-polymerizable carbon-carbon double bond into an acrylic polymer for example, an acrylic polymer is obtained by polymerizing (copolymerizing) raw material monomers containing a monomer component having a first functional group. After that, a compound having a second functional group capable of reacting with the first functional group and a radiation polymerizable carbon-carbon double bond is added to an acrylic polymer while maintaining the radiation polymerizability of the carbon-carbon double bond. Condensation reaction or addition reaction method can be used.
  • Combinations of the first functional group and the second functional group include, for example, a carboxy group and an epoxy group, an epoxy group and a carboxy group, a carboxy group and an aziridyl group, an aziridyl group and a carboxy group, a hydroxy group and an isocyanate group, An isocyanate group, a hydroxy group, and the like can be mentioned.
  • a combination of a hydroxy group and an isocyanate group, and a combination of an isocyanate group and a hydroxy group are preferred from the viewpoint of ease of reaction tracking.
  • the first functional group is A preferred combination is a hydroxy group and the second functional group is an isocyanate group.
  • Compounds having an isocyanate group and a radiation-polymerizable carbon-carbon double bond, that is, radiation-polymerizable unsaturated functional group-containing isocyanate compounds include, for example, methacryloyl isocyanate, 2-methacryloyloxyethyl isocyanate, m-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate and the like.
  • acrylic polymer having a hydroxy group examples include those containing structural units derived from ether compounds such as the above-mentioned hydroxy group-containing monomers, 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, and diethylene glycol monovinyl ether. be done.
  • the content of the radiation-polymerizable unsaturated functional group-containing isocyanate compound in the radiation-curable pressure-sensitive adhesive forming the pressure-sensitive adhesive layer of the present invention is , for example, 5 to 100 parts by mass, preferably about 7 to 50 parts by mass, per 100 parts by mass of the base polymer.
  • the radiation-curable adhesive preferably contains a photopolymerization initiator.
  • the photopolymerization initiator include ⁇ -ketol compounds, acetophenone compounds, benzoin ether compounds, ketal compounds, aromatic sulfonyl chloride compounds, photoactive oxime compounds, benzophenone compounds, thioxanthone compounds, camphorquinone, halogenated ketone, acylphosphinate, acylphosphonate and the like.
  • Examples of the ⁇ -ketol compounds include 4-(2-hydroxyethoxy)phenyl(2-hydroxy-2-propyl)ketone, ⁇ -hydroxy- ⁇ , ⁇ '-dimethylacetophenone, 2-methyl-2-hydroxy propiophenone, 1-hydroxycyclohexylphenyl ketone, 2-hydroxy-1-(4-(4-(2-hydroxy-2-methylpropionyl)benzyl)phenyl)-2-methylpropan-1-one and the like.
  • Examples of the acetophenone compounds include methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1-[4-(methylthio)-phenyl]-2-morpholino propane-1 and the like.
  • Examples of the benzoin ether compounds include benzoin ethyl ether, benzoin isopropyl ether, and anisoin methyl ether.
  • Examples of the ketal compounds include benzyl dimethyl ketal.
  • Examples of the aromatic sulfonyl chloride compounds include 2-naphthalenesulfonyl chloride.
  • Examples of the photoactive oxime compound include 1-phenyl-1,2-propanedione-2-(O-ethoxycarbonyl)oxime.
  • Examples of the benzophenone-based compounds include benzophenone, benzoylbenzoic acid, and 3,3'-dimethyl-4-methoxybenzophenone.
  • thioxanthone compounds include thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2,4-diethylthioxanthone, and 2,4-diisopropyl. thioxanthone and the like.
  • the content of the photopolymerization initiator in the radiation-curable adhesive is, for example, 0.05 to 20 parts by weight with respect to 100 parts by weight of the base polymer.
  • the heat-expandable pressure-sensitive adhesive is a pressure-sensitive adhesive containing components that foam or expand when heated (foaming agent, thermally expandable microspheres, etc.).
  • foaming agent include various inorganic foaming agents and organic foaming agents.
  • the inorganic foaming agent include ammonium carbonate, ammonium hydrogencarbonate, sodium hydrogencarbonate, ammonium nitrite, sodium borohydride, and azides.
  • organic foaming agent examples include alkane hydrochlorides such as trichloromonofluoromethane and dichloromonofluoromethane; azo compounds such as azobisisobutyronitrile, azodicarbonamide, and barium azodicarboxylate; and paratoluene.
  • alkane hydrochlorides such as trichloromonofluoromethane and dichloromonofluoromethane
  • azo compounds such as azobisisobutyronitrile, azodicarbonamide, and barium azodicarboxylate
  • paratoluene examples include paratoluene.
  • Hydrazine compounds such as sulfonyl hydrazide, diphenylsulfone-3,3'-disulfonyl hydrazide, 4,4'-oxybis(benzenesulfonylhydrazide), allylbis(sulfonylhydrazide); p-toluylenesulfonyl semicarbazide, 4,4'- Semicarbazide compounds such as oxybis (benzenesulfonyl semicarbazide); triazole compounds such as 5-morpholyl-1,2,3,4-thiatriazole; N,N'-dinitrosopentamethylenetetramine, N,N'-dimethyl- Examples include N-nitroso compounds such as N,N'-dinitrosoterephthalamide.
  • heat-expandable microspheres examples include microspheres having a structure in which a substance that easily gasifies and expands upon heating is encapsulated in the shell.
  • Isobutane, propane, pentane, and the like are examples of substances that easily gasify and expand when heated.
  • Thermally expandable microspheres can be produced by encapsulating a substance that is easily gasified and expanded by heating in a shell-forming substance by a coacervation method, an interfacial polymerization method, or the like.
  • the shell-forming substance a substance exhibiting thermal melting properties and a substance capable of bursting due to the action of thermal expansion of the enclosed substance can be used.
  • Examples of such substances include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, polysulfone, and the like.
  • non-reducing adhesive layer examples include a pressure-sensitive adhesive layer.
  • a pressure-sensitive adhesive layer an adhesive layer formed from the radiation-curable adhesive described above with respect to the adhesive force-reducing adhesive layer is cured by irradiation in advance and has a certain adhesive force.
  • An adhesive layer is included.
  • the adhesive that forms the non-adhesion-reducing adhesive layer one kind of adhesive may be used, or two or more kinds of adhesives may be used.
  • the adhesive layer of the present invention may be a non-adhesive force-reducing adhesive layer as a whole, or a part thereof may be an adhesive force-non-reducing adhesive layer.
  • the entire pressure-sensitive adhesive layer of the present invention may be a non-adhesion-reducing pressure-sensitive adhesive layer, or a specific portion of the pressure-sensitive adhesive layer of the present invention may be the non-adhesion-reducing pressure-sensitive adhesive layer, and the other part may be the pressure-sensitive adhesive layer capable of reducing the adhesion force.
  • the pressure-sensitive adhesive layer of the present invention has a laminated structure
  • all the pressure-sensitive adhesive layers in the laminated structure may be non-adhesive strength-reducing pressure-sensitive adhesive layers, or a part of the pressure-sensitive adhesive layers in the laminated structure may be It may be a non-adhesion-reducing pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive layer formed by pre-curing the pressure-sensitive adhesive layer (radiation-unexposed radiation-curable pressure-sensitive adhesive layer) formed from a radiation-curable pressure-sensitive adhesive by irradiation with radiation Even if the adhesive strength is reduced by irradiation, the adhesive strength resulting from the contained polymer component can be exhibited, and the adhesive layer of the present invention can exhibit the minimum required adhesive strength.
  • the entire pressure-sensitive adhesive layer of the present invention may be the irradiated radiation-curing pressure-sensitive adhesive layer in the surface spreading direction of the pressure-sensitive adhesive layer of the present invention.
  • a part of the pressure-sensitive adhesive layer of the invention may be an irradiated radiation-curable pressure-sensitive adhesive layer and the other part may be a non-irradiated radiation-curable pressure-sensitive adhesive layer.
  • radiation-curable pressure-sensitive adhesive layer refers to a pressure-sensitive adhesive layer formed from a radiation-curable pressure-sensitive adhesive. It includes both the radiation-cured radiation-curable pressure-sensitive adhesive layer after the agent layer has been cured by irradiation.
  • the adhesive that forms the pressure-sensitive adhesive layer a known or commonly used pressure-sensitive adhesive can be used, and an acrylic adhesive that uses an acrylic polymer as a base polymer can be preferably used.
  • the pressure-sensitive adhesive layer of the present invention contains an acrylic polymer as a pressure-sensitive pressure-sensitive adhesive
  • the acrylic polymer is a polymer containing the structural unit derived from (meth)acrylic acid ester as the largest structural unit in terms of mass ratio.
  • the acrylic polymer for example, the acrylic polymer described as the acrylic polymer that can be included in the additive-type radiation-curable pressure-sensitive adhesive can be employed.
  • the silicone-based pressure-sensitive adhesive is not particularly limited, and a known or commonly used silicone-based pressure-sensitive adhesive can be used. An adhesive or the like can be used.
  • the silicone pressure-sensitive adhesive may be either one-pack type or two-pack type. One type of silicone pressure-sensitive adhesive can be used alone, or two or more types can be used in combination.
  • the addition-type silicone pressure-sensitive adhesive generally comprises an organopolysiloxane having an alkenyl group such as a vinyl group on the silicon atom and an organopolysiloxane having a hydrosilyl group, using a platinum compound catalyst such as chloroplatinic acid for an addition reaction (A pressure-sensitive adhesive that generates a silicone-based polymer through a hydrosilylation reaction.
  • a peroxide-curable silicone-based pressure-sensitive adhesive is generally a pressure-sensitive adhesive that cures (crosslinks) organopolysiloxane with a peroxide to form a silicone-based polymer.
  • Condensation-type silicone-based pressure-sensitive adhesives are generally pressure-sensitive adhesives that generate a silicone-based polymer through a dehydration or dealcoholization reaction between polyorganosiloxanes having hydrolyzable silyl groups such as silanol groups or alkoxysilyl groups at their terminals. .
  • silicone-based adhesive As a silicone-based adhesive, it is easy to control low tackiness and low tackiness, the impact absorption of the adhesive layer on an optical time scale, and thermocompression bonding when transferring electronic parts to a mounting board.
  • the balance between excellent heat resistance that can suppress expansion and outgassing is controlled at a high level, and when the pressure-sensitive adhesive layer of the present invention is used as an impact absorption layer of a transfer substrate, excellent impact absorption and heat resistance can be achieved. From the point of view that both properties and properties can be compatible, for example, a silicone-based pressure-sensitive adhesive composition containing a silicone rubber and a silicone resin can be used.
  • the silicone rubber is not particularly limited as long as it is a silicone-based rubber component, but for example, organopolysiloxane having dimethylsiloxane, methylphenylsiloxane, or the like as a main constituent unit can be used.
  • silicone rubber having alkenyl groups bonded to silicon atoms alkenyl group-containing organopolysiloxane; in the case of addition reaction type), silicone rubber having at least methyl groups (peroxide curing type ), a silicone rubber having a terminal silanol group or a hydrolyzable alkoxysilyl group (in the case of condensation type) can be used.
  • the weight average molecular weight of the organopolysiloxane in the silicone rubber is usually 150,000 or more, preferably 280,000 to 1,000,000, and more preferably 500,000 to 900,000.
  • the silicone resin is not particularly limited as long as it is a silicone-based resin used in silicone-based pressure -sensitive adhesives. 2 ”, T units consisting of the structural unit “RSiO 3/2 ”, and D units consisting of the structural unit “R 2 SiO”.
  • Examples include silicone resins made of organopolysiloxane.
  • R in the said structural unit shows a hydrocarbon group or a hydroxyl group.
  • the hydrocarbon group include aliphatic hydrocarbon groups (alkyl groups such as methyl group and ethyl group), alicyclic hydrocarbon groups (cycloalkyl groups such as cyclohexyl group), aromatic hydrocarbon groups ( phenyl group, aryl group such as naphthyl group, etc.).
  • Various functional groups such as a vinyl group may be introduced into the organopolysiloxane in such a silicone resin, if necessary.
  • the functional group to be introduced may be a functional group capable of causing a cross-linking reaction.
  • an MQ resin composed of M units and Q units is preferred.
  • the weight average molecular weight of the organopolysiloxane in the silicone resin is usually 1,000 or more, preferably 1,000 to 20,000, and more preferably 1,500 to 10,000.
  • the mixing ratio of the silicone rubber and the silicone resin is not particularly limited, but from the viewpoint of easy control of low tackiness and low tackiness, for example, 100 parts by weight of the silicone rubber and 100 to 220 parts by weight of the silicone resin. (in particular, 120 to 180 parts by weight).
  • the silicone rubber and the silicone resin may be in a mixed state in which they are simply mixed, and react with each other to form condensates (especially partial condensate), a cross-linking reaction product, an addition reaction product, or the like.
  • addition-type silicone pressure-sensitive adhesives include the product name “SD4580,” the product name “SD4584,” the product name “SD4585,” the product name “SD4587L,” the product name “SD4560,” the product name “SD4570,” and the product name “SD4600FC.” ”, trade name “SD4593”, trade name “SE1700” (manufactured by Dow Toray Industries, Inc.); trade name “KR-3700”, trade name “KR-3701”, trade name “X-40-3237-1 ”, trade name “X-40-3240”, trade name “X-40-3291-1”, and trade name “X-40-3306” (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • peroxide-curable silicone-based adhesive for example, the trade name "KR-100”, the trade name “KR-101-10”, the trade name “KR-130” (manufactured by Shin-Etsu Chemical Co., Ltd.) etc., are commercially available.
  • a silicone pressure-sensitive adhesive composition containing silicone rubber and silicone resin is easy to control low tackiness and low tackiness. Excellent heat resistance that can suppress expansion and outgassing even in thermocompression bonding when transferring is controlled at a high level. It is preferable that a cross-linking agent is included from the viewpoint of achieving both impact absorption and heat resistance.
  • the silicone rubber and silicone resin in the silicone adhesive layer are crosslinked to suppress expansion and outgassing during thermocompression bonding when electronic components are transferred to a mounting substrate. It is considered that excellent heat resistance can be realized, and excellent heat resistance can be imparted when the pressure-sensitive adhesive layer of the present invention is used as an impact absorption layer of a transfer substrate.
  • Such a cross-linking agent is not particularly limited, but siloxane-based cross-linking agents (silicone-based cross-linking agents) and peroxide-based cross-linking agents can be preferably used. Among them, a siloxane-based cross-linking agent is preferable.
  • a crosslinking agent can be used individually by 1 type or in combination of 2 or more types.
  • siloxane-based cross-linking agent for example, polyorganohydrogensiloxane having two or more hydrogen atoms bonded to silicon atoms in the molecule can be suitably used.
  • various organic groups other than hydrogen atoms may be bonded to silicon atoms to which hydrogen atoms are bonded.
  • the organic group include alkyl groups such as a methyl group and an ethyl group; aryl groups such as a phenyl group; and halogenated alkyl groups.
  • the skeleton structure of the polyorganohydrogensiloxane may have a linear, branched, or cyclic skeleton structure, but is preferably linear.
  • peroxide-based cross-linking agent examples include diacyl peroxide, alkylperoxyester, peroxydicarbonate, monoperoxycarbonate, peroxyketal, dialkyl peroxide, hydroperoxide, and ketone peroxide.
  • siloxane-based cross-linking agents for example, trade name “BY24-741”, trade name “SE1700Catalyst” (manufactured by Dow Toray Industries, Inc.); trade name “X-92-122” (manufactured by Shin-Etsu Chemical Co., Ltd. ) are commercially available.
  • the amount of the cross-linking agent used is not particularly limited. From the viewpoint of achieving both excellent impact absorption and heat resistance, it is preferably 0.5 parts by weight or more, more preferably 0.7 parts by weight or more, relative to 100 parts by weight of the base polymer. , more preferably 1 part by weight or more.
  • the upper limit of the amount used is preferably 10 parts by weight or less with respect to 100 parts by weight of the base polymer, more preferably 10 parts by weight or less, from the viewpoint of obtaining appropriate flexibility in the pressure-sensitive adhesive layer and improving the adhesive strength. is 5 parts by weight or less.
  • the addition-type silicone pressure-sensitive adhesive composition preferably contains a curing catalyst such as a platinum catalyst.
  • a platinum catalyst for example, trade names "CAT-PL-50T” (manufactured by Shin-Etsu Chemical Co., Ltd.), "DOWSIL NC-25 Catalyst” or “DOWSIL SRX212 Catalyst” (manufactured by Dow Toray Industries, Inc.) are commercially available. It is From the viewpoint of the balance between the receptivity of the adhesive layer for electronic components, the positional accuracy, the transferability to the mounting board, and the tack strength, the content of the curing catalyst should be adjusted to the amount of the silicone-based polymer (silicone rubber, silicone resin, etc.) used as the base polymer. It is preferably about 0.1 to 10 parts by weight with respect to 100 parts by weight.
  • the resin composition of the present invention may optionally further contain a tackifying resin (rosin derivative, polyterpene resin, petroleum resin, oil-soluble phenol, etc.), an antioxidant, a filler, a coloring agent (pigment, dye, etc.), Additives such as ultraviolet absorbers, antioxidants, chain transfer agents, plasticizers, softeners, surfactants, and antistatic agents may be contained within the range that does not impair the effects of the present invention. Such additives can be used alone or in combination of two or more.
  • the method for producing the pressure-sensitive adhesive layer (particularly, the acrylic pressure-sensitive adhesive layer) of the present invention is not particularly limited, but for example, the above resin composition is applied (coated) on a substrate or release liner, and the pressure-sensitive adhesive layer obtained is
  • the adhesive composition layer may be dried and cured, or the resin composition may be applied (coated) onto a substrate or a release liner, and the resulting adhesive composition layer may be irradiated with active energy rays for curing. mentioned. Moreover, you may heat-dry further as needed.
  • the active energy rays include ionizing radiation such as ⁇ -rays, ⁇ -rays, ⁇ -rays, neutron beams and electron beams, and ultraviolet rays, with ultraviolet rays being particularly preferred.
  • the irradiation energy of the active energy ray, the irradiation time, the irradiation method, etc. are not particularly limited.
  • the above resin composition can be produced by a known or commonly used method.
  • a solvent-based acrylic pressure-sensitive adhesive composition can be prepared by mixing an additive (for example, an ultraviolet absorber, etc.) with a solution containing the acrylic polymer, if necessary.
  • an active energy ray-curable acrylic pressure-sensitive adhesive composition can be prepared by mixing an additive (for example, an ultraviolet absorber, etc.) with the mixture of acrylic monomers or a partial polymer thereof, if necessary. can be made.
  • a known coating method may be used for applying (coating) the resin composition.
  • coaters such as gravure roll coaters, reverse roll coaters, kiss roll coaters, dip roll coaters, bar coaters, knife coaters, spray coaters, comma coaters and direct coaters may be used.
  • the active energy ray-curable adhesive composition when the adhesive layer is formed from an active energy ray-curable adhesive composition, the active energy ray-curable adhesive composition preferably contains a photopolymerization initiator.
  • the active energy ray-curable pressure-sensitive adhesive composition contains an ultraviolet absorber, it preferably contains at least a photopolymerization initiator having light absorption properties in a wide wavelength range as a photopolymerization initiator.
  • it preferably contains at least a photopolymerization initiator that absorbs not only ultraviolet light but also visible light.
  • the adhesive composition contains a photopolymerization initiator that has light absorption characteristics in a wide wavelength range, high photocurability will be achieved in the adhesive composition. This is because it becomes easier to obtain.
  • the pressure-sensitive adhesive layer of the present invention and/or the pressure-sensitive adhesive surface of another pressure-sensitive adhesive layer may be protected with a release liner until use.
  • each pressure-sensitive adhesive surface may be protected by two release liners, respectively, or may be protected by one release liner having release surfaces on both sides. It may be protected in a form wound in a shape (wound body).
  • the release liner is used as an impact-absorbing and adhesive protective material for the pressure-sensitive adhesive layer, and is peeled off when used.
  • the release liner also serves as a support for the pressure-sensitive adhesive layer.
  • a conventional release paper or the like can be used, and it is not particularly limited, but examples thereof include a base material having a release layer.
  • the base material having the release layer include plastic films and paper surface-treated with release agents such as silicone, long-chain alkyl, and fluorine-based release agents.
  • silicone-based release agent examples include known silicone-based release agents such as addition reaction type, condensation reaction type, cationic polymerization type, and radical polymerization type.
  • Products commercially available as addition reaction type silicone release agents include, for example, KS-776A, KS-847T, KS-779H, KS-837, KS-778, KS-830 (manufactured by Shin-Etsu Chemical Co., Ltd.), SRX-211, SRX-345, SRX-357, SD7333, SD7220, SD7223, LTC-300B, LTC-350G, LTC-310 (manufactured by Dow Toray Industries, Inc.) and the like.
  • SRX-290 and SYLOFF-23 commercially available products of the condensation reaction type include, for example, SRX-290 and SYLOFF-23 (manufactured by Dow Toray Industries, Inc.).
  • examples of commercially available cationic polymerized products include TPR-6501, TPR-6500, UV9300, VU9315, UV9430 (manufactured by Momentive Performance Materials) and X62-7622 (manufactured by Shin-Etsu Chemical Co., Ltd.). etc.
  • examples of commercially available radical polymerizable products include X62-7205 (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • silicone resin silicone resin composed of R 3 SiO 1/2 units and SiO 4/2 units
  • silica silica
  • Long-chain alkyl group diameter release agents include long-chain alkyl group-containing aminoalkyd resins, long-chain alkyl group-containing acrylic resins, long-chain aliphatic pendant type resins (polyvinyl alcohol, ethylene/vinyl alcohol copolymer, polyethyleneimine, and Known long-chain alkyl-based release agents such as reaction products of at least one active hydrogen-containing polymer selected from the group of compounds consisting of hydroxyl-containing cellulose derivatives and long-chain alkyl-containing isocyanates) can be mentioned.
  • a release agent that causes a curing reaction by adding a curing agent or an ultraviolet initiator, or a release agent that solidifies by volatilizing a solvent may be used.
  • an alkyl group having 8 to 30 carbon atoms is preferable, and the number of carbon atoms may be 10 or more, 12 or more, 18 or less, 24 or less, etc. Among them, a linear alkyl group is preferable.
  • decyl group undecyl group, lauryl group, dodecyl group, tridecyl group, myristyl group, tetradecyl group, pentadecyl group, cetyl group, palmityl group, hexadecyl group, heptadecyl group, stearyl group, octadecyl group, nonadecyl group,
  • One or two or more alkyl groups selected from icosyl groups, docosyl groups and the like can be mentioned.
  • Products commercially available as long-chain alkyl release agents include, for example, Asio Sangyo Co., Ltd. Asio Resin (registered trademark) RA-30, Ipposha Yushi Kogyo Co., Ltd. Peeloyl (registered trademark) 1010, Peeloyl 1010S, and Peeloil 1050. , Pyroil HT, Resem N-137 manufactured by Chukyo Yushi Co., Ltd., Excepal (registered trademark) PS-MA manufactured by Kao Corporation, Tesfine (registered trademark) 303 manufactured by Hitachi Chemical Co., Ltd., and the like.
  • fluorine-based release agents include coating agents in which perfluoroalkyl group-containing vinyl ether polymers and fluorine resins such as tetrafluoroethylene and trifluoroethylene are dispersed in binder resins.
  • the release agent may contain an antistatic agent, a silane coupling agent, a lubricant, etc., if necessary.
  • a known method may be used to form a release agent layer on the surface of a plastic film or paper. Specifically, known coating methods such as gravure coating, Meyer bar coating, and air knife coating can be used.
  • the thickness of the release liner is not particularly limited, and may be appropriately selected from the range of 5 to 100 ⁇ m.
  • the pressure-sensitive adhesive layer of the present invention may constitute a pressure-sensitive adhesive sheet laminated with another pressure-sensitive adhesive layer. That is, the pressure-sensitive adhesive layer of the present invention may constitute a substrate-less double-sided pressure-sensitive adhesive sheet having a two-layer pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive layer of the present invention constitutes a substrate-less double-sided pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer with a two-layer structure. can do.
  • another pressure-sensitive adhesive layer can be fixed to another substrate (carrier substrate), which is preferable from the viewpoint of workability.
  • the separate adhesive layer may be composed of the same adhesive as the adhesive layer of the present invention, or may be composed of an adhesive different from that of the adhesive layer of the present invention.
  • it is preferably a pressure-sensitive adhesive layer capable of reducing the pressure-sensitive adhesive force, such as a radiation-curable pressure-sensitive adhesive or a heat-foaming pressure-sensitive adhesive.
  • An electronic component can be transferred while the adhesion between another adhesive layer and the carrier substrate is high, and after that, the adhesive strength of the other adhesive layer is reduced by irradiation or heating, so that it can be easily peeled off from the carrier substrate. Since the carrier substrate can be easily reused, it is preferable from the viewpoint of excellent reworkability.
  • the thickness of the separate adhesive layer is not particularly limited, but is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more. When the thickness is at least a certain value, the impact absorbing property can be easily controlled, and the substrate can be stably fixed to the carrier substrate, which is preferable.
  • the upper limit of the thickness of the separate pressure-sensitive adhesive layer is not particularly limited, but is preferably 450 ⁇ m or less, more preferably 300 ⁇ m or less. When the thickness is less than a certain value, it becomes easier to separate from the carrier substrate and reworkability is improved, which is preferable.
  • the pressure-sensitive adhesive layer of the present invention may constitute a pressure-sensitive adhesive sheet laminated with a substrate layer. That is, the pressure-sensitive adhesive layer of the present invention (including a two-layer structure with another pressure-sensitive adhesive layer) may constitute a pressure-sensitive adhesive sheet with a substrate.
  • the substrate functions as a support, which is preferable in terms of improving the stability and handleability when receiving electronic components.
  • thermoplastic resins are preferable as the constituent material of the plastic base material from the viewpoint of stability and handleability when receiving electronic parts.
  • thermoplastic resins include polyolefins, polyesters, polyurethanes, polycarbonates, polyetheretherketones, polyimides, polyetherimides, polyamides, wholly aromatic polyamides, polyvinyl chlorides, polyvinylidene chlorides, polyphenylsulfides, aramids, and fluorine resins. , cellulosic resins, and silicone resins, with polyester films being preferred.
  • Polyolefins include, for example, low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, high-density polyethylene, ultra-low-density polyethylene, random copolymer polypropylene, block copolymer polypropylene, homopolypropylene, polybutene, polymethylpentene, Ethylene-vinyl acetate copolymer, ionomer resin, ethylene-(meth)acrylic acid copolymer, ethylene-(meth)acrylic acid ester copolymer, ethylene-butene copolymer, and ethylene-hexene copolymer. be done.
  • Polyesters include, for example, polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate.
  • the base material is formed from a light-transmitting heat-resistant film, such as a polyester film, from the viewpoint of stability and handling when receiving electronic parts, and from the viewpoint of heat resistance in thermocompression bonding when transferring electronic parts to a mounting substrate.
  • the substrate may consist of one kind of material, or may consist of two or more kinds of materials.
  • the substrate may have a single layer structure or a multilayer structure. When the substrate is made of a plastic film, it may be a non-stretched film, a uniaxially stretched film, or a biaxially stretched film. A release liner that is peeled off at the time of use is not included in the "substrate".
  • the thickness of the base material is not particularly limited, it is preferably 10 ⁇ m or more, more preferably 30 ⁇ m or more, from the viewpoint of ensuring strength for functioning as a support. Moreover, from the viewpoint of realizing appropriate flexibility, the thickness of the substrate is preferably 200 ⁇ m or less, more preferably 180 ⁇ m or less. In addition, the substrate may have either a single-layer structure or a multilayer structure. In addition, in order to increase the adhesion with the pressure-sensitive adhesive layer of the present invention, the surface of the base material may be subjected to known and commonly used treatments such as physical treatments such as corona discharge treatment and plasma treatment, and chemical treatments such as undercoating treatment. Surface treatment may be applied as appropriate.
  • the pressure-sensitive adhesive layer of the present invention (including a two-layer structure with another pressure-sensitive adhesive layer) constitutes a pressure-sensitive adhesive sheet with a substrate
  • another pressure-sensitive adhesive Agent layers may be laminated. That is, the pressure-sensitive adhesive layer of the present invention (including a two-layer structure with another pressure-sensitive adhesive layer) may constitute a double-sided pressure-sensitive adhesive sheet with a substrate. Since the pressure-sensitive adhesive layer of the present invention (including a two-layer structure with another pressure-sensitive adhesive layer) constitutes a double-sided pressure-sensitive adhesive sheet with a substrate, the substrate functions as a support and provides stability when receiving electronic components. and handleability are improved, and another adhesive layer can be fixed to another substrate (carrier substrate), which is preferable from the viewpoint of workability.
  • the method for producing the pressure-sensitive adhesive sheet having the pressure-sensitive adhesive layer of the present invention comprises the composition of the resin composition (pressure-sensitive adhesive composition) of the present invention, etc. It is not particularly limited, and a known formation method can be used, and examples thereof include the following methods (1) to (4).
  • the resin composition is applied (coated) on a substrate to form a composition layer, and the composition layer is cured (for example, cured by heat curing or irradiation of active energy rays such as ultraviolet rays).
  • Method of forming a pressure-sensitive adhesive layer to produce a pressure-sensitive adhesive sheet (2)
  • the above resin composition is applied (coated) onto a release liner to form a composition layer, and the composition layer is cured (for example, by heating). Curing or curing by irradiation with active energy rays such as ultraviolet rays) to form a pressure-sensitive adhesive layer, and then transferring the pressure-sensitive adhesive layer onto a substrate to produce a pressure-sensitive adhesive sheet (3).
  • the above resin composition is applied (coated) onto a release liner and dried to form an adhesive sheet.
  • a method for producing a pressure-sensitive adhesive sheet by forming an agent layer and then transferring the pressure-sensitive adhesive layer onto a base material
  • a known coating method can be employed, and is not particularly limited, but examples include roll coating, kiss roll coating, gravure coating, reverse coating, Examples include roll brushing, spray coating, dip roll coating, bar coating, knife coating, air knife coating, curtain coating, lip coating, and extrusion coating using a die coater.
  • the thickness (total thickness) of the adhesive sheet of the present invention is not particularly limited, it is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and still more preferably 3 ⁇ m or more. When the thickness is at least a certain value, electronic components are easily transferred to the pressure-sensitive adhesive layer of the present invention with high accuracy, which is preferable.
  • the upper limit of the thickness (total thickness) of the pressure-sensitive adhesive sheet of the present invention is not particularly limited, but is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less. When the thickness is less than a certain value, the electronic component can be easily transferred to the mounting substrate with high accuracy, which is preferable.
  • the thickness of the pressure-sensitive adhesive sheet of the present invention does not include the thickness of the release liner.
  • the pressure-sensitive adhesive sheet of the present invention is used in an electronic component processing method (electronic component processing application). More specifically, the pressure-sensitive adhesive sheet of the present invention is preferably used for receiving electronic components arranged on a temporary fixing material (substrate or pressure-sensitive adhesive sheet) with the pressure-sensitive adhesive layer of the present invention. Since the pressure-sensitive adhesive sheet of the present invention has the pressure-sensitive adhesive layer of the present invention, before irradiation with active energy rays, it is possible to sufficiently absorb the impact caused by the collision of electronic parts and the like against the pressure-sensitive adhesive layer, and the impact caused by the bounce of the electronic parts at the time of collision can be sufficiently absorbed. It is possible to suppress misalignment, turning inside out, and the like.
  • the pressure-sensitive adhesive sheet of the present invention has the pressure-sensitive adhesive layer of the present invention, it is excellent in suppressing expansion and outgassing even in thermocompression bonding when transferring electronic components to a mounting substrate after irradiation with active energy rays. It has excellent heat resistance.
  • the adhesive sheet of the present invention is preferably fixed to a carrier substrate when subjected to the electronic component processing method of the present invention.
  • the carrier substrate may be a glass plate or the above plastic film, and is preferably a glass plate from the viewpoint of stability.
  • FIG. 5 is a schematic cross-sectional view showing one embodiment of a method for fixing the pressure-sensitive adhesive sheet of the present invention using the pressure-sensitive adhesive sheet 1 shown in FIG. 1 to a carrier substrate.
  • the release liner R2 of the pressure-sensitive adhesive sheet 1 is peeled off to expose the pressure-sensitive adhesive surface 10b (see FIGS. 5(a) and 5(b)).
  • the carrier substrate S2 is adhered to the adhesive surface 10b (see FIG. 5C), and then the release liner R1 of the adhesive sheet 1 is peeled off to expose the adhesive surface 10a (FIGS. 5D and 5E). )reference).
  • the release liner R2 is peeled off from the adhesive layer 10 of the adhesive sheet 1 adsorbed to the adsorption stage (not shown) to expose the adhesive surface 10b of the adhesive layer 10.
  • the release force of the release liner R2 to the adhesive surface 10b is controlled to be smaller than the release force of the release liner R1 to the adhesive surface 10a from the viewpoint of preventing so-called "crying apart".
  • “crying apart” refers to a phenomenon in which the release liner R1 is also peeled off when the release liner R2 is peeled off in this embodiment.
  • the release force of the release liner R2 from the adhesive surface 10b is not particularly limited as long as it is smaller than the release force from the release liner R1 against the adhesive surface 10a. It may be set to about 1/3 to 1/2 of the peeling force against.
  • FIG. 5(b) shows a state in which the release liner R2 is completely peeled off and the entire surface of the adhesive surface 10b is exposed. Then, in FIG. 5(c), the carrier substrate S2 is adhered to the exposed adhesive surface 10b.
  • FIG. 5(d) the release liner R1 is peeled off from the adhesive layer 10 to expose the adhesive surface 10a.
  • FIG. 5(e) shows a state in which the release liner R1 is completely peeled off and the entire surface of the adhesive surface 10a is exposed.
  • the surface of the temporary fixing material on which the electronic components are arranged faces the adhesive surface of the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet of the present invention. is preferably arranged with This configuration is preferable in that the positional relationship between the temporary fixing material and the pressure-sensitive adhesive sheet of the present invention can be controlled, and the electronic component can be arranged at a desired position on the pressure-sensitive adhesive sheet.
  • the electronic component processing method of the present invention includes a step (first step) of receiving the electronic component placed on the temporary fixing material with the adhesive surface of the adhesive layer of the adhesive sheet of the present invention.
  • the pressure-sensitive adhesive sheet of the present invention can sufficiently absorb the impact caused by the collision of the electronic component or the like with the adhesive layer, and suppresses misalignment, flipping, etc. due to the bounce of the electronic component at the time of collision. can.
  • the surface on which the electronic component is arranged on the temporary fixing material and the adhesive surface of the adhesive layer of the adhesive sheet of the present invention are arranged facing each other with a gap provided. is preferred.
  • This configuration is preferable in that the positional relationship between the temporary fixing material and the pressure-sensitive adhesive sheet of the present invention can be controlled, and the electronic component can be arranged at a desired position on the pressure-sensitive adhesive sheet.
  • the electronic component processing method of the present invention further includes a step of placing the electronic component on the adhesive sheet on a mounting substrate (second step), and a step of thermocompression bonding the electronic component onto the mounting substrate (second step). 3 step), and a step of peeling the electronic component from the adhesive surface of the adhesive layer of the adhesive sheet (fourth step).
  • the electronic component processing method of the present invention includes the second step, the third step, and the fourth step, so that the electronic component can be efficiently transferred onto the mounting board.
  • FIG. 6 is a schematic cross-sectional view showing the first step in one embodiment of the electronic component processing method of the present invention using the adhesive sheet (see FIG. 5(e)) fixed to the carrier substrate shown in FIG. .
  • the first step of the electronic component processing method of the present invention is to separate the electronic component 51 (see FIG. 6A) placed on the temporary fixing material 50 and fix it to the carrier substrate S2. This is a step of receiving with the adhesive surface 10a of the adhesive layer 10 (see FIGS. 6B and 6C).
  • a plurality of electronic components 51 are arranged on one side of a temporary fixing material 50 with bumps 52 interposed therebetween.
  • the bumps 52 are protruding electrodes provided on one side of the electronic component 51 and are connected to an electronic circuit provided on a mounting substrate which will be described later.
  • the material constituting the temporary fixing material 50 is not particularly limited, and examples thereof include the plastic film and the glass substrate described above.
  • the temporary fixing material 50 may be an adhesive sheet, in which case the electronic component 51 may be arranged on the adhesive surface of the adhesive sheet via the bumps 52 .
  • the temporary fixing member 50 is preferably made of a radiolucent material.
  • the method of arranging the electronic component 51 on one side of the temporary fixing material 50 is not particularly limited.
  • the temporarily fixed state can be released by irradiating or heating the adhesive layer capable of reducing adhesive strength.
  • the electronic component 51 is placed on the temporary fixing member 50 via the radiation-curable adhesive layer (not shown).
  • a plurality of electronic components 51 are arranged on one side of the temporary fixing material 50 via bumps 52 .
  • the size of the electronic component 51 is, for example, 1 ⁇ m 2 to 250000 ⁇ m 2 . According to the electronic component processing method of the present invention, such a small electronic component can be efficiently transferred.
  • the surface of the temporary fixing material 50 on which the electronic component 51 is arranged is arranged facing downward, and the adhesive surface 10a of the adhesive layer 10 fixed to the carrier substrate S2 is arranged facing upward.
  • the surface of the fixing member 50 to which the electronic component 51 is temporarily fixed and the adhesive surface 10a of the adhesive layer 10 face each other with a gap d provided therebetween.
  • the gap d By providing the gap d, the positional relationship between the temporary fixing material 50 and the adhesive layer 10 can be controlled, and the electronic component 51 can be arranged at a desired position on the adhesive layer 10 .
  • the interval of the gap d is not particularly limited, it is, for example, about 1 to 1000 ⁇ m.
  • the electronic component 51 is released from the temporarily fixed state by irradiating the electronic component 51 with the laser light L from the temporary fixing member 50 side, and the electronic component 51 is separated from the temporary fixing member 50 . More specifically, when the part of the temporary fixing material 50 that is in contact with the electronic component 51 via the bump 52 is irradiated with the laser beam L, the adhesive strength is reduced, and the electronic component 51 is separated from the temporary fixing material 50 . is separated by The laser light L may be applied to a plurality of electronic components 51 individually, may be applied to a part of them, may be applied to all electronic components 51 at once, or may be applied by sweeping. good. In this embodiment, a part of the plurality of electronic components 51 is irradiated.
  • the pressure-sensitive adhesive layer 10 is composed of the pressure-sensitive adhesive layer of the present invention, and exhibits excellent impact absorption, so it absorbs the impact caused by the collision of electronic components, prevents damage, and suppresses displacement and turning over of electronic components. can.
  • another electronic component 51 placed on the temporary fixing material 50 is irradiated with a laser beam L, separated and dropped, and received by the adhesive surface 10a of the adhesive layer 10 (transfer do).
  • the electronic component 51 adjacent to the electronic component 51 irradiated with the laser beam L in FIG. 6A is irradiated with the laser beam L.
  • the positional relationship between the temporary fixing material 50 and the adhesive layer 10 may be the same as in FIG. 6(b), or may be shifted.
  • the temporary fixing material 50 is shifted rightward in FIG.
  • the electronic components 51 can be arranged on the pressure-sensitive adhesive layer 10 while being controlled to a desired pitch.
  • FIG. 6(e) shows a form in which all the electronic components 51 are received by the adhesive layer 10 by repeating the steps shown in FIGS. 6(c) and 6(d).
  • the electronic components 51 are arranged with a desired pitch.
  • FIG. 7 is a schematic cross-sectional view showing the second to fourth steps in one embodiment of the electronic component processing method of the present invention using the adhesive sheet fixed to the carrier substrate shown in FIG.
  • the electronic components 51 arranged on the adhesive layer 10 fixed to the carrier substrate S2 are arranged facing the mounting substrate 60 and separated from each other.
  • the process of transferring to another carrier substrate and then transferring to the mounting substrate can be omitted, and the manufacturing cost can be reduced. Furthermore, it is possible to prevent the connection reliability from deteriorating due to the positional accuracy of the electronic parts being degraded by repeating the transfer twice.
  • FIG. 7(a) the electronic component 51 in the state of FIG. 6(e) is reversed and placed facing the surface 61 of the mounting substrate 60 with the bumps 52 facing downward.
  • a circuit surface (not shown) is formed on a surface 61 of the mounting board 60 facing the electronic component 51, and the bumps 52 on the electronic component 51 are arranged to face and connect to the circuit.
  • the surface 61 of the mounting substrate 60 and the electronic components 51 arranged on the adhesive surface 10a of the adhesive layer 10 are brought close to each other, and the bumps 52 on the electronic components 51 and the surfaces are bonded together.
  • the electronic component 51 can be placed on the surface 61 of the mounting board 60 and the electronic circuit formed on the surface 61 and the bumps 52 can be connected.
  • the adhesive layer 10 is irradiated with an active energy ray U from the carrier substrate S2 side.
  • the active energy ray-curable compound contained in the pressure-sensitive adhesive layer 10 reacts to form a crosslinked structure, improving the elastic modulus and suppressing thermal expansion and outgassing. Shows heat resistance.
  • Reference numeral 11 denotes a pressure-sensitive adhesive layer whose heat resistance is improved by irradiation with active energy rays U. As shown in FIG. Further, the adhesive strength of the adhesive layer 11 is lowered, and the electronic component 51 can be peeled off.
  • All the adhesive layers 10 may be irradiated with the active energy ray U, or a part of the adhesive layers 10 may be irradiated with a mask or the like as necessary.
  • active energy rays U are applied to all adhesive layers 10 .
  • the adhesive layer 10 may be irradiated with active energy rays U (not shown) before the electronic component 51 is brought into contact with the mounting substrate 60 (FIG. 7A).
  • Examples of the active energy ray U include ionizing radiation such as ⁇ -rays, ⁇ -rays, ⁇ -rays, neutron beams and electron beams, and ultraviolet rays, with ultraviolet rays being particularly preferred.
  • ionizing radiation such as ⁇ -rays, ⁇ -rays, ⁇ -rays, neutron beams and electron beams
  • ultraviolet rays are particularly preferred.
  • the conditions for ultraviolet irradiation are not particularly limited, specifically, ultraviolet irradiation of 8280 mJ/cm 2 is preferable.
  • thermocompression heads 70 and 71 are brought into contact with the carrier substrate S2 and the mounting substrate, respectively, and pressed while being heated (thermocompression bonding step). Ultrasonic vibration may be applied during the thermocompression bonding process. The thermocompression bonding process plastically deforms the bumps 52, thereby improving the reliability of connection to the electronic circuit on the mounting substrate.
  • the heating temperature of the thermocompression bonding heads 70 and 71 is preferably controlled to be the same temperature in order to prevent displacement of the mounting position due to the effects of thermal expansion and contraction. 250 to 400° C. is preferable from the viewpoint of improving the properties.
  • the pressure-sensitive adhesive layer 11 whose heat resistance is improved by the irradiation of the active energy ray U suppresses expansion and generation of outgassing even during heating in the above-mentioned thermocompression bonding process, so that a decrease in connection reliability due to misalignment of the electronic component 51 is prevented. Suppressed.
  • the electronic component 51 can be peeled off from the adhesive layer 11, and at the same time, the surface of the mounting board 60 is removed. 61. Since the adhesive strength of the adhesive layer 11 is lowered by the irradiation of the active energy rays U, the electronic component 51 can be easily peeled off, transferred to the surface 61 of the mounting substrate 60, and arranged. The electronic components 51 are transferred and arranged on the surface 61 while maintaining the arrangement pattern of the electronic components 51 on the adhesive layer 10 .
  • the adhesive layer 11 from which the electronic component 51 has been peeled has an elastic property due to an improvement in the storage elastic modulus due to the irradiation of the active energy ray U, and can be peeled off from the carrier substrate S2 without leaving an adhesive residue. It is possible. Therefore, it is also preferable in that the carrier substrate S2 can be recovered without performing a careful cleaning process.
  • the adhesive sheets 2 to 4 shown in FIGS. instead of the adhesive sheet 1, the adhesive sheets 2 to 4 shown in FIGS.
  • the substrate S1 may be fixed to the carrier substrate S2 via double-sided adhesive tape or the like.
  • the electronic component to be mounted on the mounting board is not particularly limited, but it can be suitably used for fine and thin semiconductor chips and LED chips.
  • Example 1 (Preparation of adhesive) Acrylic polymer solution A containing 100 parts by weight of acrylic polymer A was added with a polyfunctional monomer (manufactured by Toagosei Co., Ltd., trade name "Aronix M-321", propylene oxide-modified trimethylolpropane tri (meth) as an active energy ray-curable compound.
  • a polyfunctional monomer manufactured by Toagosei Co., Ltd., trade name "Aronix M-321”
  • meth propylene oxide-modified trimethylolpropane tri (meth)
  • acrylate number of functional groups: 3, molecular weight: 644, softening point: -59 ° C. 50 parts by weight, cross-linking agent (Mitsubishi Gas Chemical Co., Ltd., trade name “Tetrad C”, 1,3-bis (N, N -diglycidylaminomethyl)cyclohexane) 3 parts by weight, ⁇ -hydroxyketone-based photopolymerization initiator (manufactured by BASF Japan, trade name “Irgacure 127”, molecular weight: 340.4, absorption coefficient at wavelength 365 nm: 1.07 ⁇ 10 2 ml/g ⁇ cm) was added to obtain an adhesive.
  • cross-linking agent Mitsubishi Gas Chemical Co., Ltd., trade name “Tetrad C”, 1,3-bis (N, N -diglycidylaminomethyl)cyclohexane
  • ⁇ -hydroxyketone-based photopolymerization initiator manufactured by BASF Japan, trade name “Irgacure 127
  • release sheet The pressure-sensitive adhesive above was applied to the release-treated surface of release liner 1 (manufactured by Fujiko Co., Ltd., product name “PET-75-SCA1”, thickness: 75 ⁇ m) so that the thickness after solvent evaporation (drying) was 50 ⁇ m. to form an adhesive layer.
  • the adhesive surface of the obtained adhesive layer was protected with a release liner 2 (manufactured by Toray Industries, Inc., trade name "Therapeal MDA", thickness: 38 ⁇ m), and the adhesive layer was separated from (release liner 1/adhesive layer/release liner 2). An adhesive sheet was obtained.
  • Example 2 A pressure-sensitive adhesive sheet consisting of (release liner 1/pressure-sensitive adhesive layer/release liner 2) was obtained in the same manner as in Example 1, except that the amount of the polyfunctional monomer was changed to 100 parts by weight.
  • Example 3 A pressure-sensitive adhesive sheet consisting of (release liner 1/pressure-sensitive adhesive layer/release liner 2) was obtained in the same manner as in Example 1, except that the amount of the polyfunctional monomer was changed to 150 parts by weight.
  • Example 4 Consists of (release liner 1/adhesive layer/release liner 2) in the same manner as in Example 1 except that the amount of the polyfunctional monomer was 100 parts by weight and the amount of the cross-linking agent was 5 parts by weight. A sticky sheet was obtained.
  • Example 5 As the active energy ray-curable compound, instead of a multifunctional monomer, a multifunctional oligomer (manufactured by Mitsubishi Chemical Corporation, trade name "Shikou UV-1700B", urethane acrylate, number of functional groups: 10, weight average molecular weight (Mw): 2000, softening point: ⁇ 26° C.) was added in the same manner as in Example 1, except that 100 parts by weight of the adhesive sheet was composed of (release liner 1/adhesive layer/release liner 2).
  • a multifunctional oligomer manufactured by Mitsubishi Chemical Corporation, trade name "Shikou UV-1700B", urethane acrylate, number of functional groups: 10, weight average molecular weight (Mw): 2000, softening point: ⁇ 26° C.
  • the sheet of the evaluation sample obtained above is set in TMA Q400 (manufactured by TA-instruments), using a ⁇ 3.0 mm probe, nitrogen gas flow rate: 50.0 ml / min in penetration mode, pushing The thickness reduction of the evaluation sample sheet was measured while increasing the temperature under the following conditions: load: 0.01 N, ambient temperature range for measurement: -75°C to 40°C, temperature increase rate: 3°C/min. From the obtained data, the temperature at which the thickness decreased by 10% was extracted and used as the softening point (10% heat distortion temperature).
  • the reference temperature is set to 25 ° C.
  • the measurement data is swept based on the WLF formula
  • the master curve is synthesized to synthesize the storage modulus and the frequency dependence data of tan ⁇ . got From the obtained data, values of 100 kHz storage modulus (G'(100k)) and loss factor (tan ⁇ (100k)) were extracted.
  • the sample was irradiated with UV rays of 8280 mJ/cm 2 once from both sides with a release liner attached on both sides, then punched into a size of 4 mm ⁇ 30 mm, and peeled off at an interval of 8 mm to the “TMA Q400” probe.
  • the adhesive layer from which the liner was removed was set.
  • the dimensional change of the sample was measured while increasing the temperature from 20° C. to 300° C. at a rate of temperature increase of 10° C./min. From the obtained data, the slope of the dimensional change at 200 to 210° C. and 260 to 270° C. was calculated to obtain the coefficient of linear expansion.
  • the distance between chucks was 20 mm, and the temperature was changed from 0°C to 300°C at 5°C/min. was measured at a heating rate of From the obtained data, the values of tensile elastic modulus E' at 200°C and 260°C were extracted.
  • the gel fraction was obtained by substituting each value into the following formula.
  • Gel fraction (%) [(W4-W2-W3)/W1] x 100
  • the gel fraction G 0 was measured by the gel fraction measurement method described above using a pressure-sensitive adhesive layer that had not been irradiated with ultraviolet rays.
  • the pressure-sensitive adhesive layer with release liners attached to both sides of the pressure-sensitive adhesive layer was irradiated with ultraviolet rays of 8280 mJ/cm 2 and then the release liner was removed.
  • the gel fraction was measured by the method.
  • a sinking depth ratio (sinking depth/thickness ⁇ 100) with respect to the initial thickness of the pressure-sensitive adhesive layer was calculated and evaluated according to the following criteria.
  • Good acceptance: Depth of sinking/thickness x 100 is 30% or more
  • No problem in practical use: Depth of sinking/thickness x 100 is 5% or more 30 % less than x (poor receptivity) ... sinking depth/thickness x 100 is less than 5%
  • the weight loss of the pressure-sensitive adhesive sheet was measured while increasing the temperature from 20°C to 500°C at a rate of 10°C/min. From the data obtained, the temperature at which the weight loss was 5% was extracted. ⁇ (good heat resistance) 5% weight loss temperature is 340 ° C. or higher ⁇ (poor heat resistance) 5% weight loss temperature is less than 340 ° C.
  • Appendix 1 A resin composition for forming an adhesive layer, The storage elastic modulus G' (100k) of the pressure-sensitive adhesive layer at 100 kHz and 25°C is 60 MPa or less, A resin composition containing an active energy ray-curable compound.
  • Appendix 2 The resin composition according to Appendix 1, wherein the pressure-sensitive adhesive layer is used in the following steps.
  • Appendix 4 Any one of Appendices 1 to 3, wherein the pressure-sensitive adhesive layer has a linear expansion coefficient ⁇ (200 to 210) at 200 to 210°C after irradiation with an active energy ray of 500 ⁇ 10 -5 /K or less.
  • Appendix 5 The resin composition according to any one of Appendices 1 to 4, wherein the adhesive layer has a tensile elastic modulus E′(200) at 200° C. after irradiation with an active energy ray of 0.3 MPa or more. .
  • Appendix 6 Any one of Appendices 1 to 5, wherein the pressure-sensitive adhesive layer has a linear expansion coefficient ⁇ (260 to 270) at 260 to 270°C after irradiation with an active energy ray of 500 ⁇ 10 -5 /K or less.
  • Appendix 7 The resin composition according to any one of Appendixes 1 to 6, wherein the adhesive layer has a tensile elastic modulus E'(260) at 260°C after irradiation with an active energy ray of 0.05 MPa or more. .
  • [Appendix 12] The resin composition according to any one of Appendices 1 to 11, which is an acrylic pressure-sensitive adhesive composition.
  • [Appendix 13] The resin composition according to any one of Appendices 1 to 12, wherein the pressure-sensitive adhesive layer is further laminated with another pressure-sensitive adhesive layer.
  • [Appendix 14] The resin composition according to any one of Appendices 1 to 13, wherein the pressure-sensitive adhesive layer is further laminated with a substrate layer.
  • Additional remark 15 The resin composition according to Additional remark 14, wherein another adhesive layer is laminated on the surface of the base material layer on which the adhesive layer is not laminated.
  • Appendix 16 The resin composition according to Appendix 14 or 15, wherein the substrate layer is formed from a light-transmitting heat-resistant film.
  • Appendix 17 A pressure-sensitive adhesive layer formed from the resin composition according to any one of Appendices 1 to 16.
  • Appendix 18 A pressure-sensitive adhesive sheet having the pressure-sensitive adhesive layer according to Appendix 17.
  • Adhesive sheet 10 Adhesive layers R1, R2 Release liner 2 Adhesive sheets 20, 21 Adhesive layer 3 Adhesive sheet 30 Adhesive layer S1 Base material 4 Adhesive sheets 40, 41 Adhesive layer S2 Carrier substrate 50 Temporary fixing material (substrate or adhesive sheet) 51 electronic component 52 bump (projection electrode) 11 Adhesive layer (after active energy ray irradiation) 60 Mounting substrates 70, 71 Thermocompression bonding head

