KR100234366B1 - 급속 열 처리 설비의 웨이퍼 온도 측정장치 및 이를 이용한 온도측정방법 - Google Patents

급속 열 처리 설비의 웨이퍼 온도 측정장치 및 이를 이용한 온도측정방법 Download PDF

Info

Publication number
KR100234366B1
KR100234366B1 KR1019970002882A KR19970002882A KR100234366B1 KR 100234366 B1 KR100234366 B1 KR 100234366B1 KR 1019970002882 A KR1019970002882 A KR 1019970002882A KR 19970002882 A KR19970002882 A KR 19970002882A KR 100234366 B1 KR100234366 B1 KR 100234366B1
Authority
KR
South Korea
Prior art keywords
temperature
wafer
measuring
pyramid
radiation
Prior art date
Application number
KR1019970002882A
Other languages
English (en)
Other versions
KR19980067037A (ko
Inventor
이응준
최길현
김병준
Original Assignee
윤종용
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 윤종용, 삼성전자주식회사 filed Critical 윤종용
Priority to KR1019970002882A priority Critical patent/KR100234366B1/ko
Publication of KR19980067037A publication Critical patent/KR19980067037A/ko
Application granted granted Critical
Publication of KR100234366B1 publication Critical patent/KR100234366B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Radiation Pyrometers (AREA)

Abstract

급속 열 처리 설비에서의 웨이퍼 온도측정 장치 및 이를 이용한 온도측정방법에 관해 개시한다.
본 발명에 의한 급속 열 처리장치는 웨이퍼의 온도 측정수단으로서 에미시미터 파이로미터와 고온용 파이로미트리와 저온용 파이로미트리를 구비하고 있다. 이들 수단을 사용하여 650℃를 기준으로 고온영역과 저온영역 각각에서 온도가 측정되는 복사능을 모르는 웨이퍼의 온도보상을 할 수 있도록 온도 캘리브레이션을 실시한다.
이에 따라 단일 RTP챔버를 이용하여 고온 및 저온열처리 공정을 함께 실시할 수 있으므로 장비의 사용효율을 높일 수 있을 뿐만 아니라 저온 및 고온영역에서 RTP되는 웨이퍼의 정확한 온도측정이 가능해짐으로써 보다 넓은 온도범위에서 웨이퍼를 최적의 상태로 열처리하여 반도체장치의 질의 향상과 신뢰성을 높일 수 있다.

