WO2023134007A1 - 半导体设备及其处理方法、温度测量方法 - Google Patents

半导体设备及其处理方法、温度测量方法 Download PDF

Info

Publication number
WO2023134007A1
WO2023134007A1 PCT/CN2022/081426 CN2022081426W WO2023134007A1 WO 2023134007 A1 WO2023134007 A1 WO 2023134007A1 CN 2022081426 W CN2022081426 W CN 2022081426W WO 2023134007 A1 WO2023134007 A1 WO 2023134007A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
semiconductor
wafer
semiconductor device
adjustment plate
Prior art date
Application number
PCT/CN2022/081426
Other languages
English (en)
French (fr)
Inventor
胡猛
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Publication of WO2023134007A1 publication Critical patent/WO2023134007A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Definitions

  • the present disclosure relates to the technical field of semiconductors, and in particular to a semiconductor device, a processing method thereof, and a temperature measuring method.
  • Rapid Thermal Processing is a widely used process in semiconductor manufacturing.
  • RTP machines are generally equipped with thermometers with fast response time and long service life for temperature measurement.
  • the thermometer reads the temperature by detecting the thermal radiation of the silicon wafer.
  • the reading temperature of the thermometer of the RTP machine in the related art cannot reflect the real temperature of the chamber of the RTP machine. Since the intensity of the light source of the RTP machine will be adjusted according to the feedback from the temperature reading of the thermometer, if the temperature reading is inaccurate, the wafer will be bent to a large extent during the subsequent heat treatment of the wafer, which will affect the product quality and even cause the product to be scrapped. .
  • embodiments of the present disclosure provide a semiconductor device, a processing method thereof, and a temperature measurement method.
  • An embodiment of the present disclosure provides a semiconductor device, including:
  • a chamber comprising a carrier for placing wafers to be processed
  • a heat supply device located above the chamber, for providing a heat source into the chamber
  • a temperature measuring device located below the adjusting plate, is used to receive thermal radiation, and output the measured temperature according to the received thermal radiation;
  • the adjustment plate When the wafer to be processed is placed on the carrier part, the adjustment plate is in the first light transmittance, and the temperature measurement device is capable of receiving the thermal radiation emitted by the wafer to be processed through the adjustment plate ; When the wafer to be processed is not placed on the carrier part, the adjustment plate is in the second transmittance, and the temperature measuring device can receive the thermal radiation emitted by the adjustment plate; the first transmittance The luminosity is not equal to the second transmittance.
  • the first light transmittance is greater than the second light transmittance.
  • the emissivity of the adjustment plate is the same as the emissivity of the wafer to be processed.
  • the material of the adjustment plate includes ceramic material and photochromic material; wherein, when light of different wavelengths acts on the adjustment plate, the light transmittance of the adjustment plate changes.
  • the ceramic material includes at least one of quartz, alumina, silicon carbide or sapphire;
  • the photochromic material includes alkyne compounds, spiropyran, spirooxazine, triaryl methane compound, hexaphenyl At least one of bisimidazole, salicylaldehyde aniline compound, perinaphthalene indigo dye, azo compound, condensed ring aromatic compound, thiazine, fulginic anhydride or diarylethene.
  • the photochromic material is located on the surface of the ceramic material, or the photochromic material is doped in the ceramic material.
  • the heat providing device includes at least one of a halogen lamp, an ultraviolet lamp, a laser diode, a resistance heater, a microwave power heater, a light emitting diode, a quartz lamp, an arc lamp, a resistance wire or a heating wire.
  • the temperature measuring device includes at least one of an optical thermometer, a radiation thermometer, and a colorimetric thermometer.
  • the semiconductor equipment includes a rapid heat treatment machine.
  • the embodiment of the present disclosure also proposes a temperature measurement method, which is applied to the semiconductor device provided by the embodiment of the present disclosure; the temperature measurement method includes:
  • the output temperature of the temperature measuring device is obtained; the output temperature can represent the temperature at which the wafer to be processed is heated when the wafer to be processed is placed on the carrier part.
  • An embodiment of the present disclosure further proposes a processing method for a semiconductor device, where the semiconductor device includes the semiconductor device provided in an embodiment of the present disclosure; the processing method includes:
  • the first output temperature of the temperature measuring device is obtained
  • the semiconductor device According to the state of the first output temperature, it is determined whether the semiconductor device can be directly used to perform a semiconductor processing process.
  • the first power is 4%-14% of the maximum power of the heat supply device.
  • the determining whether the semiconductor device can be directly used to perform a semiconductor processing process according to the state of the first output temperature includes:
  • the semiconductor equipment can be directly used to perform a semiconductor processing process
  • the semiconductor device cannot be directly used to perform a semiconductor processing process.
  • the method also includes:
  • the temperature measuring device in the semiconductor equipment is calibrated.
  • the method further includes:
  • the semiconductor equipment According to the state of the second output temperature, it is determined whether the semiconductor equipment can currently be used to perform a semiconductor processing process.
  • the second power is greater than or equal to the first power.
  • the range of the second power is 15%-25% of the maximum power of the heat supply device.
  • determining whether the semiconductor device can currently be used to perform a semiconductor processing process includes:
  • the second output temperature is within the second preset temperature range, it is judged that the status of the second output temperature is normal, and it is determined that the semiconductor equipment can currently be used to perform a semiconductor processing process;
  • the second output temperature is not within the second preset temperature range, it is determined that the state of the second output temperature is abnormal, and it is determined that the semiconductor equipment cannot be used to perform a semiconductor processing process.
  • the method also includes:
  • Embodiments of the present disclosure provide a semiconductor device, a processing method thereof, and a temperature measurement method.
  • the semiconductor equipment includes: a chamber, including a carrying part for placing wafers to be processed; a heat supply device, located above the chamber, for providing a heat source into the chamber; an adjustment plate, located and a temperature measuring device, located under the adjustment plate, for receiving thermal radiation and outputting a measured temperature according to the received thermal radiation; wherein, when the crystal to be processed When the circle is placed on the carrier part, the adjustment plate is in the first light transmittance, and the temperature measuring device can receive the heat radiation emitted by the wafer to be processed through the adjustment plate; When the wafer is not placed on the carrying part, the adjustment plate is at the second light transmittance, and the temperature measuring device can receive the heat radiation emitted by the adjustment plate; the first light transmittance is not equal to the second light transmittance Spend.
  • a color-changing adjustment plate is introduced into a semiconductor device. Because the color-changing adjustment plate can change from one structure to another under the action of light sources of different wavelengths, that is, the color changes. Utilizing this change, when there is no wafer in the chamber, the temperature measuring device can be used to detect the real temperature situation in the chamber, so that the temperature measurement of the temperature measuring device can be calibrated before the process; there is a wafer in the chamber During the process, the temperature of the wafer in the chamber can be detected by the temperature measuring device, so that the temperature measurement of the temperature measuring device in the process will not be affected. In this way, the semiconductor device provided by the embodiments of the present disclosure can better meet the requirements in practical applications.
  • Figure 1a is a partial perspective view of an RTP machine provided by an embodiment of the present disclosure
  • Figure 1b is a schematic diagram of a partial explosion of an RTP machine provided by an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of the functional relationship curve of the Planckian black body radiation energy density at different temperatures with respect to the wavelength provided by the embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a temperature adjustment block flow diagram of an RTP machine provided by an embodiment of the present disclosure
  • Fig. 4a is a schematic diagram of the influence of the process of lifting the lifting pin of an RTP machine on the temperature measurement of the optical thermometer provided by the embodiment of the present disclosure
  • Fig. 4b is a schematic diagram of the influence of the process of the lifting pin contraction of an RTP machine on the temperature measurement of the optical thermometer provided by the embodiment of the present disclosure
  • FIG. 5a is a schematic cross-sectional view when there is a wafer in the inner cavity of another RTP machine provided by an embodiment of the present disclosure
  • FIG. 5b is a schematic cross-sectional view when there is no wafer in the cavity of another RTP machine provided by an embodiment of the present disclosure
  • FIG. 5c is a schematic cross-sectional view when there is no wafer in the inner cavity of an RTP machine provided by an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of an implementation flow of a semiconductor device processing method provided by an embodiment of the present disclosure.
  • spatially relative terms such as “below”, “under”, “under”, “under”, “on”, “above”, etc. are used herein Descriptive convenience may be used to describe the relationship of one element or feature to other elements or features shown in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use and operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements or features described as “below” or “beneath” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary terms “below” and “beneath” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatial descriptors used herein interpreted accordingly.
