WO2023135958A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2023135958A1
WO2023135958A1 PCT/JP2022/043693 JP2022043693W WO2023135958A1 WO 2023135958 A1 WO2023135958 A1 WO 2023135958A1 JP 2022043693 W JP2022043693 W JP 2022043693W WO 2023135958 A1 WO2023135958 A1 WO 2023135958A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
water
gas cooler
cooled
stage compression
Prior art date
Application number
PCT/JP2022/043693
Other languages
English (en)
French (fr)
Inventor
裕也 山田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023135958A1 publication Critical patent/WO2023135958A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors

Definitions

  • the present disclosure relates to a refrigeration system connected to a refrigeration or freezer showcase, and more particularly to a refrigeration system capable of using exhaust heat of the refrigeration system for supplying hot water and heating.
  • Patent Document 1 discloses a condensing unit that can use exhaust heat from a refrigeration system for hot water supply and heating.
  • the condensing unit includes a water-cooled intercooler and gas cooler and an air-cooled intercooler and gas cooler.
  • the present disclosure provides a refrigerating device capable of using exhaust heat of the refrigerating device for hot water supply and heating while achieving size reduction and cost reduction.
  • the refrigerating device in the present disclosure is a refrigerating device that operates by switching the gas cooler to be used, and includes a low-stage compression mechanism, a water-cooled intercooler that cools the refrigerant discharged from the low-stage compression mechanism, and A refrigerant circuit composed of a high-stage compression mechanism that sucks and compresses the refrigerant discharged from the high-stage compression mechanism, a water-cooled gas cooler and an air-cooled gas cooler that cool the refrigerant discharged from the high-stage compression mechanism, an expansion mechanism, and an evaporator. and an injection circuit connecting the refrigerant pipe on the upstream side of the expansion mechanism and the suction refrigerant pipe of the high-stage compression mechanism via the injection expansion mechanism.
  • the refrigeration system uses a water-cooled intercooler and a water-cooled gas cooler to heat-exchange refrigerant and water during water-cooling operation, so that exhaust heat from the refrigeration system can be used to supply hot water.
  • the water-cooled intercooler performs intermediate cooling of the refrigerant discharged from the low-stage compression mechanism, thereby suppressing an abnormal rise in the temperature of the discharge gas even when the high-pressure pressure rises due to a rise in the water temperature, such as in summer.
  • the exhaust heat of the refrigeration system can be used for heating by exchanging heat between refrigerant and air using an air-cooled gas cooler.
  • the condensing unit of Patent Document 1 includes a water-cooled intercooler and gas cooler, and an air-cooled intercooler and gas cooler, and switches between water-cooling operation and air-cooling operation to utilize exhaust heat for hot water supply and heating. made possible.
  • the present disclosure provides a refrigeration system capable of utilizing waste heat of the refrigeration system for supplying hot water and heating while achieving miniaturization and cost reduction.
  • Embodiment 1 Embodiment 1 will be described below with reference to FIGS. 1 and 2.
  • FIG. 1 An illustration of Embodiment 1 will be described below with reference to FIGS. 1 and 2.
  • a refrigeration system 100 includes a compressor 130 having a low-stage compression mechanism 110 and a high-stage compression mechanism 120, a water-cooled intercooler 140 that cools the refrigerant discharged from the low-stage compression mechanism 110, a high-stage compression A water-cooled gas cooler 150 and an air-cooled gas cooler 151 that cool the refrigerant discharged from the mechanism 120, a supercooling heat exchanger 160 that further cools the refrigerant discharged from the water-cooled gas cooler 150 or the air-cooled gas cooler 151, It has an expansion mechanism 170 and an injection expansion mechanism 180 for decompressing the refrigerant discharged from the subcooling heat exchanger 160, and an evaporator 190 for absorbing heat from a heat source such as air.
  • the low stage compression mechanism 110 has a low stage suction port 111 and a low stage discharge port 112 .
  • the high-stage compression mechanism 120 has a high-stage suction port 121 and a high-stage discharge port 122 .
  • the refrigerating apparatus 100 can switch between water-cooling operation and air-cooling operation.
  • a first backflow prevention mechanism 210 that prevents the refrigerant from the water-cooled gas cooler 150 from flowing back to the air-cooled gas cooler 151; and a second backflow prevention mechanism 211 that prevents backflow to the type gas cooler 150 .
  • a three-way solenoid valve is used for the refrigerant channel switching mechanism 200.
  • Check valves are used for the first backflow prevention mechanism 210 and the second backflow prevention mechanism 211 .
  • These devices that constitute the refrigeration system 100 are connected by refrigerant pipes 220 through which refrigerant flows.
  • the refrigerant pipes 220 include a low-stage suction pipe 230 connecting the evaporator 190 and the low-stage suction port 111, a low-stage discharge pipe 231 connecting the low-stage discharge port 112 and the water-cooled intercooler 140, and the water-cooled intercooler 140.
  • a discharge gas temperature sensor 270 that detects the temperature of the refrigerant discharged from the high-stage compression mechanism 120 is provided in the high-stage discharge pipe 233 .
  • the refrigerating apparatus 100 also includes a control section (not shown) that controls each section in an integrated manner.
  • a control unit (not shown) performs discharge gas temperature control based on the value detected by the discharge gas temperature sensor 270 .
  • the refrigeration system 100 of the present embodiment uses, as a refrigerant, carbon dioxide whose refrigerant pressure on the high-pressure side is equal to or higher than the critical pressure (supercritical).
  • This carbon dioxide refrigerant is a natural refrigerant that has a low environmental load and is non-flammable and non-toxic.
  • the refrigeration system 100 also includes a water supply tank 280 and a hot water storage tank 290, and these devices, the water-cooled intercooler 140, and the water-cooled gas cooler 150 are connected by a water pipe 300 through which water flows.
  • the water pipe 300 includes a first water pipe 310 connecting the water supply tank 280 and the water-cooled intercooler 140, a second water pipe 311 branched from the first water pipe 310 and connected to the water-cooled gas cooler 150, and a water-cooled gas cooler 150. It is composed of a third water pipe 312 connecting the intercooler 140 and the hot water storage tank 290 and a fourth water pipe 313 joining and connecting the third water pipe 312 from the water-cooled gas cooler 150 .
  • a water pump 320 is provided in the first water pipe 310 .
  • the water-cooled intercooler 140 and the water-cooled gas cooler 150 are connected in parallel by a first water pipe 310 and a second water pipe 311 .
  • FIG. 2 is a schematic configuration diagram when the refrigerating apparatus 100 of this embodiment is mounted in a closed showcase.
  • the showcase 330 is a closed showcase having a door 340 that can be opened and closed on the front side.
  • the showcase 330 includes a case body 350 made of a heat insulating material having a substantially U-shaped cross section with an open front surface and covering the top, back, and bottom surfaces, a duct 360 communicating between the lower space and the upper part of the case body 350, and a deck pan 370. , and a display room 380 .
