WO2023133846A1 - 一种可穿戴设备 - Google Patents

一种可穿戴设备 Download PDF

Info

Publication number
WO2023133846A1
WO2023133846A1 PCT/CN2022/072151 CN2022072151W WO2023133846A1 WO 2023133846 A1 WO2023133846 A1 WO 2023133846A1 CN 2022072151 W CN2022072151 W CN 2022072151W WO 2023133846 A1 WO2023133846 A1 WO 2023133846A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
microphone
wearable device
section
concave section
Prior art date
Application number
PCT/CN2022/072151
Other languages
English (en)
French (fr)
Inventor
童珮耕
王真
张磊
齐心
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to KR1020237002156A priority Critical patent/KR102689176B1/ko
Priority to CN202280005036.1A priority patent/CN116762361A/zh
Priority to PCT/CN2022/072151 priority patent/WO2023133846A1/zh
Priority to JP2023509424A priority patent/JP7500865B2/ja
Priority to EP22822843.3A priority patent/EP4243441A4/en
Priority to CN202210101580.8A priority patent/CN116489278A/zh
Priority to CN202210101579.5A priority patent/CN116489277A/zh
Priority to CN202220235657.6U priority patent/CN217428214U/zh
Priority to CN202220233972.5U priority patent/CN217428213U/zh
Priority to JP2023558275A priority patent/JP2024512948A/ja
Priority to PCT/CN2022/139086 priority patent/WO2023134382A1/zh
Priority to EP22920014.2A priority patent/EP4279984A4/en
Priority to CN202280007748.7A priority patent/CN117441125A/zh
Priority to KR1020237032567A priority patent/KR20230146091A/ko
Priority to US18/067,660 priority patent/US20230229025A1/en
Publication of WO2023133846A1 publication Critical patent/WO2023133846A1/zh
Priority to US18/450,389 priority patent/US20230388689A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/105Earpiece supports, e.g. ear hooks
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C11/00Non-optical adjuncts; Attachment thereof
    • G02C11/10Electronic devices other than hearing aids
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M9/00Arrangements for interconnection not involving centralised switching
    • H04M9/08Two-way loud-speaking telephone systems with means for conditioning the signal, e.g. for suppressing echoes for one or both directions of traffic
    • H04M9/082Two-way loud-speaking telephone systems with means for conditioning the signal, e.g. for suppressing echoes for one or both directions of traffic using echo cancellers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0176Head mounted characterised by mechanical features
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/028Casings; Cabinets ; Supports therefor; Mountings therein associated with devices performing functions other than acoustics, e.g. electric candles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • H04R1/083Special constructions of mouthpieces
    • H04R1/086Protective screens, e.g. all weather or wind screens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/027Spatial or constructional arrangements of microphones, e.g. in dummy heads
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication
    • H04R5/0335Earpiece support, e.g. headbands or neckrests
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2410/00Microphones
    • H04R2410/07Mechanical or electrical reduction of wind noise generated by wind passing a microphone