Description

급속 열 처리 설비의 웨이퍼 온도 측정장치 및 이를 이용한 온도측정방법
본 발명은 급속 열 처리(Rapid Thermal Processing:이하, RTP라 함) 설비에서의 웨이퍼 온도 측정장치 및 이를 이용한 온도측정방법에 관한 것으로서, 특히 웨이퍼의 복사능을 측정하기 위한 고온용과 저온용 파이로미트리가 별도로 설치된 웨이퍼의 온도측정 오차를 줄일 수 있는 웨이퍼 온도 측정장치 및 이를 이용한 온도 측정방법에 관한 것이다.
반도체장치의 고집적화와 함께 반도체장치의 제조공정에 사용되고 있는 웨이퍼의 구경은 점점 커지고 있다. 웨이퍼의 구경의 커짐에 따라 웨이퍼의 전면적에서 웨이퍼의 온도균일성이 중요해진다. 웨이퍼의 온도균일성은 웨이퍼에 주입된 불순물층의 균일한 확산과 산화막과 같은 물질막을 균일하게 성장시키는데 있어서 매우 중요하다.
열 처리 공정의 하나로 RTP공정을 들 수 있는데, RTP공정에서 웨이퍼의 온도를 정확히 측정하는 것은 상기의 이유로 인해 RTP공정의 신뢰성과 반도체장치의 질을 결정하는 중요한 요소이다.
기존의 RTP공정에서 온도 측정방법으로는 써모 커플(thermo-couple)과 파이로미트리(pyrometry)가 널리 사용되었다. 이중 써모 커플을 사용한 웨이퍼의 온도측정 방식은 웨이퍼와 온도측정장비가 직접 접촉되는 방식으로서 웨이퍼의 온도 균일성을 높이기 위해 웨이퍼를 회전되는 장치에는 적용할 수 없는 단점이 있다.
RTP 공정에서 파이로미트리를 사용하는 웨이퍼 온도 측정방식은 웨이퍼에서 방출되는 복사를 측정하여 웨이퍼의 온도를 측정한다. 따라서 써모-커플과 같이 웨이퍼와 직접 접촉되는 제한점은 없다.
웨이퍼는 모든 물질이 그렇듯이 복사능(emmisivity)을 갖고 있는데, 복사능은 적외선 파이로미트리에 의한 온도조절과 RTP공정의 열적 모델링에 있어서 매우 중요한 변수가 된다. 웨이퍼의 복사능의 온도 의존성은 다른 히팅방법들, 예컨대, 퍼니스, 전자빔 또는 접촉 히팅방법등을 이용한 여러 발표물들을 통해서 공표되었다. 측정된 복사능은 크게 물질자체가 갖고 있는 고유 복사능(intrinsic emmisivity)과 외부적 요인에 의한 복사능(extrinsic emmisivity)으로 나룰 수 있다. 웨이퍼의 고유 복사능은 단지, 샘플의 온도나 도핑농도 또는 샘플 표면의 거칠기(roughness)등에 따라 달라진다. 그리고 외부전 요인에 의한 복사능은 RTP공정에서 웨이퍼상에 형성되어 있는 박막이나 장치들을 고려한 복사능이다. 웨이퍼상에 형성된 박막이나 장치들은 웨이퍼의 복사능에 영향을 준다.
이와 같은 요인에 의해 RTP공정에서 웨이퍼의 복사능은 달라지므로 파이로미트리를 사용한 웨이퍼의 온도측정에는 측정오차가 포함될 수 밖에 없다.
웨이퍼의 복사능에 영향을 주는 다른 요인으로는 광학적 효과가 있는데 구체적으로, RTP공정이 진행되는 챔버내에는 램프로부터 방출되는 광학적으로 활성화된 광자들이 다량으로 존재하게 된다. 이들 광자들중 적어도 웨이퍼를 구성하는 원소들의 에너지 밴드갭에 해당하는 활성에너지를 갖는 광자들은 웨이퍼내에 있는 전자들과 홀들은 들뜨게 할 수 있다. 이에 따라 웨이퍼에는 비 평형 캐리어 농도가 형성된다. 이와 같은 광자들에 의해 일어나는 광화학적 및 광 물리학적인 효과는 싱(Singh)등에 의해 보고된 바 있다("Consideratin of Photoeffects in the Design of Rapid Isothermal Processing System" Proceedings of 2nd International Rapid Thermal Processing Conference. R. B. Fair and B. Lojek, Eds., p. 159(994) 참조).
또한, 첸(Chen)에 의해 광 열(photothermal) 실험에서 실리콘 웨이퍼의 도핑농도의 고, 저에 따라 웨이퍼로부터 방출되는 열복사에 큰 차이가 있다는 것이 관측되었다.
RTP공정에서는 웨이퍼의 온도측정의 기준이 되는 복사능이 상기한 바와 같은 여러요인에 의해 변한다. 따라서 웨이퍼의 정확한 온도측정을 위해서는 각별한 주의가 요구되는바, 종래 기술에서는 RTP공정에서의 웨이퍼 온도를 측정하기 위해 다음과 같은 방법을 모색하였다.