  • the deck pan 370 houses the evaporator 190 and the expansion mechanism 170 .
  • a plurality of shelves 390 for displaying products are installed at predetermined intervals in the vertical direction.
  • an opening 400 is provided on the front surface of the lower space of the case main body 350 .
  • the air-cooled gas cooler 151 is arranged on the upper surface of the case main body 350 .
  • the refrigeration apparatus 100 of the present embodiment can switch between water-cooling operation and air-cooling operation.
  • the compressor 130 First, by operating the compressor 130 , the refrigerant returned from the evaporator 190 is sucked into the low-stage compression mechanism 110 through the low-stage suction port 111 .
  • the refrigerant sucked into the low-stage compression mechanism 110 is compressed to an intermediate pressure and discharged from the low-stage discharge port 112 .
  • the refrigerant discharged from the low-stage discharge port 112 flows into the water-cooled intercooler 140 via the low-stage discharge pipe 231 .
  • the refrigerant that has flowed into the water-cooled intercooler 140 is cooled by heat exchange with water, and is sucked into the high-stage compression mechanism 120 through the high-stage suction pipe 232 and the high-stage suction port 121 in sequence.
  • the refrigerant sucked into the high-stage compression mechanism 120 is compressed to a high pressure and discharged from the high-stage discharge port 122 .
  • the refrigerant discharged from the high-stage discharge port 122 flows into the refrigerant flow path switching mechanism 200 via the high-stage discharge pipe 233 .
  • the refrigerant channel switching mechanism 200 operates so that the outlet on the first high-pressure pipe 240 side is open and the outlet on the second high-pressure pipe 241 side is closed.
  • the refrigerant that has flowed into the refrigerant channel switching mechanism 200 flows into the water-cooled gas cooler 150 via the first high-pressure pipe 240 .
  • the refrigerant that has flowed into the water-cooled gas cooler 150 is cooled by heat exchange with water, and then flows into the supercooling heat exchanger 160 via the third high-pressure pipe 242 and the first backflow prevention mechanism.
  • the refrigerant that has flowed into the supercooling heat exchanger 160 exchanges heat with the refrigerant that has passed through the injection expansion mechanism 180, which will be described later, and is further cooled.
  • the cooled refrigerant is divided into refrigerant that flows into the expansion mechanism 170 via the fifth high-pressure pipe 244 and refrigerant that flows into the injection expansion mechanism 180 via the fifth high-pressure pipe 244 and the sixth high-pressure pipe 245. .
  • the refrigerant that has flowed into the expansion mechanism 170 is sent to the evaporator 190 through the evaporator inlet pipe 260 after being decompressed to a predetermined low pressure.
  • the refrigerant sent to evaporator 190 is heated by exchanging heat with the air in showcase 330 and sucked into low-stage compression mechanism 110 again.
  • the refrigerant that has flowed into the injection expansion mechanism 180 flows into the subcooling heat exchanger 160 via the first intermediate pressure pipe 250 after being decompressed to the intermediate pressure.
  • the refrigerant that has flowed into the subcooling heat exchanger 160 exchanges heat with the refrigerant that has passed through the water-cooled gas cooler 150 and is heated.
  • the heated refrigerant passes through the second intermediate pressure pipe 251 , joins the refrigerant in the high stage suction pipe 233 , and is sucked into the high stage compression mechanism 120 .
  • water is supplied from the water supply tank 280, flows into the water-cooled intercooler 140 via the first water pipe 310, branches from the first pipe 310, and passes through the second water pipe. and flows into the water-cooled gas cooler 150 .
  • the water that has flowed into the water-cooled intercooler 140 exchanges heat with the refrigerant and is heated, and then flows into the hot water storage tank 290 via the third water pipe 312 .
  • the water that has flowed into the water-cooled gas cooler 150 After the water that has flowed into the water-cooled gas cooler 150 is heated by heat exchange with the refrigerant, it passes through the fourth water pipe 313 and joins the water in the third water pipe 312 to flow into the hot water storage tank 290 .
  • the compressor 130 First, by operating the compressor 130 , the refrigerant returned from the evaporator 190 is sucked into the low-stage compression mechanism 110 through the low-stage suction port 111 .
  • the refrigerant sucked into the low-stage compression mechanism 110 is compressed to an intermediate pressure and discharged from the low-stage discharge port 112 .
  • the refrigerant discharged from the low-stage discharge port 112 flows into the water-cooled intercooler 140 via the low-stage discharge pipe 231 .
  • Water is not supplied to the water-cooled intercooler 140 during air-cooling operation. Therefore, the refrigerant that has flowed into the water-cooled intercooler 140 is sucked into the high-stage compression mechanism 120 through the high-stage suction pipe 232 and the high-stage suction port 121 sequentially without exchanging heat with water.
  • the refrigerant sucked into the high-stage compression mechanism 120 is compressed to a high pressure and discharged from the high-stage discharge port 122 .
  • the refrigerant discharged from the high-stage discharge port 122 flows into the refrigerant flow path switching mechanism 200 via the high-stage discharge pipe 233 .
  • the refrigerant channel switching mechanism 200 operates so that the outlet on the first high-pressure pipe 240 side is closed and the outlet on the second high-pressure pipe 241 side is open.
  • the refrigerant that has flowed into the refrigerant channel switching mechanism 200 flows into the air-cooled gas cooler 151 via the second high-pressure pipe 241 .
  • the refrigerant that has flowed into the air-cooled gas cooler 151 is cooled by exchanging heat with the air, and then passes through the fourth high-pressure pipe 243, the second backflow prevention mechanism, and the third high-pressure pipe 242 to the supercooling heat exchanger 160. flow into
  • the refrigerant that has flowed into the supercooling heat exchanger 160 exchanges heat with the refrigerant that has passed through the injection expansion mechanism 180, which will be described later, and is further cooled.
  • the cooled refrigerant is divided into refrigerant that flows into the expansion mechanism 170 via the fifth high-pressure pipe 244 and refrigerant that branches from the fifth high-pressure pipe 244 and flows into the injection expansion mechanism 180 via the sixth high-pressure pipe. .
  • the refrigerant that has flowed into the expansion mechanism 170 is sent to the evaporator 190 through the evaporator inlet pipe 260 after being decompressed to a predetermined low pressure.
  • the refrigerant sent to evaporator 190 is heated by exchanging heat with the air in showcase 330 and sucked into low-stage compression mechanism 110 again.
  • the refrigerant that has flowed into the injection expansion mechanism 180 flows into the subcooling heat exchanger 160 via the first intermediate pressure pipe 250 after being decompressed to the intermediate pressure.
  • the refrigerant that has flowed into the subcooling heat exchanger 160 exchanges heat with the refrigerant that has passed through the air-cooled gas cooler 150 described above, and is heated.
  • the heated refrigerant passes through the second intermediate pressure pipe 251 , joins the refrigerant in the high stage suction pipe 233 , and is sucked into the high stage compression mechanism 120 .
  • the air that has flowed into the air-cooled intercooler 151 exchanges heat with the refrigerant and is heated, and then blown out toward the front of the showcase 330 .