Definitions

  • the present application relates to the technical field of wearable devices, in particular to a wearable device.
  • the present application provides a wearable device, which has a better wearing experience and a better wind noise reduction effect.
  • An embodiment of the present application provides a wearable device, including: a flow guide structure configured to be worn on the user's head, wherein the flow guide structure includes: a first connection section, a second connection section and a concave section, The first connecting section, the concave section and the second connecting section are connected in sequence, and the concave section has a downward depression relative to the guide structure; and a first microphone configured to collect user For voice signals of speaking, the first microphone is located at the concave section.
  • the first microphone is located at the bottom of a downwardly recessed area of the recessed section.
  • the first connecting section includes a first end and a second end, the second end is connected to the concave section, and the first end is opposite to the concave section.
  • the height of the bottom is not greater than the height of the second end relative to the bottom of the concave section.
  • the second connection section includes a third end and a fourth end, the third end is connected to the concave section; the third end is opposite to the concave section
  • the height of the bottom is not less than the height of the fourth end relative to the bottom of the concave section.
  • the height of the second end relative to the bottom of the concave section is not smaller than the height of the third end relative to the bottom of the concave section.
  • the concave section includes a first connecting portion and a second connecting portion, the first connecting portion is bent and connected with the first connecting section and extends downward, and the second connecting portion is connected with the second connecting portion
  • the second connection section is connected by bending and extends downward, and the end of the first connection part away from the first connection section is connected with the end of the second connection part away from the second connection section.
  • the distance between the first connecting portion and the second connecting portion is tapered along the concave direction of the concave segment.
  • it also includes a sound guide structure for transmitting external sound, the sound guide structure is connected to the concave section, the sound guide structure is an internal through structure, and one end of the sound guide structure is connected to the The external environment is connected, and the first microphone is located at the other end of the sound guiding structure.
  • a plurality of sound-guiding channels are arranged inside the sound-guiding structure, and the plurality of sound-guiding channels are bent and connected in sequence.
  • the sound guiding structure includes a cavity, and the cavity communicates with the outside through a connection hole.
  • the sound guiding structure includes a plurality of cavities distributed at intervals along the length direction of the sound guiding structure, and adjacent cavities are communicated through connecting holes;
  • the dimension of the cavity along the width direction of the sound guiding structure is larger than the dimension of the connecting hole along the width direction of the sound guiding structure.
  • the second connecting section is provided with a second microphone.
  • connection line between the first microphone and the second microphone points to the user's mouth.
  • the vibration direction of the diaphragm in the first microphone is substantially perpendicular to the vibration direction of the diaphragm in the second microphone.
  • the distance between the first microphone and the second microphone is 5mm-70mm.
  • an acoustic output unit is further included, and the acoustic output unit is located at the concave section.
  • the vibration direction of the diaphragm of the first microphone is substantially perpendicular to the vibration direction of the diaphragm of the acoustic output unit.
  • the first microphone or the second microphone of the wearable device is located in an acoustic null point region of the acoustic output unit.
  • the air guide structure includes a first air guide structure and a second air guide structure, and the first air guide structure and the second air guide structure are respectively used to erect on the user's left ear and right ear. Ear.
  • the wearable device further includes a visible part, and the visible part is connected to the first connection section of the first flow guide structure or the second flow guide structure.
  • Fig. 1 is an exemplary frame diagram of a wearable device according to some embodiments of the present application
  • Fig. 2 is a schematic structural diagram of a wearable device according to some embodiments of the present application.
  • Fig. 3 is a schematic structural diagram of another wearable device according to some embodiments of the present application.
  • Fig. 4 is a flow field diagram of different airflow directions provided according to some embodiments of the specification of the present application.
  • Fig. 5 is a flow rate change curve diagram provided according to some embodiments of the specification of the present application.
  • Fig. 6 is a schematic diagram of a flow guiding structure provided according to some embodiments of the specification of the present application.
  • Fig. 7 is a schematic structural diagram of a flow guide structure provided according to some embodiments of the present specification.
  • Fig. 8 is an air flow field diagram of different flow directions provided according to some embodiments of the specification of the present application.
  • Fig. 9 is a flow rate change curve diagram provided according to some embodiments of the specification of the present application.
  • Fig. 10A is a three-dimensional flow field distribution diagram provided according to some embodiments of the present application when the direction of incoming flow is parallel;
  • Fig. 10B is a diagram of the distribution of airflow velocity at different positions in the concave region when parallel to the incoming flow direction according to some embodiments of the present application;
  • Fig. 11A is a three-dimensional flow field distribution diagram provided according to some embodiments of the present application at a 60° incoming flow direction;
  • Fig. 11B is a diagram of the airflow velocity distribution at different positions in the recessed area when the incoming flow direction is 60° according to some embodiments of the present application;
  • Fig. 12A is a three-dimensional flow field distribution diagram provided according to some embodiments of the present application at a 90° incoming flow direction;
  • Fig. 12B is a diagram of the distribution of airflow velocity at different positions in the concave region when the incoming flow direction is 90° according to some embodiments of the present application;
  • Fig. 13 is a schematic structural diagram of a sound guiding structure provided according to some embodiments of the present specification.
  • Fig. 14 is a structural schematic diagram of a sound guiding structure provided according to some embodiments of the present specification.
  • Fig. 15 is a schematic diagram of a user wearing a wearable device according to some embodiments of this specification.
  • Fig. 16 is a sound field radiation diagram of an acoustic output unit provided according to some embodiments of the present specification.
  • Fig. 17 is another sound field radiation diagram of the acoustic output unit provided according to some embodiments of the present specification.
  • system means for distinguishing different components, elements, parts, parts or assemblies of different levels.
  • the words may be replaced by other expressions if other words can achieve the same purpose.
  • the wearable device may include a flow guide structure configured to be worn on a user's head.
  • the flow guide structure may be a spectacle arm or a partial structure thereof.
  • the flow guiding structure may include a first connecting section, a second connecting section and a concave section, the first connecting section, the concave section and the second connecting section are connected in sequence, and the concave section is located between the first connecting section and the concave section.
  • the concave section has a downward depression relative to the flow guide structure.
  • the wearable device may further include a first microphone configured to collect sound signals generated when the user speaks, and the first microphone is located at the concave section.
  • the first microphone can be located inside the concave section, and the first microphone can pick up the sound signal when the user speaks through the sound inlet hole in the concave section.
  • the wearable device can be an electronic device with audio function (for example, glasses, smart helmet, etc.), when the user wears the wearable device for sports or in windy weather, the air guide structure can change the flow direction of the airflow, And generate a low flow velocity area in the concave section that is concave downward relative to the flow guide structure, and setting the first microphone or sound inlet at the concave section can significantly reduce the influence of external airflow on the microphone, thereby ensuring that the first microphone collects user The quality of the sound signal when speaking improves the sense of user experience.
  • the air guide structure in the wearable device provided by the embodiments of this specification has a better anti-wind noise effect.
  • the wearable device provided by the embodiment of this specification is small in size, and it is only necessary to adjust the local structure of the wearable device (for example, temples) to a structure similar to the flow guide structure.
  • the wearable device provided by the embodiment of this specification reduces wind noise through physical methods, which causes less damage to the voice signal (for example, the voice signal when the user speaks), and leaves more room for subsequent algorithm processing.
  • Fig. 1 is an exemplary frame diagram of a wearable device according to some embodiments of the present application.
  • the wearable device 100 may include a flow guiding structure 110 , a visual part 120 and a microphone 130 .
  • the wearable device 100 may include glasses, smart bracelets, earphones, hearing aids, smart helmets, smart watches, smart clothing, smart backpacks, smart accessories, etc., or any combination thereof.
  • the wearable device 100 can be functional myopia glasses, presbyopic glasses, cycling glasses or sunglasses, etc., or it can be intelligent glasses, such as audio glasses with earphone function.
  • the wearable device 100 can also be a helmet, Head-mounted devices such as augmented reality (Augmented Reality, AR) devices or virtual reality (Virtual Reality, VR) devices.
  • the augmented reality device or virtual reality device may include a virtual reality helmet, virtual reality glasses, augmented reality helmet, augmented reality glasses, etc. or any combination thereof.
  • virtual reality devices and/or augmented reality devices may include Google Glass, Oculus Rift, Hololens, Gear VR, etc.
  • the flow guiding structure 110 may be a component worn on the user's head.
  • the flow guide structure 110 may be a component such as temples or a headband.
  • the wearable device 100 may include a visual piece 120 and two flow guide structures 110, and the two flow guide structures 110 are respectively connected to the two ends of the visible piece, and are erected respectively for the corresponding left and right ears.
  • the flow guide structure 110 is a headband-like component
  • the headband-like component can be adjusted to fit the user's head shape, and various functional components can also be provided on it
  • the wearable device 100 includes a visual part and a flow guide structure 110, the two ends of the flow guide structure 110 are respectively connected to the two ends of the visual element.
  • the structure of the flow guiding structure 110 can be adaptively adjusted according to the type of the wearable device 100 or specific application scenarios.
  • the flow guide structure 110 may include a first connecting section, a second connecting section and a concave section, wherein the first connecting section, the concave section and the second connecting section are connected in sequence, and the concave section is located at the first Between the connecting section and the second connecting section, the concave section has a downward depression relative to the flow guiding structure 110 .
  • the flow guide structure 110 can be used as a flow guide structure of the wearable device 100 , and the wearable device 100 can be worn on the user's head through the flow guide structure 110 .
  • the air guide structure 110 can change the flow direction of the airflow, and generate a low flow velocity area in the concave section that is recessed downward relative to the air guide structure 110. Setting the microphone 130 in the concave section can significantly reduce the external airflow when speaking to the user. The impact of the sound signal improves the user experience.
  • wearable device 100 may also include visual element 120 .
  • the visual part 120 is used to be erected on a certain part of the user's body, for example, the eyes and the like.
  • the flow guiding structure 110 can be connected with one end or both ends of the visible part 120 for keeping the wearable device 100 in stable contact with the user.
  • the visual element 120 may be a lens, a display screen, or a display screen that functions as a lens.
  • the visual part 120 may also be a lens and its auxiliary parts or a display screen and its auxiliary parts, and the auxiliary parts may be components such as a mirror frame or a bracket.
  • the visual element 120 may also be an auxiliary component that does not include a lens or a display screen.
  • the microphone 130 may convert the sound signal into a signal containing sound information.
  • microphone 130 may include one or more air conduction microphones.
  • microphone 130 may include one or more bone conduction microphones.
  • the microphone 130 may include a combination of one or more air conduction microphones and one or more bone conduction microphones.
  • at least one microphone can be located at the concave section of the flow guide structure 110, or the sound inlet hole corresponding to the microphone is located at the bottom of the flow guide structure.
  • the concave section can provide a low flow area, and the location of the microphone 130 in the low flow area can significantly reduce the influence of external airflow on the sound signal when the user speaks, and improve the user experience.
  • the microphone 130 may also be located at other positions of the air guiding structure 110 , for example, at the second connecting section of the air guiding structure 110 .
  • the microphone 130 may be disposed on the outer surface of the flow guide structure 110 or inside the flow guide structure 110 .
  • the microphone 130 may be disposed on the outer surface of the flow guiding structure 110 at a position close to the user's mouth.
  • the flow guide structure 110 may include a cavity for accommodating the microphone 130, the cavity communicates with the external environment through the sound inlet, at least a part of the microphone 130 may be accommodated in the cavity, and the microphone 130 picks up the microphone 130 through the sound inlet. external sound signal.
  • the microphone 130 and the flow guiding structure 110 are integrated.
  • the type of the microphone 130 may include at least one of a dynamic microphone, a condenser microphone, a ribbon microphone, a piezoelectric microphone, and a vacuum tube microphone.
  • the wearable device 100 may further include an acoustic output unit (not shown in FIG. 1 ).
  • the acoustic output unit can be used to convert a signal containing sound information into a sound signal.
  • the acoustic output unit may include one or more air conduction speakers.
  • the acoustic output unit may include one or more bone conduction speakers.
  • the acoustic output unit may simultaneously include a combination of one or more bone conduction speakers and one or more air conduction speakers.
  • the acoustic output unit may be disposed at the flow guiding structure 110 so as to transmit the emitted sound to the user.
  • the acoustic output unit may be disposed at the end of the flow guiding structure 110 or any other position.
  • the acoustic output unit may be disposed at the end of the flow guide structure 110 , while no acoustic output unit is provided at other positions of the flow guide structure 110 .
  • multiple acoustic output units may be disposed at multiple positions of the flow guiding structure 110 .
  • at least one acoustic output unit is provided at the end of the flow guiding structure 110 or other positions.
  • the acoustic output unit may be disposed on the outer surface of the flow guide structure 110 or inside the flow guide structure 110 .
  • the acoustic output unit may be disposed near the location where the flow guide structure 110 is in contact with the user (eg, the position on the flow guide structure 110 near the temple to the ear).
  • the flow guide structure 110 may include a cavity for accommodating the acoustic output unit, and at least a part of the acoustic output unit may be accommodated in the cavity.
  • the acoustic output unit and the flow guiding structure 110 are integrated. It should be noted that when the acoustic output unit is a bone conduction speaker, the acoustic output unit can also generate air conduction sound waves while outputting mechanical vibrations (ie, bone conduction sound waves).
  • the above conversion process may include the coexistence and conversion of various types of energy.
  • an electrical signal ie, a signal containing sound information
  • the type of the acoustic output unit may include one or more of a moving coil type, an electrostatic type, a piezoelectric type, a moving iron type, a pneumatic type, an electromagnetic type, and the like.
  • FIG. 1 is for illustration purposes only, and is not intended to limit the scope of the present application.
  • various variations and modifications can be made under the guidance of the present application. These deformations and modifications all fall within the scope of protection being applied for.
  • the number of elements shown in the figure can be adjusted according to actual conditions.
  • one or more elements shown in FIG. 1 may be omitted, or one or more other elements may be added or deleted.
  • an acoustic output unit may also be included in the wearable device 100 .
  • a component may be replaced by another component that performs a similar function.
  • an element may be split into multiple sub-elements, or multiple elements may be combined into a single element.
  • Fig. 2 is a schematic structural diagram of a wearable device according to some embodiments of the present application.
  • the wearable device 200 shown in FIG. 2 is a VR device or an AR device.
  • the wearable device 200 may include a flow guiding structure 210 , a visual part 220 and a first microphone 230 .
  • the flow guide structure 210 is a headband-like component, and the flow guide structure 210 may be a structure made of elastic material or a structure whose length can be adjusted.
  • the two ends of the flow guide structure 210 are respectively connected to the two ends of the visible part 220.
  • the flow guide structure 210 and the visible part 220 surround the user's head, and the flow guide structure 210 and the visible The wearable device 200 can be worn by the pressure of the member 220 on the user's head.
  • the connection between the flow guiding structure 210 and the visible part 220 may include but not limited to flexible connections such as rotational connections or telescopic connections, or relatively fixed connection methods such as clamping connections, screw connections, or integral molding connections. .
  • the flow guide structure 210 may include a first connection section 211, a concave section 212 and a second connection section 213 connected in sequence, wherein, one end of the first connection section 211 is connected to the visible part 220, and the first The other end of the connecting section 211 is connected to the concave section 212 , and the second connecting section 213 is connected to an end of the concave section 212 away from the visible part 220 .
  • the second connecting section 213 can be a structure similar to a headband to wrap around the user's head.
  • the second connecting section 213 can also be a An independent structure, for example, the headgear can be detachably connected (for example, clamped, glued, etc.) to the second connecting section 213 .
  • the concave section 212 can be located near the user's ear (for example, the front side, the upper side, etc.).
  • the wearable device 200 includes an acoustic output unit
  • the acoustic output unit can be located close to the user's ear without blocking the user's ear canal opening, so that the user can hear the sound from the acoustic output unit at the same time , can also receive the sound in the external environment. As shown in FIG.
  • the first microphone 230 can be located inside the concave section 212, and a sound inlet hole is opened on the side wall corresponding to the concave region, and the first microphone 230 passes through the sound inlet. The hole picks up the sound signal from the outside world.
  • the concave section 212 can be regarded as the housing structure of the first microphone.
  • the sound inlet hole may be located at the bottom of the downwardly recessed area in the concave section 212 .
  • the first microphone 230 can also be located in the outer area of the concave section 212 .
  • the first microphone 230 may be a relatively independent structure relative to the concave section 212 , and the housing structure of the first microphone 230 is connected to the side wall of the concave section 212 .
  • the shell structure of the first microphone 230 can be provided with a sound inlet, so that the internal components of the first microphone 230 can pick up external sound signals.
  • the position of the sound inlet provided on the shell structure of the first microphone 230 Reference may be made to the content of the sound inlet hole on the side wall of the concave section 212 above.
  • the first microphone 230 may be one microphone, or may be a microphone array composed of multiple microphones.
  • the wearable device 200 is not limited to the first microphone 230.
  • the wearable device 200 may include other microphones such as a second microphone and a third microphone.
  • setting multiple microphones for example, two microphones, three microphones, etc.
  • setting multiple microphones can further improve the call noise reduction effect.
  • Fig. 3 is a schematic structural diagram of another wearable device according to some embodiments of the present application.
  • the wearable device 300 shown in FIG. 3 is glasses.
  • the wearable device 300 may include two flow guiding structures 310 , a visual part 320 (ie, a spectacle frame or a lens), and a first microphone 330 .
  • the flow guide structure 310 can be regarded as a temple structure, one end of the flow guide structure 310 (that is, the first connecting part 311 ) is connected to the end of the visible part 320 , and the second of the two flow guide structures 310
  • the connecting section 313 fits with the user's left ear and right ear respectively.
  • the guide structure 310 When the user wears the wearable device 300 , the guide structure 310 is supported by the user's ear and the visual part 320 is supported by the user's nose bridge to realize wearing of the wearable device 300 .
  • the connection between the flow guiding structure 310 and the visible part 320 may include but not limited to a flexible connection such as a rotating connection or a telescopic connection, or a relatively fixed connection such as a clamping connection, a screw connection, or an integrated connection.
  • the structures of the first connecting section 311 shown in Figure 3, the concave section 312, the first microphone 330, etc. are similar to the structures of the first connecting section 211 shown in Figure 2, the concave section 212, the first microphone 230, etc. It is similar and will not be repeated here.
  • the above descriptions about the wearable device 200 and the wearable device 300 are only for illustration and description, and do not limit the scope of application of this specification.
  • various modifications and changes can be made to the wearable device 200 and the wearable device 300 under the guidance of this specification.
  • such modifications and changes are still within the scope of this specification.
  • the flow guide structure 210 of the wearable device 200 may be a temple structure
  • the flow guide structure 310 of the wearable device 300 may be a headband component.
  • FIG. 4 is a flow field diagram of different airflow directions provided according to some embodiments of the specification of the present application.
  • the height of the flow guide structure 410 increases gradually along the length direction of the flow guide structure 410 (the direction of the arrow x in Figure a in FIG. 4 ).
  • the height gradually decreases, and the slope of the plane (A shown in Figure a in Figure 4, hereinafter referred to as plane A) whose height gradually increases in the diversion structure 410 is smaller than that of the plane with gradually decreasing height (A in Figure a in Figure 4).
  • Shown B hereinafter referred to as the gradient of plane B).
  • the height of the flow guide structure 410 is the height of the guide flow structure 410 relative to the reference plane 411 in the z direction.
  • the slope is the ratio of the height of the plane of the guiding flow structure 410 relative to the reference plane 411 to the distance in the horizontal direction.
  • the flow guide structure 410 is arranged along the flow direction L1 of the airflow, wherein the flow velocity of the airflow is 10m/s, and the length direction of the flow guide structure 410 is consistent with the flow direction L1 of the airflow, or It is understood that the included angle between the flow direction L1 of the airflow and the reference plane 411 is 0°.
  • the flow guide structure 410 can change the flow direction of the airflow.
  • the airflow first flows along the outer surface of the part whose height gradually increases in the raised structure 412, and the part of the flow guide structure 410 whose height gradually increases can ensure that the airflow is relatively stable. flow, preventing the airflow from eddying and introducing additional noise.
  • Fig. 5 is a graph of flow rate variation provided according to some embodiments of the specification of the present application.
  • the abscissa (“x-coordinate (mm)” shown in FIG. 5 ) corresponds to the abscissa in FIG. 4
  • the ordinate represents flow velocity (m/s) relative to airflow at different positions.
  • Curve 51 (curve marked by "0° incoming flow” in Fig. 5 ) is the flow velocity change curve at different positions when the angle between the flow direction of airflow and reference plane 411 is 0°
  • curve 52 (“60° incoming flow” in Fig.
  • curve marked by “flow” is the flow velocity change curve at different positions when the angle between the flow direction of the airflow and the reference plane 411 is 60°
  • curve 53 is the flow rate of the airflow Flow velocity variation curves at different positions when the included angle between the flow direction and the reference plane 411 is 90°.
  • the air guide structure 410 can provide corresponding low flow velocity areas when facing the airflow in different incoming flow directions, but when the air guide structure 410 faces the airflow in different incoming flow directions, the low flow velocity area (eg, less than 2.2m/s) have certain differences.
  • the installation position of the microphone or the sound inlet hole corresponding to the microphone can be adaptively adjusted according to different application scenarios of the wearable device. For example, when a user wears a wearable device for running or cycling, the direction of the external airflow is mainly opposite to the direction of the user's movement.
  • the air guide structure 410 for example, the height of the air guide structure
  • the direction (for example, the direction of the arrow y shown in Figure a in FIG. 4 ) is perpendicular or approximately perpendicular to the direction of the user's movement, so as to ensure that the sound inlet corresponding to the microphone is in a low flow velocity area.
  • the embodiment of this specification also provides a flow guide structure, specifically refer to FIG. 6 to FIG. 12 and their corresponding contents.
  • Fig. 6 is a schematic diagram of a flow guide structure provided according to some embodiments of the specification of the present application.
  • the flow guide structure 610 may include a first connecting section 611 , a concave section 612 and a second connecting section 613 connected in sequence, wherein the concave section 612 has a downward depression relative to the flow guiding structure 610 .
  • the first connecting section 611 and the second connecting section 613 may be rod-shaped structures.
  • the first connection section 611 has a first end 6111 and a second end 6112, the first end 6111 is used to connect with the visible part of the wearable device, and the second end 6112 is connected with the second end in the concave section 612 away from the second end.
  • the second connecting section 613 has a third end 6131 and a fourth end 6132 , the third end 6131 is connected to an end of the concave section 612 away from the first connecting section 611 .
  • the concave section 612 may include a first connecting portion 6121 and a second connecting portion 6122, the first connecting portion 6121 is bent and connected to the second end 6112 of the first connecting section 611 and extends downwards, the second connecting portion 6121 The second connecting portion 6122 is bent and connected to the third end 6131 of the second connecting section 613 and extends downward.
  • One ends are connected to form a downwardly recessed area relative to the flow guiding structure 610 .
  • the distance between the first connecting part 6121 and the second connecting part 6122 is along the direction of the concave section 612
  • the concave direction tapers.
  • the distance between the first connecting portion 6121 and the second connecting portion 6122 refers to the distance between the opposite side walls of the first connecting portion 6121 and the second connecting portion 6122 along the length direction of the flow guiding structure 610 (in the figure "D" shown).
  • the shape of the concave segment 612 formed by the first connecting portion 6121 and the second connecting portion 6122 may be arc-shaped, quadrangular (eg, inverted trapezoidal), V-shaped, or other shapes. It should be noted that the shape of the concave section 612 is not limited to the above-mentioned shape, and can be any shape, as long as the first connecting portion 6121 and the second connecting portion 6122 form a downwardly recessed area relative to the flow guiding structure 610 . Regarding the specific shape of the concave section 612, reference may be made to FIG. 7 and its corresponding contents.
  • one or more downward recessed areas relative to the flow guide structure 610 can be formed by setting the first connecting section 611, the second connecting section 613, and the concave section 612, and the recessed areas can be in a specific gas flow direction. Provides a stable low flow area below.
  • the first connecting section 611 of the flow guide structure 610 can guide the gas to a position higher than the flow guide structure 610, so that the depression at the concave section 612
  • the area is a low velocity area.
  • the air flow will flow out from both sides of the vertical direction of the flow guide structure 610 in the concave section 612, and the concave section
  • the bottom of the recessed area in 612 is a stagnant area for air flow. Disposing the first sound inlet hole 630 corresponding to the first microphone in this area can reduce the influence of the external airflow on the first microphone.
  • the first microphone may be located inside the recessed section 612 .
  • the concave section 612 has a cavity, and the cavity communicates with the external environment through the first sound inlet hole 630, and the components of the first microphone (for example, a diaphragm, a transducing device, etc.) can be located in the cavity.
  • Section 212 can be considered as the housing of the first microphone.
  • the first microphone may be a separate component from the recessed section 612 .
  • the first microphone may include a shell, which is connected to the concave section 612, and components such as the diaphragm and the transducing device of the first microphone are located in the shell, and the shell includes a first sound inlet hole 630, External sound can act on the diaphragm of the first microphone through the first sound inlet hole 630 .
  • the first sound inlet hole 630 corresponding to the microphone may be located on the corresponding side wall of the recessed area.
  • the first sound inlet 630 corresponding to the first microphone may be located at the bottom of the concave area in the concave section 612 .
  • the height of the first sound inlet hole 630 relative to the bottom of the recessed area can be adjusted so that the first microphone is less affected by the external airflow.
  • the ratio of the distance from the first sound inlet hole 630 to the bottom of the recessed area to the distance from the second end portion 6112 to the bottom of the recessed area may range from 0-1.
  • the ratio of the distance from the first sound inlet hole 630 to the bottom of the recessed area to the distance from the second end portion 6112 to the bottom of the recessed area may range from 0 to 0.8.
  • the ratio of the distance from the first sound inlet hole 630 to the bottom of the recessed area to the distance from the second end portion 6112 to the bottom of the recessed area may range from 0 to 0.5. More preferably, the ratio of the distance from the first sound inlet hole 630 to the bottom of the recessed area to the distance from the second end portion 6112 to the bottom of the recessed area may range from 0-0.2. It should be noted that the distance from the first sound inlet 630 to the bottom of the recessed area refers to the minimum distance from the first sound inlet 630 to the plane where the bottom of the recessed area is located when the user wears the wearable device.