구체적인 설명을 위해 먼저, 도 1을 참조하여 반도체장치의 제조공정에서 사용되는 급속 열 처리(Rapid Thermal Processing)챔버를 개략적으로 설명한다. 도 1에서 참조번호 10은 할로겐 램프이고 12는 챔버벽이며, 14는 웨이퍼(20)가 로딩되고 회전되는 회전부(14)이고 18은 웨이퍼(20)로부터 방출되는 복사를 측정하여 웨이퍼(20)의 온도를 측정하는 수단인 파이로미터(pyrometer)이다. 또한, 참조번호 16은 RTP 챔버에서 다음설명을 위해 필요한 확대부를 나타낸다. 그리고 참조번호 22는 뷰 포트(view port)로서 RTP챔버내부를 볼 수 있는 창이다.
이와 같은 RTP챔버에서 열처리되는 웨이퍼의 온도를 측정하기 위해서 종래 기술에 의한 온도측정방법에서는 먼저, RTP챔버에서의 초기 온도를 캘리브레이션(calibration)한다. 캘리브레이션은 웨이퍼(20)의 하부에 있는 파이로미터(18)를 이용하여 이루어지는데 구체적으로 설명하기 위해 도 1의 확대부(16)를 확대 도시한 도 2를 참조한다. 도 2에서 참조번호 24, 26은 각각 웨이퍼(도 1의 20)로부터 방출되는 열 복사를 측정하여 웨이퍼(20)의 온도를 측정하는 장비로서 에미소미터와 도 1의 참조번호 18에 해당하는 파이로미터이다. 그리고 참조번호 28은 웨이퍼(20)로부터 방출되는 열 복사에 의해 RTP챔버의 바닥이 손상되는 것을 방지하기 위한 금판(gold plate)으로 된 반사판이다. 하지만, 반사판(28)의 중앙에는 웨이퍼(20)로부터 방출되는 열 복사를 충분히 측정할 수 있을 정도의 소정의 직경을 갖는 홀이 형성되어 있고, 이홀을 통해서 파이로미터(26)와 에미소미터는(24) 웨이퍼와 직접 대향하고 있다. 따라서 웨이퍼의 열 복사를 측정할 수 있다.
캘리브레이션은 복사능이 알려진 높은 복사능을 갖는 웨이퍼와 낮은 복사능을 갖는 웨이퍼를 이용하여 약 1000℃정도의 온도에서 이루어지는데, 에미소미터(24)와 파이로미터(26)를 각 웨이퍼의 온도를 측정한다. 이들 두 장비에 의해 측정된 웨이퍼의 온도는 비록 복사능이 알려져 있다고 하지만, 실측에서는 서로 다른 온도값을 측정하게 된다. 따라서 이들 두 장비에 의해 측정된 복사능이 알려진 웨이퍼의 온도를 측정하고 이들 두 장비간에 발생되는 웨이퍼의 온도차를 이용하여 실제 웨이퍼의 온도를 어느 정도 보상해야 하는지를 알 수 있다. 이렇게 해서 다양한 온도에서 여러 웨이퍼에 대해 그 웨이퍼의 복사능을 측정하면 측정대상이 되는 웨이퍼의 온도를 정확하게 측정할 수 있다.
그러나 종래 기술에 의한 반도체장치의 제조공정에서 웨이퍼 온도 측정방법에서는 1000℃에서 RTP설비의 초기 온도 캘리브레이션이 이루어지므로 초기 캘리브레이션이 달라질 경우 웨이퍼 온도의 측정된 값이 달라질 수 있을 뿐만 아니라 고온에서 파이로미터를 이용한 온도측정시에 온도에 따라 웨이퍼의 복사능이 다르기 때문에 상대적으로 저온영역인 650℃정도를 경계로 그 이하의 온도에서는 온도측정시에 오류가 발생되어 웨이퍼의 정확한 온도측정에 신뢰성을 가질 수가 없게 된다.
따라서 본 발명의 목적은 상술한 종래 기술이 갖는 문제점을 해결하기 위해 보다 넓은 온도범위에서 웨이퍼의 온도측정에 대한 신뢰성을 보장할 수 있는 급속 열 처리 설비에서의 웨이퍼 온도측정장치를 제공함에 있다.
본 발명의 다른 목적을 상기 온도측정장치를 이용하여 급속 열처리 설비에서 열처리되는 복사능을 모르는 웨이퍼의 온도를 측정하는 방법을 제공함에 있다.
도 1은 반도체장치의 제조공정에서 사용되는 급속 열 처리(Rapid Thermal Processing) 챔버의 개략도이다.
도 2는 종래 기술에 의한 급속 열 처리 챔버에서 웨이퍼의 온도 측정부의 개략도이다.
도 3은 본 발명의 실시예에 의한 급속 열 처리 챔버에서 웨이퍼의 온도 측정부의 개략도이다.
〈도면의 주요부분에 대한 부호설명〉
40:에미소미터 파이로미트리(emmisometer pyrometry).