  • the semiconductor equipment involved in the embodiments of the present disclosure includes but not limited to RTP machines. It can be understood that the semiconductor device involved in the embodiments of the present disclosure can be applied to other devices that have a heating function and use the principle of thermal radiation to measure the temperature and when there is no wafer in the device cavity, the reading temperature of the temperature measurement device cannot reflect the real temperature of the cavity. semiconductor equipment. For brevity and clarity of description, only the RTP machine is used as an example for illustration below.
  • Fig. 1a is a partial three-dimensional schematic diagram of an RTP machine provided by an embodiment of the present disclosure
  • Fig. 1b is a partial exploded schematic diagram of an RTP machine provided by an embodiment of the present disclosure.
  • the RTP machine 10 includes: a plurality of halogen lamps 101, a chamber 102, a quartz cover 103, a reflector 104 and an optical thermometer 105; wherein, the plurality of halogen lamps 101 are located
  • the upper part of the chamber is used to provide a heat source, that is, short-wavelength radiation, into the chamber 102;
  • the chamber 102 includes a carrying part for placing the wafer W to be processed, and the wafer W to be processed
  • the heat treatment operation is performed in the chamber;
  • the reflection plate 104 is located below the wafer to be processed, and is used to reflect the heat radiation emitted by the wafer back toward the wafer to help maintain a uniform temperature;
  • the quartz cover The plate 103 is located below the carrying part, and is used
  • FIG. 2 is a schematic diagram of the functional relationship curve of the Planckian black body radiation energy density at different temperatures with respect to the wavelength provided by the embodiment of the present disclosure.
  • the temperature represented by the curve in Figure 2 is T1, T2, T3, T4, T5, T6, T7, T8, T9 from bottom to top.
  • T1 can be 400°C
  • T2 can be 500°C
  • T3 can be 600°C
  • T4 may be 700°C
  • T5 may be 800°C
  • T6 may be 900°C
  • T7 may be 1000°C
  • T8 may be 1100°C
  • T9 may be 1200°C.
  • the ⁇ involved in the abscissa and the t involved in the ordinate in FIG. 2 can be adjusted according to actual conditions.
  • FIG. 3 is a schematic flow diagram of a temperature adjustment block of an RTP machine provided by an embodiment of the present disclosure.
  • the AI/O (Analog Input/output, analog input and output signal) interface receives the signal from the controller RTC (Real Time Controller, real-time control system) and sends it to the silicon controlled rectifier (SCR, Silicon Controlled Rectifier) Send control instructions; SCR provides and controls the power of the halogen lamp; the halogen lamp emits light to the wafer; the optical thermometer detects the light source; the Pyro hub (Pyrometer Hub, meter signal integration box) integrates the detection signal; Pyro card (Pyrometer Card, meter circuit board) to convert the detection signal to temperature and send RTC; RTC compares the target temperature value in the process with the actual temperature measured by the Pyro card, and sends a control command to AI/O according to the comparison result.
  • RTC Real Time Controller, real-time control system
  • SCR Silicon Controlled Rectifier
  • the intensity of the light source provided by the halogen lamp is adjusted according to the feedback from the temperature reading of the optical thermometer.
  • the temperature of the wafer does not match the actual temperature, which will cause the wafer to bend beyond the expectation, which will affect the product quality and even directly lead to the scrapping of the product. For this reason, calibration of optical thermometers is especially important.
  • the optical thermometer 105 is generally calibrated before placing the wafer W to be processed into the inner cavity of the RTP machine, that is, when the optical thermometer 105 is calibrated, there is no wafer in the cavity .
  • the quartz cover plate 103 is generally transparent, when there is no wafer in the cavity, the light of the halogen lamp will directly pass through the quartz cover plate 103, thereby causing inaccurate temperature measurement by the optical thermometer, and the measured temperature is relatively high, resulting in Wrong measured temperature.
  • the temperature measured by the optical thermometer is more correct, which is about t1 degrees Celsius; when there is no wafer in the inner cavity, the temperature measured by the optical thermometer is The deviation of the temperature value from the correct value is very large, about 2t1-6t1 degrees Celsius.
  • an embodiment of the present disclosure provides another semiconductor device, where the semiconductor device includes:
  • a chamber comprising a carrier for placing wafers to be processed
  • a heat supply device located above the chamber, for providing a heat source into the chamber
  • a temperature measuring device located below the adjusting plate, is used to receive thermal radiation, and output the measured temperature according to the received thermal radiation;
  • the adjustment plate When the wafer to be processed is placed on the carrier part, the adjustment plate is in the first light transmittance, and the temperature measurement device is capable of receiving the thermal radiation emitted by the wafer to be processed through the adjustment plate ; When the wafer to be processed is not placed on the carrier part, the adjustment plate is in the second transmittance, and the temperature measuring device can receive the thermal radiation emitted by the adjustment plate; the first transmittance The luminosity is not equal to the second transmittance.
  • the semiconductor equipment may include an RTP tool.
  • 5a and 5b are schematic cross-sectional views of another RTP machine provided by an embodiment of the present disclosure. Another semiconductor device provided by an embodiment of the present disclosure will be described in detail below by taking FIG. 5a and FIG. 5b as examples.
  • the chamber 202 is a place where the semiconductor device 20 performs heat treatment.
  • the chamber includes a carrying part (not shown in FIGS. 5 a and 5 b ) for placing the wafer W to be processed.
  • wafers W to be processed enter the chamber 202 on an annular carrier through valves or access ports.
  • the heat providing device 201 is placed on the chamber 202 to direct radiant energy toward the wafer W to be processed and thus heat the wafer W to be processed.
  • the heat providing device 201 can be used to provide a light source.
  • the heat providing device 201 may include a plurality of high-intensity halogen lamps arranged in a hexagonal close-packed manner.
  • the heat providing device 201 may include at least one of a halogen lamp, an ultraviolet lamp, a laser diode, a resistance heater, a microwave power heater, a light emitting diode, a quartz lamp, an arc lamp, a resistance wire or a heating wire. A sort of.
  • the heat providing device 201 may be divided into a plurality of regions, each of which may form a ring-like shape around the central axis of the chamber 202 .
  • the control circuit varies the voltage delivered to the heat providing device 201 in different areas to thereby adjust the radiation distribution of the radiant energy.
  • the temperature provided by the heat providing device 201 is different from the temperature at which the wafer W to be processed is heated, and generally the temperature provided by the heat providing device 201 is greater than the temperature at which the wafer W is heated.
  • the adjustment plate 203 it is necessary for the adjustment plate 203 to have relatively good light transmittance, so that the light source radiated by the wafer W to be processed It can be detected by the temperature measuring device 205 through the adjustment plate 203 , and the temperature measuring device 205 can reflect the temperature of the wafer W to be processed.
  • the light transmittance of the adjustment plate 203 is relatively good all the time, when the wafer W to be processed is not placed on the carrier, the light source radiated by the heat supply device 201 is detected by the temperature measurement device 205 through the adjustment plate 203.
  • the temperature measuring device 205 cannot reflect the temperature of the chamber or the temperature of the wafer W to be processed that is subsequently heated during the annealing process, but reflects the temperature of the heat providing device 201 , which will be relatively high.
  • the light transmittance of the adjustment plate 203 located in the chamber 202 and below the carrying component can be changed according to actual requirements.
  • the material of the adjustment plate 203 includes ceramic materials and photochromic materials; wherein, when light of different wavelengths acts on the adjustment plate 203, the light transmittance of the adjustment plate 203 changes .
  • the ceramic material includes optically transparent ceramics.
  • the adjustment plate 203 is made by adding photochromic material or photochromic material into the ceramic material.
  • the photochromic materials have different absorption coefficients, and can change from one structure to another under the action of light sources of different wavelengths, resulting in a change in the color of the ceramic material, and the change is reversible. Using this This change can use the temperature measuring device to detect the real temperature situation in the chamber when there is no wafer in the chamber.
  • the ceramic material includes at least one of quartz, alumina, silicon carbide, or sapphire;
  • the photochromic material includes alkyne compounds, spiropyrans, spirooxazines, triaryl methane compounds, hexa At least one of phenylbiimidazole, salicylaldehyde aniline compound, perinaphthalene-indigo dye, azo compound, fused-ring aromatic compound, thiazine, fulginic anhydride or diarylethene.
  • the photochromic material is located on the surface of the ceramic material, or the photochromic material is doped in the ceramic material.
  • a photochromic material coating can be deposited on the surface of the ceramic material, or the photochromic material can be doped into the ceramic material in a dopant manner.
  • the light transmittance of the adjustment plate 203 changes when light of different wavelengths acts on the adjustment plate 203 will be further explained below.
  • the first transmittance is greater than the second transmittance.
  • the adjusting plate 203 with the second light transmittance is the adjusting plate 203 with less light transmittance.
  • the adjustment plate 203 with low light transmittance prevents the light source generated by the heat supply device 201 from directly leaking into the temperature measuring device 205 through the adjustment plate 203, and the temperature measurement by the temperature measuring device 205 will not be too large and tends to be more accurate.
  • the emissivity of the adjustment plate 203 is the same as the emissivity of the wafer W to be processed.
  • the adjustment plate 203 when the adjustment plate 203 is at the second transmittance, if the adjustment plate 203 and the wafer W to be processed have the same emissivity (Emissivity), the adjustment plate 203 can simulate the wafer W. Circular black body radiation, the temperature measured by the temperature measuring device 205 at this time can represent the temperature at which the wafer W to be processed is subsequently heated during the annealing process, and this temperature has guiding significance for the calibration of the temperature measuring device 205 .