  • the distance from the second end 6112 to the bottom of the recessed area refers to the distance from the highest point of the second end 6112 to the plane where the bottom of the recessed area is located when the user wears the wearable device. It should be noted that, in some embodiments, the bottom of the recessed area can be flat, convex, concave or irregular. When the bottom of the recessed area is non-planar, the boundary between the first connecting portion 6121 and the second connecting portion 6122 and the bottom of the recessed area can be used as the plane where the bottom of the recessed area is located.
  • the wearable device may further include one or more second microphones, and the second sound inlet 632 corresponding to the second microphones may be located at the second connection section 613 .
  • the second sound inlet 632 corresponding to the second microphone may also be located at the second connecting portion 6122 of the concave section 612 .
  • the second sound inlet hole 632 corresponding to the second microphone may be located on the side wall of the second connecting portion 6122 corresponding to the recessed area.
  • the second microphone 623 may be located on a side of the second connecting portion 6122 away from the recessed area.
  • Fig. 7 is a schematic structural diagram of a flow guiding structure provided according to some embodiments of the present specification.
  • the concave section 712a is approximately V-shaped.
  • the height of the first end portion 7111 of the first connecting portion 711 relative to the bottom of the concave section 712a is not greater than the second The height of the end portion 7112 relative to the bottom of the concave segment 712a.
  • the height of the first end portion 7111 relative to the bottom of the concave section 712a refers to the distance D1 between the upper surface of the first end portion 7111 and the plane where the bottom of the concave section 712a is located.
  • the height of the second end portion 7112 relative to the bottom of the concave section 712a refers to the distance D2 between the upper surface of the second end portion 7112 and the plane where the bottom of the concave section 712a is located.
  • the plane where the bottom of the concave section 712 is located (indicated by dotted line O in FIG. 7 a , hereinafter referred to as plane O) is parallel or approximately parallel to the length direction of the flow guiding structure.
  • the height of the third end portion 7131 relative to the bottom of the concave section 712a is not smaller than the height of the fourth end portion 7132 relative to the bottom of the concave section 712a.
  • the height of the third end portion 7131 relative to the bottom of the concave section 712a refers to the distance D3 between the upper surface of the third end portion 7131 and the plane (plane O) where the bottom of the concave section 712a is located.
  • the height of the fourth end portion 7132 relative to the bottom of the concave section 712a refers to the distance D4 between the upper end surface of the fourth end portion 7132 and the plane (plane O) where the bottom of the concave section 712a is located.
  • the height of the second end portion 7111 relative to the bottom of the concave section 712a is not less than the first
  • the height of the three ends relative to the bottom of the concave section, that is to say, the distance D2 is not less than the distance D3.
  • the guide structure shown in Figure b, c, d in Figure 7 is roughly the same as the guide structure in Figure a in Figure 7, the difference lies in the structure of the concave section.
  • the concave section 712b has an inverted trapezoidal structure, so that the concave section 712b forms a low flow velocity area similar to an inverted trapezoidal area.
  • the diversion structure shown in c, the concave section 712c is an arc-shaped structure, so that the concave section 712c forms an arc-shaped low flow velocity area.
  • the concave section 712d has a W-shaped structure, so that the concave section 712d forms a W-shaped low flow rate area.
  • Fig. 8 is a flow field diagram of air flow in different flow directions according to some embodiments of the specification of the present application.
  • the lower concave section is a V-shaped structure as an example.
  • the flow guide structure is arranged along the flow direction of the airflow, wherein the flow rate of the airflow is 10m/s, and the length direction of the flow guide structure Consistent with the flow direction of the airflow.
  • the first connecting section 811 of the air guide structure can change the flow direction of the airflow.
  • the flow direction of the airflow is changed under the action of the first end of the first connecting section 811, acting on the first end of the first connecting section 811
  • the airflow part flows along the position above the first connecting section 811, and when the airflow passes through the concave section 812, it continues to flow along the length direction of the flow guide structure, thereby forming a low flow velocity area 814 in the concave area of the concave section 812.
  • Fig. 9 is a graph showing changes in flow rate according to some embodiments of the present application.
  • the abscissa represents the length (mm), where the length refers to the path that the object moves along the side wall surface corresponding to the concave region in the concave section starting from the second end 8112 (shown in FIG. 8 ).
  • length. and the ordinate represents the air flow velocity (m/s) corresponding to different distances from the second end.
  • Curve 91 (the curve marked by "parallel incoming flow” in Fig. 9) is the flow velocity variation curve at different positions when the flow direction of the airflow is parallel to the length direction of the flow guide structure, and curve 92 ("60° incoming flow velocity in Fig.
  • the airflow velocity in this area is much smaller than the velocity of the external airflow (10m/s).
  • the airflow velocities in different incoming flow directions have minimum values.
  • the recessed area of the downward concave section in the flow guide structure can provide a position-specific low flow velocity area when facing the airflow in different incoming flow directions, and at the same time, the flow guide structure can provide a location-specific low flow area when facing different incoming flow directions.
  • the minimum value of the airflow velocity in different incoming flow directions is also in a specific area.
  • the sound inlet corresponding to the first microphone can be located in the corresponding part of the concave section of the concave area. at the side wall.
  • the sound inlet corresponding to the first microphone can be located at 0mm-45mm away from the second end of the first connecting section.
  • the sound inlet hole corresponding to the first microphone may be located at a distance of 5mm-42mm from the second end of the first connecting section.
  • the sound inlet hole corresponding to the first microphone may be located at a distance of 20mm-30mm from the second end of the first connecting section. More preferably, the sound inlet hole corresponding to the first microphone may be located at a distance of 23mm-27mm from the second end of the first connecting section.
  • the sound inlet corresponding to the first microphone may be located at a distance of 25 mm from the second end of the first connecting section.
  • the range of the distance from the second end in the first connecting section here means that the object starts from the second end 8112 (shown in FIG. 8 ) and moves along the side wall surface corresponding to the concave area in the concave section. path length.
  • the ratio of the size of the sound inlet and the bottom of the recessed area to the length of the first connecting part may range from 0-1.
  • the ratio of the size of the sound inlet hole and the bottom of the recessed area to the length of the first connecting portion may range from 0 to 0.5.
  • the ratio of the size of the sound inlet hole and the bottom of the recessed area to the length of the first connecting portion may range from 0 to 0.2.
  • the ratio range of the size of the sound inlet and the bottom of the recessed area to the length of the second connection part can refer to the size of the sound inlet and the bottom of the recessed area and the first connection The range of the ratio of the length of the section.
  • the dimension from the sound inlet corresponding to the first microphone to the bottom of the recessed area refers to the path length of the object moving from the sound inlet to the bottom of the recessed area starting from the sound inlet.
  • the sidewall of the first connection part or the second connection part corresponding to the recessed area is a plane or a curved surface.
  • Fig. 10A is a three-dimensional flow field distribution diagram when parallel to the incoming flow direction according to some embodiments of the present application
  • Fig. 10B is an airflow velocity distribution at different positions in the concave region when parallel to the incoming flow direction is provided according to some embodiments of the present application picture.
  • the air guide structure is arranged along the flow direction of the air flow, wherein the flow velocity of the air flow is 10m/s, the length direction of the air guide structure (X direction shown in Fig. 10A) is consistent with the flow direction of the air flow, and the guide One side of the flow structure along the width direction (the Y direction shown in FIG. 10A ) is in contact with the wall surface 1010, and the other side of the flow guide structure along the width direction is exposed to the airflow environment 1020 to simulate a user wearing a wearable device time scene.
  • the Y direction shown in FIG. 10A is used to represent the height direction of the flow guiding structure.
  • the wall surface 1010 will not extend infinitely, and the airflow at the wall surface 1010 will overflow into the airflow environment 1020 along the width direction of the concave section, resulting in The flow of gas in the recessed area, but the area close to the first connecting portion 1021 and the second connecting portion 1022 in the lower recessed section still has a low flow velocity area (ie, the darker gray area of the recessed area in FIG. 10A ).
  • the "length (mm)" coordinate marked in Fig. 10B represents the length of the concave segment along the longitudinal direction
  • FIG. 10B represents the distance from the wall 1010
  • the "velocity (m/s)" coordinate marked in indicates the air velocity at different positions of the concave section.
  • near the surface of the first connecting part 1021 near the surface of the second connecting part 1022 and the bottom of the recessed region still have a low flow velocity region 1040 , and the closer to the wall 1010 , the lower the velocity of the airflow.
  • the surface of the second connecting portion 1022 has a maximum peak value of the airflow velocity, and the maximum peak value does not exceed 2 m/s.
  • Fig. 11A is a three-dimensional flow field distribution diagram at a 60° incoming flow direction provided according to some embodiments of the present application
  • Fig. 11B is an airflow at different positions in a concave region at a 60° incoming flow direction provided according to some embodiments of the present application Velocity profile.
  • the flow velocity of the airflow is 10m/s
  • the angle between the length direction of the flow guide structure (the X direction shown in Fig. 11A (Y direction shown in 11A) is in contact with the wall 1010, and the other side of the air guide structure along the width direction is exposed to the airflow environment 1020 to simulate the scene when the user wears the wearable device.
  • the Y direction shown in FIG. 11A is used to indicate the height direction of the flow guiding structure.
  • the wall surface 1010 will not extend infinitely, and the airflow at the wall surface 1010 will overflow into the airflow environment 1020 along the width direction of the concave section, resulting in The flow of gas in the recessed area, but the area close to the first connection part 1021 and the second connection part 1022 in the lower recessed section still has a low flow velocity area (ie, the gray area of the recessed area in FIG. 11A is darker).
  • the "length (mm)" coordinate marked in Fig. 11B represents the length of the concave segment along the longitudinal direction
  • 11B represents the distance from the wall 1010, Fig. 11B
  • the "velocity (m/s)" coordinate marked in indicates the air velocity at different positions of the concave section. 11A and 11B , near the surface of the first connecting part 1021 , near the surface of the second connecting part 1022 and near the bottom of the recessed region, there is a low flow velocity region 1050 , and the closer to the wall 1010 , the lower the velocity of the airflow.
  • the maximum flow velocity near the surface of the first connecting portion 1021 does not exceed 3.5 m/s.
  • Fig. 12A is a three-dimensional flow field distribution diagram at 90° incoming flow direction provided according to some embodiments of the present application
  • Fig. 12B is the airflow at different positions in the concave region at 90° incoming flow direction provided according to some embodiments of the present application Velocity profile.
  • the flow velocity of the airflow is 10m/s
  • the angle between the length direction of the flow guide structure (the X direction shown in Fig. 12A) is in contact with the wall 1010
  • the other side of the air guide structure along the width direction is exposed to the airflow environment 1020 to simulate the scene when the user wears the wearable device.
  • the Y direction shown in FIG. 12A is used to represent the height direction of the flow guiding structure.
  • the wall surface 1010 will not extend infinitely, and the airflow at the wall surface 1010 will overflow into the airflow environment 1020 along the width direction of the concave section, resulting in The flow of gas in the recessed area, but the area near the first connecting portion 1021 and the second connecting portion 1022 in the lower recessed section still has a low flow velocity area (ie, the darker gray area of the recessed area in FIG. 12A ).
  • the "length (mm)" coordinate marked in Fig. 12B represents the length of the concave segment along the longitudinal direction
  • FIG. 12B represents the distance from the wall 1010
  • Fig. 12B The "velocity (m/s)" coordinate marked in indicates the air velocity at different positions of the concave section. Referring to FIG. 12A and FIG. 12B , the surface close to the first connection part 1021 , the surface of the second connection part 1022 and the bottom area of the recessed area still have a low flow velocity area 1210 , and the closer to the wall surface 1010 , the lower the velocity of the airflow.
  • the concave section of the flow guide structure can provide a low flow velocity area, which has a better effect of reducing the airflow velocity.
  • the sound inlet corresponding to the first microphone may be located at the bottom of the first connection part, the second connection part or the depression area corresponding to the depression in the concave section .
  • the sound inlet hole corresponding to the first microphone may be located in the concave area of the lower concave section near the first side.
  • the sound inlet corresponding to the first microphone may be located on the first connecting part, the second connecting part corresponding to the recessed area, or the bottom of the recessed area near the first side part.
  • the distance between the sound inlet hole corresponding to the first microphone and the first side part may be 0mm-10mm.
  • the distance between the sound inlet hole corresponding to the first microphone and the first side part may be 0.2mm-7mm.
  • the distance between the sound inlet hole corresponding to the first microphone and the first side part may be 0.3mm-5mm. More preferably, the distance between the sound inlet hole corresponding to the first microphone and the first side part may be 0.3mm-3mm. Further preferably, the distance between the sound inlet hole corresponding to the first microphone and the first side part may be 0.5mm-1.5mm. In some embodiments, the quality of the sound signal collected by the first microphone can also be improved by adjusting the ratio of the distance between the sound inlet hole and the first side portion to the dimension of the concave section in its width direction. In some embodiments, the ratio of the distance between the sound inlet hole and the first side portion to the dimension of the concave section in its width direction may be 0.01-0.9.
  • the ratio of the distance between the sound inlet hole and the first side portion to the dimension of the concave section in its width direction may be 0.02-0.7. Further preferably, the ratio of the distance between the sound inlet hole and the first side portion to the dimension of the concave section in its width direction may be 0.03-0.5. More preferably, the ratio of the distance between the sound inlet hole and the first side portion to the dimension of the concave section in its width direction may be 0.04-0.3. More preferably, the ratio of the distance between the sound inlet hole and the first side portion to the dimension of the concave section in its width direction may be 0.05-0.2. It should be noted that the distance between the sound inlet hole and the first side portion refers to the distance between the sound inlet hole and the first side portion along the width direction of the flow guide structure (for example, the Y direction in FIG. 10A ).
  • the wearable device may also include a sound guide structure for transmitting external sound, the sound guide structure is connected to the concave section, the sound guide structure is an internal through structure, and the sound guide structure One end communicates with the external environment, and the first microphone is located at the other end of the sound guiding structure.
  • the sound guiding structure may be a separate component from the concave section.
  • a cavity for the sound guiding structure is opened on the side wall corresponding to the concave region of the concave section, and the sound guiding structure is located in the cavity.
  • the sound guide structure can be integrated with the concave section.
  • the sound guide cavity is opened on the side wall corresponding to the concave area of the concave section.
  • Fig. 13 is a structural schematic diagram of a sound guiding structure provided according to some embodiments of the present specification.
  • the sound guiding structure 1300 is an internally connected structure.
  • the sound guiding structure 1300 is provided with a plurality of sound guiding channels inside, and the plurality of sound guiding channels are bent and connected in turn.
  • the sound guiding channel at the top of the sound guiding structure 1300 communicates with the external environment, and the first microphone is located at the sound guiding channel at the bottom of the sound guiding structure 1300 .
  • the airflow forms a vortex when it encounters the bending joint of the two sound-guiding channels. At this time, the kinetic energy of the airflow is consumed.
  • the shape of the sound guiding channel 1310 may be a regular shape such as a cylinder, a polygon (for example, a cuboid, a triangular prism), or a terrace. In some embodiments, the sound guiding channel 1310 may also be irregularly shaped, for example, trumpet-shaped.
  • the bending angle of each sound guiding channel in the sound guiding structure 1300 is set to a specific range of angles.
  • the bending angle of each sound guiding channel in the sound guiding structure 1300 may be 65°-135°.
  • the bending angle of each sound guiding channel in the sound guiding structure 1300 may be 70°-120°.
  • the bending angle of each sound guiding channel in the sound guiding structure 1300 may be 85°-95°. More preferably, the bending angle of each sound guiding channel in the sound guiding structure 1300 may be 90°.
  • the bending angles of the sound guiding channels can be the same or different, and the bending angles of the sound guiding channels in the sound guiding structure 1300 are not limited to the above range, and can also be greater than 135° or less than 65°.
  • the cross-sectional shape of the sound guiding channel may be polygonal (eg, triangle, quadrangle, pentagon, etc.), circle, semicircle, ellipse, semi-ellipse, and the like.
  • the dimensions of different positions of the sound guiding channel may be the same or different.
  • the sound guiding channel may be a cylindrical channel, and at this time, the radius of each position of the sound guiding channel is the same.
  • the sound guiding channel may be trumpet-shaped, and at this time, the radius of the sound guiding channel gradually increases or decreases.
  • the shapes of the multiple acoustic channels may be the same or different.
  • the bends between the sound guide channels can be chamfered so that the airflow can generate turbulent flow at the bends.
  • the total length of the sound-guiding channels in the sound-guiding structure 1300 (the sum of the lengths of each sound-guiding channel) can also be adjusted to ensure the wind noise reduction effect of the sound-guiding structure.
  • the total length of the acoustic channel may be greater than 10 mm.
  • the total length of the sound guiding channel may be greater than 13 mm.
  • the total length of the sound guiding channel may be greater than 17mm.
  • the total length of the sound guiding channel may be greater than 20mm.
  • the total length of the sound guiding channel may be 20.4mm.
  • the wind noise reduction effect of the sound guiding structure can also be ensured by adjusting the number of bends between the sound guiding channels in the sound guiding structure 1300 .
  • the number of bends between sound guiding channels may be greater than five. In some embodiments, the number of bends between the sound guiding channels may be greater than 8. In some embodiments, the number of bends between the sound guiding channels may be greater than 10.
  • Fig. 14 is a structural schematic diagram of a sound guiding structure provided according to some embodiments of the present specification.
  • the sound guiding structure 1400 may include a cavity 1410 , and the cavity 1410 communicates with the outside through a connection hole 1420 .
  • the number of cavities 1410 may be multiple, and the multiple cavities 1410 are distributed at intervals along the length direction of the sound guiding structure 1400 , wherein adjacent cavities 1410 may also be communicated through connection holes 1420 .
  • the dimension of the cavity 1410 along the width direction of the sound guiding structure 1400 is larger than the dimension of the connecting hole 1420 along the width direction of the sound guiding structure 1400, when the external airflow enters the sound guiding structure 1400, the airflow meets the connecting hole 1420 After the connection with the cavity 1410, due to the sudden change in volume, the airflow forms a vortex structure, which consumes the kinetic energy of the airflow. When the airflow reaches the first microphone, the speed of the airflow is greatly reduced, thereby further reducing the impact of the external airflow on the first microphone. The effect of the acquired sound signal.
  • a single cavity 1410 may have a volume greater than 4 mm3.
  • the volume of a single cavity 1410 may be greater than 10mm3.
  • the volume of a single cavity 1410 may be greater than 20mm3. More preferably, the volume of a single cavity 1410 may be larger than 30mm3. More preferably, the volume of a single cavity 1410 may be greater than 40mm3.
  • a single cavity 1410 may have a volume of 40 mm3.
  • a single cavity 1410 may correspond to a surface area greater than 12mm2.
  • the surface area corresponding to a single cavity 1410 may be greater than 30mm2. More preferably, the surface area corresponding to a single cavity 1410 may be larger than 60mm2. More preferably, the surface area corresponding to a single cavity 1410 may be greater than 70mm2. For example, a single cavity 1410 may correspond to a surface area of 72mm2.
  • the diameter of the connection hole 1420 may be 0.2mm-2mm, and the length of the connection hole 1420 may be less than 5mm. In some embodiments, the diameter of the connection hole 1420 may be 0.4mm-1.8mm, and the length of the connection hole 1420 may be less than 3mm.
  • the diameter of the connection hole 1420 may be 1.1 mm, and the length of the connection hole 1420 may be 2 mm.
  • the cross-sectional shape of the cavity 1410 may be a polygon (for example, a triangle, a quadrangle, a pentagon, etc.), a circle, a semicircle, an ellipse, a semi-ellipse, and the like.
  • the sound guide structure 1300 shown in FIG. 13 and the sound guide structure 1400 shown in FIG. 14 are not limited to the installation of the first microphone, other microphones, for example, the sound guide structure 1300 can also be set at the second microphone Or the sound guiding structure 1400 .
  • the sound guiding structure may also be a combination of the sound guiding structure 1300 shown in FIG. 13 and the sound guiding structure 1400 shown in FIG. 14 .
  • a mesh structure (not shown) may also be provided at the end or inside of the sound-guiding structure (for example, the sound-guiding structure 1300 and the sound-guiding structure 1400) to further reduce the impact of wind noise on the first microphone. Impact.
  • the mesh structure can also prevent external dust and particles from entering the microphone.
  • the wearable device may include a first microphone and a second microphone, wherein, when the user wears the wearable device, the connection line between the first microphone and the second microphone points to the direction of the user's mouth, and the connection between the first microphone and the user The distance between the mouth is smaller than the distance between the second microphone and the mouth of the human body.
  • the first microphone can mainly pick up the sound signal when the user speaks
  • the second microphone can also pick up the sound signal when the user speaks.
  • the processor of the wearable device can determine the first microphone and the second microphone through an algorithm. Among the sound signals picked up by the microphone, the sound signal when the user speaks is used to filter other sound signals (for example, wind noise).
  • the distance between the first microphone and the second microphone may be 5mm-70mm.
  • the distance between the first microphone and the second microphone may be 10mm-50mm. More preferably, the distance between the first microphone and the second microphone may be 25mm-30mm.
  • the vibration direction of the diaphragm in the first microphone may be substantially perpendicular to the vibration direction of the diaphragm in the second microphone.
  • the substantially vertical means that the vibration direction of the diaphragm in the first microphone and the vibration direction of the diaphragm in the second microphone can be 90°, or an angle close to 90°, for example, 75°, 80°, 95° , 100°, etc. As shown in FIG.
  • the first sound inlet hole 153 corresponding to the first microphone may be located at the side wall corresponding to the concave area in the concave section 1512 .
  • the first sound inlet 153 corresponding to the first microphone may be located at the first connection portion, the second connection portion or the connection between the two in the concave section 1512 .
  • Wind noise in the sound signal, the vibration direction of the diaphragm of the first microphone and the direction of the diaphragm vibration of the second microphone are set vertically or approximately vertically, and the microphone can be further processed based on the correlation of the wind noise through an algorithm (for example, The wind noise picked up by the first microphone and the second microphone).
  • the second sound inlet 154 corresponding to the second microphone can be located at the second connecting section 1513, so that when the user wears the wearable device, the first sound inlet 153 corresponding to the first microphone corresponds to the second microphone.
  • the connection direction of the second sound inlet hole 154 points to the user's mouth.
  • the second sound inlet 154 may also be located at the concave section 1512 .
  • the second sound inlet hole 154 is located on a side of the second connecting portion of the concave section 1512 away from the first sound inlet hole 153 .
  • the second sound inlet hole 154 may also be located at the side wall of the second connecting portion corresponding to the concave area of the lower concave section 1512 .
  • a three-dimensional coordinate system is established with any point on the user's head as the origin, wherein the x-axis in the three-dimensional coordinate system is parallel to the horizontal plane, the z-axis is perpendicular to the horizontal plane, and the y-axis is perpendicular to the x-axis and z-axis.
  • the length direction of the sound guide structure can be regarded as the x-axis direction
  • the height direction of the sound guide structure can be regarded as the z-axis direction
  • the width direction of the sound guide structure can be regarded as the y-axis direction.
  • the wearable device may further include an acoustic output unit 155 , and the acoustic output unit 155 may be located at the concave section 1512 .
  • the acoustic output unit 155 may be located on the outer surface of the concave section 1512 .
  • the acoustic output unit 155 may be located on the side of the concave section 1512 that is in contact with the user.
  • the acoustic output unit 155 is an air conduction speaker
  • the acoustic output unit 155 may be located on a side of the concave section 1512 that is not in contact with the user.
  • the acoustic output unit 155 may be located inside the concave section 1512 .
  • the concave section 1512 there is an accommodating bin (not shown in FIG. 15 ) for placing the acoustic output unit 155 , and the acoustic output unit 155 can be located in the accommodating bin.
  • the concave section 1512 can be used as the housing of the acoustic output unit 155, and other parts of the acoustic output unit 155 (for example, magnetic circuit structure, diaphragm, etc.) can be located in the concave section.
  • other parts of the acoustic output unit 155 for example, magnetic circuit structure, diaphragm, etc.
  • the acoustic output unit 155 may include a diaphragm and a magnetic circuit structure (not shown in FIG. 15 ), the diaphragm is connected to the voice coil, and the voice coil extends into In the magnetic gap of the magnetic circuit structure, the magnetic circuit structure is connected to the housing (or the concave section 1512) of the acoustic output unit 155, and the side of the diaphragm facing away from the magnetic circuit structure forms the front of the acoustic output unit 155, and the magnetic circuit structure is back The side facing the diaphragm forms the rear of the acoustic output unit 155, and the diaphragm vibrates to cause the acoustic output unit to radiate sound outwards from the front and rear thereof, respectively.
  • the housing of the acoustic output unit 155 may include at least two sound guide holes (not shown in FIG. 15 ), and the sound guide holes may include a first sound guide hole (also called the sound outlet) and the second sound guide hole (also called the pressure relief port), the first sound guide hole is used to output the sound emitted from the front of the acoustic output unit 155, and the second sound guide hole can be used for the acoustic output
  • the sound emitted from the back of the unit 155, the phase of the sound output by the first sound guide hole and the phase of the sound output by the second sound guide hole can be regarded as opposite, so that the phase of the sound output by the first sound guide hole and the second sound guide hole
  • the output sound can build a dipole.
  • the first sound guide hole is close to the user's ear canal opening, and the second sound guide hole faces away from the user's ear canal opening, so that the acoustic output unit 155 has a better acoustic output effect.
  • the number of the first sound guide hole and the second sound guide hole can be one or more.
  • the listening effect and sound leakage reduction effect of the wearable device can be further improved by adjusting parameters such as the number, size, position, and acoustic resistance of the first sound guide hole or the second sound guide hole.
  • the first microphone plays the main sound pickup function.
  • the vibration of the diaphragm of the first microphone The direction is perpendicular or substantially perpendicular to the vibration direction of the diaphragm of the acoustic output unit.
  • the first microphone or the second microphone is located in an area least affected by the acoustic output unit, such as an acoustic zero point area of the acoustic output unit.
  • Fig. 17 are sound field radiation diagrams of the acoustic output unit provided according to some embodiments of the present application, wherein Fig. 17 is a sound field radiation diagram at the angle of arrow M in Fig. 16 .
  • the acoustic zero point area of the acoustic output unit 1601 is a darker area (area 1610 ) in the figure.
  • the housing of the acoustic output unit 1601 may include at least two sound guide holes, and the sound guide holes may include a first sound guide hole 1602 (also called a sound outlet) and a second sound guide hole 1603 (also called a leak outlet).
  • the first sound guide hole 1602 is used to output the sound from the front of the acoustic output unit 1601
  • the second sound guide hole 1603 can be used to output the sound from the back of the acoustic output unit 1601
  • the sound output from the first sound guide hole 1602 The phase of the sound output from the second sound guide hole 1603 can be regarded as opposite, so that the sound output from the first sound guide hole 1602 and the sound output from the second sound guide hole 1603 can construct an acoustic dipole and form Acoustic null region 1610 .
  • the positions of the first microphone and the second microphone may be selected and determined based on the acoustic null area of the acoustic output unit.
  • the possible beneficial effects may be any one or a combination of the above, or any other possible beneficial effects.
  • numbers describing the quantity of components and attributes are used. It should be understood that such numbers used in the description of the embodiments use the modifiers "about”, “approximately” or “substantially” in some examples. grooming. Unless otherwise stated, “about”, “approximately” or “substantially” indicates that the stated figure allows for a variation of ⁇ 20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximations that can vary depending upon the desired characteristics of individual embodiments. In some embodiments, numerical parameters should take into account the specified significant digits and adopt the general digit reservation method. Although the numerical ranges and parameters used in some embodiments of the present application to confirm the breadth of the scope are approximate values, in specific embodiments, such numerical values are set as precisely as practicable.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Telephone Set Structure (AREA)

Abstract

本申请提供一种可穿戴设备,该可穿戴设备包括导流结构,被配置为佩戴于用户的头部,其中,所述导流结构包括:第一连接段、第二连接段和下凹段,所述第一连接段、所述下凹段和所述第二连接段依次连接,所述下凹段相对于所述导流结构具有向下的凹陷;以及第一麦克风,被配置为收集用户说话的声音信号,所述第一麦克风位于所述下凹段处。

Description

一种可穿戴设备 技术领域
本申请涉及可穿戴设备技术领域,特别涉及一种可穿戴设备。
背景技术
随着电子设备日益发展,与人们生活联系愈发紧密,很多人在户外活动或者进行运动时会佩戴具有麦克风的电子设备(例如,耳机、手机、智能眼镜等)。但是用户在进行跑步、骑行等运动中,或者户外大风天气时,电子设备中麦克风的收音孔位置有较大的气流速度,在通话过程中会有非常明显的风噪,甚至掩盖掉语音内容,严重影响通话效果和用户体验。
基于上述问题,本申请提供一种可穿戴设备,该可穿戴设备具有较佳的佩戴体验以及较好的降风噪效果。
发明内容
本申请实施例提供一种可穿戴设备,包括:导流结构,被配置为佩戴于用户的头部,其中,所述导流结构包括:第一连接段、第二连接段和下凹段,所述第一连接段、所述下凹段和所述第二连接段依次连接,所述下凹段相对于所述导流结构具有向下的凹陷;以及第一麦克风,被配置为收集用户说话的声音信号,所述第一麦克风位于所述下凹段处。
在一些实施例中,所述第一麦克风位于所述下凹段中向下凹陷的区域的底部。
在一些实施例中,所述第一连接段包括第一端部和第二端部,所述第二端部与所述下凹段连接,所述第一端部相对所述下凹段的底部的高度不大于所述第二端部相对于所述下凹段的底部的高度。
在一些实施例中,所述第二连接段包括第三端部和第四端部,所述第三端部与所述下凹段连接;所述第三端部相对所述下凹段的底部的高度不小于所述第四端部相对于所述下凹段的底部的高度。
在一些实施例中,所述第二端部相对所述下凹段的底部的高度不小于所述第三端部相对于所述下凹段的底部的高度。
在一些实施例中,所述下凹段包括第一连接部和第二连接部,所述第一连接部与所述第一连接段弯折连接并向下延伸,所述第二连接部与所述第二连接段弯折连接并向下延伸,所述第一连接部远离所述第一连接段的一端与所述第二连接部远离所述第二连接段的一端连接。
在一些实施例中,所述第一连接部与所述第二连接部的间距沿所述下凹段的凹陷方向渐缩。
在一些实施例中,还包括用于传递外部声音的导声结构,所述导声结构与所述下凹段连接,所述导声结构为内部贯通的结构,所述导声结构的一端与外部环境连通,所述第一麦克风位于所述导声结构的另一端。
在一些实施例中,所述导声结构内部设有多个导声通道,所述多个导声通道依次弯折连通。
在一些实施例中,所述导声结构包括腔体,所述腔体通过连接孔与外部连通。
在一些实施例中,所述导声结构包括多个腔体,所述多个腔体沿所述导声结构的长度方向间隔分布,相邻的所述腔体之间通过连接孔连通;所述腔体沿导声结构宽度方向的尺寸大于所述连接孔沿导声结构宽度方向的尺寸。
在一些实施例中,所述第二连接段上设有第二麦克风。
在一些实施例中,当用户佩戴所述可穿戴设备时,所述第一麦克风与所述第二麦克风的连线指向用户嘴部方向。
在一些实施例中,所述第一麦克风中振膜的振动方向与所述第二麦克风中振膜的振动方向基本垂直。
在一些实施例中,所述第一麦克风与所述第二麦克风的距离为5mm-70mm。
在一些实施例中,还包括声学输出单元,所述声学输出单元位于所述下凹段处。
在一些实施例中,所述第一麦克风的振膜的振动方向与所述声学输出单元的振膜的振动方向基本垂直。
在一些实施例中,所述可穿戴设备的所述第一麦克风或第二麦克风位于所述声学输出单元的声学零点区域。
在一些实施例中,所述导流结构包括第一导流结构和第二导流结构,所述第一导流结构和所述第二导流结构分别用于架设在用户的左耳和右耳。
在一些实施例中,所述可穿戴设备还包括可视件,所述可视件与所述第一导流结构或所述第二导流结构的第一连接段连接。
附图说明
图1是根据本申请一些实施例所示的可穿戴设备的示例性框架图;
图2是根据本申请一些实施例所示的一种可穿戴设备的结构示意图;
图3是根据本申请一些实施例所示的另一种可穿戴设备的结构示意图;
图4是根据本申请说明书一些实施例提供的不同气流方向的流场图;
图5是根据本申请说明书一些实施例提供的流速变化曲线图;
图6是根据本申请说明书一些实施例提供的导流结构的示意图;
图7是根据本说明书一些实施例提供的导流结构的结构示意图;
图8是根据本申请说明书一些实施例提供的不同流向的气流流场图;
图9是根据本申请说明书一些实施例提供的流速变化曲线图;
图10A是根据本申请一些实施例提供的平行来流方向时的三维流场分布图;
图10B是根据本申请一些实施例提供的平行来流方向时的凹陷区域中不同位置处的气流速度分布图;
图11A是根据本申请一些实施例提供的60°来流方向时的三维流场分布图;
图11B是根据本申请一些实施例提供的60°来流方向时的凹陷区域中不同位置处的气流速度分布图;
图12A是根据本申请一些实施例提供的90°来流方向时的三维流场分布图;
图12B是根据本申请一些实施例提供的90°来流方向时的凹陷区域中不同位置处的气流速度分布图;
图13是根据本说明书一些实施例提供的导声结构的结构示意图;
图14是根据本说明书一些实施例提供的导声结构的结构示意图;
图15是根据本说明书一些实施例提供的用户佩戴可穿戴设备时的示意图;
图16是根据本说明书一些实施例提供的声学输出单元的声场辐射图;
图17是根据本说明书一些实施例提供的声学输出单元的另一声场辐射图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模块”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本说明书实施例描述了一种可穿戴设备。在一些实施例中,该可穿戴设备可以包括导流结构,被配置为佩戴于用户的头部。例如,可穿戴设备为眼镜时,导流结构可以为眼镜腿或其局部结构。在一些实施例中,导流结构可以包括第一连接段、第二连接段和下凹段,第一连接段、下凹段和第二连接段依次连接,下凹段位于第一连接段和第二连接段之间,其中,下凹段相对于导流结构具有向下的凹陷。在一些实施例中,可穿戴设备还可以包括第一麦克风,被配置为收集用户说话时产生的声音信号,第一麦克风位于下凹段处。在一些实施例中,第一麦克风可以位于下凹段内部,第一麦克风可以通过下凹段处的进声孔拾取用户说话时的声音信号。在一些实施例中,可穿戴设备可以为具有音频功能的电子设备(例如,眼镜、智能头盔等),当用户佩戴可穿戴设备进行运动或处于大风天气时,导流结构可以改变气流的流向,并在相对于导流结构向下凹陷的下凹段生成低流速区域,将第一麦克风或者进声孔设置在下凹段处,可以显著降低外部气流对麦克风的影响,从而 保证第一麦克风采集用户说话时的声音信号的质量,提高用户体验感。一方面,本说明书实施例提供的可穿戴设备中的导流结构具有较好的抗风噪效果,例如,仅采用双气导麦克风就可以达到常规多麦克风阵列或者骨传导麦克风的降噪效果。另一方面,本说明书实施例提供的可穿戴设备的体积较小,仅需要将可穿戴设备(例如,镜腿)的局部结构调整为导流结构类似的结构即可。除此之外,本说明书实施例提供的可穿戴设备通过物理方法降低风噪,对语音信号(例如,用户讲话时的声音信号)的损害较小,也给后续算法处理留出更多空间。
图1是根据本申请一些实施例所示的可穿戴设备的示例性框架图。如图1所示,可穿戴设备100可以包括导流结构110和可视件120和麦克风130。
在一些实施例中,可穿戴设备100可以包括眼镜、智能手环、耳机、助听器、智能头盔、智能手表、智能服装、智能背包、智能配件等,或其任意组合。例如,可穿戴设备100可以是功能型的近视眼镜、老花镜、骑行眼镜或太阳镜等,也可以是智能化的眼镜,例如具有耳机功能的音频眼镜,该可穿戴设备100还可以是头盔、增强现实(Augmented Reality,AR)设备或虚拟现实(Virtual Reality,VR)设备等头戴式设备。在一些实施例中,增强现实设备或虚拟现实设备可以包括虚拟现实头盔、虚拟现实眼镜、增强现实头盔、增强现实眼镜等或其任何组合。例如,虚拟现实设备和/或增强现实设备可以包括Google Glass、Oculus Rift、Hololens、Gear VR等。
导流结构110可以为佩戴于用户头部的部件。在一些实施例中,导流结构110可以是镜腿或头带等部件。例如,导流结构110为镜腿,则该可穿戴设备100可以包括可视件120和两个导流结构110,且两个导流结构110分别连接于可视件的两端,并分别架设于对应的左耳和右耳。又例如,导流结构110为头带类部件,则头带类部件可进行调整以适应用户的头型,且其上也可设置有多种功能部件,则可穿戴设备100包括一可视件和一导流结构110,导流结构110的两端分别连接于可视件的两端。需要注意的是,导流结构110的结构可以根据可穿戴设备100的类型或具体应用场景进行适应性调整。在一些实施例中,导流结构110可以包括第一连接段、第二连接段和下凹段,其中,第一连接段、下凹段和第二连接段依次连接,下凹段位于第一连接段和第二连接段之间,下凹段相对于导流结构110具有向下的凹陷。一方面,导流结构110可以作为可穿戴设备100的导流结构,可穿戴设备100可以通过该导流结构110佩戴于用户的头部。另一方面,导流结构110可以改变气流的流向,并在相对于导流结构110向下凹陷的下凹段生成低流速区域,将麦克风130设置在下凹段可以显著降低外部气流对用户讲话时的声音信号的影响,提高用户的体验感。
在一些实施例中,可穿戴设备100还可以包括可视件120。可视件120用于架设在用户身体的某个部位,例如,眼部等位置。导流结构110可以与可视件120的一端或两端连接,用于保持可穿戴设备100与用户稳定接触。在一些实施例中,可视件120可以是镜片、显示屏或具有镜片作用的显示屏。在一些实施例中,可视件120还可以是镜片及其辅助部件或显示屏及其辅助部件,该辅助部件可以是镜框或支架等部件。在一些实施例中,可视件120也可以是不含有镜片或显示屏的辅助部件。
麦克风130可以将声音信号转换为含有声音信息的信号。在一些实施例中,麦克风130可 以包括一个或多个气导麦克风。在一些实施例中,麦克风130可以包括一个或多个骨传导麦克风。在一些实施例中,麦克风130可以同时包括一个或多个气传导麦克风与一个或多个骨传导麦克风的组合。在一些实施例中,麦克风130的数量为多个时,至少一个麦克风(例如,第一麦克风)可以位于导流结构110的下凹段处,或者麦克风对应的进声孔位于导流结构的下凹段处,下凹段可以提供低流速区域,麦克风130位于低流速区域可以显著降低外部气流对用户讲话时的声音信号的影响,提高用户的体验感。在一些实施例中,麦克风130也可以位于导流结构110的其他位置,例如,位于导流结构110的第二连接段处。在一些实施例中,麦克风130可以设置在导流结构110的外表面或者导流结构110的内部。例如,麦克风130可以设置在导流结构110的外表面上靠近用户嘴巴的位置处。又例如,导流结构110可以包括用于容置麦克风130的腔体,腔体通过进声孔与外部环境连通,麦克风130的至少一部分可以容置在腔体中,麦克风130通过进声孔拾取外界的声音信号。再例如,麦克风130与导流结构110为一体式结构。在一些实施例中,麦克风130的种类可以包括动圈麦克风、电容麦克风、铝带麦克风、压电麦克风、真空管麦克风等中的至少一种。
在一些实施例中,可穿戴设备100还可以包括声学输出单元(图1中未示出)。声学输出单元可以用于将含有声音信息的信号转化为声音信号。在一些实施例中,声学输出单元可以包括一个或多个气传导扬声器。在一些实施例中,声学输出单元可以包括一个或多个骨传导扬声器。在一些实施例中,声学输出单元可以同时包括一个或多个骨传导扬声器与一个或多个气传导扬声器的组合。在一些实施例中,声学输出单元可以设置在导流结构110处,以便于将发出的声音传递给用户。在一些实施例中,声学输出单元可以设置在导流结构110的端部或者其他任意位置。例如,声学输出单元可以设置在导流结构110的端部,而导流结构110的其他位置未设置声学输出单元。在一些实施例中,可以在导流结构110的多个位置设置多个声学输出单元。例如,在导流结构110的端部或其他位置均设置至少一个声学输出单元。在一些实施例中,声学输出单元可以设置在导流结构110的外表面或者导流结构110的内部。例如,声学输出单元可以设置在靠近导流结构110与用户接触的位置(如,导流结构110上靠近太阳穴到耳朵的位置)。又例如,导流结构110可以包括用于容置声学输出单元的腔体,声学输出单元的至少一部分可以容置在腔体中。再例如,声学输出单元与导流结构110为一体式结构。需要说明的是,当声学输出单元为骨传导扬声器时,声学输出单元在输出机械振动(即骨传导声波)的同时,也可以产生气传导声波。上述转换的过程中可能包含多种不同类型能量的共存和转换。例如,电信号(即含有声音信息的信号)通过声学输出单元的振动件可以直接转换成机械振动,通过传振元件传导机械振动以传递声波。在一些实施例中,声学输出单元的种类可以包括动圈式、静电式、压电式、动铁式、气动式、电磁式等中的一种或多种。
应当理解的是,图1所提供的框架图仅是出于说明目的,并无意限制本申请的范围。对于领域内的技术人员而言,在本申请的指导下可以进行各种变形和修改。而这些变形和修改都将落入被申请的保护范围内。在一些实施例中,图中所示元件的数量、可以根据实际情况进行调整。在一些实施例中,图1中所示的一个或多个元件可以被省略,或者一个或多个其他元件可以被添加或删除。例如,可穿戴设备100中还可以包括声学输出单元。在一些实施例中,一个元件可以被其他能 实现类似功能的原件替代。在一些实施例中,一个元件可以拆分成多个子元件,或者多个元件可以合并为单个元件。
为了进一步对可穿戴设备进行描述,以下对可穿戴设备进行示例性说明。图2是根据本申请一些实施例所示的可穿戴设备的结构示意图。图2所示的可穿戴设备200为VR设备或AR设备,如图2所示,可穿戴设备200可以包括导流结构210、可视件220和第一麦克风230。在一些实施例中,导流结构210为头带类部件,导流结构210可以为具有弹性材料制成的结构或者可调整长度的结构。导流结构210的两端分别与可视件220的两端连接,当用户佩戴可穿戴设备200时,导流结构210和可视件220环绕在用户头部,通过导流结构210和可视件220对用户头部的压力实现可穿戴设备200的佩戴。在一些实施例中,导流结构210与可视件220的连接方式可以包括但不限于转动连接或伸缩连接等活动连接,也可以是卡接、螺接或一体成型连接等相对固定的连接方式。
在一些实施例中,导流结构210可以包括依次连接的第一连接段211、下凹段212和第二连接段213,其中,第一连接段211的一端与可视件220连接,第一连接段211的另一端与下凹段212连接,第二连接段213与下凹段212中远离可视件220的一端连接。需要说明的是,导流结构210为头带类部件时,第二连接段213可以为类似头挂的结构,以环绕在用户头部,这里第二连接段213还可以为相对于头挂相独立的结构,例如,头挂可以与第二连接段213可拆卸连接(例如,卡接、粘接等)。当用户佩戴可穿戴设备200时,下凹段212可以位于用户耳朵的附近(例如,前侧、上侧等),一方面,可以使得第一麦克风230靠近用户的嘴部,便于接收用户讲话时的声音信号,另一方面,可穿戴设备200包括声学输出单元时,可以实现声学输出单元位于靠近用户耳朵的位置,而不堵塞用户的耳道口,使用户在听取声学输出单元发出的声音的同时,也可以接收到外界环境中的声音。如图2所示,下凹段212相对于导流结构210向下凹陷的区域,相对于其他位置(例如,第一连接段211、第二连接段213或外部环境),该区域中的气流速度相对较小。为了降低外部气流对第一麦克风230的影响,在一些实施例中,第一麦克风230可以位于下凹段212的内部,凹陷区域对应的侧壁上开设进声孔,第一麦克风230通过进声孔拾取外界的声音信号。例如,下凹段212内部具有腔体,该腔体通过进声孔与外部环境连通,第一麦克风230或其元件(例如,振膜、换能装置等)可以位于该腔体中,此时下凹段212可以视为第一麦克风的壳体结构。下凹段212的向下凹陷的区域中距离导流结构210的顶部越远的位置,气流速度越小,为了提高第一麦克风230收集的用户讲话时的声音信号的质量,在一些实施例中,进声孔可以位于下凹段212中向下凹陷的区域的底部。在一些实施例中,第一麦克风230还可以位于下凹段212的外部区域。例如,第一麦克风230可以为相对于下凹段212相对独立的结构,第一麦克风230的壳体结构与下凹段212的侧壁连接。在一些实施例中,第一麦克风230的壳体结构上可以开设进声孔,以便第一麦克风230的内部元件拾取外部声音信号,第一麦克风230的壳体结构上开设的进声孔的位置可以参考上述下凹段212侧壁上的进声孔的内容。
需要说明的是,第一麦克风230可以为一个麦克风,也可以为多个麦克风组成的麦克风阵列。另外,可穿戴设备200中不限于第一麦克风230,可穿戴设备200可以包括第二麦克风、第三 麦克风等其他麦克风,其他麦克风可以位于导流结构210的其他部位,例如,其他麦克风可以位于导流结构的第二连接段213处,在可穿戴设备200上设置多麦克风(例如,双麦克风、三麦克风等)可以进一步提高通话降噪效果。
图3是根据本申请一些实施例所示的另一种可穿戴设备的结构示意图。图3所示的可穿戴设备300为眼镜,如图3所示,可穿戴设备300可以包括两个导流结构310和可视件320(即镜框或镜片)和第一麦克风330。在一些实施例中,导流结构310可以视为镜腿结构,导流结构310的一端(即第一连接件311)与可视件320的端部连接,两个导流结构310的第二连接段313分别与用户的左耳和右耳相配合。当用户佩戴可穿戴设备300时,导流结构310在用户耳朵的支撑下以及可视件320在用户鼻梁支撑下实现可穿戴设备300的佩戴。在一些实施例中,导流结构310与可视件320的连接方式可以包括但不限于转动连接或伸缩连接等活动连接,也可以是卡接、螺接或一体成型连接等相对固定的连接方式。图3中所示的第一连接段311、下凹段312、第一麦克风330的结构等与图2中所示的第一连接段211、下凹段212、第一麦克风230的结构等相类似,在此不做赘述。
应当注意的是,上述有关可穿戴设备200和可穿戴设备300的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域技术人员来说,在本说明书的指导下可以对可穿戴设备200和可穿戴设备300进行各种修正和改变。然而,这些修正和改变仍在本说明书的范围之内。例如,可穿戴设备200的导流结构210可以为镜腿结构,可穿戴设备300的导流结构310可以为头带类部件。
为了进一步说明导流结构可以提供稳定的低流速区域,现结合图4至图5对其进行进一步说明。图4是根据本申请说明书一些实施例提供的不同气流方向的流场图。仅作为示例性说明,如图4所示,在一些实施例中,沿着导流结构410的长度方向(如图4中的图a中的箭头x方向),导流结构410的高度逐渐增大再逐渐减小,导流结构410中高度逐渐增大的平面(图4中图a中所示的A,以下简称平面A)的坡度小于高度逐渐减小的平面(图4中图a中所示的B,以下简称平面B)的坡度。导流结构410的高度是指导流结构410在z方向上相对于基准面411的高度。坡度是指导流结构410的平面相对于基准面411的高度与水平方向的距离比值。
如图4中图a所示,将导流结构410沿气流的流动方向L1进行设置,其中,气流的流速为10m/s,导流结构410的长度方向与气流的流动方向L1一致,也可以理解为气流的流动方向L1与基准面411的夹角为0°。导流结构410可以改变气流的流动方向,此时气流先沿着凸起结构412中高度逐渐增大部分的外表面流动,导流结构410中高度随逐渐增大的部分可以保证气流相对平稳的流动,防止气流产生涡流从而引入额外的噪声。由于导流结构410中平面B的坡度大于平面A的坡度,当气流经过导流结构410的最高点时,导流结构410的高度发生突变,使得气流不会沿着导流结构410的平面B流动,而是沿导流结构410的长度方向流动,进而在导流结构410形成低流速区域401。由图4中图a可见,在10m/s来流速度的条件下,沿导流结构410的长度方向上,0.15mm高度的导流结构410可以保证其之后约1.5mm的区域的流速低于2m/s。
如图4中图b所示,当气流的流动方向L2与基准面411的夹角为60°时,沿导流结构410的长度方向上,导流结构410之后约0.4mm的区域内形成低流速区域402。这里低流速区域402的长度范围相对于图4中图a中的低流速区域401的长度范围明显缩小,而且其中也可能存在相对高速的回流区域。如图4中图c所示,当气流的流动方向L3与基准面的夹角为90°时,沿导流结构410的长度方向上,导流结构410之后可以形成低流速区域403。
图5是根据本申请说明书一些实施例提供的流速变化曲线图。在图5中,横坐标(图5中示出的“x坐标(mm)”)与图4中的横坐标相对应,纵坐标表示相对于不同位置处的气流流速(m/s)。曲线51(图5中“0°来流”所标注的曲线)为气流的流动方向与基准面411的夹角为0°时不同位置的流速变化曲线,曲线52(图5中“60°来流”所标注的曲线)为气流的流动方向与基准面411的夹角为60°时不同位置的流速变化曲线,曲线53(图5中“90°来流”所标注的曲线)为气流的流动方向与基准面411的夹角为90°时不同位置的流速变化曲线。如图5所示,当气流的流动方向(例如,图4中图a中的气流的流动方向L1)与基准面411的夹角为0°时,横坐标为0.8mm-1.8mm的范围内,具有低流速(例如,小于2.2m/s),其中,在x坐标中0.8mm-0.85mm以及1.4-1.6mm处具有气流流速的极小值。当气流的流动方向(例如,图4中图b中的气流的流动方向L1)与基准面411的夹角为60°时,在x坐标中0.8mm-0.85mm以及1.1-1.2mm处具有气流流速的极小值。当气流的流动方向与基准面411的夹角为90°时,在x坐标中0.8mm-0.85mm以及1.2-1.4mm处具有气流流速的极小值。
由图4和图5可知,导流结构410在面对不同来流方向的气流时均可以提供相应的低流速区域,但是导流结构410在面对不同来流方向的气流时,低流速区域(例如,小于2.2m/s)的位置具有一定的差异性。在一些实施例中,可以根据可穿戴设备的不同应用场景对麦克风的安装位置或麦克风所对应的进声孔进行适应性调整。例如,当用户佩戴可穿戴设备进行跑步或骑行时,外部的气流流动方向主要是与用户的运动方向相反的方向,此时可以将导流结构410进行特定设置,例如,导流结构的高度方向(例如,图4中图a中的所示的箭头y的方向)与用户运动的方向相垂直或近似垂直,从而保证麦克风对应的进声孔处于低流速区域。
为了保证麦克风能够在不同来流方向下均处于低流速区域,本说明书实施例还提供一种导流结构,具体参考图6至图12及其相应内容。
图6是根据本申请说明书一些实施例提供的导流结构的示意图。如图6所示,导流结构610可以包括依次连接的第一连接段611、下凹段612和第二连接段613,其中,下凹段612相对于导流结构610具有向下的凹陷。在一些实施例中,第一连接段611和第二连接段613可以为杆状结构。第一连接段611具有第一端部6111和第二端部6112,第一端部6111用于与可穿戴设备的可视件连接,第二端部6112与下凹段612中远离第二连接段613的一端连接。第二连接段613具有第三端部6131和第四端部6132,第三端部6131与下凹段612中远离第一连接段611的一端连接。在一些实施例中,下凹段612可以包括第一连接部6121和第二连接部6122,第一连接部6121与第一连接段611的第二端部6112弯折连接并向下延伸,第二连接部6122与第二连接段613的第三端部6131 弯折连接并向下延伸,第一连接部6121远离第一连接段611的一端与第二连接部6122远离第二连接段613的一端连接,进而形成具有相对于导流结构610向下凹陷的区域。为了保证下凹段612的凹陷区域可以为麦克风对应的进声孔处提供较为稳定的低流速区域,在一些实施例中,第一连接部6121与第二连接部6122的间距沿下凹段612的凹陷方向渐缩。这里第一连接部6121与第二连接部6122的间距是指沿导流结构610的长度方向,第一连接部6121与第二连接部6122中位置相对的侧壁之间的间距(以图中所示的“D”来表征)。在一些实施例中,第一连接部6121和第二连接部6122形成的下凹段612的形状可以为圆弧形、四边形(例如,倒梯形)、V型等其它形状。需要说明的是,下凹段612的形状不限于上述的形状,可以为任意形状,第一连接部6121和第二连接部6122形成相对于导流结构610向下凹陷的区域即可。关于下凹段612的具体形状可以参考图7及其相应内容。
导流结构610中通过设置第一连接段611、第二连接段613以及下凹段612可以形成一个或多个相对于导流结构610向下的凹陷区域,该凹陷区域可以在特定气体流动方向下提供稳定的低流速区域。例如,当气体的流动方向与导流结构610的长度方向平行时,导流结构610的第一连接段611可以将气体引向高于导流结构610的位置,使得下凹段612处的凹陷区域为低流速区域。又例如,当气体的流动方向与导流结构610的长度方向垂直时,由于下凹段612的作用,气流会从下凹段612中垂直导流结构610长度方向的两侧流出,下凹段612中凹陷区域的底部为气流的滞止区域。将第一麦克风对应的第一进声孔630设置于该区域处可以降低外部气流对第一麦克风的影响。在一些实施例中,第一麦克风可以位于下凹段612的内部。例如,下凹段612具有腔体,该腔体通过第一进声孔630与外部环境连通,第一麦克风的部件(例如,振膜、换能装置等)可以位于该腔体中,下凹段212可以视为第一麦克风的壳体。在一些实施例中,第一麦克风可以为相对于下凹段612独立的部件。例如,第一麦克风可以包括壳体,该壳体与下凹段612连接,第一麦克风的振膜、换能装置等部件位于该壳体中,该壳体包括有第一进声孔630,外部的声音可以通过该第一进声孔630作用于第一麦克风的振膜。下凹段612的凹陷的区域中距离导流结构610的顶部越远的位置,气流速度越小,为了提高第一麦克风收集的用户讲话时的声音信号的质量,在一些实施例中,第一麦克风对应的第一进声孔630可以位于该凹陷区域处所对应的侧壁上。优选地,第一麦克风对应的第一进声孔630可以位于下凹段612中凹陷区域的底部。在一些实施例中,可以通过调整第一进声孔630相对于凹陷区域底部的高度,使得第一麦克风受到外部气流的影响较小。在一些实施例中,第一进声孔630至凹陷区域底部的间距与第二端部6112至凹陷区域底部的间距的比值范围可以为0-1。优选地,第一进声孔630至凹陷区域底部的间距与第二端部6112至凹陷区域底部的间距的比值范围可以为0-0.8。进一步优选地,第一进声孔630至凹陷区域底部的间距与第二端部6112至凹陷区域底部的间距的比值范围可以为0-0.5。较为优选地,第一进声孔630至凹陷区域底部的间距与第二端部6112至凹陷区域底部的间距的比值范围可以为0-0.2。需要说明的是,第一进声孔630至凹陷区域底部的间距是指当用户佩戴可穿戴设备时,第一进声孔630至凹陷区域最底部所在平面的最小距离。第二端部6112至凹陷区域底部的间距是指当用户佩戴可穿戴设备时,第二端部6112的 最高点至凹陷区域底部所在平面的间距。需要注意的是,在一些实施例中,凹陷区域的底部可以为平面、凸面、凹面或不规则的面。当凹陷区域的底部为非平面时,可以以第一连接部6121和第二连接部6122与凹陷区域底部的边界连接起来作为凹陷区域底部所在的平面。
在一些实施例中,可穿戴设备还可以包括一个或多个第二麦克风,第二麦克风对应的第二进声孔632可以位于第二连接段613处。在一些实施例中,第二麦克风对应的第二进声孔632也可以位于下凹段612的第二连接部6122处。例如,第二麦克风对应的第二进声孔632可以位于凹陷区域对应的第二连接部6122的侧壁上。又例如,第二麦克风623可以位于第二连接部6122中背离凹陷区域的一侧。
图7是根据本说明书一些实施例提供的导流结构的结构示意图。如图7中附图a所示的导流结构,下凹段712a为近似V型的结构。为了能够将外部环境中的气流引向高于下凹段712a凹陷区域的位置,在一些实施例中,第一连接部711第一端部7111相对下凹段712a的底部的高度不大于第二端部7112相对于下凹段712a的底部的高度。第一端部7111相对下凹段712a的底部的高度是指第一端部7111的上端面与下凹段712a的底部所在平面的间距D1。第二端部7112相对下凹段712a的底部的高度是指第二端部7112的上端面与下凹段712a的底部所在平面的间距D2。这里下凹段712底部所在的平面(图7a中以点虚线O来表示,以下简称平面O)与导流结构的长度方向平行或近似平行。在一些实施例中,第三端部7131相对于下凹段712a的底部的高度不小于第四端部7132相对于下凹段712a的底部的高度。第三端部7131相对下凹段712a的底部的高度是指第三端部7131的上端面与下凹段712a的底部所在平面(平面O)的间距D3。第四端部7132相对下凹段712a的底部的高度是指第四端部7132的上端面与下凹段712a的底部所在平面(平面O)的间距D4。当外部气流经过第二端部7112时,为了防止气流受到第三端部7131的阻挡而进入凹陷区域,在一些实施例中,第二端部7111相对下凹段712a的底部的高度不小于第三端部相对于下凹段的底部的高度,也就是说,间距D2不小于间距D3。
图7中的附图b、c、d所示的导流结构与附图7中图a中的导流结构大致相同,其区别之处在于下凹段的结构不同。如图7中图b所示的导流结构,下凹段712b为类似倒梯形结构,使得下凹段712b形成类似倒梯形区域的低流速区域。如图7中图c中所示的导流结构,下凹段712c为圆弧状结构,使得下凹段712c形成圆弧状的低流速区域。如图7中图d中所示的导流结构,下凹段712d为类似W型结构,使得下凹段712d形成类似W型的低流速区域。关于图7b-7dd中的第一连接段、第二连接段及其端部与底座之间的高度关于可以参考上述图7中图a的描述。
为了进一步说明导流结构可以在各种气流流向的情况下可以提供稳定的低流速区域,现结合图8至图12对其进行进一步说明。图8是根据本申请说明书一些实施例提供的不同流向的气流流场图。这里以下凹段为V型结构作为示例性说明,如图8中图a所示,将导流结构沿气流的流动方向进行设置,其中,气流的流速为10m/s,导流结构的长度方向与气流的流动方向一致。导流结构的第一连接段811可以改变气流的流动方向,此时气流的流向在第一连接段811的第一端部的作用下发生改变,作用于第一连接段811的第一端部的气流部分沿着第一连接段811的上方的位置流 动,这里气流经过下凹段812时,继续沿导流结构的长度方向流动,进而在下凹段812的凹陷区域形成低流速区域814。如图8中图b和图c所示,当气流的流动方向与导流结构的长度方向的夹角分别为60°和90°时,由于下凹段812的作用,气流会从下凹段812中垂直导流结构长度方向的两侧流出,下凹段812中凹陷区域的底部为气流的滞止区域(例如,图8中图b中所示的区域815和图c中所示的区域816)。
图9是根据本申请说明书一些实施例提供的流速变化曲线图。在图9中,横坐标表示长度(mm),这里的长度是指物体以第二端部8112(图8中示出)为起点,沿下凹段中凹陷区域对应的侧壁表面运动的路径长度。,纵坐标表示相对于第二端部的不同距离对应的气流流速(m/s)。曲线91(图9中“平行来流”所标注的曲线)为气流的流动方向与导流结构的长度方向平行时不同位置的流速变化曲线,曲线92(图9中“60°来流速度大小”所标注的曲线)为气流的流动方向导流结构的长度方向的夹角为60°时不同位置的流速变化曲线,曲线93(图9中“90°来流速度大小”所标注的曲线)为气流的流动方向与导流结构的长度方向的夹角为90°时不同位置的流速变化曲线。如图9所示,在距离第一连接段811的第二端部8112右侧0mm-45mm的区域(即下凹段812的凹陷区域范围内),不同来流方向的气流的速度均小于1.5m/s,该区域的气流速度远小于外界气流的速度(10m/s)。另外,在距离第一连接段811的第二端部8112右侧23mm-27mm的区域(凹陷区域的底部),不同来流方向的气流速度具有极小值。
由图8和图9可知,导流结构中下凹段的凹陷区域在面对不同来流方向的气流时均可以提供位置特定的低流速区域,同时导流结构在面对不同来流方向的气流时,不同来流方向的气流速度的极小值也在特定的区域内。为了减小外界气流对第一麦克风的影响,保证第一麦克风采集的用户讲话时的声音信号的质量,在一些实施例中,第一麦克风对应的进声孔可以位于凹陷区域下凹段对应的侧壁处。在一些实施例中,以第二端部为起点,沿下凹段凹陷区域对应的侧壁(例如,图8中图a示出的V形轮廓),第一麦克风对应的进声孔可以位于距离第一连接段第二端部的0mm-45mm处。优选地,第一麦克风对应的进声孔可以位于距离第一连接段第二端部的5mm-42mm处。进一步优选地,第一麦克风对应的进声孔可以位于距离第一连接段第二端部的20mm-30mm处。更为优选地,第一麦克风对应的进声孔可以位于距离第一连接段第二端部的23mm-27mm处。仅作为示例性说明,第一麦克风对应的进声孔可以位于距离第一连接段中第二端部的25mm处。需要注意的是,这里距离第一连接段中第二端部范围是指物体以第二端部8112(图8中示出)为起点,沿下凹段中凹陷区域对应的侧壁表面运动的路径长度。在一些实施例中,还可以通过调整第一麦克风对应的进声孔至凹陷区域底部的尺寸与第一连接部或第二连接部的长度的比值,以减小外界气流对第一麦克风的影响。当第一麦克风对应的进声孔在第一连接部的侧壁时,在一些实施例中,进声孔与凹陷区域底部的尺寸与第一连接部的长度的比值范围可以为0-1。优选地,进声孔与凹陷区域底部的尺寸与第一连接部的长度的比值范围可以为0-0.5。进一步优选地,进声孔与凹陷区域底部的尺寸与第一连接部的长度的比值范围可以为0-0.2。当第一麦克风对应的进声孔在第二连接部时,进声孔与凹陷区域底部的尺寸与第二连接部的长度的比值范围可以参考进声孔与凹陷区域底部的尺 寸与第一连接部的长度的比值范围。需要说明的是,第一麦克风对应的进声孔至凹陷区域底部的尺寸是指物体以进声孔为起点运动至凹陷区域底部的路径长度。在一些实施例中,凹陷区域对应的第一连接部或第二连接部的侧壁为平面或曲面。
图10A是根据本申请一些实施例提供的平行来流方向时的三维流场分布图,图10B是根据本申请一些实施例提供的平行来流方向时的凹陷区域中不同位置处的气流速度分布图。
在图10A中,导流结构沿气流的流动方向进行设置,其中,气流的流速为10m/s,导流结构的长度方向(图10A中所示的X方向)与气流的流动方向一致,导流结构中沿宽度方向(图10A中所示的Y方向)的一侧与壁面1010接触,导流结构中沿宽度方向的另一侧暴露在气流环境1020中,用以模拟用户佩戴可穿戴设备时的场景。此外,图10A中所示的Y方向用以表示导流结构的高度方向。如图10A所示,由于可穿戴设备是佩戴在用户的头部区域,壁面1010不会无限延伸,壁面1010处的气流会沿下凹段的宽度方向溢出至气流环境1020,造成下凹段中凹陷区域处气体的流动,但是在下凹段中靠近第一连接部1021和第二连接部1022的区域仍具有低流速区域(即图10A中凹陷区域的灰度较深的区域)。在图10B中,图10B中所标注的“长度(mm)”坐标表示下凹段沿长度方向的长度,图10B中所标注的“间距(mm)”坐标表示与壁面1010的间距,图10B中所标注的“速度(m/s)”坐标表示下凹段不同位置的气流速度。结合图10A和图10B,靠近第一连接部1021表面、靠近第二连接部1022表面以及凹陷区域的底部仍具有低流速区域1040,并且越靠近壁面1010,气流的速度越小。另外,第二连接部1022表面处具有气流速度的最大峰值,最大峰值也未超过2m/s。
图11A是根据本申请一些实施例提供的60°来流方向时的三维流场分布图,图11B是根据本申请一些实施例提供的60°来流方向时的凹陷区域中不同位置处的气流速度分布图。
在图11A中,气流的流速为10m/s,导流结构的长度方向(图11A中所示的X方向)与气流的流动方向的夹角为60°,导流结构中沿宽度方向(图11A中所示的Y方向)的一侧与壁面1010接触,导流结构中沿宽度方向的另一侧暴露在气流环境1020中,用以模拟用户佩戴可穿戴设备时的场景。此外,图11A中所示的Y方向用以表示导流结构的高度方向。如图11A所示,由于可穿戴设备是佩戴在用户的头部区域,壁面1010不会无限延伸,壁面1010处的气流会沿下凹段的宽度方向溢出至气流环境1020,造成下凹段中凹陷区域处气体的流动,但是在下凹段中靠近第一连接部1021和第二连接部1022的区域仍具有低流速区域(即图11A中凹陷区域的灰度较深的区域)。在图11B中,图11B中所标注的“长度(mm)”坐标表示下凹段沿长度方向的长度,图11B中所标注的“间距(mm)”坐标表示与壁面1010的间距,图11B中所标注的“速度(m/s)”坐标表示下凹段不同位置的气流速度。结合图11A和图11B,靠近第一连接部1021表面、靠近第二连接部1022表面以及凹陷区域的底部附近具有低流速区域1050,并且越靠近壁面1010,气流的速度越小。另外,第一连接部1021表面附近的最大流速也未超过3.5m/s。
图12A是根据本申请一些实施例提供的90°来流方向时的三维流场分布图,图12B是根据本申请一些实施例提供的90°来流方向时的凹陷区域中不同位置处的气流速度分布图。
在图12A中,气流的流速为10m/s,导流结构的长度方向(图12A中所示的X方向)与气流的流动方向的夹角为90°,导流结构中沿宽度方向(图12A中所示的Y方向)的一侧与壁面1010接触,导流结构中沿宽度方向的另一侧暴露在气流环境1020中,用以模拟用户佩戴可穿戴设备时的场景。此外,图12A中所示的Y方向用以表示导流结构的高度方向。如图12A所示,由于可穿戴设备是佩戴在用户的头部区域,壁面1010不会无限延伸,壁面1010处的气流会沿下凹段的宽度方向溢出至气流环境1020,造成下凹段中凹陷区域处气体的流动,但是在下凹段中靠近第一连接部1021和第二连接部1022的区域仍具有低流速区域(即图12A中凹陷区域的灰度较深的区域)。在图12B中,图12B中所标注的“长度(mm)”坐标表示下凹段沿长度方向的长度,图12B中所标注的“间距(mm)”坐标表示与壁面1010的间距,图12B中所标注的“速度(m/s)”坐标表示下凹段不同位置的气流速度。结合图12A和图12B,靠近第一连接部1021的表面、第二连接部1022的表面以及凹陷区域的底部区域仍具有低流速区域1210,并且越靠近壁面1010,气流的速度越小。
结合上述内容,导流结构的下凹段可以提供低流速区域,具有较好的降低气流速度的效果。为了保证第一麦克风采集的声音信号的质量,在一些实施例中,第一麦克风对应的进声孔可以位于下凹段中凹陷区对应的第一连接部、第二连接部或凹陷区域的底部。当用户佩戴可穿戴设备时,下凹段的一侧靠近或贴合用户的皮肤,以下简称为第一侧部,下凹段的另一侧远离用户皮肤,以下简称第二侧部。为了进一步提高第一麦克风采集的声音信号的质量,在一些实施例中,当用户佩戴可穿戴设备时,第一麦克风对应的进声孔可以位于下凹段中凹陷区域靠近第一侧部的位置。例如,第一麦克风对应的进声孔可以位于凹陷区对应的第一连接部、第二连接部或凹陷区域的底部上靠近第一侧部的位置。在一些实施例中,第一麦克风对应的进声孔与第一侧部的间距可以为0mm-10mm。优选地,第一麦克风对应的进声孔与第一侧部的间距可以为0.2mm-7mm。进一步优选地,第一麦克风对应的进声孔与第一侧部的间距可以为0.3mm-5mm。较为优选地,第一麦克风对应的进声孔与第一侧部的间距可以为0.3mm-3mm。进一步优选地,第一麦克风对应的进声孔与第一侧部的间距可以为0.5mm-1.5mm。在一些实施例中,还可以通过调整进声孔和第一侧部的间距与下凹段在其宽度方向上的尺寸的比值,以提高第一麦克风采集的声音信号的质量。在一些实施例中,进声孔和第一侧部的间距与下凹段在其宽度方向上的尺寸的比值可以为0.01-0.9。优选地,进声孔和第一侧部的间距与下凹段在其宽度方向上的尺寸的比值可以为0.02-0.7。进一步优选地,进声孔和第一侧部的间距与下凹段在其宽度方向上的尺寸的比值可以为0.03-0.5。较为优选地,进声孔和第一侧部的间距与下凹段在其宽度方向上的尺寸的比值可以为0.04-0.3。更为优选地,进声孔和第一侧部的间距与下凹段在其宽度方向上的尺寸的比值可以为0.05-0.2。需要说明的是,上述进声孔与第一侧部的间距是指沿导流结构的宽度方向(例如,图10A中的Y方向),进声孔与第一侧部的距离。
为了进一步降低外界气流对第一麦克风的影响,可穿戴设备还可以包括用于传递外部声音的导声结构,导声结构与下凹段连接,导声结构为内部贯通的结构,导声结构的一端与外部环境连通,第一麦克风位于导声结构的另一端。在一些实施例中,导声结构可以是相对于下凹段相独立的部件。例如,下凹段的凹陷区域对应的侧壁上开设用于该导声结构的腔体,导声结构位于该腔体中。 在一些实施例中,导声结构可以与下凹段为一体式结构。例如,下凹段的凹陷区域对应的侧壁上开设的导声腔体。
图13是根据本说明书一些实施例提供的导声结构的结构示意图。如图13所示,导声结构1300为内部贯通的结构,导声结构1300内部设有多个导声通道,多个导声通道依次弯折连通。其中,位于导声结构1300顶部的导声通道与外界环境连通,第一麦克风位于导声结构1300底部的导声通道处。外部的气流在进入导声结构1300时,气流在遇到两个导声通道的折弯连接处时形成涡流,此时气流的动能被消耗,当气流达到第一麦克风时,气流的速度大大降低,从而进一步降低外界气流对第一麦克风采集的声音信号的影响。在一些实施例中,导声通道1310的形状可以为圆柱状、多边体状(例如,长方体、三棱柱状)、梯台状等规则形状。在一些实施例中,导声通道1310还可以为非规则状的形状,例如,喇叭状。
为了保证导声结构的降风噪效果,导声结构1300中各导声通道的折弯角度设置为特定范围的角度。仅作为示例性说明,在一些实施例中,导声结构1300中各导声通道的折弯角度可以为65°-135°。优选地,导声结构1300中各导声通道的折弯角度可以为70°-120°。进一步优选地,导声结构1300中各导声通道的折弯角度可以为85°-95°。更为优选地,导声结构1300中各导声通道的折弯角度可以为90°。需要注意的是,各导声通道之间的折弯角度可以相同或不同,导声结构1300中各导声通道的折弯角度不限于上述的范围,还可以大于135°或小于65°。在一些实施例中,导声通道的截面形状可以为多边形(例如,三角形、四边形、五边形等)、圆形、半圆形、椭圆形、半椭圆形等形状。在一些实施例中,导声通道不同位置的尺寸可以相同或不同。例如,导声通道可以为圆柱状通道,此时导声通道各个位置的半径相同。又例如,导声通道可以为喇叭状,此时,导声通道的半径渐增或渐缩。在一些实施例中,多个导声通道的形状可以相同或不同。另外,各导声通道之间的折弯处可以做倒角处理,以便气流在折弯处产生湍流。
在一些实施例中,还可以通过调整导声结构1300中导声通道的总长度(各导声通道的长度总和),以保证导声结构的降风噪效果。仅作为示例性说明,在一些实施例中,导声通道的总长度可以大于10mm。优选地,导声通道的总长度可以大于13mm。进一步优选地,导声通道的总长度可以大于17mm。较为优选地,导声通道的总长度可以大于20mm。例如,导声通道的总长度可以为20.4mm。在一些实施例中,还可以通过调整导声结构1300中导声通道之间的折弯数量,来保证导声结构的降风噪效果。仅作为示例性说明,在一些实施例中,导声通道之间的折弯数量可以大于5个。在一些实施例中,导声通道之间的折弯数量可以大于8个。在一些实施例中,导声通道之间的折弯数量可以大于10个。
在一些实施例中,可以在导声结构中设置不同体积的通道,以降低第一麦克风处的气流速度。图14是根据本说明书一些实施例提供的导声结构的结构示意图。如图14所示,在一些实施例中,导声结构1400可以包括腔体1410,腔体1410通过连接孔1420与外部连通。在一些实施例中,腔体1410的数量可以为多个,多个腔体1410沿导声结构1400的长度方向间隔分布,其中相邻的腔体1410之间也可以通过连接孔1420连通。在一些实施例中,腔体1410沿导声结构1400宽度方 向的尺寸大于连接孔1420沿导声结构1400宽度方向的尺寸,外部的气流在进入导声结构1400时,气流在遇到连接孔1420与腔体1410的连接处后,由于体积的突变,气流形成涡系结构,使得气流的动能被消耗,当气流达到第一麦克风时,气流的速度大大降低,从而进一步降低外界气流对第一麦克风采集的声音信号的影响。
在一些实施例中,可以通过调整腔体或连接孔的尺寸(例如,长度、宽度、体积或表面积),以保证导声结构的降风噪效果。在一些实施例中,单个腔体1410的体积可以大于4mm3。优选地,单个腔体1410的体积可以大于10mm3。进一步优选地,单个腔体1410的体积可以大于20mm3。较为优选地,单个腔体1410的体积可以大于30mm3。更为优选地,单个腔体1410的体积可以大于40mm3。例如,单个腔体1410的体积可以为40mm3。在一些实施例中,单个腔体1410对应的表面积可以大于12mm2。优选地,单个腔体1410对应的表面积可以大于30mm2。较为优选地,单个腔体1410对应的表面积可以大于60mm2。更为优选地,单个腔体1410对应的表面积可以大于70mm2。例如,单个腔体1410对应的表面积可以为72mm2。在一些实施例中,连接孔1420的直径可以为0.2mm-2mm,连接孔1420的长度可以小于5mm。在一些实施例中,连接孔1420的直径可以为0.4mm-1.8mm,连接孔1420的长度可以小于3mm。例如,在一些实施例中,连接孔1420的直径可以为1.1mm,连接孔1420的长度可以为2mm。在一些实施例中,腔体1410的截面形状可以为多边形(例如,三角形、四边形、五边形等)、圆形、半圆形、椭圆形、半椭圆形等形状。
需要注意的是,图13所示的导声结构1300中和图14所示的导声结构1400并不限于第一麦克风的安装,其他麦克风,例如,第二麦克风处也可以设置导声结构1300或导声结构1400。在一些实施例中,导声结构也可以是图13所示的导声结构1300中和图14所示的导声结构1400相组合的结构。在一些实施例中,导声结构(例如,导声结构1300和导声结构1400)的端部或内部也可以设置网状结构(图中未示出),来进一步降低风噪对第一麦克风的影响。此外,网状结构还可以防止外界的灰尘、颗粒物进入麦克风中。
在一些实施例中,可穿戴设备可以包括第一麦克风和第二麦克风,其中,当用户佩戴可穿戴设备时,第一麦克风与第二麦克风的连线指向用户嘴部方向,第一麦克风与用户嘴部的距离小于第二麦克风与人体嘴部的距离。此时,第一麦克风可以起到主要的拾取用户讲话时的声音信号的功能,第二麦克风也可以拾取用户讲话时的声音信号,可穿戴设备的处理器可以通过算法确定第一麦克风和第二麦克风中拾取的声音信号中的用户讲话时的声音信号,从而将其他声音信号(例如,风噪)进行过滤处理。在一些实施例中,第一麦克风与第二麦克风的距离可以为5mm-70mm。优选地,第一麦克风与第二麦克风的距离可以为10mm-50mm。较为优选地,第一麦克风与第二麦克风的距离可以为25mm-30mm。在一些实施例中,第一麦克风中振膜的振动方向可以与第二麦克风中振膜的振动方向基本垂直。这里的基本垂直是指第一麦克风中振膜的振动方向可以与第二麦克风中振膜的振动方向可以为90°,或者与90°相接近的角度,例如,75°、80°、95°、100°等。如图15所示,在一些实施例中,第一麦克风对应的第一进声孔153可以位于下凹段1512中凹陷区域对应的侧壁处。例如,第一麦克风对应的第一进声孔153可以位于下凹段1512的第一连接部、第二 连接部或者二者的连接处。第一麦克风对应的第一进声孔153所在的位置处的风噪较小,第二麦克风对应的第二进声孔154所在的位置处气流的速度相对可能较大,为了进一步确定麦克风拾取的声音信号中的风噪,将第一麦克风的振膜的振动方向与第二麦克风的振膜振动的方向垂直设置或近似垂直设置,可以通过算法基于风噪的相关性进一步处理掉麦克风(例如,第一麦克风和第二麦克风)拾取的风噪。在一些实施例中,第二麦克风对应的第二进声孔154可以位于第二连接段1513处,使得用户佩戴可穿戴设备时,第一麦克风对应的第一进声孔153与第二麦克风对应的第二进声孔154的连线方向指向用户的嘴部。在一些实施例中,第二进声孔154也可以为位于下凹段1512处。例如,第二进声孔154位于下凹段1512的第二连接部中远离第一进声孔153的一侧。又例如,第二进声孔154也可以位于下凹段1512凹陷区对应的第二连接部的侧壁处。为了更为清楚地对导声结构的长度方向和宽度方向进行说明,现结合用户佩戴可穿戴设备时的场景进行描述。以用户头部的任意一点为原点,建立三维坐标系,其中,三维坐标系中的x轴平行于水平面,z轴垂直于水平面,y轴垂直于x轴和z轴。这里导声结构的长度方向可以视为x轴方向,导声结构的高度方向可以视为z轴方向,导声结构的宽度方向可以视为y轴方向。关于上述各附图(例如,图4、图8、图10A-图12D)中所示出的导声结构的长度方向、宽度方向或高度方向可以参考图15中用户佩戴可穿戴设备时的场景。
在一些实施例中,可穿戴设备还可以包括声学输出单元155,声学输出单元155可以位于下凹段1512处。在一些实施例中,声学输出单元155可以位于下凹段1512的外表面。例如,声学输出单元155为骨传导扬声器时,声学输出单元155可以位于下凹段1512中与用户接触的侧面。又例如,声学输出单元155为气传导扬声器时,声学输出单元155可以位于下凹段1512中与用户不接触的侧面。在一些实施例中,声学输出单元155可以位于下凹段1512的内部。例如,下凹段1512内部具有放置声学输出单元155的容置仓(图15中未示出),声学输出单元155可以位于该容置仓中。当声学输出单元155位于该容置仓中时,下凹段1512可以作为声学输出单元155的壳体,声学输出单元155的其他部件(例如,磁路结构、振膜等)可以位于下凹段1512中。以气传导扬声器作为声学输出单元155作为示例,在一些实施例中,声学输出单元155可以包括振膜和磁路结构(图15中未示出),振膜与音圈连接,音圈伸入磁路结构的磁间隙中,磁路结构与声学输出单元155的壳体(或下凹段1512)连接,振膜背朝磁路结构的一侧形成声学输出单元155的正面,磁路结构背朝振膜的一侧形成声学输出单元155的背面,振膜振动使得声学输出单元分别从其正面和背面向外辐射声音。在一些实施例中,声学输出单元155的壳体(或下凹段1512)可以包括至少两个导声孔(图15中未示出),该导声孔可以包括第一导声孔(也被称为出声口)和第二导声孔(也被称为泄压口),第一导声孔用于输出声学输出单元155正面发出的声音,第二导声孔可以用于声学输出单元155背面发出声的声音,第一导声孔输出的声音的相位和第二导声孔输出的声音的相位可以视为相反,使得第一导声孔输出的声音的和第二导声孔输出的声音可以构建一个偶极子。当用户佩戴可穿戴设备时,第一导声孔靠近用户的耳道口,第二导声孔背向用户的耳道口,使得声学输出单元155具有较好的声学输出效果。在一些实施例中,第一导声孔和第二导声孔的数量可以为一 个或多个。在一些实施例中,可以通过调整第一导声孔或第二导声孔的数量、尺寸、位置、声阻等参数可以进一步提高可穿戴设备的听音效果和降漏音效果。
在拾取用户讲话时的声音信号时,第一麦克风起到了主要的声音拾取功能,为了降低声学输出单元发生的声音对第一麦克风的影响,在一些实施例中,第一麦克风的振膜的振动方向与声学输出单元的振膜的振动方向垂直或基本垂直。为了进一步降低声学输出单元发生的声音对麦克风的影响,第一麦克风或第二麦克风位于受声学输出单元影响最小的区域,例如声学输出单元的声学零点区域。图16和图17是根据本申请一些实施例提供的声学输出单元的声场辐射图,其中,图17为图16中箭头M视角的声场辐射图。如图16和图17所示,声学输出单元1601的声学零点区域为图中颜色较深的区域(区域1610)。声学输出单元1601的壳体可以包括至少两个导声孔,该导声孔可以包括第一导声孔1602(也被称为出声口)和第二导声孔1603(也被称为泄压口),第一导声孔1602用于输出声学输出单元1601正面发出的声音,第二导声孔1603可以用于声学输出单元1601背面发出声的声音,第一导声孔1602输出的声音的相位和第二导声孔1603输出的声音的相位可以视为相反,使得第一导声孔1602输出的声音的和第二导声孔1603输出的声音可以构建一个声学偶极子,并形成声学零点区域1610。在一些实施例中,可以基于声学输出单元的声学零点区域选择并确定第一麦克风和第二麦克风的位置。
需要说明的是,不同实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种的组合,也可以是其他任何可能获得的有益效果。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。 但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本申请作为参考。与本申请内容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请所述内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (20)

  1. 一种可穿戴设备,包括:
    导流结构,被配置为佩戴于用户的头部,其中,所述导流结构包括:
    第一连接段、第二连接段和下凹段,所述第一连接段、所述下凹段和所述第二连接段依次连接,所述下凹段相对于所述导流结构具有向下的凹陷;以及
    第一麦克风,被配置为收集用户说话的声音信号,所述第一麦克风位于所述下凹段处。
  2. 根据权利要求1所述的可穿戴设备,其中,所述第一麦克风位于所述下凹段中向下凹陷的区域的底部。
  3. 根据权利要求1所述的可穿戴设备,其中,所述第一连接段包括第一端部和第二端部,所述第二端部与所述下凹段连接,所述第一端部相对所述下凹段的底部的高度不大于所述第二端部相对于所述下凹段的底部的高度。
  4. 根据权利要求3所述的可穿戴设备,其中,所述第二连接段包括第三端部和第四端部,所述第三端部与所述下凹段连接;所述第三端部相对所述下凹段的底部的高度不小于所述第四端部相对于所述下凹段的底部的高度。
  5. 根据权利要求4所述的可穿戴设备,其中,所述第二端部相对所述下凹段的底部的高度不小于所述第三端部相对于所述下凹段的底部的高度。
  6. 根据权利要求1所述的可穿戴设备,其中,所述下凹段包括第一连接部和第二连接部,所述第一连接部与所述第一连接段弯折连接并向下延伸,所述第二连接部与所述第二连接段弯折连接并向下延伸,所述第一连接部远离所述第一连接段的一端与所述第二连接部远离所述第二连接段的一端连接。
  7. 根据权利要求6所述的可穿戴设备,其中,所述第一连接部与所述第二连接部的间距沿所述下凹段的凹陷方向渐缩。
  8. 根据权利要求1所述的可穿戴设备,其中,还包括用于传递外部声音的导声结构,所述导声结构与所述下凹段连接,所述导声结构为内部贯通的结构,所述导声结构的一端与外部环境连通,所述第一麦克风位于所述导声结构的另一端。
  9. 根据权利要求8所述的可穿戴设备,其中,所述导声结构内部设有多个导声通道,所述多个导声通道依次弯折连通。
  10. 根据权利要求8所述的可穿戴设备,其中,所述导声结构包括腔体,所述腔体通过连接孔与外部连通。
  11. 根据权利要求8所述的可穿戴设备,其中,所述导声结构包括多个腔体,所述多个腔体沿所述导声结构的长度方向间隔分布,相邻的所述腔体之间通过连接孔连通;
    所述腔体沿导声结构宽度方向的尺寸大于所述连接孔沿导声结构宽度方向的尺寸。
  12. 根据权利要求1所述的可穿戴设备,其中,所述第二连接段上设有第二麦克风。
  13. 根据权利要求12所述的可穿戴设备,其中,当用户佩戴所述可穿戴设备时,所述第一麦克风与所述第二麦克风的连线指向用户嘴部方向。
  14. 根据权利要求12所述的可穿戴设备,其中,所述第一麦克风中振膜的振动方向与所述第二麦克风中振膜的振动方向基本垂直。
  15. 根据权利要求12所述的可穿戴设备,其中,所述第一麦克风与所述第二麦克风的距离为5mm- 70mm。
  16. 根据权利要求15所述的可穿戴设备,其中,还包括声学输出单元,所述声学输出单元位于所述下凹段处。
  17. 根据权利要求16所述的可穿戴设备,其中,所述第一麦克风的振膜的振动方向与所述声学输出单元的振膜的振动方向基本垂直。
  18. 根据权利要求16所述的可穿戴设备,其中,所述可穿戴设备的所述第一麦克风或第二麦克风位于所述声学输出单元的声学零点区域。
  19. 根据权利要求1所述的可穿戴设备,其中,所述导流结构包括第一导流结构和第二导流结构,所述第一导流结构和所述第二导流结构分别用于架设在用户的左耳和右耳。
  20. 根据权利要求19所述的可穿戴设备,其中,所述可穿戴设备还包括可视件,所述可视件与所述第一导流结构或所述第二导流结构的第一连接段连接。
PCT/CN2022/072151 2022-01-14 2022-01-14 一种可穿戴设备 WO2023133846A1 (zh)

Priority Applications (16)

Application Number Priority Date Filing Date Title
KR1020237002156A KR102689176B1 (ko) 2022-01-14 2022-01-14 착용장치
CN202280005036.1A CN116762361A (zh) 2022-01-14 2022-01-14 一种可穿戴设备
PCT/CN2022/072151 WO2023133846A1 (zh) 2022-01-14 2022-01-14 一种可穿戴设备
JP2023509424A JP7500865B2 (ja) 2022-01-14 2022-01-14 ウェアラブル装置
EP22822843.3A EP4243441A4 (en) 2022-01-14 2022-01-14 PORTABLE DEVICES
CN202220235657.6U CN217428214U (zh) 2022-01-14 2022-01-27 可穿戴设备及其佩戴件
CN202210101579.5A CN116489277A (zh) 2022-01-14 2022-01-27 可穿戴设备及其佩戴件
CN202210101580.8A CN116489278A (zh) 2022-01-14 2022-01-27 可穿戴设备及其佩戴件
CN202220233972.5U CN217428213U (zh) 2022-01-14 2022-01-27 可穿戴设备及其佩戴件
JP2023558275A JP2024512948A (ja) 2022-01-14 2022-12-14 ウェアラブルデバイス及びその装着具
PCT/CN2022/139086 WO2023134382A1 (zh) 2022-01-14 2022-12-14 可穿戴设备及其佩戴件
EP22920014.2A EP4279984A4 (en) 2022-01-14 2022-12-14 HABITRONIC DEVICE AND ITS WEARING ELEMENT
CN202280007748.7A CN117441125A (zh) 2022-01-14 2022-12-14 可穿戴设备及其佩戴件
KR1020237032567A KR20230146091A (ko) 2022-01-14 2022-12-14 착용가능장치 및 그 착용부재
US18/067,660 US20230229025A1 (en) 2022-01-14 2022-12-16 Wearable devices
US18/450,389 US20230388689A1 (en) 2022-01-14 2023-08-15 Wearable devices and wearing members thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/072151 WO2023133846A1 (zh) 2022-01-14 2022-01-14 一种可穿戴设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/067,660 Continuation US20230229025A1 (en) 2022-01-14 2022-12-16 Wearable devices

Publications (1)

Publication Number Publication Date
WO2023133846A1 true WO2023133846A1 (zh) 2023-07-20

Family

ID=83176452

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/072151 WO2023133846A1 (zh) 2022-01-14 2022-01-14 一种可穿戴设备
PCT/CN2022/139086 WO2023134382A1 (zh) 2022-01-14 2022-12-14 可穿戴设备及其佩戴件

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139086 WO2023134382A1 (zh) 2022-01-14 2022-12-14 可穿戴设备及其佩戴件

Country Status (6)

Country Link
US (2) US20230229025A1 (zh)
EP (2) EP4243441A4 (zh)
JP (2) JP7500865B2 (zh)
KR (2) KR102689176B1 (zh)
CN (6) CN116762361A (zh)
WO (2) WO2023133846A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7479713B2 (ja) 2022-01-13 2024-05-09 株式会社エスケイワイ 眼鏡
EP4243441A4 (en) * 2022-01-14 2023-10-25 Shenzhen Shokz Co., Ltd. PORTABLE DEVICES
CN115996341B (zh) * 2023-03-23 2023-09-19 荣耀终端有限公司 降噪结构、拾音组件及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130142351A1 (en) * 2011-12-02 2013-06-06 Gn Netcom A/S Microphone Slots for Wind Noise Reduction
US20130208923A1 (en) * 2010-08-27 2013-08-15 Nokia Corporation Microphone apparatus and method for removing unwanted sounds
CN203720476U (zh) * 2013-11-08 2014-07-16 深圳市广百思科技有限公司 一种蓝牙太阳镜
CN106226920A (zh) * 2016-08-19 2016-12-14 赵矗 多功能智能眼镜
CN111562676A (zh) * 2020-06-24 2020-08-21 歌尔科技有限公司 一种眼镜

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7500746B1 (en) 2004-04-15 2009-03-10 Ip Venture, Inc. Eyewear with radiation detection system
JP2006028045A (ja) 2004-07-13 2006-02-02 Yukihiro Hirose 脱毛を促進する作用を有する化粧料
CN101053280A (zh) * 2004-09-07 2007-10-10 株式会社坦姆科日本 眼镜式通信装置
US10631073B2 (en) * 2016-06-16 2020-04-21 Intel Corporation Microphone housing with screen for wind noise reduction
EP3445066B1 (en) * 2017-08-18 2021-06-16 Facebook Technologies, LLC Cartilage conduction audio system for eyewear devices
CN210183483U (zh) * 2019-08-14 2020-03-24 歌尔科技有限公司 一种智能头戴设备
US11223889B2 (en) * 2019-12-16 2022-01-11 Bose Corporation Audio device with vibrationally isolated transducer
CN212649672U (zh) * 2020-06-10 2021-03-02 深圳市冠旭电子股份有限公司 蓝牙耳机
CN213485164U (zh) * 2020-08-12 2021-06-18 深圳市韶音科技有限公司 一种发声装置
CN214704204U (zh) * 2021-02-01 2021-11-12 深圳市韶音科技有限公司 眼镜及其镜腿
CN215932289U (zh) * 2021-03-26 2022-03-01 深圳市韶音科技有限公司 眼镜
EP4243441A4 (en) * 2022-01-14 2023-10-25 Shenzhen Shokz Co., Ltd. PORTABLE DEVICES

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130208923A1 (en) * 2010-08-27 2013-08-15 Nokia Corporation Microphone apparatus and method for removing unwanted sounds
US20130142351A1 (en) * 2011-12-02 2013-06-06 Gn Netcom A/S Microphone Slots for Wind Noise Reduction
CN203720476U (zh) * 2013-11-08 2014-07-16 深圳市广百思科技有限公司 一种蓝牙太阳镜
CN106226920A (zh) * 2016-08-19 2016-12-14 赵矗 多功能智能眼镜
CN111562676A (zh) * 2020-06-24 2020-08-21 歌尔科技有限公司 一种眼镜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4243441A4 *

Also Published As

Publication number Publication date
KR20230110480A (ko) 2023-07-24
CN117441125A (zh) 2024-01-23
JP2024512948A (ja) 2024-03-21
EP4279984A1 (en) 2023-11-22
US20230388689A1 (en) 2023-11-30
CN116762361A (zh) 2023-09-15
CN116489277A (zh) 2023-07-25
CN217428214U (zh) 2022-09-13
WO2023134382A1 (zh) 2023-07-20
JP2024507307A (ja) 2024-02-19
CN217428213U (zh) 2022-09-13
CN116489278A (zh) 2023-07-25
KR102689176B1 (ko) 2024-07-30
EP4243441A1 (en) 2023-09-13
KR20230146091A (ko) 2023-10-18
EP4279984A4 (en) 2024-08-07
JP7500865B2 (ja) 2024-06-17
US20230229025A1 (en) 2023-07-20
EP4243441A4 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
WO2023133846A1 (zh) 一种可穿戴设备
WO2022142500A1 (zh) 一种发声装置
WO2020038481A1 (zh) 一种眼镜
WO2024087489A1 (zh) 一种耳机
US20240179447A1 (en) Earphones
WO2024087494A1 (zh) 一种耳机
TWI842238B (zh) 可穿戴設備
CN217388952U (zh) 可穿戴设备及其佩戴件
RU2815093C1 (ru) Носимые устройства
CN213126383U (zh) 一种麦克风消噪结构、镜架和头戴式显示设备
WO2022226792A1 (zh) 声学输入输出设备
WO2023142746A1 (zh) 可穿戴设备及其佩戴件
RU2800544C1 (ru) Звукопроизводящее устройство
WO2024060000A1 (zh) 一种声学输出装置
TW201508376A (zh) 用於眼鏡之聲音感應耳部揚聲器
WO2023142745A1 (zh) 佩戴件、可穿戴设备及充电系统
CN212463487U (zh) 一种穿戴设备和骨传导耳机
CN209659541U (zh) 入耳式耳机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280005036.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 202217075444

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2022822843

Country of ref document: EP

Effective date: 20221222

WWE Wipo information: entry into national phase

Ref document number: 2023509424

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023000644

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023000644

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230112