42, 44:제1 및 제2 온도측정파이로미트리.
46:리플렉터.
상기 목적을 달성하기 위하여, 본 발명의 실시예에 의한 급속 열처리 설비에서의 웨이퍼 온도측정장치는 웨이퍼의 후면으로부터 복사되는 웨이퍼의 복사능을 측정하여 웨이퍼의 온도를 측정하는 급속 열 처리 설비에 있어서, 상기 온도를 측정하기 위해 650℃이상 상기 웨이퍼가 손상되지 않는 온도범위까지의 고온영역의 측정수단인 제1 및 제2 온도 측정수단과 650℃이하 상기 웨이퍼가 손상되지 않는 온도 범위까지인 저온영역의 측정수단인 제1 및 제3 온도 측정수단이 구비되어 있는 것을 특징으로 한다.
상기 고온 영역은 650℃∼1100℃이다.
저온 영역은 400℃∼650℃이다.
상기 제1, 제2 및 제3 온도측정 수단은 각각 에미소미터 파이로미트리, 제1 온도측정 파이로미트리 및 제2 온도측정 파이로미트리이다.
상기 다른 목적을 달성하기 위하여, 본 발명에 의한 급속 열처리 설비에서의 웨이퍼 온도측정방법은 웨이퍼의 후면으로부터 복사되는 웨이퍼의 복사능을 측정하여 웨이퍼의 온도를 측정하는 수단을 구비하는 급속 열 처리 설비에 있어서, 상기 수단은 상기 온도를 측정하기 위해 650℃이상 상기 웨이퍼가 손상되지 않는 온도범위까지의 고온영역의 측정수단인 제1 및 제2 온도 측정수단과 650℃이하 상기 웨이퍼가 손상되지 않는 온도 범위까지인 저온영역의 측정수단인 제1 및 제3 온도 측정수단인 것을 특징으로 하는 웨이퍼 온도 측정 장치에 있어서, (a) 복사능이 알려진 고 복사능을 갖는 웨이퍼와 저 복사능을 갖는 웨이퍼를 이용하여 상기 고온영역과 저온영역에서 각각 독립적으로 상기 설비의 초기 온도 캘리브레이션을 실시하는 단계; (b) 상기 급속 열처리 설비에 복사능을 모르는 웨이퍼를 로딩하여 열처리하는 단계; (c) 상기 열처리 단계에서 웨이퍼의 온도를 측정하는 단계; 및 (d) 상기 측정된 웨이퍼의 측정된 온도를 바탕으로 상기 복사능을 모르는 웨이퍼의 온도를 보상하는 단계를 포함한다.
상기 제1 및 제2 온도측정수단으로는 각각 에미소미터 파이로미트리와 제1 온도측정 파이로미트리가 사용된다.
상기 에미소미터 파이로미트리와 제1 온도측정 파이로미트리가 650℃∼1100℃정도의 고온영역에서 상기 복사능을 모르는 웨이퍼의 온도측정에 사용된다.
상기 제1 및 제3 온도측정수단으로는 각각 에미소미터 파이로미트리와 제2 온도측정 파이로미트리가 사용된다.
상기 에미소미터 파이로미트리와 제2 온도측정 파이로미트리가 400℃∼650℃정도의 저온영역에서 상기 복사능을 모르는 웨이퍼의 온도측정에 사용된다.
상기 고온영역에서의 초기 온도 캘리브레이션 단계는 상기 고 복사능을 갖는 웨이퍼를 이용하여 650℃∼1100℃의 온도범위에서 상기 고 복사능을 갖는 웨이퍼의 온도를 상기 에미소미터 파이로미트리와 상기 제1 파이로미트리를 이용하여 측정하는 단계; 및 상기 고 복사능을 갖는 웨이퍼에 대해서 상기 에미소미터 파이로미터로 측정한 웨이퍼 온도값과 상기 제1 파이로미트리로 측정한 웨이퍼 온도값사이의 차이를 웨이퍼 온도측정시스템에 입력하여 분석하는 단계를 포함한다.
상기 캘리브레이션을 실시한 다음 상기 고온영역에서 복사능을 모르는 웨이퍼의 온도보상단계는 상기 에미소미터 파이로미터와 상기 제1 파이로미트리를 사용하여 복사능을 모르는 웨이퍼의 온도를 측정하는 단계; 상기 에미소미터 파이로미트리와 상기 제1 파이로미트리로 측정된 온도값의 차를 이용하여 역으로 상기 복사능을 모르는 웨이퍼의 복사능을 산출하는 단계; 및 상기 산출된 복사능을 바탕으로 상기 복사능을 모르는 웨이퍼의 온도를 보상하는 단계를 포함한다.
상기 저온영역에서의 상기 초기 온도 캘리브레이션 단계는 상기 저 복사능을 갖는 웨이퍼를 이용하여 400℃∼650℃의 온도범위에서 상기 저 복사능을 갖는 웨이퍼의 온도를 상기 에미소미터 파이로미트리와 상기 제2 파이로미트리를 이용하여 측정하는 단계; 및 상기 저 복사능을 갖는 웨이퍼에 대해서 상기 에미소미터 파이로미트리로 측정한 온도값과 상기 제2 파이로미트리로 측정한 온도값사이의 차이를웨이퍼 온도측정시스템에 입력하여 분석하는 단계를 포함한다.
