WO2023135854A1 - 音声再生装置 - Google Patents

音声再生装置 Download PDF

Info

Publication number
WO2023135854A1
WO2023135854A1 PCT/JP2022/032741 JP2022032741W WO2023135854A1 WO 2023135854 A1 WO2023135854 A1 WO 2023135854A1 JP 2022032741 W JP2022032741 W JP 2022032741W WO 2023135854 A1 WO2023135854 A1 WO 2023135854A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
amplitude
frequency
analyzer
outputs
Prior art date
Application number
PCT/JP2022/032741
Other languages
English (en)
French (fr)
Inventor
忠義 奥田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023135854A1 publication Critical patent/WO2023135854A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response

Definitions

  • the present disclosure relates to an audio playback device that performs motional feedback.
  • Patent Literature 1 discloses an MFB system that provides a stable and sufficient improvement due to MFB (Motional Feedback) and reproduces sound richly with MFB-applied speakers without causing insufficient bass.
  • Patent Document 1 a bridge circuit is used to detect speed information of the diaphragm of the speaker unit, and a variable resistor is used to adjust the bridge circuit. In order to extract accurate speed information, it is necessary to adjust the resistance value of the variable resistor according to the speaker unit.
  • speaker units vary widely in their parameters, and the resistance value of variable resistors changes over time.
  • the present disclosure provides an audio playback device that can effectively adjust the circuit used for MFB control.
  • An audio reproduction device is an audio reproduction device that performs motional feedback, and includes a test signal generator that generates a test signal, and a correction signal that is subtracted from an input signal and output as a first signal, or that the test signal is output as a first signal.
  • a switching circuit for switching between outputting a signal as the first signal, a first amplitude adjuster for adjusting the amplitude of the first signal and outputting it as a second signal, and outputting a signal based on the first signal to a speaker.
  • a detector that detects the third signal that has passed through the speaker; a second amplitude adjuster that adjusts the amplitude of the third signal and outputs it as a fourth signal; and an analyzer that analyzes the second signal.
  • a first analyzer for outputting, as a first frequency amplitude characteristic, a frequency amplitude characteristic obtained by analyzing the fourth signal; a second analyzer, for outputting a frequency amplitude characteristic obtained by analyzing the fourth signal as a second frequency amplitude characteristic; The first amplitude adjustment based on the first frequency amplitude characteristic and the second frequency amplitude characteristic output from the first analyzer and the second analyzer when the test signal is output as the first signal.
  • a computing unit that adjusts at least one parameter of the second amplitude adjuster and the second amplitude adjuster; and a correction circuit that generates the correction signal based on the difference between the second signal and the fourth signal.
  • the audio reproduction device of the present disclosure it is possible to effectively adjust the circuit used for MFB control.
  • FIG. 1 is a configuration diagram showing an example of an audio reproducing device according to Embodiment 1.
  • FIG. 2 is a flowchart showing an example of the operation during amplitude adjustment of the audio reproducing device according to the first embodiment.
  • FIG. 3 is a diagram showing an example of test signals generated by the test signal generator.
  • FIG. 4A is a diagram showing an example of a second signal acquired by the first analyzer;
  • FIG. 4B is a diagram showing an example of a fourth signal acquired by the second analyzer;
  • FIG. 5A is a diagram showing an example of a first impulse response signal calculated by the first analyzer;
  • FIG. 5B is a diagram showing an example of the second impulse response signal calculated by the second analyzer.
  • FIG. 6A is a diagram showing an example of first frequency-amplitude characteristics output from the first analyzer.
  • FIG. 6B is a diagram showing an example of the second frequency-amplitude characteristic output from the second analyzer.
  • FIG. 7 is a diagram showing an example of the extracted speed information of the speaker system.
  • 8 is a configuration diagram showing an example of an audio reproducing device according to a modification of Embodiment 1.
  • FIG. 9 is a configuration diagram showing an example of an audio reproducing device according to Embodiment 2.
  • FIG. 10 is a flowchart showing an example of the operation during delay adjustment of the audio reproducing apparatus according to the second embodiment.
  • FIG. 11 is a configuration diagram showing an example of an audio reproduction device according to Embodiment 3. As shown in FIG.
  • Embodiment 1 Embodiment 1 will be described with reference to FIGS. 1 to 7.
  • FIG. 1 An illustration of Embodiment 1 will be described with reference to FIGS. 1 to 7.
  • FIG. 1 is a configuration diagram showing an example of the audio reproduction device 1 according to Embodiment 1.
  • FIG. FIG. 1 shows a speaker system 110 (also called a speaker) in addition to the audio reproduction device 1 .
  • FIG. 1 shows an equivalent circuit of the speaker system 110. Specifically, it shows the DC resistance Re of the speaker system 110 and the back electromotive force Ev generated by the vibration of the diaphragm of the speaker system 110.
  • the speaker system 110 may be provided in the audio reproduction device 1 .
  • the audio playback device 1 is stored in a storage medium such as a CD (Compact Disc), a DVD (Digital Versatile Disc), a BD (Blu-ray (registered trademark) Disc), a HDD (Hard Disc Drive), or a semiconductor memory card.
  • a storage medium such as a CD (Compact Disc), a DVD (Digital Versatile Disc), a BD (Blu-ray (registered trademark) Disc), a HDD (Hard Disc Drive), or a semiconductor memory card.
  • CD Compact Disc
  • DVD Digital Versatile Disc
  • BD Blu-ray (registered trademark) Disc
  • HDD Hard Disc Drive
  • MFB control is performed.
  • MFB control detects movement (e.g., speed information) of the diaphragm of speaker system 110 and feeds back the input audio signal so that the diaphragm moves more faithfully to the input audio signal.
  • movement e.g., speed information
  • MFB control detects movement (e.g., speed information) of the diaphragm of speaker system 110 and feeds back the input audio signal so that the diaphragm moves more faithfully to the input audio signal.
  • various characteristics such as distortion can be improved.
  • individual speaker systems 110 have large variations in parameters, it is necessary to adjust the circuit used for MFB control for each individual speaker system 110 in order to extract accurate velocity information of the diaphragm of the speaker system 110. .
  • the audio reproducing device 1 can effectively adjust the circuit used for MFB control.
  • a back electromotive force Ev is generated by vibrating the diaphragm.
  • the back electromotive force Ev is detected by the audio reproducing device 1 .
  • the back electromotive force Ev corresponds to the velocity of the diaphragm of speaker system 110 .
  • FIG. 1 also shows the DC resistance Re of the speaker system 110 .
  • the speaker system 110 also includes a small inductance of the voice coil connected in series with the resistor, but since the effect of the inductance is small in the MFB control targeted in this case, it is not dealt with here.
  • the audio reproducing apparatus 1 includes a switching circuit 10, an output circuit 20, an A/D converter 32, amplitude adjusters 41 and 42, test signal analyzers 51 and 52, a correction value calculator 60, a subtractor 70, and a characteristic correction circuit 80. and a test signal generator 90 .
  • the switching circuit 10, the amplitude adjusters 41 and 42, the test signal analyzers 51 and 52, the correction value calculator 60, the subtractor 70, the characteristic correction circuit 80, and the test signal generator 90 are DSPs (Digital Signal Processors), etc. It is realized by DSPs (Digital Signal Processors), etc. It is realized by DSPs (Digital Signal Processors), etc. It is realized by DSPs (Digital Signal Processors), etc. It is realized by DSPs (Digital Signal Processors), etc. It is realized by DSPs (Digital Signal Processors), etc. It is realized by DSPs (Digital Signal Processors), etc. It is realized by DSPs (Digital Signal Processors), etc. It is realized by DSPs (Digital
  • test signal generator 90 generates test signals.
  • test signal generator 90 generates a test signal that is a digital signal.
  • the test signal is, for example, a TSP (Time Stretched Pulse) signal.
  • a TSP signal is a signal whose energy is relatively increased by stretching an impulse signal in the time direction. In the TSP signal, the frequency changes over time from low to high or from high to low.
  • the impulse response or frequency response of the system can be measured by convoluting the response signal when the TSP signal is input to the target system with the inverse TSP signal that is complex conjugated with the TSP signal. .
  • the test signal is not limited to the TSP signal, and is not particularly limited as long as it contains a desired frequency component.
  • the test signal may be random noise.
  • the switching circuit 10 is a circuit that switches between subtracting the correction signal from the input signal (digital audio signal) and outputting it as the first signal or outputting the test signal as the first signal.
  • the switching circuit 10 includes a subtractor 11 and a selector 12, and controls the subtractor 11 and the selector 12 to perform the above operations.
  • the subtractor 11 subtracts the correction signal from the input signal and outputs it as the first signal, or outputs the test signal as the first signal.
  • the correction signal is a signal containing displacement information, speed information, acceleration information, or the like of the diaphragm of the speaker system 110 and is output from the characteristic correction circuit 80 .
  • the selector 12 switches between connecting the test signal generator 90 to the subtractor 11 and connecting the characteristic correction circuit 80 to the subtractor 11 .
  • selector 12 has a common terminal connected to subtractor 11 , a selection terminal connected to test signal generator 90 , and a selection terminal connected to characteristic correction circuit 80 .
  • the switching circuit 10 controls the selector 12 so as to switch the connection between the subtractor 11 and either the test signal generator 90 or the characteristic correction circuit 80, thereby subtracting the correction signal from the input signal to obtain the first signal. It switches between outputting and outputting the test signal as the first signal. Also, when the test signal is output as the first signal, the switching circuit 10 controls the subtractor 11 not to use the input signal as an input. In this manner, the switching circuit 10 controls the subtractor 11 and the selector 12 in conjunction to subtract the correction signal from the input signal and output it as the first signal or output the test signal as the first signal. You can switch between For example, when the audio reproduction device 1 is activated, the switching circuit 10 connects the subtractor 11 and the test signal generator 90 to output the test signal as the first signal. After completion of the adjustment of the circuit used for MFB control, the switching circuit 10 connects the subtractor 11 and the characteristic correction circuit 80 to subtract the correction signal from the input signal and output the result as a first signal.
  • the output circuit 20 is a circuit that outputs a signal based on the first signal to a speaker (speaker system 110).
  • the output circuit 20 has a D/A converter 21 and an amplifier 22 .
  • the D/A converter 21 is a circuit that converts the first signal, which is a digital signal, into an analog signal and outputs the analog signal.
  • the amplifier 22 is a circuit that amplifies the converted analog signal.
  • the signal based on the first signal is, for example, an amplified analog audio signal, and the speaker system 110 converts power of the analog audio signal output from the output circuit 20 into acoustic energy.
  • a resistor Rs is a detector that detects the third signal that has passed through the speaker system 110 .
  • the third signal is a signal based on the first signal that is input to the speaker system 110, passes through the speaker system 110, and is output from the speaker system 110, and contains information corresponding to the individual speaker system 110. is. Specifically, the third signal is the current flowing through the speaker system 110, and the third signal, which is the current flowing through the speaker system 110, is detected by measuring the voltage value applied across the resistor Rs. Note that the resistance Rs has a sufficiently small value compared to the DC resistance Re so as not to affect the characteristics when the analog audio signal amplified by the output circuit 20 is input to the speaker system 110 .
  • the A/D converter 32 is a circuit that converts analog signals into digital signals and outputs them. Specifically, the A/D converter 32 converts the third signal, which is an analog signal, into a digital signal.
  • the amplitude adjuster 41 is a first amplitude adjuster that adjusts the amplitude of the first signal (the signal obtained by subtracting the correction signal from the input signal, or the test signal) and outputs it as the second signal. Amplitude adjuster 41 adjusts the amplitude of the first signal in accordance with the parameters for adjusting the amplitude adjusted by correction value calculator 60 .
  • the amplitude adjuster 42 is a second amplitude adjuster that adjusts the amplitude of the third signal (specifically, the third signal converted into a digital signal by the A/D converter 32) and outputs it as a fourth signal. be.
  • Amplitude adjuster 42 adjusts the amplitude of the third signal in accordance with the parameters for adjusting the amplitude adjusted by correction value calculator 60 .
  • the parameters of both the amplitude adjusters 41 and 42 need not be adjusted, and the parameters of at least one of the amplitude adjusters 41 and 42 need only be adjusted.
  • the adjusted parameters are stored in flash memory or the like.
  • the test signal analyzer 51 is a first analyzer that outputs frequency-amplitude characteristics obtained by analyzing the second signal as first frequency-amplitude characteristics. For example, the test signal analyzer 51 outputs the frequency-amplitude characteristic obtained by analyzing the impulse response signal of the second signal as the first frequency-amplitude characteristic. For example, the test signal analyzer 51 may calculate the impulse response signal of the second signal. Details of the operation of the test signal analyzer 51 will be described later.
  • the test signal analyzer 52 is a second analyzer that outputs frequency-amplitude characteristics obtained by analyzing the fourth signal as second frequency-amplitude characteristics. For example, the test signal analyzer 52 outputs the frequency-amplitude characteristic obtained by analyzing the impulse response signal of the fourth signal as the second frequency-amplitude characteristic. For example, test signal analyzer 52 may calculate the impulse response signal of the fourth signal. Details of the operation of the test signal analyzer 52 will be described later.
  • the correction value calculator 60 adjusts the amplitude adjuster 41 based on the first frequency amplitude characteristic and the second frequency amplitude characteristic output from the test signal analyzers 51 and 52 when the test signal is output as the first signal. and 42 for adjusting at least one parameter.
  • the switching circuit 10 connects the subtractor 11 and the test signal generator 90 and prevents the subtractor 11 from using the input signal as an input. This is a case where the test signal output from the test signal generator 90 is output from the subtractor 11 in the state where the
  • the correction value calculator 60 adjusts the parameters of at least one of the amplitude adjusters 41 and 42 so that the maximum values of the first frequency-amplitude characteristic and the second frequency-amplitude characteristic are equal to each other. Details of the operation of the correction value calculator 60 will be described later.