  • the controller (not shown) controls the injection expansion mechanism based on the value detected by the discharge gas temperature sensor 270 so that the discharge gas temperature of the high-stage compression mechanism 120 becomes a predetermined value. 180 control.
  • control unit controls the injection expansion mechanism 180 so that the amount of refrigerant flowing through the injection expansion mechanism 180 increases.
  • the controller controls the injection expansion mechanism 180 so that the amount of refrigerant flowing through the injection expansion mechanism 180 is reduced.
  • refrigeration system 100 includes low-stage compression mechanism 110, water-cooled intercooler 140 that cools the refrigerant discharged from low-stage compression mechanism 110 with water, and water-cooled intercooler 140.
  • a high-stage compression mechanism 120 that sucks the refrigerant discharged from the high-stage compression mechanism 120, a water-cooled gas cooler 150 and an air-cooled gas cooler 151 that cool the refrigerant discharged from the high-stage compression mechanism 120, an expansion mechanism 170, and an evaporator 190.
  • the refrigerating apparatus operates by switching the gas coolers to be used, and includes an injection circuit that connects the high pressure side and the intermediate pressure region of the refrigerant circuit via the injection expansion mechanism 180 .
  • the water-cooled intercooler 140 and the water-cooled gas cooler 150 are used to exchange heat between the refrigerant and water, so that exhaust heat from the refrigeration system 100 can be used to supply hot water.
  • the water-cooled intercooler 140 by performing intermediate cooling of the refrigerant discharged from the low-stage compression mechanism 110 by the water-cooled intercooler 140, even when the high-pressure pressure rises due to the water temperature rise in summer, etc., an abnormal rise in the discharge gas temperature can be suppressed. .
  • the air-cooled gas cooler 151 is used to exchange heat between the refrigerant and the air, whereby exhaust heat from the refrigeration system 100 can be used for heating.
  • the high pressure is unlikely to increase.
  • By performing intermediate cooling it is possible to sufficiently suppress the rise in the discharge gas temperature, so that the air-cooled intercooler can be omitted. This eliminates the need for a refrigerant flow path switching mechanism for switching between a water-cooled intercooler and an air-cooled intercooler, and a connection pipe therefor, so that the size and cost of the refrigeration apparatus 100 can be reduced.
  • the discharge gas temperature sensor 270 that detects the temperature of the refrigerant discharged from the high-stage compression mechanism 120 is provided, and the injection is performed based on the temperature of the refrigerant discharged from the high-stage compression mechanism 120.
  • the expansion mechanism 180 may be controlled.
  • the temperature of the refrigerant discharged from the high-stage compression mechanism 120 can be maintained at a predetermined value. Therefore, overheating operation of the compressor 130 due to an abnormal rise in the discharge gas temperature can be prevented.
  • the supercooling heat exchange for exchanging heat between the refrigerant after passing through the water-cooled gas cooler 150 or the air-cooled gas cooler 151 and the refrigerant after passing through the injection expansion mechanism 180 A device 160 may be provided.
  • the refrigerant cooled by the water-cooled gas cooler 150 or the air-cooled gas cooler 151 is further cooled and flows into the expansion valve 170 . Therefore, the refrigerating effect can be increased, and the refrigerating capacity of the refrigerating apparatus 100 can be increased.
  • the opening 400 is provided in the lower front surface of the showcase 330, and the air sucked from the opening 400 flows into the air-cooled gas cooler 151. You may make it cool a refrigerant
  • the refrigeration system 100 may use carbon dioxide as the refrigerant.
  • Embodiment 1 has been described as an example of the technology disclosed in the present application.
  • the technology in the present disclosure is not limited to this, and can also be applied to embodiments with modifications, replacements, additions, omissions, and the like.
  • Embodiment 1 an example in which a closed showcase is used as the showcase 330 has been described, but the present invention is not limited to this, and may be installed in, for example, an open showcase or a walk-in showcase. .
  • the air-cooled gas cooler 151 is arranged on the upper surface of the case main body 350, the air-cooled gas cooler 151 may be arranged anywhere, for example, on the ceiling or under the showcase 330.
  • the components of the refrigeration system 100 other than the air-cooled gas cooler 151 may be placed anywhere, but are placed on the upper surface of the case main body 350 or the deck pan 360, for example.
  • the water-cooled intercooler 140 and the water-cooled gas cooler 150 are connected in parallel by the water pipe 300, but the water-cooled intercooler 140 and the water-cooled gas cooler 150 may be connected in any way. , the water-cooled gas cooler 150 may be connected in series.
  • the water supply tank 280 is provided to supply water to the water-cooled intercooler 140 and the water-cooled gas cooler 150, the water supply tank 280 may be omitted and directly connected to the water supply.
  • one compressor having a two-stage compression mechanism including the low-stage compression mechanism 110 and the high-stage compression mechanism 120 was used as the compressor 180. Even if it is used as a high stage side compressor, the same function can be obtained.
  • the refrigerant flow switching mechanism 200 allows the refrigerant discharged from the high-stage compression mechanism 120 to flow into the water-cooled gas cooler 150, or flow into the air-cooled gas cooler 150.
  • electromagnetic valves are provided on the inlet sides of the water-cooled gas cooler 150 and the air-cooled gas cooler 151, and one of the electromagnetic valves is closed. can be switched by pressing Therefore, it is not limited to the refrigerant channel switching mechanism 200 and the three-way solenoid valve.
  • the refrigerant to be used may be any medium for transferring heat in the refrigeration cycle. Therefore, the refrigerant to be used is not limited to carbon dioxide.
  • the present disclosure is applicable to equipment that effectively utilizes waste heat from a refrigeration system. Specifically, the present disclosure is applicable to hot water supply, floor heating, hot water room heater, air conditioning, etc. using exhaust heat from a refrigeration system.
  • Refrigerating device 110 Low-stage compression mechanism 111 Low-stage suction port 112 Low-stage discharge port 120 High-stage compression mechanism 121 High-stage suction port 122 High-stage discharge port 130 Compressor 140 Water-cooled intercooler 150 Water-cooled gas cooler 151 Air-cooled gas cooler 160 subcooling heat exchanger 170 expansion mechanism 180 injection expansion mechanism 190 evaporator 200 refrigerant flow path switching mechanism 210 first backflow prevention mechanism 211 second backflow prevention mechanism 220 refrigerant pipe 230 low stage suction pipe 231 low stage discharge pipe 232 high Stage suction pipe 233 High stage discharge pipe 240 First high pressure pipe 241 Second high pressure pipe 242 Third high pressure pipe 243 Fourth high pressure pipe 244 Fifth high pressure pipe 245 Sixth high pressure pipe 250 First intermediate pressure pipe 251 Second intermediate pressure pipe 260 evaporator inlet pipe 270 discharge gas temperature sensor 280 water supply tank 290 hot water storage tank 300 water pipe 310 first water pipe 311 second water pipe 312 third water pipe 313 fourth water pipe 320 water