상기 캘리브레이션 단계를 통해서 저온영역에서 복사능을 모르는 웨이퍼의 온도보상단계는 상기 에미소미터 파이로미트리와 상기 제2 파이로미트리를 사용하여 복사능을 모르는 웨이퍼의 온도를 측정하는 단계; 상기 에미소미터 파이로미트리와 상기 제2 파이로미트리로 측정된 온도값의 차를 이용하여 역으로 상기 복사능을 모르는 웨이퍼의 복사능을 산출하는 단계; 및 상기 산출된 복사능을 바탕으로 상기 웨이퍼의 온도를 보상하는 단계를 포함한다.
본 발명은 고온과 저온영역에서 웨이퍼의 온도를 보다 정확히 측정할 수 있으므로 최적의 상태로 웨이퍼 열처리가 가능함으로써 반도체장치의 품질 향상과 신뢰성을 높일 수 있다.
이하, 본 발명의 실시예에 의한 급속 열처리 설비에서의 웨이퍼 온도 측정장치 및 이를 이용한 웨이퍼 온도 측정방법을 첨부된 도면을 참조하여 상세하게 설명한다.
도 3은 본 발명의 실시예에 의한 급속 열 처리 챔버의 웨이퍼의 온도 측정부를 확대한 도면이다. 도 3에서 참조번호 40은 에미소미터 파이로미트리로서 상기 RTP공정에서 상기 웨이퍼의 온도측정에 사용하는 제1 온도측정수단이고, 참조번호 42와 44는 각각 제1 및 제2 파이로미트리로서 상기 웨이퍼의 온도측정에 사용하는 제2 및 제3 온도 측정수단이다. 상기 제1 파이로미트리(42)는 고온영역에서 사용하고 상기 제2 파이로미트리(44)는 저온영역에서 사용한다. 그리고 참조번호 46은 RTP챔버내에서 상기 웨이퍼(20)의 뒷면에서 방출되는 열복사에 의해 RTP챔버의 바닥이 손상되는 것을 방지하기 위한 수단인 반사판이다. 상기 반사판(46)은 금판으로 형성한다.
RTP 챔버에서 열처리 과정에 있는 웨이퍼(도 1의 20)의 온도는 도 1에 도시한 바와 같이 박막이나 반도체소자들이 형성되어 있지 않은 웨이퍼(20)의 뒷면에서 방출되는 열복사를 측정하고 컨터롤러에서 디지탈화하여 웨이퍼의 온도를 측정하는데, 통상 웨이퍼 전면에는 박막이나 반도체소자들이 형성되어 있으므로 후면으로 방출되는 열복사를 통해서 측정한 웨이퍼의 온도에는 어느 정도의 편차가 있게 마련이다. 따라서 온도보정이 필요하고 이를 위해 상기 웨이퍼의 복사능을 측정하여 온도보상을 해줄 수 있도록 열처리 설비의 초기 온도 캘리브레이션을 실시한다. 상기 초기 온도 캘리브레이션을 위해 먼저, 복사능을 아는 고 복사능 웨이퍼와 저 복사능 웨이퍼를 RTP챔버에 로딩시킨후 도 3에 도시한 바와 같이 상기 반사판(46)의 중앙에 있는 소정의 직경을 갖는 홀내에 있는 에미소미터 파이로미트리(40)와 상기 제1 및 제2 파이로미트리(42, 44)를 사용하여 상기 웨이퍼의 온도를 측정한다. 즉, 상기 고 복사능을 갖는 웨이퍼를 이용하여 650℃이상의 고온영역, 정확하게 말하면, 650℃∼1100℃의 온도범위에서 상기 고 복사능을 갖는 웨이퍼의 온도를 상기 에미소미터 파이로미트리(40)과 고온용 웨이퍼 온도 측정수단인 상기 제1 파이로미트리(42)를 이용하여 상기 고 복사능을 갖는 웨이퍼의 온도를 측정한다. 이때, 상기 에미소미터 파이로미트리(40)와 상기 제1 파이로미트리(42)로 측정한 상기 고 복사능을 갖는 웨이퍼의 온도는 서로 다르게 측정된다. 상기 에미소미터 파이로미트리(40)와 상기 제1 파이로미트리(42)에 의해 측정된 상기 고 복사능을 갖는 웨이퍼의 온도차는 웨이퍼 온도측정시스템에 입력된다. 이러한 온도차이를 바탕으로 웨이퍼의 복사능을 역으로 측정할 수 있으므로 복사능을 알지 못하는 다른 웨이퍼의 온도를 상기 에미소미터 파이로미트리(40)와 상기 제1 파이로미트리(42)를 사용하여 측정한 다음 상기 웨이퍼에 대한 상기 에미소미터 파이로미트리(40)와 상기 제1 파이로미트리(42)간의 측정온도차를 이용하여 상기 복사능을 알지못하는 웨이퍼의 복사능을 알 수 있다. 따라서 상기 웨이퍼의 보상이 필요한 온도가 어느정도인지를 확인할 수 있고 도 1에 도시된 RTP챔버에서 웨이퍼(20)의 위쪽에 설치된 램프(10)영역에 인가되는 전압을 조정하여 상기 웨이퍼의 온도를 보상할 수 있다.