  • the subtractor 70 subtracts the fourth signal whose amplitude is adjusted output from the amplitude adjuster 42 from the second signal whose amplitude is adjusted output from the amplitude adjuster 41, and outputs the difference signal.
  • the characteristic correction circuit 80 is a correction circuit that generates a correction signal based on the difference between the second signal and the fourth signal (that is, the difference signal output from the subtractor 70). For example, the characteristic correction circuit 80 generates correction signals for performing displacement-type MFB, velocity-type MFB, or acceleration-type MFB.
  • the difference signal output from the subtractor 70 becomes velocity information of the diaphragm of the speaker system 110 , and the characteristic correction circuit 80 acquires the velocity information of the diaphragm of the speaker system 110 .
  • the characteristic correction circuit 80 integrates the acquired speed information to convert the speed information into displacement information, and generates a correction signal for performing displacement-type MFB.
  • the characteristic correction circuit 80 differentiates the acquired speed information to convert the speed information into acceleration information, and generates a correction signal for performing acceleration type MFB. Further, for example, the characteristic correction circuit 80 uses the acquired speed information to generate a correction signal for performing speed-based MFB.
  • the Q value can be optimized in the displacement/velocity combined type MFB.
  • the amount of feedback is maximized at the lowest resonance frequency, making it possible to damp bass resonance and lower the Q value.
  • the acceleration type MFB since a certain amount of negative feedback is applied in a region (mass control region) higher than the lowest resonance frequency, the bass reproduction limit can be extended.
  • the Q value can be optimized.
  • FIG. 2 is a flowchart showing an example of the operation of the audio reproducing device 1 according to Embodiment 1 during amplitude adjustment.
  • the switching circuit 10 switches the selector 12 to output the test signal (step S11).
  • the switching circuit 10 controls the subtractor 11 not to use the input signal as an input.
  • a switch may be connected to the positive input terminal of the subtractor 11 , and the switching circuit 10 controls the switch when switching the selector 12 so as to output the test signal to input the test signal to the subtractor 11 .
  • Signals may not be input.
  • the switching circuit 10 starts the process from step S11 when the audio reproduction device 1 is activated.
  • test signal generator 90 generates a test signal, and the audio reproduction device 1 reproduces the generated test signal from the speaker system 110 (step S12).
  • An example of the generated test signal is shown in FIG.
  • the input signal (audio signal) is not input to the subtractor 11, and only the test signal of the test signal generator 90 is input via the selector 12 for subtraction.
  • FIG. 3 is a diagram showing an example of test signals generated by the test signal generator 90.
  • FIG. 3 is a diagram showing an example of test signals generated by the test signal generator 90.
  • the test signal is, for example, a TSP signal whose frequency changes over time from a low frequency to a high frequency.
  • a test signal (first signal) that has not passed through the speaker system 110 is acquired by the amplitude adjuster 41 , adjusted in amplitude, and output to the test signal analyzer 51 .
  • a test signal that has passed through the speaker system 110 is acquired by the amplitude adjuster 42 , adjusted in amplitude, and output to the test signal analyzer 52 .
  • test signal analyzer 51 (first analyzer) acquires the second signal (test signal that has not passed through the speaker system 110), and the test signal analyzer 52 acquires the fourth signal (the speaker system 110).
  • the passed test signal is obtained (step S13).
  • FIG. 4A is a diagram showing an example of the second signal acquired by the test signal analyzer 51.
  • FIG. 4A is a diagram showing an example of the second signal acquired by the test signal analyzer 51.
  • FIG. 4B is a diagram showing an example of the fourth signal acquired by the test signal analyzer 52.
  • FIG. 4B is a diagram showing an example of the fourth signal acquired by the test signal analyzer 52.
  • the shape of the test signal and the signal waveform generated by the test signal generator 90 shown in FIG. are almost the same.
  • the shape of the signal waveform differs from that of the test signal generated by test signal generator 90 shown in FIG. ing.
  • the fourth signal contains information corresponding to the individual speaker system 110 , and along with this, the fourth signal differs from the test signal generated by the test signal generator 90 in signal waveform shape.
  • the parameters of the amplitude adjusters 41 and 42 have not been adjusted and the amplitude has not been adjusted in the amplitude adjusters 41 and 42 .
  • the test signal analyzer 51 calculates a first impulse response signal
  • the test signal analyzer 52 calculates a second impulse response signal (step S14). For example, the test signal analyzer 51 convolves an input second signal (a TSP signal that has not passed through the speaker system 110) with an inverse TSP signal that is a complex conjugate of the TSP signal, thereby generating a first impulse response signal
  • the test signal analyzer 52 convolves the input fourth signal (the TSP signal that has passed through the speaker system 110) with the inverse TSP signal that is complex conjugate with the TSP to generate the second impulse response signal. calculate.
  • FIG. 5A is a diagram showing an example of the first impulse response signal calculated by the test signal analyzer 51.
  • FIG. 5A is a diagram showing an example of the first impulse response signal calculated by the test signal analyzer 51.
  • FIG. 5B is a diagram showing an example of the second impulse response signal calculated by the test signal analyzer 52.
  • FIG. 5B is a diagram showing an example of the second impulse response signal calculated by the test signal analyzer 52.
  • the impulse response signals shown in FIGS. 5A and 5B can be calculated from the second and fourth signals (TSP signals obtained by stretching the impulse signals in the time direction) shown in FIGS. 4A and 4B.
  • TSP signals obtained by stretching the impulse signals in the time direction
  • Impulse response signals allow measurements with high S/N ratios.
  • the test signal analyzer 51 outputs frequency-amplitude characteristics obtained by analyzing the second signal (specifically, the first impulse response signal) as first frequency-amplitude characteristics, and the test signal analyzer 52 outputs , the frequency-amplitude characteristic obtained by analyzing the fourth signal (specifically, the second impulse response signal) is output as the second frequency-amplitude characteristic (step S15).
  • the test signal analyzer 51 calculates the frequency amplitude characteristic by performing FFT (Fast Fourier Transform) on the first impulse response signal, and the test signal analyzer 52 performs A frequency amplitude characteristic is calculated by performing FFT.
  • FFT Fast Fourier Transform
  • FIG. 6A is a diagram showing an example of the first frequency amplitude characteristic output from the test signal analyzer 51.
  • FIG. 6B is a diagram showing an example of the second frequency amplitude characteristic output from the test signal analyzer 52.
  • the first frequency-amplitude characteristic and the second frequency-amplitude characteristic are, for example, frequency-amplitude characteristics.
  • the test signal generator 90 Since the first frequency-amplitude characteristic is a frequency-amplitude characteristic calculated by performing FFT on the impulse response signal of the TSP signal (second signal) that has not passed through the speaker system 110, the test signal generator 90 The frequency-amplitude characteristics are similar to those of the generated TSP signal (first signal). That is, as shown in FIG. 6A, the first frequency-amplitude characteristic is a frequency-amplitude characteristic having a constant gain over a wide frequency band.
  • the second frequency-amplitude characteristic is a frequency-amplitude characteristic calculated by performing FFT on the impulse response signal of the TSP signal (fourth signal) that has passed through the speaker system 110, as shown in FIG. 6B, It can be seen that the magnitude of the gain changes depending on the frequency.
  • the second frequency-amplitude characteristic is a current that changes according to the frequency-amplitude characteristic of the impedance of speaker system 110, and is a frequency-amplitude characteristic influenced by individual speaker system 110 compared to the first frequency-amplitude characteristic.
  • the correction value calculator 60 adjusts the parameters of the amplitude adjuster 41 or 42 so that the maximum values of the first frequency-amplitude characteristic and the second frequency-amplitude characteristic are equal to each other (step S16).
  • the frequency is a direct current frequency, that is, near 0 Hz
  • the velocity of the speaker diaphragm is 0 m/sec.
  • FIG. 6B is an example of using a bass reflex speaker as the speaker system 110. In the case of a bass reflex speaker, the velocity of the diaphragm of the speaker is 0 m/sec even near the resonance frequency of the bass reflex port marked with a circle in FIG. 6B.
  • the back electromotive force Ev generated by the speaker system 110 becomes 0V.
  • the parameters of the amplitude adjuster 41 or 42 are adjusted so that the maximum values of the first frequency amplitude characteristic and the second frequency amplitude characteristic at the circled frequencies are equal to each other.
  • the correction value calculator 60 calculates the amplitude
  • the parameters of the amplitude adjuster 41 are adjusted so that the amplitude becomes smaller in the adjuster 41, and the parameters of the amplitude adjuster 42 are adjusted so that the amplitude becomes larger in the amplitude adjuster 42.
  • the parameters of the amplitude adjuster 41 and the amplitude adjuster 42 are adjusted while repeating the reproduction of the test signal and applying feedback so that the maximum values of the first frequency amplitude characteristic and the second frequency amplitude characteristic are equal to each other. may be performed at least one of adjusting the parameters of
  • the value subtracted by the subtractor 70 corresponds to the speed of the diaphragm of the speaker system 110, and only the speed of the diaphragm can be extracted from the current flowing through the speaker system 110. Further, even if there is individual variation in the speaker system 110, by measuring the frequency amplitude characteristics described above each time, it is possible to extract only the velocity of the diaphragm from the current flowing through the speaker system 110 for each individual. can.
  • the switching circuit 10 switches the selector 12 so as to output the input signal (audio signal) (step S17), and MFB control is performed using the adjusted amplitude adjusters 41 and 42 .
  • the characteristic correction circuit 80 generates a correction signal based on the difference signal between the amplitude-adjusted second signal and the fourth signal output from the subtractor 70, and corrects the signal through the selector 12.
  • a signal is input to the subtractor 11 .
  • the subtractor 11 subtracts the correction signal from the input signal.
  • appropriate MFB control can be performed.
  • FIG. 7 is a diagram showing an example of extracted speed information of the speaker system 110.
  • FIG. 7 can be extracted by adjusting the parameters of the amplitude adjusters 41 or 42 .
  • the audio reproducing apparatus 1 is a device that performs MFB, and includes a test signal generator 90 that generates a test signal, and a correction signal that is subtracted from an input signal and output as a first signal.
  • a switching circuit 10 for switching whether to output a signal as a first signal, an amplitude adjuster 41 for adjusting the amplitude of the first signal and outputting it as a second signal, and an output circuit for outputting a signal based on the first signal to a speaker.
  • a resistor Rs for detecting the third signal that has passed through the speaker system 110, an amplitude adjuster 42 for adjusting the amplitude of the third signal and outputting it as a fourth signal, and a frequency obtained by analyzing the second signal.
  • a test signal analyzer 51 that outputs amplitude characteristics as first frequency-amplitude characteristics; a test signal analyzer 52 that outputs frequency-amplitude characteristics obtained by analyzing the fourth signal as second frequency-amplitude characteristics; A correction value for adjusting at least one parameter of the amplitude adjusters 41 and 42 based on the first frequency amplitude characteristic and the second frequency amplitude characteristic output from the test signal analyzers 51 and 52 when output as one signal.
  • a computing unit 60 and a characteristic correction circuit 80 that generates a correction signal based on the difference between the second signal and the fourth signal are provided.
  • the first frequency amplitude characteristic obtained by frequency analysis of the test signal (second signal) that has not passed through the speaker system 110 and the frequency analysis of the test signal (fourth signal) that has passed through the speaker system 110 are adjusted. Since the test signal that has passed through speaker system 110 contains information corresponding to the individual speaker system 110, based on the test signal that has passed through speaker system 110 and the test signal that has not passed through speaker system 110, , the circuit used for MFB control can be effectively adjusted so that the back electromotive force generated in the speaker system 110 (that is, velocity information of the diaphragm of the speaker system 110) can be accurately extracted.
  • test signal analyzer 51 outputs the frequency amplitude characteristic obtained by analyzing the impulse response signal of the second signal as the first frequency amplitude characteristic
  • test signal analyzer 52 outputs the impulse response signal of the fourth signal.
  • a frequency-amplitude characteristic obtained by analysis may be output as the second frequency-amplitude characteristic.
  • test signal analyzer 51 may calculate the impulse response signal of the second signal
  • test signal analyzer 52 may calculate the impulse response signal of the fourth signal.
  • the correction value calculator 60 may adjust the parameters of at least one of the amplitude adjusters 41 and 42 so that the maximum values of the first frequency amplitude characteristic and the second frequency amplitude characteristic are equal to each other.
  • the velocity information of the diaphragm of the speaker system 110 can be obtained. can be extracted accurately.
  • a bridge circuit may be used to extract the diaphragm velocity information of the speaker system 110 . This will be described with reference to FIG.
  • FIG. 8 is a configuration diagram showing an example of the audio reproducing device 1a according to the modification of the first embodiment.
  • the audio reproducing device 1a includes resistors R1 and R2 and an A/D converter 31, and a signal output from the A/D converter 31 is input to an amplitude adjuster 41. is different from the audio reproducing apparatus 1 according to the first embodiment. Since other points are basically the same as those in the first embodiment, description thereof is omitted.
  • the output circuit 20 outputs a signal (amplified analog audio signal) based on the first signal to the resistor R2, which is a resistor connected in parallel with the speaker system 110.
  • the resistors R1, R2, Rs and Re are bridge-connected to form a bridge circuit.
  • An A/D converter 31 is connected to the connection point between the resistors R1 and R2 in this bridge circuit.
  • the A/D converter 31 is a circuit that converts analog signals into digital signals and outputs them. Specifically, the A/D converter 31 converts an analog signal, which is a voltage signal generated by the resistor R1 in the voltage dividing circuit of the resistors R1 and R2, into a digital signal.
  • the amplitude adjuster 41 adjusts the amplitude of the signal based on the first signal that has passed through the resistor R2 and outputs it as the second signal. That is, in Embodiment 1, an example in which the first signal output from the subtractor 11 is directly input to the amplitude adjuster 41 has been described.
  • the first signal amplified by the output circuit 20, converted into an analog signal, passed through the resistor R2, and converted into a digital signal by the A/D converter 31 may be input to 41 .
  • the output circuit 20 outputs a signal based on the first signal to the resistor R2 connected in parallel with the speaker system 110, and the amplitude adjuster 41 adjusts the signal based on the first signal that has passed through the resistor R2.
  • the amplitude may be adjusted and output as the second signal.
  • MFB control can be performed using a bridge circuit.
  • Embodiment 2 In Embodiment 1, the third signal obtained by the amplitude adjuster 42 passes through the output circuit 20, the speaker system 110 and the A/D converter 32 more than the first signal obtained by the amplitude adjuster 41. Therefore, a delay occurs and a time lag occurs between the first signal and the third signal. Therefore, in a second embodiment, an audio reproducing apparatus capable of adjusting this time lag will be described.
  • FIG. 9 is a configuration diagram showing an example of the audio reproducing device 2 according to the second embodiment.
  • the audio reproduction device 2 according to Embodiment 2 includes a delay adjuster 120, and includes test signal analyzers 51a and 52a and a correction value calculator 60a instead of the test signal analyzers 51 and 52 and the correction value calculator 60. This is different from the audio reproduction device 1 according to the first embodiment. Since other points are basically the same as those in the first embodiment, description thereof is omitted.
  • the delay adjuster 120 is a circuit that adjusts the delay of the first signal, and specifically delays the first signal.
  • the delay adjuster 120 adjusts the delay of the first signal in accordance with the parameters for adjusting the delay time adjusted by the correction value calculator 60a.
  • the amplitude adjuster 41 adjusts the amplitude of the first signal whose delay has been adjusted by the delay adjuster 120, and outputs it as a second signal.
  • the test signal analyzer 51a has the function of calculating the impulse response signal of the second signal and outputting it as the first impulse response signal.
  • the test signal analyzer 51 does not necessarily output the first impulse response signal used to obtain the first frequency amplitude characteristic, but in the second embodiment, the test signal analyzer 51a , to output a first impulse response signal for adjusting the delay of the first signal.
  • the test signal analyzer 52a has the function of calculating the impulse response signal of the fourth signal and outputting it as the second impulse response signal.
  • the test signal analyzer 52 does not necessarily output the second impulse response signal used when obtaining the second frequency amplitude characteristic, but in the second embodiment, the test signal analyzer 52a , to output a second impulse response signal for adjusting the delay of the first signal.
  • the correction value calculator 60a also calculates the first impulse response signal and the second impulse response signal output from the test signal analyzers 51a and 52a when the test signal is output as the first signal. It has the function of adjusting the parameters of the delay adjuster 120 based on the impulse response signal.
  • the details of the operation related to adjustment of the parameters of the delay adjuster 120 by the correction value calculator 60a will be described with reference to FIG.
  • FIG. 10 is a flowchart showing an example of the operation of the audio reproducing device 2 according to Embodiment 2 during delay adjustment.
  • step S21 to step S23 is the same as the processing from step S11 to step S13 described with reference to FIG. 2, so the description is omitted.
  • the test signal analyzer 51 calculates and outputs the first impulse response signal, and the test signal analyzer 52 calculates and outputs the second impulse response signal (step S24).
  • the correction value calculator 60a calculates the delay amount of the second impulse response signal with respect to the first impulse response signal, and sets the calculated delay amount in the delay adjuster 120 (step S25).
  • the time lag of the third signal obtained by the amplitude adjuster 42 with respect to the first signal obtained by the amplitude adjuster 41 is This is the time shift of the position of the maximum value of the second impulse response signal, and this shift appears as a delay amount.
  • the first signal can be delayed to reduce the deviation. If the amount of delay generated by the D/A converter 21 and the A/D converter 32 is known, the known amount of delay may be set in the delay adjuster 120 .
  • the switching circuit 10 switches the selector 12 so as to output the input signal (audio signal) (step S26).
  • the processing for adjusting the amplitude described with reference to FIG. 2 and the processing for adjusting the delay described with reference to FIG. 10 may be performed in parallel. Other processing may be performed.
  • the audio reproducing apparatus 2 includes the delay adjuster 120 for adjusting the delay of the first signal, and the amplitude adjuster 41 adjusts the delay of the first signal whose delay has been adjusted by the delay adjuster 120.
  • the amplitude is adjusted and output as the second signal
  • the test signal analyzer 51a calculates the impulse response signal of the second signal and outputs it as the first impulse response signal
  • the test signal analyzer 52a calculates the impulse response signal of the fourth signal
  • the impulse response signal is calculated and output as a second impulse response signal
  • the correction value calculator 60a calculates the first impulse response output from the test signal analyzers 51a and 52a when the test signal is output as the first signal.
  • a parameter of delay adjuster 120 may be adjusted based on the signal and the second impulse response signal.
  • a test signal that has passed through the speaker system 110, the output circuit 20, etc. is delayed compared to a test signal that has not passed through the speaker system 110, the output circuit 20, etc. Therefore, the position of the maximum value of the first impulse response signal of the test signal that has not passed through the speaker system 110, the output circuit 20, etc. and the position of the second impulse response signal of the test signal that has passed through the speaker system 110, the output circuit 20, etc. Adjust the parameters of the delay adjuster 120 based on the time shift of the position of the maximum. Thereby, the time difference between the first signal acquired by the amplitude adjuster 41 and the third signal acquired by the amplitude adjuster 42 can be reduced.
  • FIG. 11 is a configuration diagram showing an example of the audio reproducing device 3 according to the third embodiment.
  • the audio reproducing device 3 according to Embodiment 3 differs from the audio reproducing device 2 according to Embodiment 2 in that it includes a signal processing circuit 130 and an analog LPF 150, and has an output circuit 20a instead of the output circuit 20. Since other points are basically the same as those in the second embodiment, description thereof is omitted.
  • the signal processing circuit 130 is a circuit that performs signal processing on the first signal.
  • the signal processing circuit 130 includes a ⁇ modulator 131 and a PWM (Pulse Width Modulation) modulator 132 .
  • the ⁇ modulator 131 re-quantizes the pulse width of the PWM modulator 132 to a smaller gradation number than the input audio signal.
  • the delta-sigma modulator 131 reduces re-quantization noise generated during re-quantization within the audible band due to noise shaping of the delta-sigma modulation that drives the re-quantization noise out of the audible band, for example, 20 kHz or higher.
  • the PWM modulator 132 converts the signal output from the delta-sigma modulator 131 into a pulse width in which the gradation of the amplitude level of the signal is represented by a binary value of 1 and 0, or 1 and -1. Convert to modulated signal.
  • the amplitude adjuster 41 adjusts the amplitude of the first signal processed by the signal processing circuit 130 and outputs it as a second signal.
  • the amplitude adjuster 41 adjusts the amplitude of the first signal that has undergone the signal processing by the signal processing circuit 130 and the delay adjustment by the delay adjuster 120, and outputs it as the second signal.
  • the output circuit 20 a includes a full digital amplifier, and specifically includes a driver circuit 141 , switching transistors 142 and 143 , and an LPF (Low Pass Filter) 144 .
  • a driver circuit 141 and switching transistors 142 and 143 are circuits for amplifying the first signal, which is a pulse width modulated signal.
  • Switching transistors 142 and 143 form a push-pull circuit.
  • the switching transistors 142 and 143 are, for example, n-type MOSFETs. Note that the switching transistors 142 and 143 may be a combination of an n-type MOSFET and a p-type MOSFET.
  • the LPF 144 is a filter that demodulates the amplified signal to an analog signal (analog audio signal). Among the amplified signals, requantization noise of the ⁇ modulator 131, carrier signals superimposed by PWM modulation, etc. Components higher than a predetermined cutoff frequency are filtered and output. LPF 144 consists of an inductor and a capacitor to reduce power loss.
  • the analog LPF 150 is a filter for anti-aliasing during A/D conversion.
  • the analog LPF 150 removes aliasing noise, which is a frequency component exceeding half the sampling frequency of the A/D converter 32, in advance.
  • the audio reproduction device 3 includes the signal processing circuit 130 that performs signal processing on the first signal, and the amplitude adjuster 41 adjusts the amplitude of the first signal that has undergone signal processing by the signal processing circuit 130. It may be adjusted and output as the second signal, and the output circuit 20a may include a full digital amplifier.
  • the present disclosure can also be applied to the audio reproducing device 3 with a full digital amplifier.
  • the audio reproduction device 1 may include the signal processing circuit 130 and may include the output circuit 20 a instead of the output circuit 20 .
  • the audio reproducing device 1a may include the signal processing circuit 130 and may include the output circuit 20a instead of the output circuit 20.
  • the present disclosure can be implemented not only as an audio reproduction device, but also as a method including steps (processes) performed by constituent elements of the audio reproduction device.
  • those steps may be executed by a computer (computer system).
  • the present disclosure can be realized as a program for causing a computer to execute the steps included in those methods.
  • the present disclosure can be implemented as a non-temporary computer-readable recording medium such as a CD-ROM recording the program.
  • each step is executed by executing the program using hardware resources such as the CPU, memory, and input/output circuits of the computer.
  • hardware resources such as the CPU, memory, and input/output circuits of the computer.
  • each step is executed by the CPU acquiring data from a memory, an input/output circuit, or the like, performing an operation, or outputting the operation result to the memory, an input/output circuit, or the like.
  • the components included in the audio playback device of the above embodiment may be realized as an LSI (Large Scale Integration), which is an integrated circuit (IC: Integrated Circuit).
  • LSI Large Scale Integration
  • IC integrated circuit
  • integrated circuits are not limited to LSIs, and may be realized by dedicated circuits or general-purpose processors.
  • a programmable FPGA (Field Programmable Gate Array) or a reconfigurable processor capable of reconfiguring connections and settings of circuit cells inside the LSI may be used.
  • An audio playback device that performs motional feedback, comprising: a test signal generator that generates a test signal; a switching circuit that switches whether to output as one signal, a first amplitude adjuster that adjusts the amplitude of the first signal and outputs it as a second signal, and an output circuit that outputs a signal based on the first signal to a speaker.
  • a detector for detecting a third signal that has passed through said speaker; a second amplitude adjuster for adjusting the amplitude of said third signal and outputting it as a fourth signal; and a frequency obtained by analyzing said second signal a first analyzer that outputs amplitude characteristics as first frequency-amplitude characteristics; a second analyzer that outputs frequency-amplitude characteristics obtained by analyzing the fourth signal as second frequency-amplitude characteristics; Based on the first frequency amplitude characteristic and the second frequency amplitude characteristic output from the first analyzer and the second analyzer when output as the first signal, the first amplitude adjuster and the second An audio reproducing apparatus comprising: a calculator that adjusts at least one parameter of a two-amplitude adjuster; and a correction circuit that generates the correction signal based on the difference between the second signal and the fourth signal.
  • the first analyzer outputs frequency amplitude characteristics obtained by analyzing the impulse response signal of the second signal as the first frequency amplitude characteristics, and the second analyzer outputs the fourth signal
  • the audio reproduction device according to technique 1, wherein a frequency amplitude characteristic obtained by analyzing the impulse response signal is output as the second frequency amplitude characteristic.
  • the calculator may adjust at least one of the first amplitude adjuster and the second amplitude adjuster so that the maximum values of the first frequency amplitude characteristic and the second frequency amplitude characteristic are equal to each other. 4.
  • the audio playback device according to any one of Techniques 1 to 3, which adjusts the parameters of
  • a delay adjuster for adjusting the delay of the first signal is provided, and the first amplitude adjuster adjusts the amplitude of the first signal whose delay has been adjusted by the delay adjuster. and outputs it as the second signal, the first analyzer calculates an impulse response signal of the second signal and outputs it as the first impulse response signal, the second analyzer calculates the impulse response signal of the fourth signal calculating an impulse response signal and outputting it as a second impulse response signal, wherein the arithmetic unit is output from the first analyzer and the second analyzer when the test signal is output as the first signal.
  • the arithmetic unit is output from the first analyzer and the second analyzer when the test signal is output as the first signal.
  • the output circuit outputs a signal based on the first signal to a resistor connected in parallel with the speaker, and the first amplitude adjuster is based on the first signal that has passed through the resistor.
  • the audio reproduction device according to any one of Techniques 1 to 5, wherein the amplitude of a signal is adjusted and output as the second signal.
  • the audio reproducing apparatus includes a signal processing circuit that performs signal processing on the first signal, and the first amplitude adjuster adjusts the amplitude of the first signal that has undergone signal processing by the signal processing circuit.
  • the sound reproduction device according to any one of Techniques 1 to 6, wherein the sound is adjusted and output as the second signal, and the output circuit includes a full digital amplifier.
  • the present disclosure is applicable to devices that reproduce sound, such as audio equipment, televisions, PCs (Personal Computers), and mobile devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

音声再生装置(1)は、入力信号から補正信号を減算して第1信号として出力するか、テスト信号を第1信号として出力するかを切り替える切替回路(10)と、第1信号の振幅を調整して第2信号として出力する第1振幅調整器(41)と、スピーカシステム(110)を通過した第3信号の振幅を調整して第4信号として出力する第2振幅調整器(42)と、テスト信号が第1信号として出力された場合に第2信号の第1周波数振幅特性及び第4信号の第2周波数振幅特性に基づいて、第1振幅調整器(41)及び第2振幅調整器(42)の少なくとも一方のパラメータを調整する補正値演算器(60)と、第2信号と第4信号との差に基づいて補正信号を生成する特性補正回路(80)と、を備える。

Description

音声再生装置
 本開示は、モーショナルフィードバックを行う音声再生装置に関する。
 特許文献1には、安定でかつ十分なMFB(モーショナルフィードバック)による改善度が得られ、低音不足を来すことなくMFBのかかったスピーカで豊かに音声の再生を行うMFBシステムが開示されている。
特開平6-62487号公報
 特許文献1では、スピーカユニットの振動板の速度情報を検出するためにブリッジ回路が用いられ、ブリッジ回路の調整のために可変抵抗が用いられている。正確な速度情報を抽出するためにスピーカユニットに合わせて可変抵抗の抵抗値を調整する必要がある。しかし、スピーカユニットは個体によるパラメータのばらつきが大きく、さらに、可変抵抗は経年により抵抗値が変化するため、都度の調整が必要となるが、特許文献1では、その調整方法について言及されていない。
 そこで、本開示は、MFB制御に用いられる回路の調整を効果的に行うことができる音声再生装置を提供する。
 本開示における音声再生装置は、モーショナルフィードバックを行う音声再生装置であって、テスト信号を生成するテスト信号生成器と、入力信号から補正信号を減算して第1信号として出力するか、前記テスト信号を前記第1信号として出力するかを切り替える切替回路と、前記第1信号の振幅を調整して第2信号として出力する第1振幅調整器と、前記第1信号に基づく信号をスピーカに出力する出力回路と、前記スピーカを通過した第3信号を検出する検出器と、前記第3信号の振幅を調整して第4信号として出力する第2振幅調整器と、前記第2信号を解析して得られる周波数振幅特性を第1周波数振幅特性として出力する第1解析器と、前記第4信号を解析して得られる周波数振幅特性を第2周波数振幅特性として出力する第2解析器と、前記テスト信号が前記第1信号として出力された場合に前記第1解析器及び前記第2解析器から出力される前記第1周波数振幅特性及び前記第2周波数振幅特性に基づいて、前記第1振幅調整器及び前記第2振幅調整器の少なくとも一方のパラメータを調整する演算器と、前記第2信号と前記第4信号との差に基づいて前記補正信号を生成する補正回路と、を備える。
 本開示における音声再生装置によれば、MFB制御に用いられる回路の調整を効果的に行うことができる。
図1は、実施の形態1に係る音声再生装置の一例を示す構成図である。 図2は、実施の形態1に係る音声再生装置の振幅調整時の動作の一例を示すフローチャートである。 図3は、テスト信号生成器で生成されたテスト信号の一例を示す図である。 図4Aは、第1解析器で取得される第2信号の一例を示す図である。 図4Bは、第2解析器で取得される第4信号の一例を示す図である。 図5Aは、第1解析器で算出される第1インパルス応答信号の一例を示す図である。 図5Bは、第2解析器で算出される第2インパルス応答信号の一例を示す図である。 図6Aは、第1解析器から出力される第1周波数振幅特性の一例を示す図である。 図6Bは、第2解析器から出力される第2周波数振幅特性の一例を示す図である。 図7は、抽出されたスピーカシステムの速度情報の一例を示す図である。 図8は、実施の形態1の変形例に係る音声再生装置の一例を示す構成図である。 図9は、実施の形態2に係る音声再生装置の一例を示す構成図である。 図10は、実施の形態2に係る音声再生装置の遅延調整時の動作の一例を示すフローチャートである。 図11は、実施の形態3に係る音声再生装置の一例を示す構成図である。
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、発明者は、当業者が本開示を十分に理解するために添付図面及び以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。
 (実施の形態1)
 図1から図7を用いて実施の形態1を説明する。
 図1は、実施の形態1に係る音声再生装置1の一例を示す構成図である。図1には、音声再生装置1の他にスピーカシステム110(スピーカとも呼ばれる)が示されている。図1では、スピーカシステム110の等価回路を示しており、具体的には、スピーカシステム110の直流抵抗Re、及び、スピーカシステム110の振動板が振動することにより発生する逆起電力Evを示している。なお、スピーカシステム110は、音声再生装置1に備えられていてもよい。
 音声再生装置1は、例えば、CD(Compact Disc)、DVD(Digital Versatile Disc)、BD(Blu-ray(登録商標) Disc)、HDD(Hard Disc Drive)又は半導体メモリカード等の記憶媒体に記憶された音楽ソースや、インターネット上の音楽配信サービスを介して配信される音楽ソースを再生するために、これらの音楽ソースから取得されたデジタルオーディオ信号が入力され、増幅されたアナログオーディオ信号をスピーカシステム110に出力する装置である。
 音声再生装置1では、MFB制御が行われる。MFB制御は、スピーカシステム110の振動板の動き(例えば速度情報)を検出し、入力されたオーディオ信号をフィードバックして、入力されるオーディオ信号に対して振動板がより忠実な動きをするように、オーディオ信号を補正する技術であり、歪率などの諸特性を改善することができる。スピーカシステム110は個体によるパラメータのばらつきが大きいため、スピーカシステム110の振動板の正確な速度情報を抽出するためには、スピーカシステム110の個体毎にMFB制御に用いられる回路の調整が必要となる。詳細は後述するが、音声再生装置1は、MFB制御に用いられる回路の調整を効果的に行うことができる。
 スピーカシステム110では、振動板が振動することにより逆起電力Evが発生する。音声再生装置1によって逆起電力Evが検出される。逆起電力Evは、スピーカシステム110の振動板の速度に相当する。また、図1には、スピーカシステム110の直流抵抗Reを示している。スピーカシステム110には抵抗と直列に接続されるボイスコイルの微小なインダクタンスも含まれるが、本件で対象とするMFB制御においては、インダクタンスの影響は小さいため、ここでは扱わないものとする。
 音声再生装置1は、切替回路10、出力回路20、A/D変換器32、振幅調整器41及び42、テスト信号解析器51及び52、補正値演算器60、減算器70、特性補正回路80並びにテスト信号生成器90を備える。例えば、切替回路10、振幅調整器41及び42、テスト信号解析器51及び52、補正値演算器60、減算器70、特性補正回路80並びにテスト信号生成器90は、DSP(Digital Signal Processor)などにより実現される。
 テスト信号生成器90は、テスト信号を生成する。例えば、テスト信号生成器90は、デジタル信号であるテスト信号を生成する。テスト信号は、例えば、TSP(Time Stretched Pulse)信号である。TSP信号は、インパルス信号を時間方向に引き伸ばすことでエネルギーを相対的に大きくした信号である。TSP信号では、周波数が低周波から高周波に、又は高周波から低周波に時間的に変化する。対象とするシステムにTSP信号を入力した際の応答信号に対して、TSP信号と複素共役をとった逆TSP信号を畳み込み演算することで、システムのインパルス応答、或いは周波数応答を測定することができる。TSP信号を用いることで、S/N比の高い測定を行うことができる。なお、テスト信号は、TSP信号に限らず、所望の周波数成分を含んでいれば特に限定されない。例えば、テスト信号は、ランダム雑音であってもよい。
 切替回路10は、入力信号(デジタルオーディオ信号)から補正信号を減算して第1信号として出力するか、テスト信号を第1信号として出力するかを切り替える回路である。切替回路10は、減算器11及びセレクタ12を備え、減算器11及びセレクタ12を制御することで、上記動作を行う。
 減算器11は、入力信号から補正信号を減算して第1信号として出力する、或いは、テスト信号を第1信号として出力する。補正信号は、スピーカシステム110の振動板の変位情報、速度情報又は加速度情報等を含む信号であり、特性補正回路80から出力される。
 セレクタ12は、テスト信号生成器90を減算器11に接続するか、特性補正回路80を減算器11に接続するかを切り替える。例えば、セレクタ12は、減算器11に接続された共通端子と、テスト信号生成器90に接続された選択端子と、特性補正回路80に接続された選択端子とを有する。
 切替回路10は、減算器11と、テスト信号生成器90及び特性補正回路80のいずれかとの接続を切り替えるようにセレクタ12を制御することで、入力信号から補正信号を減算して第1信号として出力するか、テスト信号を第1信号として出力するかを切り替える。また、切替回路10は、テスト信号を第1信号として出力する場合には、減算器11が入力信号を入力として使用しないように制御する。このように、切替回路10は、減算器11とセレクタ12とを連動して制御することにより、入力信号から補正信号を減算して第1信号として出力するか、テスト信号を第1信号として出力するかを切り替えることができる。例えば、切替回路10は、音声再生装置1の起動時には、減算器11とテスト信号生成器90とを接続してテスト信号を第1信号として出力する。切替回路10は、MFB制御に用いられる回路の調整の完了後に、減算器11と特性補正回路80とを接続して入力信号から補正信号を減算して第1信号として出力する。
 出力回路20は、第1信号に基づく信号をスピーカ(スピーカシステム110)に出力する回路である。出力回路20は、D/A変換器21及び増幅器22を備える。D/A変換器21は、デジタル信号である第1信号をアナログ信号に変換して出力する回路である。増幅器22は、変換されたアナログ信号を増幅する回路である。第1信号に基づく信号は、例えば、増幅されたアナログオーディオ信号であり、スピーカシステム110は、出力回路20から出力されたアナログオーディオ信号の電力を音響エネルギーに変換する。
 抵抗Rsは、スピーカシステム110を通過した第3信号を検出する検出器である。第3信号は、第1信号に基づく信号がスピーカシステム110に入力され、スピーカシステム110を通過してスピーカシステム110から出力される信号であり、スピーカシステム110の個体に応じた情報が含まれる信号である。第3信号は、具体的には、スピーカシステム110を流れる電流であり、抵抗Rsの両端にかかる電圧値を測定することによってスピーカシステム110を流れる電流である第3信号が検出される。尚、抵抗Rsは、出力回路20で増幅されたアナログオーディオ信号をスピーカシステム110に入力する際に特性に影響を与えないように、直流抵抗Reにくらべて十分小さな値となっている。
 A/D変換器32は、アナログ信号をデジタル信号に変換して出力する回路である。具体的には、A/D変換器32は、アナログ信号である第3信号をデジタル信号に変換する。
 振幅調整器41は、第1信号(入力信号から補正信号を減算した信号、又は、テスト信号)の振幅を調整して第2信号として出力する第1振幅調整器である。振幅調整器41は、補正値演算器60によって振幅を調整するためのパラメータが調整され、調整されたパラメータに応じて第1信号の振幅を調整する。
 振幅調整器42は、第3信号(具体的には、A/D変換器32によってデジタル信号に変換された第3信号)の振幅を調整して第4信号として出力する第2振幅調整器である。振幅調整器42は、補正値演算器60によって振幅を調整するためのパラメータが調整され、調整されたパラメータに応じて第3信号の振幅を調整する。なお、振幅調整器41及び42の両方のパラメータが調整されなくてもよく、振幅調整器41及び42の少なくとも一方のパラメータが調整されればよい。例えば、調整されたパラメータは、フラッシュメモリ等に記憶される。
 テスト信号解析器51は、第2信号を解析して得られる周波数振幅特性を第1周波数振幅特性として出力する第1解析器である。例えば、テスト信号解析器51は、第2信号のインパルス応答信号を解析して得られる周波数振幅特性を第1周波数振幅特性として出力する。例えば、テスト信号解析器51は、第2信号のインパルス応答信号を算出してもよい。テスト信号解析器51の動作の詳細については後述する。
 テスト信号解析器52は、第4信号を解析して得られる周波数振幅特性を第2周波数振幅特性として出力する第2解析器である。例えば、テスト信号解析器52は、第4信号のインパルス応答信号を解析して得られる周波数振幅特性を第2周波数振幅特性として出力する。例えば、テスト信号解析器52は、第4信号のインパルス応答信号を算出してもよい。テスト信号解析器52の動作の詳細については後述する。
 補正値演算器60は、テスト信号が第1信号として出力された場合に、テスト信号解析器51及び52から出力される第1周波数振幅特性及び第2周波数振幅特性に基づいて、振幅調整器41及び42の少なくとも一方のパラメータを調整する演算器である。テスト信号が第1信号として出力された場合とは、切替回路10によって、減算器11とテスト信号生成器90とが接続され、かつ、減算器11が入力信号を入力として使用しないようにされている状態で、テスト信号生成器90から出力されたテスト信号が減算器11から出力された場合である。例えば、補正値演算器60は、第1周波数振幅特性及び第2周波数振幅特性の各々の最大値が互いに等しくなるように、振幅調整器41及び42の少なくとも一方のパラメータを調整する。補正値演算器60の動作の詳細については後述する。
 減算器70は、振幅調整器41から出力される振幅が調整された第2信号から、振幅調整器42から出力される振幅が調整された第4信号を減算し、その差分信号を出力する。
 特性補正回路80は、第2信号と第4信号との差(すななち、減算器70から出力される差分信号)に基づいて補正信号を生成する補正回路である。例えば、特性補正回路80は、変位型MFB、速度型MFB又は加速度型MFBを行うための補正信号を生成する。減算器70から出力される差分信号は、スピーカシステム110の振動板の速度情報となり、特性補正回路80は、スピーカシステム110の振動板の速度情報を取得する。例えば、特性補正回路80は、取得した速度情報を積分することで速度情報を変位情報に変換し、変位型MFBを行うための補正信号を生成する。また、例えば、特性補正回路80は、取得した速度情報を微分することで速度情報を加速度情報に変換し、加速度型MFBを行うための補正信号を生成する。また、例えば、特性補正回路80は、取得した速度情報を用いて、速度型MFBを行うための補正信号を生成する。
 変位型MFBでは、最低共振周波数より低い領域(スティフネス領域)で一定量の負帰還がかかるので低音再生限界を狭くすることができる。また、変位・速度併用型MFBでは、Q値を最適化できる。速度型MFBでは、帰還量が最低共振周波数で最大となり、低音共振の制動及びQ値の低下が可能となる。加速度型MFBでは、最低共振周波数より高い領域(質量制御領域)で一定量の負帰還がかかるので低音再生限界を拡張できる。また、加速度・速度併用型MFBでは、Q値を最適化できる。
 次に、図2を用いて音声再生装置1の動作の詳細について説明する。
 図2は、実施の形態1に係る音声再生装置1の振幅調整時の動作の一例を示すフローチャートである。
 まず、切替回路10は、テスト信号を出力するようにセレクタ12を切り替える(ステップS11)。このとき、切替回路10は、減算器11が入力信号を入力として使用しないように制御する。例えば、減算器11の正入力端子にスイッチが接続されていてもよく、切替回路10は、テスト信号を出力するようにセレクタ12を切り替える際に、当該スイッチを制御して、減算器11に入力信号が入力されないようにしてもよい。例えば、切替回路10は、音声再生装置1の起動時等にステップS11からの処理を開始する。
 次に、テスト信号生成器90は、テスト信号を生成し、音声再生装置1は、生成されたテスト信号をスピーカシステム110から再生する(ステップS12)。生成されたテスト信号の例を図3に示す。このとき、減算器11には入力信号(オーディオ信号)は入力されず、セレクタ12を介してテスト信号生成器90のテスト信号のみが減算入力されるものとする。
 図3は、テスト信号生成器90で生成されたテスト信号の一例を示す図である。
 図3に示されるように、テスト信号は、例えば、周波数が低周波から高周波に時間的に変化するTSP信号である。
 スピーカシステム110を通過していないテスト信号(第1信号)は振幅調整器41に取得され、振幅が調整されてテスト信号解析器51へ出力される。スピーカシステム110を通過したテスト信号は振幅調整器42に取得され、振幅が調整されてテスト信号解析器52へ出力される。
 次に、テスト信号解析器51(第1解析器)は、第2信号(スピーカシステム110を通過していないテスト信号)を取得し、テスト信号解析器52は、第4信号(スピーカシステム110を通過したテスト信号)を取得する(ステップS13)。
 図4Aは、テスト信号解析器51で取得される第2信号の一例を示す図である。
 図4Bは、テスト信号解析器52で取得される第4信号の一例を示す図である。
 図4Aに示されるスピーカシステム110を通過していない第2信号は、スピーカシステム110の影響を受けていないため、図3に示されるテスト信号生成器90で生成されたテスト信号と信号波形の形状がほぼ同じとなっている。図4Bに示されるスピーカシステム110を通過した第4信号は、スピーカシステム110の影響を受けているため、図3に示されるテスト信号生成器90で生成されたテスト信号と信号波形の形状が異なっている。第4信号には、スピーカシステム110の個体に応じた情報が含まれており、それに伴い、第4信号は、テスト信号生成器90で生成されたテスト信号と信号波形の形状が異なっている。なお、ここでは、振幅調整器41及び42のパラメータの調整がされておらず、振幅調整器41及び42での振幅の調整がされていないとする。
 次に、テスト信号解析器51は、第1インパルス応答信号を算出し、テスト信号解析器52は、第2インパルス応答信号を算出する(ステップS14)。例えば、テスト信号解析器51は、入力される第2信号(スピーカシステム110を通過していないTSP信号)と、当該TSP信号と複素共役な逆TSP信号とを畳み込むことで、第1インパルス応答信号を算出する。また、例えば、テスト信号解析器52は、入力される第4信号(スピーカシステム110を通過したTSP信号)と、当該TSPと複素共役な逆TSP信号とを畳み込むことで、第2インパルス応答信号を算出する。
 図5Aは、テスト信号解析器51で算出される第1インパルス応答信号の一例を示す図である。
 図5Bは、テスト信号解析器52で算出される第2インパルス応答信号の一例を示す図である。
 図4A及び図4Bに示される第2信号及び第4信号(インパルス信号を時間方向に引き伸ばしたTSP信号)から、図5A及び図5Bに示されるインパルス応答信号を算出することができ、算出されたインパルス応答信号によってS/N比の高い測定を行うことができる。
 次に、テスト信号解析器51は、第2信号(具体的には、第1インパルス応答信号)を解析して得られる周波数振幅特性を第1周波数振幅特性として出力し、テスト信号解析器52は、第4信号(具体的には、第2インパルス応答信号)を解析して得られる周波数振幅特性を第2周波数振幅特性として出力する(ステップS15)。例えば、テスト信号解析器51は、第1インパルス応答信号に対してFFT(Fast Fourier Transform)を行うことで、周波数振幅特性を算出し、テスト信号解析器52は、第2インパルス応答信号に対してFFTを行うことで、周波数振幅特性を算出する。
 図6Aは、テスト信号解析器51から出力される第1周波数振幅特性の一例を示す図である。
 図6Bは、テスト信号解析器52から出力される第2周波数振幅特性の一例を示す図である。第1周波数振幅特性及び第2周波数振幅特性は、例えば、周波数振幅特性である。
 第1周波数振幅特性は、スピーカシステム110を通過していないTSP信号(第2信号)のインパルス応答信号に対してFFTが行われて算出された周波数振幅特性であるため、テスト信号生成器90で生成されたTSP信号(第1信号)が有する周波数振幅特性と同じような周波数振幅特性となる。すなわち、図6Aに示されるように、第1周波数振幅特性は、広い周波数帯域にわたって一定のゲインを有する周波数振幅特性となっている。
 第2周波数振幅特性は、スピーカシステム110を通過したTSP信号(第4信号)のインパルス応答信号に対してFFTが行われて算出された周波数振幅特性であるため、図6Bに示されるように、周波数によってゲインの大きさに変化があることがわかる。第2周波数振幅特性は、スピーカシステム110のインピーダンスの周波数振幅特性によって変化した電流であり、第1周波数振幅特性と比べてスピーカシステム110の個体による影響を受けた周波数振幅特性となっている。
 次に、補正値演算器60は、第1周波数振幅特性及び第2周波数振幅特性の各々の最大値が互いに等しくなるように、振幅調整器41又は42のパラメータを調整する(ステップS16)。周波数が直流の周波数、すなわち0Hz近傍の場合に、スピーカの振動板の速度は0m/秒となる。また、図6Bはスピーカシステム110としてバスレフスピーカを使用した場合の例になるが、バスレフスピーカの場合、図6Bの丸印のバスレフポートの共振周波数付近でも、スピーカの振動板の速度は0m/秒となり、結果スピーカシステム110が発生する逆起電力Evが0Vとなる。丸印の周波数における第1周波数振幅特性及び第2周波数振幅特性の各々の最大値が互いに等しくなるように、振幅調整器41又は42のパラメータが調整される。
 例えば、図6A及び図6Bに示されるように、第1周波数振幅特性の最大値が、第2周波数振幅特性の最大値よりも大きい場合、補正値演算器60は、その差に応じて、振幅調整器41において振幅がより小さくなるように振幅調整器41のパラメータを調整し、振幅調整器42において振幅がより大きくなるように振幅調整器42のパラメータを調整する。なお、振幅調整器41のパラメータの調整及び振幅調整器42のパラメータの調整のいずれか一方のみが行われてもよい。また、第1周波数振幅特性及び第2周波数振幅特性の各々の最大値が互いに等しくなるように、テスト信号の再生を繰り返してフィードバックをかけながら、振幅調整器41のパラメータの調整及び振幅調整器42のパラメータの調整の少なくとも一方が行われてもよい。
 減算器70で減算された値はスピーカシステム110の振動板の速度に応じた値となり、スピーカシステム110に流れる電流から振動板の速度のみを抽出することができる。また、スピーカシステム110に個体のばらつきがあった場合であっても、都度上述した周波数振幅特性の測定を行うことで個体毎にスピーカシステム110に流れる電流から振動板の速度のみを抽出することができる。
 そして、切替回路10は、入力信号(オーディオ信号)を出力するようにセレクタ12を切り替え(ステップS17)、調整が行われた振幅調整器41及び42を用いてMFB制御が行われる。具体的には、特性補正回路80は、減算器70から出力される、振幅が調整された第2信号及び第4信号の差分信号に基づいて、補正信号を生成し、セレクタ12を介して補正信号が減算器11に入力される。そして、減算器11で入力信号から補正信号が減算される。本開示では、上記の振幅の調整によりスピーカシステム110の正確な速度情報を抽出することができるため、適切なMFB制御を行うことができる。
 図7は、抽出されたスピーカシステム110の速度情報の一例を示す図である。振幅調整器41又は42のパラメータが調整されることで、このような速度情報を抽出することができる。
 以上説明したように、音声再生装置1は、MFBを行う装置であって、テスト信号を生成するテスト信号生成器90と、入力信号から補正信号を減算して第1信号として出力するか、テスト信号を第1信号として出力するかを切り替える切替回路10と、第1信号の振幅を調整して第2信号として出力する振幅調整器41と、第1信号に基づく信号をスピーカに出力する出力回路20と、スピーカシステム110を通過した第3信号を検出する抵抗Rsと、第3信号の振幅を調整して第4信号として出力する振幅調整器42と、第2信号を解析して得られる周波数振幅特性を第1周波数振幅特性として出力するテスト信号解析器51と、第4信号を解析して得られる周波数振幅特性を第2周波数振幅特性として出力するテスト信号解析器52と、テスト信号が第1信号として出力された場合にテスト信号解析器51及び52から出力される第1周波数振幅特性及び第2周波数振幅特性に基づいて、振幅調整器41及び42の少なくとも一方のパラメータを調整する補正値演算器60と、第2信号と第4信号との差に基づいて補正信号を生成する特性補正回路80と、を備える。
 これによれば、スピーカシステム110を通過していないテスト信号(第2信号)を周波数解析して得られる第1周波数振幅特性と、スピーカシステム110を通過したテスト信号(第4信号)を周波数解析して得られる第2周波数振幅特性とに基づいて、MFB制御に用いられる回路である振幅調整器41又は42のパラメータの調整が行われる。スピーカシステム110を通過したテスト信号には、スピーカシステム110の個体に応じた情報が含まれているため、スピーカシステム110を通過したテスト信号とスピーカシステム110を通過していないテスト信号とに基づいて、スピーカシステム110に発生する逆起電力(すなわちスピーカシステム110の振動板の速度情報)を正確に抽出できるように、MFB制御に用いられる回路の調整を効果的に行うことができる。
 例えば、テスト信号解析器51は、第2信号のインパルス応答信号を解析して得られる周波数振幅特性を第1周波数振幅特性として出力し、テスト信号解析器52は、第4信号のインパルス応答信号を解析して得られる周波数振幅特性を第2周波数振幅特性として出力してもよい。
 これによれば、インパルス応答信号には、スピーカシステム110の個体に応じた情報を正確に含ませることができるため、MFB制御に用いられる回路の調整をより効果的に行うことができる。
 例えば、テスト信号解析器51は、第2信号のインパルス応答信号を算出し、テスト信号解析器52は、第4信号のインパルス応答信号を算出してもよい。
 例えば、テスト信号としてインパルス信号が入力される場合には、外乱要因の影響を受けやすくS/N比の良い測定をすることは難しいが、TSP信号等のテスト信号からインパルス応答信号を算出することで、S/N比の良い測定をすることができる。
 例えば、補正値演算器60は、第1周波数振幅特性及び第2周波数振幅特性の各々の最大値が互いに等しくなるように、振幅調整器41及び42の少なくとも一方のパラメータを調整してもよい。
 これによれば、第1周波数振幅特性及び第2周波数振幅特性の各々の最大値が互いに等しくなるように振幅調整器41又は42のパラメータを調整することで、スピーカシステム110の振動板の速度情報を正確に抽出できるようになる。
 (実施の形態1の変形例)
 例えば、スピーカシステム110の振動板の速度情報を抽出するためにブリッジ回路が用いられてもよい。これについて、図8を用いて説明する。
 図8は、実施の形態1の変形例に係る音声再生装置1aの一例を示す構成図である。
 実施の形態1の変形例に係る音声再生装置1aは、抵抗R1及びR2並びにA/D変換器31を備え、A/D変換器31から出力される信号が振幅調整器41に入力される点が実施の形態1に係る音声再生装置1と異なる。その他の点については、実施の形態1におけるものと基本的には同じであるため、説明は省略する。
 音声再生装置1aでは、出力回路20は、第1信号に基づく信号(増幅されたアナログオーディオ信号)をスピーカシステム110と並列接続された抵抗器である抵抗R2に出力する。
 抵抗R1、R2、Rs及びReは、ブリッジ接続されることでブリッジ回路を形成している。このブリッジ回路における抵抗R1と抵抗R2との接続点にA/D変換器31が接続される。
 A/D変換器31は、アナログ信号をデジタル信号に変換して出力する回路である。具体的には、A/D変換器31は、抵抗R1と抵抗R2との分圧回路における抵抗R1により発生する電圧信号であるアナログ信号をデジタル信号に変換する。
 振幅調整器41は、抵抗R2を通過した第1信号に基づく信号の振幅を調整して第2信号として出力する。つまり、実施の形態1では、振幅調整器41には、減算器11から出力された第1信号が直接入力される例を説明したが、実施の形態1の変形例のように、振幅調整器41には、出力回路20で増幅され、アナログ信号に変換され、抵抗R2を通過し、A/D変換器31でデジタル信号に変換された第1信号が入力されてもよい。
 以上説明したように、出力回路20は、第1信号に基づく信号をスピーカシステム110と並列接続された抵抗R2に出力し、振幅調整器41は、抵抗R2を通過した第1信号に基づく信号の振幅を調整して第2信号として出力してもよい。
 このように、ブリッジ回路を用いてMFB制御を行うことができる。
 (実施の形態2)
 実施の形態1では、振幅調整器42が取得する第3信号は、振幅調整器41が取得する第1信号と比べて、出力回路20、スピーカシステム110及びA/D変換器32を通過しているため、遅延が生じ、第1信号と第3信号とに時間のずれが生じる。そこで、実施の形態2では、この時間のずれを調整できる音声再生装置について説明する。
 図9は、実施の形態2に係る音声再生装置2の一例を示す構成図である。
 実施の形態2に係る音声再生装置2は、遅延調整器120を備え、テスト信号解析器51及び52並びに補正値演算器60の代わりにテスト信号解析器51a及び52a並びに補正値演算器60aを備える点が、実施の形態1に係る音声再生装置1と異なる。その他の点については、実施の形態1におけるものと基本的には同じであるため、説明は省略する。
 遅延調整器120は、第1信号に対して遅延を調整する回路であり、具体的には、第1信号を遅延させる。遅延調整器120は、補正値演算器60aによって遅延時間を調整するためのパラメータが調整され、調整されたパラメータに応じて第1信号の遅延を調整する。これにより、振幅調整器41は、遅延調整器120による遅延の調整がされた第1信号の振幅を調整して第2信号として出力する。
 テスト信号解析器51aは、テスト信号解析器51が有する機能に加えて、第2信号のインパルス応答信号を算出して第1インパルス応答信号として出力する機能を有する。実施の形態1では、テスト信号解析器51は、第1周波数振幅特性を得る際に用いられる第1インパルス応答信号を必ずしも出力する必要はないが、実施の形態2では、テスト信号解析器51aは、第1信号の遅延の調整のために、第1インパルス応答信号を出力する。
 テスト信号解析器52aは、テスト信号解析器52が有する機能に加えて、第4信号のインパルス応答信号を算出して第2インパルス応答信号として出力する機能を有する。実施の形態1では、テスト信号解析器52は、第2周波数振幅特性を得る際に用いられる第2インパルス応答信号を必ずしも出力する必要はないが、実施の形態2では、テスト信号解析器52aは、第1信号の遅延の調整のために、第2インパルス応答信号を出力する。
 補正値演算器60aは、補正値演算器60が有する機能に加えて、テスト信号が第1信号として出力された場合にテスト信号解析器51a及び52aから出力される第1インパルス応答信号及び第2インパルス応答信号に基づいて、遅延調整器120のパラメータを調整する機能を有する。ここで、補正値演算器60aによる遅延調整器120のパラメータの調整に関する動作の詳細について、図10を用いて説明する。
 図10は、実施の形態2に係る音声再生装置2の遅延調整時の動作の一例を示すフローチャートである。
 ステップS21からステップS23までの処理は、図2で説明したステップS11からステップS13までの処理と同じであるため、説明は省略する。
 テスト信号解析器51は、第1インパルス応答信号を算出して出力し、テスト信号解析器52は、第2インパルス応答信号を算出して出力する(ステップS24)。
 次に、補正値演算器60aは、第1インパルス応答信号に対する第2インパルス応答信号の遅延量を算出し、算出した遅延量を遅延調整器120に設定する(ステップS25)。図5A及び図5Bに示されるように、振幅調整器41が取得する第1信号に対する、振幅調整器42が取得する第3信号の時間のずれは、第1インパルス応答信号の最大値の位置に対する第2インパルス応答信号の最大値の位置の時間のずれであり、このずれが遅延量として表れるため、この遅延量を算出して遅延調整器120に設定することで、遅延調整器120において時間のずれを小さくするように第1信号を遅延させることができる。尚、D/A変換器21、A/D変換器32で発生する遅延量が既知である場合、既知の遅延量を遅延調整器120に設定してもよい。
 そして、切替回路10は、入力信号(オーディオ信号)を出力するようにセレクタ12を切り替える(ステップS26)。
 なお、図2で説明した振幅を調整するための処理と、図10で説明した遅延を調整するための処理は、並行して行われてもよいし、いずれか一方の処理が行われた後に他方の処理が行われてもよい。
 以上説明したように、音声再生装置2は、第1信号に対して遅延を調整する遅延調整器120を備え、振幅調整器41は、遅延調整器120による遅延の調整がされた第1信号の振幅を調整して第2信号として出力し、テスト信号解析器51aは、第2信号のインパルス応答信号を算出して第1インパルス応答信号として出力し、テスト信号解析器52aは、第4信号のインパルス応答信号を算出して第2インパルス応答信号として出力し、補正値演算器60aは、テスト信号が第1信号として出力された場合にテスト信号解析器51a及び52aから出力される第1インパルス応答信号及び第2インパルス応答信号に基づいて、遅延調整器120のパラメータを調整してもよい。
 スピーカシステム110や出力回路20等を通過したテスト信号は、スピーカシステム110や出力回路20等を通過していないテスト信号と比べて遅延が生じる。そこで、スピーカシステム110や出力回路20等を通過していないテスト信号の第1インパルス応答信号の最大値の位置と、スピーカシステム110や出力回路20等を通過したテスト信号の第2インパルス応答信号の最大値の位置の時間のずれに基づいて、遅延調整器120のパラメータを調整する。これにより、振幅調整器41が取得する第1信号と振幅調整器42が取得する第3信号との時間のずれを小さくすることができる。
 (実施の形態3)
 例えば、本開示は、フルデジタルアンプを備える音声再生装置にも適用することができる。これについて、図11を用いて説明する。
 図11は、実施の形態3に係る音声再生装置3の一例を示す構成図である。
 実施の形態3に係る音声再生装置3は、信号処理回路130及びアナログLPF150を備え、出力回路20の代わりに出力回路20aを備える点が、実施の形態2に係る音声再生装置2と異なる。その他の点については、実施の形態2におけるものと基本的には同じであるため、説明は省略する。
 信号処理回路130は、第1信号に信号処理を行う回路である。信号処理回路130は、ΔΣ変調器131及びPWM(Pulse Width Modulation)変調器132を備える。
 ΔΣ変調器131は、入力されたオーディオ信号よりも小さいPWM変調器132のパルス幅の階調数に再量子化を行う。ΔΣ変調器131は、再量子化ノイズを例えば20kHz以上の可聴帯域外に追いやるΔΣ変調のノイズシェーピングという特徴により、可聴帯域内においては再量子化したときに発生する再量子化ノイズを小さくする。
 PWM変調器132は、ΔΣ変調器131が出力する信号を、当該信号の振幅レベルの階調を1と0、あるいは1と-1の2値で表現されるパルス幅を階調とするパルス幅変調信号に変換する。
 振幅調整器41は、信号処理回路130による信号処理が行われた第1信号の振幅を調整して第2信号として出力する。ここでは、振幅調整器41は、信号処理回路130による信号処理が行われ、遅延調整器120による遅延の調整が行われた第1信号の振幅を調整して第2信号として出力する。
 出力回路20aは、フルデジタルアンプを備え、具体的には、ドライバ回路141、スイッチングトランジスタ142及び143、並びに、LPF(Low Pass Filter)144を備える。
 ドライバ回路141並びにスイッチングトランジスタ142及び143は、パルス幅変調信号である第1信号を増幅する回路である。スイッチングトランジスタ142及び143は、プッシュプル回路を構成する。スイッチングトランジスタ142及び143は、それぞれ例えばn型MOSFETである。なお、スイッチングトランジスタ142及び143は、n型MOSFET及びp型MOSFETの組み合わせでもよい。
 LPF144は、増幅された信号をアナログ信号(アナログオーディオ信号)に復調するフィルタであり、増幅された信号のうち、ΔΣ変調器131の再量子化ノイズや、PWM変調により重畳されたキャリア信号などの所定の遮断周波数より高い成分を濾過して出力する。LPF144は、電力損失を少なくするためインダクタとコンデンサとで構成される。
 アナログLPF150は、A/D変換の際のアンチエイリアス処理を行うためのフィルタである。アナログLPF150は、A/D変換器32でのサンプリング周波数の半分を超える周波数成分である折り返し雑音を予め除去する。
 以上説明したように、音声再生装置3は、第1信号に信号処理を行う信号処理回路130を備え、振幅調整器41は、信号処理回路130による信号処理が行われた第1信号の振幅を調整して第2信号として出力し、出力回路20aは、フルデジタルアンプを備えていてもよい。
 このように、本開示を、フルデジタルアンプを備える音声再生装置3にも適用することができる。
 (他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略等を行った実施の形態にも適応可能である。また、上記実施の形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
 例えば、実施の形態1に係る音声再生装置1は、信号処理回路130を備え、出力回路20の代わりに出力回路20aを備えていてもよい。
 例えば、実施の形態1の変形例に係る音声再生装置1aは、信号処理回路130を備え、出力回路20の代わりに出力回路20aを備えていてもよい。
 また、本開示は、音声再生装置として実現できるだけでなく、音声再生装置を構成する構成要素が行うステップ(処理)を含む方法として実現できる。
 例えば、それらのステップは、コンピュータ(コンピュータシステム)によって実行されてもよい。そして、本開示は、それらの方法に含まれるステップを、コンピュータに実行させるためのプログラムとして実現できる。さらに、本開示は、そのプログラムを記録したCD-ROM等である非一時的なコンピュータ読み取り可能な記録媒体として実現できる。
 例えば、本開示が、プログラム(ソフトウェア)で実現される場合には、コンピュータのCPU、メモリ及び入出力回路等のハードウェア資源を利用してプログラムが実行されることによって、各ステップが実行される。つまり、CPUがデータをメモリ又は入出力回路等から取得して演算したり、演算結果をメモリ又は入出力回路等に出力したりすることによって、各ステップが実行される。
 また、上記実施の形態の音声再生装置に含まれる構成要素は、集積回路(IC:Integrated Circuit)であるLSI(Large Scale Integration)として実現されてもよい。
 また、集積回路はLSIに限られず、専用回路又は汎用プロセッサで実現されてもよい。プログラム可能なFPGA(Field Programmable Gate Array)、又は、LSI内部の回路セルの接続及び設定が再構成可能なリコンフィギュラブル・プロセッサが、利用されてもよい。
 さらに、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて、音声再生装置に含まれる構成要素の集積回路化が行われてもよい。
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面及び詳細な説明を提供した。
 したがって、添付図面及び詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、請求の範囲又はその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 (付記)
 以上の実施の形態の記載により、下記の技術が開示される。
 (技術1)モーショナルフィードバックを行う音声再生装置であって、テスト信号を生成するテスト信号生成器と、入力信号から補正信号を減算して第1信号として出力するか、前記テスト信号を前記第1信号として出力するかを切り替える切替回路と、前記第1信号の振幅を調整して第2信号として出力する第1振幅調整器と、前記第1信号に基づく信号をスピーカに出力する出力回路と、前記スピーカを通過した第3信号を検出する検出器と、前記第3信号の振幅を調整して第4信号として出力する第2振幅調整器と、前記第2信号を解析して得られる周波数振幅特性を第1周波数振幅特性として出力する第1解析器と、前記第4信号を解析して得られる周波数振幅特性を第2周波数振幅特性として出力する第2解析器と、前記テスト信号が前記第1信号として出力された場合に前記第1解析器及び前記第2解析器から出力される前記第1周波数振幅特性及び前記第2周波数振幅特性に基づいて、前記第1振幅調整器及び前記第2振幅調整器の少なくとも一方のパラメータを調整する演算器と、前記第2信号と前記第4信号との差に基づいて前記補正信号を生成する補正回路と、を備える、音声再生装置。
 (技術2)前記第1解析器は、前記第2信号のインパルス応答信号を解析して得られる周波数振幅特性を前記第1周波数振幅特性として出力し、前記第2解析器は、前記第4信号のインパルス応答信号を解析して得られる周波数振幅特性を前記第2周波数振幅特性として出力する、技術1に記載の音声再生装置。
 (技術3)前記第1解析器は、前記第2信号のインパルス応答信号を算出し、前記第2解析器は、前記第4信号のインパルス応答信号を算出する、技術2に記載の音声再生装置。
 (技術4)前記演算器は、前記第1周波数振幅特性及び前記第2周波数振幅特性の各々の最大値が互いに等しくなるように、前記第1振幅調整器及び前記第2振幅調整器の少なくとも一方のパラメータを調整する、技術1~3のいずれか1項に記載の音声再生装置。
 (技術5)さらに、前記第1信号に対して遅延を調整する遅延調整器を備え、前記第1振幅調整器は、前記遅延調整器による遅延の調整がされた前記第1信号の振幅を調整して前記第2信号として出力し、前記第1解析器は、前記第2信号のインパルス応答信号を算出して第1インパルス応答信号として出力し、前記第2解析器は、前記第4信号のインパルス応答信号を算出して第2インパルス応答信号として出力し、前記演算器は、前記テスト信号が前記第1信号として出力された場合に前記第1解析器及び前記第2解析器から出力される前記第1インパルス応答信号及び前記第2インパルス応答信号に基づいて、前記遅延調整器のパラメータを調整する、技術1~4のいずれか1項に記載の音声再生装置。
 (技術6)前記出力回路は、前記第1信号に基づく信号を前記スピーカと並列接続された抵抗器に出力し、前記第1振幅調整器は、前記抵抗器を通過した前記第1信号に基づく信号の振幅を調整して前記第2信号として出力する、技術1~5のいずれか1項に記載の音声再生装置。
 (技術7)前記音声再生装置は、前記第1信号に信号処理を行う信号処理回路を備え、第1振幅調整器は、前記信号処理回路による信号処理が行われた前記第1信号の振幅を調整して前記第2信号として出力し、前記出力回路は、フルデジタルアンプを備える、技術1~6のいずれか1項に記載の音声再生装置。
 本開示は、音響機器、テレビ、PC(Personal Computer)、携帯機器等の音を再生する装置に適用可能である。
 1、1a、2、3 音声再生装置
 10 切替回路
 11 減算器
 12 セレクタ
 20、20a 出力回路
 21 D/A変換器
 22 増幅器
 31、32 A/D変換器
 41、42 振幅調整器
 51、51a、52、52a テスト信号解析器
 60、60a 補正値演算器
 70 減算器
 80 特性補正回路
 90 テスト信号生成器
 110 スピーカシステム
 120 遅延調整器
 130 信号処理回路
 131 ΔΣ変調器
 132 PWM変調器
 141 ドライバ回路
 142、143 スイッチングトランジスタ
 144 LPF
 150 アナログLPF
 Ev 逆起電力
 R1、R2、Re、Rs 抵抗

Claims (7)

  1.  モーショナルフィードバックを行う音声再生装置であって、
     テスト信号を生成するテスト信号生成器と、
     入力信号から補正信号を減算して第1信号として出力するか、前記テスト信号を前記第1信号として出力するかを切り替える切替回路と、
     前記第1信号の振幅を調整して第2信号として出力する第1振幅調整器と、
     前記第1信号に基づく信号をスピーカに出力する出力回路と、
     前記スピーカを通過した第3信号を検出する検出器と、
     前記第3信号の振幅を調整して第4信号として出力する第2振幅調整器と、
     前記第2信号を解析して得られる周波数振幅特性を第1周波数振幅特性として出力する第1解析器と、
     前記第4信号を解析して得られる周波数振幅特性を第2周波数振幅特性として出力する第2解析器と、
     前記テスト信号が前記第1信号として出力された場合に前記第1解析器及び前記第2解析器から出力される前記第1周波数振幅特性及び前記第2周波数振幅特性に基づいて、前記第1振幅調整器及び前記第2振幅調整器の少なくとも一方のパラメータを調整する演算器と、
     前記第2信号と前記第4信号との差に基づいて前記補正信号を生成する補正回路と、を備える、
     音声再生装置。
  2.  前記第1解析器は、前記第2信号のインパルス応答信号を解析して得られる周波数振幅特性を前記第1周波数振幅特性として出力し、
     前記第2解析器は、前記第4信号のインパルス応答信号を解析して得られる周波数振幅特性を前記第2周波数振幅特性として出力する、
     請求項1に記載の音声再生装置。
  3.  前記第1解析器は、前記第2信号のインパルス応答信号を算出し、
     前記第2解析器は、前記第4信号のインパルス応答信号を算出する、
     請求項2に記載の音声再生装置。
  4.  前記演算器は、前記第1周波数振幅特性及び前記第2周波数振幅特性の各々の最大値が互いに等しくなるように、前記第1振幅調整器及び前記第2振幅調整器の少なくとも一方のパラメータを調整する、
     請求項1~3のいずれか1項に記載の音声再生装置。
  5.  さらに、前記第1信号に対して遅延を調整する遅延調整器を備え、
     前記第1振幅調整器は、前記遅延調整器による遅延の調整がされた前記第1信号の振幅を調整して前記第2信号として出力し、
     前記第1解析器は、前記第2信号のインパルス応答信号を算出して第1インパルス応答信号として出力し、
     前記第2解析器は、前記第4信号のインパルス応答信号を算出して第2インパルス応答信号として出力し、
     前記演算器は、前記テスト信号が前記第1信号として出力された場合に前記第1解析器及び前記第2解析器から出力される前記第1インパルス応答信号及び前記第2インパルス応答信号に基づいて、前記遅延調整器のパラメータを調整する、
     請求項1~3のいずれか1項に記載の音声再生装置。
  6.  前記出力回路は、前記第1信号に基づく信号を前記スピーカと並列接続された抵抗器に出力し、
     前記第1振幅調整器は、前記抵抗器を通過した前記第1信号に基づく信号の振幅を調整して前記第2信号として出力する、
     請求項1~3のいずれか1項に記載の音声再生装置。
  7.  前記音声再生装置は、前記第1信号に信号処理を行う信号処理回路を備え、
     第1振幅調整器は、前記信号処理回路による信号処理が行われた前記第1信号の振幅を調整して前記第2信号として出力し、
     前記出力回路は、フルデジタルアンプを備える、
     請求項1~3のいずれか1項に記載の音声再生装置。
PCT/JP2022/032741 2022-01-12 2022-08-31 音声再生装置 WO2023135854A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022003261 2022-01-12
JP2022-003261 2022-01-12

Publications (1)

Publication Number Publication Date
WO2023135854A1 true WO2023135854A1 (ja) 2023-07-20

Family

ID=87278800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032741 WO2023135854A1 (ja) 2022-01-12 2022-08-31 音声再生装置

Country Status (1)

Country Link
WO (1) WO2023135854A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07222276A (ja) * 1993-12-09 1995-08-18 Matsushita Electric Ind Co Ltd 音響再生装置
JP2010288119A (ja) * 2009-06-12 2010-12-24 Sony Corp 信号処理装置、信号処理方法
JP2012186676A (ja) * 2011-03-07 2012-09-27 Sony Corp 信号処理装置および信号処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07222276A (ja) * 1993-12-09 1995-08-18 Matsushita Electric Ind Co Ltd 音響再生装置
JP2010288119A (ja) * 2009-06-12 2010-12-24 Sony Corp 信号処理装置、信号処理方法
JP2012186676A (ja) * 2011-03-07 2012-09-27 Sony Corp 信号処理装置および信号処理方法

Similar Documents

Publication Publication Date Title
US8761408B2 (en) Signal processing apparatus and signal processing method
US20100318205A1 (en) Signal processing apparatus and signal processing method
US20150350779A1 (en) Audio system and method for reduction of microphone distortion
WO2006090589A1 (ja) 音分離装置、音分離方法、音分離プログラムおよびコンピュータに読み取り可能な記録媒体
US9478235B2 (en) Voice signal processing device and voice signal processing method
CN112449280B (zh) 监测电气负载的方法、对应的电路、放大器和音频系统
JP6411780B2 (ja) オーディオ信号処理回路、その方法、それを用いた電子機器
WO2023135854A1 (ja) 音声再生装置
JP6671001B2 (ja) 音声再生装置
EP1675258A1 (en) Three-channel state-variable compressor circuit
JP3169884U (ja) オーディオfm変調アンプに接続する音質補正誤差信号検出入力回路
CN104640052A (zh) 扬声器极性检测器
EP4152323A1 (en) Measurement device, measurement method, program, and phonograph record
JP2012028874A (ja) 再生周波数分析装置及びそのプログラム
JP2005323204A (ja) モーショナルフィードバック装置
US11763828B2 (en) Frequency band expansion device, frequency band expansion method, and storage medium storing frequency band expansion program
JP7432131B1 (ja) インピーダンス変換装置および信号処理装置
JP4657541B2 (ja) 効果装置
US10939199B2 (en) Signal generator for generating power change signal to drive speaker, speaker, speaker filter
WO2022014325A1 (ja) 信号処理装置および方法、並びにプログラム
JP6016650B2 (ja) 効果付加装置
JP3857154B2 (ja) パルス符号変調信号再生装置
Tarr The Development of Audio Software with Distortion
WO2002033427A1 (fr) Dispositif et procede de mesure de bruit, et support d'enregistrement
JP2007306294A (ja) 信号生成方法、信号生成装置およびインパルス応答測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920378

Country of ref document: EP

Kind code of ref document: A1