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

本開示における冷凍装置は、使用するガスクーラーを切替えて運転する冷凍装置であって、低段圧縮機構と、低段圧縮機構から吐出された冷媒を冷却する水冷式インタークーラーと、水冷式インタークーラーを通過した冷媒を吸入し圧縮する高段圧縮機構と、高段圧縮機構から吐出された冷媒を冷却する水冷式ガスクーラーおよび空冷式ガスクーラーと、膨張機構と、蒸発器と、から構成される冷媒回路と、膨張機構の上流側の冷媒配管と、高段圧縮機構の吸込冷媒配管と、をインジェクション用膨張機構を介して接続するインジェクション回路と、を備える。

Description

冷凍装置
 本開示は、冷蔵または冷凍ショーケースなどに接続される冷凍装置に係り、特に、冷凍装置の排熱を給湯および暖房に利用することが可能な冷凍装置に関する。
 特許文献1は、冷凍装置の排熱を給湯および暖房に利用することが可能なコンデンシングユニットを開示する。このコンデンシングユニットは、水冷式のインタークーラーおよびガスクーラーと、空冷式のインタークーラーおよびガスクーラーと、を備える。
特開2020-118354号公報
 本開示は、小型化およびコストダウンを図りつつ、冷凍装置の排熱を給湯および暖房に利用することが可能な冷凍装置を提供する。
 本開示における冷凍装置は、使用するガスクーラーを切替えて運転する冷凍装置であって、低段圧縮機構と、低段圧縮機構から吐出された冷媒を冷却する水冷式インタークーラーと、水冷式インタークーラーを通過した冷媒を吸入し圧縮する高段圧縮機構と、高段圧縮機構から吐出された冷媒を冷却する水冷式ガスクーラーおよび空冷式ガスクーラーと、膨張機構と、蒸発器と、から構成される冷媒回路と、膨張機構の上流側の冷媒配管と、高段圧縮機構の吸込冷媒配管と、をインジェクション用膨張機構を介して接続するインジェクション回路と、を備える。
 本開示における冷凍装置は、水冷運転時において、水冷式インタークーラーおよび水冷式ガスクーラーを使用して、冷媒と水とを熱交換させることによって冷凍装置の排熱を給湯に利用できる。また、水冷式インタークーラーにより低段圧縮機構から吐出された冷媒の中間冷却を行うことによって夏期等の水温上昇に伴って高圧圧力が上昇した場合においても、吐出ガス温度の異常上昇を抑制できる。一方で、空冷運転時において、空冷式ガスクーラーを使用して、冷媒と空気とを熱交換させることによって冷凍装置の排熱を暖房に利用できる。また、空冷運転時には室内の低温の空気と熱交換するため、高圧が上昇しにくく、低段圧縮機構から吐出された冷媒と高圧冷媒の一部を分岐・減圧した冷媒とを混合させることによって中間冷却を行うことで、十分に吐出ガス温度の上昇を抑制できるため、空冷式インタークーラーを省略できる。これにより、水冷式インタークーラーと空冷式インタークーラーとを切替えるための冷媒流路切替機構およびその接続配管が不要となるため、冷凍装置の小型化、コストダウンを図ることができる。
実施の形態1における冷凍装置の冷媒回路図 実施の形態1における冷凍装置をクローズドショーケースに搭載した場合の概略構成図
 (本開示の基礎となった知見等)
 発明者が本開示に想到するに至った当時、コンビニエンスストアやスーパーマーケットなどの店舗では、冷凍装置の排熱を、給湯および暖房に利用することが望まれていた。特許文献1のコンデンシングユニットは、水冷式のインタークーラーおよびガスクーラーと、空冷式のインタークーラーおよびガスクーラーと、を備え、水冷運転と空冷運転を切替えることで、排熱を給湯および暖房に利用することを可能にした。しかしながら、特許文献1のコンデンシングユニットのように、水冷式インタークーラーと空冷式インタークーラーとによって中間冷却を行う場合、水冷式ガスクーラーと空冷式ガスクーラーとを切替えるための冷媒流路切替機構に加えて、水冷式インタークーラーと空冷式インタークーラーとを切替えるための冷媒流路切替機構およびその接続配管が必要となる。発明者は、これによって配管の取り回しが複雑になり、冷凍装置の大きさやコストが増加するという課題を発見し、その課題を解決するために、本開示の主題を構成するに至った。
 そこで、本開示は、小型化およびコストダウンを図りつつ、冷凍装置の排熱を給湯および暖房に利用することが可能な冷凍装置を提供する。
 以下、図面を参照しながら実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。
 (実施の形態1)
 以下、図1および図2を用いて、実施の形態1を説明する。
 [1-1.構成]
 図1において、冷凍装置100は、低段圧縮機構110と高段圧縮機構120とを備える圧縮機130と、低段圧縮機構110から吐出された冷媒を冷却する水冷式インタークーラー140と、高段圧縮機構120から吐出された冷媒を冷却する水冷式ガスクーラー150および空冷式ガスクーラー151と、水冷式ガスクーラー150または空冷式ガスクーラー151から出た冷媒をさらに冷却する過冷却熱交換器160と、過冷却熱交換器160から出た冷媒を減圧する膨張機構170およびインジェクション用膨張機構180と、空気等の熱源から熱を吸収する蒸発器190を備えている。
 低段圧縮機構110は、低段吸込口111および低段吐出口112を備えている。高段圧縮機構120は、高段吸込口121および高段吐出口122を備えている。
 また、冷凍装置100は、水冷運転と空冷運転との切替えが可能であり、高段圧縮機構120から吐出された冷媒を水冷式ガスクーラー150に流入させるか、空冷式ガスクーラー151に流入させるかを切替える冷媒流路切替機構200と、水冷式ガスクーラー150から出た冷媒が空冷式ガスクーラー151へ逆流することを防ぐ第1逆流防止機構210と、空冷式ガスクーラー151から出た冷媒が水冷式ガスクーラー150へ逆流することを防ぐ第2逆流防止機構211と、を備えている。
 本実施の形態においては、冷媒流路切替機構200には、三方電磁弁が用いられている。また、第1逆流防止機構210および第2逆流防止機構211には、チェックバルブが用いられている。
 冷凍装置100を構成するこれらの機器は、冷媒が流れる冷媒配管220で接続されている。
 冷媒配管220は、蒸発器190と低段吸込口111とを接続する低段吸込配管230と、低段吐出口112と水冷式インタークーラー140とを接続する低段吐出配管231と、水冷式インタークーラー140と高段吸込口121とを接続する高段吸込配管232と、高段吐出口122と冷媒流路切替機構200の入口とを接続する高段吐出配管233と、冷媒流路切替機構200の一方の出口と水冷式ガスクーラー150とを接続する第1高圧配管240と、冷媒流路切替機構200のもう一方の出口と空冷式ガスクーラー151とを接続する第2高圧配管241と、水冷式ガスクーラー150と過冷却熱交換器160とを第1逆流防止機構210を介して接続する第3高圧配管242と、空冷式ガスクーラー151から第3高圧配管242に第2逆流防止機構211を介して合流・接続する第4高圧配管243と、過冷却熱交換器160と膨張機構170とを接続する第5高圧配管244と、第5高圧配管244から分岐し、インジェクション用膨張機構180と接続する第6高圧配管245と、インジェクション用膨張機構180と過冷却熱交換器160とを接続する第1中間圧配管250と、過冷却熱交換器160から高段吸込配管232に合流・接続する第2中間圧配管251と、膨張機構170と蒸発器190とを接続する蒸発器入口配管260と、から構成されている。
 高段吐出配管233には、高段圧縮機構120から吐出された冷媒の温度を検出する吐出ガス温度センサー270が設けられている。
 また、冷凍装置100は、各部を統括して制御する制御部(図示せず)を備えている。
 制御部(図示せず)は、吐出ガス温度センサー270による検出値に基づいて、吐出ガス温度制御を行う。
 なお、本実施の形態の冷凍装置100には、冷媒として、高圧側の冷媒圧力が臨界圧力以上(超臨界)となる二酸化炭素を用いている。この二酸化炭素冷媒は、環境負荷が小さく、可燃性および毒性がない自然冷媒である。
 また、冷凍装置100は、給水タンク280と、貯湯タンク290と、を備え、これらの機器と水冷式インタークーラー140と、水冷式ガスクーラー150とは、水が流れる水配管300で接続されている。
 水配管300は、給水タンク280と水冷式インタークーラー140とを接続する第1水配管310と、第1水配管310から分岐し、水冷式ガスクーラー150と接続する第2水配管311と、水冷式インタークーラー140と貯湯タンク290とを接続する第3水配管312と、水冷式ガスクーラー150から第3水配管312に合流・接続する第4水配管313とから構成されている。
 第1水配管310には、送水ポンプ320が備えられている。
 本実施の形態においては、水冷式インタークーラー140と水冷式ガスクーラー150は、第1水配管310および第2水配管311によって並列に接続されている。
 次に、図2は、本実施の形態の冷凍装置100をクローズドショーケースに搭載した場合の概略構成図である。
 図2において、ショーケース330は、前面側に開閉可能な扉340を備えた、クローズドショーケースである。
 ショーケース330は、前面が開口し上面、背面および下面を覆う断面略コ字状の断熱材からなるケース本体350と、ケース本体350の下方空間と上部とを連通するダクト360と、デッキパン370と、陳列室380と、を備えている。
 デッキパン370には、蒸発器190および膨張機構170が収容されている。
 陳列室380の内部には、商品を陳列するための複数の棚板390が上下方向に所定間隔をもって設置されている。
 また、ケース本体350の下方空間の前面に開口部400が設けられている。
 本実施の形態においては、空冷式ガスクーラー151がケース本体350の上面に配置されている。
 [1―2.動作]
 以上のように構成された冷凍装置100について、以下その動作、作用を説明する。
 本実施の形態の冷凍装置100は、水冷運転と空冷運転との切替えが可能である。
 まず、水冷式ガスクーラーを使用する水冷運転時の冷媒の動作について説明する。
 はじめに、圧縮機130を作動させることにより、蒸発器190から戻ってきた冷媒が低段吸込口111を介して低段圧縮機構110に吸い込まれる。
 低段圧縮機構110に吸い込まれた冷媒は、中間圧力まで圧縮されて低段吐出口112から吐出される。
 低段吐出口112から吐出された冷媒は、低段吐出配管231を介して水冷式インタークーラー140に流入する。
 水冷式インタークーラー140に流入した冷媒は、水と熱交換して冷却され、高段吸込配管232、高段吸込口121を順次経由して高段圧縮機構120に吸い込まれる。
 高段圧縮機構120に吸い込まれた冷媒は、高圧圧力まで圧縮されて高段吐出口122から吐出される。
 高段吐出口122から吐出された冷媒は、高段吐出配管233を介して冷媒流路切替機構200に流入する。
 水冷運転時は、冷媒流路切替機構200は、第1高圧配管240側の出口が開状態、第2高圧配管241側の出口が閉状態になるように作動する。
 したがって、冷媒流路切替機構200に流入した冷媒は、第1高圧配管240を介して水冷式ガスクーラー150に流入する。
 水冷式ガスクーラー150に流入した冷媒は、水と熱交換して冷却された後、第3高圧配管242と第1逆流防止機構を経由して、過冷却熱交換器160に流入する。
 過冷却熱交換器160に流入した冷媒は、後述のインジェクション用膨張機構180を通過した後の冷媒と熱交換して、さらに冷却される。冷却された冷媒は、第5高圧配管244を介して膨張機構170に流入する冷媒と、第5高圧配管244、第6高圧配管245を経由して、インジェクション用膨張機構180に流入する冷媒に分かれる。
 膨張機構170に流入した冷媒は、所定の低圧圧力まで減圧された後、蒸発器入口配管260を介して蒸発器190に送られる。
 蒸発器190に送られた冷媒は、本実施の形態においては、ショーケース330内の空気と熱交換して加熱され、再び、低段圧縮機構110に吸い込まれる。
 一方、インジェクション用膨張機構180に流入した冷媒は、中間圧力まで減圧された後、第1中間圧配管250を介して過冷却熱交換器160に流入する。
 過冷却熱交換器160に流入した冷媒は、上述の水冷式ガスクーラー150を通過した後の冷媒と熱交換し、加熱される。加熱された冷媒は、第2中間圧配管251を経由して、高段吸込配管233の冷媒と合流し、高段圧縮機構120に吸い込まれる。
 そして、圧縮機130が作動している間、これらの冷媒の動作が繰り返される。
 次に、水冷運転時の水の動作について説明する。
 送水ポンプ320を作動させることにより、給水タンク280から水が供給され、第1水配管310を介して、水冷式インタークーラー140に流入するとともに、第1配管310から分岐し、第2水配管を介して水冷式ガスクーラー150に流入する。
 水冷式インタークーラー140に流入した水は、冷媒と熱交換して加熱された後、第3水配管312を介して貯湯タンク290へ流入する。
 水冷式ガスクーラー150に流入した水は、冷媒と熱交換して加熱された後、第4水配管313を経由して、第3水配管312の水と合流し、貯湯タンク290へ流入する。
 そして、送水ポンプ320が作動している間、これらの水の動作が繰り返される。
 続いて、空冷式ガスクーラーを使用する空冷運転時の冷媒の動作について説明する。
 はじめに、圧縮機130を作動させることにより、蒸発器190から戻ってきた冷媒が低段吸込口111を介して低段圧縮機構110に吸い込まれる。
 低段圧縮機構110に吸い込まれた冷媒は、中間圧力まで圧縮されて低段吐出口112から吐出される。
 低段吐出口112から吐出された冷媒は、低段吐出配管231を介して水冷式インタークーラー140に流入する。
 空冷運転時は、水冷式インタークーラー140に水が供給されない。したがって、水冷式インタークーラー140に流入した冷媒は、水と熱交換することなく、高段吸込配管232、高段吸込口121を順次経由して、高段圧縮機構120に吸い込まれる。
 高段圧縮機構120に吸い込まれた冷媒は、高圧圧力まで圧縮されて高段吐出口122から吐出される。
 高段吐出口122から吐出された冷媒は、高段吐出配管233を介して冷媒流路切替機構200に流入する。
 空冷運転時は、冷媒流路切替機構200は、第1高圧配管240側の出口が閉状態、第2高圧配管241側の出口が開状態になるように作動する。
 したがって、冷媒流路切替機構200に流入した冷媒は、第2高圧配管241を介して空冷式ガスクーラー151に流入する。
 空冷式ガスクーラー151に流入した冷媒は、空気と熱交換して冷却された後、第4高圧配管243、第2逆流防止機構および第3高圧配管242を経由して、過冷却熱交換器160に流入する。
 過冷却熱交換器160に流入した冷媒は、後述のインジェクション用膨張機構180を通過した後の冷媒と熱交換して、さらに冷却される。冷却された冷媒は、第5高圧配管244を介して膨張機構170に流入する冷媒と、第5高圧配管244から分岐し、第6高圧配管を介してインジェクション用膨張機構180に流入する冷媒に分かれる。
 膨張機構170に流入した冷媒は、所定の低圧圧力まで減圧された後、蒸発器入口配管260を介して蒸発器190に送られる。
 蒸発器190に送られた冷媒は、本実施の形態においては、ショーケース330内の空気と熱交換して加熱され、再び、低段圧縮機構110に吸い込まれる。
 一方、インジェクション用膨張機構180に流入した冷媒は、中間圧力まで減圧された後、第1中間圧配管250を介して過冷却熱交換器160に流入する。
 過冷却熱交換器160に流入した冷媒は、上述の空冷式ガスクーラー150を通過した後の冷媒と熱交換し、加熱される。加熱された冷媒は、第2中間圧配管251を経由して、高段吸込配管233の冷媒と合流し、高段圧縮機構120に吸い込まれる。
 そして、圧縮機130が作動している間、これらの冷媒の動作が繰り返される。
 次に、空冷運転時の空気の動作について説明する。
 本実施の形態においては、空冷ガスクーラー151を作動させることにより、開口部400から空気が吸い込まれ、ダクト360を介して空冷式ガスクーラー151に流入する。
 空冷式インタークーラー151に流入した空気は、冷媒と熱交換して加熱された後、ショーケース330の前面方向へと吹き出される。
 最後に、吐出ガス温度制御について説明する。
 本実施の形態においては、制御部(図示せず)は、高段圧縮機構120の吐出ガス温度が所定の値になるように、吐出ガス温度センサー270による検出値に基づいて、インジェクション用膨張機構180を制御する。
 吐出ガス温度が所定の値よりも高い場合は、制御部(図示せず)は、インジェクション用膨張機構180を介して流れる冷媒量がより多くなるように、インジェクション用膨張機構180を制御する。
 吐出ガス温度が所定の値よりも低い場合は、制御部(図示せず)は、インジェクション用膨張機構180を介して流れる冷媒量がより少なくなるように、インジェクション用膨張機構180を制御する。
 [1―3.効果等]
 以上のように、本実施の形態において、冷凍装置100は、低段圧縮機構110と、低段圧縮機構110から吐出された冷媒を水によって冷却する水冷式インタークーラー140と、水冷式インタークーラー140を通過した冷媒を吸入する高段圧縮機構120と、高段圧縮機構120から吐出された冷媒を冷却する水冷式ガスクーラー150および空冷式ガスクーラー151と、膨張機構170と、蒸発器190と、から冷媒回路が構成され、使用するガスクーラーを切替えて運転する冷凍装置であって、冷媒回路の高圧側と中間圧領域とをインジェクション用膨張機構180を介して接続するインジェクション回路を備える。
 これにより、水冷運転時において、水冷式インタークーラー140および水冷式ガスクーラー150を使用して、冷媒と水とを熱交換させることによって冷凍装置100の排熱を給湯に利用できる。また、水冷式インタークーラー140により低段圧縮機構110から吐出された冷媒の中間冷却を行うことによって夏期等の水温上昇に伴って高圧圧力が上昇した場合においても、吐出ガス温度の異常上昇を抑制できる。
 一方で、空冷運転時において、空冷式ガスクーラー151を使用して、冷媒と空気とを熱交換させることによって冷凍装置100の排熱を暖房に利用できる。また、空冷運転時には室内の低温の空気と熱交換するため、高圧が上昇しにくく、低段圧縮機構110から吐出された冷媒と高圧冷媒の一部を分岐・減圧した冷媒とを混合させることによって中間冷却を行うことで、十分に吐出ガス温度の上昇を抑制できるため、空冷式インタークーラーを省略できる。これにより、水冷式インタークーラーと空冷式インタークーラーとを切替えるための冷媒流路切替機構およびその接続配管が不要となるため、冷凍装置100の小型化、コストダウンを図ることができる。
 また、本実施の形態のように、高段圧縮機構120から吐出された冷媒の温度を検出する吐出ガス温度センサー270を備え、高段圧縮機構120から吐出された冷媒の温度に基づいて、インジェクション用膨張機構180を制御するようにしてもよい。
 これにより、高段圧縮機構120から吐出された冷媒の温度を所定の値に維持できる。そのため、吐出ガス温度の異常上昇による圧縮機130の過熱運転を防止できる。
 また、本実施の形態のように、水冷式ガスクーラー150または空冷式ガスクーラー151を通過した後の冷媒と、インジェクション用膨張機構180を通過した後の冷媒と、を熱交換させる過冷却熱交換器160を備えるようにしてもよい。
 これにより、水冷式ガスクーラー150または空冷式ガスクーラー151で冷却された冷媒がさらに冷却され、膨張弁170に流入する。そのため、冷凍効果をより大きくすることができ、冷凍装置100の冷凍能力が増大できる。
 また、本実施の形態のように、ショーケース330を冷却する冷凍装置100において、ショーケース330の下部前面に開口部400を備え、開口部400から吸込んだ空気を空冷式ガスクーラー151に流入させることで冷媒を冷却するようにしてもよい。
 これにより、ショーケース330の冷気漏れで生じる冷たい空気を空冷式ガスクーラー151に流入させることができる。そのため、冷媒と空気との温度差が大きくなり、熱流束が増大することで単位面積当たりの放熱性能が向上するため、空冷式ガスクーラー151の小型化、コストダウンを図ることができる。また、冷気漏れによる冷気溜り、いわゆるコールドアイルを抑制できる。
 また、本実施の形態のように、冷凍装置100は、冷媒として二酸化炭素を用いるようにしてもよい。
 これにより、高圧側の放熱過程で温度グライドが大きくなるため、対向流による熱交換効率を高くできる。そのため、より高効率に高温の排熱を生成でき、それを利用して給湯および暖房が行える。
 (他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態1を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記実施の形態1で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
 そこで、以下、他の実施の形態を例示する。
 実施の形態1では、ショーケース330として、クローズドショーケースを用いた場合の例について説明したが、これに限定されるものではなく、例えば、オープンショーケースやウォークインショーケースに搭載してもよい。
 また、空冷式ガスクーラー151は、ケース本体350の上面に配置したが、空冷式ガスクーラー151は、いずれに配置してもよく、例えば、天井やショーケース330下部に配置してもよい。なお、空冷式ガスクーラー151以外の冷凍装置100の構成機器は、いずれに配置してもよいが、例えば、ケース本体350の上面またはデッキパン360に配置する。
 また、水冷式インタークーラー140と水冷式ガスクーラー150は、水配管300によって並列に接続したが、水冷式インタークーラー140と水冷式ガスクーラー150は、いずれに接続してもよく、例えば、水冷式インタークーラー140、水冷式ガスクーラー150の順に直列に接続してもよい。
 また、水冷式インタークーラー140と水冷式ガスクーラー150へ水を供給するために給水タンク280を備えたが、給水タンク280を備えずに直接水道と接続してもよい。
 また、圧縮機180を低段圧縮機構110と、高段圧縮機構120との二段圧縮機構を備えた1台の圧縮機を用いたが、圧縮機2台を、それぞれ低段側圧縮機、高段側圧縮機として用いても同等の機能が得られる。
 また、冷媒流路切替機構200の一例として、三方電磁弁を説明したが、冷媒流路切替機構200は、高段圧縮機構120から吐出された冷媒を水冷式ガスクーラー150に流入させるか、空冷式ガスクーラー151に流入させるかを切替える手段であればよく、例えば、水冷式ガスクーラー150と空冷式ガスクーラー151の入口側に電磁弁をそれぞれ設け、いずれか一方の電磁弁を閉状態にさせて切り替えるようにしてもよい。したがって、冷媒流路切替機構200、三方電磁弁に限定されない。
 また、使用する冷媒の一例として、二酸化炭素を説明したが、使用する冷媒は、冷凍サイクルにおいて、熱を移動させるための媒体であればよい。したがって、使用する冷媒は、二酸化炭素に限定されない。
 なお、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 2022年1月14日出願の特願2022-004033の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本開示は、冷凍装置の排熱を有効利用する機器に適応可能である。具体的には、冷凍装置の排熱を利用した給湯、床暖房、温水ルームヒーター、空調などに、本開示は適応可能である。
 100 冷凍装置
 110 低段圧縮機構
 111 低段吸込口
 112 低段吐出口
 120 高段圧縮機構
 121 高段吸込口
 122 高段吐出口
 130 圧縮機
 140 水冷式インタークーラー
 150 水冷式ガスクーラー
 151 空冷式ガスクーラー
 160 過冷却熱交換器
 170 膨張機構
 180 インジェクション用膨張機構
 190 蒸発器
 200 冷媒流路切替機構
 210 第1逆流防止機構
 211 第2逆流防止機構
 220 冷媒配管
 230 低段吸込配管
 231 低段吐出配管
 232 高段吸込配管
 233 高段吐出配管
 240 第1高圧配管
 241 第2高圧配管
 242 第3高圧配管
 243 第4高圧配管
 244 第5高圧配管
 245 第6高圧配管
 250 第1中間圧配管
 251 第2中間圧配管
 260 蒸発器入口配管
 270 吐出ガス温度センサー
 280 給水タンク
 290 貯湯タンク
 300 水配管
 310 第1水配管
 311 第2水配管
 312 第3水配管
 313 第4水配管
 320 送水ポンプ
 330 ショーケース
 340 扉
 350 ケース本体
 360 ダクト
 370 デッキパン
 380 陳列室
 390 棚板
 400 開口部
 

Claims (5)

  1.  使用するガスクーラーを切替えて運転する冷凍装置であって、
     低段圧縮機構と、前記低段圧縮機構から吐出された冷媒を冷却する水冷式インタークーラーと、前記水冷式インタークーラーを通過した冷媒を吸入し圧縮する高段圧縮機構と、前記高段圧縮機構から吐出された冷媒を冷却する水冷式ガスクーラーおよび空冷式ガスクーラーと、膨張機構と、蒸発器と、から構成される冷媒回路と、
     前記膨張機構の上流側の冷媒配管と、前記高段圧縮機構の吸込冷媒配管と、をインジェクション用膨張機構を介して接続するインジェクション回路と、
     を備える冷凍装置。
  2.  前記高段圧縮機構から吐出された冷媒の温度を検出する吐出ガス温度センサーを備え、
     前記高段圧縮機構から吐出された冷媒の温度に基づいて、前記インジェクション用膨張機構を制御する、
     請求項1に記載の冷凍装置。
  3.  前記水冷式ガスクーラーまたは前記空冷式ガスクーラーを通過した後の冷媒と、前記インジェクション用膨張機構を通過した後の冷媒と、を熱交換させる過冷却熱交換器を備える、
     請求項1に記載の冷凍装置。
  4.  ショーケースを冷却する冷凍装置において、
     前記ショーケースの下部前面に開口部を備え、
     前記開口部から吸込んだ空気を前記空冷式ガスクーラーに流入させることで冷媒を冷却する、
     請求項1に記載の冷凍装置。
  5.  前記冷媒として二酸化炭素を用いる、
     請求項1に記載の冷凍装置。
     
PCT/JP2022/043693 2022-01-14 2022-11-28 冷凍装置 WO2023135958A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022004033 2022-01-14
JP2022-004033 2022-01-14

Publications (1)

Publication Number Publication Date
WO2023135958A1 true WO2023135958A1 (ja) 2023-07-20

Family

ID=87278833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043693 WO2023135958A1 (ja) 2022-01-14 2022-11-28 冷凍装置

Country Status (1)

Country Link
WO (1) WO2023135958A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084175A1 (ja) * 2014-11-26 2016-06-02 三菱電機株式会社 熱源側ユニットおよび冷凍サイクル装置
WO2017203608A1 (ja) * 2016-05-24 2017-11-30 三菱電機株式会社 冷凍サイクル装置
JP2020094760A (ja) * 2018-12-13 2020-06-18 ダイキン工業株式会社 多段圧縮システム
JP2020118354A (ja) * 2019-01-23 2020-08-06 パナソニックIpマネジメント株式会社 コンデンシングユニット
JP2021134954A (ja) * 2020-02-25 2021-09-13 パナソニックIpマネジメント株式会社 冷凍装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084175A1 (ja) * 2014-11-26 2016-06-02 三菱電機株式会社 熱源側ユニットおよび冷凍サイクル装置
WO2017203608A1 (ja) * 2016-05-24 2017-11-30 三菱電機株式会社 冷凍サイクル装置
JP2020094760A (ja) * 2018-12-13 2020-06-18 ダイキン工業株式会社 多段圧縮システム
JP2020118354A (ja) * 2019-01-23 2020-08-06 パナソニックIpマネジメント株式会社 コンデンシングユニット
JP2021134954A (ja) * 2020-02-25 2021-09-13 パナソニックIpマネジメント株式会社 冷凍装置

Similar Documents

Publication Publication Date Title
JP3112003B2 (ja) 冷凍装置
JP4221780B2 (ja) 冷凍装置
KR940020058A (ko) 축열식 공기조화장치 및 제상방법
JP3085296B2 (ja) 冷凍装置
KR20190044118A (ko) 공기 조화기
JP4317793B2 (ja) 冷却システム
CN111473548B (zh) 冷凝机组
JP6832939B2 (ja) 冷凍サイクル装置
JP4651452B2 (ja) 冷凍空調装置
CN102479406A (zh) 自动售货机
JP4835196B2 (ja) 冷却ユニットおよび自動販売機
WO2023135958A1 (ja) 冷凍装置
JP2004053055A (ja) 冷蔵庫
JP2007100987A (ja) 冷凍システム
WO2019224870A1 (ja) ショーケース
CN112033037B (zh) 非共沸冷媒自复叠空调系统及控制方法、空调机组
JP6613404B2 (ja) 冷凍システム
JP2007240040A (ja) 冷凍システム及びその制御方法
JP5375333B2 (ja) 自動販売機
JP2017020675A (ja) 冷凍サイクル装置
WO2023135956A1 (ja) 冷凍装置
JP3918980B2 (ja) 冷凍装置
JP2013152045A (ja) 冷却装置および冷却システム
JP2006207982A (ja) 冷凍装置及び冷蔵庫
JP4513348B2 (ja) 自動販売機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920478

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023573889

Country of ref document: JP

Kind code of ref document: A