상기의 방법은 650℃이상의 고온영역에서의 캘리브레이션을 이용한 웨이퍼 온도측정과 그에 따른 온도보상방법이다. 상기 고온영역에서의 캘리브레이션을 650℃이하의 저온영역, 정확하게는 400℃∼650℃에서 그대로 적용하는 경우에는 상기 웨이퍼의 복사능이 온도에 따라 차이가 나고 저온에서는 낮은 복사능을 갖고 있으므로 저 복사능에 따른 상기 웨이퍼의 온도측정이 달라진다. 따라서 상기 고온영역에서의 상기 웨이퍼의 온도측정은 독립적으로 하고 저온영역에서의 온도측정과 연계시키지 않는다. 이를 위해서 상기 저온영역에서의 온도보상을 위한 캘리브레이션을 위해 저온용인 상기 제2 파이로미트리(44)를 사용하여 RTP챔버의 초기 온도 캘리브레이션을 실시한다. 이렇게 함으로써 상기 RTP공정에서 웨이퍼의 온도가 저온과 고온영역을 오가더라도 각 영역에 대해서 독립된 웨이퍼 캘리브레이션이 되어 있으므로 웨이퍼의 온도를 온도영역에 큰 영향을 받지않고 보다 정확히 측정할 수 있다.
저온영역에서의 웨이퍼 온도보상을 위한 캘리브레이션은 상기 고온영역에서의 캘리브레이션과 유사하게 진행한다. 단, 상기 파이로미트리를 고온용인 상기 제1 파이로미트리(42)를 사용하지 않고 저온용인 제2 파이로미트리(44)를 사용한다. 구체적으로는 상기 복사능이 알려진 저 복사능을 갖는 웨이퍼를 상기 RTP챔버에 로딩시킨후 상기 저온영역에 속하는 온도로 상기 웨이퍼를 RTP처리한다. 이 과정에서 상기 저 복사능을 갖는 웨이퍼의 후면에서는 열 복사가 방출되고 상기 열복사를 상기 웨이퍼의 후면 반사판(도 3의 46)의 중앙 홀에 설치되어 있는 상기 에피소미터 파이로미트리(40)와 저온용 온도측정장비인 제2 파이로미트(44)를 이용하여 상기 복사능이 알려진 저 복사능을 갖는 웨이퍼의 온도를 측정한다. 상기 에피소미터 파이로미트리(40)와 제2 파이로미트리(44) 각각에 의해 측정된 상기 저 복사능을 갖는 웨이퍼의 온도에는 다소의 차이가 있는데, 이 온도차를 상기 온도측정시스템에 입력한 다음 자체 계산을 통해서 상기 RTP공정의 650℃이하의 저온영역에서의 복사능을 알지 못하는 다른 웨이퍼의 온도보상기준이 마련된다. 즉, 상기 에미소미터 파이로미트리(40)와 저온용 제2 파이로미트리(44)가 나타내는 복사능을 알지못하는 웨이퍼의 온도차를 이용하여 역으로 그 웨이퍼의 복사능을 알 수 있다. 구체적으로 설명하면, 복사능을 알지 못하는 웨이퍼의 RTP공정이 저온영역에서 실시되는 경우에는 상기 에미소미터 파이로미트리(40)와 저온용 제2 파이로미트리(44)를 각각 사용하여 상기 복사능을 알지 못하는 웨이퍼의 온도를 측정한다. 이때, 상기 에미소미터 파이로미트리(40)와 저온용 제2 파이로미트리(44)에 의해 측정된 온도값은 각각 다를 것이다. 이 온도차를 이용하여 상기 복사능을 알지 못하는 웨이퍼의 복사능을 알수 있고 이에 따라 상기 웨이퍼의 온도를 알 수 있으며 최적의 열처리를 위해 보상해야할 온도가 어느정도인지를 알 수 있으므로 상기 램프(도 1의 20)에 인가되는 전압을 조절하여 필요한 온도만큼 보상할 수 있다.
결과적으로 상기 RTP공정에서 RTP온도가 650℃이하로 설정되었을 때는 저온영역에서 캘리브레이션된 저온용의 파이로미트리를 사용할 수 있도록 웨이퍼의 온도측정이 전환되도록하면 단일 RTP챔버를 이용하여 고온 및 저온공정을 함께 실시할 수 있다.
이와 같이 본 발명에 의한 급속 열 처리 설비에서의 웨이퍼 온도 측정장치 및 이를 이용한 온도 측정방법은 고온용 파이로미트리와 저온용 파이로미트리를 사용하여 650℃를 기준으로 고온영역과 저온영역 각각에서 독립적으로 RTP의 초기온도를 캘리브레이션한다. 이에 따라 단일 RTP챔버를 이용하여 고온 및 저온열처리 공정을 함께 실시할 수 있으므로 장비의 사용효율을 높일 수 있을 뿐만 아니라 저온 및 고온영역에서 RTP되는 웨이퍼의 정확한 온도측정이 가능해짐으로써 보다 넓은 온도범위에서 웨이퍼를 최적의 상태로 열처리하여 반도체장치의 질의 향상과 신뢰성을 높일 수 있다.
본 발명은 상기 실시예에 한정되지 않으며 많은 변형이 본 발명의 기술적 사상내에서 당분야에서의 통상의 지식을 가진자에 의하여 실시가능함은 명백하다.