  • the temperature at which the wafer W to be processed will be subsequently heated during the annealing process can be deduced through conversion of the magnitude relationship of the emissivity.
  • FIG. 5 c shows a schematic cross-sectional view of the RTP machine 10 in the foregoing embodiments when there is no wafer in the inner chamber.
  • the end of the quartz cover plate 103 close to the multiple halogen lamps 101 is unobstructed, and the quartz cover plate 103 can directly receive the light source provided by the multiple halogen lamps 101.
  • the quartz cover plate 103 has normal light transmittance, the light sources generated by the multiple halogen lamps 101 directly leak into the optical thermometer 105 through the quartz cover plate 103, and the temperature measured by the optical thermometer is too high.
  • the temperature measurement device 205 is located below the adjustment plate 203 and is a non-contact temperature measuring device for receiving thermal radiation and outputting a measured temperature according to the received thermal radiation.
  • the temperature measuring device includes at least one of an optical thermometer, a radiation thermometer, and a colorimetric thermometer.
  • the RTP machine may further include components such as a reflector.
  • a color-changing adjustment plate is used, such as adding a photochromic material to a ceramic material to make an adjustment plate.
  • Photochromic materials have different absorption coefficients, which can change from one structure to another under the action of light sources of different wavelengths, resulting in reversible changes in the color of ceramic materials.
  • the temperature measurement device can be used to detect the real temperature in the chamber, so that the temperature measurement of the temperature measurement device can be calibrated before the process; The temperature of the wafer in the chamber can be detected by the temperature measuring device during the round, so as not to affect the temperature measurement of the temperature measuring device during the process. In this way, the RTP machine provided by the embodiments of the present disclosure can better meet the requirements in practical applications.
  • the embodiment of the present disclosure also proposes a temperature measurement method, which is applied to the semiconductor device provided by the embodiment of the present disclosure; the temperature measurement method includes:
  • the output temperature of the temperature measuring device is obtained; the output temperature can represent the temperature at which the wafer to be processed is heated when the wafer to be processed is placed on the carrier part.
  • the semiconductor device can obtain the heated temperature of the wafer to be processed when the wafer to be processed is placed on the carrier part has been described in the previous embodiment. , which will not be repeated here.
  • An embodiment of the present disclosure further proposes a processing method for a semiconductor device, where the semiconductor device includes the semiconductor device provided in an embodiment of the present disclosure; the processing method includes:
  • the first output temperature of the temperature measuring device is obtained
  • the semiconductor device According to the state of the first output temperature, it is determined whether the semiconductor device can be directly used to perform a semiconductor processing process.
  • FIG. 6 is a schematic diagram of an implementation flow of a semiconductor device processing method provided by an embodiment of the present disclosure. The processing method performed by the semiconductor device provided by the embodiment of the present disclosure will be described in detail below with reference to FIG. 6 .
  • the RTP machine receives a first instruction from a host computer to perform a semiconductor processing process on a batch of wafers to be processed.
  • the semiconductor processing process may include but not limited to a thermal oxidation process, a high temperature soak anneal process, a low temperature soak anneal process, or a peak anneal process.
  • the heat providing means is set to a first power.
  • the first power is 4%-14% of the maximum power of the heat providing device.
  • a typical value of the first power may be 9% of the maximum power of the heat providing means.
  • step 602 is executed to perform a first temperature reading check on the temperature measuring device.
  • no wafer to be processed is placed on the carrier.
  • step 603 is executed to determine the temperature reading state for the first time.
  • the determining whether the semiconductor device can be directly used to perform a semiconductor processing process according to the state of the first output temperature includes:
  • the semiconductor equipment can be directly used to perform a semiconductor processing process
  • the semiconductor device cannot be directly used to perform a semiconductor processing process.
  • the first preset temperature may be a temperature range within a certain range around the temperature at which the wafer to be processed is heated when the heat supply device is set to the first power and the wafer to be processed is placed on the carrying member.
  • a certain range here can be adjusted according to the accuracy of the RTP machine, such as ⁇ 2 degrees Celsius.
  • step 607 If the first output temperature is within the first preset temperature range, it is determined that the state of the first output temperature is normal, and it is determined that the semiconductor device can be directly used to perform semiconductor processing, and step 607 can be performed; if the If the first output temperature is not within the first preset temperature range, it is determined that the state of the first output temperature is abnormal, and it is determined that the semiconductor equipment cannot be directly used to perform a semiconductor processing process, and the temperature in the semiconductor equipment The measuring device is calibrated, that is, step 604 is executed.
  • the temperature measurement device may be calibrated according to the deviation of the first output temperature relative to the first preset temperature range, and after the calibration, a second temperature reading check needs to be further performed. specifically:
  • the method further includes:
  • the semiconductor equipment According to the state of the second output temperature, it is determined whether the semiconductor equipment can currently be used to perform a semiconductor processing process.
  • the heat providing device is set to the second power.
  • the second power is greater than or equal to the first power.
  • the second power ranges from 15% to 25% of the maximum power of the heat providing device.
  • a typical value of the second power may be 20% of the maximum power of the heat providing means.
  • step 605 is executed to perform a second temperature reading check on the temperature measuring device.
  • step 605 is executed to perform a second temperature reading check on the temperature measuring device.
  • step 606 is executed to judge the temperature reading state for the second time.
  • determining whether the semiconductor device can currently be used to perform a semiconductor processing process includes:
  • the second output temperature is within the second preset temperature range, it is judged that the status of the second output temperature is normal, and it is determined that the semiconductor equipment can currently be used to perform a semiconductor processing process;
  • the second output temperature is not within the second preset temperature range, it is determined that the state of the second output temperature is abnormal, and it is determined that the semiconductor equipment cannot be used to perform a semiconductor processing process.
  • the second preset temperature may be a certain temperature range around the temperature at which the wafer to be processed is heated when the heat supply device is set to the second power and the wafer to be processed is placed on the carrying member.
  • a certain range here can be adjusted according to the accuracy of the RTP machine, such as ⁇ 2 degrees Celsius.
  • step 607 If the second output temperature is within the second preset temperature range, it is determined that the state of the second output temperature is normal, and it is determined that the semiconductor device can be directly used to perform semiconductor processing, and step 607 can be performed; if the If the second output temperature is not within the second preset temperature range, it is judged that the state of the second output temperature is abnormal, it is determined that the semiconductor device cannot be directly used to perform a semiconductor processing process, and it is determined that the semiconductor device is currently When it cannot be used to execute the semiconductor processing technology, an alarm message is issued, that is, step 608 is executed.
  • the alarm information here may reflect that the temperature measurement device is inaccurate in temperature measurement, and the calibration fails, and further processing measures need to be taken, such as recalibration, return to the factory for maintenance, and the like.
  • the heat supply device is generally set to 9% of the maximum power when no wafer is placed in the RTP machine, if there is no wafer in the chamber under this power, the temperature measurement device cannot realize the real temperature of the chamber Therefore, it is necessary to perform a specific power (15% to 25%) calibration and temperature reading check before the semiconductor processing process is performed in the chamber. At this time, the temperature measurement device is adjusted according to the intrinsic emissivity of the adjustment board. Detection, if the temperature deviation is calibrated so as not to affect the semiconductor process of the product.
  • the wafers to be processed involved in the embodiments of the present disclosure can be used to produce various semiconductor devices, such as dynamic random access devices.
  • a color-changing adjustment plate is introduced into a semiconductor device. Because the color-changing adjustment plate can change from one structure to another under the action of light sources of different wavelengths, that is, the color changes. Utilizing this change, when there is no wafer in the chamber, the temperature measuring device can be used to detect the real temperature situation in the chamber, so that the temperature measurement of the temperature measuring device can be calibrated before the process; there is a wafer in the chamber During the process, the temperature of the wafer in the chamber can be detected by the temperature measuring device, so that the temperature measurement of the temperature measuring device in the process will not be affected. In this way, the semiconductor device provided by the embodiments of the present disclosure can better meet the requirements in practical applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本公开实施例公开了一种半导体设备及其处理方法、温度测量方法。其中,半导体设备包括:腔室,包括用于放置待处理晶圆的承载部件;热量提供装置,位于所述腔室的上方,用于向所述腔室中提供热源;调整板,位于腔室中且位于所述承载部件的下方;以及温度测量装置,位于所述调整板的下方,用于接收热辐射,并根据接收的热辐射输出测量的温度;其中,当所述待处理晶圆置于所述承载部件上时,所述调整板处于第一透光度,所述温度测量装置能够接收所述待处理晶圆透过所述调整板发射的热辐射;当所述待处理晶圆未置于所述承载部件上时,所述调整板处于第二透光度,所述温度测量装置能够接收所述调整板发射的热辐射;第一透光度不等于第二透光度。

Description

半导体设备及其处理方法、温度测量方法
相关申请的交叉引用
本公开基于申请号为202210042732.1、申请日为2022年01月14日、发明名称为“半导体设备及其处理方法、温度测量方法”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及半导体技术领域,尤其涉及一种半导体设备及其处理方法、温度测量方法。
背景技术
快速热处理(Rapid Thermal Processing,RTP)制程是半导体制造业中广泛应用的制程。RTP机台中一般配置反应时间快、使用周期长的温度计进行测温。实际应用中,温度计通过探测硅片热辐射实现读温。
然而,当RTP机台的腔体无晶圆时,相关技术中的RTP机台的温度计的读温不能体现RTP机台的腔室的真实温度。由于RTP机台的光源的强度会根据温度计读温的反馈来调节,如果出现读温不准会致后续在对晶圆进行热处理时晶圆发生较大程度的弯曲从而影响产品质量甚至导致产品报废。
发明内容
为解决相关技术问题,本公开实施例提出一种半导体设备及其处理方法、温度测量方法。
本公开实施例提供了一种半导体设备,包括:
腔室,包括用于放置待处理晶圆的承载部件;
热量提供装置,位于所述腔室的上方,用于向所述腔室中提供热源;
调整板,位于腔室中且位于所述承载部件的下方;以及
温度测量装置,位于所述调整板的下方,用于接收热辐射,并根据接收的热辐射输出测量的温度;其中,
当所述待处理晶圆置于所述承载部件上时,所述调整板处于第一透光度,所述温度测量装置能够接收所述待处理晶圆透过所述调整板发射的热辐射;当所述待处理晶圆未置于所述承载部件上时,所述调整板处于第二透光度,所述温度测量装置能够接收所述调整板发射的热辐射;所述第一透光度不等于所述第二透光度。
上述方案中,所述第一透光度大于所述第二透光度。
上述方案中,当所述调整板处于所述第二透光度时,所述调整板的发射率与所述待处理晶圆的发射率相同。
上述方案中,所述调整板的材料包括陶瓷材料及光致变色材料;其中,当不同波长的光作用在所述调整板上时,所述调整板的透光度发生变化。
上述方案中,所述陶瓷材料包括石英、氧化铝、碳化硅或蓝宝石中的至少一种;所述光致变色材料包括炔类化合物、螺吡喃、螺噁嗪、三芳甲烷化合物、六苯基双咪唑、水杨醛缩苯胺类化合物、周萘靛兰类染料、偶氮化合物、稠环芳香化合物、噻嗪类、俘精酸酐类或二芳基乙烯中的至少一种。
上述方案中,光致变色材料位于所述陶瓷材料表面,或者所述光致变色材料掺杂在所述陶瓷材料中。
上述方案中,所述热量提供装置包括卤素灯、紫外灯、激光二极管、电阻式加热器、微波功率加热器、发光二极管、石英灯、弧光灯、电阻丝或加热丝中的至少一种。
上述方案中,所述温度测量装置包括光学温度计、辐射温度计、比色温度计中的至少一种。
上述方案中,所述半导体设备包括快速热处理机台。
本公开实施例还提出一种温度测量方法,应用于本公开实施例提供的所述的半导体设备;所述温度测量方法包括:
在承载部件未放置待处理晶圆的情况下,获取温度测量装置的输出温度;所述输出温度能够表征承载部件上放置待处理晶圆时,所述待处理晶圆被加热的温度。
本公开实施例又提出一种半导体设备的处理方法,所述半导体设备包括本公开实施例提供的所述的半导体设备;所述处理方法包括:
接收第一指令,所述第一指令指示所述半导体设备将用于执行半导体处理工艺;
将热量提供装置设置为第一功率;
在承载部件未放置待处理晶圆的情况下,获取温度测量装置的第一输出温度;
根据所述第一输出温度的状态,确定所述半导体设备是否能够直接用于执行半导体处理工艺。
上述方案中,所述第一功率为所述热量提供装置的最大功率的4%-14%。
上述方案中,所述根据所述第一输出温度的状态,确定所述半导体设备是否能够直接用于执行半导体处理工艺,包括:
若所述第一输出温度位于第一预设温度范围内,则判断所述第一输出温度的状态显示正常,确定所述半导体设备能够直接用于执行半导体处理工艺;
若所述第一输出温度不位于所述第一预设温度范围内,则判断所述第一输出温度的状态显示异常,确定所述半导体设备不能直接用于执行半导体处理工艺。
上述方案中,所述方法还包括:
确定所述半导体设备不能直接用于执行半导体处理工艺时,对半导体设备中的温度测量装置进行校准。
上述方案中,在对半导体设备中的温度测量装置进行校准之后,所述方法还包括:
将所述热量提供装置设置为第二功率;
在承载部件未放置待处理晶圆的情况下,获取温度测量装置的第二输出温度;
根据所述第二输出温度的状态,确定所述半导体设备当前是否能够用于执行半导体处理工艺。
上述方案中,所述第二功率大于或等于所述第一功率。
上述方案中,所述第二功率的范围为所述热量提供装置的最大功率的15%-25%。
上述方案中,根据所述第二输出温度的状态,确定所述半导体设备当前是否能够用于执行半导体处理工艺,包括:
若所述第二输出温度位于第二预设温度范围内,则判断所述第二输出温度的状态显示正常,确定所述半导体设备当前能够用于执行半导体处理工艺;
若所述第二输出温度不位于所述第二预设温度范围内,则判断所述第二输出温度的状态显示异常,确定所述半导体设备当前不能用于执行半导体处理工艺。
上述方案中,所述方法还包括:
确定所述半导体设备当前不能用于执行半导体处理工艺时,发出报警信息。
本公开实施例提供了一种半导体设备及其处理方法、温度测量方法。其中,所述半导体设备包括:腔室,包括用于放置待处理晶圆的承载部件;热量提供装置,位于所述腔室的上方,用于向所述腔室中提供热源;调整板,位于腔室中且位于所述承载部件的下方;以及温度测量装置,位于所述调整板的下方,用于接收热辐射,并根据接收的热辐射输出测量的温度;其中,当所述待处理晶圆置于所述承载部件上时,所述调整板处于第一透光度,所述温度测量装置能够接收所述待处理晶圆透过所述调整板发射的热辐射;当所述待处理晶圆未置于所述承载部件上时,所述调整板处于第二透光度,所述温度测量装置能够接收所述调整板发射的热辐射;第一透光度不等于第二透光度。本公开实施例中在半导体设备中引入可变色的调整板。由于可变色的调整板可在不同的波长的光源作用下,从一种结构转变到另一种结构,即颜色发生变化。利用这种变化,在腔体中无晶圆时可以利用温度测量装置检测到腔室中的真实温度情况,从而能够实现工艺制程前对温度测量装置测温的校准;在腔体中存在晶圆时可以利用温度测量装置检测到腔室中的晶圆的温度,从而不会影响工艺制程中过程中温度测量装置测温。如此,本公开实施例提供的半导体设备能够更好的满足实际应用中的需求。
附图说明
图1a为本公开实施例提供的一种RTP机台的局部立体示意图;
图1b为本公开实施例提供的一种RTP机台的局部爆炸示意图;
图2为本公开实施例提供的普朗克黑体辐射能量密度在不同温度下关于波长的函数关系曲线示意图;
图3为本公开实施例提供的一种RTP机台的温度调节方框流程示意图;
图4a为本公开实施例提供的一种RTP机台的提升销升起时的过程对光学温度计测温影响的示意图;
图4b为本公开实施例提供的一种RTP机台的提升销收缩时的过程对光学温度计测温影响的示意图;
图5a为本公开实施例提供的另一种RTP机台的内腔中存在晶圆时的剖面示意图;
图5b为本公开实施例提供的另一种RTP机台的内腔中不存在晶圆时的剖面示意图;
图5c为本公开实施例提供的一种RTP机台的内腔中不存在晶圆时的剖面示意图;
图6本公开实施例提供的一种半导体设备的处理方法的实现流程示意图。
具体实施方式
下面将参照附图更详细地描述本公开公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开,而不应被这里阐述的具体实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开公开的范围完整的传达给本领域的技术人员。
在下文的描述中,给出了大量具体的细节以便提供对本公开更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本公开可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本公开发生混淆,对于本领域公知的一些技术特征未进行描述;即,这里不描述实 际实施例的全部特征,不详细描述公知的功能和结构。
在附图中,为了清楚,层、区、元件的尺寸以及其相对尺寸可能被夸大。自始至终相同附图标记表示相同的元件。
应当明白,空间关系术语例如“在……下”、“在……下面”、“下面的”、“在……之下”、“在……之上”、“上面的”等,在这里可为了方便描述而被使用从而描述图中所示的一个元件或特征与其它元件或特征的关系。应当明白,除了图中所示的取向以外,空间关系术语意图还包括使用和操作中的器件的不同取向。例如,如果附图中的器件翻转,然后,描述为“在其它元件下面”或“在其之下”或“在其下”元件或特征将取向为在其它元件或特征“上”。因此,示例性术语“在……下面”和“在……下”可包括上和下两个取向。器件可以另外地取向(旋转90度或其它取向)并且在此使用的空间描述语相应地被解释。
在此使用的术语的目的仅在于描述具体实施例并且不作为本公开的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
需要说明的是:“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。
需要说明的是:本公开实施例涉及的半导体设备包括但不限于RTP机台。可以理解的是,本公开实施例涉及的半导体设备可以适用具有加热功能且利用热辐射原理测量温度同时存在设备腔体无晶圆时,温度测量装置的读温不能体现腔室的真实温度的其它半导体设备。为了描述的简洁和清晰,下文中仅以RTP机台为例进行说明。
下面先对RTP机台进行简要介绍。
图1a为本公开实施例提供的一种RTP机台的局部立体示意图;图1b为本公开实施例提供的一种RTP机台的局部爆炸示意图。如图1a及图1b所示,所述RTP机台10包括:多个卤素灯101、腔室102、石英盖板103、反射板104及光学温度计105;其中,所述多个卤素灯101位于所述腔室的上方,用于向所述腔室102中提供热源,即短波长辐射;所述腔室102包括用于放置待处理晶圆W的承载部件,所述待处理晶圆W在所述腔室中执行热处理操作;所述反射板104位于所述待处理晶圆的下方,用于将由晶圆散发的热辐射朝晶圆反射回去,以助于维持温度均匀;所述石英盖板103位于所述承载部件下方,用于防止晶圆反应生成物覆着在反射板104和光学温度计105表面导致腔室保养周期缩短和探测晶圆表面温度不准确;所述光学温度计105位于所述反射板104的下方,用于接收热辐射,并根据接收的热辐射输出测量的温度。
实际应用中,所述光学温度计105通过探测短波长下辐射能量大小换算腔室的实际温度。图2为本公开实施例提供的普朗克黑体辐射能量密度在不同温度下关于波长的函数关系曲线示意图。图2中曲线所体现的温度由下至上依次为T1、T2、T3、T4、T5、T6、T7、T8、T9,例如T1可以为400℃、T2可以为500℃、T3可以为600℃、T4可以为700℃、T5可以为800℃、T6可以为900℃、T7可以为1000℃、T8可以为1100℃、T9可以为1200℃。图2中涉及的横坐标中涉及的λ,以及纵坐标中涉及的t可以根据实际情况进行调整。
实际应用中,图3为本公开实施例提供的一种RTP机台的温度调节方框流程示意图。如图3所示,AI/O(Analog Input/output,模拟输入输出信号)接口接收控制器RTC(Real Time Controller,实时控制系统)的讯号,并向可控硅整流器(SCR,Silicon Controlled Rectifier)发送控制指令;SCR提供并控制卤素灯电源;卤素灯向晶圆发射光;光学温度计探测光源;Pyro hub(Pyrometer Hub,测量计信号集成箱)整合探测信号;Pyro card(Pyrometer Card,测量计电路板)对探测信号进行温度换算,并发送RTC;RTC将制程中目标温度值与Pyro card测量的实际温度进行比较,并根据比较结果向AI/O发送控制指令。
从上述温度调节过程可以看出:卤素灯提供的光源的强度根据光学温 度计读温的反馈来调节,当光学温度计读温不准确时,会导致在晶圆进行热处理的过程中施加在晶圆上的温度与实际需求的温度不符,这将导致晶圆发生超出预期的弯曲从而影响产品质量甚至将直接导致产品报废。基于此,对光学温度计进行校准尤其重要。
实际应用中,一方面,一般在将待处理晶圆W放置至RTP机台内腔之前对光学温度计105进行校准,也就是说,在对光学温度计105进行校准时,腔体中并无晶圆。而由于石英盖板103一般是透明地,当腔体中无晶圆时,卤素灯的光会直接透过石英盖板103,从而导致光学温度计测温不准确,测得的温度较高,得到错误的测量温度。
另一方面,即使腔体中存在晶圆,当用于放置待处理晶圆W的提升销升起时,会存在漏光,从而导致光学温度计105测温不准确,得到错误的测量温度;当腔体中存在晶圆,且用于放置待处理晶圆W的提升销未升起,保持收缩时,晶圆覆盖在石英盖板103上不存在漏光,此时光学温度计105测温准确。该提升销升起和收缩时的过程如图4a和4b所示。
实际应用中,卤素灯的最大功率的9%时,当内腔中存在晶圆时,光学温度计测量的温度值较正确,大概为t1摄氏度;当内腔中不存在晶圆时,光学温度计测量的温度值较正确值偏差非常大,大概为2t1-6t1摄氏度。
综上,在RTP机台使用过程中内腔中无晶圆时,存在无法监测到腔室的真实读温,非保养情况下无法校准光学温度计读温的问题。
为了解决上述问题中至少之一,本公开实施例提供了另一种半导体设备,所述半导体设备包括:
腔室,包括用于放置待处理晶圆的承载部件;
热量提供装置,位于所述腔室的上方,用于向所述腔室中提供热源;
调整板,位于腔室中且位于所述承载部件的下方;以及
温度测量装置,位于所述调整板的下方,用于接收热辐射,并根据接收的热辐射输出测量的温度;其中,
当所述待处理晶圆置于所述承载部件上时,所述调整板处于第一透光度,所述温度测量装置能够接收所述待处理晶圆透过所述调整板发射的热辐射;当所述待处理晶圆未置于所述承载部件上时,所述调整板处于第二透光度,所述温度测量装置能够接收所述调整板发射的热辐射;所述第一 透光度不等于所述第二透光度。
在一些实施例中,所述半导体设备可以包括RTP机台。图5a、图5b为本公开实施例提供的另一种RTP机台的剖面示意图。下面将以图5a、图5b为示例对本公开实施例提供的另一种半导体设备进行详细描述。
这里,所述腔室202是所述半导体设备20用于执行热处理的场所。所述腔室包括用于放置待处理晶圆W的承载部件(图5a、图5b中未示出)。
示例性地,待处理晶圆W(如,硅晶圆)通过阀或存取端口进入腔室202中的环形承载部件上。
这里,所述热量提供装置201置于腔室202上以引导辐射能朝向待处理晶圆W并因此加热待处理晶圆W。换句话说,所述热量提供装置201可以用于提供光源。在腔室202中,热量提供装置201可以包括多个高强度卤素灯,多个卤素灯以六方密堆积的方式排列。
在一些实施例中,所述热量提供装置201可以包括卤素灯、紫外灯、激光二极管、电阻式加热器、微波功率加热器、发光二极管、石英灯、弧光灯、电阻丝或加热丝中的至少一种。
热量提供装置201可以被分割成多个区域,每个所述区域可以绕腔室202的中轴线成类环状。控制电路在不同区域中改变传送至热量提供装置201的电压,以由此调整辐射能的辐射分布。
需要说明的是,热量提供装置201的提供的温度与待处理晶圆W被加热的温度是不同,通常情况下热量提供装置201提供的温度会大于晶圆W被加热的温度。实际应用中,当待处理晶圆W置于腔室中的承载部件上时,为了测量待处理晶圆W,需要调整板203具有比较好的透光性,从而待处理晶圆W辐射的光源可以透过调整板203被温度测量装置205所探测,此时温度测量装置205能够反应待处理晶圆W的温度。然而,如果调整板203的透光性一直比较好时,当待处理晶圆W未置于承载部件上时,热量提供装置201辐射的光源透过调整板203被温度测量装置205所探测,此时温度测量装置205不能够反应腔室温度或者待处理晶圆W后续在退火处理时被加热的温度,而反应的是热量提供装置201的温度,该温度会偏大较多。
基于此,在本实施例中位于腔室202中且位于所述承载部件的下方的调整板203的透光度是可以根据实际需求发生变化的。在一些实施例中, 所述调整板203的材料包括陶瓷材料及光致变色材料;其中,当不同波长的光作用在所述调整板203上时,所述调整板203的透光度发生变化。
实际应用中,所述陶瓷材料包括光学地透明的陶瓷。当在陶瓷材料中加入光致变色材料或称光色材料制成所述调整板203。所述光致变色材料具有不同的吸收系数,可在不同的波长的光源作用下,从一种结构转变到另一种结构,导致陶瓷材料的颜色产生变化,并且该变化是可逆的,利用这种变化在腔体中无晶圆时可以利用温度测量装置检测到腔室中的真实温度情况。
在一些实施例中,所述陶瓷材料包括石英、氧化铝、碳化硅或蓝宝石中的至少一种;所述光致变色材料包括炔类化合物、螺吡喃、螺噁嗪、三芳甲烷化合物、六苯基双咪唑、水杨醛缩苯胺类化合物、周萘靛兰类染料、偶氮化合物、稠环芳香化合物、噻嗪类、俘精酸酐类或二芳基乙烯中的至少一种。
在一些实施例中,光致变色材料位于所述陶瓷材料表面,或者所述光致变色材料掺杂在所述陶瓷材料中。
实际应用中,可以在陶瓷材料表面沉积光致变色材料涂层,也可以将所述光致变色材料通过可掺杂的方式掺杂在所述陶瓷材料中。
下面对当不同波长的光作用在所述调整板203上时,所述调整板203的透光度发生变化进行进一步解释说明。
如图5a所示,当腔体202中存在有晶圆覆盖在调整板203上时,调整板203靠近热量提供装置201的一端存在遮挡,调整板203不能直接接受到热量提供装置201光源,此时调整板203处于第一透光度,例如具有正常透光性的调整板203,从而不会影响工艺制程中过程中温度测量装置205测温。如图5b所示,当腔体202中无晶圆时,调整板203靠近热量提供装置201的一端无遮挡,调整板203能够直接接受到热量提供装置201提供的光源,此时调整板203处于第二透光度。在一些实施例中,所述第一透光度大于所述第二透光度。例如,第二透光度的调整板203为具有较小透光性的调整板203。具有较小透光性的调整板203使得热量提供装置201产生的光源不能透过调整板203直接漏到温度测量装置205中,温度测量装置205测温不会偏大,趋于准确。
在一些实施例中,当所述调整板203处于所述第二透光度时,所述调整板203的发射率与所述待处理晶圆W的发射率相同。
可以理解的是,当所述调整板203处于所述第二透光度时,若所述调整板203和所述待处理晶圆W具有相同的发射率(Emissivity),调整板203可模拟晶圆的黑体辐射,此时温度测量装置205的测量的温度可以表征待处理晶圆W后续在退火处理时被加热的温度,该温度对于温度测量装置205的校准具有指导意义。当然,即使所述调整板203和所述待处理晶圆W不具有相同的发射率,也可以通过发射率的大小关系转换,推算出待处理晶圆W后续在退火处理时被加热的温度。
需要说明的是,为了便于与前述实施例中进行对比,图5c示出了前述实施例中RTP机台10的内腔中不存在晶圆时的剖面示意图。如图5c所示,当腔体102中无晶圆时,石英盖板103靠近多个卤素灯101的一端无遮挡,石英盖板103能够直接接受到多个卤素灯101提供的光源,此时石英盖板103具有正常透光性,多个卤素灯101产生的光源透过石英盖板103直接漏到光学温度计105中,光学温度计测温偏大。
这里,所述温度测量装置205位于所述调整板203的下方,属于非接触型的测温器件,用于接收热辐射,并根据接收的热辐射输出测量的温度。
在一些实施例中,所述温度测量装置包括光学温度计、辐射温度计、比色温度计中的至少一种。
需要说明的是,在本实施例中,所述RTP机台还可以包括反射板等部件。
本公开实施例中通过使用可变色的调整板,如在陶瓷材料中加入光色材料制成调整板。光色材料具有不同的吸收系数,可在不同的波长的光源作用下,从一种结构转变到另一种结构,导致陶瓷材料的颜色发生可逆变化。利用这种可逆变化,在腔体中无晶圆时可以利用温度测量装置检测到腔室中的真实温度情况,从而能够实现工艺制程前对温度测量装置测温的校准;在腔体中存在晶圆时可以利用温度测量装置检测到腔室中的晶圆的温度,从而不会影响工艺制程中过程中温度测量装置测温。如此,本公开实施例提供的RTP机台能够更好的满足实际应用中的需求。
本公开实施例还提出一种温度测量方法,应用于本公开实施例提供的 所述的半导体设备;所述温度测量方法包括:
在承载部件未放置待处理晶圆的情况下,获取温度测量装置的输出温度;所述输出温度能够表征承载部件上放置待处理晶圆时,所述待处理晶圆被加热的温度。
这里,在前面的实施例中已经描述半导体设备能够在承载部件未放置待处理晶圆的情况下获取能够表征承载部件上放置待处理晶圆时,所述待处理晶圆被加热的温度的原理,这里不再赘述。
本公开实施例又提出一种半导体设备的处理方法,所述半导体设备包括本公开实施例提供的所述的半导体设备;所述处理方法包括:
接收第一指令,所述第一指令指示所述半导体设备将用于执行半导体处理工艺;
将热量提供装置设置为第一功率;
在承载部件未放置待处理晶圆的情况下,获取温度测量装置的第一输出温度;
根据所述第一输出温度的状态,确定所述半导体设备是否能够直接用于执行半导体处理工艺。
图6本公开实施例提供的一种半导体设备的处理方法的实现流程示意图。下面将结合图6对本公开实施例提供的半导体设备所执行的处理方法进行详细描述。
需要说明的是,本实施例所述处理方法的执行主体为前述的另一种半导体设备。
下面仍以RTP机台作为半导体设备的示例进行说明。
如图6,步骤601所示,RTP机台接收上位机发送的将对一批待处理晶圆执行半导体处理工艺的第一指令。这里,所述半导体处理工艺可以包括但不限于热氧化工艺、高温浸泡退火工艺、低温浸泡退火工艺或者峰值退火等。
在利用RTP机台对该批晶圆执行半导体处理工艺之前,需要确定所述RTP机台是否能够直接用于执行半导体处理工艺,即是否需要先对温度测量装置执行校准操作。
响应于所述第一指令,将热量提供装置设置为第一功率。
在一些实施例中,所述第一功率为所述热量提供装置的最大功率的4%-14%。所述第一功率的典型值可以为所述热量提供装置的最大功率的9%。
接下来,继续参考图6,执行步骤602,对温度测量装置执行第一次读温检查。在进行第一次读温检查时,承载部件上未放置待处理晶圆。
在热量提供装置设置为第一功率且承载部件未放置待处理晶圆的条件下获取温度测量装置的第一输出温度。之后,执行步骤603,判断第一次读温状态。
在一些实施例中,所述根据所述第一输出温度的状态,确定所述半导体设备是否能够直接用于执行半导体处理工艺,包括:
若所述第一输出温度位于第一预设温度范围内,则判断所述第一输出温度的状态显示正常,确定所述半导体设备能够直接用于执行半导体处理工艺;
若所述第一输出温度不位于所述第一预设温度范围内,则判断所述第一输出温度的状态显示异常,确定所述半导体设备不能直接用于执行半导体处理工艺。
这里,所述第一预设温度可以为热量提供装置设置为第一功率时,承载部件上放置待处理晶圆时,所述待处理晶圆被加热的温度周围一定范围的温度范围。这里的一定范围可以根据RTP机台的精度进行调整,如±2摄氏度。
若所述第一输出温度位于第一预设温度范围内,则判断所述第一输出温度的状态显示正常,确定所述半导体设备能够直接用于执行半导体处理工,可以执行步骤607;若所述第一输出温度不位于所述第一预设温度范围内,则判断所述第一输出温度的状态显示异常,确定所述半导体设备不能直接用于执行半导体处理工艺,对半导体设备中的温度测量装置进行校准,即执行步骤604。
实际应用中,可以根据第一输出温度相对于第一预设温度范围的偏移情况对所述温度测量装置进行校准,并且在进行校准后,还需要进一步执行第二次读温检查。具体地:
在一些实施例中,在对半导体设备中的温度测量装置进行校准之后,所 述方法还包括:
将所述热量提供装置设置为第二功率;
在承载部件未放置待处理晶圆的情况下,获取温度测量装置的第二输出温度;
根据所述第二输出温度的状态,确定所述半导体设备当前是否能够用于执行半导体处理工艺。
这里,在对温度测量装置进行校准后,将热量提供装置设置为第二功率。
在一些实施例中,所述第二功率大于或等于所述第一功率。
在一些实施例中,所述第二功率的范围为所述热量提供装置的最大功率的15%-25%。所述第二功率的典型值可以为所述热量提供装置的最大功率的20%。
接下来,继续参考图6,执行步骤605,对温度测量装置执行第二次读温检查。在进行第二次读温检查时,承载部件上未放置待处理晶圆。
在热量提供装置设置为第二功率且承载部件未放置待处理晶圆的条件下获取温度测量装置的第二输出温度。之后,执行步骤606,判断第二次读温状态。
在一些实施例中,根据所述第二输出温度的状态,确定所述半导体设备当前是否能够用于执行半导体处理工艺,包括:
若所述第二输出温度位于第二预设温度范围内,则判断所述第二输出温度的状态显示正常,确定所述半导体设备当前能够用于执行半导体处理工艺;
若所述第二输出温度不位于所述第二预设温度范围内,则判断所述第二输出温度的状态显示异常,确定所述半导体设备当前不能用于执行半导体处理工艺。
这里,所述第二预设温度可以为热量提供装置设置为第二功率时,承载部件上放置待处理晶圆时,所述待处理晶圆被加热的温度周围一定范围的温度范围。这里的一定范围可以根据RTP机台的精度进行调整,如±2摄氏度。
若所述第二输出温度位于第二预设温度范围内,则判断所述第二输出 温度的状态显示正常,确定所述半导体设备能够直接用于执行半导体处理工,可以执行步骤607;若所述第二输出温度不位于所述第二预设温度范围内,则判断所述第二输出温度的状态显示异常,确定所述半导体设备不能直接用于执行半导体处理工艺,确定所述半导体设备当前不能用于执行半导体处理工艺时,发出报警信息,即执行步骤608。
实际应用中,这里的报警信息可以反映所述温度测量装置测温不准,且校准失败,需要采取进一步的处理措施,如,再一次校准,返厂维修等。
实际应用中,由于RTP机台未放入晶圆时,热量提供装置一般被设置为最大功率的9%,在此功率下腔室中如果没有晶圆时,温度测量装置无法实现腔室真实温度的侦测及实时校准,因此需要在腔室中执行半导体处理工艺之前执行一次特定功率(15%~25%)的校准及读温检查,此时根据调整板固有的发射率对温度测量装置进行侦测,若温度偏差则实行校准从而不影响产品执行半导体工艺处理。
实际应用中,本公开实施例中涉及的待处理晶圆可以用于生成各种半导体器件,如动态随机存取器。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本公开的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。上述本公开实施例序号仅仅为了描述,不代表实施例的优劣。
本公开所提供的几个方法实施例中所揭露的方法,在不冲突的情况下可以任意组合,得到新的方法实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。
工业实用性
本公开实施例中在半导体设备中引入可变色的调整板。由于可变色的调整板可在不同的波长的光源作用下,从一种结构转变到另一种结构,即颜色发生变化。利用这种变化,在腔体中无晶圆时可以利用温度测量装置检测到腔室中的真实温度情况,从而能够实现工艺制程前对温度测量装置测温的校准;在腔体中存在晶圆时可以利用温度测量装置检测到腔室中的晶圆的温度,从而不会影响工艺制程中过程中温度测量装置测温。如此,本公开实施例提供的半导体设备能够更好的满足实际应用中的需求。

Claims (19)

  1. 一种半导体设备,包括:
    腔室,包括用于放置待处理晶圆的承载部件;
    热量提供装置,位于所述腔室的上方,用于向所述腔室中提供热源;
    调整板,位于腔室中且位于所述承载部件的下方;以及
    温度测量装置,位于所述调整板的下方,用于接收热辐射,并根据接收的热辐射输出测量的温度;其中,
    当所述待处理晶圆置于所述承载部件上时,所述调整板处于第一透光度,所述温度测量装置能够接收所述待处理晶圆透过所述调整板发射的热辐射;当所述待处理晶圆未置于所述承载部件上时,所述调整板处于第二透光度,所述温度测量装置能够接收所述调整板发射的热辐射;所述第一透光度不等于所述第二透光度。
  2. 根据权利要求1所述的半导体设备,其中,所述第一透光度大于所述第二透光度。
  3. 根据权利要求1所述的半导体设备,其中,当所述调整板处于所述第二透光度时,所述调整板的发射率与所述待处理晶圆的发射率相同。
  4. 根据权利要求1所述的半导体设备,其中,所述调整板的材料包括陶瓷材料及光致变色材料;其中,当不同波长的光作用在所述调整板上时,所述调整板的透光度发生变化。
  5. 根据权利要求4所述的半导体设备,其中,所述陶瓷材料包括石英、氧化铝、碳化硅或蓝宝石中的至少一种;所述光致变色材料包括炔类化合物、螺吡喃、螺噁嗪、三芳甲烷化合物、六苯基双咪唑、水杨醛缩苯胺类化合物、周萘靛兰类染料、偶氮化合物、稠环芳香化合物、噻嗪类、俘精酸酐类或二芳基乙烯中的至少一种。
  6. 根据权利要求4所述的半导体设备,其中,光致变色材料位于所述陶瓷材料表面,或者所述光致变色材料掺杂在所述陶瓷材料中。
  7. 根据权利要求1所述的半导体设备,其中,所述热量提供装置包括卤素灯、紫外灯、激光二极管、电阻式加热器、微波功率加热器、发光二极管、石英灯、弧光灯、电阻丝或加热丝中的至少一种。
  8. 根据权利要求1所述的半导体设备,其中,所述温度测量装置包括光学温度计、辐射温度计、比色温度计中的至少一种。
  9. 根据权利要求1所述的半导体设备,其中,所述半导体设备包括快速热处理机台。
  10. 一种温度测量方法,应用于如权利要求1-9任一项所述的半导体设备;所述温度测量方法包括:
    在承载部件未放置待处理晶圆的情况下,获取温度测量装置的输出温度;所述输出温度能够表征承载部件上放置待处理晶圆时,所述待处理晶圆被加热的温度。
  11. 一种半导体设备的处理方法,所述半导体设备包括如权利要求1-9任一项所述的半导体设备;所述处理方法包括:
    接收第一指令,所述第一指令指示所述半导体设备将用于执行半导体处理工艺;
    将热量提供装置设置为第一功率;
    在承载部件未放置待处理晶圆的情况下,获取温度测量装置的第一输出温度;
    根据所述第一输出温度的状态,确定所述半导体设备是否能够直接用于执行半导体处理工艺。
  12. 根据权利要求11所述的处理方法,其中,所述第一功率为所述热量提供装置的最大功率的4%-14%。
  13. 根据权利要求11所述的处理方法,其中,所述根据所述第一输出温度的状态,确定所述半导体设备是否能够直接用于执行半导体处理工艺,包括:
    若所述第一输出温度位于第一预设温度范围内,则判断所述第一输出温度的状态显示正常,确定所述半导体设备能够直接用于执行半导体处理工艺;
    若所述第一输出温度不位于所述第一预设温度范围内,则判断所述第一输出温度的状态显示异常,确定所述半导体设备不能直接用于执行半导体处理工艺。
  14. 根据权利要求13所述的处理方法,其中,所述方法还包括:
    确定所述半导体设备不能直接用于执行半导体处理工艺时,对半导体设备中的温度测量装置进行校准。
  15. 根据权利要求14所述的处理方法,其中,在对半导体设备中的温度测量装置进行校准之后,所述方法还包括:
    将所述热量提供装置设置为第二功率;
    在承载部件未放置待处理晶圆的情况下,获取温度测量装置的第二输出温度;
    根据所述第二输出温度的状态,确定所述半导体设备当前是否能够用于执行半导体处理工艺。
  16. 根据权利要求15所述的处理方法,其中,所述第二功率大于或等于所述第一功率。
  17. 根据权利要求16所述的处理方法,其中,所述第二功率的范围为所述热量提供装置的最大功率的15%-25%。
  18. 根据权利要求15所述的处理方法,其中,根据所述第二输出温度的状态,确定所述半导体设备当前是否能够用于执行半导体处理工艺,包括:
    若所述第二输出温度位于第二预设温度范围内,则判断所述第二输出温度的状态显示正常,确定所述半导体设备当前能够用于执行半导体处理工艺;
    若所述第二输出温度不位于所述第二预设温度范围内,则判断所述第二输出温度的状态显示异常,确定所述半导体设备当前不能用于执行半导体处理工艺。
  19. 根据权利要求18所述的处理方法,其中,所述方法还包括:
    确定所述半导体设备当前不能用于执行半导体处理工艺时,发出报警信息。
PCT/CN2022/081426 2022-01-14 2022-03-17 半导体设备及其处理方法、温度测量方法 WO2023134007A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210042732.1 2022-01-14
CN202210042732.1A CN116487279A (zh) 2022-01-14 2022-01-14 半导体设备及其处理方法、温度测量方法

Publications (1)

Publication Number Publication Date
WO2023134007A1 true WO2023134007A1 (zh) 2023-07-20

Family

ID=87212476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081426 WO2023134007A1 (zh) 2022-01-14 2022-03-17 半导体设备及其处理方法、温度测量方法

Country Status (2)

Country Link
CN (1) CN116487279A (zh)
WO (1) WO2023134007A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007635A (ja) * 2001-06-22 2003-01-10 Toshiba Corp 半導体製造装置及び半導体装置の製造方法
US20040060917A1 (en) * 2002-09-30 2004-04-01 Yong Liu Advanced rapid thermal processing (RTP) using a linearly-moving heating assembly with an axisymmetric and radially-tunable thermal radiation profile
JP2005012073A (ja) * 2003-06-20 2005-01-13 Hitachi Kokusai Electric Inc 基板処理装置
JP2014120509A (ja) * 2012-12-13 2014-06-30 Dainippon Screen Mfg Co Ltd 熱処理装置
JP2016171273A (ja) * 2015-03-16 2016-09-23 株式会社Screenホールディングス 熱処理装置
JP2017092095A (ja) * 2015-11-04 2017-05-25 株式会社Screenホールディングス 熱処理装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007635A (ja) * 2001-06-22 2003-01-10 Toshiba Corp 半導体製造装置及び半導体装置の製造方法
US20040060917A1 (en) * 2002-09-30 2004-04-01 Yong Liu Advanced rapid thermal processing (RTP) using a linearly-moving heating assembly with an axisymmetric and radially-tunable thermal radiation profile
JP2005012073A (ja) * 2003-06-20 2005-01-13 Hitachi Kokusai Electric Inc 基板処理装置
JP2014120509A (ja) * 2012-12-13 2014-06-30 Dainippon Screen Mfg Co Ltd 熱処理装置
JP2016171273A (ja) * 2015-03-16 2016-09-23 株式会社Screenホールディングス 熱処理装置
JP2017092095A (ja) * 2015-11-04 2017-05-25 株式会社Screenホールディングス 熱処理装置

Also Published As

Publication number Publication date
CN116487279A (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
KR100295169B1 (ko) 내장된프로세스제어감지기를갖고있는다구역조명기
US5841110A (en) Method and apparatus for improved temperature control in rapid thermal processing (RTP) systems
KR101728796B1 (ko) Led 기판 처리
US6563092B1 (en) Measurement of substrate temperature in a process chamber using non-contact filtered infrared pyrometry
EP2279519B1 (en) Apparatus and method including heating source reflective filter for pyrometry
KR101923050B1 (ko) 급속 열 처리를 위한 최소 접촉 에지 링
EP2365307B1 (en) Method for calibrating a pyrometer, method for determining the temperature of a semiconducting wafer and system for determining the temperature of a semiconducting wafer
US6204484B1 (en) System for measuring the temperature of a semiconductor wafer during thermal processing
JP2009510772A (ja) 温度コントロールおよびパターン補償装置
WO2002026435A1 (en) Apparatus and method for controlling temperature uniformity of substrates
JP2002539622A (ja) 熱処理室中の温度を決定する方法
JPH05503570A (ja) 急速加熱装置及び方法
US10147623B2 (en) Pyrometry filter for thermal process chamber
US6130415A (en) Low temperature control of rapid thermal processes
WO2023134007A1 (zh) 半导体设备及其处理方法、温度测量方法
US11876006B2 (en) Heat treatment method and heat treatment apparatus of light irradiation type
TWI761848B (zh) 熱處理方法
US10930530B2 (en) Methods and apparatus for wafer temperature measurement
US20230377920A1 (en) Semiconductor device and processing method therefor, and method for measuring temperature
KR100396216B1 (ko) 급속 열처리 장치 내의 웨이퍼 온도 측정방법
KR20000047843A (ko) 램프의 흑화 검출방법
KR100234366B1 (ko) 급속 열 처리 설비의 웨이퍼 온도 측정장치 및 이를 이용한 온도측정방법
JPS60137027A (ja) 光照射加熱方法
KR100195807B1 (ko) 반도체 소자 제조용 열처리장치
CN104726841A (zh) 半导体薄膜生长反应腔辅助温度校准装置及校准方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919650

Country of ref document: EP

Kind code of ref document: A1