Abstract

The purpose of the present invention is to provide a resin composition that is appropriate for forming an adhesive layer suitable as a shock-absorbing layer endowed with both shock absorption properties and heat resistance. The present invention relates to a resin composition for forming an adhesive layer. In the present invention, the storage modulus G'(100k) of the adhesive layer at 100 kHz and 25°C is 60 MPa or less. The resin composition contains an active-energy-ray-curable compound.

Description

樹脂組成物resin composition
 本発明は、樹脂組成物に関する。より詳細には、本発明は、半導体チップやLEDチップなどの小型の電子部品の転写に使用される衝撃吸収層として有用な粘着剤層の形成に好適に使用できる樹脂組成物に関する。 The present invention relates to resin compositions. More particularly, the present invention relates to a resin composition that can be suitably used for forming a pressure-sensitive adhesive layer that is useful as a shock-absorbing layer used for transferring small electronic parts such as semiconductor chips and LED chips.
 半導体装置の製造過程においては、一般に、ダイシングテープ上に仮固定した状態で半導体ウェハをダイシングにより個片化し、個片化された半導体チップはウェハ裏面のダイシングテープ側からピン部材により突き押して、コレットと呼ばれる吸着治具によりピックアップし、回路基板などの実装基板に実装されている(例えば、特許文献1)。 In the manufacturing process of a semiconductor device, generally, a semiconductor wafer is singulated by dicing in a state temporarily fixed on a dicing tape, and the singulated semiconductor chips are pushed by a pin member from the dicing tape side of the back surface of the wafer to form a collet. It is picked up by a suction jig called and mounted on a mounting board such as a circuit board (for example, Patent Document 1).
 しかしながら、微細加工技術の進歩により半導体チップの小型化、薄型化が進んでおり、コレットで個別にピックアップすることが困難になってきている。また、半導体装置の小型化も進んでおり、多数の微細な半導体チップを実装基板上に密に実装することが要求されてきており、コレットにより個別に実装するのは効率が悪いという問題もあった。 However, due to advances in microfabrication technology, semiconductor chips are becoming smaller and thinner, making it difficult to pick them up individually with a collet. In addition, as the size of semiconductor devices is becoming smaller, there is a demand for densely mounting a large number of fine semiconductor chips on a mounting substrate. rice field.
 上記の問題を解決する手段として、レーザートランスファーと呼ばれる技術が検討されている(例えば、特許文献2、3参照)。レーザートランスファーでは、まず、仮固定材上に半導体チップなどの小型(例えば、一辺100μm以下サイズの方形)の電子部品を格子状に配置し、電子部品が配置された面を下方に向けて配置する。次に、該仮固定材の電子部品が配置された面に対向して、電子部品を転写する(受け取る)ための転写用基板を隙間を設けて配置する。次に、仮固定材側から電子部品にレーザー光を照射することにより、仮固定を解除して剥離させ、転写用基板上に落下させることにより転写する。転写用基板に転写された電子部品は、別のキャリア基板に転写して実装基板に実装することができ、或いは、転写用基板から直接実装基板に転写することにより実装することができる。 As a means of solving the above problems, a technology called laser transfer is under consideration (see Patent Documents 2 and 3, for example). In laser transfer, first, small electronic components such as semiconductor chips (for example, squares with a size of 100 μm or less on each side) are arranged in a grid pattern on a temporary fixing material, and the surface on which the electronic components are arranged is arranged facing downward. . Next, a transfer substrate for transferring (receiving) the electronic component is arranged with a gap so as to face the surface of the temporary fixing material on which the electronic component is arranged. Next, by irradiating the electronic component with a laser beam from the side of the temporary fixing material, the temporary fixing is released and the electronic component is peeled off. The electronic component transferred to the transfer substrate can be transferred to another carrier substrate and mounted on the mounting substrate, or can be mounted by directly transferring from the transfer substrate to the mounting substrate.
 レーザートランスファーでは、小型の電子部品をコレットなどを用いて機械的にピックアップする必要がなく、複数の電子部品にレーザー光を照射し、掃引することにより光学的な時間スケールで転写することができるため効率が飛躍的に向上する。また、仮固定材と転写用基板を隙間(クリアランス)を設けて配置することにより、電子部品を所望の間隔に調整して電子部品を配列することができるという利点も有する。 With laser transfer, there is no need to mechanically pick up small electronic parts using a collet or the like, and by irradiating multiple electronic parts with a laser beam and sweeping it, it is possible to transfer on an optical time scale. Dramatically improved efficiency. Further, by arranging the temporary fixing material and the transfer substrate with a gap (clearance) provided, there is an advantage that the electronic parts can be arranged at a desired interval.
 レーザートランスファーでは、仮固定材と転写用基板が隙間(クリアランス)を設けて配置されるため、剥離された電子部品が転写用基板に衝突した際に衝撃を受けて破損したり、跳ねて位置ずれが生じたり、裏返るなどの不具合が生じ、転写性が低下する問題があるため、転写用基板の表面には、電子部品が転写用基板に衝突した際の衝撃を緩和するための衝撃吸収層が設けられている(例えば、特許文献2)。このような衝撃吸収層は、電子部品が衝突した際に衝撃を十分に吸収できるように、低弾性化により柔軟性を有した設計がなされている。 In laser transfer, the temporary fixing material and the transfer substrate are arranged with a gap (clearance), so when the peeled electronic component collides with the transfer substrate, it is impacted and damaged, or bounces and shifts in position. Since there is a problem that the transferability deteriorates due to problems such as turning over and turning over, the surface of the transfer substrate has a shock absorbing layer to absorb the impact when the electronic component collides with the transfer substrate. provided (for example, Patent Document 2). Such impact absorbing layers are designed to have flexibility due to low elasticity so as to sufficiently absorb impacts when electronic parts collide.
 一方、レーザートランスファーでは、実装基板に電子部品を転写する際に、実装基板上に設けられた電子回路への電子部品の接続信頼性を向上させるため、熱圧着が行われている(例えば、特許文献3参照)。特に、バンプと呼ばれる突起電極(接続用金属)を介して、電子部品を実装基板上の回路に接続する場合には、バンプを十分に塑性変形させて、確実に回路に電気接続して、接続信頼性を向上させるために、250℃以上の高温で熱圧着を行うことも知られている(例えば、特許文献4参照)。 On the other hand, in laser transfer, when transferring electronic components to a mounting board, thermocompression bonding is performed in order to improve the connection reliability of the electronic components to the electronic circuit provided on the mounting board (for example, patented Reference 3). In particular, when connecting an electronic component to a circuit on a mounting board via protruding electrodes (connection metal) called bumps, the bumps should be sufficiently plastically deformed to ensure electrical connection to the circuit. In order to improve reliability, it is also known to perform thermocompression bonding at a high temperature of 250° C. or higher (see, for example, Patent Document 4).
特開2019-9203号公報Japanese Patent Application Laid-Open No. 2019-9203 特開2019-067892号公報JP 2019-067892 A 特開2018-60993号公報JP 2018-60993 A 特開2015-170690号公報JP 2015-170690 A
 実装基板への電子部品の転写(実装)では、工程を減らしてコストを削減し、また、転写を繰り返すことによる電子部品の実装基板上の回路への位置精度の低下を防止するために、別のキャリア基板を介することなく、転写用基板から直接、電子部品を実装基板に転写する方法が好適に行われている(例えば、特許文献3)。しかしながら、低弾性化により衝撃吸収性を向上させた衝撃吸収層は耐熱性が低く、熱圧着時に膨張したり、アウトガスが発生して、電子部品の位置ずれが発生し、接続信頼性を悪化させる課題があった。一方、耐熱性を改善するために衝撃吸収層を高弾性化すると衝撃吸収性が低下し、転写性が損なわれるという問題があった。このように、衝撃吸収層の衝撃吸収性と耐熱性は、トレードオフの関係にあり、両立することが困難な課題であった。 In the transfer (mounting) of electronic components to the mounting board, a separate A method of transferring an electronic component directly from a transfer substrate to a mounting substrate without using a carrier substrate is preferably performed (for example, Patent Document 3). However, the impact-absorbing layer, which has improved impact-absorbing properties due to its low elasticity, has low heat resistance, expands during thermocompression bonding, and outgassing occurs, causing misalignment of electronic components and deteriorating connection reliability. I had a problem. On the other hand, if the shock absorbing layer is made highly elastic in order to improve the heat resistance, there is a problem that the shock absorbing property is lowered and the transferability is impaired. As described above, there is a trade-off relationship between the impact absorption property and the heat resistance of the impact absorption layer, and it has been a difficult task to achieve both.
 本発明は上記の問題に鑑みてなされたものであり、その目的は、衝撃吸収性と耐熱性を両立した衝撃吸収層として好適である粘着剤層を形成するために適した樹脂組成物を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a resin composition suitable for forming a pressure-sensitive adhesive layer suitable as a shock absorbing layer that achieves both shock absorption and heat resistance. It is to be.
 本発明の第1の側面は、樹脂組成物を提供する。本発明の第1の側面の樹脂組成物は、粘着剤層を形成するために使用されるものである。
 本明細書において、本発明の第1の側面の樹脂組成物を「本発明の樹脂組成物」、本発明の第1の側面の樹脂組成物により形成される粘着剤層を「本発明の粘着剤層」と称する場合がある。
A first aspect of the present invention provides a resin composition. The resin composition of the first aspect of the present invention is used for forming a pressure-sensitive adhesive layer.
In this specification, the resin composition of the first aspect of the present invention is referred to as the "resin composition of the present invention", and the pressure-sensitive adhesive layer formed from the resin composition of the first aspect of the present invention is referred to as the "adhesive of the present invention." It may be referred to as "agent layer".
 本発明の粘着剤層は、仮固定材上に配置された電子部品を受け取るための衝撃吸収性層として好適に使用できるものであり、より詳細には、以下の工程に好適に使用できるものである。
・粘着剤層(衝撃吸収層)を、仮固定材上に電子部品が配置された面と対向して隙間を設けて配置し、電子部品を受け取る工程
・粘着剤層(衝撃吸収層)に受け取られた電子部品を、別のキャリア基板に転写するか、又は、直接実装基板に転写する工程
 工程を減らしてコストを削減し、また、転写を繰り返すことによる電子部品の実装基板上の回路への位置精度の低下を防止する観点から、別のキャリア基板を介することなく、転写用基板から直接、電子部品を実装基板に転写する工程が好ましい。
The pressure-sensitive adhesive layer of the present invention can be suitably used as a shock-absorbing layer for receiving electronic components placed on a temporary fixing material, and more specifically, it can be suitably used in the following steps. be.
・The adhesive layer (shock absorption layer) is arranged on the temporary fixing material with a gap facing the surface on which the electronic components are arranged, and the electronic components are received ・The adhesive layer (shock absorption layer) is received The process of transferring the electronic components to another carrier board or transferring them directly to the mounting board. From the viewpoint of preventing a decrease in positional accuracy, it is preferable to transfer the electronic component directly from the transfer substrate to the mounting substrate without using another carrier substrate.
 従って、本発明の粘着剤層は、前記電子部品を受け取る際の衝撃を緩和するための衝撃吸収性と、実装基板に電子部品を転写する際の熱圧着においても、膨張やアウトガスの発生を抑制できる優れた耐熱性とを兼ね備えるものである。そして、本発明の樹脂組成物は、そのような衝撃吸収性と、耐熱性とを兼ね備える本発明の粘着剤層を形成するために好適に使用できるものである。 Therefore, the pressure-sensitive adhesive layer of the present invention has shock absorption properties for mitigating the impact when receiving the electronic component, and suppresses expansion and outgassing even in thermocompression bonding when transferring the electronic component to the mounting substrate. It also has excellent heat resistance that can be achieved. The resin composition of the present invention can be suitably used to form the pressure-sensitive adhesive layer of the present invention that has both impact absorption and heat resistance.
 本発明の粘着剤層は、100kHz、25℃における貯蔵弾性率G'(100k)が、60MPa以下である。
 レーザートランスファー工程においては、光学的な時間スケールで電子部品の転写が完了するため、この時間スケールでの粘着剤の衝撃緩和特性が重要となる。具体的には、光学的な時間スケールとは、レーザー光を掃引する周波数と相関があり、例えば、100kHzなどである。時間スケールに換算するとおよそ10マイクロ秒であり、この時間スケールでの衝撃に対して粘着剤が応答して変形する必要がある。
The pressure-sensitive adhesive layer of the present invention has a storage modulus G' (100k) at 100 kHz and 25°C of 60 MPa or less.
In the laser transfer process, the transfer of electronic parts is completed within an optical time scale, so the impact relaxation properties of the pressure-sensitive adhesive on this time scale are important. Specifically, the optical time scale is correlated with the sweeping frequency of the laser light, such as 100 kHz. When converted to a time scale, it is about 10 microseconds, and the adhesive needs to be deformed in response to the impact on this time scale.
 本発明の粘着剤層において、前記G'(100k)が、60MPa以下であるという構成は、光学的な時間スケールにおける粘着剤層の優れた衝撃吸収性を実現し、本発明の粘着剤層を転写用基板の衝撃吸収層として使用する際に、優れた転写性を付与できるという点で、好適である。 In the pressure-sensitive adhesive layer of the present invention, the configuration in which the G' (100k) is 60 MPa or less realizes excellent impact absorption of the pressure-sensitive adhesive layer on an optical time scale, and the pressure-sensitive adhesive layer of the present invention is achieved. It is suitable in that excellent transferability can be imparted when used as an impact absorption layer of a transfer substrate.
 本発明の樹脂組成物は、活性エネルギー線硬化型化合物を含有する。本発明の樹脂組成物が、活性エネルギー線硬化型化合物を含有するという構成は、活性エネルギー線照射前においては、本発明の粘着剤層が優れた衝撃吸収性を示し、活性エネルギー線照射後においては、活性エネルギー線硬化型化合物の反応による架橋構造形成により、本発明の粘着剤層の弾性率が向上し、実装基板に電子部品を転写する際の熱圧着においても、膨張やアウトガスの発生を抑制できる優れた耐熱性を示す点、また粘着力が低下し、電子部品への糊残りや電子部品の転写不良を防ぐ点で、好適である。 The resin composition of the present invention contains an active energy ray-curable compound. In the configuration in which the resin composition of the present invention contains an active energy ray-curable compound, the pressure-sensitive adhesive layer of the present invention exhibits excellent impact absorption before irradiation with an active energy ray, and after irradiation with an active energy ray. , the elastic modulus of the pressure-sensitive adhesive layer of the present invention is improved by forming a crosslinked structure through the reaction of the active energy ray-curable compound, and even in thermocompression bonding when transferring electronic parts to a mounting substrate, expansion and outgassing are prevented. It is suitable in that it exhibits excellent heat resistance that can be suppressed, and in that the adhesive force is reduced to prevent adhesive residue on electronic parts and poor transfer of electronic parts.
 本発明の粘着剤層の活性エネルギー線照射前のゲル分率G0(%)に対する、活性エネルギー線照射後のゲル分率G1(%)の比(G1/G0)は、1.1以上であることが好ましい。前記G1/G0が1.1以上であるという構成は、活性エネルギー線照射前においては、本発明の粘着剤層が優れた衝撃吸収性を示し、活性エネルギー線照射後においては、活性エネルギー線硬化型化合物の反応による架橋構造形成により、本発明の粘着剤層の弾性率が向上し、実装基板に電子部品を転写する際の熱圧着においても、膨張やアウトガスの発生を抑制できる優れた耐熱性を示す点で、好適である。 The ratio (G 1 /G 0 ) of the gel fraction G 1 (%) after active energy ray irradiation to the gel fraction G 0 (%) before active energy ray irradiation of the pressure-sensitive adhesive layer of the present invention is 1. It is preferably 1 or more. In the configuration in which the G 1 /G 0 is 1.1 or more, the pressure-sensitive adhesive layer of the present invention exhibits excellent impact absorption before active energy ray irradiation, and after active energy ray irradiation, the active energy The elastic modulus of the pressure-sensitive adhesive layer of the present invention is improved by forming a crosslinked structure through the reaction of the ray-curable compound, and even in thermocompression bonding when transferring electronic parts to a mounting substrate, expansion and outgassing can be suppressed. It is suitable in that it exhibits heat resistance.
 本発明の粘着剤層の活性エネルギー線照射後の200~210℃における線膨張係数α(200~210)は、500×10-5/K以下であることが好ましい。前記α(200~210)が500×10-5/K以下であるという構成は、活性エネルギー線照射後において、本発明の粘着剤層が活性エネルギー線硬化型化合物による架橋構造形成により弾性率が向上し、実装基板に電子部品を転写する際の熱圧着において、膨張の発生を抑制できる優れた耐熱性を示し、粘着剤層の線膨張による電子部品の位置精度の低下を防止できる点で、好ましい。 The linear expansion coefficient α (200 to 210) at 200 to 210° C. of the adhesive layer of the present invention after irradiation with active energy rays is preferably 500×10 −5 /K or less. The configuration in which the α (200 to 210) is 500 × 10 -5 /K or less is such that the elastic modulus of the pressure-sensitive adhesive layer of the present invention increases due to the formation of a crosslinked structure by the active energy ray-curable compound after irradiation with an active energy ray. It exhibits excellent heat resistance that can suppress the occurrence of expansion during thermocompression bonding when electronic components are transferred to a mounting substrate, and can prevent the positional accuracy of electronic components from declining due to linear expansion of the adhesive layer. preferable.
 本発明の粘着剤層の活性エネルギー線照射後の200℃における引張弾性率E'(200)は、0.3MPa以上であることが好ましい。前記E'(200)が0.3MPa以上であるという構成は、活性エネルギー線照射後において、本発明の粘着剤層が活性エネルギー線硬化型化合物による架橋構造形成により弾性率が向上し、実装基板に電子部品を転写する際の熱圧着において、膨張やアウトガスの発生を抑制できる優れた耐熱性を示し、電子部品の位置精度の低下による接続信頼性の低下を防止できる点で、好適である。 The tensile elastic modulus E'(200) at 200°C after the active energy ray irradiation of the pressure-sensitive adhesive layer of the present invention is preferably 0.3 MPa or more. In the configuration that the E′(200) is 0.3 MPa or more, the elastic modulus of the pressure-sensitive adhesive layer of the present invention is improved by forming a crosslinked structure with the active energy ray-curable compound after irradiation with the active energy ray, and the mounting substrate It exhibits excellent heat resistance that can suppress expansion and outgassing in thermocompression bonding when transferring electronic parts to , and is suitable in that it can prevent deterioration of connection reliability due to deterioration of positional accuracy of electronic parts.
 本発明の粘着剤層の活性エネルギー線照射後の260~270℃における線膨張係数α(260~270)が、500×10-5/K以下であることが好ましい。前記α(260~270)が500×10-5/K以下であるという構成は、活性エネルギー線照射後において、本発明の粘着剤層が活性エネルギー線硬化型化合物による架橋構造形成により弾性率が向上し、特に、実装基板に電子部品をバンプを介して転写する際に、接続信頼性を向上させるために250℃を超える高温で熱圧着する場合においても、膨張の発生を抑制できる優れた耐熱性を示し、粘着剤層の線膨張による電子部品の位置精度の低下を防止できる点で、好ましい。 The linear expansion coefficient α (260-270) at 260-270° C. of the pressure-sensitive adhesive layer of the present invention after irradiation with active energy rays is preferably 500×10 −5 /K or less. The configuration in which the α (260 to 270) is 500×10 −5 /K or less is such that the elastic modulus of the pressure-sensitive adhesive layer of the present invention increases due to the formation of a crosslinked structure by the active energy ray-curable compound after irradiation with an active energy ray. In particular, when electronic components are transferred to a mounting substrate via bumps, even when thermocompression bonding is performed at a high temperature exceeding 250 ° C. in order to improve connection reliability, it has excellent heat resistance that can suppress the occurrence of expansion. It is preferable in that it exhibits good properties and prevents the positional accuracy of the electronic component from being lowered due to the linear expansion of the pressure-sensitive adhesive layer.
 本発明の粘着剤層の活性エネルギー線照射後の260℃における引張弾性率E'(260)は、0.05MPa以上であることが好ましい。引張弾性率E'(260)が0.05MPa以上であるという構成は、活性エネルギー線照射後において、本発明の粘着剤層が活性エネルギー線硬化型化合物による架橋構造形成により弾性率が向上し、特に、実装基板に電子部品をバンプを介して転写する際に、接続信頼性を向上させるために250℃を超える高温で熱圧着する場合においても、膨張やアウトガスの発生を抑制できる優れた耐熱性を示し、電子部品の位置精度の低下による接続信頼性の低下を防止できる点で、好適である。 The tensile elastic modulus E'(260) at 260°C of the pressure-sensitive adhesive layer of the present invention after irradiation with active energy rays is preferably 0.05 MPa or more. The configuration in which the tensile elastic modulus E′ (260) is 0.05 MPa or more is such that the elastic modulus of the pressure-sensitive adhesive layer of the present invention is improved by forming a crosslinked structure with the active energy ray-curable compound after irradiation with active energy rays, In particular, when electronic components are transferred to a mounting substrate via bumps, even when thermocompression bonding is performed at a high temperature exceeding 250°C to improve connection reliability, it has excellent heat resistance that can suppress expansion and outgassing. , and is suitable in that it is possible to prevent a decrease in connection reliability due to a decrease in the positional accuracy of electronic components.
 本発明の樹脂組成物において、前記活性エネルギー線硬化型化合物は、多官能モノマー及び/又は多官能オリゴマーであることが好ましい。本発明の活性エネルギー線硬化型化合物が、多官能モノマー及び/又は多官能オリゴマーであるという構成は、複数の反応性官能基による架橋構造形成により粘着剤層の弾性率がより高くなり、実装基板に電子部品を転写する際の熱圧着において、膨張やアウトガスの発生を抑制できるより優れた耐熱性を示す点で、好適である。 In the resin composition of the present invention, the active energy ray-curable compound is preferably a polyfunctional monomer and/or a polyfunctional oligomer. In the configuration in which the active energy ray-curable compound of the present invention is a polyfunctional monomer and/or polyfunctional oligomer, the elastic modulus of the pressure-sensitive adhesive layer is further increased by forming a crosslinked structure with a plurality of reactive functional groups, and the mounting substrate It is preferable in terms of exhibiting superior heat resistance capable of suppressing expansion and generation of outgassing in thermocompression bonding when transferring an electronic component to a substrate.
 本発明の樹脂組成物において、前記活性エネルギー線硬化型化合物は、反応性官能基を3個以上有することが好ましい。前記活性エネルギー線硬化型化合物が、反応性官能基を3個以上有するという構成は、3個以上の反応性官能基による3次元的な架橋構造形成により粘着剤層の弾性率がさらに高くなり、実装基板に電子部品を転写する際の熱圧着において、膨張やアウトガスの発生を抑制できるさらに優れた耐熱性を示す点で、好適である。 In the resin composition of the present invention, the active energy ray-curable compound preferably has 3 or more reactive functional groups. The configuration in which the active energy ray-curable compound has three or more reactive functional groups further increases the elastic modulus of the pressure-sensitive adhesive layer by forming a three-dimensional crosslinked structure with three or more reactive functional groups. It is preferable in that it exhibits excellent heat resistance that can suppress expansion and generation of outgassing in thermocompression bonding when transferring an electronic component to a mounting substrate.
 本発明の樹脂組成物において、前記活性エネルギー線硬化型化合物の分子量は、20000未満であることが好ましい。前記活性エネルギー線硬化型化合物の分子量が、20000未満であるという構成は、活性エネルギー線照射前の本発明の粘着剤層に柔軟性を付与して、前記G'(100k)を60MPa以下に調整し、本発明の粘着剤層を転写用基板の衝撃吸収層として使用する際に、優れた衝撃吸収性を付与できる点で、好ましい。
 なお、本発明の活性エネルギー線硬化型化合物が重合体(オリゴマー)である場合、前記分子量は、重量平均分子量(Mw)を含むものとする。
In the resin composition of the present invention, the active energy ray-curable compound preferably has a molecular weight of less than 20,000. The configuration in which the molecular weight of the active energy ray-curable compound is less than 20000 imparts flexibility to the pressure-sensitive adhesive layer of the present invention before active energy ray irradiation, and the G′ (100 k) is adjusted to 60 MPa or less. However, when the pressure-sensitive adhesive layer of the present invention is used as an impact-absorbing layer of a transfer substrate, it is preferable in that excellent impact-absorbing properties can be imparted.
In addition, when the active-energy-ray-curable compound of this invention is a polymer (oligomer), the said molecular weight shall include a weight average molecular weight (Mw).
 本発明の粘着剤層の厚みは、1μm以上500μm以下であることが好ましい。本発明の粘着剤層の厚みが1μm以上であるという構成は、電子部品の衝突による衝撃吸収性に優れるという点で、好ましい。また、本発明の粘着剤層の厚みが500μm以下であるという構成は、受け取った電子部品を実装基板へ転写する際の転写性の観点から好ましい。 The thickness of the adhesive layer of the present invention is preferably 1 μm or more and 500 μm or less. The configuration in which the thickness of the pressure-sensitive adhesive layer of the present invention is 1 μm or more is preferable from the viewpoint of being excellent in shock absorption due to collision of electronic parts. In addition, the configuration in which the thickness of the pressure-sensitive adhesive layer of the present invention is 500 μm or less is preferable from the viewpoint of transferability when transferring received electronic components to a mounting substrate.
 本発明の樹脂組成物は、アクリル系粘着剤組成物であることが好ましい。本発明の樹脂組成物が、アクリル系粘着剤組成物であるという構成は、前記G'(100k)を60MPa以下に調整する粘着剤の設計のしやすさ、前記活性エネルギー線硬化型化合物により架橋構造を形成して粘着剤層の耐熱性を向上できる点、透明性、粘着性、コスト等の点で、好ましい。 The resin composition of the present invention is preferably an acrylic adhesive composition. The configuration that the resin composition of the present invention is an acrylic pressure-sensitive adhesive composition facilitates the design of the pressure-sensitive adhesive that adjusts the G' (100 k) to 60 MPa or less, and crosslinks with the active energy ray-curable compound. It is preferable in that the structure can be formed to improve the heat resistance of the pressure-sensitive adhesive layer, transparency, adhesiveness, cost, and the like.
 本発明の粘着剤層は、さらに別の粘着剤層が積層されていてもよい。この構成は、本発明の粘着剤層が、活性エネルギー線照射前の優れた衝撃吸収性と、活性エネルギー線照射後の優れた耐熱性とを両立でき、さらに、積層される別の粘着剤層を、転写用基板を構成する基材、又はキャリア基板などに貼り合わせることができ、転写用基板からの浮きを抑制できる点で、好ましい。 The adhesive layer of the present invention may be laminated with another adhesive layer. With this configuration, the pressure-sensitive adhesive layer of the present invention can achieve both excellent impact absorption before irradiation with active energy rays and excellent heat resistance after irradiation with active energy rays, and furthermore, another pressure-sensitive adhesive layer to be laminated. can be attached to the base material constituting the transfer substrate, carrier substrate, or the like, and can be prevented from floating from the transfer substrate.
 本発明の粘着剤層(前記別の粘着剤層が積層される場合を含む)は、さらに基材層と積層されていてもよい。本発明の粘着剤層が、さらに基材層を有することにより、電子部品を受け取る際の安定性や取り扱い性が向上する点で好ましい。 The pressure-sensitive adhesive layer of the present invention (including the case where the separate pressure-sensitive adhesive layer is laminated) may be further laminated with a base material layer. It is preferable that the pressure-sensitive adhesive layer of the present invention further has a substrate layer, in that the stability and handleability when receiving the electronic component are improved.
 本発明の粘着剤層において、前記基材層の前記粘着剤層が積層されていない面に、別の粘着剤層が積層されていてもよい。前記基材層の前記粘着剤層が積層されていない面に別の粘着剤層が積層されていることにより、例えば、別の粘着剤層をキャリア基板に固定することができ、作業性の観点から好ましい。
 前記基材層は、電子部品を受け取る際の安定性や取り扱い性の観点、実装基板に電子部品を転写する際の熱圧着における耐熱性の観点から、光透過性の耐熱フィルムから形成されることが好ましい。
In the pressure-sensitive adhesive layer of the present invention, another pressure-sensitive adhesive layer may be laminated on the surface of the base material layer on which the pressure-sensitive adhesive layer is not laminated. By laminating another pressure-sensitive adhesive layer on the surface of the base material layer on which the pressure-sensitive adhesive layer is not laminated, for example, another pressure-sensitive adhesive layer can be fixed to the carrier substrate, and from the viewpoint of workability preferred from
The base layer is formed from a light-transmitting heat-resistant film from the viewpoint of stability and handling when receiving the electronic component, and from the viewpoint of heat resistance in thermocompression bonding when transferring the electronic component to the mounting substrate. is preferred.
 本発明の第2の側面は、本発明の樹脂組成物により形成される粘着剤層を提供する。また、本発明の第3の側面は、本発明の第2の側面の粘着剤層を有する粘着シートを提供する。本発明の第2の側面の粘着剤層、及び本発明の第3の側面の粘着シートは、活性エネルギー線照射前の優れた衝撃吸収性と、活性エネルギー線照射後の優れた耐熱性とを両立できる本発明の粘着剤層を有するため、仮固定材上に配置された電子部品を受け取るために好適に使用できるものであり、より詳細には、仮固定材上に電子部品が配置された面と対向して隙間を設けて配置され、電子部品を受け取るために好適に使用できるものである。 A second aspect of the present invention provides an adhesive layer formed from the resin composition of the present invention. A third aspect of the present invention provides a pressure-sensitive adhesive sheet having the pressure-sensitive adhesive layer of the second aspect of the present invention. The pressure-sensitive adhesive layer of the second aspect of the present invention and the pressure-sensitive adhesive sheet of the third aspect of the present invention have excellent impact absorption before active energy ray irradiation and excellent heat resistance after active energy ray irradiation. Since it has a compatible pressure-sensitive adhesive layer of the present invention, it can be suitably used to receive electronic components placed on the temporary fixing material. It is arranged with a gap facing the surface and can be preferably used to receive an electronic component.
 本発明の樹脂組成物から形成される粘着剤層(本発明の粘着剤層)は、活性エネルギー線照射前は優れた衝撃吸収性を示し、電子部品を受け取る際の破損、位置ずれ、裏返りなどの不具合を防止し、活性エネルギー線照射後は優れた耐熱性を示し、実装基板に電子部品を転写する際の熱圧着において、膨張やアウトガスが発生などに伴う電子部品の位置ずれなどに起因する接続信頼性の低下を防止することができる。従って、本発明の樹脂組成物は、特に、転写用基板に受け取られた電子部品を実装基板上への直接転写するレーザートランスファーに使用される衝撃吸収性と、耐熱性を兼ね備える粘着剤層を形成するために好適に使用できる。 The pressure-sensitive adhesive layer formed from the resin composition of the present invention (the pressure-sensitive adhesive layer of the present invention) exhibits excellent impact absorption before irradiation with active energy rays, and damage, misalignment, turning inside out, etc. when receiving electronic components. and exhibit excellent heat resistance after irradiation with active energy rays. A decrease in connection reliability can be prevented. Therefore, the resin composition of the present invention forms a pressure-sensitive adhesive layer having both impact absorption and heat resistance, which is used in laser transfer for directly transferring electronic components received on a transfer substrate onto a mounting substrate. It can be suitably used for
本発明の粘着剤層を有する粘着シートの一実施形態を示す断面模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a cross-sectional schematic diagram which shows one Embodiment of the adhesive sheet which has an adhesive layer of this invention. 本発明の粘着剤層を有する粘着シートの他の一実施形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows other one Embodiment of the adhesive sheet which has an adhesive layer of this invention. 本発明の粘着剤層を有する粘着シートの他の一実施形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows other one Embodiment of the adhesive sheet which has an adhesive layer of this invention. 本発明の粘着剤層を有する粘着シートの他の一実施形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows other one Embodiment of the adhesive sheet which has an adhesive layer of this invention. 図1に示す粘着シートをキャリア基板に固定する方法の一実施形態を表す断面模式図である。1. It is a cross-sectional schematic diagram showing one Embodiment of the method of fixing the adhesive sheet shown in FIG. 1 to a carrier substrate. 図5に示すキャリア基板に固定された粘着シートを用いた電子部品の加工方法の一実施形態における第1工程を表す断面模式図である。FIG. 6 is a schematic cross-sectional view showing a first step in an embodiment of a method for processing an electronic component using an adhesive sheet fixed to a carrier substrate shown in FIG. 5; 図5に示すキャリア基板に固定された粘着シートを用いた電子部品の加工方法の一実施形態における第2工程~第4工程を表す断面模式図である。6A and 6B are schematic cross-sectional views showing second to fourth steps in an embodiment of the electronic component processing method using the adhesive sheet fixed to the carrier substrate shown in FIG. 5;
 本発明の樹脂組成物は、粘着剤層(本発明の粘着剤層)を形成するために使用されるものである。
 本発明の粘着剤層は、半導体チップやLEDチップなどの小型の電子部品を回路基板などの実装基板に移載する加工技術に使用されるものであり、具体的には、以下の工程に好適に使用できるものである。
・粘着剤層(衝撃吸収層)を、仮固定材上に電子部品が配置された面と対向して隙間を設けて配置し、電子部品を受け取る工程
・粘着剤層(衝撃吸収層)に受け取られた電子部品を、別のキャリア基板に転写するか、又は、直接実装基板に転写する工程
 工程を減らしてコストを削減し、また、転写を繰り返すことによる電子部品の実装基板上の回路への位置精度の低下を防止するために、別のキャリア基板を介することなく、転写用基板から直接、電子部品を実装基板に転写する工程が好ましい。
The resin composition of the present invention is used to form an adhesive layer (the adhesive layer of the present invention).
The pressure-sensitive adhesive layer of the present invention is used in processing technology for transferring small electronic components such as semiconductor chips and LED chips to mounting substrates such as circuit boards. Specifically, it is suitable for the following processes. can be used for
・The adhesive layer (shock absorption layer) is arranged on the temporary fixing material with a gap facing the surface on which the electronic components are arranged, and the electronic components are received ・The adhesive layer (shock absorption layer) is received The process of transferring the electronic components to another carrier board or transferring them directly to the mounting board. In order to prevent deterioration of positional accuracy, it is preferable to transfer the electronic component directly from the transfer substrate to the mounting substrate without using another carrier substrate.
 本発明の粘着剤層を電子部品の移載に使用することにより、複数の電子部品を光学的な時間スケールで本発明の粘着剤層に配置することが可能となり、個別にピックアップする必要がない。また、本発明の粘着剤層は、活性エネルギー線照射前は前記電子部品を受け取る際の衝撃を緩和するための優れた衝撃吸収性を有し、活性エネルギー線照射後は、電子部品を熱圧着により実装基板上に転写する際に、加熱による膨張やアウトガスの発生を防止する優れた耐熱性を有するものである。従って、本発明の粘着剤層に転写された電子部品は、本発明の粘着剤層から実装基板に直接移載することができるため、別のキャリア基板に転写してから実装基板に転写する工程を省略して製造コストを削減することができ、さらに、転写を2回繰り返すことによる電子部品の位置精度の低下による接続信頼性の低下をも防止することができる。 By using the pressure-sensitive adhesive layer of the present invention for transferring electronic components, it becomes possible to place a plurality of electronic components on the pressure-sensitive adhesive layer of the present invention on an optical time scale, eliminating the need to pick them up individually. . In addition, the pressure-sensitive adhesive layer of the present invention has excellent shock absorption properties for alleviating the impact when receiving the electronic component before irradiation with active energy rays, and after irradiation with active energy rays, the electronic component is thermocompression bonded. It has excellent heat resistance that prevents expansion and outgassing due to heating when transferred onto a mounting substrate. Therefore, since the electronic component transferred to the pressure-sensitive adhesive layer of the present invention can be directly transferred from the pressure-sensitive adhesive layer of the present invention to the mounting substrate, the step of transferring to another carrier substrate and then transferring to the mounting substrate. can be omitted, and the manufacturing cost can be reduced. Further, it is possible to prevent the deterioration of the connection reliability due to the deterioration of the positional accuracy of the electronic parts caused by repeating the transfer twice.
 本発明の粘着剤層は、その形態は特に限定されない。例えば、片面のみが粘着面である片面粘着シートを構成してもよいし、両面が粘着面である両面粘着シートを構成してもよい。また、本発明の粘着剤層が両面粘着シートを構成する場合、前記両面粘着シートは、両方の粘着面が本発明の粘着剤層により提供される形態を有していてもよいし、一方の粘着面が本発明の粘着剤層により提供され、他方の粘着面が本発明の粘着剤層以外の粘着剤層(本明細書において、「別の粘着剤層」と称する場合がある)により提供される形態を有していてもよい。 The form of the pressure-sensitive adhesive layer of the present invention is not particularly limited. For example, a single-sided pressure-sensitive adhesive sheet having only one side with an adhesive surface may be configured, or a double-sided pressure-sensitive adhesive sheet with both sides having an adhesive surface may be configured. In addition, when the pressure-sensitive adhesive layer of the present invention constitutes a double-sided pressure-sensitive adhesive sheet, the double-sided pressure-sensitive adhesive sheet may have a form in which both pressure-sensitive adhesive surfaces are provided by the pressure-sensitive adhesive layer of the present invention. The adhesive surface is provided by the adhesive layer of the present invention, and the other adhesive surface is provided by an adhesive layer other than the adhesive layer of the present invention (in this specification, sometimes referred to as "another adhesive layer"). It may have a form to be
 本発明の粘着剤層は、基材(基材層)を有しない、いわゆる「基材レスタイプ」の粘着シートを構成してもよいし、基材を有するタイプの粘着シートを構成してもよい。なお、本明細書において、「基材レスタイプ」の粘着シートを「基材レス粘着シート」と称する場合があり、基材を有するタイプの粘着シートを「基材付き粘着シート」と称する場合がある。上記基材レス粘着シートとしては、例えば、本発明の粘着剤層のみからなる両面粘着シートや、本発明の粘着剤層と別の粘着剤層(本発明の粘着剤層以外の粘着剤層)からなる両面粘着シート等が挙げられる。また、上記基材付き粘着シートとしては、例えば、基材の片面側に本発明の粘着剤層を有する片面粘着シートや、基材の両面側に本発明の粘着剤層を有する両面粘着シートや、基材の一方の面側に本発明の粘着剤層を有し、他方の面側に別の粘着剤層を有する両面粘着シートなどが挙げられる。なお、上記の「基材(基材層)」とは、支持体のことであり、本発明の粘着剤層を使用する際には、粘着剤層とともに電子部品を受け取る部分である。粘着剤層の使用時に剥離されるはく離ライナーは、上記基材に含まれない。なお、「粘着シート」には、「粘着テープ」の意味を含むものとする。すなわち、前記粘着シートは、テープ状の形態を有する粘着テープであってもよい。 The pressure-sensitive adhesive layer of the present invention may constitute a so-called "substrate-less type" pressure-sensitive adhesive sheet that does not have a substrate (base layer), or may constitute a type pressure-sensitive adhesive sheet that has a substrate. good. In this specification, a "base-less type" pressure-sensitive adhesive sheet may be referred to as a "base-less pressure-sensitive adhesive sheet", and a type pressure-sensitive adhesive sheet having a base may be referred to as a "base-attached pressure-sensitive adhesive sheet". be. Examples of the substrate-less pressure-sensitive adhesive sheet include a double-sided pressure-sensitive adhesive sheet consisting only of the pressure-sensitive adhesive layer of the present invention, and a pressure-sensitive adhesive layer separate from the pressure-sensitive adhesive layer of the present invention (a pressure-sensitive adhesive layer other than the pressure-sensitive adhesive layer of the present invention). A double-sided pressure-sensitive adhesive sheet consisting of Examples of the PSA sheet with a substrate include a single-sided PSA sheet having the PSA layer of the present invention on one side of the substrate, a double-sided PSA sheet having the PSA layer of the present invention on both sides of the substrate, and , a double-sided pressure-sensitive adhesive sheet having the pressure-sensitive adhesive layer of the present invention on one side of a substrate and another pressure-sensitive adhesive layer on the other side. The above-mentioned "base material (base material layer)" means a support, and when the pressure-sensitive adhesive layer of the present invention is used, it is a part that receives an electronic component together with the pressure-sensitive adhesive layer. A release liner that is released when the pressure-sensitive adhesive layer is used is not included in the base material. In addition, the meaning of an "adhesive tape" shall be included in an "adhesive sheet." That is, the adhesive sheet may be an adhesive tape having a tape-like shape.
 本発明の粘着剤層の粘着面は、はく離ライナーにより保護されていることが好ましい。前記はく離ライナーは、本発明の粘着剤層の衝撃吸収性を保護するために少なくとも一方の粘着面上に積層されるものである。はく離ライナーは、本発明の粘着剤層が電子部品を受け取るための粘着面を保護することが好ましく、その場合、本発明の粘着剤層を前記電子部品を受け取るために使用される直前に剥離することが好ましい。 The adhesive surface of the adhesive layer of the present invention is preferably protected with a release liner. The release liner is laminated on at least one adhesive surface in order to protect the impact absorbing properties of the adhesive layer of the present invention. The release liner preferably protects the adhesive surface on which the adhesive layer of the present invention is to receive the electronic component, in which case the adhesive layer of the present invention is peeled off immediately before being used to receive the electronic component. is preferred.
 本発明の粘着剤層の実施形態について、図面を参照して、以下に説明するが、本発明の粘着剤層は当該実施形態に限定されるものではない。
 図1は、本発明の粘着剤層を有する粘着シートの一実施形態を示す断面模式図であり、1は粘着シート、10は粘着剤層、R1、R2ははく離ライナーを示す。
Embodiments of the pressure-sensitive adhesive layer of the present invention will be described below with reference to the drawings, but the pressure-sensitive adhesive layer of the present invention is not limited to these embodiments.
FIG. 1 is a schematic cross-sectional view showing one embodiment of a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer of the present invention, wherein 1 indicates a pressure-sensitive adhesive sheet, 10 indicates a pressure-sensitive adhesive layer, and R1 and R2 indicate release liners.
 図1に示すように、粘着シート1は、はく離ライナーR1と、粘着剤層10と、はく離ライナーR2が、この順に積層された積層構造を有する。粘着シート1は、半導体チップやLEDチップなどの小型の電子部品を回路基板などの実装基板に実装する加工技術に使用されるものである。粘着シート1において、粘着剤層10は本発明の粘着剤層で構成されるものであり、仮固定材に配置された電子部品を分離し、分離された前記電子部品を受け取るために好適に使用されるものである。はく離ライナーR1は、使用前に粘着剤層10から剥離され、露出した粘着面10aで電子部品を受け取るものである。はく離ライナーR2を剥離することにより露出する粘着面10bは、転写用基板を構成する基材、又はキャリア基板などに貼り合わされる。粘着シート1において粘着剤層10は本発明の粘着剤層で構成されるため、活性エネルギー線照射前の粘着剤層10は、電子部品を受け取る際に優れた衝撃吸収性を有し、活性エネルギー線照射後の粘着剤層10は、電子部品を熱圧着により実装基板上に転写する際に優れた耐熱性を示すものである。 As shown in FIG. 1, the adhesive sheet 1 has a laminated structure in which a release liner R1, an adhesive layer 10, and a release liner R2 are laminated in this order. The adhesive sheet 1 is used in processing technology for mounting small electronic components such as semiconductor chips and LED chips on mounting substrates such as circuit boards. In the pressure-sensitive adhesive sheet 1, the pressure-sensitive adhesive layer 10 is composed of the pressure-sensitive adhesive layer of the present invention, and is preferably used for separating the electronic components placed on the temporary fixing material and receiving the separated electronic components. It is what is done. The release liner R1 is peeled off from the adhesive layer 10 before use and receives the electronic component with the exposed adhesive surface 10a. The adhesive surface 10b exposed by peeling off the release liner R2 is adhered to a base material constituting a transfer substrate, a carrier substrate, or the like. Since the pressure-sensitive adhesive layer 10 in the pressure-sensitive adhesive sheet 1 is composed of the pressure-sensitive adhesive layer of the present invention, the pressure-sensitive adhesive layer 10 before irradiation with active energy rays has excellent impact absorption when receiving electronic components, and the active energy The pressure-sensitive adhesive layer 10 after irradiation exhibits excellent heat resistance when electronic components are transferred onto a mounting substrate by thermocompression bonding.
 図2は、本発明の粘着剤層を有する粘着シートの他の一実施形態を示す断面模式図であり、2は粘着シート、20、21は粘着剤層、R1、R2ははく離ライナーを示す。 FIG. 2 is a schematic cross-sectional view showing another embodiment of the pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer of the present invention, wherein 2 is the pressure-sensitive adhesive sheet, 20 and 21 are pressure-sensitive adhesive layers, and R1 and R2 are release liners.
 図2に示すように、粘着シート2は、はく離ライナーR1と、粘着剤層20と、粘着剤層21と、はく離ライナーR2とが、この順で積層された積層構造を有する。粘着シート2は、半導体チップやLEDチップなどの小型の電子部品を回路基板などの実装基板に実装する加工技術に使用されるものである。粘着シート2において、粘着剤層20は本発明の粘着剤層で構成されるものであり、仮固定材に配置された電子部品を分離し、分離された前記電子部品を受け取るために好適に使用されるものである。粘着シート2において、粘着剤層21は、粘着剤層20と共に、電子部品を受け取る際の衝撃吸収性を調整しうるものである。粘着剤層21は、本発明の粘着剤層で構成されるものであってもよく、本発明の粘着剤層以外の粘着剤層で構成されるものであってもよい。はく離ライナーR1は、使用前に粘着剤層20から剥離され、露出した粘着面20aで電子部品を受け取るものである。はく離ライナーR2を剥離することにより露出する粘着面21bは、転写用基板を構成する基材、又はキャリア基板などに貼り合わされる。粘着シート2において粘着剤層20は本発明の粘着剤層で構成されるため、活性エネルギー線照射前の粘着剤層20は、電子部品を受け取る際に優れた衝撃吸収性を有し、活性エネルギー線照射後の粘着剤層20は、電子部品を熱圧着により実装基板上に転写する際に優れた耐熱性を示すものである。 As shown in FIG. 2, the adhesive sheet 2 has a laminated structure in which a release liner R1, an adhesive layer 20, an adhesive layer 21, and a release liner R2 are laminated in this order. The adhesive sheet 2 is used in processing technology for mounting small electronic components such as semiconductor chips and LED chips on mounting substrates such as circuit boards. In the pressure-sensitive adhesive sheet 2, the pressure-sensitive adhesive layer 20 is composed of the pressure-sensitive adhesive layer of the present invention, and is preferably used for separating the electronic components placed on the temporary fixing material and receiving the separated electronic components. It is what is done. In the pressure-sensitive adhesive sheet 2 , the pressure-sensitive adhesive layer 21 and the pressure-sensitive adhesive layer 20 are capable of adjusting the shock absorbing property when receiving electronic components. The adhesive layer 21 may be composed of the adhesive layer of the present invention, or may be composed of an adhesive layer other than the adhesive layer of the present invention. The release liner R1 is peeled off from the adhesive layer 20 before use and receives the electronic component with the exposed adhesive surface 20a. The adhesive surface 21b exposed by peeling off the release liner R2 is adhered to a base material constituting a transfer substrate, a carrier substrate, or the like. Since the pressure-sensitive adhesive layer 20 in the pressure-sensitive adhesive sheet 2 is composed of the pressure-sensitive adhesive layer of the present invention, the pressure-sensitive adhesive layer 20 before irradiation with active energy rays has excellent impact absorption when receiving electronic components, and the active energy The adhesive layer 20 after irradiation exhibits excellent heat resistance when the electronic component is transferred onto the mounting substrate by thermocompression bonding.
 図3は、本発明の粘着剤層を有する粘着シートの他の一実施形態を示す断面模式図であり、3は粘着シート、30は粘着剤層、S1は基材、R1ははく離ライナーを示す。 FIG. 3 is a schematic cross-sectional view showing another embodiment of the pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer of the present invention, wherein 3 is the pressure-sensitive adhesive sheet, 30 is the pressure-sensitive adhesive layer, S1 is the substrate, and R1 is the release liner. .
 図3に示すように、粘着シート3は、はく離ライナーR1と、粘着剤層30と、基材S1とが、この順に積層された積層構造を有する。粘着シート3は、半導体チップやLEDチップなどの小型の電子部品を回路基板などの実装基板に実装する加工技術に使用されるものである。粘着シート3において、粘着剤層30は本発明の粘着剤層で構成されるものであり、仮固定材に配置された電子部品を分離し、分離された前記電子部品を受け取るために好適に使用されるものである。粘着シート3において、基材S1は、電子部品を受け取る際の安定性や取り扱い性を向上させるものである。はく離ライナーR1は、使用前に粘着剤層30から剥離され、露出した粘着面30aで電子部品を受け取るものである。粘着シート3において粘着剤層30は本発明の粘着剤層で構成されるため、活性エネルギー線照射前の粘着剤層30は、電子部品を受け取る際に優れた衝撃吸収性を有し、活性エネルギー線照射後の粘着剤層30は、電子部品を熱圧着により実装基板上に転写する際に優れた耐熱性を示すものである。 As shown in FIG. 3, the adhesive sheet 3 has a laminated structure in which a release liner R1, an adhesive layer 30, and a substrate S1 are laminated in this order. The adhesive sheet 3 is used in processing technology for mounting small electronic components such as semiconductor chips and LED chips on mounting substrates such as circuit boards. In the pressure-sensitive adhesive sheet 3, the pressure-sensitive adhesive layer 30 is composed of the pressure-sensitive adhesive layer of the present invention. It is what is done. In the adhesive sheet 3, the base material S1 improves the stability and handleability when receiving electronic components. The release liner R1 is peeled off from the adhesive layer 30 before use and receives the electronic component with the exposed adhesive surface 30a. Since the pressure-sensitive adhesive layer 30 in the pressure-sensitive adhesive sheet 3 is composed of the pressure-sensitive adhesive layer of the present invention, the pressure-sensitive adhesive layer 30 before irradiation with active energy rays has excellent impact absorption when receiving electronic components, and the active energy The adhesive layer 30 after irradiation exhibits excellent heat resistance when transferring an electronic component onto a mounting substrate by thermocompression bonding.
 図4は、本発明の粘着剤層を有する粘着シートの他の一実施形態を示す断面模式図であり、4は粘着シート、40、41は粘着剤層、S1は基材、R1,R2ははく離ライナーを示す。 FIG. 4 is a schematic cross-sectional view showing another embodiment of a pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer of the present invention, wherein 4 is a pressure-sensitive adhesive sheet, 40 and 41 are pressure-sensitive adhesive layers, S1 is a substrate, and R1 and R2 are A release liner is shown.
 図4に示すように、粘着シート4は、はく離ライナーR1と、粘着剤層40と、基材S1と、粘着剤層41と、はく離ライナーR2が、この順で積層された積層構造を有する。粘着シート4は、半導体チップやLEDチップなどの小型の電子部品を回路基板などの実装基板に実装する加工技術に使用されるものである。粘着シート4において、粘着剤層40は本発明の粘着剤層で構成されるものであり、仮固定材に配置された電子部品を分離し、分離された前記電子部品を受け取るために好適に使用されるものである。粘着シート4において、基材S1は、電子部品を受け取る際の安定性や取り扱い性を向上させるものである。粘着シート4において、粘着剤層41は、粘着剤層40と共に、電子部品を受け取る際の衝撃吸収性を調整しうるものである。粘着剤層41は、本発明の粘着剤層で構成されるものであってもよく、本発明の粘着剤層以外の粘着剤層で構成されるものであってもよい。はく離ライナーR1は、使用前に粘着剤層40から剥離され、露出した粘着面40aで電子部品を受け取るものである。はく離ライナーR2を剥離することにより露出する粘着面41bは、転写用基板を構成する基材、又はキャリア基板などに貼り合わされる。粘着シート4において粘着剤層40は本発明の粘着剤層で構成されるため、活性エネルギー線照射前の粘着剤層40は、電子部品を受け取る際に優れた衝撃吸収性を有し、活性エネルギー線照射後の粘着剤層40は、電子部品を熱圧着により実装基板上に転写する際に優れた耐熱性を示すものである。
 以下、各構成について、説明する。
As shown in FIG. 4, the adhesive sheet 4 has a laminate structure in which a release liner R1, an adhesive layer 40, a substrate S1, an adhesive layer 41, and a release liner R2 are laminated in this order. The adhesive sheet 4 is used in processing technology for mounting small electronic components such as semiconductor chips and LED chips on mounting substrates such as circuit boards. In the pressure-sensitive adhesive sheet 4, the pressure-sensitive adhesive layer 40 is composed of the pressure-sensitive adhesive layer of the present invention. It is what is done. In the adhesive sheet 4, the base material S1 improves the stability and handleability when receiving electronic components. In the pressure-sensitive adhesive sheet 4, the pressure-sensitive adhesive layer 41 and the pressure-sensitive adhesive layer 40 can adjust the shock absorption when receiving the electronic component. The adhesive layer 41 may be composed of the adhesive layer of the present invention, or may be composed of an adhesive layer other than the adhesive layer of the present invention. The release liner R1 is peeled off from the adhesive layer 40 before use and receives the electronic component with the exposed adhesive surface 40a. The adhesive surface 41b exposed by peeling off the release liner R2 is adhered to a base material constituting a transfer substrate, a carrier substrate, or the like. Since the adhesive layer 40 in the adhesive sheet 4 is composed of the adhesive layer of the present invention, the adhesive layer 40 before the active energy ray irradiation has excellent impact absorption when receiving the electronic component, and the active energy The adhesive layer 40 after irradiation exhibits excellent heat resistance when transferring an electronic component onto a mounting substrate by thermocompression bonding.
Each configuration will be described below.
(本発明の粘着剤層)
 本発明の粘着剤層は、100kHz、25℃における貯蔵弾性率G'(100k)が、60MPa以下である。
 レーザートランスファー工程においては、光学的な時間スケールで電子部品の転写が完了するため、この時間スケールでの粘着剤の衝撃緩和特性が重要となる。具体的には、光学的な時間スケールとは、レーザー光を掃引する周波数と相関があり、例えば、100kHzなどである。時間スケールに換算するとおよそ10マイクロ秒であり、この時間スケールでの衝撃に対して粘着剤が応答して変形する必要がある。
(Adhesive layer of the present invention)
The pressure-sensitive adhesive layer of the present invention has a storage modulus G' (100k) at 100 kHz and 25°C of 60 MPa or less.
In the laser transfer process, the transfer of electronic parts is completed within an optical time scale, so the impact relaxation properties of the pressure-sensitive adhesive on this time scale are important. Specifically, the optical time scale is correlated with the sweeping frequency of the laser light, such as 100 kHz. When converted to a time scale, it is about 10 microseconds, and the adhesive needs to be deformed in response to the impact on this time scale.
 本発明の粘着剤層において、前記G'(100k)が、60MPa以下であるという構成は、光学的な時間スケールにおける粘着剤層の優れた衝撃吸収性を実現し、本発明の粘着剤層を転写用基板の衝撃吸収層として使用する際に、優れた転写性を付与できるという点で、好適である。光学的な時間スケールにおける粘着剤層のより優れた衝撃吸収性を実現できるという点で、前記G'(100k)は、30MPa以下がより好ましく、15MPa以下がさらに好ましく、10MPa以下であってもよい。また、受け取った電子部品の位置ずれを防止する観点から、前記G'(100k)は、0.03MPa以上が好ましく、0.05MPa以上がより好ましく、0.1MPa以上がさらに好ましい。 In the pressure-sensitive adhesive layer of the present invention, the configuration in which the G' (100k) is 60 MPa or less realizes excellent impact absorption of the pressure-sensitive adhesive layer on an optical time scale, and the pressure-sensitive adhesive layer of the present invention is achieved. It is suitable in that excellent transferability can be imparted when used as an impact absorption layer of a transfer substrate. The G'(100k) is more preferably 30 MPa or less, still more preferably 15 MPa or less, and may be 10 MPa or less in terms of realizing better impact absorption of the pressure-sensitive adhesive layer on an optical time scale. . Moreover, from the viewpoint of preventing misalignment of received electronic components, the G'(100k) is preferably 0.03 MPa or more, more preferably 0.05 MPa or more, and even more preferably 0.1 MPa or more.
 本発明の粘着剤層は、100kHz、25℃におけるtanδ(100k)は、1以上であることが好ましい。tanδ(損失係数)は、損失弾性率(G”)と貯蔵弾性率(G')の比(G”/G')で表される粘弾性の指標の1つであり、高いと粘性が高く塑性変形しやすく、低いと弾性が高いと言える。本発明の粘着剤層において、tanδ(100k)が1以上であるという構成は、光学的な時間スケールにおける粘着剤層の優れた衝撃吸収性を実現し、本発明の粘着剤層を転写用基板の衝撃吸収層として使用する際に、優れた転写性を付与できるという点で、好適である。光学的な時間スケールにおける粘着剤層のより優れた衝撃吸収性を実現できるという点で、前記tanδ(100k)は、1.1以上が好ましく、1.2以上がより好ましい。また、受け取った電子部品の位置ずれを防止する観点から、前記tanδ(100k)は、3以下が好ましく、2以下であってもよい。 The adhesive layer of the present invention preferably has a tan δ (100k) of 1 or more at 100kHz and 25°C. Tan δ (loss factor) is one of the indicators of viscoelasticity represented by the ratio (G″/G′) of loss elastic modulus (G″) to storage elastic modulus (G′). It can be said that it is easy to plastically deform, and if it is low, it has high elasticity. In the pressure-sensitive adhesive layer of the present invention, the configuration in which tan δ (100k) is 1 or more realizes excellent impact absorption of the pressure-sensitive adhesive layer on an optical time scale, and the pressure-sensitive adhesive layer of the present invention is used as a substrate for transfer. It is suitable in that excellent transferability can be imparted when used as an impact absorbing layer. The tan δ (100k) is preferably 1.1 or more, more preferably 1.2 or more, in terms of achieving better impact absorption of the pressure-sensitive adhesive layer on an optical time scale. Moreover, from the viewpoint of preventing misalignment of received electronic components, the tan δ (100k) is preferably 3 or less, and may be 2 or less.
 本発明の粘着剤層において、前記G'(100k)、tanδ(100k)は、活性エネルギー線照射前の粘着剤層の貯蔵弾性率、損失係数を示すものとする。本明細書において、「活性エネルギー線照射」というときは、特に言及しない限り、後掲の実施例における「紫外線照射」を意味するものとし、具体的には、8280mJ/cm2の紫外線照射である。 In the pressure-sensitive adhesive layer of the present invention, G'(100k) and tan δ(100k) represent the storage elastic modulus and loss factor of the pressure-sensitive adhesive layer before irradiation with active energy rays. In the present specification, the term "activation energy ray irradiation" means "ultraviolet irradiation" in the examples described later, unless otherwise specified, and specifically, 8280 mJ/cm 2 of ultraviolet irradiation. .
 上記G'(100k)、及びtanδ(100k)は、具体的には、後掲の実施例に記載の動的粘弾性測定により測定されるものであり、本発明の粘着剤層を構成する樹脂組成物(本発明の樹脂組成物)の種類や組成(モノマー組成)、後掲の活性エネルギー線硬化型化合物の種類や量、架橋剤の種類や量などにより調整することができる。 The above G' (100k) and tan δ (100k) are specifically measured by dynamic viscoelasticity measurement described in Examples below, and the resin constituting the pressure-sensitive adhesive layer of the present invention It can be adjusted by the type and composition (monomer composition) of the composition (the resin composition of the present invention), the type and amount of the active energy ray-curable compound described later, the type and amount of the cross-linking agent, and the like.
 本発明の粘着剤層の活性エネルギー線照射前のゲル分率G0(%)に対する、活性エネルギー線照射後のゲル分率G1(%)の比(G1/G0)は、1.1以上であることが好ましい。前記G1/G0が1.1以上であるという構成は、活性エネルギー線照射前においては、本発明の粘着剤層が優れた衝撃吸収性を示し、活性エネルギー線照射後においては、活性エネルギー線硬化型化合物の反応による架橋構造形成により、本発明の粘着剤層の弾性率が向上し、実装基板に電子部品を転写する際の熱圧着においても、膨張やアウトガスの発生を抑制できる優れた耐熱性を示す点で、好適である。活性エネルギー線照射前の衝撃吸収性と、活性エネルギー線照射後の耐熱性とをより高いレベルで両立できるという点で、前記G1/G0は、1.15以上がより好ましく、1.2以上がさらに好ましく、1.3以上であってもよい。前記G1/G0の上限は、上限は特に限定はなく、高いほど好ましいが、活性エネルギー線照射前の特性(例えば電子部品の位置ずれ)への影響を考慮して、10000以下、1000以下、又は100以下であってもよい。 The ratio (G 1 /G 0 ) of the gel fraction G 1 (%) after active energy ray irradiation to the gel fraction G 0 (%) before active energy ray irradiation of the pressure-sensitive adhesive layer of the present invention is 1. It is preferably 1 or more. In the configuration in which the G 1 /G 0 is 1.1 or more, the pressure-sensitive adhesive layer of the present invention exhibits excellent impact absorption before active energy ray irradiation, and after active energy ray irradiation, the active energy The elastic modulus of the pressure-sensitive adhesive layer of the present invention is improved by forming a crosslinked structure through the reaction of the ray-curable compound, and even in thermocompression bonding when transferring electronic parts to a mounting substrate, expansion and outgassing can be suppressed. It is suitable in that it exhibits heat resistance. The G 1 /G 0 is more preferably 1.15 or more, and 1.2 in terms of achieving a higher level of both the impact absorption property before the active energy ray irradiation and the heat resistance after the active energy ray irradiation. More preferably, it may be 1.3 or more. The upper limit of G 1 /G 0 is not particularly limited, and the higher the better. , or 100 or less.
 本発明の粘着剤層の活性エネルギー線照射前のゲル分率G0(%)は、粘着剤層の優れた衝撃吸収性を実現し、本発明の粘着剤層を転写用基板の衝撃吸収層として使用する際に、優れた転写性を付与できるという点で、85%以下が好ましく、80%以下がより好ましい。また、受け取った電子部品の位置ずれを防止する観点から、前記G0(%)は、10%以上が好ましく、20%以上であってもよい。 The gel fraction G 0 (%) of the pressure-sensitive adhesive layer of the present invention before active energy ray irradiation realizes excellent impact absorption of the pressure-sensitive adhesive layer, and the pressure-sensitive adhesive layer of the present invention is used as the impact absorption layer of the transfer substrate. 85% or less is preferable, and 80% or less is more preferable in terms of being able to impart excellent transferability when used as. Moreover, from the viewpoint of preventing misalignment of received electronic components, the G 0 (%) is preferably 10% or more, and may be 20% or more.
 本発明の粘着剤層の活性エネルギー線照射後のゲル分率G1(%)は、実装基板に電子部品を転写する際の熱圧着においても、膨張やアウトガスの発生を抑制できる優れた耐熱性を示す点で、90%以上が好ましく、93%以上がより好ましい。ゲル分率G1(%)の上限値は、高いほど好ましく、特に限定されないが、例えば、100%未満であってもよい。 The gel fraction G 1 (%) of the pressure-sensitive adhesive layer of the present invention after irradiation with active energy rays is excellent heat resistance that can suppress expansion and outgassing even in thermocompression bonding when transferring electronic parts to a mounting substrate. is preferably 90% or more, more preferably 93% or more. The upper limit of the gel fraction G 1 (%) is preferably as high as possible and is not particularly limited, but may be, for example, less than 100%.
 上記ゲル分率G0、G1、及びその比G1/G0は、具体的には、後掲の実施例に記載のゲル分率測定により測定されるものであり、本発明の粘着剤層を構成する樹脂組成物(本発明の樹脂組成物)の種類や組成(モノマー組成)、後掲の活性エネルギー線硬化型化合物の種類や量、架橋剤の種類や量などにより調整することができる。 The gel fractions G 0 , G 1 and the ratio G 1 /G 0 thereof are specifically measured by the gel fraction measurement described in Examples below, and the adhesive of the present invention It can be adjusted by the type and composition (monomer composition) of the resin composition (the resin composition of the present invention) constituting the layer, the type and amount of the active energy ray-curable compound described later, the type and amount of the cross-linking agent, and the like. can.
 本発明の粘着剤層の活性エネルギー線照射後の200~210℃における線膨張係数α(200~210)は、500×10-5/K以下であることが好ましい。前記α(200~210)が500×10-5/K以下であるという構成は、活性エネルギー線照射後において、本発明の粘着剤層が活性エネルギー線硬化型化合物による架橋構造形成により弾性率が向上し、実装基板に電子部品を転写する際の熱圧着において、膨張の発生を抑制できる優れた耐熱性を示し、粘着剤層の線膨張による電子部品の位置精度の低下を防止できる点で、好ましい。より優れた耐熱性示し、粘着剤層の線膨張による電子部品の位置精度の低下をより高いレベルで防止できるという観点から、前記α(200~210)は、250×10-5/K以下がより好ましく、150×10-5/K以下がさらに好ましい。前記α(200~210)の下限値は、特に限定されず、低いほど好ましいが、1×10-5/K以上であってもよい。 The linear expansion coefficient α (200 to 210) at 200 to 210° C. of the adhesive layer of the present invention after irradiation with active energy rays is preferably 500×10 −5 /K or less. The configuration in which the α (200 to 210) is 500 × 10 -5 /K or less is such that the elastic modulus of the pressure-sensitive adhesive layer of the present invention increases due to the formation of a crosslinked structure by the active energy ray-curable compound after irradiation with an active energy ray. It exhibits excellent heat resistance that can suppress the occurrence of expansion during thermocompression bonding when electronic components are transferred to a mounting substrate, and can prevent the positional accuracy of electronic components from declining due to linear expansion of the adhesive layer. preferable. From the viewpoint of exhibiting better heat resistance and being able to prevent the deterioration of the positional accuracy of electronic components due to the linear expansion of the adhesive layer at a higher level, the α (200 to 210) is 250 × 10 -5 /K or less. More preferably, it is 150×10 −5 /K or less. The lower limit of α (200 to 210) is not particularly limited, and the lower the better, but it may be 1×10 −5 /K or more.
 本発明の粘着剤層の活性エネルギー線照射後の260~270℃における線膨張係数α(260~270)が、500×10-5/K以下であることが好ましい。前記α(260~270)が500×10-5/K以下であるという構成は、活性エネルギー線照射後において、本発明の粘着剤層が活性エネルギー線硬化型化合物による架橋構造形成により弾性率が向上し、特に、実装基板に電子部品をバンプを介して転写する際に、接続信頼性を向上させるために250℃を超える高温で熱圧着する場合においても、膨張の発生を抑制できる優れた耐熱性を示し、粘着剤層の線膨張による電子部品の位置精度の低下を防止できる点で、好ましい。高温においてより優れた耐熱性示し、粘着剤層の線膨張による電子部品のバンプの位置精度の低下をより高いレベルで防止できるという観点から、前記α(260~270)は、350×10-5/K以下がより好ましく、200×10-5/K以下がさらに好ましい。前記α(260~270)の下限値は、特に限定されず、低いほど好ましいが、1×10-5/K以上であってもよい。 The linear expansion coefficient α (260-270) at 260-270° C. of the pressure-sensitive adhesive layer of the present invention after irradiation with active energy rays is preferably 500×10 −5 /K or less. The configuration in which the α (260 to 270) is 500×10 −5 /K or less is such that the elastic modulus of the pressure-sensitive adhesive layer of the present invention increases due to the formation of a crosslinked structure by the active energy ray-curable compound after irradiation with an active energy ray. In particular, when electronic components are transferred to a mounting substrate via bumps, even when thermocompression bonding is performed at a high temperature exceeding 250 ° C. in order to improve connection reliability, it has excellent heat resistance that can suppress the occurrence of expansion. It is preferable in that it exhibits good properties and prevents the positional accuracy of the electronic component from being lowered due to the linear expansion of the pressure-sensitive adhesive layer. From the viewpoint of exhibiting superior heat resistance at high temperatures and being able to prevent a higher level of deterioration in positional accuracy of bumps of electronic parts due to linear expansion of the adhesive layer, the α (260 to 270) is 350 × 10 -5 /K or less is more preferable, and 200×10 −5 /K or less is even more preferable. The lower limit of α (260 to 270) is not particularly limited, and the lower the better, but it may be 1×10 −5 /K or more.
 上記α(200~210)、及びα(260~270)は、JIS K 7197に準拠して、具体的には、後掲の実施例に記載の線膨張係数測定により測定されるものであり、本発明の粘着剤層を構成する樹脂組成物(本発明の樹脂組成物)の種類や組成(モノマー組成)、後掲の活性エネルギー線硬化型化合物の種類や量、架橋剤の種類や量、粘着剤層の厚みなどにより調整することができる。 The above α (200 to 210) and α (260 to 270) are measured in accordance with JIS K 7197, specifically by measuring the coefficient of linear expansion described in the Examples below, The type and composition (monomer composition) of the resin composition constituting the pressure-sensitive adhesive layer of the present invention (the resin composition of the present invention), the type and amount of the active energy ray-curable compound described later, the type and amount of the cross-linking agent, It can be adjusted by the thickness of the pressure-sensitive adhesive layer.
 本発明の粘着剤層の活性エネルギー線照射後の200℃における引張弾性率E'(200)は、0.3MPa以上であることが好ましい。前記E'(200)が0.3MPa以上であるという構成は、活性エネルギー線照射後において、本発明の粘着剤層が活性エネルギー線硬化型化合物による架橋構造形成により弾性率が向上し、実装基板に電子部品を転写する際の熱圧着において、膨張やアウトガスの発生を抑制できる優れた耐熱性を示し、電子部品の位置精度の低下による接続信頼性の低下を防止できる点で、好適である。より優れた耐熱性示し、粘着剤層の膨張、アウトガス発生による電子部品の位置精度の低下をより高いレベルで防止できるという観点から、前記E'(200)は、0.5MPa以上がより好ましく、0.9MPa以上がさらに好ましい。前記E'(200)の上限は、特に限定はなく、高いほど好ましいが、高温下においても、被着体(被加工体)の位置ずれを防止することができ、かつ適度な粘着性を有するために、例えば1000MPa以下であってもよい。 The tensile elastic modulus E'(200) at 200°C after the active energy ray irradiation of the pressure-sensitive adhesive layer of the present invention is preferably 0.3 MPa or more. In the configuration that the E′(200) is 0.3 MPa or more, the elastic modulus of the pressure-sensitive adhesive layer of the present invention is improved by forming a crosslinked structure with the active energy ray-curable compound after irradiation with the active energy ray, and the mounting substrate It exhibits excellent heat resistance that can suppress expansion and outgassing in thermocompression bonding when transferring electronic parts to , and is suitable in that it can prevent deterioration of connection reliability due to deterioration of positional accuracy of electronic parts. E′(200) is more preferably 0.5 MPa or more from the viewpoint of exhibiting better heat resistance and being able to prevent a higher level of deterioration in positional accuracy of electronic components due to expansion of the adhesive layer and generation of outgassing. 0.9 MPa or more is more preferable. The upper limit of E′ (200) is not particularly limited, and the higher the better. Therefore, it may be, for example, 1000 MPa or less.
 本発明の粘着剤層の活性エネルギー線照射後の260℃における引張弾性率E'(260)は、0.05MPa以上であることが好ましい。引張弾性率E'(260)が0.05MPa以上であるという構成は、活性エネルギー線照射後において、本発明の粘着剤層が活性エネルギー線硬化型化合物による架橋構造形成により弾性率が向上し、特に、実装基板に電子部品をバンプを介して転写する際に、接続信頼性を向上させるために250℃を超える高温で熱圧着する場合においても、膨張やアウトガスの発生を抑制できる優れた耐熱性を示し、電子部品の位置精度の低下による接続信頼性の低下を防止できる点で、好適である。高温においてより優れた耐熱性示し、粘着剤層の膨張、アウトガス発生による電子部品のバンプの位置精度の低下をより高いレベルで防止できるという観点から、前記E'(260)は、0.1MPa以上がより好ましく、0.5MPa以上がさらに好ましい。前記E'(260)の上限は、特に限定はなく、高いほど好ましいが、高温下においても、被着体(被加工体)の位置ずれを防止することができ、かつ適度な粘着性を有するために、例えば1000MPa以下であってもよい。 The tensile elastic modulus E'(260) at 260°C of the pressure-sensitive adhesive layer of the present invention after irradiation with active energy rays is preferably 0.05 MPa or more. The configuration in which the tensile elastic modulus E′ (260) is 0.05 MPa or more is such that the elastic modulus of the pressure-sensitive adhesive layer of the present invention is improved by forming a crosslinked structure with the active energy ray-curable compound after irradiation with active energy rays, In particular, when electronic components are transferred to a mounting substrate via bumps, even when thermocompression bonding is performed at a high temperature exceeding 250°C to improve connection reliability, it has excellent heat resistance that can suppress expansion and outgassing. , and is suitable in that it is possible to prevent a decrease in connection reliability due to a decrease in the positional accuracy of electronic components. E′(260) is 0.1 MPa or more from the viewpoint of exhibiting superior heat resistance at high temperatures and being able to prevent a higher level of deterioration in the positional accuracy of the bumps of the electronic component due to expansion of the adhesive layer and generation of outgassing. is more preferable, and 0.5 MPa or more is even more preferable. The upper limit of E′ (260) is not particularly limited, and the higher the better. Therefore, it may be, for example, 1000 MPa or less.
 上記E'(200)、及びE'(260)は、具体的には、後掲の実施例に記載の引張弾性試験測定により測定されるものであり、本発明の粘着剤層を構成する樹脂組成物(本発明の樹脂組成物)の種類や組成(モノマー組成)、後掲の活性エネルギー線硬化型化合物の種類や量、架橋剤の種類や量、粘着剤層の厚みなどにより調整することができる。 The above E'(200) and E'(260) are specifically measured by the tensile elasticity test measurement described in the examples below, and the resin constituting the pressure-sensitive adhesive layer of the present invention The type and composition (monomer composition) of the composition (the resin composition of the present invention), the type and amount of the active energy ray-curable compound described later, the type and amount of the cross-linking agent, the thickness of the pressure-sensitive adhesive layer, etc. can be adjusted. can be done.
 活性エネルギー線照射前の本発明の粘着剤層に対する下記条件の熱機械分析(TMA)による沈み込み深さの前記粘着剤層の厚さに対する割合(沈み込み深さ/厚さ×100)は5%以上であることが好ましい。
・熱機械分析(TMA)
 プローブ直径:1.0mm
 モード:針入モード
 押し込み荷重:0.05N
 測定雰囲気温度:-40℃
 押し込み負荷時間:20分
The ratio of the sinking depth to the thickness of the adhesive layer (sinking depth/thickness x 100) by thermomechanical analysis (TMA) under the following conditions for the adhesive layer of the present invention before irradiation with active energy rays is 5. % or more.
・Thermo-mechanical analysis (TMA)
Probe diameter: 1.0mm
Mode: Penetration mode Pushing load: 0.05N
Measurement ambient temperature: -40°C
Indentation load time: 20 minutes
 光学的な時間スケールにおいて、100kHzの周波数領域の粘着剤物性は、温度時間換算則より-40℃の低温領域での粘着剤物性に相当するため、この温度域で粘着剤に荷重を掛けたときの変形量が大きいほど衝撃緩和特性が優れていることを意味する。例えば、熱機械分析(TMA)で-40℃において粘着剤層に荷重を掛けた際の上記割合(沈み込み深さ/厚さ×100)を衝撃緩和特性の指標として用いることが出来る。
 -40℃での熱機械分析(TMA)における上記割合(沈み込み深さ/厚さ×100)が5%以上であるという構成は、電子部品の衝突による衝撃を十分に吸収でき、電子部品を損傷や位置ずれなく受け取ることができる点で好ましい。電子部品の衝突による衝撃を十分に吸収できる点から、当該割合は、10%以上がより好ましく、30%以上がさらに好ましく、50%以上が特に好ましい。受け取った電子部品の実装基板への転写性の観点から、上記割合は、95%以下が好ましく、90%以下であってもよい。
On the optical time scale, the physical properties of the adhesive in the frequency range of 100 kHz correspond to the physical properties of the adhesive in the low temperature range of -40°C according to the temperature-time conversion rule, so when a load is applied to the adhesive in this temperature range It means that the larger the amount of deformation, the better the impact relaxation property. For example, the above ratio (sinking depth/thickness×100) when a load is applied to the pressure-sensitive adhesive layer at −40° C. by thermomechanical analysis (TMA) can be used as an index of impact relaxation properties.
The configuration in which the above ratio (sinking depth/thickness × 100) in thermomechanical analysis (TMA) at -40 ° C. is 5% or more can sufficiently absorb the impact caused by the collision of the electronic component, and the electronic component It is preferable in that it can be received without damage or misalignment. In order to sufficiently absorb the impact caused by the collision of electronic parts, the ratio is more preferably 10% or more, further preferably 30% or more, and particularly preferably 50% or more. From the viewpoint of transferability of received electronic components to a mounting board, the above ratio is preferably 95% or less, and may be 90% or less.
 上記割合(沈み込み深さ/厚さ×100)は、具体的には、後掲の実施例に記載の方法により測定されるものであり、本発明の粘着剤層を構成する樹脂組成物(本発明の樹脂組成物)の種類や組成(モノマー組成)、後掲の活性エネルギー線硬化型化合物の種類や量、架橋剤の種類や量、粘着剤層の厚みなどにより調整することができる。 The ratio (sinking depth/thickness x 100) is specifically measured by the method described in Examples below, and the resin composition ( The resin composition of the present invention) can be adjusted by the type and composition (monomer composition), the type and amount of the active energy ray-curable compound described later, the type and amount of the cross-linking agent, the thickness of the pressure-sensitive adhesive layer, and the like.
 活性エネルギー線照射後の本発明の粘着剤層の5%重量減少温度(Td5)は、340℃以上であることが好ましい。前記Td5が340℃以上であるという構成は、活性エネルギー線照射後において、本発明の粘着剤層が活性エネルギー線硬化型化合物による架橋構造形成により弾性率が向上し、実装基板に電子部品を転写する際の熱圧着において、アウトガスの発生を抑制できる優れた耐熱性を示し、粘着剤層のアウトガス発生による電子部品の位置精度の低下を防止できる点で、好ましい。より優れた耐熱性示し、粘着剤層のアウトガス発生による電子部品の位置精度の低下をより高いレベルで防止できるという観点から、前記Td5は、345℃以上がより好ましく、350℃以上がさらに好ましい。前記Td5の上限は、特に限定されず、高いほど好ましいが500℃以下であってもよい。 The 5% weight loss temperature (T d5 ) of the pressure-sensitive adhesive layer of the present invention after irradiation with active energy rays is preferably 340° C. or higher. In the configuration that the T d5 is 340° C. or more, the elastic modulus of the pressure-sensitive adhesive layer of the present invention is improved by forming a crosslinked structure by the active energy ray-curable compound after irradiation with active energy rays, and electronic components are attached to the mounting substrate. In thermocompression bonding at the time of transfer, it exhibits excellent heat resistance capable of suppressing the generation of outgassing, and is preferable in that it is possible to prevent deterioration in the positional accuracy of electronic components due to the generation of outgassing from the pressure-sensitive adhesive layer. T d5 is more preferably 345° C. or higher, even more preferably 350° C. or higher, from the viewpoint of exhibiting better heat resistance and being able to prevent a higher level of deterioration in positional accuracy of electronic components due to outgassing of the pressure-sensitive adhesive layer. . The upper limit of T d5 is not particularly limited, and although it is preferably as high as possible, it may be 500° C. or less.
 上記エネルギー線照射後の本発明の粘着剤層の5%重量減少温度(Td5)は、具体的には、後掲の実施例に記載の方法により測定されるものであり、本発明の粘着剤層を構成する樹脂組成物(本発明の樹脂組成物)の種類や組成(モノマー組成)、後掲の活性エネルギー線硬化型化合物の種類や量、架橋剤の種類や量、粘着剤層の厚みなどにより調整することができる。 The 5% weight loss temperature (T d5 ) of the pressure-sensitive adhesive layer of the present invention after irradiation with the energy beam is specifically measured by the method described in Examples below. The type and composition (monomer composition) of the resin composition (the resin composition of the present invention) constituting the agent layer, the type and amount of the active energy ray-curable compound described later, the type and amount of the cross-linking agent, and the pressure-sensitive adhesive layer. It can be adjusted by thickness or the like.
 本発明の粘着剤層の厚みは1μm以上500μm以下であることが好ましい。本発明の粘着剤層の厚みが1μm以上であるという構成は、電子部品の衝突による衝撃吸収性に優れるという点で好ましい。電子部品の衝突による衝撃吸収性の観点から、本発明の粘着剤層の厚みは5μm以上が好ましく、10μm以上、20μm以上、又は30μm以上であってもよい。本発明の粘着剤層の厚みが500μm以下であるという構成は、電子部品の実装基板へ転写する際の転写性の観点から好ましく、400μm以下、又は300μm以下であってもよい。なお、本発明の粘着剤層が、別の粘着剤層との積層構造である場合、前記粘着剤層の厚みは、積層構造全体の厚みである。 The thickness of the adhesive layer of the present invention is preferably 1 μm or more and 500 μm or less. The configuration in which the thickness of the pressure-sensitive adhesive layer of the present invention is 1 μm or more is preferable from the viewpoint of excellent shock absorbing properties due to collision of electronic parts. From the viewpoint of impact absorption due to collision of electronic parts, the thickness of the pressure-sensitive adhesive layer of the present invention is preferably 5 μm or more, and may be 10 μm or more, 20 μm or more, or 30 μm or more. The configuration in which the thickness of the pressure-sensitive adhesive layer of the present invention is 500 μm or less is preferable from the viewpoint of transferability when transferring to a mounting substrate for electronic components, and may be 400 μm or less or 300 μm or less. When the pressure-sensitive adhesive layer of the present invention has a laminated structure with another pressure-sensitive adhesive layer, the thickness of the pressure-sensitive adhesive layer is the thickness of the entire laminated structure.
 本発明の粘着剤層が、別の粘着剤層との積層構造である場合、別の粘着剤層を含まない本発明の粘着剤層の厚みは、1μm以上450μm以下であることが好ましい。本発明の粘着剤層の厚みが1μm以上であるという構成は、、電子部品の衝突による衝撃吸収性に優れるという点で好ましく、2μm以上が好ましく、5μm以上がより好ましい。また、本発明の粘着剤層の厚みが450μm以下であるという構成は、電子部品の実装基板へ転写する際の転写性の観点から好ましく、350μm以下、250μm以下であってもよい。 When the pressure-sensitive adhesive layer of the present invention has a laminated structure with another pressure-sensitive adhesive layer, the thickness of the pressure-sensitive adhesive layer of the present invention that does not include another pressure-sensitive adhesive layer is preferably 1 μm or more and 450 μm or less. The configuration in which the thickness of the pressure-sensitive adhesive layer of the present invention is 1 μm or more is preferable from the viewpoint of excellent shock absorbing properties due to collision of electronic parts, and is preferably 2 μm or more, and more preferably 5 μm or more. In addition, the configuration in which the thickness of the pressure-sensitive adhesive layer of the present invention is 450 μm or less is preferable from the viewpoint of transferability when transferring to a mounting board for electronic components, and may be 350 μm or less or 250 μm or less.
 本発明の活性エネルギー線照射前の粘着剤層の常温におけるプローブタック値は、7N/cm2以上42N/cm2以下であることが好ましい。前記プローブタック値が10N/cm2以上という構成は、電子部品などの粘着剤層への衝突による衝撃を十分に吸収でき、衝突時の電子部品の跳ねによる位置ずれや裏返りなどを抑制できる点で好ましい。電子部品の位置ずれや裏返りを抑制できる点で、上記プローブタック値は、9N/cm2以上が好ましく、11N/cm2以上、又は13N/cm2以上であってもよい。また、前記プローブタック値が42N/cm2以下であるという構成は、受け取った電子部品への粘着剤の固着、糊残りを防ぐ観点から好ましく、40N/cm2以下、又は35N/cm2以下であってもよい。 The probe tack value at normal temperature of the pressure-sensitive adhesive layer before irradiation with active energy rays of the present invention is preferably 7 N/cm 2 or more and 42 N/cm 2 or less. The configuration in which the probe tack value is 10 N/cm 2 or more can sufficiently absorb the impact caused by the collision of the electronic component or the like with the adhesive layer, and can suppress the displacement or turning inside out due to the bounce of the electronic component at the time of collision. preferable. The probe tack value is preferably 9 N/cm 2 or more, and may be 11 N/cm 2 or more, or 13 N/cm 2 or more, in order to suppress misalignment or turning over of the electronic component. In addition, the configuration that the probe tack value is 42 N/cm 2 or less is preferable from the viewpoint of preventing adhesion of the adhesive to the received electronic component and adhesive residue, and is 40 N/cm 2 or less, or 35 N/cm 2 or less. There may be.
 上記プローブタック値は、プローブタック測定機(例えば、RHESCA社製、商品名「TACKINESS Model TAC-II」)を用いて測定されるものであり、本発明の粘着剤層を構成する樹脂組成物(本発明の樹脂組成物)の種類や組成(モノマー組成)、後掲の活性エネルギー線硬化型化合物の種類や量、架橋剤の種類や量、粘着剤層の厚みなどにより調整することができる。 The probe tack value is measured using a probe tack measuring machine (for example, manufactured by RHESCA, trade name "TACKINESS Model TAC-II"), and the resin composition ( The resin composition of the present invention) can be adjusted by the type and composition (monomer composition), the type and amount of the active energy ray-curable compound described later, the type and amount of the cross-linking agent, the thickness of the pressure-sensitive adhesive layer, and the like.
 本発明の粘着剤層の活性エネルギー線照射後のステンレスに対する常温での粘着力は、0.01N/20mm以上4.2N/20mm以下であることが好ましい。前記活性エネルギー線照射後の粘着剤層のステンレスに対する常温での粘着力が0.01N/20mm以上であるという構成は、次の工程などへ搬送する際に受け取った電子部品の位置ずれを抑制し保持する点で好ましく、前記粘着力は、0.03N/20mm以上がより好ましく、0.05N/20mm以上であってもよい。前記活性エネルギー線照射後の粘着剤層のステンレスに対する常温での粘着力が4.2N/20mm以下であるという構成は、受け取った電子部品の実装基板への転写性の観点から好ましく、3.0N/20mm以下、又は2.0N/20mm以下であってもよい。 The adhesive strength of the pressure-sensitive adhesive layer of the present invention to stainless steel after irradiation with active energy rays at room temperature is preferably 0.01 N/20 mm or more and 4.2 N/20 mm or less. The configuration in which the adhesive strength of the adhesive layer to stainless steel after irradiation with the active energy ray is 0.01 N/20 mm or more at room temperature suppresses misalignment of received electronic components when transporting them to the next step. It is preferable in terms of retention, and the adhesive strength is more preferably 0.03 N/20 mm or more, and may be 0.05 N/20 mm or more. The configuration in which the adhesive strength of the adhesive layer to stainless steel after irradiation with the active energy ray is 4.2 N/20 mm or less at normal temperature is preferable from the viewpoint of transferability to the mounting board of the received electronic component, and is 3.0 N. /20 mm or less, or 2.0 N/20 mm or less.
 本発明の粘着剤層の活性エネルギー線照射後のステンレスに対する常温での粘着力は、1N/20mm以下であることがより好ましい。粘着剤層の活性エネルギー線照射後のステンレスに対する常温での粘着力が1N/20mm以下であるという構成は、受け取った電子部品の実装基板への転写性を向上させ、電子部品の糊残りを抑制することができる観点から好ましく、0.75N/20mm以下、または0.5N/20mm以下であってもよい。また、活性エネルギー線照射後の粘着剤層のステンレスに対する常温での粘着力は、0.001N/20mm以上、又は0.005N/20mm以上であってもよい。 The adhesive strength of the pressure-sensitive adhesive layer of the present invention to stainless steel at room temperature after irradiation with active energy rays is more preferably 1 N/20 mm or less. The adhesive layer has an adhesive strength of 1 N/20 mm or less at room temperature to stainless steel after irradiation with active energy rays, which improves the transferability of received electronic components to a mounting substrate and suppresses adhesive residue on electronic components. 0.75 N/20 mm or less, or 0.5 N/20 mm or less. In addition, the adhesive strength of the pressure-sensitive adhesive layer to stainless steel after irradiation with active energy rays at room temperature may be 0.001 N/20 mm or more, or 0.005 N/20 mm or more.
 本発明の粘着剤層のステンレスに対する常温での活性エネルギー線照射前の粘着力は、0.01N/20mm以上であることが好ましい。活性エネルギー線照射前の前記粘着剤層の粘着力が0.01N/20mm以上であるという構成は、衝突時の電子部品の跳ねによる位置ずれや裏返りなどを抑制できる点で好ましい。電子部品の位置ずれや裏返りを抑制できる点で、前記活性エネルギー線照射前の粘着剤層の粘着力が0.02N/20mm以上がより好ましく、0.03N/20mm以上であってもよい。前記活性エネルギー線照射前の粘着剤層の粘着力の上限は、特に限定されないが、20N/20mm以下、18N/20mm以下、又は、15N/20mm以下であってもよい。 The adhesive strength of the pressure-sensitive adhesive layer of the present invention to stainless steel at normal temperature before irradiation with active energy rays is preferably 0.01 N/20 mm or more. A configuration in which the adhesive layer has an adhesive strength of 0.01 N/20 mm or more before irradiation with an active energy ray is preferable in terms of suppressing displacement and turning inside out due to splashing of electronic parts upon collision. The adhesive strength of the adhesive layer before irradiation with the active energy ray is more preferably 0.02 N/20 mm or more, and may be 0.03 N/20 mm or more, in order to suppress misalignment and turning over of the electronic component. The upper limit of the adhesive strength of the adhesive layer before the active energy ray irradiation is not particularly limited, but may be 20 N/20 mm or less, 18 N/20 mm or less, or 15 N/20 mm or less.
 上記粘着力は、例えば、JIS Z 0237などに準拠して測定されるものであり、本発明の粘着剤層を構成する樹脂組成物(本発明の樹脂組成物)の種類や組成(モノマー組成)、後掲の活性エネルギー線硬化型化合物の種類や量、架橋剤の種類や量、粘着剤層の厚みなどにより調整することができる。 The adhesive strength is measured, for example, in accordance with JIS Z 0237, etc., and the type and composition (monomer composition) of the resin composition (the resin composition of the present invention) constituting the adhesive layer of the present invention. , the type and amount of the active energy ray-curable compound described later, the type and amount of the cross-linking agent, the thickness of the pressure-sensitive adhesive layer, and the like.
 本発明の活性エネルギー線照射前の粘着剤層において、後掲の落球試験における衝撃吸収率(%)は、10%以上が好ましく、より好ましくは15%以上であり、20%以上、25%以上、30%以上、35%以上、又は40%以上であってもよい。 In the pressure-sensitive adhesive layer of the present invention before active energy ray irradiation, the impact absorption rate (%) in the falling ball test described later is preferably 10% or more, more preferably 15% or more, 20% or more, 25% or more. , 30% or more, 35% or more, or 40% or more.
 また、後掲の落球試験における、活性エネルギー線照射前の粘着剤層の厚みに対する粘着剤層の沈み込み深さの割合(落球試験後の粘着剤沈み込み深さ/厚み×100)は、7%以上が好ましく、より好ましくは10%以上であり、15%以上、20%以上、25%以上、又は30%以上であってもよい。 In the falling ball test described later, the ratio of the depth of subduction of the adhesive layer to the thickness of the adhesive layer before irradiation with active energy rays (depth of subduction of the adhesive after the falling ball test/thickness x 100) was 7. % or more, more preferably 10% or more, and may be 15% or more, 20% or more, 25% or more, or 30% or more.
 前記割合(沈み込み深さ/厚み×100)が、7%以上であるという構成は、活性エネルギー線照射前の本発明の粘着剤層が優れた衝撃吸収性を示し、電子部品を受け取る際に、破損したり、跳ねて位置ずれが生じたり、裏返るなどの不具合が生じることを防止できる点で、好ましい。また、実装基板への電子部品の転写性の観点から、前記割合(沈み込み深さ/厚み×100)は、好ましくは95%以下、より好ましくは90%以下である。 The configuration in which the ratio (sinking depth/thickness x 100) is 7% or more indicates that the pressure-sensitive adhesive layer of the present invention before irradiation with active energy rays exhibits excellent impact absorption, and when receiving an electronic component. , it is preferable in that it is possible to prevent troubles such as breakage, jumping to cause misalignment, and turning over. Moreover, from the viewpoint of transferability of the electronic component to the mounting board, the ratio (sinking depth/thickness×100) is preferably 95% or less, more preferably 90% or less.
 落球試験は、以下の方法により行うことができる。
 まず、粘着シート(幅30mm×長さ30mm)の評価面の粘着剤層とは反対側の面の全面に、両面接着テープを介して、SUS板(厚さ5mm)に、2kgハンドローラーを用いて貼着する。
 上記のようにして得られた評価用試料の粘着剤層面に、落球試験機を用いて、1gの鉄球を高さ1mから自由落下させる。該鉄球による粘着剤層面への沈み込み深さを、共焦点レーザー顕微鏡により計測する。次に、該沈み込み深さ(μm)を粘着シートの厚さ(μm)で割り、粘着剤の厚みに対する粘着剤の沈み込み深さの割合(落球試験後の粘着剤沈み込み深さ/厚み×100)を求める。
 また、該落球試験機にて、上記条件で衝撃を加えた際の衝撃荷重Fを計測し、以下の式より衝撃吸収率(%)を求める。
 衝撃吸収率(%)={(F0-F1)/F0}×100 
(上記式において、F0は粘着シートを貼着せず、SUS板のみに鉄球を衝突させた時の衝撃荷重のことであり、F1はSUS板と粘着シートとからなる構造体の粘着シート上に鉄球を衝突させた時の衝撃荷重のことである)
A falling ball test can be performed by the following method.
First, a 2 kg hand roller was applied to a SUS plate (thickness 5 mm) via a double-sided adhesive tape on the entire surface opposite to the adhesive layer on the evaluation surface of the adhesive sheet (width 30 mm × length 30 mm). affix it.
Using a falling ball tester, a 1 g iron ball is allowed to fall freely from a height of 1 m onto the adhesive layer surface of the evaluation sample obtained as described above. The depth of sinking of the iron ball into the pressure-sensitive adhesive layer surface is measured with a confocal laser microscope. Next, the subduction depth (μm) is divided by the thickness (μm) of the adhesive sheet, and the ratio of the subduction depth of the adhesive to the thickness of the adhesive (depth of subduction of the adhesive after the falling ball test/thickness ×100).
Also, the impact load F when the impact is applied under the above conditions is measured using the falling ball tester, and the impact absorption rate (%) is obtained from the following formula.
Impact absorption rate (%) = {( F0 - F1 )/ F0 } x 100
(In the above formula, F 0 is the impact load when an iron ball hits only the SUS plate without sticking the adhesive sheet, and F 1 is the adhesive sheet of the structure consisting of the SUS plate and the adhesive sheet. It is the impact load when an iron ball collides with it.)
 鉄球落下試験における衝撃吸収率、前記割合(沈み込み深さ/厚み×100)は、本発明の粘着剤層を構成する樹脂組成物(本発明の樹脂組成物)の種類や組成(モノマー組成)、後掲の活性エネルギー線硬化型化合物の種類や量、架橋剤の種類や量、粘着剤層の厚みなどにより調整することができる。 The impact absorption rate in the iron ball drop test, the above ratio (sinking depth/thickness x 100), depends on the type and composition (monomer composition ), the type and amount of the active energy ray-curable compound described later, the type and amount of the cross-linking agent, the thickness of the pressure-sensitive adhesive layer, and the like.
(本発明の樹脂組成物)
 本発明の粘着剤層を構成する樹脂組成物(粘着剤組成物)としては、特に限定されないが、例えば、アクリル系粘着剤、ゴム系粘着剤、ビニルアルキルエーテル系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ポリアミド系粘着剤、ウレタン系粘着剤、フッ素系粘着剤、エポキシ系粘着剤などが挙げられる。粘着剤層を構成する樹脂組成物としては、アクリル系粘着剤、シリコーン系粘着剤が好ましく、中でも、本発明の粘着剤層の上記所望の各種物性、特に、前記G'(100k)を60MPa以下に調整する粘着剤の設計のしやすさ、透明性、粘着性、コスト等の点より、アクリル系粘着剤が好ましい。つまり、本発明の粘着剤層は、アクリル系粘着剤組成物から構成されたアクリル系粘着剤層であることが好ましい。上記粘着剤は、単独で又は2種以上組み合わせて用いることができる。
(Resin composition of the present invention)
The resin composition (adhesive composition) constituting the adhesive layer of the present invention is not particularly limited, but examples include acrylic adhesives, rubber adhesives, vinyl alkyl ether adhesives, silicone adhesives, Examples include polyester-based adhesives, polyamide-based adhesives, urethane-based adhesives, fluorine-based adhesives, and epoxy-based adhesives. As the resin composition constituting the pressure-sensitive adhesive layer, acrylic pressure-sensitive adhesives and silicone-based pressure-sensitive adhesives are preferable. Among them, the various desired physical properties of the pressure-sensitive adhesive layer of the present invention, in particular, the G′(100k) is 60 MPa or less. An acrylic pressure-sensitive adhesive is preferable from the viewpoints of ease of designing the pressure-sensitive adhesive to be adjusted to , transparency, adhesiveness, cost, and the like. That is, the pressure-sensitive adhesive layer of the present invention is preferably an acrylic pressure-sensitive adhesive layer composed of an acrylic pressure-sensitive adhesive composition. The pressure-sensitive adhesives may be used alone or in combination of two or more.
 上記アクリル系粘着剤組成物は、ベースポリマーとしてアクリル系ポリマーを含有する。上記アクリル系ポリマーは、ポリマーを構成するモノマー成分として、アクリル系モノマー(分子中に(メタ)アクリロイル基を有するモノマー)を含むポリマーである。上記アクリル系ポリマーは、ポリマーを構成するモノマー成分として(メタ)アクリル酸アルキルエステルを含むポリマーであることが好ましい。なお、アクリル系ポリマーは、単独で又は2種以上組み合わせて用いることができる。 The acrylic pressure-sensitive adhesive composition contains an acrylic polymer as a base polymer. The above acrylic polymer is a polymer containing an acrylic monomer (a monomer having a (meth)acryloyl group in the molecule) as a monomer component constituting the polymer. The acrylic polymer is preferably a polymer containing a (meth)acrylic acid alkyl ester as a monomer component constituting the polymer. In addition, an acrylic polymer can be used individually or in combination of 2 or more types.
 本発明の粘着剤層を形成する粘着剤組成物は、いずれの形態であってもよい。例えば、粘着剤組成物は、エマルジョン型、溶剤型(溶液型)、活性エネルギー線硬化型、熱溶融型(ホットメルト型)などであってもよい。中でも、生産性の点、光学特性や外観性に優れる粘着剤層が得やすい点より、溶剤型、活性エネルギー線硬化型の粘着剤組成物が好ましい。特に、活性エネルギー線照射前において電子部品の衝突による衝撃を吸収し、電子部品の位置ずれや裏返りを抑制できる観点、活性エネルギー線照射後において実装基板に電子部品を転写する際の熱圧着において、加熱による膨張、アウトガスの発生を抑制できる優れた耐熱性を示す観点から、活性エネルギー線硬化型の粘着剤組成物が好ましい。 The adhesive composition forming the adhesive layer of the present invention may be in any form. For example, the pressure-sensitive adhesive composition may be an emulsion type, a solvent type (solution type), an active energy ray-curable type, a heat-melting type (hot-melt type), or the like. Among them, solvent-type and active energy ray-curable pressure-sensitive adhesive compositions are preferable from the viewpoint of productivity and the ease with which a pressure-sensitive adhesive layer having excellent optical properties and appearance can be obtained. In particular, from the viewpoint of absorbing the impact caused by the collision of the electronic component before the irradiation of the active energy ray and suppressing the displacement and turning over of the electronic component, in the thermocompression bonding when transferring the electronic component to the mounting board after the irradiation of the active energy ray, An active energy ray-curable pressure-sensitive adhesive composition is preferable from the viewpoint of exhibiting excellent heat resistance capable of suppressing expansion by heating and generation of outgassing.
 つまり、本発明の粘着剤層は、アクリル系ポリマーをベースポリマーとして含有するアクリル系粘着剤層であり、活性エネルギー線硬化型のアクリル系粘着剤組成物により形成されることが好ましい。 That is, the pressure-sensitive adhesive layer of the present invention is an acrylic pressure-sensitive adhesive layer containing an acrylic polymer as a base polymer, and is preferably formed from an active energy ray-curable acrylic pressure-sensitive adhesive composition.
 上記活性エネルギー線としては、例えば、α線、β線、γ線、中性子線、電子線などの電離性放射線や、紫外線などが挙げられ、特に、紫外線が好ましい。即ち、上記活性エネルギー線硬化型の粘着剤組成物は、紫外線硬化型の粘着剤組成物が好ましい。 Examples of the active energy rays include ionizing radiation such as α-rays, β-rays, γ-rays, neutron beams and electron beams, and ultraviolet rays, with ultraviolet rays being particularly preferred. That is, the active energy ray-curable pressure-sensitive adhesive composition is preferably an ultraviolet-curable pressure-sensitive adhesive composition.
 上記アクリル系粘着剤層を形成する粘着剤組成物(アクリル系粘着剤組成物)としては、例えば、アクリル系ポリマーを必須成分とするアクリル系粘着剤組成物、又は、アクリル系ポリマーを構成する単量体(モノマー)の混合物(「モノマー混合物」と称する場合がある)若しくはその部分重合物を必須成分とするアクリル系粘着剤組成物などが挙げられる。前者としては、例えば、いわゆる溶剤型のアクリル系粘着剤組成物などが挙げられる。また。後者としては、例えば、いわゆる活性エネルギー線硬化型のアクリル系粘着剤組成物などが挙げられる。上記「モノマー混合物」とは、ポリマーを構成するモノマー成分を含む混合物を意味する。また、上記「部分重合物」とは、「プレポリマー」と称する場合もあり、上記モノマー混合物中のモノマー成分のうちの1又は2以上のモノマー成分が部分的に重合している組成物を意味する。 The pressure-sensitive adhesive composition (acrylic pressure-sensitive adhesive composition) forming the acrylic pressure-sensitive adhesive layer includes, for example, an acrylic pressure-sensitive adhesive composition containing an acrylic polymer as an essential component, or a single Examples include acrylic pressure-sensitive adhesive compositions containing a mixture of monomers (sometimes referred to as a "monomer mixture") or a partial polymer thereof as an essential component. The former includes, for example, a so-called solvent-type acrylic pressure-sensitive adhesive composition. again. Examples of the latter include so-called active energy ray-curable acrylic pressure-sensitive adhesive compositions. The "monomer mixture" means a mixture containing monomer components that constitute a polymer. In addition, the above-mentioned "partially polymerized product" may also be referred to as a "prepolymer", and means a composition in which one or more of the monomer components in the monomer mixture is partially polymerized. do.
 上記アクリル系ポリマーは、アクリル系モノマーを必須のモノマー成分(単量体成分)として構成(形成)された重合体である。上記アクリル系ポリマーは、(メタ)アクリル酸アルキルエステルを必須のモノマー成分として構成(形成)された重合体であることが好ましい。すなわち、上記アクリル系ポリマーは、構成単位として、(メタ)アクリル酸アルキルエステルを含むことが好ましい。本明細書において、「(メタ)アクリル」とは、「アクリル」及び/又は「メタクリル」(「アクリル」及び「メタクリル」のうち、いずれか一方又は両方)を表し、他も同様である。なお、上記アクリル系ポリマーは、1種又は2種以上のモノマー成分により構成される。 The above acrylic polymer is a polymer composed (formed) of an acrylic monomer as an essential monomer component (monomer component). The acrylic polymer is preferably a polymer composed (formed) of a (meth)acrylic acid alkyl ester as an essential monomer component. That is, the acrylic polymer preferably contains a (meth)acrylic acid alkyl ester as a structural unit. As used herein, "(meth)acryl" represents "acryl" and/or "methacryl" (either or both of "acryl" and "methacryl"), and so on. In addition, the said acrylic polymer is comprised by 1 type, or 2 or more types of monomer components.
 上記アクリル系粘着剤としては、例えば、(メタ)アクリル酸アルキルエステルの1種または2種以上を単量体成分として用いたアクリル系ポリマー(ホモポリマーまたはコポリマー)をベースポリマーとするアクリル系粘着剤等が挙げられる。(メタ)アクリル酸アルキルエステルの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸ノナデシル、(メタ)アクリル酸エイコシル等の(メタ)アクリル酸C1~20アルキルエステルが挙げられる。なかでも、炭素数が2~18の直鎖状もしくは分岐状のアルキル基を有する(メタ)アクリル酸アルキルエステルが好ましく用いられ得る。アクリル系ポリマー中、(メタ)アクリル酸アルキルエステルの構成単位の含有割合は、アクリル系ポリマー100重量部に対して、好ましくは70重量部~100重量部であり、より好ましくは75重量部~99.9重量部であり、さらに好ましくは、80重量部~99.9重量部である。 Examples of the acrylic pressure-sensitive adhesive include, for example, an acrylic pressure-sensitive adhesive whose base polymer is an acrylic polymer (homopolymer or copolymer) using one or more of (meth)acrylic acid alkyl esters as a monomer component. etc. Specific examples of (meth) acrylic acid alkyl esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, (meth) ) isobutyl acrylate, s-butyl (meth)acrylate, t-butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, octyl (meth)acrylate , 2-ethylhexyl (meth)acrylate, isooctyl (meth)acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, isodecyl (meth)acrylate, (meth)acrylic acid Undecyl, dodecyl (meth)acrylate, tridecyl (meth)acrylate, tetradecyl (meth)acrylate, pentadecyl (meth)acrylate, hexadecyl (meth)acrylate, heptadecyl (meth)acrylate, octadecyl (meth)acrylate , nonadecyl (meth)acrylate, and eicosyl (meth)acrylate. Among them, (meth)acrylic acid alkyl esters having a linear or branched alkyl group having 2 to 18 carbon atoms are preferably used. The content of the (meth)acrylic acid alkyl ester structural unit in the acrylic polymer is preferably 70 parts by weight to 100 parts by weight, more preferably 75 parts by weight to 99 parts by weight, with respect to 100 parts by weight of the acrylic polymer. .9 parts by weight, more preferably 80 to 99.9 parts by weight.
 上記アクリル系ポリマーは、凝集力、耐熱性、架橋性等の改質、粘着剤層の寸法安定性向上等を目的として、必要に応じて、上記(メタ)アクリル酸アルキルエステルと共重合可能な他のモノマー由来の構成単位を含んでいてもよい。このようなモノマーとして、例えば、下記のモノマーが挙げられる。
 カルボキシ基含有モノマー:例えばアクリル酸(AA)、メタクリル酸(MAA)、クロトン酸等のエチレン性不飽和モノカルボン酸;マレイン酸、イタコン酸、シトラコン酸等のエチレン性不飽和ジカルボン酸およびその無水物(無水マレイン酸、無水イタコン酸等);
 水酸基含有モノマー:例えば2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;ビニルアルコール、アリルアルコール等の不飽和アルコール類;2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、ジエチレングリコールモノビニルエーテル等のエーテル系化合物;
 アミノ基含有モノマー:例えばアミノエチル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、t-ブチルアミノエチル(メタ)アクリレート;
 エポキシ基含有モノマー:例えばグリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレート、アリルグリシジルエーテル;
 シアノ基含有モノマー:例えばアクリロニトリル、メタクリロニトリル;
 ケト基含有モノマー:例えばジアセトン(メタ)アクリルアミド、ジアセトン(メタ)アクリレート、ビニルメチルケトン、ビニルエチルケトン、アリルアセトアセテート、ビニルアセトアセテート;
 窒素原子含有環を有するモノマー:例えばN-ビニル-2-ピロリドン、N-メチルビニルピロリドン、N-ビニルピリジン、N-ビニルピペリドン、N-ビニルピリミジン、N-ビニルピペラジン、N-ビニルピラジン、N-ビニルピロール、N-ビニルイミダゾール、N-ビニルオキサゾール、N-ビニルモルホリン、N-ビニルカプロラクタム、N-(メタ)アクリロイルモルホリン;
 アルコキシシリル基含有モノマー:例えば3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン;
 イソシアネート基含有モノマー:(メタ)アクリロイルイソシアネート、2-(メタ)アクリロイルオキシエチルイソシアネート、m-イソプロペニル-α,α-ジメチルベンジルイソシアネート。
 これらのモノマーは、単独で、または2種以上組み合わせて用いてもよい。
The above acrylic polymer can be copolymerized with the above (meth)acrylic acid alkyl ester as necessary for the purpose of modifying cohesive strength, heat resistance, crosslinkability, etc., improving the dimensional stability of the adhesive layer, etc. It may contain structural units derived from other monomers. Examples of such monomers include the following monomers.
Carboxy group-containing monomers: ethylenically unsaturated monocarboxylic acids such as acrylic acid (AA), methacrylic acid (MAA), crotonic acid; ethylenically unsaturated dicarboxylic acids such as maleic acid, itaconic acid, citraconic acid and their anhydrides (maleic anhydride, itaconic anhydride, etc.);
hydroxyl group-containing monomers: hydroxyalkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate; Unsaturated alcohols such as vinyl alcohol and allyl alcohol; Ether compounds such as 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether and diethylene glycol monovinyl ether;
amino group-containing monomers: for example aminoethyl (meth)acrylate, N,N-dimethylaminoethyl (meth)acrylate, t-butylaminoethyl (meth)acrylate;
epoxy group-containing monomers: for example glycidyl (meth)acrylate, methylglycidyl (meth)acrylate, allyl glycidyl ether;
cyano group-containing monomers: e.g. acrylonitrile, methacrylonitrile;
Keto group-containing monomers: for example diacetone (meth)acrylamide, diacetone (meth)acrylate, vinyl methyl ketone, vinyl ethyl ketone, allyl acetoacetate, vinyl acetoacetate;
Monomers having a nitrogen atom-containing ring: such as N-vinyl-2-pyrrolidone, N-methylvinylpyrrolidone, N-vinylpyridine, N-vinylpiperidone, N-vinylpyrimidine, N-vinylpiperazine, N-vinylpyrazine, N-vinyl pyrrole, N-vinylimidazole, N-vinyloxazole, N-vinylmorpholine, N-vinylcaprolactam, N-(meth)acryloylmorpholine;
Alkoxysilyl group-containing monomers: such as 3-(meth)acryloxypropyltrimethoxysilane, 3-(meth)acryloxypropyltriethoxysilane, 3-(meth)acryloxypropylmethyldimethoxysilane, 3-(meth)acryloxy propylmethyldiethoxysilane;
Isocyanate group-containing monomers: (meth)acryloyl isocyanate, 2-(meth)acryloyloxyethyl isocyanate, m-isopropenyl-α,α-dimethylbenzyl isocyanate.
These monomers may be used alone or in combination of two or more.
 1つの実施形態においては、上記アクリル系ポリマーは、カルボキシ基含有モノマー由来の構成単位を含むことが好ましい。アクリル系ポリマー中、カルボキシ基含有モノマー由来の構成単位の含有割合は、アクリル系ポリマー100重量部に対して、好ましくは1重量部~20重量部であり、より好ましくは2重量部~15重量部であり、さらに好ましくは3重量部~10重量部である。1つの実施形態においては、カルボキシ基含有モノマー由来の構成単位を含むアクリル系ポリマーは、後述のエポキシ系架橋剤と組み合わせて用いられることが好ましい。カルボキシ基含有モノマー由来の構成単位を含むアクリル系ポリマーとエポキシ系架橋剤とを併用すれば、耐熱性に優れて、高温下での寸法安定性に優れた粘着剤層を形成することができる。また、当該アクリル系ポリマーとエポキシ系架橋剤との併用は、実装基板に電子部品を転写する際の熱圧着においても、膨張やアウトガスが少ない粘着剤層が形成され得る点でも有利である。これらの効果は、カルボキシ基含有モノマー由来の構成単位の含有割合を上記範囲とすることにより、顕著となる。 In one embodiment, the acrylic polymer preferably contains structural units derived from a carboxy group-containing monomer. The content of structural units derived from a carboxy group-containing monomer in the acrylic polymer is preferably 1 part by weight to 20 parts by weight, more preferably 2 parts by weight to 15 parts by weight, with respect to 100 parts by weight of the acrylic polymer. and more preferably 3 to 10 parts by weight. In one embodiment, the acrylic polymer containing a structural unit derived from a carboxy group-containing monomer is preferably used in combination with an epoxy-based cross-linking agent described below. When an acrylic polymer containing a structural unit derived from a carboxy group-containing monomer and an epoxy crosslinking agent are used in combination, a pressure-sensitive adhesive layer having excellent heat resistance and excellent dimensional stability at high temperatures can be formed. In addition, the combined use of the acrylic polymer and the epoxy-based cross-linking agent is also advantageous in that a pressure-sensitive adhesive layer with little expansion or outgassing can be formed even in thermocompression bonding when transferring electronic components to a mounting substrate. These effects become remarkable by setting the content ratio of the structural unit derived from the carboxy group-containing monomer within the above range.
 1つの実施形態においては、上記アクリル系ポリマーは、水酸基含有モノマー由来の構成単位を含むことが好ましい。アクリル系ポリマー中、水酸基含有モノマー由来の構成単位の含有割合は、アクリル系ポリマー100重量部に対して、好ましくは0.01重量部~10重量部であり、より好ましくは0.05重量部~8重量部であり、さらに好ましくは0.1重量部~5重量部である。1つの実施形態においては、水酸基含有モノマー由来の構成単位を含むアクリル系ポリマーは、後述のイソシアネート系架橋剤と組み合わせて用いられることが好ましい。水酸基含有モノマー由来の構成単位を含むアクリル系ポリマーとイソシアネート系架橋剤とを併用すれば、耐熱性に優れて、高温下での寸法安定性に優れた粘着剤層を形成することができ、また、実装基板に電子部品を転写する際の熱圧着においても、膨張やアウトガスの発生を抑制できる点で、好ましい。このような効果は、水酸基含有モノマー由来の構成単位の含有割合を上記範囲とすることにより、顕著となる。 In one embodiment, the acrylic polymer preferably contains structural units derived from hydroxyl group-containing monomers. In the acrylic polymer, the content of structural units derived from a hydroxyl group-containing monomer is preferably 0.01 to 10 parts by weight, more preferably 0.05 to 10 parts by weight, with respect to 100 parts by weight of the acrylic polymer. 8 parts by weight, more preferably 0.1 to 5 parts by weight. In one embodiment, the acrylic polymer containing a structural unit derived from a hydroxyl group-containing monomer is preferably used in combination with an isocyanate-based cross-linking agent described below. When an acrylic polymer containing a structural unit derived from a hydroxyl group-containing monomer and an isocyanate-based cross-linking agent are used in combination, a pressure-sensitive adhesive layer having excellent heat resistance and excellent dimensional stability at high temperatures can be formed. Also in thermocompression bonding when transferring an electronic component to a mounting substrate, expansion and outgassing can be suppressed, which is preferable. Such an effect becomes remarkable by setting the content ratio of the structural unit derived from the hydroxyl group-containing monomer within the above range.
 さらに、(メタ)アクリル酸アルキルエステルと共重合可能な他のモノマーとしては、例えば、多官能性モノマーが挙げられる。上記多官能性モノマーとしては、例えば、ヘキサンジオールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、アリル(メタ)アクリレート、ビニル(メタ)アクリレート、ジビニルベンゼン、エポキシアクリレート、ポリエステルアクリレート、ウレタンアクリレートなどが挙げられる。なお、多官能性モノマーは、単独で又は2種以上を組み合わせて用いることができる。 Furthermore, other monomers copolymerizable with (meth)acrylic acid alkyl esters include, for example, polyfunctional monomers. Examples of the polyfunctional monomer include hexanediol di(meth)acrylate, butanediol di(meth)acrylate, (poly)ethylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, pentaerythritol di(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol hexa(meth)acrylate, trimethylolpropane tri(meth)acrylate, tetramethylolmethane tri(meth)acrylate, Allyl (meth)acrylate, vinyl (meth)acrylate, divinylbenzene, epoxy acrylate, polyester acrylate, urethane acrylate and the like. In addition, a polyfunctional monomer can be used individually or in combination of 2 or more types.
 上記アクリル系ポリマーが、ポリマーを構成するモノマー成分として上記多官能性モノマーを含有する場合、上記アクリル系ポリマーを構成する全モノマー成分(100重量%)中の、上記多官能性モノマーの割合は、特に限定されないが、5重量%以下(例えば、0重量%を超えて5重量%以下)が好ましく、より好ましくは3重量%以下(例えば、0重量%を超えて3重量%以下)、特に好ましくは1重量%以下(例えば、0重量%を超えて1重量%以下)である。 When the acrylic polymer contains the polyfunctional monomer as a monomer component constituting the polymer, the proportion of the polyfunctional monomer in the total monomer components (100% by weight) constituting the acrylic polymer is Although not particularly limited, it is preferably 5% by weight or less (e.g., more than 0% by weight and 5% by weight or less), more preferably 3% by weight or less (e.g., more than 0% by weight and 3% by weight or less), particularly preferably is 1% by weight or less (eg, more than 0% by weight and 1% by weight or less).
 特に限定されないが、上記アクリル系ポリマーは、ポリマーを構成するモノマー成分として、ホモポリマーを形成した際のガラス転移温度(Tg)が低いモノマー(以下、「低Tgモノマー」と称する場合がある)が含まれることが好ましい。上記モノマー成分として低Tgモノマーを用いると、当該アクリル系ポリマーを含有する粘着剤が柔らかくなり、本発明の粘着剤層の上記諸特性(特に、衝撃吸収性)を制御し、電子部品の衝突による衝撃を吸収し、電子部品の位置ずれや裏返りを抑制できる観点から、好ましい。 Although not particularly limited, the acrylic polymer contains, as a monomer component constituting the polymer, a monomer having a low glass transition temperature (Tg) when forming a homopolymer (hereinafter sometimes referred to as a "low Tg monomer"). preferably included. When a low Tg monomer is used as the monomer component, the pressure-sensitive adhesive containing the acrylic polymer becomes soft, and the above-mentioned properties of the pressure-sensitive adhesive layer of the present invention (in particular, impact absorption) are controlled, and the impact of electronic parts It is preferable from the viewpoint of being able to absorb impacts and suppress misalignment and turning inside out of the electronic component.
 上記低Tgモノマーのホモポリマーを形成した際のガラス転移温度は、特に限定されないが、例えば、0℃以下であり、好ましくは-10℃以下、より好ましくは-20℃以下である。上記低TgモノマーのTgが上記範囲であることにより、粘着剤層の衝撃吸収性が上がる。 The glass transition temperature when the homopolymer of the low Tg monomer is formed is not particularly limited, but is, for example, 0°C or lower, preferably -10°C or lower, more preferably -20°C or lower. When the Tg of the low Tg monomer is within the above range, the impact absorption of the pressure-sensitive adhesive layer is enhanced.
 上記低Tgモノマーは、アクリル系ポリマーを構成するモノマー成分に含まれるモノマーとして例示した上述のモノマーであってもよいし、それ以外のモノマーであってもよい。特に、アクリル系ポリマーを構成するモノマー成分は、上述のアクリル系ポリマーを構成するモノマー成分として例示したモノマーであって、且つ、低Tgモノマーであるモノマー成分を含むことが好ましい。上記低Tgモノマーは、1種のみであってもよいし、2種以上であってもよい。 The above-mentioned low Tg monomer may be the above-mentioned monomers exemplified as the monomers contained in the monomer component constituting the acrylic polymer, or may be other monomers. In particular, it is preferable that the monomer component constituting the acrylic polymer contains a monomer component exemplified as the monomer component constituting the acrylic polymer described above and which is a low Tg monomer. The low Tg monomers may be of one kind, or may be of two or more kinds.
 上記低Tgモノマーとしては、特に限定されないが、例えば、アクリル酸2-エチルヘキシル(EHA、ホモポリマーのTg:-70℃)、アクリル酸ブチル(BA、ホモポリマーのTg:-55℃)、アクリル酸エチル(EA、ホモポリマーのTg:-24℃)、メタクリル酸ラウリル(LMA、ホモポリマーのTg:-65℃)、アクリル酸ラウリル(LA、ホモポリマーのTg:-23℃)、アクリル酸イソノニル(iNAA、ホモポリマーのTg:-58℃)等が挙げられ、アクリル酸2-エチルヘキシル、アクリル酸ブチル、メタクリル酸ラウリルが好ましい。 Examples of the low Tg monomer include, but are not limited to, 2-ethylhexyl acrylate (EHA, Tg of homopolymer: -70°C), butyl acrylate (BA, Tg of homopolymer: -55°C), acrylic acid Ethyl (EA, Tg of homopolymer: -24°C), Lauryl methacrylate (LMA, Tg of homopolymer: -65°C), Lauryl acrylate (LA, Tg of homopolymer: -23°C), Isononyl acrylate ( iNAA, homopolymer Tg: -58°C), etc., and 2-ethylhexyl acrylate, butyl acrylate, and lauryl methacrylate are preferred.
 上記アクリル系ポリマーが、ポリマーを構成するモノマー成分として上記低Tgモノマーを含有する場合、上記アクリル系ポリマーを構成する全モノマー成分(100重量%)中の、上記低Tgモノマーの割合は、特に限定されないが、40重量%以上であることが好ましく、60重量%以上、又は80重量%以上であってもよい。低Tgモノマーの割合の上限も、特に限定されないが、99重量%以下、又は98重量%以下であってもよい。低Tgモノマーの割合が上記範囲内であると、上記諸特性(特に、衝撃吸収性)を制御し、電子部品の衝突による衝撃を吸収し、電子部品の位置ずれや裏返りを抑制できる観点できる観点から、好ましい。なお、ポリマーを構成するモノマー成分中に2種以上の低Tgモノマーが含まれる場合は、上記「低Tgモノマーの割合」は、上記2種以上の低Tgモノマーの割合の合計である。 When the acrylic polymer contains the low Tg monomer as a monomer component constituting the polymer, the proportion of the low Tg monomer in the total monomer components (100% by weight) constituting the acrylic polymer is particularly limited. Although not required, it is preferably 40% by weight or more, and may be 60% by weight or more, or 80% by weight or more. The upper limit of the proportion of the low Tg monomer is also not particularly limited, but may be 99% by weight or less, or 98% by weight or less. When the ratio of the low Tg monomer is within the above range, the above characteristics (especially impact absorption) can be controlled, the impact due to the collision of the electronic component can be absorbed, and the displacement and turning over of the electronic component can be suppressed. Therefore, it is preferable. When two or more types of low Tg monomers are included in the monomer components constituting the polymer, the above "proportion of low Tg monomers" is the sum of the proportions of the above two or more types of low Tg monomers.
 本発明の粘着剤層中のベースポリマー(特にアクリル系ポリマー)の含有量は、特に限定されないが、本発明の粘着剤層の総重量100重量%に対して、10重量%以上(例えば、10~100重量%)が好ましく、より好ましくは15重量%以上(例えば、15~100重量%)、さらに好ましくは20重量%以上(例えば、20~100重量%)である。 The content of the base polymer (especially acrylic polymer) in the pressure-sensitive adhesive layer of the present invention is not particularly limited, but is 10% by weight or more (for example, 10 to 100% by weight), more preferably 15% by weight or more (eg, 15 to 100% by weight), and still more preferably 20% by weight or more (eg, 20 to 100% by weight).
 本発明の粘着剤組成物が含有する、上記アクリル系ポリマーなどのベースポリマーは、モノマー成分を重合することにより得られる。この重合方法としては、特に限定されないが、例えば、溶液重合方法、乳化重合方法、塊状重合方法、活性エネルギー線照射による重合方法(活性エネルギー線重合方法)などが挙げられる。中でも、粘着剤層の透明性、コストなどの点より、溶液重合方法、活性エネルギー線重合方法が好ましく、活性エネルギー線重合方法がより好ましい。 The base polymer such as the acrylic polymer contained in the pressure-sensitive adhesive composition of the present invention is obtained by polymerizing monomer components. The polymerization method is not particularly limited, but includes, for example, a solution polymerization method, an emulsion polymerization method, a bulk polymerization method, and a polymerization method using active energy ray irradiation (active energy ray polymerization method). Among them, the solution polymerization method and the active energy ray polymerization method are preferable, and the active energy ray polymerization method is more preferable, from the viewpoints of the transparency of the pressure-sensitive adhesive layer and the cost.
 また、上記のモノマー成分の重合に際しては、各種の一般的な溶剤が用いられてもよい。上記溶剤としては、例えば、酢酸エチル、酢酸n-ブチル等のエステル類;トルエン、ベンゼン等の芳香族炭化水素類;n-ヘキサン、n-ヘプタン等の脂肪族炭化水素類;シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素類;メチルエチルケトン、メチルイソブチルケトン等のケトン類などの有機溶剤が挙げられる。なお、溶剤は、単独で又は2種以上組み合わせて用いることができる。 In addition, various general solvents may be used in the polymerization of the above monomer components. Examples of the solvent include esters such as ethyl acetate and n-butyl acetate; aromatic hydrocarbons such as toluene and benzene; aliphatic hydrocarbons such as n-hexane and n-heptane; cyclohexane, methylcyclohexane and the like. alicyclic hydrocarbons; and organic solvents such as ketones such as methyl ethyl ketone and methyl isobutyl ketone. In addition, a solvent can be used individually or in combination of 2 or more types.
 上記のモノマー成分の重合に際しては、重合反応の種類に応じて、熱重合開始剤や光重合開始剤(光開始剤)などの重合開始剤が用いられてもよい。なお、重合開始剤は、単独で又は2種以上を組み合わせて用いることができる。 In the polymerization of the above monomer components, a polymerization initiator such as a thermal polymerization initiator or a photopolymerization initiator (photoinitiator) may be used depending on the type of polymerization reaction. In addition, a polymerization initiator can be used individually or in combination of 2 or more types.
 上記熱重合開始剤としては、特に限定されないが、例えば、アゾ系重合開始剤、過酸化物系重合開始剤(例えば、ジベンゾイルペルオキシド、tert-ブチルペルマレエート等)、レドックス系重合開始剤等が挙げられる。中でも、過酸化物系重合開始剤が好ましい。上記アゾ系重合開始剤としては、2,2'-アゾビスイソブチロニトリル(以下、「AIBN」と称する場合がある)、2,2'-アゾビス-2-メチルブチロニトリル(以下、「AMBN」と称する場合がある)、2,2'-アゾビス(2-メチルプロピオン酸)ジメチル、4,4'-アゾビス-4-シアノバレリアン酸などが挙げられる。なお、熱重合開始剤は、単独で又は2種以上を組み合わせて用いることができる。 Examples of the thermal polymerization initiator include, but are not limited to, azo polymerization initiators, peroxide polymerization initiators (eg, dibenzoyl peroxide, tert-butyl permaleate, etc.), redox polymerization initiators, and the like. is mentioned. Among them, a peroxide-based polymerization initiator is preferred. Examples of the azo polymerization initiator include 2,2'-azobisisobutyronitrile (hereinafter sometimes referred to as "AIBN"), 2,2'-azobis-2-methylbutyronitrile (hereinafter, " AMBN”), 2,2′-azobis(2-methylpropionate)dimethyl, 4,4′-azobis-4-cyanovaleric acid and the like. In addition, a thermal polymerization initiator can be used individually or in combination of 2 or more types.
 上記熱重合開始剤の使用量は、特に限定されないが、例えば、上記アクリル系ポリマーを構成する全モノマー成分100重量部に対して、0.05重量部以上であることが好ましく、より好ましくは0.1重量部以上であり、また、0.5重量部以下であることが好ましく、より好ましくは0.3重量部以下である。 The amount of the thermal polymerization initiator to be used is not particularly limited. 1 part by weight or more, preferably 0.5 parts by weight or less, more preferably 0.3 parts by weight or less.
 上記光重合開始剤としては、特に限定されないが、例えば、ベンゾインエーテル系光重合開始剤、アセトフェノン系光重合開始剤、α-ケトール系光重合開始剤、芳香族スルホニルクロリド系光重合開始剤、光活性オキシム系光重合開始剤、ベンゾイン系光重合開始剤、ベンジル系光重合開始剤、ベンゾフェノン系光重合開始剤、ケタール系光重合開始剤、チオキサントン系光重合開始剤等が挙げられる。他にも、アシルフォスフィンオキサイド系光重合開始剤、チタノセン系光重合開始剤が挙げられる。上記ベンゾインエーテル系光重合開始剤としては、例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、アニソールメチルエーテル等が挙げられる。上記アセトフェノン系光重合開始剤としては、例えば、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、4-フェノキシジクロロアセトフェノン、4-(t-ブチル)ジクロロアセトフェノン等が挙げられる。上記α-ケトール系光重合開始剤としては、例えば、2-メチル-2-ヒドロキシプロピオフェノン、1-[4-(2-ヒドロキシエチル)フェニル]-2-メチルプロパン-1-オン等が挙げられる。上記芳香族スルホニルクロリド系光重合開始剤としては、例えば、2-ナフタレンスルホニルクロライド等が挙げられる。上記光活性オキシム系光重合開始剤としては、例えば、1-フェニル-1,1-プロパンジオン-2-(O-エトキシカルボニル)-オキシム等が挙げられる。上記ベンゾイン系光重合開始剤としては、例えば、ベンゾイン等が挙げられる。上記ベンジル系光重合開始剤としては、例えば、ベンジル等が挙げられる。上記ベンゾフェノン系光重合開始剤としては、例えば、ベンゾフェノン、ベンゾイル安息香酸、3,3'-ジメチル-4-メトキシベンゾフェノン、ポリビニルベンゾフェノン、α-ヒドロキシシクロヘキシルフェニルケトン等が挙げられる。上記ケタール系光重合開始剤としては、例えば、ベンジルジメチルケタール等が挙げられる。上記チオキサントン系光重合開始剤としては、例えば、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、2,4-ジメチルチオキサントン、イソプロピルチオキサントン、2,4-ジイソプロピルチオキサントン、ドデシルチオキサントン等が挙げられる。上記アシルフォスフィンオキサイド系光重合開始剤としては、例えば、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等が挙げられる。上記チタノセン系光重合開始剤としては、例えば、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム等が挙げられる。なお、光重合開始剤は、単独で又は2種以上を組み合わせて用いることができる。 The photopolymerization initiator is not particularly limited. Active oxime-based photopolymerization initiators, benzoin-based photopolymerization initiators, benzyl-based photopolymerization initiators, benzophenone-based photopolymerization initiators, ketal-based photopolymerization initiators, thioxanthone-based photopolymerization initiators, and the like are included. Other examples include acylphosphine oxide photopolymerization initiators and titanocene photopolymerization initiators. Examples of the benzoin ether-based photopolymerization initiator include benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 2,2-dimethoxy-1,2-diphenylethan-1-one, anisole methyl ether and the like. Examples of the acetophenone-based photopolymerization initiator include 2,2-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexylphenylketone, 4-phenoxydichloroacetophenone, 4-(t-butyl ) and dichloroacetophenone. Examples of the α-ketol photopolymerization initiator include 2-methyl-2-hydroxypropiophenone, 1-[4-(2-hydroxyethyl)phenyl]-2-methylpropan-1-one, and the like. be done. Examples of the aromatic sulfonyl chloride photopolymerization initiator include 2-naphthalenesulfonyl chloride. Examples of the photoactive oxime photopolymerization initiator include 1-phenyl-1,1-propanedione-2-(O-ethoxycarbonyl)-oxime. Examples of the benzoin-based photopolymerization initiator include benzoin. Examples of the benzyl-based photopolymerization initiator include benzyl. Examples of the benzophenone-based photopolymerization initiator include benzophenone, benzoylbenzoic acid, 3,3′-dimethyl-4-methoxybenzophenone, polyvinylbenzophenone, α-hydroxycyclohexylphenyl ketone, and the like. Examples of the ketal photopolymerization initiator include benzyl dimethyl ketal. Examples of the thioxanthone-based photopolymerization initiator include thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-diisopropylthioxanthone, and dodecylthioxanthone. Examples of the acylphosphine oxide-based photopolymerization initiator include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide. . Examples of the titanocene photopolymerization initiator include bis(η 5 -2,4-cyclopentadien-1-yl)-bis(2,6-difluoro-3-(1H-pyrrol-1-yl)-phenyl ) titanium and the like. In addition, a photoinitiator can be used individually or in combination of 2 or more types.
 上記アクリル系ポリマーの重合の際に上記光重合開始剤を用いる場合、上記光重合開始剤の使用量は、特に限定されないが、例えば、上記アクリル系ポリマーを構成する全モノマー成分100重量部に対して、0.01重量部以上であることが好ましく、より好ましくは0.1重量部以上であり、また、3重量部以下であることが好ましく、より好ましくは1.5重量部以下である。 When the photopolymerization initiator is used in the polymerization of the acrylic polymer, the amount of the photopolymerization initiator used is not particularly limited. It is preferably 0.01 parts by weight or more, more preferably 0.1 parts by weight or more, and preferably 3 parts by weight or less, more preferably 1.5 parts by weight or less.
 本発明の樹脂組成物(粘着剤組成物)は、活性エネルギー線硬化型化合物を含むものである。本発明の樹脂組成物が、活性エネルギー線硬化型化合物を含むという構成は、活性エネルギー線照射前においては、本発明の粘着剤層が優れた衝撃吸収性を示し、活性エネルギー線照射後においては、活性エネルギー線硬化型化合物の反応による架橋構造形成により、本発明の粘着剤層の弾性率が向上し、実装基板に電子部品を転写する際の熱圧着においても、膨張やアウトガスの発生を抑制できる優れた耐熱性を示す点で、好適である。 The resin composition (adhesive composition) of the present invention contains an active energy ray-curable compound. In the configuration in which the resin composition of the present invention contains an active energy ray-curable compound, the pressure-sensitive adhesive layer of the present invention exhibits excellent impact absorption before irradiation with active energy rays, and after irradiation with active energy rays, The elastic modulus of the pressure-sensitive adhesive layer of the present invention is improved by the formation of a crosslinked structure through the reaction of the active energy ray-curable compound, and expansion and outgassing are suppressed even in thermocompression bonding when transferring electronic parts to a mounting substrate. It is suitable in terms of exhibiting excellent heat resistance that can be achieved.
 本発明の樹脂組成物において、前記活性エネルギー線硬化型化合物は、多官能モノマー及び/又は多官能オリゴマーであることが好ましい。本発明の活性エネルギー線硬化型化合物が、多官能モノマー及び/又は多官能オリゴマーであるという構成は、複数の反応性官能基による架橋構造形成により粘着剤層の弾性率がより高くなり、実装基板に電子部品を転写する際の熱圧着において、膨張やアウトガスの発生を抑制できるより優れた耐熱性を示す点で、好適である。 In the resin composition of the present invention, the active energy ray-curable compound is preferably a polyfunctional monomer and/or a polyfunctional oligomer. In the configuration in which the active energy ray-curable compound of the present invention is a polyfunctional monomer and/or polyfunctional oligomer, the elastic modulus of the pressure-sensitive adhesive layer is further increased by forming a crosslinked structure with a plurality of reactive functional groups, and the mounting substrate It is preferable in terms of exhibiting superior heat resistance capable of suppressing expansion and generation of outgassing in thermocompression bonding when transferring an electronic component to a substrate.
 本発明の樹脂組成物において、前記活性エネルギー線硬化型化合物は、反応性官能基を3個以上有することが好ましい。前記活性エネルギー線硬化型化合物が、反応性官能基を3個以上有するという構成は、3個以上の反応性官能基による3次元的な架橋構造形成により粘着剤層の弾性率がさらに高くなり、実装基板に電子部品を転写する際の熱圧着において、膨張やアウトガスの発生を抑制できるさらに優れた耐熱性を示す点で、好適である。より優れた耐熱性を示す観点から、前記反応性官能基の数は、4個以上がよりより好ましく、5個以上がさらに好ましく、6個以上、7個以上、8個以上、9個以上、又は10個以上であってもよい。 In the resin composition of the present invention, the active energy ray-curable compound preferably has 3 or more reactive functional groups. The configuration in which the active energy ray-curable compound has three or more reactive functional groups further increases the elastic modulus of the pressure-sensitive adhesive layer by forming a three-dimensional crosslinked structure with three or more reactive functional groups. It is preferable in that it exhibits excellent heat resistance that can suppress expansion and generation of outgassing in thermocompression bonding when transferring an electronic component to a mounting substrate. From the viewpoint of exhibiting better heat resistance, the number of reactive functional groups is more preferably 4 or more, more preferably 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, Or it may be 10 or more.
 本発明の樹脂組成物において、前記活性エネルギー線硬化型化合物の分子量は、20000未満であることが好ましい。前記活性エネルギー線硬化型化合物の分子量が、20000未満であるという構成は、性エネルギー線照射前の本発明の粘着剤層に柔軟性を付与して、前記G'(100k)を60MPa以下に調整し、本発明の粘着剤層を転写用基板の衝撃吸収層として使用する際に、優れた衝撃吸収性を付与できる点で、好ましい。本発明の活性エネルギー線硬化型化合物の分子量は、活性エネルギー線照射前の本発明の粘着剤層のより優れた衝撃吸収性を実現する観点から、10000以下がより好ましく、3000以下がさらに好ましく、1500以下であってもよい。本発明の活性エネルギー線硬化型化合物の分子量は、特に、限定されないが、100以上が好ましく、200以上であってもよい。
 なお、本発明の活性エネルギー線硬化型化合物が重合体(オリゴマー)である場合、前記分子量は、重量平均分子量(Mw)を含むものとする。
In the resin composition of the present invention, the active energy ray-curable compound preferably has a molecular weight of less than 20,000. The configuration in which the molecular weight of the active energy ray-curable compound is less than 20000 imparts flexibility to the pressure-sensitive adhesive layer of the present invention before irradiation with a sexual energy ray, and the G′ (100 k) is adjusted to 60 MPa or less. However, when the pressure-sensitive adhesive layer of the present invention is used as an impact-absorbing layer of a transfer substrate, it is preferable in that excellent impact-absorbing properties can be imparted. The molecular weight of the active energy ray-curable compound of the present invention is more preferably 10000 or less, more preferably 3000 or less, from the viewpoint of realizing more excellent impact absorption of the pressure-sensitive adhesive layer of the present invention before active energy ray irradiation. It may be 1500 or less. Although the molecular weight of the active energy ray-curable compound of the present invention is not particularly limited, it is preferably 100 or more, and may be 200 or more.
In addition, when the active-energy-ray-curable compound of this invention is a polymer (oligomer), the said molecular weight shall include a weight average molecular weight (Mw).
 本発明の活性エネルギー線硬化型化合物の軟化点は、特に限定されないが、活性エネルギー線照射前の本発明の粘着剤層を転写用基板の衝撃吸収層として使用する際に、より優れた衝撃吸収性を実現できるという点で、-28℃以下がより好ましく、-34℃以下がさらに好ましく、また、本発明の活性エネルギー線硬化型化合物の融点は、特に限定されないが、-140℃以上が好ましく、-120℃以上であってもよい。
 前記「軟化点」とは、ガラスや樹脂などの物質の温度が上昇し、変形し始めるときの温度であり、具体的には、後掲の実施例の方法により、測定されるものである。
 なお、低軟化点化合物が粘着剤層に含有されている場合は、該軟化点化合物が溶解する有機溶剤(例えばTHF(テトラヒドロフラン)などの極性溶剤)を用いて抽出し、該極性溶剤を十分に揮発させることで評価用サンプルを準備して、軟化点を測定することもできる。
The softening point of the active energy ray-curable compound of the present invention is not particularly limited. The melting point of the active energy ray-curable compound of the present invention is not particularly limited, but is preferably -140°C or higher. , −120° C. or higher.
The "softening point" is the temperature at which a material such as glass or resin begins to rise and deform, and is specifically measured by the method described in Examples below.
In addition, when a low softening point compound is contained in the adhesive layer, it is extracted using an organic solvent in which the softening point compound is dissolved (for example, a polar solvent such as THF (tetrahydrofuran)), and the polar solvent is sufficiently removed. A sample for evaluation can be prepared by volatilization, and the softening point can also be measured.
 本発明の活性エネルギー線硬化型化合物の軟化点は、例えば、以下の方法により測定することができる。
 化合物サンプル約5.0mgを、Φ4.0mmのアルミパンに採取し、評価用サンプルのシートを得る。化合物サンプルが有機溶剤で希釈されている場合は、該有機溶剤の沸点以上の温度で十分に揮発させて評価用サンプルを準備する。
 上記で得られた評価用サンプルのシートを、TMA Q400(TA-instruments社製)にセットし、Φ3.0mmのプローブを使用し、針入モードにて窒素ガス流量:50.0ml/min、押し込み荷重:0.01N、測定雰囲気温度範囲:-75℃~40℃、昇温速度:3℃/minの昇温速度条件で昇温しながら、評価用サンプルのシートの厚み減少を測定する。得られたデータから、厚み減少が10%となる温度を抽出し、軟化点(10%熱変形温度)とする。
The softening point of the active energy ray-curable compound of the present invention can be measured, for example, by the following method.
About 5.0 mg of a compound sample is collected in an aluminum pan having a diameter of 4.0 mm to obtain a sample sheet for evaluation. When the compound sample is diluted with an organic solvent, it is sufficiently volatilized at a temperature equal to or higher than the boiling point of the organic solvent to prepare a sample for evaluation.
The sheet of the evaluation sample obtained above is set in TMA Q400 (manufactured by TA-instruments), using a Φ3.0 mm probe, nitrogen gas flow rate: 50.0 ml / min in penetration mode, pushing The thickness reduction of the sheet of the evaluation sample is measured while increasing the temperature under the following conditions: load: 0.01 N, ambient temperature range for measurement: -75°C to 40°C, temperature increase rate: 3°C/min. From the obtained data, the temperature at which the thickness reduction is 10% is extracted and taken as the softening point (10% heat distortion temperature).
 前記多官能モノマーとしては、分子量1000未満程度の多官能(メタ)アクリレート系モノマーを好ましく挙げることができる。多官能(メタ)アクリレート系モノマーとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロイロキシエチル)イソシアヌレート等の3官能型モノマー;ジグリセリンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の4官能型モノマー;プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート等の5官能型モノマー;ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等の6官能型モノマー等が挙げられる。これらは一種単独で、あるいは二種以上を組み合わせて用いてもよい。 As the polyfunctional monomer, a polyfunctional (meth)acrylate monomer having a molecular weight of less than about 1000 can be preferably used. Examples of polyfunctional (meth)acrylate monomers include trimethylolpropane tri(meth)acrylate, dipentaerythritol tri(meth)acrylate, propionic acid-modified dipentaerythritol tri(meth)acrylate, and pentaerythritol tri(meth)acrylate. , propylene oxide-modified trimethylolpropane tri(meth)acrylate, tris(acryloyloxyethyl)isocyanurate; tetrafunctional monomers such as diglycerin tetra(meth)acrylate and pentaerythritol tetra(meth)acrylate pentafunctional monomers such as propionic acid-modified dipentaerythritol penta(meth)acrylate; and hexafunctional monomers such as dipentaerythritol hexa(meth)acrylate and caprolactone-modified dipentaerythritol hexa(meth)acrylate. These may be used singly or in combination of two or more.
 前記多官能オリゴマーとしては、ポリエステルアクリレート系、エポキシアクリレート系、ウレタンアクリレート系、ポリエーテルアクリレート系、ポリブタジエンアクリレート系、シリコーンアクリレート系等のオリゴマーが挙げられる。これらは一種単独で、あるいは二種以上を組み合わせて用いてもよい。 Examples of the polyfunctional oligomer include polyester acrylate-based, epoxy acrylate-based, urethane acrylate-based, polyether acrylate-based, polybutadiene acrylate-based, and silicone acrylate-based oligomers. These may be used singly or in combination of two or more.
 前記多官能オリゴマーの重量平均分子量(Mw)は、活性エネルギー線照射前の本発明の粘着剤層のより優れた衝撃吸収性を実現する観点から、20000未満が好ましく、より好ましくは10000以下、さらに好ましくは3000以下、又は1500以下であってもよく、また、前記多官能オリゴマーの重量平均分子量(Mw)は、100以上が好ましく、200以上であってもよい。 The weight-average molecular weight (Mw) of the polyfunctional oligomer is preferably less than 20,000, more preferably 10,000 or less, and further preferably less than 20,000, from the viewpoint of achieving better impact absorption of the pressure-sensitive adhesive layer of the present invention before irradiation with active energy rays. It is preferably 3000 or less, or may be 1500 or less, and the weight average molecular weight (Mw) of the polyfunctional oligomer is preferably 100 or more, and may be 200 or more.
 本発明の樹脂組成物が活性エネルギー線硬化型化合物を含む場合、その含有量は、特に限定されないが、活性エネルギー線照射前においては、本発明の粘着剤層が優れた衝撃吸収性を示し、活性エネルギー線照射後においては、本発明の粘着剤層が優れた耐熱性を示す点で、上記アクリル系ポリマーを構成する全モノマー成分100重量部に対して、10重量部以上であることが好ましく、より好ましくは20重量部以上、さらに好ましくは30重量部以上であり、また、1000重量部以下であることが好ましく、より好ましくは500重量部以下である。 When the resin composition of the present invention contains an active energy ray-curable compound, the content is not particularly limited. After irradiation with an active energy ray, it is preferably 10 parts by weight or more with respect to 100 parts by weight of all the monomer components constituting the acrylic polymer in that the pressure-sensitive adhesive layer of the present invention exhibits excellent heat resistance. , more preferably 20 parts by weight or more, still more preferably 30 parts by weight or more, and preferably 1000 parts by weight or less, more preferably 500 parts by weight or less.
 本発明の樹脂組成物(粘着剤組成物)は、架橋剤を含むことが好ましい。本発明の樹脂組成物が架橋剤を含むことにより、粘着剤層に適度な架橋構造が形成され、優れた加工性を付与できる点や電子部品を受け取る際の位置ずれを抑制できる点で、好適である。また、耐熱性に優れて、実装基板に電子部品を転写する際の熱圧着においても、膨張やアウトガスが少ない粘着剤層が形成され得る点でも有利である。架橋剤は、単独で又は2種以上組み合わせて用いることができる。 The resin composition (adhesive composition) of the present invention preferably contains a cross-linking agent. By including a cross-linking agent in the resin composition of the present invention, an appropriate cross-linked structure is formed in the pressure-sensitive adhesive layer, and excellent workability can be imparted, and misalignment when receiving electronic parts can be suppressed. is. It is also advantageous in that it is excellent in heat resistance and can form a pressure-sensitive adhesive layer with little expansion or outgassing even in thermocompression bonding when transferring an electronic component to a mounting substrate. A crosslinking agent can be used individually or in combination of 2 or more types.
 上記架橋剤としては、特に限定されないが、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、メラミン系架橋剤、過酸化物系架橋剤、尿素系架橋剤、金属アルコキシド系架橋剤、金属キレート系架橋剤、金属塩系架橋剤、カルボジイミド系架橋剤、オキサゾリン系架橋剤、アジリジン系架橋剤、アミン系架橋剤などが挙げられる。中でも、イソシアネート系架橋剤、エポキシ系架橋剤が好ましく、より好ましくはエポキシ系架橋剤である。 The cross-linking agent is not particularly limited. cross-linking agents, metal salt-based cross-linking agents, carbodiimide-based cross-linking agents, oxazoline-based cross-linking agents, aziridine-based cross-linking agents, and amine-based cross-linking agents. Among them, an isocyanate-based cross-linking agent and an epoxy-based cross-linking agent are preferable, and an epoxy-based cross-linking agent is more preferable.
 上記イソシアネート系架橋剤(多官能イソシアネート化合物)としては、例えば、1,2-エチレンジイソシアネート、1,4-ブチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネートなどの低級脂肪族ポリイソシアネート類;シクロペンチレンジイソシアネート、シクロヘキシレンジイソシアネート、イソホロンジイソシアネート、水素添加トリレンジイソシアネート、水素添加キシレンジイソシアネートなどの脂環族ポリイソシアネート類;2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、キシリレンジイソシアネートなどの芳香族ポリイソシアネート類などが挙げられる。また、上記イソシアネート系架橋剤としては、例えば、トリメチロールプロパン/トリレンジイソシアネート付加物(商品名「コロネートL」、日本ポリウレタン工業株式会社製)、トリメチロールプロパン/ヘキサメチレンジイソシアネート付加物(商品名「コロネートHL」、日本ポリウレタン工業株式会社製)、トリメチロールプロパン/キシリレンジイソシアネート付加物(商品名「タケネートD-110N」、三井化学株式会社製)、トルエンジイソシアネート付加物(商品名「タケネートD-101A」、三井化学株式会社製)などの市販品も挙げられる。 Examples of the isocyanate-based cross-linking agent (polyfunctional isocyanate compound) include lower aliphatic polyisocyanates such as 1,2-ethylene diisocyanate, 1,4-butylene diisocyanate, and 1,6-hexamethylene diisocyanate; cyclopentylene diisocyanate; , cyclohexylene diisocyanate, isophorone diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated xylene diisocyanate and other alicyclic polyisocyanates; 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate and aromatic polyisocyanates such as xylylene diisocyanate. Examples of the isocyanate-based cross-linking agent include trimethylolpropane/tolylene diisocyanate adduct (trade name "Coronate L", manufactured by Nippon Polyurethane Industry Co., Ltd.), trimethylolpropane/hexamethylene diisocyanate adduct (trade name " Coronate HL", manufactured by Nippon Polyurethane Industry Co., Ltd.), trimethylolpropane/xylylene diisocyanate adduct (trade name "Takenate D-110N", manufactured by Mitsui Chemicals, Inc.), toluene diisocyanate adduct (trade name "Takenate D-101A , manufactured by Mitsui Chemicals, Inc.).
 上記エポキシ系架橋剤(多官能エポキシ化合物)としては、例えば、N,N,N',N'-テトラグリシジル-m-キシレンジアミン、ジグリシジルアニリン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,6-ヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ソルビトールポリグリシジルエーテル、グリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ソルビタンポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、アジピン酸ジグリシジルエステル、o-フタル酸ジグリシジルエステル、トリグリシジル-トリス(2-ヒドロキシエチル)イソシアヌレート、レゾルシンジグリシジルエーテル、ビスフェノール-S-ジグリシジルエーテルの他、分子内にエポキシ基を2つ以上有するエポキシ系樹脂などが挙げられる。また、上記エポキシ系架橋剤としては、例えば、商品名「テトラッドC」(三菱ガス化学株式会社製)などの市販品も挙げられる。 Examples of the epoxy-based cross-linking agent (polyfunctional epoxy compound) include N,N,N',N'-tetraglycidyl-m-xylenediamine, diglycidylaniline, 1,3-bis(N,N-diglycidyl aminomethyl)cyclohexane, 1,6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, sorbitol polyglycidyl ether , glycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitan polyglycidyl ether, trimethylolpropane polyglycidyl ether, adipate diglycidyl ester, o-phthalate diglycidyl ester, triglycidyl-tris(2 -hydroxyethyl)isocyanurate, resorcinol diglycidyl ether, bisphenol-S-diglycidyl ether, and epoxy resins having two or more epoxy groups in the molecule. Moreover, as said epoxy-type crosslinking agent, the commercial item, such as a brand name "Tetrad C" (made by Mitsubishi Gas Chemical Company, Inc.), is mentioned, for example.
 アクリル系粘着剤組成物が架橋剤を含む場合、上記架橋剤の使用量は、特に限定されないが、粘着剤層に適度な架橋構造が形成され、前記G'(100k)を60MPa以下に調整し、本発明の粘着剤層を転写用基板の衝撃吸収層として使用する際に、優れた衝撃吸収性や加工性の付与、及び電子部品の位置ずれを防ぐことができるという観点、耐熱性に優れて、実装基板に電子部品を転写する際の熱圧着においても、膨張やアウトガスが少ない粘着剤層が形成できるという観点から、ベースポリマー100重量部に対して、0.5重量部以上であることが好ましく、より好ましくは1.0重量部以上、さらに好ましくは1.5重量部以上である。また、上記使用量の上限は、粘着剤層において適度な柔軟性を得て、粘着力を向上させる点より、ベースポリマー100重量部に対して、10重量部以下であることが好ましく、より好ましくは5重量部以下である。 When the acrylic pressure-sensitive adhesive composition contains a cross-linking agent, the amount of the cross-linking agent used is not particularly limited. , When the pressure-sensitive adhesive layer of the present invention is used as a shock-absorbing layer of a transfer substrate, it provides excellent shock-absorbing properties and workability, and prevents misalignment of electronic parts. From the viewpoint that a pressure-sensitive adhesive layer with little expansion or outgassing can be formed even in thermocompression bonding when transferring electronic parts to a mounting substrate, the amount is 0.5 parts by weight or more with respect to 100 parts by weight of the base polymer. is preferred, more preferably 1.0 parts by weight or more, and still more preferably 1.5 parts by weight or more. The upper limit of the amount used is preferably 10 parts by weight or less with respect to 100 parts by weight of the base polymer, more preferably 10 parts by weight or less, from the viewpoint of obtaining appropriate flexibility in the pressure-sensitive adhesive layer and improving the adhesive strength. is 5 parts by weight or less.
 本発明のアクリル系粘着剤組成物は、特に限定されないが、架橋促進剤を含んでいてもよい。架橋促進剤の種類は、使用する架橋剤の種類に応じて適宜選択することができる。なお、本明細書において、架橋促進剤とは、架橋剤による架橋反応の速度を高める触媒を指す。かかる架橋促進剤としては、ジオクチル錫ジラウレート、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジアセチルアセトナート、テトラ-n-ブチル錫、トリメチル錫ヒドロキシド等の錫(Sn)含有化合物;N,N,N',N'-テトラメチルヘキサンジアミンやトリエチルアミン等のアミン類、イミダゾール類等のN含有化合物;等が例示される。なかでも、Sn含有化合物が好ましい。これら架橋促進剤の使用は、上記副モノマーとしてヒドロキシル基含有モノマーを用い、かつ架橋剤としてイソシアネート系架橋剤を用いた場合に特に効果的である。上記粘着剤組成物に含まれる架橋促進剤の量は、上記アクリル系ポリマー100質量部に対し、例えば、0.001~0.5質量部程度(好ましくは0.001~0.1質量部程度)とすることができる。 Although the acrylic pressure-sensitive adhesive composition of the present invention is not particularly limited, it may contain a cross-linking accelerator. The type of cross-linking accelerator can be appropriately selected according to the type of cross-linking agent used. In the present specification, the term "crosslinking accelerator" refers to a catalyst that increases the speed of the cross-linking reaction by the cross-linking agent. Such crosslinking accelerators include tin (Sn)-containing compounds such as dioctyltin dilaurate, dibutyltin dilaurate, dibutyltin diacetate, dibutyltin diacetylacetonate, tetra-n-butyltin, trimethyltin hydroxide; amines such as N',N'-tetramethylhexanediamine and triethylamine; N-containing compounds such as imidazoles; Among them, Sn-containing compounds are preferred. The use of these cross-linking accelerators is particularly effective when a hydroxyl group-containing monomer is used as the secondary monomer and an isocyanate-based cross-linking agent is used as the cross-linking agent. The amount of the cross-linking accelerator contained in the adhesive composition is, for example, about 0.001 to 0.5 parts by mass (preferably about 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the acrylic polymer. ).
 本発明の粘着剤層は、外部からの作用によって意図的に粘着力を低減させることが可能な粘着剤層(粘着力低減可能型粘着剤層)であってもよいし、外部からの作用によっては粘着力がほとんど又は全く低減しない粘着剤層(粘着力非低減型粘着剤層)であってもよく、電子部品を実装する手法や条件等に応じて適宜に選択することができる。 The pressure-sensitive adhesive layer of the present invention may be a pressure-sensitive adhesive layer (adhesion-reducing pressure-sensitive adhesive layer) capable of intentionally reducing the adhesive force by an external action, or may be an adhesive layer capable of reducing the adhesive force by an external action. may be an adhesive layer in which the adhesive force is hardly or not reduced at all (non-adhesive force-reducing adhesive layer), and can be appropriately selected according to the method and conditions for mounting electronic components.
 本発明の粘着剤層が粘着力低減可能型粘着剤層である場合、本発明の粘着剤層が相対的に高い粘着力を示す状態と相対的に低い粘着力を示す状態とを使い分けることが可能となる。例えば、本発明の粘着剤層が電子部品を受け取る(転写する)工程では、本発明の粘着剤層が相対的に高い粘着力を示す状態を利用して、電子部品などの粘着剤層への衝突による衝撃を十分に吸収でき、衝突時の電子部品の跳ねによる位置ずれや裏返りなどを抑制できる。一方で、その後、受け取った電子部品を実装基板へ転写する過程では、本発明の粘着剤層の粘着力を低減させることで、転写性(受け渡し性)の向上や電子部品への糊残りを抑制することができる。 When the pressure-sensitive adhesive layer of the present invention is a pressure-sensitive adhesive layer capable of reducing the pressure-sensitive adhesive strength, the state in which the pressure-sensitive adhesive layer of the present invention exhibits a relatively high pressure-sensitive adhesive strength and the state in which the pressure-sensitive adhesive layer of the present invention exhibits a relatively low pressure-sensitive adhesive strength can be selectively used. It becomes possible. For example, in the step of receiving (transferring) an electronic component by the pressure-sensitive adhesive layer of the present invention, the state in which the pressure-sensitive adhesive layer of the present invention exhibits relatively high adhesive strength is used to transfer the pressure-sensitive adhesive layer of the electronic component or the like. It can sufficiently absorb the impact caused by a collision, and can suppress misalignment and turning inside out due to bounces of electronic parts at the time of collision. On the other hand, after that, in the process of transferring the received electronic component to the mounting substrate, by reducing the adhesive strength of the adhesive layer of the present invention, the transferability (transferability) is improved and the adhesive residue on the electronic component is suppressed. can do.
 このような粘着力低減可能型粘着剤層を形成する粘着剤としては、例えば、放射線硬化性粘着剤、加熱発泡型粘着剤等が挙げられ、放射線硬化性粘着剤が操作性の点で好ましい。すなわち、本発明の粘着剤層は放射線硬化性粘着剤から形成されることが好ましい。粘着力低減可能型粘着剤層を形成する粘着剤としては、一種の粘着剤を使用してもよいし、二種以上の粘着剤を使用してもよい。 Examples of the adhesive that forms such an adhesive layer capable of reducing adhesive strength include radiation-curable adhesives and heat-foamable adhesives, with radiation-curable adhesives being preferred in terms of operability. That is, the pressure-sensitive adhesive layer of the invention is preferably formed from a radiation-curable pressure-sensitive adhesive. As the adhesive for forming the adhesive force-reducing adhesive layer, one kind of adhesive may be used, or two or more kinds of adhesives may be used.
 上記放射線硬化性粘着剤としては、例えば、電子線、紫外線、α線、β線、γ線、又はX線の照射により硬化するタイプの粘着剤を用いることができ、紫外線照射によって硬化するタイプの粘着剤(紫外線硬化性粘着剤)を特に好ましく用いることができる。 As the radiation-curable adhesive, for example, an adhesive that is cured by irradiation with electron beams, ultraviolet rays, α-rays, β-rays, γ-rays, or X-rays can be used. Adhesives (ultraviolet curable adhesives) can be particularly preferably used.
 上記放射線硬化性粘着剤としては、放射線重合性の炭素-炭素二重結合等の官能基をポリマー側鎖や、ポリマー主鎖中、ポリマー主鎖末端に有するベースポリマーを含有する内在型の放射線硬化性粘着剤も挙げられる。このような内在型の放射線硬化性粘着剤を用いると、形成された粘着剤層内での低分子量成分の移動に起因する粘着特性の意図しない経時的変化を抑制することができる傾向がある。 As the radiation-curable pressure-sensitive adhesive, an internal radiation-curable adhesive containing a base polymer having a radiation-polymerizable carbon-carbon double bond or other functional group in the polymer side chain, in the polymer main chain, or at the polymer main chain end. Also included are adhesives. The use of such an internal radiation-curable adhesive tends to suppress unintended changes in adhesive properties over time due to migration of low-molecular-weight components within the formed adhesive layer.
 上記内在型の放射線硬化性粘着剤に含有されるベースポリマーとしては、アクリル系ポリマーが好ましい。アクリル系ポリマーへの放射線重合性の炭素-炭素二重結合の導入方法としては、例えば、第1の官能基を有するモノマー成分を含む原料モノマーを重合(共重合)させてアクリル系ポリマーを得た後、上記第1の官能基と反応し得る第2の官能基及び放射線重合性の炭素-炭素二重結合を有する化合物を、炭素-炭素二重結合の放射線重合性を維持したままアクリル系ポリマーに対して縮合反応又は付加反応させる方法が挙げられる。 An acrylic polymer is preferable as the base polymer contained in the internal radiation-curable pressure-sensitive adhesive. As a method for introducing a radiation-polymerizable carbon-carbon double bond into an acrylic polymer, for example, an acrylic polymer is obtained by polymerizing (copolymerizing) raw material monomers containing a monomer component having a first functional group. After that, a compound having a second functional group capable of reacting with the first functional group and a radiation polymerizable carbon-carbon double bond is added to an acrylic polymer while maintaining the radiation polymerizability of the carbon-carbon double bond. Condensation reaction or addition reaction method can be used.
 上記第1の官能基と上記第2の官能基の組み合わせとしては、例えば、カルボキシ基とエポキシ基、エポキシ基とカルボキシ基、カルボキシ基とアジリジル基、アジリジル基とカルボキシ基、ヒドロキシ基とイソシアネート基、イソシアネート基とヒドロキシ基等が挙げられる。これらの中でも、反応追跡の容易さの観点から、ヒドロキシ基とイソシアネート基の組み合わせ、イソシアネート基とヒドロキシ基の組み合わせが好ましい。中でも、反応性の高いイソシアネート基を有するポリマーを作製することは技術的難易度が高く、一方でヒドロキシ基を有するアクリル系ポリマーの作製及び入手の容易性の観点から、上記第1の官能基がヒドロキシ基であり、上記第2の官能基がイソシアネート基である組み合わせが好ましい。イソシアネート基及び放射性重合性の炭素-炭素二重結合を有する化合物、すなわち、放射線重合性の不飽和官能基含有イソシアネート化合物としては、例えば、メタクリロイルイソシアネート、2-メタクリロイルオキシエチルイソシアネート、m-イソプロペニル-α,α-ジメチルベンジルイソシアネート等が挙げられる。また、ヒドロキシ基を有するアクリル系ポリマーとしては、上述のヒドロキシ基含有モノマーや、2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、ジエチレングリコールモノビニルエーテル等のエーテル系化合物に由来する構成単位を含むものが挙げられる。 Combinations of the first functional group and the second functional group include, for example, a carboxy group and an epoxy group, an epoxy group and a carboxy group, a carboxy group and an aziridyl group, an aziridyl group and a carboxy group, a hydroxy group and an isocyanate group, An isocyanate group, a hydroxy group, and the like can be mentioned. Among these, a combination of a hydroxy group and an isocyanate group, and a combination of an isocyanate group and a hydroxy group are preferred from the viewpoint of ease of reaction tracking. Among them, it is technically difficult to produce a polymer having a highly reactive isocyanate group, and on the other hand, from the viewpoint of ease of production and availability of an acrylic polymer having a hydroxy group, the first functional group is A preferred combination is a hydroxy group and the second functional group is an isocyanate group. Compounds having an isocyanate group and a radiation-polymerizable carbon-carbon double bond, that is, radiation-polymerizable unsaturated functional group-containing isocyanate compounds include, for example, methacryloyl isocyanate, 2-methacryloyloxyethyl isocyanate, m-isopropenyl- α,α-dimethylbenzyl isocyanate and the like. Examples of the acrylic polymer having a hydroxy group include those containing structural units derived from ether compounds such as the above-mentioned hydroxy group-containing monomers, 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, and diethylene glycol monovinyl ether. be done.
 上記の放射線重合性の不飽和官能基含有イソシアネート化合物を使用する場合、本発明の粘着剤層を形成する放射線硬化性粘着剤中の上記放射線重合性の不飽和官能基含有イソシアネート化合物の含有量は、上記ベースポリマー100質量部に対して、例えば5~100質量部、好ましくは7~50質量部程度である。 When using the radiation-polymerizable unsaturated functional group-containing isocyanate compound, the content of the radiation-polymerizable unsaturated functional group-containing isocyanate compound in the radiation-curable pressure-sensitive adhesive forming the pressure-sensitive adhesive layer of the present invention is , for example, 5 to 100 parts by mass, preferably about 7 to 50 parts by mass, per 100 parts by mass of the base polymer.
 上記放射線硬化性粘着剤は、光重合開始剤を含有することが好ましい。上記光重合開始剤としては、例えば、α-ケトール系化合物、アセトフェノン系化合物、ベンゾインエーテル系化合物、ケタール系化合物、芳香族スルホニルクロリド系化合物、光活性オキシム系化合物、ベンゾフェノン系化合物、チオキサントン系化合物、カンファーキノン、ハロゲン化ケトン、アシルホスフィノキシド、アシルホスフォナート等が挙げられる。上記α-ケトール系化合物としては、例えば、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、α-ヒドロキシ-α,α’-ジメチルアセトフェノン、2-メチル-2-ヒドロキシプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-1-(4-(4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル)フェニル)-2-メチルプロパン-1-オン等が挙げられる。上記アセトフェノン系化合物としては、例えば、メトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシアセトフェノン、2-メチル-1-[4-(メチルチオ)-フェニル]-2-モルホリノプロパン-1等が挙げられる。上記ベンゾインエーテル系化合物としては、例えば、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、アニソインメチルエーテル等が挙げられる。上記ケタール系化合物としては、例えば、ベンジルジメチルケタール等が挙げられる。上記芳香族スルホニルクロリド系化合物としては、例えば、2-ナフタレンスルホニルクロリド等が挙げられる。上記光活性オキシム系化合物としては、例えば、1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)オキシム等が挙げられる。上記ベンゾフェノン系化合物としては、例えば、ベンゾフェノン、ベンゾイル安息香酸、3,3'-ジメチル-4-メトキシベンゾフェノン等が挙げられる。上記チオキサントン系化合物としては、例えば、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、2,4-ジメチルチオキサントン、イソプロピルチオキサントン、2,4-ジクロロチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン等が挙げられる。放射線硬化性粘着剤中の光重合開始剤の含有量は、ベースポリマー100質量部に対して、例えば0.05~20質量部である。 The radiation-curable adhesive preferably contains a photopolymerization initiator. Examples of the photopolymerization initiator include α-ketol compounds, acetophenone compounds, benzoin ether compounds, ketal compounds, aromatic sulfonyl chloride compounds, photoactive oxime compounds, benzophenone compounds, thioxanthone compounds, camphorquinone, halogenated ketone, acylphosphinate, acylphosphonate and the like. Examples of the α-ketol compounds include 4-(2-hydroxyethoxy)phenyl(2-hydroxy-2-propyl)ketone, α-hydroxy-α,α'-dimethylacetophenone, 2-methyl-2-hydroxy propiophenone, 1-hydroxycyclohexylphenyl ketone, 2-hydroxy-1-(4-(4-(2-hydroxy-2-methylpropionyl)benzyl)phenyl)-2-methylpropan-1-one and the like. . Examples of the acetophenone compounds include methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1-[4-(methylthio)-phenyl]-2-morpholino propane-1 and the like. Examples of the benzoin ether compounds include benzoin ethyl ether, benzoin isopropyl ether, and anisoin methyl ether. Examples of the ketal compounds include benzyl dimethyl ketal. Examples of the aromatic sulfonyl chloride compounds include 2-naphthalenesulfonyl chloride. Examples of the photoactive oxime compound include 1-phenyl-1,2-propanedione-2-(O-ethoxycarbonyl)oxime. Examples of the benzophenone-based compounds include benzophenone, benzoylbenzoic acid, and 3,3'-dimethyl-4-methoxybenzophenone. Examples of the thioxanthone compounds include thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2,4-diethylthioxanthone, and 2,4-diisopropyl. thioxanthone and the like. The content of the photopolymerization initiator in the radiation-curable adhesive is, for example, 0.05 to 20 parts by weight with respect to 100 parts by weight of the base polymer.
 上記加熱発泡型粘着剤は、加熱によって発泡や膨張をする成分(発泡剤、熱膨張性微小球等)を含有する粘着剤である。上記発泡剤としては、種々の無機系発泡剤や有機系発泡剤が挙げられる。上記無機系発泡剤としては、例えば、炭酸アンモニウム、炭酸水素アンモニウム、炭酸水素ナトリウム、亜硝酸アンモニウム、水素化ホウ素ナトリウム、アジド類等が挙げられる。上記有機系発泡剤としては、例えば、トリクロロモノフルオロメタン、ジクロロモノフルオロメタン等の塩フッ化アルカン;アゾビスイソブチロニトリル、アゾジカルボンアミド、バリウムアゾジカルボキシレート等のアゾ系化合物;パラトルエンスルホニルヒドラジド、ジフェニルスルホン-3,3'-ジスルホニルヒドラジド、4,4'-オキシビス(ベンゼンスルホニルヒドラジド)、アリルビス(スルホニルヒドラジド)等のヒドラジン系化合物;p-トルイレンスルホニルセミカルバジド、4,4'-オキシビス(ベンゼンスルホニルセミカルバジド)等のセミカルバジド系化合物;5-モルホリル-1,2,3,4-チアトリアゾール等のトリアゾール系化合物;N,N'-ジニトロソペンタメチレンテトラミン、N,N'-ジメチル-N,N'-ジニトロソテレフタルアミド等のN-ニトロソ系化合物等が挙げられる。上記熱膨張性微小球としては、例えば、加熱によって容易にガス化して膨張する物質が殻内に封入された構成の微小球が挙げられる。上記加熱によって容易にガス化して膨張する物質としては、例えば、イソブタン、プロパン、ペンタン等が挙げられる。加熱によって容易にガス化して膨張する物質をコアセルベーション法や界面重合法等によって殻形成物質内に封入することによって、熱膨張性微小球を作製することができる。上記殻形成物質としては、熱溶融性を示す物質や、封入物質の熱膨張の作用によって破裂し得る物質を用いることができる。そのような物質としては、例えば、塩化ビニリデン・アクリロニトリル共重合体、ポリビニルアルコール、ポリビニルブチラール、ポリメチルメタクリレート、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリスルホン等が挙げられる。 The heat-expandable pressure-sensitive adhesive is a pressure-sensitive adhesive containing components that foam or expand when heated (foaming agent, thermally expandable microspheres, etc.). Examples of the foaming agent include various inorganic foaming agents and organic foaming agents. Examples of the inorganic foaming agent include ammonium carbonate, ammonium hydrogencarbonate, sodium hydrogencarbonate, ammonium nitrite, sodium borohydride, and azides. Examples of the organic foaming agent include alkane hydrochlorides such as trichloromonofluoromethane and dichloromonofluoromethane; azo compounds such as azobisisobutyronitrile, azodicarbonamide, and barium azodicarboxylate; and paratoluene. Hydrazine compounds such as sulfonyl hydrazide, diphenylsulfone-3,3'-disulfonyl hydrazide, 4,4'-oxybis(benzenesulfonylhydrazide), allylbis(sulfonylhydrazide); p-toluylenesulfonyl semicarbazide, 4,4'- Semicarbazide compounds such as oxybis (benzenesulfonyl semicarbazide); triazole compounds such as 5-morpholyl-1,2,3,4-thiatriazole; N,N'-dinitrosopentamethylenetetramine, N,N'-dimethyl- Examples include N-nitroso compounds such as N,N'-dinitrosoterephthalamide. Examples of the heat-expandable microspheres include microspheres having a structure in which a substance that easily gasifies and expands upon heating is encapsulated in the shell. Isobutane, propane, pentane, and the like are examples of substances that easily gasify and expand when heated. Thermally expandable microspheres can be produced by encapsulating a substance that is easily gasified and expanded by heating in a shell-forming substance by a coacervation method, an interfacial polymerization method, or the like. As the shell-forming substance, a substance exhibiting thermal melting properties and a substance capable of bursting due to the action of thermal expansion of the enclosed substance can be used. Examples of such substances include vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, polysulfone, and the like.
 上記粘着力非低減型粘着剤層としては、例えば、感圧型粘着剤層が挙げられる。なお、感圧型粘着剤層には、粘着力低減可能型粘着剤層に関して上述した放射線硬化性粘着剤から形成された粘着剤層を予め放射線照射によって硬化させつつも一定の粘着力を有する形態の粘着剤層が含まれる。粘着力非低減型粘着剤層を形成する粘着剤としては、一種の粘着剤を使用してもよいし、二種以上の粘着剤を使用してもよい。また、本発明の粘着剤層の全体が粘着力非低減型粘着剤層であってもよいし、一部が粘着力非低減型粘着剤層であってもよい。例えば、本発明の粘着剤層が単層構造を有する場合、本発明の粘着剤層の全体が粘着力非低減型粘着剤層であってもよいし、本発明の粘着剤層における特定の部位が粘着力非低減型粘着剤層であり、他の部位が粘着力低減可能型粘着剤層であってもよい。また、本発明の粘着剤層が積層構造を有する場合、積層構造における全ての粘着剤層が粘着力非低減型粘着剤層であってもよいし、積層構造中の一部の粘着剤層が粘着力非低減型粘着剤層であってもよい。 Examples of the non-reducing adhesive layer include a pressure-sensitive adhesive layer. In the pressure-sensitive adhesive layer, an adhesive layer formed from the radiation-curable adhesive described above with respect to the adhesive force-reducing adhesive layer is cured by irradiation in advance and has a certain adhesive force. An adhesive layer is included. As the adhesive that forms the non-adhesion-reducing adhesive layer, one kind of adhesive may be used, or two or more kinds of adhesives may be used. Moreover, the adhesive layer of the present invention may be a non-adhesive force-reducing adhesive layer as a whole, or a part thereof may be an adhesive force-non-reducing adhesive layer. For example, when the pressure-sensitive adhesive layer of the present invention has a single-layer structure, the entire pressure-sensitive adhesive layer of the present invention may be a non-adhesion-reducing pressure-sensitive adhesive layer, or a specific portion of the pressure-sensitive adhesive layer of the present invention may be the non-adhesion-reducing pressure-sensitive adhesive layer, and the other part may be the pressure-sensitive adhesive layer capable of reducing the adhesion force. Further, when the pressure-sensitive adhesive layer of the present invention has a laminated structure, all the pressure-sensitive adhesive layers in the laminated structure may be non-adhesive strength-reducing pressure-sensitive adhesive layers, or a part of the pressure-sensitive adhesive layers in the laminated structure may be It may be a non-adhesion-reducing pressure-sensitive adhesive layer.
 放射線硬化性粘着剤から形成された粘着剤層(放射線未照射放射線硬化型粘着剤層)を予め放射線照射によって硬化させた形態の粘着剤層(放射線照射済放射線硬化型粘着剤層)は、放射線照射によって粘着力が低減されているとしても、含有するポリマー成分に起因する粘着性を示し、本発明の粘着剤層に最低限必要な粘着力を発揮することが可能である。放射線照射済放射線硬化型粘着剤層を用いる場合、本発明の粘着剤層の面広がり方向において、本発明の粘着剤層の全体が放射線照射済放射線硬化型粘着剤層であってもよく、本発明の粘着剤層の一部が放射線照射済放射線硬化型粘着剤層であり且つ他の部分が放射線未照射の放射線硬化型粘着剤層であってもよい。なお、本明細書において、「放射線硬化型粘着剤層」とは、放射線硬化性粘着剤から形成された粘着剤層をいい、放射線硬化性を有する放射線未照射放射線硬化型粘着剤層及び当該粘着剤層が放射線照射により硬化した後の放射線硬化済放射線硬化型粘着剤層の両方を含む。 The pressure-sensitive adhesive layer (irradiated radiation-curable pressure-sensitive adhesive layer) formed by pre-curing the pressure-sensitive adhesive layer (radiation-unexposed radiation-curable pressure-sensitive adhesive layer) formed from a radiation-curable pressure-sensitive adhesive by irradiation with radiation Even if the adhesive strength is reduced by irradiation, the adhesive strength resulting from the contained polymer component can be exhibited, and the adhesive layer of the present invention can exhibit the minimum required adhesive strength. When a radiation-cured pressure-sensitive adhesive layer that has been irradiated is used, the entire pressure-sensitive adhesive layer of the present invention may be the irradiated radiation-curing pressure-sensitive adhesive layer in the surface spreading direction of the pressure-sensitive adhesive layer of the present invention. A part of the pressure-sensitive adhesive layer of the invention may be an irradiated radiation-curable pressure-sensitive adhesive layer and the other part may be a non-irradiated radiation-curable pressure-sensitive adhesive layer. In this specification, the term "radiation-curable pressure-sensitive adhesive layer" refers to a pressure-sensitive adhesive layer formed from a radiation-curable pressure-sensitive adhesive. It includes both the radiation-cured radiation-curable pressure-sensitive adhesive layer after the agent layer has been cured by irradiation.
 上記感圧型粘着剤層を形成する粘着剤としては、公知乃至慣用の感圧型の粘着剤を用いることができ、アクリル系ポリマーをベースポリマーとするアクリル系粘着剤を好ましく用いることができる。本発明の粘着剤層が感圧型の粘着剤としてアクリル系ポリマーを含有する場合、当該アクリル系ポリマーは、(メタ)アクリル酸エステルに由来する構成単位を質量割合で最も多い構成単位として含むポリマーであることが好ましい。上記アクリル系ポリマーとしては、例えば、上述の添加型の放射線硬化性粘着剤に含まれ得るアクリル系ポリマーとして説明されたアクリル系ポリマーを採用することができる。 As the adhesive that forms the pressure-sensitive adhesive layer, a known or commonly used pressure-sensitive adhesive can be used, and an acrylic adhesive that uses an acrylic polymer as a base polymer can be preferably used. When the pressure-sensitive adhesive layer of the present invention contains an acrylic polymer as a pressure-sensitive pressure-sensitive adhesive, the acrylic polymer is a polymer containing the structural unit derived from (meth)acrylic acid ester as the largest structural unit in terms of mass ratio. Preferably. As the acrylic polymer, for example, the acrylic polymer described as the acrylic polymer that can be included in the additive-type radiation-curable pressure-sensitive adhesive can be employed.
 上記シリコーン系粘着剤としては、特に制限されず、公知乃至慣用のシリコーン系粘着剤を用いることができ、例えば、付加型シリコーン系粘着剤、過酸化物硬化型シリコーン系粘着剤、縮合型シリコーン系粘着剤などを用いることができる。シリコーン系粘着剤は1液型、2液型のいずれであってもよい。シリコーン系粘着剤は1種 単独で又は2種以上を組み合わせて使用することができる。 The silicone-based pressure-sensitive adhesive is not particularly limited, and a known or commonly used silicone-based pressure-sensitive adhesive can be used. An adhesive or the like can be used. The silicone pressure-sensitive adhesive may be either one-pack type or two-pack type. One type of silicone pressure-sensitive adhesive can be used alone, or two or more types can be used in combination.
 前記付加型シリコーン系粘着剤は、一般に、ケイ素原子にビニル基等のアルケニル基を有するオルガノポリシロキサンとヒドロシリル基を有するオルガノポリシロキサンとを、塩化白金酸等の白金化合物触媒を用いて付加反応(ヒドロシリル化反応)させることによりシリコーン系ポリマーを生成させる粘着剤である。過酸化物硬化型シリコーン系粘着剤は、一般に、オルガノポリシロキサンを過酸化物により硬化(架橋)させてシリコーン系ポリマーを生成させる粘着剤である。また、縮合型シリコーン系粘着剤は、一般に、末端にシラノール基又はアルコキシシリル基等の加水分解性シリル基を有するポリオルガノシロキサン間の脱水又は脱アルコール反応によりシリコーン系ポリマーを生成させる粘着剤である。 The addition-type silicone pressure-sensitive adhesive generally comprises an organopolysiloxane having an alkenyl group such as a vinyl group on the silicon atom and an organopolysiloxane having a hydrosilyl group, using a platinum compound catalyst such as chloroplatinic acid for an addition reaction ( A pressure-sensitive adhesive that generates a silicone-based polymer through a hydrosilylation reaction. A peroxide-curable silicone-based pressure-sensitive adhesive is generally a pressure-sensitive adhesive that cures (crosslinks) organopolysiloxane with a peroxide to form a silicone-based polymer. Condensation-type silicone-based pressure-sensitive adhesives are generally pressure-sensitive adhesives that generate a silicone-based polymer through a dehydration or dealcoholization reaction between polyorganosiloxanes having hydrolyzable silyl groups such as silanol groups or alkoxysilyl groups at their terminals. .
 シリコーン系粘着剤としては、低粘着性、低タック性にコントロールしやすい点、光学的な時間スケールにおける粘着剤層の衝撃吸収性と、実装基板に電子部品を転写する際の熱圧着においても、膨張やアウトガスの発生を抑制できる優れた耐熱性とのバランスを高いレベルで制御し、本発明の粘着剤層を転写用基板の衝撃吸収層として使用する際に、優れた衝撃吸収性と、耐熱性とを両立できるという観点より、例えば、シリコーンゴムとシリコーンレジンとを含有するシリコーン系粘着剤組成物が挙げられる。 As a silicone-based adhesive, it is easy to control low tackiness and low tackiness, the impact absorption of the adhesive layer on an optical time scale, and thermocompression bonding when transferring electronic parts to a mounting board. The balance between excellent heat resistance that can suppress expansion and outgassing is controlled at a high level, and when the pressure-sensitive adhesive layer of the present invention is used as an impact absorption layer of a transfer substrate, excellent impact absorption and heat resistance can be achieved. From the point of view that both properties and properties can be compatible, for example, a silicone-based pressure-sensitive adhesive composition containing a silicone rubber and a silicone resin can be used.
 前記シリコーンゴムとしては、シリコーン系のゴム成分であれば特に制限されないが、例えば、ジメチルシロキサン、メチルフェニルシロキサンなどを主な構成単位とするオルガノポリシロキサンを使用できる。また、反応の型に応じて、ケイ素原子に結合したアルケニル基を有するシリコーン系ゴム(アルケニル基含有オルガノポリシロキサン;付加反応型の場合)、メチル基を少なくとも有するシリコーン系ゴム(過酸化物硬化型の場合)、末端にシラノール基又は加水分解性のアルコキシシリル基を有するシリコーン系ゴム(縮合型の場合)などを用いることができる。なお、シリコーンゴムにおけるオルガノポリシロキサンの重量平均分子量は、通常、15万以上であるが、好ましくは28万~100万であり、特に50万~90万が好適である。 The silicone rubber is not particularly limited as long as it is a silicone-based rubber component, but for example, organopolysiloxane having dimethylsiloxane, methylphenylsiloxane, or the like as a main constituent unit can be used. In addition, depending on the type of reaction, silicone rubber having alkenyl groups bonded to silicon atoms (alkenyl group-containing organopolysiloxane; in the case of addition reaction type), silicone rubber having at least methyl groups (peroxide curing type ), a silicone rubber having a terminal silanol group or a hydrolyzable alkoxysilyl group (in the case of condensation type) can be used. The weight average molecular weight of the organopolysiloxane in the silicone rubber is usually 150,000 or more, preferably 280,000 to 1,000,000, and more preferably 500,000 to 900,000.
 また、前記シリコーンレジンとしては、シリコーン系粘着剤に使用されているシリコーン系のレジンであれば特に制限されないが、例えば、構成単位「R3Si1/2」からなるM単位、構成単位「SiO2」からなるQ単位、構成単位「RSiO3/2」からなるT単位、および構成単位「R2SiO」からなるD単位から選択される少なくとも1種の単位を有する(共)重合体からなるオルガノポリシロキサンからなるシリコーンレジンなどが挙げられる。なお、前記構成単位におけるRは炭化水素基又はヒドロキシル基を示す。前記炭化水素基としては、例えば、脂肪族炭化水素基(メチル基、エチル基等のアルキル基など)、脂環式炭化水素基(シクロヘキシル基等のシクロアルキル基など)、芳香族炭化水素基(フェニル基、ナフチル基等のアリール基など)などが挙げられる。前記M単位と、Q単位、T単位およびD単位から選択された少なくとも1種の単位との割合(比)としては、例えば、前者/後者(モル比)=0.3/1~1.5/1(好ましくは0.5/1~1.3/1)程度であることが望ましい。このようなシリコーンレジンにおけるオルガノポリシロキサンには、必要に応じて、ビニル基等の各種官能基が導入されていてもよい。なお、導入される官能基は、架橋反応を生じることが可能な官能基であってもよい。シリコーンレジンとしては、M単位とQ単位からなるMQレジンが好ましい。シリコーンレジンにおけるオルガノポリシロキサンの重量平均分子量は、通常、1000以上であるが、好ましくは1000~20000であり、特に1500~10000が好適である。 The silicone resin is not particularly limited as long as it is a silicone-based resin used in silicone-based pressure -sensitive adhesives. 2 ”, T units consisting of the structural unit “RSiO 3/2 ”, and D units consisting of the structural unit “R 2 SiO”. Examples include silicone resins made of organopolysiloxane. In addition, R in the said structural unit shows a hydrocarbon group or a hydroxyl group. Examples of the hydrocarbon group include aliphatic hydrocarbon groups (alkyl groups such as methyl group and ethyl group), alicyclic hydrocarbon groups (cycloalkyl groups such as cyclohexyl group), aromatic hydrocarbon groups ( phenyl group, aryl group such as naphthyl group, etc.). The ratio (ratio) between the M unit and at least one unit selected from Q unit, T unit and D unit is, for example, the former/latter (molar ratio)=0.3/1 to 1.5. /1 (preferably 0.5/1 to 1.3/1). Various functional groups such as a vinyl group may be introduced into the organopolysiloxane in such a silicone resin, if necessary. The functional group to be introduced may be a functional group capable of causing a cross-linking reaction. As the silicone resin, an MQ resin composed of M units and Q units is preferred. The weight average molecular weight of the organopolysiloxane in the silicone resin is usually 1,000 or more, preferably 1,000 to 20,000, and more preferably 1,500 to 10,000.
 シリコーンゴムとシリコーンレジンとの配合割合としては、特に制限されないが、低粘着性、低タック性にコントロールしやすい点より、例えば、シリコーンゴム100重量部に対して、シリコーンレジンが100~220重量部(特に、120~180重量部)であることが好ましい。 The mixing ratio of the silicone rubber and the silicone resin is not particularly limited, but from the viewpoint of easy control of low tackiness and low tackiness, for example, 100 parts by weight of the silicone rubber and 100 to 220 parts by weight of the silicone resin. (in particular, 120 to 180 parts by weight).
 なお、シリコーンゴムとシリコーンレジンとを含有するシリコーン系粘着剤組成物において、シリコーンゴムとシリコーンレジンとは、単に混合されている混合状態であってもよく、互いに反応して、縮合物(特に部分縮合物)、架橋反応物、付加反応生成物等となっていてもよい。 In the silicone pressure-sensitive adhesive composition containing the silicone rubber and the silicone resin, the silicone rubber and the silicone resin may be in a mixed state in which they are simply mixed, and react with each other to form condensates (especially partial condensate), a cross-linking reaction product, an addition reaction product, or the like.
 付加型シリコーン系粘着剤として、例えば、商品名「SD4580」、商品名「SD4584」、商品名「SD4585」、商品名「SD4587L」、商品名「SD4560」、商品名「SD4570」、商品名「SD4600FC」、商品名「SD4593」、商品名「SE1700」(以上、ダウ・東レ株式会社製);商品名「KR-3700」、商品名「KR-3701」、商品名「X-40-3237-1」、商品名「X-40-3240」、商品名「X-40-3291-1」、商品名「X-40-3306」(以上、信越化学工業株式会社製)が市販されている。また、過酸化物硬化型シリコーン系粘着剤として、例えば、商品名「KR-100」、商品名「KR-101-10」、商品名「KR-130」(以上、信越化学工業株式会社製)などが市販されている。 Examples of addition-type silicone pressure-sensitive adhesives include the product name “SD4580,” the product name “SD4584,” the product name “SD4585,” the product name “SD4587L,” the product name “SD4560,” the product name “SD4570,” and the product name “SD4600FC.” ”, trade name “SD4593”, trade name “SE1700” (manufactured by Dow Toray Industries, Inc.); trade name “KR-3700”, trade name “KR-3701”, trade name “X-40-3237-1 ”, trade name “X-40-3240”, trade name “X-40-3291-1”, and trade name “X-40-3306” (manufactured by Shin-Etsu Chemical Co., Ltd.). In addition, as a peroxide-curable silicone-based adhesive, for example, the trade name "KR-100", the trade name "KR-101-10", the trade name "KR-130" (manufactured by Shin-Etsu Chemical Co., Ltd.) etc., are commercially available.
 シリコーンゴムとシリコーンレジンとを含有するシリコーン系粘着剤組成物は、低粘着性、低タック性にコントロールしやすい点、光学的な時間スケールにおける粘着剤層の衝撃吸収性と、実装基板に電子部品を転写する際の熱圧着においても、膨張やアウトガスの発生を抑制できる優れた耐熱性を高いレベルで制御し、本発明の粘着剤層を転写用基板の衝撃吸収層として使用する際に、優れた衝撃吸収性と、耐熱性とを両立できるという観点より、架橋剤を含んでいることが好ましい。シリコーン系粘着剤が有する衝撃吸収性に加えて、シリコーン系粘着剤層におけるシリコーンゴムとシリコーンレジンを架橋し、実装基板に電子部品を転写する際の熱圧着においても、膨張やアウトガスの発生を抑制できる優れた耐熱性を実現し、本発明の粘着剤層を転写用基板の衝撃吸収層として使用する際に、優れた耐熱性を付与できると考えられる。このような架橋剤としては、特に制限されないが、シロキサン系架橋剤(シリコーン系架橋剤)、過酸化物系架橋剤を好適に用いることができる。中でも、シロキサン系架橋剤が好ましい。架橋剤は1種単独で又は2種以上組み合わせて使用することができる。 A silicone pressure-sensitive adhesive composition containing silicone rubber and silicone resin is easy to control low tackiness and low tackiness. Excellent heat resistance that can suppress expansion and outgassing even in thermocompression bonding when transferring is controlled at a high level. It is preferable that a cross-linking agent is included from the viewpoint of achieving both impact absorption and heat resistance. In addition to the shock absorbing properties of silicone adhesives, the silicone rubber and silicone resin in the silicone adhesive layer are crosslinked to suppress expansion and outgassing during thermocompression bonding when electronic components are transferred to a mounting substrate. It is considered that excellent heat resistance can be realized, and excellent heat resistance can be imparted when the pressure-sensitive adhesive layer of the present invention is used as an impact absorption layer of a transfer substrate. Such a cross-linking agent is not particularly limited, but siloxane-based cross-linking agents (silicone-based cross-linking agents) and peroxide-based cross-linking agents can be preferably used. Among them, a siloxane-based cross-linking agent is preferable. A crosslinking agent can be used individually by 1 type or in combination of 2 or more types.
 前記シロキサン系架橋剤としては、例えば、分子中にケイ素原子に結合している水素原子を2個以上有するポリオルガノハイドロジェンシロキサンを好適に用いることができる。このようなポリオルガノハイドロジェンシロキサンにおいて、水素原子が結合しているケイ素原子には、水素原子以外に各種有機基が結合していてもよい。該有機基としては、メチル基、エチル基等のアルキル基;フェニル基等のアリール基の他、ハロゲン化アルキル基などが挙げられるが、合成や取り扱いの観点から、メチル基が好ましい。また、ポリオルガノハイドロジェンシロキサンの骨格構造は、直鎖状、分岐状、環状のいずれの骨格構造を有していてもよいが、直鎖状が好適である。 As the siloxane-based cross-linking agent, for example, polyorganohydrogensiloxane having two or more hydrogen atoms bonded to silicon atoms in the molecule can be suitably used. In such a polyorganohydrogensiloxane, various organic groups other than hydrogen atoms may be bonded to silicon atoms to which hydrogen atoms are bonded. Examples of the organic group include alkyl groups such as a methyl group and an ethyl group; aryl groups such as a phenyl group; and halogenated alkyl groups. Moreover, the skeleton structure of the polyorganohydrogensiloxane may have a linear, branched, or cyclic skeleton structure, but is preferably linear.
 前記過酸化物系架橋剤としては、例えば、ジアシルパーオキサイド、アルキルパーオキシエステル、パーオキシジカーボネート、モノパーオキシカーボネート、パーオキシケタール、ジアルキルパーオキサイド、ハイドロパーオキサイド、ケトンパーオキサイドなどを使用できる。より具体的には、例えば、過酸化ベンゾイル、t-ブチルパーオキシベンゾエート、ジクミルパーオキサイド、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ-t-ブチルパーオキシヘキサン、2,4-ジクロロ-ベンゾイルパーオキサイド、ジ-t-ブチルパーオキシ-ジイソプロピルベンゼン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、2,5-ジメチル-2,5-ジ-t-ブチルパーオキシヘキシン-3などが挙げられる。 Examples of the peroxide-based cross-linking agent include diacyl peroxide, alkylperoxyester, peroxydicarbonate, monoperoxycarbonate, peroxyketal, dialkyl peroxide, hydroperoxide, and ketone peroxide. . More specifically, for example, benzoyl peroxide, t-butyl peroxybenzoate, dicumyl peroxide, t-butyl cumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-di -t-butylperoxyhexane, 2,4-dichloro-benzoyl peroxide, di-t-butylperoxy-diisopropylbenzene, 1,1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane , 2,5-dimethyl-2,5-di-t-butylperoxyhexyne-3 and the like.
 シロキサン系架橋剤として、例えば、商品名「BY24-741」、商品名「SE1700Catalyst」(以上、ダウ・東レ株式会社製);商品名「X-92-122」(以上、信越化学工業株式会社製)が市販されている。 As siloxane-based cross-linking agents, for example, trade name “BY24-741”, trade name “SE1700Catalyst” (manufactured by Dow Toray Industries, Inc.); trade name “X-92-122” (manufactured by Shin-Etsu Chemical Co., Ltd. ) are commercially available.
 シリコーン系粘着剤組成物が架橋剤を含む場合、上記架橋剤の使用量は、特に限定されないが、低粘着性、低タック性を制御して、搬送中の電子部品の脱落や位置ずれを抑制できる観点、優れた衝撃吸収性と、耐熱性とを両立できるという観点から、ベースポリマー100重量部に対して、0.5重量部以上であることが好ましく、より好ましくは0.7重量部以上、さらに好ましくは1重量部以上である。また、上記使用量の上限は、粘着剤層において適度な柔軟性を得て、粘着力を向上させる点より、ベースポリマー100重量部に対して、10重量部以下であることが好ましく、より好ましくは5重量部以下である。 When the silicone-based pressure-sensitive adhesive composition contains a cross-linking agent, the amount of the cross-linking agent used is not particularly limited. From the viewpoint of achieving both excellent impact absorption and heat resistance, it is preferably 0.5 parts by weight or more, more preferably 0.7 parts by weight or more, relative to 100 parts by weight of the base polymer. , more preferably 1 part by weight or more. The upper limit of the amount used is preferably 10 parts by weight or less with respect to 100 parts by weight of the base polymer, more preferably 10 parts by weight or less, from the viewpoint of obtaining appropriate flexibility in the pressure-sensitive adhesive layer and improving the adhesive strength. is 5 parts by weight or less.
 前記付加型シリコーン系粘着剤組成物には、白金触媒などの硬化触媒を含むことが好ましい。白金触媒として、例えば、商品名「CAT-PL-50T」(信越化学工業株式会社製)、「DOWSIL NC-25 Catalyst」または「DOWSIL SRX212 Catalyst」(以上、ダウ・東レ株式会社製)などが市販されている。粘着剤層の電子部品の受け取り性、位置精度、実装基板への転写性やタック力等のバランスの観点から、硬化触媒の含有量は、ベースポリマーとしてのシリコーン系ポリマー(シリコーンゴム、シリコーンレジン等を含む)100重量部に対して、0.1~10重量部程度が好ましい。 The addition-type silicone pressure-sensitive adhesive composition preferably contains a curing catalyst such as a platinum catalyst. As a platinum catalyst, for example, trade names "CAT-PL-50T" (manufactured by Shin-Etsu Chemical Co., Ltd.), "DOWSIL NC-25 Catalyst" or "DOWSIL SRX212 Catalyst" (manufactured by Dow Toray Industries, Inc.) are commercially available. It is From the viewpoint of the balance between the receptivity of the adhesive layer for electronic components, the positional accuracy, the transferability to the mounting board, and the tack strength, the content of the curing catalyst should be adjusted to the amount of the silicone-based polymer (silicone rubber, silicone resin, etc.) used as the base polymer. It is preferably about 0.1 to 10 parts by weight with respect to 100 parts by weight.
 本発明の樹脂組成物は、必要に応じて、さらに、粘着付与樹脂(ロジン誘導体、ポリテルペン樹脂、石油樹脂、油溶性フェノールなど)、老化防止剤、充填剤、着色剤(顔料や染料など)、紫外線吸収剤、酸化防止剤、連鎖移動剤、可塑剤、軟化剤、界面活性剤、帯電防止剤などの添加剤を、本発明の効果を損なわない範囲で含有していてもよい。なお、このような添加剤は、単独で又は2種以上組み合わせて用いることができる。 The resin composition of the present invention may optionally further contain a tackifying resin (rosin derivative, polyterpene resin, petroleum resin, oil-soluble phenol, etc.), an antioxidant, a filler, a coloring agent (pigment, dye, etc.), Additives such as ultraviolet absorbers, antioxidants, chain transfer agents, plasticizers, softeners, surfactants, and antistatic agents may be contained within the range that does not impair the effects of the present invention. Such additives can be used alone or in combination of two or more.
 本発明の粘着剤層(特に、アクリル系粘着剤層)の作製方法は、特に限定されないが、例えば、上記樹脂組成物を基材又ははく離ライナー上に塗布(塗工)し、得られた粘着剤組成物層を乾燥硬化させることや、上記樹脂組成物を基材又ははく離ライナー上に塗布(塗工)し、得られた粘着剤組成物層に活性エネルギー線を照射して硬化させることが挙げられる。また、必要に応じて、さらに、加熱乾燥してもよい。 The method for producing the pressure-sensitive adhesive layer (particularly, the acrylic pressure-sensitive adhesive layer) of the present invention is not particularly limited, but for example, the above resin composition is applied (coated) on a substrate or release liner, and the pressure-sensitive adhesive layer obtained is The adhesive composition layer may be dried and cured, or the resin composition may be applied (coated) onto a substrate or a release liner, and the resulting adhesive composition layer may be irradiated with active energy rays for curing. mentioned. Moreover, you may heat-dry further as needed.
 上記活性エネルギー線としては、例えば、α線、β線、γ線、中性子線、電子線などの電離性放射線や、紫外線などが挙げられ、特に、紫外線が好ましい。また、活性エネルギー線の照射エネルギー、照射時間、照射方法などは特に制限されない。 Examples of the active energy rays include ionizing radiation such as α-rays, β-rays, γ-rays, neutron beams and electron beams, and ultraviolet rays, with ultraviolet rays being particularly preferred. Moreover, the irradiation energy of the active energy ray, the irradiation time, the irradiation method, etc. are not particularly limited.
 上記樹脂組成物は、公知乃至慣用の方法で作製することができる。例えば、溶剤型のアクリル系粘着剤組成物は、上記アクリル系ポリマーを含有する溶液に、必要に応じて、添加剤(例えば、紫外線吸収剤など)を混合することにより、作製することができる。例えば、活性エネルギー線硬化型のアクリル系粘着剤組成物は、上記アクリル系モノマーの混合物又はその部分重合物に、必要に応じて、添加剤(例えば、紫外線吸収剤など)を混合することにより、作製することができる。 The above resin composition can be produced by a known or commonly used method. For example, a solvent-based acrylic pressure-sensitive adhesive composition can be prepared by mixing an additive (for example, an ultraviolet absorber, etc.) with a solution containing the acrylic polymer, if necessary. For example, an active energy ray-curable acrylic pressure-sensitive adhesive composition can be prepared by mixing an additive (for example, an ultraviolet absorber, etc.) with the mixture of acrylic monomers or a partial polymer thereof, if necessary. can be made.
 なお、上記樹脂組成物の塗布(塗工)には、公知のコーティング法を利用してもよい。例えば、グラビヤロールコーター、リバースロールコーター、キスロールコーター、ディップロールコーター、バーコーター、ナイフコーター、スプレーコーター、コンマコーター、ダイレクトコーターなどのコーターが用いられてもよい。 A known coating method may be used for applying (coating) the resin composition. For example, coaters such as gravure roll coaters, reverse roll coaters, kiss roll coaters, dip roll coaters, bar coaters, knife coaters, spray coaters, comma coaters and direct coaters may be used.
 特に、活性エネルギー線硬化型の粘着剤組成物により粘着剤層を形成する場合、活性エネルギー線硬化型の粘着剤組成物は光重合開始剤を含むことが好ましい。なお、活性エネルギー線硬化型の粘着剤組成物が紫外線吸収剤を含有する場合には、光重合開始剤として、広い波長範囲で吸光特性を有する光重合開始剤を少なくとも含むことが好ましい。例えば、紫外光に加え、可視光でも吸光特性を有する光重合開始剤を少なくとも含むことが好ましい。これは、紫外線吸収剤の作用により活性エネルギー線による硬化の阻害が懸念されるところ、広い波長範囲で吸光特性を有する光重合開始剤を含んでいると、粘着剤組成物において高い光硬化性が得やすくなるからである。 In particular, when the adhesive layer is formed from an active energy ray-curable adhesive composition, the active energy ray-curable adhesive composition preferably contains a photopolymerization initiator. When the active energy ray-curable pressure-sensitive adhesive composition contains an ultraviolet absorber, it preferably contains at least a photopolymerization initiator having light absorption properties in a wide wavelength range as a photopolymerization initiator. For example, it preferably contains at least a photopolymerization initiator that absorbs not only ultraviolet light but also visible light. This is because there is concern that curing by active energy rays may be inhibited due to the action of the ultraviolet absorber, and if the adhesive composition contains a photopolymerization initiator that has light absorption characteristics in a wide wavelength range, high photocurability will be achieved in the adhesive composition. This is because it becomes easier to obtain.
(はく離ライナー)
 本発明の粘着剤層及び/又は別の粘着剤層の粘着面は、使用時までははく離ライナーにより保護されていてもよい。本発明の粘着剤層が両面粘着シートを構成する場合の各粘着面は、2枚のはく離ライナーによりそれぞれ保護されていてもよいし、両面が剥離面となっているはく離ライナー1枚により、ロール状に巻回される形態(巻回体)で保護されていてもよい。はく離ライナーは粘着剤層の衝撃吸収性、粘着性の保護材として用いられ、使用する際に剥がされる。また、本発明の粘着剤層が基材レス粘着シートを構成する場合、はく離ライナーは粘着剤層の支持体としての役割も担う。
(Release liner)
The pressure-sensitive adhesive layer of the present invention and/or the pressure-sensitive adhesive surface of another pressure-sensitive adhesive layer may be protected with a release liner until use. When the pressure-sensitive adhesive layer of the present invention constitutes a double-sided pressure-sensitive adhesive sheet, each pressure-sensitive adhesive surface may be protected by two release liners, respectively, or may be protected by one release liner having release surfaces on both sides. It may be protected in a form wound in a shape (wound body). The release liner is used as an impact-absorbing and adhesive protective material for the pressure-sensitive adhesive layer, and is peeled off when used. Moreover, when the pressure-sensitive adhesive layer of the present invention constitutes a substrate-less pressure-sensitive adhesive sheet, the release liner also serves as a support for the pressure-sensitive adhesive layer.
 上記はく離ライナーとしては、慣用の剥離紙などを使用でき、特に限定されないが、例えば、剥離層を有する基材などが挙げられる。上記剥離層を有する基材としては、例えば、シリコーン系、長鎖アルキル系、フッ素系等の剥離剤により表面処理されたプラスチックフィルムや紙などが挙げられる。 As the release liner, a conventional release paper or the like can be used, and it is not particularly limited, but examples thereof include a base material having a release layer. Examples of the base material having the release layer include plastic films and paper surface-treated with release agents such as silicone, long-chain alkyl, and fluorine-based release agents.
 シリコーン系剥離剤は、付加反応型、縮合反応型、カチオン重合型、ラジカル重合型などの、公知のシリコーン系剥離剤が挙げられる。付加反応型シリコーン系剥離剤として市販されている製品には、例えば、KS-776A、KS-847T、KS-779H、KS-837、KS-778、KS-830(信越化学工業株式会社製)、SRX-211、SRX-345、SRX-357、SD7333、SD7220、SD7223、LTC-300B、LTC-350G、LTC-310(ダウ・東レ株式会社製)などが挙げられる。縮合反応型として市販されている製品には、例えば、SRX-290、SYLOFF-23(ダウ・東レ株式会社製)などが挙げられる。カチオン重合型として市販されている製品には、例えば、TPR-6501、TPR-6500、UV9300、VU9315、UV9430(モメンティブ・パーフォーマンス・マテリアルズ社製)、X62-7622(信越化学工業株式会社製)などが挙げられる。ラジカル重合型として市販されている製品には、例えば、X62-7205(信越化学工業株式会社製)などが挙げられる。また、これらの剥離剤に剥離性能の調整のために、シリコーンレジン(R3SiO1/2単位とSiO4/2単位からなるケイ素樹脂)やシリカ、エチルセルロースなどを添加しても良い。 Examples of the silicone-based release agent include known silicone-based release agents such as addition reaction type, condensation reaction type, cationic polymerization type, and radical polymerization type. Products commercially available as addition reaction type silicone release agents include, for example, KS-776A, KS-847T, KS-779H, KS-837, KS-778, KS-830 (manufactured by Shin-Etsu Chemical Co., Ltd.), SRX-211, SRX-345, SRX-357, SD7333, SD7220, SD7223, LTC-300B, LTC-350G, LTC-310 (manufactured by Dow Toray Industries, Inc.) and the like. Commercially available products of the condensation reaction type include, for example, SRX-290 and SYLOFF-23 (manufactured by Dow Toray Industries, Inc.). Examples of commercially available cationic polymerized products include TPR-6501, TPR-6500, UV9300, VU9315, UV9430 (manufactured by Momentive Performance Materials) and X62-7622 (manufactured by Shin-Etsu Chemical Co., Ltd.). etc. Examples of commercially available radical polymerizable products include X62-7205 (manufactured by Shin-Etsu Chemical Co., Ltd.). In addition, silicone resin (silicone resin composed of R 3 SiO 1/2 units and SiO 4/2 units), silica, ethyl cellulose, etc. may be added to these release agents in order to adjust the release performance.
 長鎖アルキル基径剥離剤には、長鎖アルキル基含有アミノアルキッド樹脂、長鎖アルキル基含有アクリル樹脂、長鎖脂肪族ペンダント型樹脂(ポリビニルアルコール、エチレン/ビニルアルコール共重合物、ポリエチレンイミン、および水酸基含有セルロース誘導体からなる化合物群の中から選ばれる少なくとも1種の活性水素含有ポリマーと、長鎖アルキル基含有イソシアネートとの反応生成物)などの、公知の長鎖アルキル系剥離剤が挙げられる。硬化剤、紫外線開始剤を添加して硬化反応を行う剥離剤でもよいし、溶剤を揮発させて固化する剥離剤でもよい。 Long-chain alkyl group diameter release agents include long-chain alkyl group-containing aminoalkyd resins, long-chain alkyl group-containing acrylic resins, long-chain aliphatic pendant type resins (polyvinyl alcohol, ethylene/vinyl alcohol copolymer, polyethyleneimine, and Known long-chain alkyl-based release agents such as reaction products of at least one active hydrogen-containing polymer selected from the group of compounds consisting of hydroxyl-containing cellulose derivatives and long-chain alkyl-containing isocyanates) can be mentioned. A release agent that causes a curing reaction by adding a curing agent or an ultraviolet initiator, or a release agent that solidifies by volatilizing a solvent may be used.
 「長鎖アルキル基」としては、炭素数が8~30のアルキル基が好ましく、炭素数が10以上、12以上、18以下、24以下等でもよく、中でも直鎖状のアルキル基が好ましい。具体例としては、デシル基、ウンデシル基、ラウリル基、ドデシル基、トリデシル基、ミリスチル基、テトラデシル基、ペンタデシル基、セチル基、パルミチル基、ヘキサデシル基、ヘプタデシル基、ステアリル基、オクタデシル基、ノナデシル基、イコシル基、ドコシル基等から選択される、1種又は2種以上のアルキル基が挙げられる。 As the "long-chain alkyl group", an alkyl group having 8 to 30 carbon atoms is preferable, and the number of carbon atoms may be 10 or more, 12 or more, 18 or less, 24 or less, etc. Among them, a linear alkyl group is preferable. Specific examples include decyl group, undecyl group, lauryl group, dodecyl group, tridecyl group, myristyl group, tetradecyl group, pentadecyl group, cetyl group, palmityl group, hexadecyl group, heptadecyl group, stearyl group, octadecyl group, nonadecyl group, One or two or more alkyl groups selected from icosyl groups, docosyl groups and the like can be mentioned.
 長鎖アルキル系剥離剤として市販されている製品には、例えば、アシオ産業株式会社製アシオレジン(登録商標)RA-30、一方社油脂工業株式会社製ピーロイル(登録商標)1010、ピーロイル1010S、ピーロイル1050、ピーロイルHT、中京油脂株式会社製レゼムN-137、花王株式会社製エキセパール(登録商標)PS-MA、日立化成株式会社製テスファイン(登録商標)303等が挙げられる。 Products commercially available as long-chain alkyl release agents include, for example, Asio Sangyo Co., Ltd. Asio Resin (registered trademark) RA-30, Ipposha Yushi Kogyo Co., Ltd. Peeloyl (registered trademark) 1010, Peeloyl 1010S, and Peeloil 1050. , Pyroil HT, Resem N-137 manufactured by Chukyo Yushi Co., Ltd., Excepal (registered trademark) PS-MA manufactured by Kao Corporation, Tesfine (registered trademark) 303 manufactured by Hitachi Chemical Co., Ltd., and the like.
 フッ素系剥離剤としては、パーフルオロアルキル基含有ビニルエーテルポリマーや、テトラフルオロエチレン、トリフルオロエチレンなどのフッ素樹脂をバインダー樹脂中に分散させたコーティング剤などが挙げられる。 Examples of fluorine-based release agents include coating agents in which perfluoroalkyl group-containing vinyl ether polymers and fluorine resins such as tetrafluoroethylene and trifluoroethylene are dispersed in binder resins.
 剥離剤は、必要に応じて、帯電防止剤、シランカップリング剤、滑剤などを含有しても良い。
 プラスチックフィルムや紙の表面に、剥離剤層を形成するのは、公知の方法で行えばよい。具体的には、グラビアコーティング、メイヤーバーコーティング、エアーナイフコーティングなどの、公知の塗工方法を使用することができる。
 はく離ライナーの厚さは、特に限定されず、5~100μmの範囲から適宜選択すればよい。
The release agent may contain an antistatic agent, a silane coupling agent, a lubricant, etc., if necessary.
A known method may be used to form a release agent layer on the surface of a plastic film or paper. Specifically, known coating methods such as gravure coating, Meyer bar coating, and air knife coating can be used.
The thickness of the release liner is not particularly limited, and may be appropriately selected from the range of 5 to 100 μm.
(別の粘着剤層)
 本発明の粘着剤層は、別の粘着剤層が積層した粘着シートを構成してもよい。すなわち、本発明の粘着剤層は、2層構造の粘着剤層を有する基材レス両面粘着シートを構成してもよい。本発明の粘着剤層が、2層構造の粘着剤層を有する基材レス両面粘着シートを構成することにより、例えば、本発明の粘着剤層が別の粘着剤層と共に、衝撃吸収性を制御することができる。また、別の粘着剤層を他の基板(キャリア基板)に固定することができ、作業性の観点から好ましい。
(another adhesive layer)
The pressure-sensitive adhesive layer of the present invention may constitute a pressure-sensitive adhesive sheet laminated with another pressure-sensitive adhesive layer. That is, the pressure-sensitive adhesive layer of the present invention may constitute a substrate-less double-sided pressure-sensitive adhesive sheet having a two-layer pressure-sensitive adhesive layer. The pressure-sensitive adhesive layer of the present invention constitutes a substrate-less double-sided pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer with a two-layer structure. can do. In addition, another pressure-sensitive adhesive layer can be fixed to another substrate (carrier substrate), which is preferable from the viewpoint of workability.
 前記別の粘着剤層は、本発明の粘着剤層と同一の粘着剤で構成されていてもよく、本発明の粘着剤層と異なる粘着剤で構成されていてもよい。例えば、放射線硬化性粘着剤や加熱発泡型粘着剤などの粘着力低減可能型粘着剤層であることが好ましい。別の粘着剤層とキャリア基板との密着性が高い状態で電子部品を転写でき、また、その後に放射線照射や加熱により他の粘着剤層の粘着力を低下させてキャリア基板から容易に剥離することができるため、キャリア基板を容易に再利用でき、リワーク性に優れる観点から好ましい。 The separate adhesive layer may be composed of the same adhesive as the adhesive layer of the present invention, or may be composed of an adhesive different from that of the adhesive layer of the present invention. For example, it is preferably a pressure-sensitive adhesive layer capable of reducing the pressure-sensitive adhesive force, such as a radiation-curable pressure-sensitive adhesive or a heat-foaming pressure-sensitive adhesive. An electronic component can be transferred while the adhesion between another adhesive layer and the carrier substrate is high, and after that, the adhesive strength of the other adhesive layer is reduced by irradiation or heating, so that it can be easily peeled off from the carrier substrate. Since the carrier substrate can be easily reused, it is preferable from the viewpoint of excellent reworkability.
 別の粘着剤層の厚みは、特に限定されないが、1μm以上が好ましく、より好ましくは3μm以上である。厚みが一定以上であると、衝撃吸収性を制御しやくなり、また、キャリア基板に安定して固定しやすくなり、好ましい。また、別の粘着剤層の厚みの上限値は、特に限定されないが、450μm以下が好ましく、より好ましくは300μm以下である。厚みが一定以下であると、キャリア基板から剥離しやすくなり、リワーク性が向上し、好ましい。 The thickness of the separate adhesive layer is not particularly limited, but is preferably 1 μm or more, more preferably 3 μm or more. When the thickness is at least a certain value, the impact absorbing property can be easily controlled, and the substrate can be stably fixed to the carrier substrate, which is preferable. The upper limit of the thickness of the separate pressure-sensitive adhesive layer is not particularly limited, but is preferably 450 μm or less, more preferably 300 μm or less. When the thickness is less than a certain value, it becomes easier to separate from the carrier substrate and reworkability is improved, which is preferable.
(基材)
 本発明の粘着剤層(別の粘着剤層との2層構造を含む)は、基材層が積層されている粘着シートを構成してもよい。すなわち、本発明の粘着剤層(別の粘着剤層との2層構造を含む)は基材付き粘着シートを構成していてもよい。本発明の粘着剤層が基材付き粘着シートを構成することにより、基材が支持体として機能し、電子部品を受け取る際の安定性や取り扱い性が向上する点で好ましい。
(Base material)
The pressure-sensitive adhesive layer of the present invention (including a two-layer structure with another pressure-sensitive adhesive layer) may constitute a pressure-sensitive adhesive sheet laminated with a substrate layer. That is, the pressure-sensitive adhesive layer of the present invention (including a two-layer structure with another pressure-sensitive adhesive layer) may constitute a pressure-sensitive adhesive sheet with a substrate. When the pressure-sensitive adhesive layer of the present invention constitutes a pressure-sensitive adhesive sheet with a substrate, the substrate functions as a support, which is preferable in terms of improving the stability and handleability when receiving electronic components.
 上記基材としては、特に限定されないが、例えば、プラスチックフィルムを好適に用いることができる。プラスチック基材の構成材料としては、電子部品を受け取る際の安定性や取り扱い性の観点から、熱可塑性樹脂が好ましい。熱可塑性樹脂としては、例えば、ポリオレフィン、ポリエステル、ポリウレタン、ポリカーボネート、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、ポリアミド、全芳香族ポリアミド、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフェニルスルフィド、アラミド、フッ素樹脂、セルロース系樹脂、およびシリコーン樹脂が挙げられ、ポリエステルフィルムが好ましい。ポリオレフィンとしては、例えば、低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超低密度ポリエチレン、ランダム共重合ポリプロピレン、ブロック共重合ポリプロピレン、ホモポリプロレン、ポリブテン、ポリメチルペンテン、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-ブテン共重合体、およびエチレン-ヘキセン共重合体が挙げられる。ポリエステルとしては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、およびポリブチレンテレフタレートが挙げられる。基材は、電子部品を受け取る際の安定性や取り扱い性の観点、実装基板に電子部品を転写する際の熱圧着における耐熱性の観点から、光透過性の耐熱フィルム、例えば、ポリエステルフィルムから形成されることが好ましい。基材は、一種類の材料からなってもよし、二種類以上の材料からなってもよい。基材は、単層構造を有してもよいし、多層構造を有してもよい。また、基材は、プラスチックフィルムよりなる場合、無延伸フィルムであってもよいし、一軸延伸フィルムであってもよいし、二軸延伸フィルムであってもよい。使用時に剥離されるはく離ライナーは「基材」には含まない。 Although the base material is not particularly limited, for example, a plastic film can be suitably used. Thermoplastic resins are preferable as the constituent material of the plastic base material from the viewpoint of stability and handleability when receiving electronic parts. Examples of thermoplastic resins include polyolefins, polyesters, polyurethanes, polycarbonates, polyetheretherketones, polyimides, polyetherimides, polyamides, wholly aromatic polyamides, polyvinyl chlorides, polyvinylidene chlorides, polyphenylsulfides, aramids, and fluorine resins. , cellulosic resins, and silicone resins, with polyester films being preferred. Polyolefins include, for example, low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, high-density polyethylene, ultra-low-density polyethylene, random copolymer polypropylene, block copolymer polypropylene, homopolypropylene, polybutene, polymethylpentene, Ethylene-vinyl acetate copolymer, ionomer resin, ethylene-(meth)acrylic acid copolymer, ethylene-(meth)acrylic acid ester copolymer, ethylene-butene copolymer, and ethylene-hexene copolymer. be done. Polyesters include, for example, polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate. The base material is formed from a light-transmitting heat-resistant film, such as a polyester film, from the viewpoint of stability and handling when receiving electronic parts, and from the viewpoint of heat resistance in thermocompression bonding when transferring electronic parts to a mounting substrate. preferably. The substrate may consist of one kind of material, or may consist of two or more kinds of materials. The substrate may have a single layer structure or a multilayer structure. When the substrate is made of a plastic film, it may be a non-stretched film, a uniaxially stretched film, or a biaxially stretched film. A release liner that is peeled off at the time of use is not included in the "substrate".
 上記基材の厚みは、特に限定されないが、例えば、支持体として機能するための強度を確保するという観点からは、好ましくは10μm以上、より好ましくは30μm以上である。また、適度な可撓性を実現するという観点からは、基材の厚さは、好ましくは200μm以下、より好ましくは180μm以下である。なお、上記基材は単層および複層のいずれの形態を有していてもよい。また、上記基材の表面には、本発明の粘着剤層との密着性を高めるため、例えば、コロナ放電処理、プラズマ処理等の物理的処理、下塗り処理等の化学的処理などの公知慣用の表面処理が適宜施されていてもよい。 Although the thickness of the base material is not particularly limited, it is preferably 10 μm or more, more preferably 30 μm or more, from the viewpoint of ensuring strength for functioning as a support. Moreover, from the viewpoint of realizing appropriate flexibility, the thickness of the substrate is preferably 200 μm or less, more preferably 180 μm or less. In addition, the substrate may have either a single-layer structure or a multilayer structure. In addition, in order to increase the adhesion with the pressure-sensitive adhesive layer of the present invention, the surface of the base material may be subjected to known and commonly used treatments such as physical treatments such as corona discharge treatment and plasma treatment, and chemical treatments such as undercoating treatment. Surface treatment may be applied as appropriate.
 本発明の粘着剤層(別の粘着剤層との2層構造を含む)が基材付き粘着シートを構成する場合、前記基材層の粘着剤層が積層されていない面に、別の粘着剤層が積層されていてもよい。すなわち、本発明の粘着剤層(別の粘着剤層との2層構造を含む)は、基材付き両面粘着シートを構成してもよい。本発明の粘着剤層(別の粘着剤層との2層構造を含む)が基材付き両面粘着シートを構成することにより、基材が支持体として機能し、電子部品を受け取る際の安定性や取り扱い性が向上すると共に、別の粘着剤層を他の基板(キャリア基板)に固定することができ、作業性の観点から好ましい。 When the pressure-sensitive adhesive layer of the present invention (including a two-layer structure with another pressure-sensitive adhesive layer) constitutes a pressure-sensitive adhesive sheet with a substrate, another pressure-sensitive adhesive Agent layers may be laminated. That is, the pressure-sensitive adhesive layer of the present invention (including a two-layer structure with another pressure-sensitive adhesive layer) may constitute a double-sided pressure-sensitive adhesive sheet with a substrate. Since the pressure-sensitive adhesive layer of the present invention (including a two-layer structure with another pressure-sensitive adhesive layer) constitutes a double-sided pressure-sensitive adhesive sheet with a substrate, the substrate functions as a support and provides stability when receiving electronic components. and handleability are improved, and another adhesive layer can be fixed to another substrate (carrier substrate), which is preferable from the viewpoint of workability.
(粘着シートの製造方法)
 本発明の粘着剤層を有する粘着シート(本明細書において、「本発明の粘着シート」と称する場合がある。)の製造方法は、本発明の樹脂組成物(粘着剤組成物)の組成などによって異なり、特に限定されず、公知の形成方法を利用することができるが、例えば、以下の(1)~(4)などの方法が挙げられる。
(1)上記樹脂組成物を基材上に塗布(塗工)して組成物層を形成し、該組成物層を硬化(例えば、熱硬化や紫外線などの活性エネルギー線照射による硬化)させて粘着剤層を形成して粘着シートを製造する方法
(2)上記樹脂組成物を、はく離ライナー上に塗布(塗工)して組成物層を形成し、該組成物層を硬化(例えば、熱硬化や紫外線などの活性エネルギー線照射による硬化)させて粘着剤層を形成した後、該粘着剤層を基材上に転写して粘着シートを製造する方法
(3)上記樹脂組成物を、基材上に塗布(塗工)し、乾燥させて粘着剤層を形成して粘着シートを製造する方法
(4)上記樹脂組成物を、はく離ライナー上に塗布(塗工)し、乾燥させて粘着剤層を形成した後、該粘着剤層を基材上に転写して粘着シートを製造する方法
(Manufacturing method of adhesive sheet)
The method for producing the pressure-sensitive adhesive sheet having the pressure-sensitive adhesive layer of the present invention (which may be referred to herein as "the pressure-sensitive adhesive sheet of the present invention") comprises the composition of the resin composition (pressure-sensitive adhesive composition) of the present invention, etc. It is not particularly limited, and a known formation method can be used, and examples thereof include the following methods (1) to (4).
(1) The resin composition is applied (coated) on a substrate to form a composition layer, and the composition layer is cured (for example, cured by heat curing or irradiation of active energy rays such as ultraviolet rays). Method of forming a pressure-sensitive adhesive layer to produce a pressure-sensitive adhesive sheet (2) The above resin composition is applied (coated) onto a release liner to form a composition layer, and the composition layer is cured (for example, by heating). Curing or curing by irradiation with active energy rays such as ultraviolet rays) to form a pressure-sensitive adhesive layer, and then transferring the pressure-sensitive adhesive layer onto a substrate to produce a pressure-sensitive adhesive sheet (3). (4) The above resin composition is applied (coated) onto a release liner and dried to form an adhesive sheet. A method for producing a pressure-sensitive adhesive sheet by forming an agent layer and then transferring the pressure-sensitive adhesive layer onto a base material
 上記(1)~(4)における製膜方法としては、生産性に優れるという点で、乾燥させて粘着剤層を形成させる方法が好ましい。 As the film-forming method in (1) to (4) above, a method of forming an adhesive layer by drying is preferable in terms of excellent productivity.
 上記樹脂組成物を所定の面上に塗布(塗工)する方法としては、公知のコーティング方法を採用することがき、特に限定されないが、例えば、ロールコート、キスロールコート、グラビアコート、リバースコート、ロールブラッシュ、スプレーコート、ディップロールコート、バーコート、ナイフコート、エアーナイフコート、カーテンコート、リップコート、ダイコーターなどによる押出しコート法などが挙げられる。 As a method for applying (coating) the resin composition onto a predetermined surface, a known coating method can be employed, and is not particularly limited, but examples include roll coating, kiss roll coating, gravure coating, reverse coating, Examples include roll brushing, spray coating, dip roll coating, bar coating, knife coating, air knife coating, curtain coating, lip coating, and extrusion coating using a die coater.
 本発明の粘着シートの厚み(総厚み)は、特に限定されないが、1μm以上が好ましく、より好ましくは2μm以上、さらに好ましくは3μm以上である。厚みが一定以上であると、本発明の粘着剤層に電子部品が精度よく転写しやすくなり、好ましい。また、本発明の粘着シートの厚み(総厚み)の上限値は、特に限定されないが、500μm以下が好ましく、より好ましくは300μm以下である。厚みが一定以下であると、電子部品を精度よく実装基板に転写しやすくなり、好ましい。なお、本発明の粘着シートの厚みには、はく離ライナーの厚みは含めないものとする。 Although the thickness (total thickness) of the adhesive sheet of the present invention is not particularly limited, it is preferably 1 μm or more, more preferably 2 μm or more, and still more preferably 3 μm or more. When the thickness is at least a certain value, electronic components are easily transferred to the pressure-sensitive adhesive layer of the present invention with high accuracy, which is preferable. The upper limit of the thickness (total thickness) of the pressure-sensitive adhesive sheet of the present invention is not particularly limited, but is preferably 500 μm or less, more preferably 300 μm or less. When the thickness is less than a certain value, the electronic component can be easily transferred to the mounting substrate with high accuracy, which is preferable. The thickness of the pressure-sensitive adhesive sheet of the present invention does not include the thickness of the release liner.
(電子部品の加工方法)
 本発明の粘着シートは、電子部品の加工方法(電子部品の加工用途)に用いられる。より具体的には、本発明の粘着シートは、仮固定材(基板、もしくは粘着シート)上に配置された電子部品を本発明の粘着剤層で受け取るために好ましく使用される。本発明の粘着シートは、本発明の粘着剤層を有するため、活性エネルギー線照射前は、電子部品などの粘着剤層への衝突による衝撃を十分に吸収でき、衝突時の電子部品の跳ねによる位置ずれや裏返りなどを抑制できる。また、本発明の粘着シートは、本発明の粘着剤層を有するため、活性エネルギー線照射後は、実装基板に電子部品を転写する際の熱圧着においても、膨張やアウトガスの発生を抑制できる優れた耐熱性を有する。
(Processing method for electronic parts)
The pressure-sensitive adhesive sheet of the present invention is used in an electronic component processing method (electronic component processing application). More specifically, the pressure-sensitive adhesive sheet of the present invention is preferably used for receiving electronic components arranged on a temporary fixing material (substrate or pressure-sensitive adhesive sheet) with the pressure-sensitive adhesive layer of the present invention. Since the pressure-sensitive adhesive sheet of the present invention has the pressure-sensitive adhesive layer of the present invention, before irradiation with active energy rays, it is possible to sufficiently absorb the impact caused by the collision of electronic parts and the like against the pressure-sensitive adhesive layer, and the impact caused by the bounce of the electronic parts at the time of collision can be sufficiently absorbed. It is possible to suppress misalignment, turning inside out, and the like. In addition, since the pressure-sensitive adhesive sheet of the present invention has the pressure-sensitive adhesive layer of the present invention, it is excellent in suppressing expansion and outgassing even in thermocompression bonding when transferring electronic components to a mounting substrate after irradiation with active energy rays. It has excellent heat resistance.
 本発明の粘着シートは、本発明の電子部品の加工方法に供する際に、キャリア基板に固定されることが好ましい。本発明の粘着シートを前記キャリア基板に固定することにより、電子部品の転写、搬送などを安定して行うことができる。前記キャリア基板は、ガラス板や上記のプラスチックフィルムなどを使用することができ、安定性の観点から、ガラス板が好ましい。 The adhesive sheet of the present invention is preferably fixed to a carrier substrate when subjected to the electronic component processing method of the present invention. By fixing the pressure-sensitive adhesive sheet of the present invention to the carrier substrate, electronic components can be stably transferred and transported. The carrier substrate may be a glass plate or the above plastic film, and is preferably a glass plate from the viewpoint of stability.
 本発明の粘着シートをキャリア基板に固定する方法の実施形態について、図面を参照して以下に説明するが、本発明の粘着シートをキャリア基板に固定する方法は当該実施形態に限定されるものではない。図5は、図1に示す粘着シート1を用いた本発明の粘着シートをキャリア基板に固定する方法の一実施形態を表す断面模式図である。 Embodiments of the method for fixing the pressure-sensitive adhesive sheet of the present invention to a carrier substrate will be described below with reference to the drawings, but the method for fixing the pressure-sensitive adhesive sheet of the present invention to a carrier substrate is not limited to these embodiments. do not have. FIG. 5 is a schematic cross-sectional view showing one embodiment of a method for fixing the pressure-sensitive adhesive sheet of the present invention using the pressure-sensitive adhesive sheet 1 shown in FIG. 1 to a carrier substrate.
 本実施形態の本発明の粘着シートをキャリア基板に固定する方法において、粘着シート1のはく離ライナーR2を剥離して、粘着面10bを露出させ(図5(a)、(b)参照)、露出した粘着面10bにキャリア基板S2を貼着し(図5(c)参照)、次いで、粘着シート1のはく離ライナーR1を剥離して、粘着面10aを露出させる(図5(d)、(e)参照)。 In the method of fixing the pressure-sensitive adhesive sheet of the present invention to a carrier substrate according to this embodiment, the release liner R2 of the pressure-sensitive adhesive sheet 1 is peeled off to expose the pressure-sensitive adhesive surface 10b (see FIGS. 5(a) and 5(b)). The carrier substrate S2 is adhered to the adhesive surface 10b (see FIG. 5C), and then the release liner R1 of the adhesive sheet 1 is peeled off to expose the adhesive surface 10a (FIGS. 5D and 5E). )reference).
 図5(a)において、吸着ステージ(図示略)に吸着させた粘着シート1の粘着剤層10からはく離ライナーR2を剥離して、粘着剤層10の粘着面10bを露出させる。 In FIG. 5(a), the release liner R2 is peeled off from the adhesive layer 10 of the adhesive sheet 1 adsorbed to the adsorption stage (not shown) to expose the adhesive surface 10b of the adhesive layer 10.
 はく離ライナーR2の粘着面10bに対する剥離力は、いわゆる「泣き別れ」を防止する観点から、はく離ライナーR1の粘着面10aに対する剥離力よりも小さく制御される。ここで、「泣き別れ」とは、本実施形態において、はく離ライナーR2を剥離する際にはく離ライナーR1も剥離する現象をいう。はく離ライナーR2の粘着面10bに対する剥離力は、はく離ライナーR1の粘着面10aに対する剥離力よりも小さい限り特に限定されないが、「泣き別れ」を効率的に防止する観点から、はく離ライナーR1の粘着面10aに対する剥離力の1/3~1/2程度に設定すればよい。図5(b)は、はく離ライナーR2が完全に剥離して、粘着面10bの全面が露出した状態を示す。ついで、図5(c)において、露出した粘着面10bにキャリア基板S2を貼着する。 The release force of the release liner R2 to the adhesive surface 10b is controlled to be smaller than the release force of the release liner R1 to the adhesive surface 10a from the viewpoint of preventing so-called "crying apart". Here, "crying apart" refers to a phenomenon in which the release liner R1 is also peeled off when the release liner R2 is peeled off in this embodiment. The release force of the release liner R2 from the adhesive surface 10b is not particularly limited as long as it is smaller than the release force from the release liner R1 against the adhesive surface 10a. It may be set to about 1/3 to 1/2 of the peeling force against. FIG. 5(b) shows a state in which the release liner R2 is completely peeled off and the entire surface of the adhesive surface 10b is exposed. Then, in FIG. 5(c), the carrier substrate S2 is adhered to the exposed adhesive surface 10b.
 図5(d)において、粘着剤層10からはく離ライナーR1を剥離して、粘着面10aを露出させる。図5(e)は、はく離ライナーR1が完全に剥離して、粘着面10aの全面が露出した状態を示し、この状態で、本発明の電子部品の加工方法に供される。 In FIG. 5(d), the release liner R1 is peeled off from the adhesive layer 10 to expose the adhesive surface 10a. FIG. 5(e) shows a state in which the release liner R1 is completely peeled off and the entire surface of the adhesive surface 10a is exposed.
 本発明の粘着シートを上記電子部品の加工用途に使用する場合、前記仮固定材の電子部品が配置された面と、本発明の粘着シートの粘着剤層の粘着面とが対向して、隙間を設けて配置されることが好ましい。当該構成は、前記仮固定材と本発明の粘着シートとの位置関係を制御することができ、電子部品を粘着シートの所望の位置に配置できる点で好ましい。 When the pressure-sensitive adhesive sheet of the present invention is used for processing the electronic components, the surface of the temporary fixing material on which the electronic components are arranged faces the adhesive surface of the pressure-sensitive adhesive layer of the pressure-sensitive adhesive sheet of the present invention. is preferably arranged with This configuration is preferable in that the positional relationship between the temporary fixing material and the pressure-sensitive adhesive sheet of the present invention can be controlled, and the electronic component can be arranged at a desired position on the pressure-sensitive adhesive sheet.
 本発明の電子部品の加工方法は、仮固定材上に配置された電子部品を本発明の粘着シートの粘着剤層の粘着面で受け取る工程(第1工程)を含む。本発明の電子部品の加工方法において、本発明の粘着シートは、電子部品などの粘着剤層への衝突による衝撃を十分に吸収でき、衝突時の電子部品の跳ねによる位置ずれや裏返りなどを抑制できる。 The electronic component processing method of the present invention includes a step (first step) of receiving the electronic component placed on the temporary fixing material with the adhesive surface of the adhesive layer of the adhesive sheet of the present invention. In the electronic component processing method of the present invention, the pressure-sensitive adhesive sheet of the present invention can sufficiently absorb the impact caused by the collision of the electronic component or the like with the adhesive layer, and suppresses misalignment, flipping, etc. due to the bounce of the electronic component at the time of collision. can.
 本発明の電子部品の加工方法において、前記仮固定材上に電子部品が配置された面と、本発明の粘着シートの粘着剤層の粘着面とが対向して、隙間を設けて配置されることが好ましい。当該構成は、前記仮固定材と本発明の粘着シートとの位置関係を制御することができ、電子部品を粘着シートの所望の位置に配置できる点で好ましい。 In the method for processing an electronic component of the present invention, the surface on which the electronic component is arranged on the temporary fixing material and the adhesive surface of the adhesive layer of the adhesive sheet of the present invention are arranged facing each other with a gap provided. is preferred. This configuration is preferable in that the positional relationship between the temporary fixing material and the pressure-sensitive adhesive sheet of the present invention can be controlled, and the electronic component can be arranged at a desired position on the pressure-sensitive adhesive sheet.
 本発明の電子部品の加工方法は、さらに、前記粘着シート上の電子部品を、実装基板上に配置する工程(第2工程)と、前記電子部品を、実装基板上に熱圧着する工程(第3工程)と、及び、前記粘着シートの粘着剤層の粘着面上から、電子部品を剥離する工程(第4工程)とを含むことが好ましい。本発明の電子部品の加工方法は、第2工程、第3工程、及び第4工程を含むことにより、効率的に電子部品を実装基板上に移載することができる。 The electronic component processing method of the present invention further includes a step of placing the electronic component on the adhesive sheet on a mounting substrate (second step), and a step of thermocompression bonding the electronic component onto the mounting substrate (second step). 3 step), and a step of peeling the electronic component from the adhesive surface of the adhesive layer of the adhesive sheet (fourth step). The electronic component processing method of the present invention includes the second step, the third step, and the fourth step, so that the electronic component can be efficiently transferred onto the mounting board.
 本発明の電子部品の加工方法の実施形態について、図面を参照して以下に説明するが、本発明の電子部品の加工方法は当該実施形態に限定されるものではない。図6は、図5に示すキャリア基板に固定された粘着シート(図5(e)参照)を用いた本発明の電子部品の加工方法の一実施形態における第1工程を表す断面模式図である。 Embodiments of the electronic component processing method of the present invention will be described below with reference to the drawings, but the electronic component processing method of the present invention is not limited to these embodiments. FIG. 6 is a schematic cross-sectional view showing the first step in one embodiment of the electronic component processing method of the present invention using the adhesive sheet (see FIG. 5(e)) fixed to the carrier substrate shown in FIG. .
 本実施形態において、本発明の電子部品の加工方法の第1工程は、仮固定材50に配置された電子部品51(図6(a)参照)を分離して、キャリア基板S2に固定された粘着剤層10の粘着面10aで受け取る工程である(図6(b)、(c)参照)。 In the present embodiment, the first step of the electronic component processing method of the present invention is to separate the electronic component 51 (see FIG. 6A) placed on the temporary fixing material 50 and fix it to the carrier substrate S2. This is a step of receiving with the adhesive surface 10a of the adhesive layer 10 (see FIGS. 6B and 6C).
 図6(a)において、仮固定材50の片面に複数の電子部品51がバンプ52を介して配置されている。バンプ52は、電子部品51の片面に設けられた突起電極であり、後掲の実装基上に設けられた電子回路に接続するものである。仮固定材50を構成する材料は特に限定されず、上記のプラスチックフィルムやガラス基板が挙げられる。また、仮固定材50は粘着シートであってもよく、その場合、電子部品51は粘着シートの粘着面上にバンプ52を介して配置されていてもよい。仮固定材50は放射線透過性の材料で構成されることが好ましい。 In FIG. 6(a), a plurality of electronic components 51 are arranged on one side of a temporary fixing material 50 with bumps 52 interposed therebetween. The bumps 52 are protruding electrodes provided on one side of the electronic component 51 and are connected to an electronic circuit provided on a mounting substrate which will be described later. The material constituting the temporary fixing material 50 is not particularly limited, and examples thereof include the plastic film and the glass substrate described above. Alternatively, the temporary fixing material 50 may be an adhesive sheet, in which case the electronic component 51 may be arranged on the adhesive surface of the adhesive sheet via the bumps 52 . The temporary fixing member 50 is preferably made of a radiolucent material.
 仮固定材50の片面に電子部品51を配置する方法は、特に限定されず、例えば、上記の粘着力低減可能型粘着剤層を介して電子部品51を配置することが挙げられる。その場合、粘着力低減可能型粘着剤層に放射線を照射するか、加熱することにより、仮固定状態を解除することができる。本実施形態では、電子部品51は、上記の放射線硬化性粘着剤層(図示略)を介して仮固定材50に配置されている。 The method of arranging the electronic component 51 on one side of the temporary fixing material 50 is not particularly limited. In this case, the temporarily fixed state can be released by irradiating or heating the adhesive layer capable of reducing adhesive strength. In this embodiment, the electronic component 51 is placed on the temporary fixing member 50 via the radiation-curable adhesive layer (not shown).
 本実施形態では、仮固定材50の片面に複数の電子部品51がバンプ52を介して配置されている。本実施形態では、上記電子部品51のサイズは、例えば、1μm2~250000μm2である。本発明の電子部品の加工方法によれば、このような小型の電子部品を効率的に移載することができる。 In this embodiment, a plurality of electronic components 51 are arranged on one side of the temporary fixing material 50 via bumps 52 . In this embodiment, the size of the electronic component 51 is, for example, 1 μm 2 to 250000 μm 2 . According to the electronic component processing method of the present invention, such a small electronic component can be efficiently transferred.
 本実施形態では、仮固定材50の電子部品51が配置された面を下方に向けて配置し、キャリア基板S2に固定された粘着剤層10の粘着面10aを上方に向けて配置し、仮固定材50の電子部品51が仮固定された面と、粘着剤層10の粘着面10aとが対向して、隙間dを設けて配置される。隙間dを設けることにより、仮固定材50と粘着剤層10との位置関係を制御することができ、電子部品51を粘着剤層10の所望の位置に配置できる。隙間dの間隔は、特に限定されないが、例えば、1~1000μm程度である。 In this embodiment, the surface of the temporary fixing material 50 on which the electronic component 51 is arranged is arranged facing downward, and the adhesive surface 10a of the adhesive layer 10 fixed to the carrier substrate S2 is arranged facing upward. The surface of the fixing member 50 to which the electronic component 51 is temporarily fixed and the adhesive surface 10a of the adhesive layer 10 face each other with a gap d provided therebetween. By providing the gap d, the positional relationship between the temporary fixing material 50 and the adhesive layer 10 can be controlled, and the electronic component 51 can be arranged at a desired position on the adhesive layer 10 . Although the interval of the gap d is not particularly limited, it is, for example, about 1 to 1000 μm.
 本実施形態では、仮固定材50の側から電子部品51にレーザー光Lを照射して電子部品51の仮固定状態を解除して、電子部品51を仮固定材50から分離する。より詳細には、電子部品51がバンプ52を介して接触している部分の仮固定材50にレーザー光Lが照射されると粘着力が低下して、電子部品51を仮固定材50から剥離することにより、分離される。レーザー光Lは複数の電子部品51に個別に照射してもよく、一部に照射してもよく、全ての電子部品51に一括して照射してもよく、掃引することにより照射してもよい。本実施形態では、複数の電子部品51の一部に照射するものである。 In this embodiment, the electronic component 51 is released from the temporarily fixed state by irradiating the electronic component 51 with the laser light L from the temporary fixing member 50 side, and the electronic component 51 is separated from the temporary fixing member 50 . More specifically, when the part of the temporary fixing material 50 that is in contact with the electronic component 51 via the bump 52 is irradiated with the laser beam L, the adhesive strength is reduced, and the electronic component 51 is separated from the temporary fixing material 50 . is separated by The laser light L may be applied to a plurality of electronic components 51 individually, may be applied to a part of them, may be applied to all electronic components 51 at once, or may be applied by sweeping. good. In this embodiment, a part of the plurality of electronic components 51 is irradiated.
 図6(b)において、仮固定材50から分離された電子部品51は、粘着剤層10に向かって落下し、電子部品51のバンプ52を有していない面が、粘着面10aで受け取られる。粘着剤層10は、本発明の粘着剤層で構成されており、優れた衝撃吸収性を示すため、電子部品の衝突による衝撃を吸収して破損を防ぎ、電子部品の位置ずれや裏返りを抑制できる。 In FIG. 6B, the electronic component 51 separated from the temporary fixing material 50 falls toward the adhesive layer 10, and the surface of the electronic component 51 that does not have the bumps 52 is received by the adhesive surface 10a. . The pressure-sensitive adhesive layer 10 is composed of the pressure-sensitive adhesive layer of the present invention, and exhibits excellent impact absorption, so it absorbs the impact caused by the collision of electronic components, prevents damage, and suppresses displacement and turning over of electronic components. can.
 図6(c)、(d)において、仮固定材50に配置された別の電子部品51にレーザー光Lを照射して分離、落下させ、粘着剤層10の粘着面10aに受け取らせる(転写する)。本実施形態では、図6(a)においてレーザー光Lを照射した電子部品51の隣の電子部品51にレーザー光Lを照射する。 6(c) and (d), another electronic component 51 placed on the temporary fixing material 50 is irradiated with a laser beam L, separated and dropped, and received by the adhesive surface 10a of the adhesive layer 10 (transfer do). In this embodiment, the electronic component 51 adjacent to the electronic component 51 irradiated with the laser beam L in FIG. 6A is irradiated with the laser beam L. In FIG.
 図6(c)、(d)において、仮固定材50と粘着剤層10の位置関係は、図6(b)と同じであってもよく、位置関係をずらしたものであってもよい。本実施形態では、粘着剤層10に対して仮固定材50を図6の右方向に所定間隔ずらしてから、レーザー光Lを照射する。これにより、所望のピッチに制御して電子部品51を粘着剤層10に配置することができる。 6(c) and (d), the positional relationship between the temporary fixing material 50 and the adhesive layer 10 may be the same as in FIG. 6(b), or may be shifted. In this embodiment, the temporary fixing material 50 is shifted rightward in FIG. Thereby, the electronic components 51 can be arranged on the pressure-sensitive adhesive layer 10 while being controlled to a desired pitch.
 図6(e)において、図6(c)、(d)に示す工程を繰り返すことにより、全ての電子部品51が粘着剤層10に受け取られた形態を示す。本実施形態において、電子部品51は所望のピッチを設けて配列されている。 FIG. 6(e) shows a form in which all the electronic components 51 are received by the adhesive layer 10 by repeating the steps shown in FIGS. 6(c) and 6(d). In this embodiment, the electronic components 51 are arranged with a desired pitch.
 図7は、図5に示すキャリア基板に固定された粘着シートを用いた本発明の電子部品の加工方法の一実施形態における第2工程~第4工程を表す断面模式図である。 FIG. 7 is a schematic cross-sectional view showing the second to fourth steps in one embodiment of the electronic component processing method of the present invention using the adhesive sheet fixed to the carrier substrate shown in FIG.
 図7(a)に示すように、実装基板60に対向、離間して、キャリア基板S2に固定された粘着剤層10上に配列された電子部品51を配置する。本実施形態では、転写用基板から直接、電子部品を実装基板に転写することにより、別のキャリア基板に転写してから実装基板に転写する工程を省略して製造コストを削減することができ、さらに、転写を2回繰り返すことによる電子部品の位置精度の低下による接続信頼性の低下をも防止することができる。 As shown in FIG. 7(a), the electronic components 51 arranged on the adhesive layer 10 fixed to the carrier substrate S2 are arranged facing the mounting substrate 60 and separated from each other. In this embodiment, by directly transferring the electronic component from the transfer substrate to the mounting substrate, the process of transferring to another carrier substrate and then transferring to the mounting substrate can be omitted, and the manufacturing cost can be reduced. Furthermore, it is possible to prevent the connection reliability from deteriorating due to the positional accuracy of the electronic parts being degraded by repeating the transfer twice.
 図7(a)において、図6(e)の状態の電子部品51は反転して、バンプ52を下向きにして、実装基板60の面61に対向して配置される。実装基板60の電子部品51に対向する面61には、回路面(図示略)が形成されており、電子部品51上のバンプ52は、当該回路に接続するように対向して配置される。 In FIG. 7(a), the electronic component 51 in the state of FIG. 6(e) is reversed and placed facing the surface 61 of the mounting substrate 60 with the bumps 52 facing downward. A circuit surface (not shown) is formed on a surface 61 of the mounting board 60 facing the electronic component 51, and the bumps 52 on the electronic component 51 are arranged to face and connect to the circuit.
 次に、図7(b)に示すように、実装基板60の面61と粘着剤層10の粘着面10a上に配列された電子部品51を近接させて、電子部品51上のバンプ52と面61を接触させることにより、電子部品51を実装基板60の面61に配置すると共に、面61に形成された電子回路とバンプ52を接続することができる。 Next, as shown in FIG. 7B, the surface 61 of the mounting substrate 60 and the electronic components 51 arranged on the adhesive surface 10a of the adhesive layer 10 are brought close to each other, and the bumps 52 on the electronic components 51 and the surfaces are bonded together. By bringing the bumps 52 into contact with each other, the electronic component 51 can be placed on the surface 61 of the mounting board 60 and the electronic circuit formed on the surface 61 and the bumps 52 can be connected.
 次に、図7(c)に示すように、キャリア基板S2側から粘着剤層10に活性エネルギー線Uを照射する。活性エネルギー線Uの照射により、粘着剤層10に含まれる活性エネルギー線硬化型化合物が反応して架橋構造を形成し、弾性率が向上して、熱による膨張やアウトガスの発生を抑制できる優れた耐熱性を示すようになる。11は、活性エネルギー線Uの照射により耐熱性が向上した粘着剤層である。また、粘着剤層11は粘着力が低下して、電子部品51は剥離可能になる。活性エネルギー線Uは全ての粘着剤層10に照射してもよく、必要に応じてマスク等をして一部の粘着剤層10に照射してもよい。本実施形態は、全ての粘着剤層10に活性エネルギー線Uを照射する。
 また、別の実施形態では、電子部品51を実装基板60に接触させる前の段階(図7(a))で、粘着剤層10に活性エネルギー線Uを照射してもよい(図示略)。
Next, as shown in FIG. 7C, the adhesive layer 10 is irradiated with an active energy ray U from the carrier substrate S2 side. When irradiated with the active energy ray U, the active energy ray-curable compound contained in the pressure-sensitive adhesive layer 10 reacts to form a crosslinked structure, improving the elastic modulus and suppressing thermal expansion and outgassing. Shows heat resistance. Reference numeral 11 denotes a pressure-sensitive adhesive layer whose heat resistance is improved by irradiation with active energy rays U. As shown in FIG. Further, the adhesive strength of the adhesive layer 11 is lowered, and the electronic component 51 can be peeled off. All the adhesive layers 10 may be irradiated with the active energy ray U, or a part of the adhesive layers 10 may be irradiated with a mask or the like as necessary. In this embodiment, active energy rays U are applied to all adhesive layers 10 .
In another embodiment, the adhesive layer 10 may be irradiated with active energy rays U (not shown) before the electronic component 51 is brought into contact with the mounting substrate 60 (FIG. 7A).
 上記活性エネルギー線Uとしては、例えば、α線、β線、γ線、中性子線、電子線などの電離性放射線や、紫外線などが挙げられ、特に、紫外線が好ましい。紫外線照射の条件は、特に限定されないが、具体的には、8280mJ/cm2の紫外線照射が好ましい。 Examples of the active energy ray U include ionizing radiation such as α-rays, β-rays, γ-rays, neutron beams and electron beams, and ultraviolet rays, with ultraviolet rays being particularly preferred. Although the conditions for ultraviolet irradiation are not particularly limited, specifically, ultraviolet irradiation of 8280 mJ/cm 2 is preferable.
 次に、図7(d)に示すように、熱圧着ヘッド70、71を、それぞれキャリア基板S2と実装基板に当接し、加熱しながら押圧する(熱圧着工程)。熱圧着工程の際に、超音波振動を印加してもよい。当該熱圧着工程により、バンプ52は塑性変形して、実装基板上の電子回路への接続信頼性が向上する。熱圧着ヘッド70、71の加熱温度は、熱膨張や熱収縮の影響により実装位置にずれが生じさせないために同じ温度となるように制御することが好ましく、通常、150℃以上であり、接続信頼性を向上させる観点から、250~400℃が好ましい。 Next, as shown in FIG. 7(d), thermocompression heads 70 and 71 are brought into contact with the carrier substrate S2 and the mounting substrate, respectively, and pressed while being heated (thermocompression bonding step). Ultrasonic vibration may be applied during the thermocompression bonding process. The thermocompression bonding process plastically deforms the bumps 52, thereby improving the reliability of connection to the electronic circuit on the mounting substrate. The heating temperature of the thermocompression bonding heads 70 and 71 is preferably controlled to be the same temperature in order to prevent displacement of the mounting position due to the effects of thermal expansion and contraction. 250 to 400° C. is preferable from the viewpoint of improving the properties.
 活性エネルギー線U照射により耐熱性が向上した粘着剤層11は、上記熱圧着工程における加熱においても、膨張やアウトガスの発生が抑制されており、電子部品51の位置ずれによる接続信頼性の低下が抑制される。 The pressure-sensitive adhesive layer 11 whose heat resistance is improved by the irradiation of the active energy ray U suppresses expansion and generation of outgassing even during heating in the above-mentioned thermocompression bonding process, so that a decrease in connection reliability due to misalignment of the electronic component 51 is prevented. Suppressed.
 次に、図7(e)に示すように、粘着剤層11と実装基板60を離間させることにより、粘着剤層11から電子部品51が剥離することができ、それと同時に、実装基板60の面61へ転写される。粘着剤層11は、活性エネルギー線U照射により粘着力が低下しているため、電子部品51を容易に剥離して、実装基板60の面61へ転写して、配置することができる。粘着剤層10上の電子部品51配置パターンが維持された状態で、面61へ転写、配置される。 Next, as shown in FIG. 7E, by separating the adhesive layer 11 and the mounting board 60, the electronic component 51 can be peeled off from the adhesive layer 11, and at the same time, the surface of the mounting board 60 is removed. 61. Since the adhesive strength of the adhesive layer 11 is lowered by the irradiation of the active energy rays U, the electronic component 51 can be easily peeled off, transferred to the surface 61 of the mounting substrate 60, and arranged. The electronic components 51 are transferred and arranged on the surface 61 while maintaining the arrangement pattern of the electronic components 51 on the adhesive layer 10 .
 電子部品51が剥離した粘着剤層11は、活性エネルギー線Uの照射により、貯蔵弾性率が向上することで弾力的な特性を有し、キャリア基板S2から糊残りせずにピール剥離することが可能である。従って、入念な洗浄処理を施すことなく、キャリア基板S2を回収することが出来る点でも、好適である。 The adhesive layer 11 from which the electronic component 51 has been peeled has an elastic property due to an improvement in the storage elastic modulus due to the irradiation of the active energy ray U, and can be peeled off from the carrier substrate S2 without leaving an adhesive residue. It is possible. Therefore, it is also preferable in that the carrier substrate S2 can be recovered without performing a careful cleaning process.
 図5~7において、粘着シート1に替えて、図2~4に示される粘着シート2~4を用いて、同様に電子部品の加工方法を実施することができる。粘着シート3の場合、基材S1は、両面粘着テープなどを介してキャリア基板S2に固定すればよい。 In FIGS. 5 to 7, instead of the adhesive sheet 1, the adhesive sheets 2 to 4 shown in FIGS. In the case of the adhesive sheet 3, the substrate S1 may be fixed to the carrier substrate S2 via double-sided adhesive tape or the like.
 実装基板上への実装する電子部品としては、特に限定されないが、微細で薄型の半導体チップやLEDチップに好適に使用することができる。 The electronic component to be mounted on the mounting board is not particularly limited, but it can be suitably used for fine and thin semiconductor chips and LED chips.
 以下に実施例を挙げて本発明をより詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。 Although the present invention will be described in more detail with reference to examples below, the present invention is not limited by these examples.
[製造例1]アクリルポリマーAの製造
 トルエン中に、エチルアクリレート50重量部と、ブチルアクリレート50重量部と、アクリル酸5重量部と、2-ヒドロキシエチルアクリレート0.1重量部と、多官能モノマーとしてトリメチロールプロパントリアクリレート0.3重量部と、重合開始剤として過酸化ベンゾイル0.1重量部とを加えた後、窒素ガス気流下60℃で重合反応を行い、アクリル系共重合体(アクリルポリマーA)のトルエン溶液を得た。
[Production Example 1] Production of acrylic polymer A In toluene, 50 parts by weight of ethyl acrylate, 50 parts by weight of butyl acrylate, 5 parts by weight of acrylic acid, 0.1 parts by weight of 2-hydroxyethyl acrylate, and a polyfunctional monomer were mixed. After adding 0.3 parts by weight of trimethylolpropane triacrylate as a polymerization initiator and 0.1 parts by weight of benzoyl peroxide as a polymerization initiator, a polymerization reaction was performed at 60 ° C. under a nitrogen gas stream to form an acrylic copolymer (acrylic A toluene solution of polymer A) was obtained.
[製造例2]アクリルポリマーBの製造
 トルエン中に、2-エチルヘキシルアクリレート100重量部と、アクリル酸2重量部と、多官能モノマーとしてトリメチロールプロパントリアクリレート0.01重量部と、重合開始剤として過酸化ベンゾイル0.2重量部とを加えた後、窒素ガス気流下60℃で重合反応を行い、アクリル系共重合体(アクリルポリマーB)のトルエン溶液を得た。
[Production Example 2] Production of acrylic polymer B In toluene, 100 parts by weight of 2-ethylhexyl acrylate, 2 parts by weight of acrylic acid, 0.01 parts by weight of trimethylolpropane triacrylate as a polyfunctional monomer, and 0.01 part by weight of trimethylolpropane triacrylate as a polymerization initiator. After adding 0.2 parts by weight of benzoyl peroxide, a polymerization reaction was carried out at 60° C. under a nitrogen gas stream to obtain a toluene solution of an acrylic copolymer (acrylic polymer B).
[製造例3]アクリルポリマーCの製造
 酢酸エチル中に、2-エチルヘキシルアクリレート30重量部と、メチルアクリレート70重量部と、アクリル酸10重量部と、重合開始剤として過酸化ベンゾイル0.2重量部とを加えた後、窒素ガス気流下60℃で重合反応を行い、アクリル系共重合体(アクリルポリマーC)の酢酸エチル溶液を得た。
[Production Example 3] Production of acrylic polymer C In ethyl acetate, 30 parts by weight of 2-ethylhexyl acrylate, 70 parts by weight of methyl acrylate, 10 parts by weight of acrylic acid, and 0.2 parts by weight of benzoyl peroxide as a polymerization initiator were mixed. was added, a polymerization reaction was carried out at 60° C. under a nitrogen gas stream to obtain an ethyl acetate solution of an acrylic copolymer (acrylic polymer C).
[製造例4]アクリルポリマーDの製造
 トルエン中に、2-エチルヘキシルアクリレート30重量部と、エチルアクリレート70重量部と、メチルメタクリレート5重量部と、2-ヒドロキシエチルアクリレート4重量部と、重合開始剤として過酸化ベンゾイル0.2重量部とを加えた後、窒素ガス気流下60℃で重合反応を行い、アクリル系共重合体(アクリルポリマーD)のトルエン溶液を得た。
[Production Example 4] Production of acrylic polymer D In toluene, 30 parts by weight of 2-ethylhexyl acrylate, 70 parts by weight of ethyl acrylate, 5 parts by weight of methyl methacrylate, 4 parts by weight of 2-hydroxyethyl acrylate, and a polymerization initiator were added. After adding 0.2 parts by weight of benzoyl peroxide as a solution, a polymerization reaction was carried out at 60° C. under a nitrogen gas stream to obtain a toluene solution of an acrylic copolymer (acrylic polymer D).
[実施例1]
(粘着剤の調製)
 アクリルポリマーAを100重量部含むアクリル系ポリマー溶液Aに、活性エネルギー線硬化型化合物として多官能モノマー(東亞合成株式会社製、商品名「アロニックスM-321」、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、官能基数:3個、分子量:644、軟化点:-59℃)50重量部、架橋剤(三菱ガス化学株式会社製、商品名「テトラッドC」、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン)3重量部、α-ヒドロキシケトン系光重合開始剤(BASFジャパン製、商品名「イルガキュア127」、分子量:340.4、波長365nmの吸光係数:1.07×102ml/g・cm)0.5重量部を加え粘着剤を得た。
(粘着シート)
 はく離ライナー1(株式会社フジコー製、商品名「PET-75-SCA1」、厚み:75μm)の離型処理面に上記の粘着剤を溶剤揮発(乾燥)後の厚みが50μmとなるように塗布して粘着剤層を形成した。得られた粘着剤層の粘着面をはく離ライナー2(東レ株式会社製、商品名「セラピールMDA」、厚さ:38μm)で保護して、(はく離ライナー1/粘着剤層/はく離ライナー2)からなる粘着シートを得た。
[Example 1]
(Preparation of adhesive)
Acrylic polymer solution A containing 100 parts by weight of acrylic polymer A was added with a polyfunctional monomer (manufactured by Toagosei Co., Ltd., trade name "Aronix M-321", propylene oxide-modified trimethylolpropane tri (meth) as an active energy ray-curable compound. ) acrylate, number of functional groups: 3, molecular weight: 644, softening point: -59 ° C.) 50 parts by weight, cross-linking agent (Mitsubishi Gas Chemical Co., Ltd., trade name “Tetrad C”, 1,3-bis (N, N -diglycidylaminomethyl)cyclohexane) 3 parts by weight, α-hydroxyketone-based photopolymerization initiator (manufactured by BASF Japan, trade name “Irgacure 127”, molecular weight: 340.4, absorption coefficient at wavelength 365 nm: 1.07 × 10 2 ml/g·cm) was added to obtain an adhesive.
(adhesive sheet)
The pressure-sensitive adhesive above was applied to the release-treated surface of release liner 1 (manufactured by Fujiko Co., Ltd., product name “PET-75-SCA1”, thickness: 75 μm) so that the thickness after solvent evaporation (drying) was 50 μm. to form an adhesive layer. The adhesive surface of the obtained adhesive layer was protected with a release liner 2 (manufactured by Toray Industries, Inc., trade name "Therapeal MDA", thickness: 38 μm), and the adhesive layer was separated from (release liner 1/adhesive layer/release liner 2). An adhesive sheet was obtained.
[実施例2]
 多官能モノマーの配合量を100重量部としたこと以外は、実施例1と同様にして、(はく離ライナー1/粘着剤層/はく離ライナー2)からなる粘着シートを得た。
[Example 2]
A pressure-sensitive adhesive sheet consisting of (release liner 1/pressure-sensitive adhesive layer/release liner 2) was obtained in the same manner as in Example 1, except that the amount of the polyfunctional monomer was changed to 100 parts by weight.
[実施例3]
 多官能モノマーの配合量を150重量部としたこと以外は、実施例1と同様にして、(はく離ライナー1/粘着剤層/はく離ライナー2)からなる粘着シートを得た。
[Example 3]
A pressure-sensitive adhesive sheet consisting of (release liner 1/pressure-sensitive adhesive layer/release liner 2) was obtained in the same manner as in Example 1, except that the amount of the polyfunctional monomer was changed to 150 parts by weight.
[実施例4]
 多官能モノマーの配合量を100重量部とし、架橋剤の配合量を5重量部としたこと以外は、実施例1と同様にして、(はく離ライナー1/粘着剤層/はく離ライナー2)からなる粘着シートを得た。
[Example 4]
Consists of (release liner 1/adhesive layer/release liner 2) in the same manner as in Example 1 except that the amount of the polyfunctional monomer was 100 parts by weight and the amount of the cross-linking agent was 5 parts by weight. A sticky sheet was obtained.
[実施例5]
 活性エネルギー線硬化型化合物として、多官能モノマーに替えて、多官能オリゴマー(三菱ケミカル株式会社製、商品名「紫光UV-1700B」、ウレタンアクリレート、官能基数:10個、重量平均分子量(Mw):2000、軟化点:-26℃)を100重量部配合したこと以外は、実施例1と同様にして、(はく離ライナー1/粘着剤層/はく離ライナー2)からなる粘着シートを得た。
[Example 5]
As the active energy ray-curable compound, instead of a multifunctional monomer, a multifunctional oligomer (manufactured by Mitsubishi Chemical Corporation, trade name "Shikou UV-1700B", urethane acrylate, number of functional groups: 10, weight average molecular weight (Mw): 2000, softening point: −26° C.) was added in the same manner as in Example 1, except that 100 parts by weight of the adhesive sheet was composed of (release liner 1/adhesive layer/release liner 2).
[実施例6]
(粘着剤の調製)
 アクリルポリマーBを100重量部含むアクリル系ポリマー溶液Bに、活性エネルギー線硬化型化合物として多官能モノマー(東亞合成株式会社製、商品名「アロニックスM-321」、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、官能基数:3個、分子量:644、軟化点:-59℃)30重量部、架橋剤(三菱ガス化学株式会社製、商品名「テトラッドC」、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン)2重量部、α-ヒドロキシケトン系光重合開始剤(BASFジャパン製、商品名「イルガキュア127」、分子量:340.4、波長365nmの吸光係数:1.07×102ml/g・cm)3重量部を加え粘着剤を得た。
(粘着シート)
 上記の粘着剤を使用したこと以外は、実施例1と同様にして、(はく離ライナー1/粘着剤層/はく離ライナー2)からなる粘着シートを得た。
[Example 6]
(Preparation of adhesive)
In acrylic polymer solution B containing 100 parts by weight of acrylic polymer B, a polyfunctional monomer (manufactured by Toagosei Co., Ltd., trade name "Aronix M-321", propylene oxide-modified trimethylolpropane tri (meth ) acrylate, number of functional groups: 3, molecular weight: 644, softening point: -59 ° C.) 30 parts by weight, cross-linking agent (Mitsubishi Gas Chemical Co., Ltd., trade name “Tetrad C”, 1,3-bis (N, N -diglycidylaminomethyl)cyclohexane) 2 parts by weight, α-hydroxyketone-based photopolymerization initiator (manufactured by BASF Japan, trade name “Irgacure 127”, molecular weight: 340.4, absorption coefficient at wavelength 365 nm: 1.07 × 10 2 ml/g·cm) was added to obtain an adhesive.
(adhesive sheet)
A pressure-sensitive adhesive sheet consisting of (release liner 1/pressure-sensitive adhesive layer/release liner 2) was obtained in the same manner as in Example 1, except that the above pressure-sensitive adhesive was used.
[比較例1]
(粘着剤の調製)
 アクリルポリマーCを100重量部含むアクリル系ポリマー溶液Cに、架橋剤(三菱ガス化学株式会社製、商品名「テトラッドC」、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン)0.1重量部を加え粘着剤を得た。
(粘着シート)
 上記の粘着剤を使用したこと以外は、実施例1と同様にして、(はく離ライナー1/粘着剤層/はく離ライナー2)からなる粘着シートを得た。
[Comparative Example 1]
(Preparation of adhesive)
Acrylic polymer solution C containing 100 parts by weight of acrylic polymer C, a cross-linking agent (Mitsubishi Gas Chemical Co., Ltd., trade name “Tetrad C”, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane) 0 .1 part by weight was added to obtain an adhesive.
(adhesive sheet)
A pressure-sensitive adhesive sheet consisting of (release liner 1/pressure-sensitive adhesive layer/release liner 2) was obtained in the same manner as in Example 1, except that the above pressure-sensitive adhesive was used.
[比較例2]
(粘着剤の調製)
 アクリルポリマーDを100重量部含むアクリル系ポリマー溶液Dに、架橋剤(日本ポリウレタン工業株式会社製、商品名「コロネートL」、トリメチロールプロパン/トリレンジイソシアネート付加物)1重量部を加え粘着剤を得た。
(粘着シート)
 上記の粘着剤を使用したこと以外は、実施例1と同様にして、(はく離ライナー1/粘着剤層/はく離ライナー2)からなる粘着シートを得た。
[Comparative Example 2]
(Preparation of adhesive)
To the acrylic polymer solution D containing 100 parts by weight of the acrylic polymer D, 1 part by weight of a cross-linking agent (manufactured by Nippon Polyurethane Industry Co., Ltd., trade name "Coronate L", trimethylolpropane/tolylene diisocyanate adduct) is added to form an adhesive. Obtained.
(adhesive sheet)
A pressure-sensitive adhesive sheet consisting of (release liner 1/pressure-sensitive adhesive layer/release liner 2) was obtained in the same manner as in Example 1, except that the above pressure-sensitive adhesive was used.
 <評価>
 実施例及び比較例で得られた粘着シートについて、以下の評価を行った。結果を表1に示す。
<Evaluation>
The pressure-sensitive adhesive sheets obtained in Examples and Comparative Examples were evaluated as follows. Table 1 shows the results.
(1)軟化点(10%熱変形温度)の測定
 化合物サンプル約5.0mgを、Φ4.0mmのアルミパンに採取し、評価用サンプルのシートを得た。化合物サンプルが有機溶剤で希釈されている場合は、該有機溶剤の沸点以上の温度で十分に揮発させて評価用サンプルを準備した。
 上記で得られた評価用サンプルのシートを、TMA Q400(TA-instruments社製)にセットし、Φ3.0mmのプローブを使用し、針入モードにて窒素ガス流量:50.0ml/min、押し込み荷重:0.01N、測定雰囲気温度範囲:-75℃~40℃、昇温速度:3℃/minの昇温速度条件で昇温しながら、評価用サンプルのシートの厚み減少を測定した。得られたデータから、厚み減少が10%となる温度を抽出し、軟化点(10%熱変形温度)とした。
(1) Measurement of Softening Point (10% Heat Deformation Temperature) About 5.0 mg of a compound sample was placed in an aluminum pan with a diameter of 4.0 mm to obtain a sample sheet for evaluation. When the compound sample was diluted with an organic solvent, it was sufficiently volatilized at a temperature equal to or higher than the boiling point of the organic solvent to prepare an evaluation sample.
The sheet of the evaluation sample obtained above is set in TMA Q400 (manufactured by TA-instruments), using a Φ3.0 mm probe, nitrogen gas flow rate: 50.0 ml / min in penetration mode, pushing The thickness reduction of the evaluation sample sheet was measured while increasing the temperature under the following conditions: load: 0.01 N, ambient temperature range for measurement: -75°C to 40°C, temperature increase rate: 3°C/min. From the obtained data, the temperature at which the thickness decreased by 10% was extracted and used as the softening point (10% heat distortion temperature).
(2)活性エネルギー線照射前の周波数100kHz、25℃における貯蔵弾性率(G'(100k))、損失係数(tanδ(100k))
 実施例及び比較例で得られた粘着シートの粘着剤層を厚さ1.0mm以上になるように積層し、治具を用いてΦ8mmサイズに打抜き、ARES-G2(TA instruments社製)のプローブにセットした。-45℃から30℃まで5℃毎に、歪み0.05%で0.1Hzから10Hzの周波数で測定した。その後、該分析装置に内蔵されている解析ツールを用いて、基準温度25℃として、WLF式に基づき測定データを掃引し、マスターカーブを合成することで貯蔵弾性率、およびtanδの周波数依存性データを得た。得られたデータから、100kHzの貯蔵弾性率(G'(100k))、および損失係数(tanδ(100k))の値を抽出した。
(2) Storage modulus (G' (100k)) and loss factor (tan δ (100k)) at a frequency of 100kHz and 25°C before active energy ray irradiation
The pressure-sensitive adhesive layers of the pressure-sensitive adhesive sheets obtained in Examples and Comparative Examples are laminated to a thickness of 1.0 mm or more, punched into a φ8 mm size using a jig, and a probe of ARES-G2 (manufactured by TA Instruments). set to Measurements were made at frequencies of 0.1 Hz to 10 Hz at strains of 0.05% in steps of 5°C from -45°C to 30°C. Then, using the analysis tool built into the analyzer, the reference temperature is set to 25 ° C., the measurement data is swept based on the WLF formula, and the master curve is synthesized to synthesize the storage modulus and the frequency dependence data of tan δ. got From the obtained data, values of 100 kHz storage modulus (G'(100k)) and loss factor (tan δ(100k)) were extracted.
(3)活性エネルギー線照射後の線膨張係数
 「TMA Q400」(TA-instruments社製)を用いて、引張モードにて窒素ガス流量:50.0ml/min、印加荷重:0.0196Nの条件で、粘着剤層の200~210℃と260~270℃における線膨張係数を測定した。具体的には、下記方法により測定した。
 各実施例および比較例で用いた粘着剤と同様の粘着剤を用いて、厚さ50μmの粘着剤層を形成し、当該粘着剤層を積層して厚さ200μmのサンプルを得た。当該サンプルを、両側に剥離ライナーが付いた状態で、8280mJ/cm2の紫外線を両側から1回ずつ照射した後に、4mm×30mmサイズに打抜き、「TMA Q400」のプローブに8mm間隔を空けて剥離ライナーを除去した粘着剤層をセットした。20℃から300℃まで10℃/minの昇温速度で昇温しながらサンプルの寸法変化を測定した。得られたデータから、200~210℃と260~270℃における寸法変化の傾きを算出し、線膨張係数の値を得た。
(3) Linear expansion coefficient after irradiation with active energy ray Using "TMA Q400" (manufactured by TA-instruments) in tension mode, nitrogen gas flow rate: 50.0 ml / min, applied load: 0.0196 N , the coefficient of linear expansion of the pressure-sensitive adhesive layer was measured at 200 to 210°C and 260 to 270°C. Specifically, it was measured by the following method.
A pressure-sensitive adhesive layer having a thickness of 50 μm was formed using the same pressure-sensitive adhesive as used in each example and comparative example, and the pressure-sensitive adhesive layers were laminated to obtain a sample having a thickness of 200 μm. The sample was irradiated with UV rays of 8280 mJ/cm 2 once from both sides with a release liner attached on both sides, then punched into a size of 4 mm × 30 mm, and peeled off at an interval of 8 mm to the “TMA Q400” probe. The adhesive layer from which the liner was removed was set. The dimensional change of the sample was measured while increasing the temperature from 20° C. to 300° C. at a rate of temperature increase of 10° C./min. From the obtained data, the slope of the dimensional change at 200 to 210° C. and 260 to 270° C. was calculated to obtain the coefficient of linear expansion.
(4)活性エネルギー線照射後の引張弾性率
 動的粘弾性測定装置(TA Instruments社製、商品名「RSA-3」)を用いて、測定周波数1Hz、歪み0.05%、25℃における引張弾性率E'を測定した。具体的には、実施例及び比較例で得られた粘着剤を用いて、厚さ50μmの基材を有しない粘着シートを作製し、該粘着シートを厚さ200μm以上になるように積層した。サンプルの両側に剥離ライナーが付いた状態で、8280mJ/cm2の紫外線を両側から1回ずつ照射した後に剥離ライナーを除去した粘着剤層を、幅10mmのサンプルとした。なお、チャック間距離は20mmとし、0℃から300℃まで5℃/min.の昇温速度で測定した。得られたデータから、200℃と260℃における引張弾性率E'の値を抽出した。
(4) Tensile modulus after active energy ray irradiation Using a dynamic viscoelasticity measuring device (manufactured by TA Instruments, trade name “RSA-3”), a measurement frequency of 1 Hz, strain of 0.05%, tension at 25 ° C. The elastic modulus E' was measured. Specifically, using the adhesives obtained in Examples and Comparative Examples, adhesive sheets having no substrate having a thickness of 50 μm were produced, and the adhesive sheets were laminated to a thickness of 200 μm or more. A sample with a width of 10 mm was obtained by removing the release liner after irradiating the sample with a release liner on both sides once from each side with 8280 mJ/cm 2 ultraviolet rays. The distance between chucks was 20 mm, and the temperature was changed from 0°C to 300°C at 5°C/min. was measured at a heating rate of From the obtained data, the values of tensile elastic modulus E' at 200°C and 260°C were extracted.
(5)ゲル分率
 粘着剤層約0.5gを精秤して、これをサンプルとした(重量W1)。当該サンプルを、多孔質ポリテトラフルオロエチレン膜(日東電工社製、商品名「ニトフロンNTF1122」、平均孔径:0.2μm、気孔率75%、厚さ85μm、重量W2)で巾着状に包み、口を糸(重量W3)で縛った。この包みをトルエン50mLに浸し、室温(25℃)で7日間保持して粘着層中のゾル成分のみを上記膜外に溶出させた後、上記包みを取り出して外表面に付着しているトルエンを拭き取り、該包みを130℃で2時間乾燥させ、該包みの重量(W4)を測定した。そして、各値を下式に代入することによりゲル分率を求めた。
    ゲル分率(%)=[(W4-W2-W3)/W1]×100
 ゲル分率G0は、紫外線照射していない粘着剤層を用いて、上述のゲル分率測定方法により測定した。一方、ゲル分率G1については、粘着剤層の両側に剥離ライナーが付いた状態で、8280mJ/cm2の紫外線を照射した後に剥離ライナーを除去した粘着剤層を、上述のゲル分率測定方法によりゲル分率を測定した。
(5) Gel fraction About 0.5 g of the adhesive layer was precisely weighed and used as a sample (weight W1). The sample was wrapped in a purse-like shape with a porous polytetrafluoroethylene membrane (manufactured by Nitto Denko, trade name “Nitoflon NTF1122”, average pore size: 0.2 μm, porosity 75%, thickness 85 μm, weight W2). was tied with a thread (weight W3). This package was immersed in 50 mL of toluene and held at room temperature (25°C) for 7 days to elute only the sol component in the adhesive layer to the outside of the film. After wiping, the packet was dried at 130° C. for 2 hours and the weight of the packet (W4) was measured. Then, the gel fraction was obtained by substituting each value into the following formula.
Gel fraction (%) = [(W4-W2-W3)/W1] x 100
The gel fraction G 0 was measured by the gel fraction measurement method described above using a pressure-sensitive adhesive layer that had not been irradiated with ultraviolet rays. On the other hand, for the gel fraction G 1 , the pressure-sensitive adhesive layer with release liners attached to both sides of the pressure-sensitive adhesive layer was irradiated with ultraviolet rays of 8280 mJ/cm 2 and then the release liner was removed. The gel fraction was measured by the method.
(6)活性エネルギー線照射前の受け取り性(TMAを用いた-40℃環境下における沈み込み深さ)
 TMA Q400(TA-instruments社製)を用いて、Φ1.0mmのプローブを使用し、針入モードにて窒素ガス流量:50.0ml/min、押し込み荷重:0.05N、測定雰囲気温度:-40℃、押し込み負荷時間:20minの条件で、はく離ライナーを剥離して曝露された粘着剤層の沈み込み深さを計測した。測定はN=5で実施し、これら測定値の中の最大値と最小値を除くN=3の平均値をサンプルの沈み込み深さとした。
 初期の粘着剤層の厚さに対する沈み込み深さ割合(沈み込み深さ/厚さ×100)を算出し、以下の基準にて評価した。

 〇(受け取り性が良好)・・・沈み込み深さ/厚さ×100が30%以上
 △(受け取り性が実用上問題ない)・・・沈み込み深さ/厚さ×100が5%以上30%未満
 ×(受け取り性が不良)・・・沈み込み深さ/厚さ×100が5%未満
(6) Receptivity before active energy ray irradiation (subduction depth under −40° C. environment using TMA)
Using TMA Q400 (manufactured by TA-instruments), using a Φ1.0 mm probe, in penetration mode, nitrogen gas flow rate: 50.0 ml / min, indentation load: 0.05 N, measurement ambient temperature: -40 ° C., indentation load time: 20 min, the sinking depth of the exposed pressure-sensitive adhesive layer after peeling off the release liner was measured. The measurement was performed with N=5, and the average value of N=3 excluding the maximum and minimum values among these measured values was taken as the sinking depth of the sample.
A sinking depth ratio (sinking depth/thickness×100) with respect to the initial thickness of the pressure-sensitive adhesive layer was calculated and evaluated according to the following criteria.

○ (Good acceptance): Depth of sinking/thickness x 100 is 30% or more △ (No problem in practical use): Depth of sinking/thickness x 100 is 5% or more 30 % less than x (poor receptivity) ... sinking depth/thickness x 100 is less than 5%
(6)活性エネルギー線照射後の耐熱性(5%重量減少温度)
 示差熱分析装置(TA Instruments社製、商品名「Discovery TGA」)を用いて、昇温温度10℃/min、N2雰囲気、ガス流量25ml/minの条件下、粘着剤層の重量が5%減少する温度を測定した。具体的には、下記方法により測定した。
 粘着剤層の両側に剥離ライナーが付いた状態で、8280mJ/cm2の紫外線を照射した後に、剥離ライナーを除去した粘着剤層サンプル約0.01gを、「Discovery TGA」にセットした。20℃から500℃まで10℃/minの昇温速度で昇温しながら粘着シートの重量減少を測定した。得られたデータから、重量減少が5%となる温度を抽出した。

 〇(耐熱性良好)・・・5%重量減少温度が340℃以上
 ×(耐熱性不良)・・・5%重量減少温度が340℃未満
(6) Heat resistance after active energy ray irradiation (5% weight loss temperature)
Using a differential thermal analysis device (manufactured by TA Instruments, trade name “Discovery TGA”), the weight of the adhesive layer is 5% under the conditions of a heating temperature of 10 ° C./min, an N atmosphere, and a gas flow rate of 25 ml/min. The decreasing temperature was measured. Specifically, it was measured by the following method.
With the release liner attached to both sides of the adhesive layer, the adhesive layer was irradiated with ultraviolet rays of 8280 mJ/cm 2 , and then about 0.01 g of the adhesive layer sample with the release liner removed was set in a “Discovery TGA”. The weight loss of the pressure-sensitive adhesive sheet was measured while increasing the temperature from 20°C to 500°C at a rate of 10°C/min. From the data obtained, the temperature at which the weight loss was 5% was extracted.

○ (good heat resistance) 5% weight loss temperature is 340 ° C. or higher × (poor heat resistance) 5% weight loss temperature is less than 340 ° C.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記で説明した発明のバリエーションを以下に付記する。
〔付記1〕粘着剤層を形成するための樹脂組成物であって、
 前記粘着剤層の100kHz、25℃における貯蔵弾性率G'(100k)が、60MPa以下であり、
 活性エネルギー線硬化型化合物を含有する、樹脂組成物。
〔付記2〕前記粘着剤層が、以下の工程に使用される、付記1に記載の樹脂組成物。
・前記粘着剤層を、仮固定材上に電子部品が配置された面と対向して隙間を設けて配置し、電子部品を受け取る工程
・前記粘着剤層に受け取られた電子部品を、別のキャリア基板に転写するか、又は、直接実装基板に転写する工程
〔付記3〕前記粘着剤層の活性エネルギー線照射前のゲル分率G0(%)に対する、活性エネルギー線照射後のゲル分率G1(%)の比(G1/G0)が、1.1以上である、付記1又は2に記載の樹脂組成物。
〔付記4〕前記粘着剤層の活性エネルギー線照射後の200~210℃における線膨張係数α(200~210)が、500×10-5/K以下である、付記1~3のいずれか1つに記載の樹脂組成物。
〔付記5〕前記粘着剤層の活性エネルギー線照射後の200℃における引張弾性率E'(200)が、0.3MPa以上である、付記1~4のいずれか1つに記載の樹脂組成物。
〔付記6〕前記粘着剤層の活性エネルギー線照射後の260~270℃における線膨張係数α(260~270)が、500×10-5/K以下である、付記1~5のいずれか1つに記載の樹脂組成物。
〔付記7〕前記粘着剤層の活性エネルギー線照射後の260℃における引張弾性率E'(260)が、0.05MPa以上である、付記1~6のいずれか1つに記載の樹脂組成物。
〔付記8〕前記活性エネルギー線硬化型化合物が、多官能モノマー及び/又は多官能オリゴマーである、付記1~7のいずれか1つに記載の樹脂組成物。
〔付記9〕前記活性エネルギー線硬化型化合物が、反応性官能基を3個以上有する、付記1~8のいずれか1つに記載の樹脂組成物。
〔付記10〕前記活性エネルギー線硬化型化合物の分子量が、20000未満である、付記1~9のいずれか1つに記載の樹脂組成物。
〔付記11〕前記粘着剤層の厚みが、1μm以上500μm以下である、付記1~10のいずれか1つに記載の樹脂組成物。
〔付記12〕アクリル系粘着剤組成物である、付記1~11のいずれか1つに記載の樹脂組成物。
〔付記13〕前記粘着剤層が、さらに別の粘着剤層と積層されている、付記1~12のいずれか1つに記載の樹脂組成物。
〔付記14〕前記粘着剤層が、さらに基材層と積層されている、付記1~13のいずれか1つに記載の樹脂組成物。
〔付記15〕前記基材層の前記粘着剤層が積層されていない面に、別の粘着剤層が積層されている、付記14に記載の樹脂組成物。
〔付記16〕前記基材層が、光透過性の耐熱フィルムから形成される、付記14又は15に記載の樹脂組成物。
〔付記17〕付記1~16のいずれか1つに記載の樹脂組成物により形成される粘着剤層。
〔付記18〕付記17に記載の粘着剤層を有する粘着シート。
Variations of the invention described above are added below.
[Appendix 1] A resin composition for forming an adhesive layer,
The storage elastic modulus G' (100k) of the pressure-sensitive adhesive layer at 100 kHz and 25°C is 60 MPa or less,
A resin composition containing an active energy ray-curable compound.
[Appendix 2] The resin composition according to Appendix 1, wherein the pressure-sensitive adhesive layer is used in the following steps.
A step of arranging the adhesive layer on the temporary fixing material with a gap facing the surface on which the electronic component is arranged, and receiving the electronic component; Step of transferring to a carrier substrate or directly transferring to a mounting substrate [Appendix 3] Gel fraction after irradiation with active energy ray with respect to gel fraction G 0 (%) before irradiation with active energy ray of the pressure-sensitive adhesive layer 3. The resin composition according to appendix 1 or 2, wherein the G 1 (%) ratio (G 1 /G 0 ) is 1.1 or more.
[Appendix 4] Any one of Appendices 1 to 3, wherein the pressure-sensitive adhesive layer has a linear expansion coefficient α (200 to 210) at 200 to 210°C after irradiation with an active energy ray of 500 × 10 -5 /K or less. The resin composition according to 1.
[Appendix 5] The resin composition according to any one of Appendices 1 to 4, wherein the adhesive layer has a tensile elastic modulus E′(200) at 200° C. after irradiation with an active energy ray of 0.3 MPa or more. .
[Appendix 6] Any one of Appendices 1 to 5, wherein the pressure-sensitive adhesive layer has a linear expansion coefficient α (260 to 270) at 260 to 270°C after irradiation with an active energy ray of 500 × 10 -5 /K or less. The resin composition according to 1.
[Appendix 7] The resin composition according to any one of Appendixes 1 to 6, wherein the adhesive layer has a tensile elastic modulus E'(260) at 260°C after irradiation with an active energy ray of 0.05 MPa or more. .
[Appendix 8] The resin composition according to any one of Appendices 1 to 7, wherein the active energy ray-curable compound is a polyfunctional monomer and/or a polyfunctional oligomer.
[Appendix 9] The resin composition according to any one of Appendices 1 to 8, wherein the active energy ray-curable compound has 3 or more reactive functional groups.
[Appendix 10] The resin composition according to any one of Appendices 1 to 9, wherein the active energy ray-curable compound has a molecular weight of less than 20,000.
[Appendix 11] The resin composition according to any one of Appendices 1 to 10, wherein the pressure-sensitive adhesive layer has a thickness of 1 μm or more and 500 μm or less.
[Appendix 12] The resin composition according to any one of Appendices 1 to 11, which is an acrylic pressure-sensitive adhesive composition.
[Appendix 13] The resin composition according to any one of Appendices 1 to 12, wherein the pressure-sensitive adhesive layer is further laminated with another pressure-sensitive adhesive layer.
[Appendix 14] The resin composition according to any one of Appendices 1 to 13, wherein the pressure-sensitive adhesive layer is further laminated with a substrate layer.
[Additional remark 15] The resin composition according to Additional remark 14, wherein another adhesive layer is laminated on the surface of the base material layer on which the adhesive layer is not laminated.
[Appendix 16] The resin composition according to Appendix 14 or 15, wherein the substrate layer is formed from a light-transmitting heat-resistant film.
[Appendix 17] A pressure-sensitive adhesive layer formed from the resin composition according to any one of Appendices 1 to 16.
[Appendix 18] A pressure-sensitive adhesive sheet having the pressure-sensitive adhesive layer according to Appendix 17.
1         粘着シート
10        粘着剤層
R1、R2     はく離ライナー
2         粘着シート
20、21     粘着剤層
3         粘着シート
30        粘着剤層
S1        基材
4         粘着シート
40、41     粘着剤層
S2        キャリア基板
50        仮固定材(基板もしくは粘着シート)
51        電子部品
52        バンプ(突起電極)
11        粘着剤層(活性エネルギー線照射後)
60        実装基板
70、71     熱圧着ヘッド
1 Adhesive sheet 10 Adhesive layers R1, R2 Release liner 2 Adhesive sheets 20, 21 Adhesive layer 3 Adhesive sheet 30 Adhesive layer S1 Base material 4 Adhesive sheets 40, 41 Adhesive layer S2 Carrier substrate 50 Temporary fixing material (substrate or adhesive sheet)
51 electronic component 52 bump (projection electrode)
11 Adhesive layer (after active energy ray irradiation)
60 Mounting substrates 70, 71 Thermocompression bonding head

Claims (18)

  1.  粘着剤層を形成するための樹脂組成物であって、
     前記粘着剤層の100kHz、25℃における貯蔵弾性率G'(100k)が、60MPa以下であり、
     活性エネルギー線硬化型化合物を含有する、樹脂組成物。
    A resin composition for forming an adhesive layer,
    The storage elastic modulus G' (100k) of the pressure-sensitive adhesive layer at 100 kHz and 25°C is 60 MPa or less,
    A resin composition containing an active energy ray-curable compound.
  2.  前記粘着剤層が、以下の工程に使用される、請求項1に記載の樹脂組成物。
    ・前記粘着剤層を、仮固定材上に電子部品が配置された面と対向して隙間を設けて配置し、電子部品を受け取る工程
    ・前記粘着剤層に受け取られた電子部品を、別のキャリア基板に転写するか、又は、直接実装基板に転写する工程
    The resin composition according to claim 1, wherein the pressure-sensitive adhesive layer is used in the following steps.
    A step of arranging the adhesive layer on the temporary fixing material with a gap facing the surface on which the electronic component is arranged, and receiving the electronic component; A process of transferring to a carrier substrate or directly transferring to a mounting substrate
  3.  前記粘着剤層の活性エネルギー線照射前のゲル分率G0(%)に対する、活性エネルギー線照射後のゲル分率G1(%)の比(G1/G0)が、1.1以上である、請求項1又は2に記載の樹脂組成物。 A ratio (G 1 /G 0 ) of a gel fraction G 1 (%) after irradiation with an active energy ray to a gel fraction G 0 (%) before irradiation with an active energy ray of the pressure-sensitive adhesive layer is 1.1 or more. The resin composition according to claim 1 or 2, which is
  4.  前記粘着剤層の活性エネルギー線照射後の200~210℃における線膨張係数α(200~210)が、500×10-5/K以下である、請求項1~3のいずれか1項に記載の樹脂組成物。 The linear expansion coefficient α (200 to 210) of the adhesive layer at 200 to 210° C. after irradiation with active energy rays is 500×10 −5 /K or less, according to any one of claims 1 to 3. of the resin composition.
  5.  前記粘着剤層の活性エネルギー線照射後の200℃における引張弾性率E'(200)が、0.3MPa以上である、請求項1~4のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, wherein the adhesive layer has a tensile elastic modulus E'(200) at 200°C after irradiation with active energy rays of 0.3 MPa or more.
  6.  前記粘着剤層の活性エネルギー線照射後の260~270℃における線膨張係数α(260~270)が、500×10-5/K以下である、請求項1~5のいずれか1項に記載の樹脂組成物。 The linear expansion coefficient α (260 to 270) at 260 to 270°C of the adhesive layer after irradiation with active energy rays is 500 × 10 -5 /K or less, according to any one of claims 1 to 5. of the resin composition.
  7.  前記粘着剤層の活性エネルギー線照射後の260℃における引張弾性率E'(260)が、0.05MPa以上である、請求項1~6のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 6, wherein the adhesive layer has a tensile elastic modulus E'(260) at 260°C after irradiation with active energy rays of 0.05 MPa or more.
  8.  前記活性エネルギー線硬化型化合物が、多官能モノマー及び/又は多官能オリゴマーである、請求項1~7のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 7, wherein the active energy ray-curable compound is a polyfunctional monomer and/or a polyfunctional oligomer.
  9.  前記活性エネルギー線硬化型化合物が、反応性官能基を3個以上有する、請求項1~8のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 8, wherein the active energy ray-curable compound has 3 or more reactive functional groups.
  10.  前記活性エネルギー線硬化型化合物の分子量が、20000未満である、請求項1~9のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 9, wherein the active energy ray-curable compound has a molecular weight of less than 20,000.
  11.  前記粘着剤層の厚みが、1μm以上500μm以下である、請求項1~10のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 10, wherein the pressure-sensitive adhesive layer has a thickness of 1 µm or more and 500 µm or less.
  12.  アクリル系粘着剤組成物である、請求項1~11のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 11, which is an acrylic adhesive composition.
  13.  前記粘着剤層が、さらに別の粘着剤層と積層されている、請求項1~12のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 12, wherein the adhesive layer is laminated with another adhesive layer.
  14.  前記粘着剤層が、さらに基材層と積層されている、請求項1~13のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 13, wherein the pressure-sensitive adhesive layer is further laminated with a base material layer.
  15.  前記基材層の前記粘着剤層が積層されていない面に、別の粘着剤層が積層されている、請求項14に記載の樹脂組成物。 The resin composition according to claim 14, wherein another adhesive layer is laminated on the surface of the base material layer on which the adhesive layer is not laminated.
  16.  前記基材層が、光透過性の耐熱フィルムから形成される、請求項14又は15に記載の樹脂組成物。 The resin composition according to claim 14 or 15, wherein the base layer is formed from a light-transmitting heat-resistant film.
  17.  請求項1~16のいずれか1項に記載の樹脂組成物により形成される粘着剤層。 A pressure-sensitive adhesive layer formed from the resin composition according to any one of claims 1 to 16.
  18.  請求項17に記載の粘着剤層を有する粘着シート。 A pressure-sensitive adhesive sheet having the pressure-sensitive adhesive layer according to claim 17.
PCT/JP2022/048325 2022-01-11 2022-12-27 Resin composition WO2023136146A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022002574A JP2023102163A (en) 2022-01-11 2022-01-11 Composition
JP2022-002574 2022-01-11

Publications (1)

Publication Number Publication Date
WO2023136146A1 true WO2023136146A1 (en) 2023-07-20

Family

ID=87279117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048325 WO2023136146A1 (en) 2022-01-11 2022-12-27 Resin composition

Country Status (3)

Country Link
JP (1) JP2023102163A (en)
TW (1) TW202334263A (en)
WO (1) WO2023136146A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277282A (en) * 2006-04-03 2007-10-25 Nitto Denko Corp Pressure-sensitive adhesive sheet for processing semiconductor wafer
JP2018090776A (en) * 2016-12-02 2018-06-14 日東電工株式会社 Masking material
JP2019067892A (en) * 2017-09-29 2019-04-25 東レエンジニアリング株式会社 Transfer substrate and transfer method
JP2020033401A (en) * 2018-08-27 2020-03-05 日東電工株式会社 Reinforcing film
WO2022138458A1 (en) * 2020-12-25 2022-06-30 日東電工株式会社 Shock-absorbing adhesive sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277282A (en) * 2006-04-03 2007-10-25 Nitto Denko Corp Pressure-sensitive adhesive sheet for processing semiconductor wafer
JP2018090776A (en) * 2016-12-02 2018-06-14 日東電工株式会社 Masking material
JP2019067892A (en) * 2017-09-29 2019-04-25 東レエンジニアリング株式会社 Transfer substrate and transfer method
JP2020033401A (en) * 2018-08-27 2020-03-05 日東電工株式会社 Reinforcing film
WO2022138458A1 (en) * 2020-12-25 2022-06-30 日東電工株式会社 Shock-absorbing adhesive sheet

Also Published As

Publication number Publication date
TW202334263A (en) 2023-09-01
JP2023102163A (en) 2023-07-24

Similar Documents

Publication Publication Date Title
KR101505373B1 (en) Removable pressure-sensitive adhesive composition, pressure-sensitive adhesive sheet, and cutting processing method of electronic components
WO2022138458A1 (en) Shock-absorbing adhesive sheet
EP1752507A1 (en) Pressure-sensitive adhesive sheet and process for preparing it
JP2011054940A (en) Adhesive sheet for supporting and protecting semiconductor wafer and method for grinding back of semiconductor wafer
KR102554742B1 (en) Acrylic pressure-sensitive adhesive composition and pressure-sensitive adhesive sheet
KR20210006896A (en) Semiconductor chip manufacturing method
JP2024003066A (en) Adhesive sheet and method for manufacturing semiconductor device
WO2020189568A1 (en) Adhesive sheet and semiconductor device production method
JP2005239884A (en) Adhesive sheet for processing semiconductor wafer
JP7084535B1 (en) Resin composition
WO2023136146A1 (en) Resin composition
WO2023136145A1 (en) Resin composition
WO2023042409A1 (en) Adhesive sheet
WO2022163005A1 (en) Electronic component transferring adhesive sheet, and electronic component processing method using electronic component transferring adhesive sheet
WO2022138459A1 (en) Resin composition
JPWO2017200103A1 (en) Release film
TW202137306A (en) Protection sheet for semiconductor processing and manufacturing method of semiconductor device can suppress the generation of cracks in the wafer after polishing
WO2019235217A1 (en) Method for producing cured sealant
CN117940523A (en) Pressure-sensitive adhesive sheet
TWI791802B (en) Chips for machining workpieces and methods of use thereof
WO2023105906A1 (en) Reinforcement film
KR20230159373A (en) Manufacturing method of adhesive tape for semiconductor processing and semiconductor device
KR20230159372A (en) Manufacturing method of adhesive tape for semiconductor processing and semiconductor device
KR20210113048A (en) Pressure-sensitive adhesive tape
JP2022092836A (en) Adhesive sheet for semiconductor processing and manufacturing method for semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920662

Country of ref document: EP

Kind code of ref document: A1