Claims (13)

  1. 웨이퍼의 후면으로부터 복사되는 웨이퍼의 복사능을 측정하여 웨이퍼의 온도를 측정하는 급속 열 처리 설비에 있어서,
    상기 온도를 측정하기 위해 650℃이상 상기 웨이퍼가 손상되지 않는 온도범위까지의 고온영역의 측정수단인 제1 및 제2 온도 측정수단과 650℃이하 상기 웨이퍼가 손상되지 않는 온도 범위까지인 저온영역의 측정수단인 제1 및 제3 온도 측정수단이 구비되어 있는 것을 특징으로 하는 웨이퍼 온도 측정 장치.
  2. 제1항에 있어서, 상기 고온 영역은 650℃∼1100℃인 것을 특징으로 하는 웨이퍼 온도 측정장치.
  3. 제1항에 있어서, 저온 영역은 400℃∼650℃인 것을 특징으로 하는 웨이퍼 온도 측정 장치.
  4. 제1항에 있어서, 상기 제1, 제2 및 제3 온도측정 수단은 각각 에미소미터 파이로미트리, 제1 온도측정 파이로미트리 및 제2 온도측정 파이로미트리인 것을 특징으로 하는 웨이퍼 온도측정장치.
  5. 웨이퍼의 후면으로부터 복사되는 웨이퍼의 복사능을 측정하여 웨이퍼의 온도를 측정하는 급속 열 처리 설비에 있어서, 상기 온도를 측정하기 위해 650℃이상 상기 웨이퍼가 손상되지 않는 온도범위까지의 고온영역의 측정수단인 제1 및 제2 온도 측정수단과 650℃이하 상기 웨이퍼가 손상되지 않는 온도 범위까지인 저온영역의 측정수단인 제1 및 제3 온도 측정수단이 구비되어 있는 것을 특징으로 하는 웨이퍼 온도 측정 장치에 있어서,
    (a) 복사능이 알려진 고 복사능을 갖는 웨이퍼와 저 복사능을 갖는 웨이퍼를 이용하여 상기 고온영역과 저온영역에서 각각 독립적으로 상기 설비의 초기 온도 캘리브레이션을 실시하는 단계;
    (b) 상기 급속 열처리 설비에 복사능을 모르는 웨이퍼를 로딩하여 열처리하는 단계;
    (c) 상기 열처리 단계에서 웨이퍼의 온도를 측정하는 단계; 및
    (d) 상기 측정된 웨이퍼의 측정된 온도를 바탕으로 상기 복사능을 모르는 웨이퍼의 온도를 보상하는 단계를 포함하는 것을 특징으로 하는 웨이퍼 온도 측정방법.
  6. 제5항에 있어서, 상기 제1 및 제2 온도측정수단으로는 각각 에미소미터 파이로미트리와 제1 온도측정 파이로미트리가 사용되는 것을 특징으로 하는 웨이퍼 온도 측정방법.
  7. 제6항에 있어서, 상기 에미소미터 파이로미트리와 제1 온도측정 파이로미트리가 650℃∼1100℃정도의 고온영역에서 상기 복사능을 모르는 웨이퍼의 온도측정에 사용되는 것을 특징으로 하는 반도체장치의 제조공정에서 웨이퍼 온도 측정방법.
  8. 제5항에 있어서, 상기 제1 및 제3 온도측정수단으로는 각각 에미소미터 파이로미트리와 제2 온도측정 파이로미트리가 사용되는 것을 특징으로 하는 웨이퍼 온도 측정방법.
  9. 제8항에 있어서, 상기 에미소미터 파이로미트리와 제2 온도측정 파이로미트리가 400℃∼650℃정도의 저온영역에서 상기 복사능을 모르는 웨이퍼의 온도측정에 사용되는 것을 특징으로 하는 반도체장치의 제조공정에서 웨이퍼 온도 측정방법.
  10. 제5항에 있어서, 상기 고온영역에서의 초기 온도 캘리브레이션 단계는
    상기 고 복사능을 갖는 웨이퍼를 이용하여 650℃∼1100℃의 온도범위에서 상기 고 복사능을 갖는 웨이퍼의 온도를 상기 에미소미터 파이로미트리와 상기 제1 파이로미트리를 이용하여 측정하는 단계; 및
    상기 고 복사능을 갖는 웨이퍼에 대해서 상기 에미소미터 파이로미터로 측정한 웨이퍼 온도값과 상기 제1 파이로미트리로 측정한 웨이퍼 온도값사이의 차이를 웨이퍼 온도측정시스템에 입력하여 분석하는 단계를 포함하는 것을 특징으로 하는 웨이퍼 온도 측정방법.
  11. 제10항에 있어서, 상기 캘리브레이션을 실시한 다음 상기 고온영역에서 복사능을 모르는 웨이퍼의 온도보상단계는
    상기 에미소미터 파이로미트리와 상기 제1 파이로미트리를 사용하여 복사능을 모르는 웨이퍼의 온도를 측정하는 단계;
    상기 에미소미터 파이로미트리와 상기 제1 파이로미트리로 측정된 온도값의 차를 이용하여 역으로 상기 복사능을 모르는 웨이퍼의 복사능을 산출하는 단계; 및
    상기 산출된 복사능을 바탕으로 상기 복사능을 모르는 웨이퍼의 온도를 보상하는 단계를 포함하는 것을 특징으로 하는 웨이퍼 온도 측정방법.
  12. 제5항에 있어서, 상기 저온영역에서의 상기 초기 온도 캘리브레이션 단계는
    상기 저 복사능을 갖는 웨이퍼를 이용하여 400℃∼650℃의 온도범위에서 상기 저 복사능을 갖는 웨이퍼의 온도를 상기 에미소미터 파이로미트리와 상기 제2 파이로미트리를 이용하여 측정하는 단계; 및
    상기 저 복사능을 갖는 웨이퍼에 대해서 상기 에미소미터 파이로미트리로 측정한 온도값과 상기 제2 파이로미트리로 측정한 온도값사이의 차이를 웨이퍼 온도측정시스템에 입력하여 분석하는 단계를 포함하는 것을 특징으로 하는 웨이퍼 온도 측정방법.
  13. 제12항에 있어서, 상기 캘리브레이션 단계를 통해서 저온영역에서 복사능을 모르는 웨이퍼의 온도보상단계는
    상기 에미소미터 파이로미트리와 상기 제2 파이로미트리를 사용하여 복사능을 모르는 웨이퍼의 온도를 측정하는 단계;
    상기 에미소미터 파이로미트리와 상기 제2 파이로미트리로 측정된 온도값의 차를 이용하여 역으로 상기 복사능을 모르는 웨이퍼의 복사능을 산출하는 단계; 및
    상기 산출된 복사능을 바탕으로 상기 웨이퍼의 온도를 보상하는 단계를 포함하는 것을 특징으로 하는 웨이퍼 온도 측정방법.
KR1019970002882A 1997-01-30 1997-01-30 급속 열 처리 설비의 웨이퍼 온도 측정장치 및 이를 이용한 온도측정방법 KR100234366B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970002882A KR100234366B1 (ko) 1997-01-30 1997-01-30 급속 열 처리 설비의 웨이퍼 온도 측정장치 및 이를 이용한 온도측정방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970002882A KR100234366B1 (ko) 1997-01-30 1997-01-30 급속 열 처리 설비의 웨이퍼 온도 측정장치 및 이를 이용한 온도측정방법

Publications (2)

Publication Number Publication Date
KR19980067037A KR19980067037A (ko) 1998-10-15
KR100234366B1 true KR100234366B1 (ko) 1999-12-15

Family

ID=19496029

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970002882A KR100234366B1 (ko) 1997-01-30 1997-01-30 급속 열 처리 설비의 웨이퍼 온도 측정장치 및 이를 이용한 온도측정방법

Country Status (1)

Country Link
KR (1) KR100234366B1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183127B1 (en) * 1999-03-29 2001-02-06 Eaton Corporation System and method for the real time determination of the in situ emissivity of a workpiece during processing
KR100396216B1 (ko) * 2001-06-19 2003-09-02 코닉 시스템 주식회사 급속 열처리 장치 내의 웨이퍼 온도 측정방법
KR100432135B1 (ko) * 2001-06-30 2004-05-17 동부전자 주식회사 급속 열처리 장치

Also Published As

Publication number Publication date
KR19980067037A (ko) 1998-10-15

Similar Documents

Publication Publication Date Title
US6563092B1 (en) Measurement of substrate temperature in a process chamber using non-contact filtered infrared pyrometry
US6507007B2 (en) System of controlling the temperature of a processing chamber
KR101624217B1 (ko) 고온계용 열 공급원 반사 필터를 포함하는 장치
US6200634B1 (en) Thermal processing system with supplemental resistive heater and shielded optical pyrometry
KR100396423B1 (ko) 기판 온도 측정장치 및 방법
US5098198A (en) Wafer heating and monitor module and method of operation
US6204484B1 (en) System for measuring the temperature of a semiconductor wafer during thermal processing
JP2002539622A (ja) 熱処理室中の温度を決定する方法
WO1998038673A1 (fr) Instrument et procede de mesure de la temperature d'un substrat, procede de chauffage d'un substrat et dispositif de traitement par la chaleur
US6166354A (en) System and apparatus for in situ monitoring and control of annealing in semiconductor fabrication
TW201543533A (zh) 處理系統及校準工件製程、驗證工件製造製程及在高溫處理工件的方法
WO1999013304A1 (en) Black body reference for rta
KR100234366B1 (ko) 급속 열 처리 설비의 웨이퍼 온도 측정장치 및 이를 이용한 온도측정방법
JP2007081348A (ja) 熱処理温度の調整方法、基板熱処理方法、及び基板熱処理装置
US7921803B2 (en) Chamber components with increased pyrometry visibility
US6864463B2 (en) Substrate processing apparatus and semiconductor device producing method
KR100396216B1 (ko) 급속 열처리 장치 내의 웨이퍼 온도 측정방법
JPH07201765A (ja) 熱処理装置および熱処理方法
JPH11288894A (ja) ランプアニール装置
JPH02298829A (ja) 熱処理装置
JPH05299428A (ja) 半導体ウェーハの熱処理方法及び熱処理装置
JP3114063B2 (ja) 半導体製造装置
JPH10170343A (ja) 温度測定装置
JPH07151606A (ja) 基板の温度測定装置
WO2023134007A1 (zh) 半导体设备及其处理方法、温度测量方法

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070903

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee