WO2023132242A1 - ストレッチ性織物および繊維製品 - Google Patents

ストレッチ性織物および繊維製品 Download PDF

Info

Publication number
WO2023132242A1
WO2023132242A1 PCT/JP2022/047118 JP2022047118W WO2023132242A1 WO 2023132242 A1 WO2023132242 A1 WO 2023132242A1 JP 2022047118 W JP2022047118 W JP 2022047118W WO 2023132242 A1 WO2023132242 A1 WO 2023132242A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
stretchable
yarn
warp
weft
Prior art date
Application number
PCT/JP2022/047118
Other languages
English (en)
French (fr)
Inventor
古田隆浩
木下史也
小澤昌弘
加集翔平
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202280080275.3A priority Critical patent/CN118434925A/zh
Priority to JP2022580401A priority patent/JPWO2023132242A1/ja
Priority to KR1020247020555A priority patent/KR20240128681A/ko
Publication of WO2023132242A1 publication Critical patent/WO2023132242A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/56Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads elastic
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/18Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by combining fibres, filaments, or yarns, having different shrinkage characteristics
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/32Elastic yarns or threads ; Production of plied or cored yarns, one of which is elastic
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/292Conjugate, i.e. bi- or multicomponent, fibres or filaments
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/47Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads multicomponent, e.g. blended yarns or threads
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D7/00Woven fabrics designed to be resilient, i.e. to recover from compressive stress
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/10Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyurethanes
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/061Load-responsive characteristics elastic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene

Definitions

  • the present invention relates to stretch fabrics and textile products.
  • stretch fabrics are often used for everyday wear and sports shirts, jackets, and bottoms.
  • fabrics using elastic fibers such as polyurethane, and stretchable fabrics using crimps of two-component fibers typified by side-by-side type yarns for the purpose of weight reduction. is used.
  • Patent Document 1 A method has been proposed in which a stretchable fabric is obtained by using crimped yarn and attaching an elastomer resin compound to the surface of the fabric.
  • Patent Document 2 a method of producing a fabric with excellent stretchability using spun yarn and two-component crimped yarn has been proposed.
  • Patent Document 3 discloses a suede-like woven or knitted fabric having stretchability using a polyester mixed yarn composed of two or more types of polyester multifilaments including side-by-side multifilaments.
  • the woven and knitted fabrics specifically disclosed in Patent Document 3 are: It was a heavy suede-like woven or knitted fabric, and did not have both lightness and stretchability.
  • the present invention is intended to solve the problems that cannot be achieved by these prior arts, and to provide an unprecedented stretchable woven fabric that is comfortable to wear due to its light weight and multi-directional stretchability, and that has a natural fiber tone. Make it an issue.
  • the present inventors have found that a stretchable fiber in which different two-component polymers are molded in a side-by-side or eccentric core-sheath type for part of the warp and weft, and At least one of the warp and weft yarns contains the stretchable fiber and the multifilament that is different from the stretchable fiber.
  • the inventors have found that both the stretchability and the natural fiber-like texture of the fabric can be achieved, and have completed the present invention. That is, the present invention has the following configurations.
  • the different two-component polymer is a combination selected from a combination of different polymers having different structures and a combination of polymers having different intrinsic viscosities, and the polymer is a polyester-based polymer selected from polyethylene terephthalate and polybutylene terephthalate.
  • a stretch fabric having a basis weight of 100 g/m 2 to 200 g/m 2 .
  • a stretch fabric that is lightweight and has excellent multi-directional stretch, is excellent in wear comfort, and can realize a natural fiber-like texture.
  • both the warp and the weft contain stretchable fibers, and one or both of the warp and wefts are mixed with the stretchable fiber and a multifilament different from the stretchable fiber.
  • composite textured yarn consisting of It relates to a stretch fabric having a basis weight of 100-200 g/m 2 .
  • the stretchable fiber in the present invention is a fiber in which two different polymers are intentionally arranged in the longitudinal direction of the fiber, and its form is a side-by-side type in which the two components are arranged as if they are bonded together, or an eccentric core. It is a fiber that forms a sheath structure. In such a form, the fibers are distorted due to the difference in shrinkage between the two components due to the heat treatment during processing, and the fibers take the form of three-dimensional coil crimp due to the difference in elastic recovery rate and heat shrinkage properties. The fibers are thereby imparted with mechanical stretchability. In the present invention, such fibers are called stretchable fibers.
  • the different two-component polymers used for the stretchable fiber include a combination of polymers that can cause a difference in shrinkage by heat treatment during processing, a combination of different types of polymers with different structures, and a combination of polymers with different intrinsic viscosities. selected from combinations of these.
  • a polyester-based polymer is preferred from the standpoint of fiber heat setting. Specific examples include polyethylene terephthalate and polybutylene terephthalate, and the polyester polymer is selected from these.
  • these polymers may contain other copolymerization components within the range where the desired effect can be obtained. Such are therefore also included within the scope of the above polymer. It is also possible to combine polymers of the same type or polymers with different intrinsic viscosities.
  • a combination of polyethylene terephthalate and polybutylene terephthalate, and a combination of polyethylene terephthalates having different intrinsic viscosities may be used.
  • a combination of polyethylene terephthalate and polybutylene terephthalate is preferred from the viewpoint of crimp development due to shrinkage difference.
  • the polymer preferably contains a matting agent.
  • matting agents include titanium dioxide and the like.
  • the content of the matting agent in the polymer is preferably 0.5 to 3.0% by mass, more preferably 1.0 to 2.5% by mass. Further, it is desirable that the titanium oxide used for matting should be kept in a sufficiently dispersed state and maintained in a good dispersed state in the polymer obtained by polymerization. In general, the dispersed state of titanium oxide in the polymer preferably has an average particle size of 0.2 to 0.6 ⁇ m, more preferably 0.4 ⁇ m or less.
  • the composite ratio of the two-component polymers constituting the stretchable fiber is preferably in the range of 8:2 to 2:8 as a mass ratio. It is more preferably 4:6 to 6:4. By setting it in this range, it becomes possible not only to obtain suitable crimps due to the difference in shrinkage, but also to perform stable production.
  • the single filament fineness of the stretchable fibers is preferably 0.5 dtex to 3.0 dtex, more preferably 1.0 dtex to 2.0 dtex.
  • the single yarn fineness is 0.5 dtex or more, not only excellent stretchability and suitable wear comfort can be obtained, but also excellent production stability in the spinning process.
  • the single yarn fineness is 3.0 dtex or less, excellent stretchability is obtained, the rigidity of the fiber does not become too high, the texture of the fabric is not stiff, and not only is it comfortable to wear, but also The glare peculiar to synthetic fibers due to surface reflected light is sufficiently suppressed, and an excellent natural fiber tone can be obtained.
  • the composite textured yarn defined in the present invention is not a textured yarn made of a single fiber bundle, but a mixture of different fiber bundles of the stretchable fiber and the multifilament fiber different from the stretchable fiber. It is. It is a composite textured yarn obtained by false twisting or false twisting by air entangling after false twisting, taslan processed taslan textured yarn, or plied twisted yarn.
  • composite processed yarn which consists of a core thread and a sheath thread, has a thread length difference for each, and constitutes a sheath thread loop, is a natural fiber that reproduces the fuzziness of cotton material.
  • either one or both of the fiber bundles are subjected to thick and thin processing to give thick speckles in the direction of the fiber axis. Suitable for reproducing tones.
  • the mass ratio of the stretchable fibers constituting the composite textured yarn of the present invention is preferably 20-70% by mass. More preferably, it is 30 to 50% by mass. By setting it as this range, it becomes possible to make both stretchability and a natural fiber tone compatible.
  • the multifilament fiber different from the stretchable fiber used in the composite textured yarn is not particularly limited, but it is preferably a multifilament consisting of a single component.
  • a multifilament consisting of a single component may be a mixture of one component or two or more components as a material, but a multifilament composed of the same material as a component constituting the entire fiber. say.
  • the multifilament fibers include polyester multifilaments and polyamide multifilaments.
  • the polyester constituting the polyester-based multifilament is preferably polyethylene terephthalate or polyethylene terephthalate copolymer, and the polyethylene terephthalate copolymer is preferably cationic dyeable polyethylene terephthalate.
  • multifilament fibers composed of a polymer having a basic skeleton that is the same as or common to at least one of the polymers that constitute the stretchable fibers are preferred in order to enhance the same dyeing property. Therefore, since the stretchable fiber is composed of a polyester-based polymer, it is preferably a polyester-based multifilament.
  • polyethylene terephthalate is included as a polymer constituting the stretchable fiber, it is preferable to use a polyethylene terephthalate-based multifilament or a polyethylene terephthalate copolymer-based multifilament having similar dyeability.
  • a delustering agent in the material that constitutes the multifilament fiber.
  • matting agents include titanium dioxide and the like.
  • the content of the matting agent is preferably 0.5-3.0% by mass, more preferably 1.0-2.5% by mass in the multifilament fiber. Further, it is desirable that the titanium oxide used for matting should be kept in a sufficiently dispersed state and maintained in a good dispersed state in the polymer obtained by polymerization. In general, the dispersed state of titanium oxide in the polymer preferably has an average particle size of 0.2 to 0.6 ⁇ m, more preferably 0.4 ⁇ m or less.
  • multifilament fiber other materials such as fine particles such as silica as a slipping agent and coloring pigments can be added as necessary within a range that does not impair the effects of the present invention.
  • the cross-sectional shape perpendicular to the fiber axis of the multifilament fiber (hereinafter referred to as the cross-sectional shape) is not particularly selected, but in addition to the circular cross section, the flat cross section, polygonal fibers such as triangular and star-shaped fibers, Variant cross-sections such as multi-lobed cross-sections and cross-sections combining these can be used.
  • the modified cross section is preferable in that glare peculiar to synthetic fibers can be suppressed.
  • the multifilament fiber may be a textured yarn subjected to mechanical stretching such as false twisting.
  • a multi-leaf cross section preferably a multi-leaf cross section of 6 to 8 lobes.
  • a flat multi-leaf cross section is also preferable as the multi-leaf cross section.
  • the form of the mixed fiber is a false twisted yarn or a false twisted yarn obtained by false twisting and then air entangling.
  • taslan-processed taslan-processed yarn, plied and twisted plied yarn, mixed fiber entangled yarn, and the like it is also possible to apply a thick-and-thin process to either one or both of the fiber bundles in the course of processing to impart thick speckles in the direction of the fiber axis.
  • the composite textured yarn can be a twisted yarn, which makes it possible to control the nuances of the natural fiber tone.
  • composite textured yarn satisfying the following configurations (a1) to (a3) (referred to as yarn A).
  • Stretchable fiber Stretchable fiber having polyethylene terephthalate and polybutylene terephthalate as different two-component polymers
  • Multifilament fiber Cationic dyeable polyester multifilament containing 0.5 to 3.0% by mass of matting agent False twisted textured yarn
  • Composite textured yarn Composite textured yarn having a core-sheath composite structure with a stretchable fiber as a core yarn and a multifilament fiber as a sheath yarn with a yarn length difference of 3 to 8%.
  • the stretch fabric of the present invention can be given a particularly excellent texture as a heathered natural fiber such as a wool material, a composite textured yarn (hereinafter referred to as a composite textured yarn) that satisfies the following configurations (b1) to (b3) (referred to as textured yarn B), and more preferably satisfies (b4) in addition to the above.
  • a composite textured yarn hereinafter referred to as a composite textured yarn
  • textured yarn B referred to as textured yarn B
  • Stretchable fiber Stretchable fiber with polyethylene terephthalate and polybutylene terephthalate as different two-component polymers
  • Multifilament fiber Cationic dyeable polyester multifilament containing 0.5 to 3.0% by mass of matting agent False twisted textured yarn
  • Composite textured yarn Each of the stretchable fiber and the multifilament fiber has thick speckles in the fiber axis direction, these have a mixed fiber entangled structure, and the yarn length difference is 0 to 2. %.
  • Additional twisted yarn By twisting the b3 composite textured yarn, heather tone may be adjusted.
  • the twist coefficient (K) is in the range of 6,000 to 18,000.
  • Twist factor (K) number of actual twists T (T: number of twists per meter of yarn length) x ⁇ D (D: total fineness of yarn (dtex))
  • the total fineness of the composite textured yarn is preferably in the range of 100 to 300 dtex. It is preferable to use fibers in this range in order to achieve both physical properties such as tear strength necessary for clothing, natural fiber-like surface texture, and light weight.
  • the total fineness is 100 dtex or more, the physical properties and stiffness of the fabric are excellent, and when the total fineness is 300 dtex or less, the mass of the fabric is light, and further excellent wearing comfort can be obtained.
  • the maximum heat shrinkage stress of the composite textured yarn is preferably 15 cN or more, more preferably 20 cN or more.
  • polyurethane elastic thread In the present invention, it is possible to use polyurethane elastic yarn as a complement of stretchability, but in order to maintain the lightness of the fabric, the usage ratio is 0 to 5% by mass with respect to the mass of the stretchable fabric. It is preferable to The polyurethane elastic thread can also be used in the form of a covered thread by subjecting it to a covering process. When it is used as a covering yarn, it is preferable to use an elastic urethane yarn as a core and a non-elastic multifilament or the stretchable fiber as the covering yarn.
  • the stretch fabric of the present invention contains the stretchable fiber in at least a portion of both the warp and the weft, and the composite textured yarn in one or both of the warp and the weft.
  • the composite textured yarn may be included in both the warp and the weft (hereinafter referred to as ⁇ stretch fabric 2'').
  • the "stretchable fiber in a different aspect from the composite textured yarn in the other weft or warp" used in the stretch fabric 1 is not particularly limited as long as it is the stretchable fiber described above, but stretchability and elastic recovery From the viewpoint of yield, the crimped yarn of stretchable fibers is preferable in terms of lightness and natural fiber-like texture.
  • the total fineness of the stretchable fibers is preferably 100-300 dtex, more preferably 100-250 dtex.
  • the stretchable woven fabric 2 is a preferred embodiment in that it is particularly excellent in the texture of natural fibers such as cotton or wool.
  • both the warp and the weft contain the above-mentioned composite textured yarn B in terms of further improving the heathered texture of natural fibers such as wool.
  • a non-twisted yarn is used for the warp or weft, and a twisted yarn is used for the other weft or warp, or a different number of twists is used for the warp and weft. can be changed.
  • composite fibers other than composite textured yarns and stretchable fibers (hereinafter referred to as “combined fibers”) in the warp or weft.
  • the combined fibers are not limited as long as the stretchable fabric of the present invention can be obtained.
  • Covering thread used as thread is mentioned.
  • the content when the urethane elastic thread is used is as described above.
  • False-twisted yarn is preferable as the crimped yarn.
  • examples of the material constituting the crimped yarn include disperse dye-dyeable polyester such as polyethylene terephthalate and cationic dye-dyeable polyester such as cationic dyeable polyethylene terephthalate copolymer.
  • the total fineness of the fibers used in combination is preferably 100 to 300 dtex, more preferably 100 to 250 dtex.
  • polyethylene terephthalate false-twisted yarn is particularly preferred. Further, it is more preferable to use a cationic dyeable polyester false twisted yarn to obtain a heathered tone, from the point that a natural fiber-like texture can be obtained due to the difference in dyeing.
  • Such combined fibers are arranged alternately in the warp or weft, for example, 1 to 4 of each of the composite textured yarn or stretchable fiber and the combined fiber are alternately arranged in the same number, or 1 to 4 combined fibers ( n), it is preferable to use the composite textured yarn or the stretchable fiber (n+1 to 5n) alternately arranged.
  • the ratio of use in the warp or weft is preferably 80% by mass or less from the viewpoint of obtaining stretchability and natural fiber-like texture, and is 50% by mass or less. is more preferable.
  • “independently” means that it may be contained only in the warp, only in the weft, or contained in both, and the content thereof may also be different.
  • the content of the composite textured yarn in the warp or weft independently from the viewpoint of obtaining stretchability and natural fiber-like texture is preferably 20% by mass or more, more preferably 50% by mass or more, and most preferably 100% by mass.
  • the proportion of the stretchable fiber in the warp or the weft is 20% by mass or more. It is preferably 50% by mass or more, and most preferably 100% by mass.
  • polyester-based multifilament such as polyethylene terephthalate
  • polyester undrawn yarn can be obtained by spinning polyester by a conventional method.
  • a drawn yarn is obtained by drawing this undrawn yarn, and the draw ratio and temperature conditions may be appropriately adjusted depending on whether the cross section of the fiber is made uniform in the axial direction or the fiber has a thick portion.
  • Other multifilament fibers may also be produced by appropriately arranging them according to the raw materials.
  • a polyester undrawn yarn can be obtained by spinning, for example, polyethylene terephthalate as a multifilament fiber different from the stretchable fiber used in the composite textured yarn by a normal method.
  • a drawn yarn is obtained by drawing this undrawn yarn, and the draw ratio and temperature conditions may be appropriately adjusted depending on whether the cross section of the fiber is made uniform in the axial direction or the fiber has a thick portion.
  • Composite processing is performed using the obtained two fibers to obtain a composite textured yarn.
  • Composite processing methods include plied yarn, taslan processing, plied twist, and mixed yarn. Furthermore, it is also possible to combine these with one or more of stretching, false twisting, thick-and-thin processing, and the like.
  • the stretchable fiber is A yarn and the multifilament fiber different from the stretchable fiber is B yarn
  • the B yarn is fed in excess of the A yarn
  • the mixed yarn is entangled with each other by the mixed fiber nozzle.
  • a method of making processed yarn By increasing the feeding amount of the B yarn to 3 to 8% more than the A yarn, a loop of the B yarn is formed in the mixed fiber processed yarn, and a form simulating natural fiber fluff can be obtained.
  • the mixed fiber nozzle can be selected from a rectifying nozzle, a turbulent flow nozzle, etc., but it is preferable to use a turbulent flow nozzle that facilitates loop formation.
  • the drawn yarn having thick details in the fiber axis direction of the A yarn and / or the B yarn is false twisted and then air mixed. It is possible to obtain a heterogeneous mixed fiber processed yarn capable of imparting a heathered tone like a wool material.
  • the stretchable fiber and composite textured yarn thus obtained are used as part of the warp and/or weft to obtain a woven fabric.
  • Machines for fabricating fabrics are preferably air jet looms (AJL), more preferably rapier looms.
  • AJL air jet looms
  • WJL water jet loom
  • AJL water jet loom
  • the stretchability of the fabric is expressed by the stretchable fiber and composite textured yarn.
  • processing tension is applied in the warp direction of the fabric. Therefore, in order to suppress the processing tension, it is preferable to adopt techniques such as shake-off fabric storage between processes, net drying, and fabric drive-in heat setting.
  • Such fabrics may be appropriately given various functional finishes, such as water-absorbing, water-repellent, flame-retardant, UV-shielding, antibacterial and deodorizing, and antistatic treatments.
  • the fabric weight after processing is 100 to 200 g/m 2 , preferably 100 to 170 g/m 2 .
  • the total fineness and weaving density of the weaving yarns used for the warp and weft may be appropriately adjusted, and furthermore, adjustment may be made according to the weaving structure.
  • the cover factor represented by the formula described later the total fineness of the weaving yarn and the weaving density can be adjusted from the range of 1650 to 2800 so as to achieve the above basis weight.
  • the cover factor after fabric processing is 1800 to 2200, for example, in plain weave fabrics.
  • the cover factor is preferably 2,000 or more because if a woven fabric with the same stiffness as that of a plain weave is to be obtained, the cover factor is relatively increased.
  • the stretch fabric of the present invention thus obtained has excellent multidirectional stretchability, and in a preferred embodiment, it is possible to achieve an elongation rate of 12% or more in both the warp and weft directions. can achieve an elongation of 15% or more in both the warp and weft directions.
  • the stretch fabric thus obtained is lightweight, comfortable to wear due to its multi-directional stretchability, and has a natural fiber tone.
  • the stretch fabric of the present invention is lightweight and comfortable to wear due to its multi-directional stretchability, and has a natural fiber tone, so it can be suitably used for various applications such as clothing and sleeping bags.
  • ⁇ Heat shrinkage stress> Using a thermal shrinkage stress measuring device TYPE KE-2S, apply an initial load of 1/11.1 g/dtex to the sample that has been conditioned for 24 hours in an environment of 20 ° C. x 65% RH, and measure according to the prescribed work procedure. I do. The same measurement was performed 5 times, and the average maximum thermal shrinkage stress was obtained.
  • CF ⁇ warp density (books/2.54 cm) ⁇ ⁇ total warp fineness (dtex) ⁇ + ⁇ weft density (books/2.54 cm) ⁇ ⁇ total weft fineness (dtex) ⁇ ⁇ Difference in yarn length between stretchable fiber and multifilament fiber>
  • a load of 0.08826 cN/dtex is applied to the mixed yarn, and the yarn is fixed at a length of 10 cm to a twist detector. If the yarn is twisted at this time, turn the twister to untwist it.
  • a load of 0.08826 cN/dtex is applied again.
  • the shorter fiber (referred to as fiber A) is in a tense state
  • the other fiber (referred to as fiber B) is longer than fiber A, so the tension is increased. It will be in a loose state without hanging.
  • the yarn length in this state is measured. Let this value be YL(A). Fiber A is then cut with scissors. This time, the fiber B component is in a state of being stretched. The yarn length in this state is measured. Let this value be YL(B). Calculate the yarn length difference according to the following formula.
  • Yarn length difference (%) [ ⁇ YL (B) - YL (A) ⁇ / YL (A)] x 100
  • a total of 5 test sample yarns are randomly selected from one sample yarn, and a total of 5 measurements are performed. The five measured values are averaged (rounded to the second decimal place) to obtain the yarn length difference.
  • ⁇ Percentage of stretchable fibers in composite textured yarn> Prepare 90 cm of composite textured yarn, measure the mass, and confirm the mass of the entire fiber. Observe the fiber cross section, carefully separate the fiber bundles with polymer interfaces from those with no polymer interfaces using tweezers, etc., measure the mass of the fiber bundles with polymer interfaces, and measure the mass before separation. The ratio was obtained from the mass of the fiber bundle. A sample is obtained by extracting a thread to be measured from the woven fabric. If the sample length is less than 90 cm, multiple samples shall be collected until the total length is 90 cm.
  • Example 1 First, an 87 dtex/48 filament made of polyethylene terephthalate (PET) and polybutylene terephthalate (PBT) (titanium dioxide content: PET 1.4% by mass, PBT 1.5% by mass) was drawn as a core yarn, and heated with a heater. A heat treatment was performed at a temperature of 168° C. to obtain a core yarn of 55 dtex of composite textured yarn. A polyethylene terephthalate semi-dull 56 dtex/48 filament (titanium dioxide content: 1.6% by mass, round cross section) is fed as a sheath yarn 5.2% more than the core yarn feed rate, and air entanglement is performed using a turbulent flow nozzle. The Taslan-treated yarn was wound up as a composite textured yarn.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • the resulting composite textured yarn (composite textured yarn 1) had a 122dtex-96 filament, a yarn length difference of 4.8%, and a maximum heat shrinkage stress of 22.7cN.
  • the resulting composite textured yarn was not twisted and was used for the warp and weft to create a plain weave fabric at AJL with a warp density of 83/2.54 cm and a weft density of 62/2.54 cm.
  • the obtained gray fabric was dyed and finished in the order of refining, heat setting, disperse dyeing, drying, and finishing setting.
  • the fabric thus obtained has a warp density of 110/2.54 cm and a weft density of 86/2.54 cm. It was a combination of Table 1 shows the results.
  • Example 2 The composite textured yarn 1 obtained in Example 1 was used as the warp, and side-by-side type raw yarn made of polyethylene terephthalate and polybutylene terephthalate (titanium dioxide content: PET 1.4% by mass, PBT 1.5% by mass) was used as the weft.
  • the processing was carried out in the same manner as in Example 1, except that a 112T-72 filament false twisted yarn (false twisted yarn 1) was used. Table 1 shows the results.
  • Example 3 112T-72 filament false-twisted textured yarn 1 obtained by false-twisting a side-by-side type yarn (titanium dioxide content: PET 1.4% by mass, PBT 1.5% by mass) made of polyethylene terephthalate and polybutylene terephthalate as a warp.
  • the processing was carried out in the same manner as in Example 1, except that the composite textured yarn 1 obtained in Example 1 was used as the weft yarn. Table 1 shows the results.
  • Example 4 Side-by-side type raw yarn made of polyethylene terephthalate and polybutylene terephthalate (titanium dioxide content: PET 1.4% by mass, PBT 1.5% by mass) 87 dtex/48 filament is hot drawn in the direction of the fiber axis to create a thick thread, and then drawn. Yarn A was obtained. Then, the cationic dyeable polyester 310 dtex-48 filament (titanium dioxide content: 1.5% by mass, round cross section) was hot drawn in the fiber axis direction so as to form a thick thread to obtain a drawn yarn B.
  • titanium dioxide content PET 1.4% by mass, PBT 1.5% by mass
  • the two drawn yarns were false twisted by a conventional method, and the drawn yarn A became 66T-48 filaments and the drawn yarn B became 164T-48 filaments.
  • the drawn yarns A and B were subjected to air entanglement processing, and the doubling false twisted yarn was wound as a composite textured yarn.
  • the resulting composite textured yarn (composite textured yarn 2) had a 230dtex-96 filament, a yarn length difference of 0.8%, and a maximum thermal shrinkage stress of 25.9cN.
  • the obtained composite textured yarn was twisted at 600 T/m and used as warp, and the obtained composite textured yarn was used as weft without twisting, with a warp density of 57 / 2.54 cm and a weft density of 38.
  • a plain weave was made at AJL with a design of /2.54 cm.
  • the obtained gray fabric was subjected to refining, heat setting, cationic dyeing, disperse dyeing, drying, and finish setting in the order of ordinary methods.
  • the fabric thus obtained has a warp density of 71/2.54 cm and a weft density of 50/2.54 cm. material, and the L value was 18.5.
  • the resulting woven fabric has sufficient stretch in the warp and weft directions, is lightweight, and has both the natural heathered feel of heathered natural fibers and a unique texture due to the difference in dyeing of the thick details in the fiber axis direction. Met. Table 1 shows the results.
  • Composite textured yarn 3 was obtained by using cationic dyeable polyester used for composite textured yarn 2 described in Example 4 and having an eight-leaf cross section.
  • Composite textured yarn 3 thus obtained had 230 dtex-96 filaments, yarn length difference of 0.7%, and maximum thermal shrinkage stress of 22.1 cN.
  • the resulting composite textured yarn was twisted at 600 T/m and used as the warp yarn, and the obtained composite textured yarn was used as the weft yarn without being twisted, and was treated in the same manner as in Example 4.
  • the fabric thus obtained has a warp density of 70/2.54 cm and a weft density of 51/2.54 cm. and the L value was 17.6.
  • the resulting woven fabric has sufficient stretchability in the warp and weft directions, is lightweight, and has a natural heathered feel of a heathered natural fiber due to the difference in dyeing of the thick details in the fiber axis direction.
  • the 8-leaf cross section diffusely reflects the light reflected on the surface of the fiber, suppresses the glossy feeling peculiar to the synthetic fiber, and gives a more natural fiber-like feel than the fabric of Example 4.
  • Polyethylene terephthalate semi-dull drawn yarn 56 dtex/24 filaments (titanium dioxide content: 1.5% by mass, round cross section) is used as a core yarn, and a polyethylene terephthalate semidull 90 dtex/72 filament (titanium dioxide content: 1.5% by mass, round cross section) is used as a sheath yarn, and after hot drawing, the core yarn is fed.
  • the air entangled Taslan yarn was wound up using a turbulence nozzle, fed 4.3% more than the rate.
  • the obtained Taslan processed yarn had a 122 dtex-96 filament, a yarn length difference of 3.8%, and a maximum thermal shrinkage stress of 3.2 cN.
  • the obtained taslan textured yarn is used as warp yarn without twisting, and as weft yarn, false twisted 112T-72 filament yarn (temporary Twisted yarn 1) was used.
  • a plain weave fabric was produced at AJL with a design of warp density of 98/2.54 cm and weft density of 60/2.54 cm.
  • the obtained gray fabric was dyed and finished in the order of refining, heat setting, disperse dyeing, drying, and finishing setting.
  • the woven fabric thus obtained had a warp density of 122/2.54 cm and a weft density of 63/2.54 cm. Although it was lightweight, it lacked stretchability in the warp direction and was inferior in wearing comfort. Table 1 shows the results.
  • the resulting fabric had a warp density of 107 threads/2.54 cm and a weft density of 94 threads/2.54 cm. Although it had high stretchability, it had glare due to the luster peculiar to synthetic fibers, and was inferior to that of natural fibers. Met. Table 1 shows the results.
  • the resulting composite textured yarn (composite textured yarn 4) had 342 dtex-216 filaments, a yarn length difference of 3.4%, and a maximum thermal shrinkage stress of 42.4 cN.
  • Tianium dioxide content 1.4% by mass of PET, 1.5% by mass of PBT
  • Composite textured yarn 3 and weft false-twisted textured yarn 2 were used for the warp, weaving was performed at a warp density of 50/2.54 cm and a weft density of 37/2.54 cm, and the same finishing process as in Example 1 was performed.
  • the resulting woven fabric had a warp density of 66/2.54 cm and a weft density of 51/2.54 cm. Although it had sufficient stretchability, the fabric was heavy and lacked lightness, and was inferior in wearing comfort. . Table 1 shows the results.
  • Example 4 Using the composite textured yarn obtained in Example 1 as warp and weft, weaving as a warp double fabric structure with a warp density of 158 / 2.54 cm and a weft density of 60 / 2.54 cm. Finishing was performed in the same manner.
  • the resulting fabric had a warp density of 207 threads/2.54 cm and a weft density of 80 threads/2.54 cm. Although it had high stretchability, it lacked lightness and was inferior in wearing comfort. Table 1 shows the results.
  • Example 5 112T-72 filament false-twisted textured yarn 1 obtained by false-twisting a side-by-side type yarn (titanium dioxide content: PET 1.4% by mass, PTT 1.3% by mass) made of polyethylene terephthalate and polytrimethylene terephthalate as warp yarns. and treated in the same manner as in Example 1, except that the composite textured yarn 1 obtained in Example 1 was used as the weft. Table 1 shows the results.
  • Polytrimethylene terephthalate can obtain stretchability, but since it is a highly stretchable and low-density fabric, it shrinks too much, causing deterioration in appearance quality due to wrinkling (visual evaluation) and washing shrinkage (JIS L1930: 2014). Washed 3 times according to the C4M method Shrinkage after tumble drying (evaluated according to JIS L1096: 2010 H-2 method), press shrinkage (evaluated according to JIS L1096: 2010 H-2 method) is strong, wrinkling , was inferior to the other examples in terms of wash resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

軽量および多方向ストレッチ性による着用快適性と、天然繊維調を併せ持った従来にないストレッチ性織物および繊維製品を提供するために、 本発明のストレッチ性織物は、経糸および緯糸のいずれにも、異なる2成分のポリマーがサイドバイサイド型または偏心芯鞘型に成形されたストレッチ性繊維を含む織物であり、かつ、 経糸および緯糸のうち、いずれか一方または両方に前記ストレッチ性繊維と、当該ストレッチ性繊維とは異種のマルチフィラメント繊維とを混繊してなる複合加工糸を含み、 前記異なる2成分のポリマーは、構造が異なる異種のポリマーの組み合わせ、極限粘度の異なるポリマーの組み合わせから選択される組み合わせであり、前記ポリマーはポリエチレンテレフタレートおよびポリブチレンテレフタレートから選択されるポリエステル系ポリマーであり、 目付が100g/m~200g/mであり、繊維製品に好適である。

Description

ストレッチ性織物および繊維製品
 本発明は、ストレッチ性織物および繊維製品に関する。
 従来、普段着あるいはスポーツ用のシャツ・ジャケットやボトムとして、ストレッチ性のある織物が多く使用されている。ストレッチを得る方法としては、ポリウレタンなどに代表される弾性繊維を用いた織物や、軽量化との両立を目的にサイドバイサイド型原糸に代表される2成分型繊維の捲縮を利用したストレッチ性織物が使用されている。
 捲縮加工糸を使用しエラストマー樹脂化合物を布帛表面に付着させて伸縮性布帛を得る方法(特許文献1)が提案されている。
 一方、紡績糸と2成分型捲縮加工糸を使用し、伸縮性の優れた布帛を生産する方法(特許文献2)が提案されている。
 さらに、特許文献3には、サイドバイサイド型のマルチフィラメントを含む2種以上のポリエステルマルチフィラメントからなるポリエステル混繊糸を用いてストレッチ性を有するスエード調織編物が開示されている。
特開2015-17341号公報 特開2019-183299号公報 特開2007-197864号公報
 近年では更なる着用快適性のため軽量および生地多方向へのストレッチ性や天然繊維調のナチュラルな生地表面感の要求がある。しかしながら、従来技術ではストレッチ性を得るために弾性繊維を多く使用すると生地質量が重くなったり、捲縮糸を用いた軽量化では合成繊維特有の光沢が発生したりして、天然繊維調のナチュラルな生地表面感を得ることが出来ず、十分に満足するものではなかった。
 すなわち特許文献1記載の方法では、捲縮加工糸では多方向のストレッチ性を十分に得ることが出来ず、また、エラストマー樹脂加工による原糸本来風合いを損ね、生地加工における生産コスト増ともなる。また、特許文献2記載の方法では、伸縮性の低い紡績糸を使用することで、好適な織物伸長率を得られず十分な性能が得られないものであった。
 さらに特許文献3に具体的に開示された織編物は。スエード調の重厚な織編物であり、軽量性とストレッチ性を両立するものではなかった。
 従来技術においても、軽量性とストレッチ性、天然繊維調の生地表面感を併せ持った織物を得るには至っていない。
 本発明は、これら従来技術で達成できない問題を解決するためのものであって、軽量および多方向ストレッチ性による着用快適性と、天然繊維調を併せ持った従来にないストレッチ性織物を提供することを課題とする。
 本発明者は、上記目的を達成するために鋭意検討した結果、経糸および緯糸の一部に異なる2成分のポリマーがサイドバイサイド型または偏心芯鞘型に成形されたストレッチ性繊維を使用し、かつ、経糸および緯糸のうち、少なくともいずれか一方に前記ストレッチ性繊維と、当該ストレッチ性繊維とは異種のマルチフィラメントとを混繊してなる複合加工糸を含む織物とすることで、軽量性と優れたストレッチ性、および天然繊維調の生地表面感を両立することを見出し、本発明の完成に至った。
すなわち、本発明は、下記の構成を有する。
 (1)経糸および緯糸のいずれにも、異なる2成分のポリマーがサイドバイサイド型または偏心芯鞘型に成形されたストレッチ性繊維を含む織物であり、かつ、
経糸および緯糸のうち、いずれか一方または両方に前記ストレッチ性繊維と、当該ストレッチ性繊維とは異種のマルチフィラメント繊維とを混繊してなる複合加工糸を含み、
前記異なる2成分のポリマーは、構造が異なる異種のポリマーの組み合わせ、極限粘度の異なるポリマーの組み合わせから選択される組み合わせであり、前記ポリマーはポリエチレンテレフタレートおよびポリブチレンテレフタレートから選択されるポリエステル系ポリマーであり、
目付が100g/m~200g/mであるストレッチ性織物。
 (2)前記ストレッチ性繊維の単糸繊度が0.5~3.0dtexかつ、前記複合加工糸の総繊度10が0~300dtexである(1)記載のストレッチ性織物。
 (3)前記マルチフィラメント繊維が、単一成分からなるマルチフィラメントである(1)または(2)記載のストレッチ性織物。
 (4)前記マルチフィラメント繊維が丸断面、多葉断面から選択される横断面形状を有する(1)~(3)のいずれか記載のストレッチ性織物。
 (5)前記マルチフィラメント繊維がカチオン可染ポリエステルマルチフィラメントである(1)~(4)のいずれか記載のストレッチ性織物。
 (6)前記マルチフィラメント繊維が0.5~3.0質量%の艶消し剤を含む(1)~(5)のいずれか記載のストレッチ性織物。
 (7)ストレッチ性織物に混率0~5質量%の割合でポリウレタン弾性糸が含まれる(1)~(6)のいずれか記載のストレッチ性織物。
 (8)前記複合加工糸中の前記ストレッチ性繊維の割合が20~70質量%である(1)~(7)のいずれか記載のストレッチ性織物。
 (9)前記複合加工糸中の前記ストレッチ性繊維および前記マルチフィラメント繊維のうち、いずれかもしくは両方が繊維軸方向に太細斑を有する(1)~(8)のいずれか記載のストレッチ性織物。
 (10)経糸または緯糸に前記複合加工糸を含み、他方の緯糸または経糸に前記ストレッチ性繊維からなる仮撚加工糸を含む(1)~(9)のいずれか記載のストレッチ性織物。
 (11)前記ストレッチ性織物の経糸方向、緯糸方向のいずれの方向にも12%以上の伸長率を有する(1)~(10)のいずれか記載のストレッチ性織物。
 (12)(1)~(11)のいずれかに記載のストレッチ性織物を用いてなる、衣料品、寝袋から選択される繊維製品。
 本発明によれば、軽量でかつ多方向の優れたストレッチを有することで着用快適性に優れ、天然繊維調の生地表面感が実現できるストレッチ性織物が提供される。
 以下、更に詳しく本発明について説明する。
 本発明は、経糸および緯糸のいずれにもストレッチ性繊維を含み、かつ経糸および緯糸のうち、いずれか一方または両方に前記ストレッチ性繊維と、当該ストレッチ性繊維とは異なるマルチフィラメントとを混繊してなる複合加工糸を含み、
目付が100~200g/mであるストレッチ織物に関する。
 以下、本発明について説明する。
 [ストレッチ性繊維]
 本発明におけるストレッチ性繊維とは、2成分の異なるポリマーが繊維長さ方向に意図的に配された繊維であり、その形態は2成分が貼り合わされたように配されるサイドバイサイド型や、偏心芯鞘構造を形成した繊維である。そしてこのような形態とすることにより、加工時の熱処理によって2成分の収縮差により繊維に歪を生じ、弾性回復率や熱収縮特性の差による3次元コイル捲縮の形態を取るようになる。それにより、繊維は、機械的なストレッチ性を付与される。本発明においてはこのような繊維をストレッチ性繊維という。
 ストレッチ性繊維に用いる異なる2成分のポリマーとしては、加工時の熱処理により収縮差を生じさせることができるポリマーの組み合わせであり、構造が異なる異種のポリマーの組み合わせ、極限粘度の異なるポリマーの組み合わせが挙げられ、これらの組み合わせから選択される。繊維の熱セット性からポリエステル系のポリマーであることが好ましい。具体的にはポリエチレンテレフタレート、ポリブチレンテレフタレートが挙げられ、これらから選択されるポリエステル系ポリマーである。また、これらポリマーにおいて、その他共重合成分を所期の効果が得られる程度の範囲で含有させることも可能である。よってそのようなものも上記ポリマーの範囲内とする。同種のポリマーでも極限粘度の異なるポリマーを組み合わせることも可能である。本発明においては、ポリエチレンテレフタレートとポリブチレンテレフタレートの組み合わせ、極限粘度の異なるポリエチレンテレフタレートの組み合わせが挙げられる。収縮差による捲縮発現の点からポリエチレンテレフタレートとポリブチレンテレフタレートの組み合わせであることが好ましい。
 上記ポリマーには、艶消し剤を含有させることが好ましい。艶消し剤の具体例としては、二酸化チタン等が挙げられる。これにより、得られるストレッチ性織物において、合成繊維特有のギラツキを抑え、天然繊維調の外観付与が可能となる。
 上記ポリマー中における艶消し剤の含有量は、好ましくは0.5~3.0質量%であり、より好ましくは1.0~2.5質量%である。また、艶消しに使用する酸化チタンは充分な分散状態を保ち、重合して得られるポリマー中においても良好な分散状態を保つことが望ましい。一般的にポリマー中の酸化チタンの分散状態は、平均粒子径で0.2~0.6μmが好ましく、より好ましくは0.4μm以下である。
 上記艶消剤は、2成分のポリマーのうち、両方に含ませる方がより好ましいが、片方だけ含ませても効果を得る事が出来る。
 また、ストレッチ性繊維には、本発明の効果を失わない範囲で滑り剤としてのシリカ等の微粒子、着色顔料など他の材料を必要に応じて添加することが出来る。
 2成分の重合体の配置としては、2成分を並列に貼り合わせたサイドバイサイド型の他に、偏心芯鞘構造などがあり、それらの弾性回復率や熱収縮特性の差による捲縮を発現する構造が好ましい。
 また、ストレッチ性繊維を構成する2成分のポリマーの複合比率は、質量比率として、8:2~2:8の範囲が好ましい。さらに好ましくは4:6~6:4である。この範囲とすることで、収縮差による好適な捲縮を得られるだけでなく、安定した生産を行うことが可能となる。
 また、ストレッチ性繊維の単糸繊度については0.5dtex~3.0dtexが好ましく、更に好ましくは1.0dtex~2.0dtexである。単糸繊度が0.5dtex以上とすることで、優れたストレッチ性が得られ、好適な着用快適性を得られるだけでなく、紡糸工程における生産安定性にも優れる。単糸繊度を3.0dtex以下とすることで優れたストレッチ性が得られ、繊維の剛性が高くなりすぎず、生地の肌触りとしてごわつきもなく、好適な着用快適性が得られるだけでなく、繊維表面反射光による合成繊維特有のギラツキも十分抑制され、優れた天然繊維調が得られる。
 [複合加工糸]
 本発明で定義する複合加工糸とは、単一の繊維束による加工糸ではなく、前記ストレッチ性繊維、および当該ストレッチ性繊維とは異種のマルチフィラメント繊維という、異なる繊維束を混繊してなるものである。合糸仮撚りあるいは仮撚り後にエアー交絡などにより合糸された合糸仮撚糸あるいは、タスラン加工したタスラン加工糸、または合撚した合撚糸とすることなどによって得られる複合加工糸である。なお、タスラン加工のように、芯糸と鞘糸から成り、それぞれに糸長差を設け、鞘糸ループを構成する複合加工糸は天然繊維の中でも綿素材のような毛羽感を再現するのに適しており、また、加工の過程でいずれか一方もしくは両方の繊維束にそれぞれシックアンドシン加工をするにより繊維軸方向に太細斑を付与することで、天然繊維の中でもウール素材のような杢調を再現するのに適している。複合加工糸の一方をストレッチ性繊維とすることで、好適なストレッチ性を維持したまま、天然繊維調を持ち合わせた加工糸を得ることが出来る。
 本発明の複合加工糸を構成するストレッチ性繊維の質量比率としては20~70質量%であることが好ましい。更に好ましくは30~50質量%である。この範囲とすることで、ストレッチ性と天然繊維調を両立することが可能となる。
 また、複合加工糸に用いられる前記ストレッチ性繊維とは異種のマルチフィラメント繊維としては、特に限定されるものではないが、単一成分からなるマルチフィラメントであることが好ましい。
 単一成分からなるマルチフィラメントとは、素材として1種の成分または2種以上の成分からなる混合物であっていてもよいが、繊維全体を構成する成分としては同じ素材で構成されるマルチフィラメントをいう。
 上記マルチフィラメント繊維としては、ポリエステル系マルチフィラメント、ポリアミド系マルチフィラメントが好ましく挙げられる。ポリエステル系マルチフィラメントを構成するポリエステルとしては、ポリエチレンテレフタレート、ポリエチレンテレフタレート共重合体が好ましく、ポリエチレンテレフタレート共重合体としては、カチオン可染性ポリエチレンテレフタレートが好ましく挙げられる。
 なかでも同染性を高めるにはストレッチ性繊維を構成するポリマーの少なくとも一方と同じか、共通する基本骨格を有するポリマーで構成されるマルチフィラメント繊維であることが好ましい。よって、ストレッチ性繊維がポリエステル系ポリマーで構成されるので、ポリエステル系マルチフィラメントであることが好ましい。また、ストレッチ性繊維を構成するポリマーとして、ポリエチレンテレフタレートを含む場合には、ポリエチレンテレフタレート系マルチフィラメントもしくは染着性が類似のポリエチレンテレフタレート共重合体系マルチフィラメントを使用するのが好ましい。
 一方で染着差を有するポリマーをマルチフィラメントに用いることにより、より優れた天然繊維の杢調を表現することも可能である。例えばストレッチ性繊維にポリエステル系ポリマーを用いる場合、ポリアミド系マルチフィラメントなどを使用することで染着差を生じさせ、天然繊維の杢調を表現することも可能である。さらに、ストレッチ性繊維に分散染料可染ポリエチレンテレフタレート等の分散染料可染性ポリエステルを用いる場合、マルチフィラメントとして、カチオン可染ポリエチレンテレフタレート系マルチフィラメント等のカチオン可染ポリエステルマルチフィラメントを用いることも好ましい。これにより、ウール素材のような天然繊維の杢調を表現することが可能となる。
 上記マルチフィラメント繊維を構成する素材において、艶消し剤を含有させることが好ましい。艶消し剤の具体例としては、二酸化チタン等が挙げられる。これにより、得られるストレッチ性織物において、合成繊維特有のギラツキを抑え、天然繊維調の外観付与が可能となる。
 上記艶消し剤の含有量は、マルチフィラメント繊維中0.5~3.0質量%であることが好ましく、より好ましくは1.0~2.5質量%である。また、艶消しに使用する酸化チタンは充分な分散状態を保ち、重合して得られるポリマー中においても良好な分散状態を保つことが望ましい。一般的にポリマー中の酸化チタンの分散状態は、平均粒子径で0.2~0.6μmが好ましく、より好ましくは0.4μm以下である。
 また、マルチフィラメント繊維には、本発明の効果を失わない範囲で滑り剤としてのシリカ等の微粒子、着色顔料など他の材料を必要に応じて添加することが出来る。
 マルチフィラメント繊維の繊維軸に対して垂直な断面形状(以下横断面形状と称する)についても特に選ばれるものではないが、丸断面の他に、扁平断面、三角・星型などの多角型繊維、多葉断面およびこれらを組み合わせた断面等の異型断面を使用することができる。異型断面とすることにより、合成繊維特有のギラツキを抑えたりすることができる点で好ましい。本発明においては丸断面および扁平多葉断面から選択される横断面形状を有するものが特に好ましく、これらは用途に応じてそれぞれ使い分けられる。
 また繊維軸方向に太細斑を有するマルチフィラメント繊維とすることにより繊維軸方向に繊維結晶構造に差を付与し、その繊維結晶構造の違いから生じる染色性の差で天然繊維の杢調、特にウール素材のような杢調の織物を得たりする事が可能である。
 さらに、前記マルチフィラメント繊維は、仮撚加工等によるメカニカルストレッチの加工を施した加工糸であってよい。
 これにより、ストレッチ性繊維の伸縮性を損なわず、織物にストレッチ性を与える複合加工糸とすることができる。
 天然繊維調を得るには、特に多葉断面、好ましくは6~8葉の多葉断面とすることが好ましい。多葉断面としては扁平多葉断面とすることも好ましい。これにより、合成繊維特有のギラツキが目立ちやすいL値25以下の濃色織物としたときにも、ギラツキを抑えやすく、優れた天然繊維調を表現することができる点で好ましい。さらに、6~8葉の多葉断面(扁平多葉断面であってもよい)とした上で、更に繊維軸方向に太細斑を付与することにより、その効果はより増強され、ギラツキをよりいっそう抑制した濃色かつウール素材のような杢調の天然繊維調のストレッチ性織物とすることができる。
 上記ストレッチ性繊維と上記マルチフィラメント繊維とを混繊して複合加工糸とするに際し、混繊の態様としては、合糸仮撚りあるいは仮撚り後にエアー交絡などにより合糸された合糸仮撚糸あるいは、タスラン加工したタスラン加工糸、または合撚した合撚糸、混繊交絡糸などが挙げられる。なお、加工の過程でいずれか一方もしくは両方の繊維束にそれぞれシックアンドシン加工をするにより繊維軸方向に太細斑を付与することも可能である。
 また、複合加工糸は、撚糸とすることが可能であり、それにより天然繊維調のニュアンスを制御することが可能である。
 本発明のストレッチ織物に、綿素材のような毛羽感を有す天然繊維調に優れたストレッチ性織物とするには、下記構成(a1)~(a3)を満たす複合加工糸(以下、複合加工糸Aと称する)とすることが好ましい。
 (a1)ストレッチ性繊維:ポリエチレンテレフタレートおよびポリブチレンテレフタレートを異なる2成分ポリマーとするストレッチ性繊維
 (a2)マルチフィラメント繊維:艶消し剤を0.5~3.0質量%含むカチオン可染ポリエステルマルチフィラメント仮撚加工糸
 (a3)複合加工糸:ストレッチ性繊維を芯糸とし、マルチフィラメント繊維を鞘糸として、糸長差3~8%の芯鞘複合構造を有する複合加工糸とする。
 また、本発明のストレッチ織物に、ウール素材のような天然繊維の杢調として、特に優れた風合いを付与し得る点で、下記(b1)~(b3)の構成を満たす複合加工糸(以下複合加工糸Bと称する)とすることが好ましく、さらに上記に加えて(b4)の構成を満たすことがより好ましい。
 (b1)ストレッチ性繊維:ポリエチレンテレフタレートおよびポリブチレンテレフタレートを異なる2成分ポリマーとするストレッチ性繊維
 (b2)マルチフィラメント繊維:艶消し剤を0.5~3.0質量%含むカチオン可染ポリエステルマルチフィラメント仮撚加工糸
 (b3)複合加工糸:ストレッチ性繊維と、マルチフィラメント繊維のそれぞれが繊維軸方向に太細斑を有し、これらが混繊交絡構造を有し、糸長差が0~2%である複合加工糸とする。
(b4)追加撚糸:b3複合加工糸に撚りを入れることで、杢調の調整を行っても良い。好ましくは撚り係数(K)=6000~18000の範囲である。
 撚り係数(K)= 実撚数T(T:糸長1mあたりの撚り数)×√D(D:糸条総繊度(dtex))
 また、複合加工糸の総繊度としては100~300dtexの範囲が好ましい。衣料品として必要な引裂強力などの物性と天然繊維調の表面感、軽量性を両立するうえで該範囲の繊維を使用することが好ましい。総繊度100dtex以上であることで、生地物性・生地ハリコシ感がより優れたものとなり、300dtex以下とすることにより、生地質量が軽量となり、よりいっそう優れた着用快適性を得ることができる。
 さらに、複合加工糸の最大熱収縮応力としては15cN以上であることが好ましく、更に好ましくは20cN以上である。複合加工後も高い収縮応力を持つことで、染色加工時の加工工程張力に負けず生地の収縮が行われ、好適なストレッチ性を得ることが出来る。
 [ウレタン弾性糸]
 本発明においては、ストレッチ性の補完として、ポリウレタン弾性糸を用いることも可能であるが、織物の軽量性を維持するために、その使用比率はストレッチ性織物の質量に対し、0~5質量%とすることが好ましい。ポリウレタン弾性糸は、カバーリング加工を行ない、カバーリング糸の形態で使用することも可能である。カバーリング糸とする場合、ウレタン弾性糸を芯とし、非弾性マルチフィラメントあるいは、前記ストレッチ性繊維をカバーリング用の糸とする態様が好ましい。   
 [ストレッチ織物]
 本発明のストレッチ織物は、経糸および緯糸のいずれにも少なくとも一部に前記ストレッチ性繊維を含み、かつ経糸および緯糸のうち、いずれか一方または両方に前記複合加工糸を含むものである。具体的には、経糸のみ、あるいは緯糸のみに前記複合加工糸を含み、かつ他方の緯糸または経糸に前記複合加工糸とは異なる態様のストレッチ性繊維を含むものであってもよい(以下「ストレッチ織物1」と称する)し、経糸、緯糸双方に前記複合加工糸を含むものであってもよい(以下「ストレッチ織物2」と称する)。
 上記ストレッチ織物1で用いる、上記「他方の緯糸または経糸に前記複合加工糸とは異なる態様のストレッチ性繊維」としては、前記したストレッチ性繊維である限り特に制限はないが、ストレッチ性および弾性回復率の観点から、ストレッチ性繊維の捲縮加工糸であることが、軽量性と天然繊維調の風合いが得られる点で好ましい。
 上記ストレッチ性繊維の総繊度としては、100~300dtexであることが好ましく、100~250dtexであることがより好ましい。
 前記ストレッチ性織物2は、綿素材あるいはウール素材のような天然繊維の風合いに特に優れる点で、好ましい態様である。
 さらにウール素材のような天然繊維の杢調の風合いによりいっそう優れる点で、経糸および緯糸のいずれにも前記複合加工糸Bを含むことがより好ましい。さらには、経糸、緯糸で用いる複合加工糸において、経糸または緯糸に無撚糸を用い、もう一方の緯糸または経糸に撚糸を用いる、あるいは経糸、緯糸で異なる撚り数とすることにより、杢調のニュアンスを変えることができる。
 また、本発明においては、経糸または緯糸に複合加工糸、ストレッチ性繊維以外の繊維(以下「併用繊維」と称する)を併用することも可能である。
 併用繊維としては、本発明のストレッチ性織物が得られる限り、制限はないが、ストレッチ性の観点からは、捲縮糸や、前記ウレタン弾性糸を芯とし、非弾性マルチフィラメントをカバーリング用の糸とするカバーリング糸が挙げられる。ウレタン弾性糸を用いる場合の含有量については、上記のとおりである。
 捲縮糸としては、仮撚加工糸が好ましい。
 また、捲縮糸を構成する素材としては、ポリエチレンテレフタレートなどの分散染料可染性ポリエステル、カチオン可染ポリエチレンテレフタレート共重合体等のカチオン染料可染性ポリエステルなどが挙げられる。
 上記併用繊維の総繊度としては、100~300dtexであることが好ましく、100~250dtexであることがより好ましい。
 特に好ましくは、ポリエチレンテレフタレート仮撚加工糸であることがストレッチ性の点から好ましい。また杢調を得るためにカチオン染料可染性ポリエステル仮撚加工糸を用いることで、染着差により天然繊維調の目風を得られる点から、より好ましい。
 このような併用繊維は、経糸または緯糸において、複合加工糸またはストレッチ性繊維と、併用繊維とを、例えば両者1~4本ずつ同じ本数で交互に配列する、もしくは、併用繊維1~4本(n本とする)に対し、複合加工糸またはストレッチ性繊維n+1本~5n本を交互に配列するなどの態様で用いることが好ましい。
 上記併用繊維を用いる場合の使用割合は、経糸中または緯糸中でそれぞれ独立に、80質量%以下とすることがストレッチ性および天然繊維調の目風を得る点から好ましく、50質量%以下とすることがより好ましい。上記において、それぞれ独立にとは、経糸中にのみ含む場合、緯糸中にのみ含む場合、両方に含む場合いずれでもよく、その含有量も異なっていてもよいことを意味する。
 同様に、経糸中または緯糸中に複合加工糸を含む場合において、その複合加工糸の含有量は、経糸中または緯糸中、それぞれ独立に、ストレッチ性および天然繊維調の目風を得る点から、20質量%以上であることが好ましく、50質量%以上であることがより好ましく、100質量%であることが最も好ましい。
 また、経糸中または緯糸中の一方に複合加工糸と異なる態様のストレッチ性繊維を含む場合において、ストレッチ性の点から、当該経糸中または緯糸中に占めるストレッチ性繊維の割合が20質量%以上であることが好ましく、50質量%以上であることがより好ましく、100質量%であることが最も好ましい。
 次に、本発明の織物の製造方法について詳細に説明する。
 ストレッチ性繊維を得る方法としては、異なる成分をそれぞれ別々に溶融後、サイドバイサイド型あるいは偏心芯鞘型に吐出し、冷却-延伸-巻き取りをすることで延伸糸を得る事が出来る。
 ストレッチ性繊維とは異種のマルチフィラメント繊維として、例えばポリエチレンテレフタレート等のポリエステル系マルチフィラメントを例にとって説明する。すなわちポリエステルを通常の方法により紡糸することによって、ポリエステル未延伸糸を得る事ができる。この未延伸糸を延伸することで延伸糸が得られるが、繊維断面を軸方向に均一にする場合、あるいは太細部がある繊維にする場合によって、延伸倍率・温度条件を適宜調整すればよい。その他のマルチフィラメント繊維においても同様に、原料に応じ適宜アレンジして製造すればよい。
 複合加工糸に用いられる前記ストレッチ性繊維とは異種のマルチフィラメント繊維として、例えばポリエチレンテレフタレートを通常の方法により紡糸することによって、ポリエステル未延伸糸を得る事ができる。この未延伸糸を延伸することで延伸糸が得られるが、繊維断面を軸方向に均一にする場合、あるいは太細部がある繊維にする場合によって、延伸倍率・温度条件を適宜調整すればよい。
 次いで、得られた上記両繊維を用いて複合加工を行い、複合加工糸を得る。
複合加工の方法として、合糸、タスラン加工、合撚、混繊などが挙げられる。さらには、これらに、延伸、仮撚、シックアンドシン加工等の1種または2種以上を組み合わせることも可能である。
 例えば綿素材のような毛羽感を得る複合加工糸として、タスラン加工による鞘糸ループを有する複合加工糸とする場合には、以下のように製造することが可能である。すなわち、ストレッチ性繊維をA糸、ストレッチ性繊維とは異種のマルチフィラメント繊維をB糸とすると、A糸に対してB糸を余分に送り込み、混繊ノズルにより互いを絡ませることで異種混繊加工糸とする方法。B糸の送り込み量としては、A糸よりも3~8%多くすることで、混繊加工糸にB糸のループが形成され、天然繊維の毛羽を模した形態を得る事が出来る。混繊ノズルとしては整流ノズル、乱流ノズルなどより選ぶことができるが、ループ形成が容易な乱流ノズルを使用する方が好ましい。
 また、ウール素材のような杢感を得る複合加工糸として、A糸および/またはB糸の繊維軸方向に太細部を有す延伸糸を仮撚り加工した後、エアー混繊加工することで、ウール素材のような杢調を与え得る異種混繊加工糸を得る事が出来る。
 そうして得られたストレッチ性繊維および複合加工糸を経糸および/または緯糸の一部に使用し、織物を得る。織物を作成する機械としては、エアージェットルーム(AJL)が好ましく挙げられるが、より好ましくはレピア織機である。高速織機としてはウォータージェットルーム(WJL)、AJLから選ぶことが出来るが、緯糸を水流で打ち込むWJLについては緯糸にかかる張力が大きくなり、生地のストレッチや膨らみを損なうことがあるため、AJLで生産するのが好ましい。緯糸搬送による影響を考えると、レピア織機で生産を行うことが更に好ましい。
 織物組織としては特に指定されるものではないが、ストレッチ性を優先するのであれば、組織の拘束点が少ないツイルやサテンが良い。
 製織された織物に、精錬、リラックス、熱セット、染色処理、乾燥などから選ばれる後加工工程を組み合わせた処理を行うことにより、ストレッチ性繊維および複合加工糸による布帛のストレッチ性が発現される。後加工工程においては加工張力が織物経糸方向にかかるため、加工張力を抑えるために、工程間振り落とし生地保管、ネット乾燥、生地追い込み熱セットなどの手法を取るのが好ましい。
 かかる織物には、吸水加工、撥水加工、難燃加工、紫外線遮蔽加工、抗菌防臭加工、帯電防止加工などに代表される各種機能加工を適宜付与してもよい。
 さらには、軽量性の観点から、加工後の生地目付は100~200g/mであり、100~170g/mであることが好ましい。
 上記目付とするには、経糸および緯糸に用いる織糸の総繊度、織密度を適宜調整すればよく、さらには織組織に応じて調整すればよい。後述の式で表されるカバーファクターとしては1650~2800の範囲から、上記目付となるように織糸の総繊度、織密度を調整することができる。
 また、織組織との関連でいえば、例えば平織物などでは生地加工後のカバーファクターが1800~2200であることが好ましい。ツイル組織、サテン組織などでは、平組織と同等のハリコシの織物を得ようとするとカバーファクターは相対的に上昇するため、2000以上とすることが好ましい。
 かくして得られる本発明のストレッチ織物は、多方向ストレッチ性に優れ、好ましい態様においては、経糸および緯糸のいずれの方向においてもの伸長率が12%以上を達成することが可能であり、より好ましい態様においては、経糸および緯糸のいずれの方向においてもの伸長率が15%以上を達成することも可能である。
 かくして得られたストレッチ織物は、軽量でかつ多方向ストレッチ性による着用快適性を有し、天然繊維調を併せ持った織物となる。
 本発明のストレッチ織物は軽量および多方向ストレッチ性による着用快適性と、天然繊維調を併せ持つことから衣料、寝袋などの各種用途に好適に用いることができる。
 以下に実施例を挙げて本発明の具体的な説明をするが、本発明はこれらの実施例に限定されるものではない。実施例における各測定値の評価は以下の方法で実施した。
 <目付>
 JIS L1096:2020 A法に準拠し、mあたりの生地質量gを求めた。
 <織物の伸長率>
 JIS L1096:2020 8.16.1 B法(織物の定荷重法)に準拠。荷重は14.7N、1分間保持後の印間の長さを測定し、伸長率を求めた。
 <熱収縮応力>
 熱収縮応力測定装置 TYPE KE-2Sを用い、20℃×65%RHの環境下で24時間調湿した試料に1/11.1g/dtexの初荷重を掛けて、所定の作業手順に準じ測定を行う。同様の測定を5回行い、平均最大熱収縮応力を求めた。
 <繊度>
・糸条を試料とする場合
 JIS L1013:2010 8.3.1 A法に準拠し、繊度を求めた。
・複合加工糸または織物からの分解糸を試料とする場合
 JIS L 1013:2010 8.3.1B法(簡便法)に準拠し、繊度を求める。試料は複合加工糸または織物から測定対象とする糸条を抜き出し、測定する。試料長さが足りない場合は、複数本で合計長さが所定の長さとなるようにする。試料が少なく、足りない場合は、可能な最大長さで測定するものとする。初荷重はA法規定のものと同一である。
 <ストレッチ性繊維の単糸繊度>
 前記糸条を試料とする場合、織物からの分解糸を試料とする場合、それぞれの方法で繊度を求め、糸条を構成するフィラメント本数で割った。
 <カバーファクター(CF)>
 下記式によりカバーファクターを求めた。
 CF={経糸密度(本/2.54cm)×√経糸総繊度(dtex)}+{緯糸密度(本/2.54cm)×√緯糸総繊度(dtex)}
 <ストレッチ性繊維とマルチフィラメント繊維の糸長差>
 混繊糸に荷重0.08826cN/dtexを掛け、検撚機に長さ10cmで固定する。このときに糸に撚りが入っている場合には検撚機を回して、撚りをほどいておく。
 荷重を外して、検撚機に糸を固定したまま、ストレッチ性繊維とマルチフィラメント繊維を丁寧に分離する。このときに針、ピンセットなどの補助具を使うと分離しやすいので極力使用する。
 再び荷重0.08826cN/dtexを掛ける。ストレッチ性繊維とマルチフィラメント繊維のうち、短い方の繊維(繊維Aとする)は張力が掛かり張った状態になり、他方の繊維(繊維Bとする)は繊維Aより糸長が長いので、張力が掛からず弛んだ状態になる。この状態の糸長を測定する。この値をYL(A)とする。次に繊維Aを鋏で切断する。今度は繊維B成分に張力が掛かり張った状態になる。この状態の糸長を測定する。この値をYL(B)とする。
次式に従い、糸長差を計算する。
 糸長差(%)=〔{YL(B)-YL(A)}/YL(A)〕×100
 試験は、一試料糸からランダムに試験サンプル糸を計5本採取して合計5回の測定を行う。該5つの測定値を平均して(小数点第2位を四捨五入)糸長差とする。
 <複合加工糸中のストレッチ性繊維の割合>
 複合加工糸90cmを準備し、質量を測定し、繊維全体の質量を確認する。繊維断面を観察し、ポリマー界面が認められた繊維束と、ポリマー界面が認められない繊維束とをピンセットなどで丁寧に分離し、ポリマー界面が認められた繊維束の質量を測定し、分離前の繊維束の質量から割合を得た。試料は織物から測定対象とする糸条を抜き出し、試料とする。試料長が90cmに足りない場合は、合計90cmになるまで複数本採取するものとする。
 <着用快適性>
 実施例、比較例で得られたストレッチ性織物を用いて縫製したズボンを5人の被験者に着用させ、それぞれ、屈伸運動、片足底面を地面に対し垂直に70cm引き上げた際の足の上げやすさを、下記基準で評価した。また、着用に際しての軽量感も下記基準で評価した。各被験者の評価点を平均した。なお、この着用評価は、JIS L4004:2001に基づき作成した製品サイズのラインナップから、被験者の体型に最も適したサイズのズボンを選択し、被験者に着用させて行った。
 (1)屈伸運動
  5.膝を曲げてもつっぱり感がなく、快適に膝を曲げられる。
  3.膝を曲げたときにつっぱり感があるが、膝を曲げられる。
  1.膝をまげたときにつっぱり感があり、窮屈で、膝を曲げにくい。
 (2)足の上げやすさ
  5.抵抗なく快適に足が上がる。
  3.若干抵抗があるが、足が上がる。
  1.抵抗があり、足を上げにくい。
 (3)軽量感
  5.ズボンの外観から予想される重み感に対し、格別の軽量感がある。
  3.ズボンをはいた感覚はあるが、軽量感はある。
  1.軽量感は感じない。
 (4)着衣圧
 膝部に着圧センサ(株式会社エイエムアイ・テクノ製、接触圧測定器 AMI 3037-10-II(使用受圧センサ:φ20mm))を取り付け、臀部がかかとに付くまで膝を曲げた状態を1分間保持し、曲げた状態での膝部にかかる圧力(kPa)について、5秒に1回の割合で測定し、一分間の平均(kPa)として算出した。ズボンを着用した被験者の中から任意に選択した1名分の結果を代表例として記載する。なお、いずれの被験者においても着用圧の結果の傾向に大きな差異はなかった。
 <天然繊維調>
 (1)目視評価
 実施例、比較例で得られたストレッチ性織物を10人の熟練評価者により、評価した。
  (1-1)素材感(綿調、ウール調、合成繊維調)の評価
 得られたストレッチ性織物をそれぞれ綿調、ウール調、その他の天然繊維調、合成繊維調のうち、いずれに該当するか、評価した。異なる評価であった場合には、最も多い評価を採用した。
  (1-2)光沢の評価
 得られたストレッチ性織物を下記の基準で評価した。
  5.光沢感を感じられない。
  4.わずかな光沢感を感じる。
  3.やや光沢感を感じる。
  2.合成繊維特有の光沢感を感じる。
  1.合成繊維特有の光沢感を強く感じる。
 (2)L値
 染色仕上後の織物を10cm×10cmに2枚カットし、2枚重ねた状態で、コニカミノルタ株式会社製色彩色差計(CR-300)を用い、L値を測定した。
 (実施例1)
 まず、ポリエチレンテレフタレート(PET)とポリブチレンテレフタレート(PBT)からなるサイドバイサイド型原糸(二酸化チタン含有量:PET1.4質量%、PBT1.5質量%)87dtex/48フィラメントを芯糸として延伸し、ヒーター温度168℃で熱処理を実施し、複合加工糸の芯糸55dtexを得た。鞘糸としてポリエチレンテレフタレートセミダル56dtex/48フィラメント(二酸化チタン含有量:1.6質量%、丸断面)を芯糸フィード率よりも5.2%多く送り込み、乱流加工ノズルを用いてエアー交絡を施したタスラン加工糸を複合加工糸として巻き取った。
 得られた複合加工糸(複合加工糸1)は122dtex-96フィラメント、糸長差4.8%、最大熱収縮応力22.7cNであった。
 得られた複合加工糸に撚りをかけず、経糸および緯糸に使用し、経糸密度83本/2.54cm、緯糸密度62本/2.54cmの設計でAJLにて平織物を作成した。次いで、得られた生機を常法により精錬、熱セット、分散染料染色、乾燥、仕上げセットの順で染色仕上げを実施した。
 こうして得られた織物は経糸密度110本/2.54cm、緯糸密度86本/2.54cmであり、経、緯方向に十分なストレッチを有し、軽量で、かつ天然繊維調の毛羽感と風合いを併せ持ったものであった。結果を表1に示す。
 (実施例2)
 実施例1で得られた複合加工糸1を経糸に使用し、緯糸として、ポリエチレンテレフタレートとポリブチレンテレフタレートからなるサイドバイサイド型原糸(二酸化チタン含有量:PET1.4質量%、PBT1.5質量%)に仮撚り加工を施した112T-72フィラメントの仮撚加工糸(仮撚加工糸1)を用いた以外は、実施例1と同様に処理した。結果を表1に示す。
 (実施例3)
 経糸としてポリエチレンテレフタレートとポリブチレンテレフタレートからなるサイドバイサイド型原糸(二酸化チタン含有量:PET1.4質量%、PBT1.5質量%)に仮撚り加工を施した112T-72フィラメントの仮撚加工糸1を使用し、緯糸として実施例1で得られた複合加工糸1を用いた以外は、実施例1と同様に処理した。結果を表1に示す。
 (実施例4)
 ポリエチレンテレフタレートとポリブチレンテレフタレートからなるサイドバイサイド型原糸(二酸化チタン含有量:PET1.4質量%、PBT1.5質量%)87dtex/48フィラメントの繊維軸方向に太細部を作るよう熱延伸を行い、延伸糸Aを得た。次いで、カチオン可染ポリエステル310dtex-48フィラメント(二酸化チタン含有量:1.5質量%、丸断面)の繊維軸方向に太細部を作るよう熱延伸を行い、延伸糸Bを得た。2つの延伸糸を常法により仮撚り加工し、延伸糸Aは66T-48フィラメント、延伸糸Bは164T-48フィラメントとなった。延伸糸A、Bにエアー交絡加工を施した合糸仮撚糸を複合加工糸として巻き取った。
 得られた複合加工糸(複合加工糸2)は230dtex-96フィラメント、糸長差0.8%、最大熱収縮応力25.9cNであった。
 得られた複合加工糸に600T/mの撚りをかけ経糸として使用し、緯糸には得られた複合加工糸に撚りをかけずに使用し、経糸密度57本/2.54cm、緯糸密度38本/2.54cmの設計でAJLにて平織物を作成した。次いで、得られた生機を常法により精錬、熱セット、カチオン染料染色、分散染料染色、乾燥、仕上げセットの順で染色仕上げを実施した。
 こうして得られた織物は経糸密度71本/2.54cm、緯糸密度50本/2.54cmであり、分散染料にて染められた部分がネイビー、カチオン染色された部分が濃ネイビーである杢調の素材であり、L値は18.5であった。得られた織物は、経、緯方向に十分なストレッチを有し、軽量で、かつ繊維軸方向の太細部の染着差により杢調天然繊維のナチュラルな杢感と特有の風合いを併せ持ったものであった。結果を表1に示す。
 (実施例5)
 実施例4記載の複合加工糸2に用いられるカチオン可染ポリエステルを八葉断面とした複合加工糸3を得た。得られた複合加工糸3は230dtex-96フィラメント、糸長差0.7%、最大熱収縮応力22.1cNであった。
 得られた複合加工糸に600T/mの撚りをかけ経糸として使用し、緯糸には得られた複合加工糸に撚りをかけずに使用し、実施例4と同様に処理した。
 こうして得られた織物は、経糸密度70本/2.54cm、緯糸密度51本/2.54cmであり、分散染料にて染められた部分がネイビー、カチオン染色された部分が濃ネイビーである杢調の素材であり、L値は17.6であった。得られた織物は、経、緯方向に十分なストレッチ性を有し、軽量でかつ繊維軸方向の太細部の染着差により杢調の天然繊維のナチュラルな杢感を有すだけでなく、八葉断面としたことで繊維表面の反射光を乱反射させ、合成繊維特有の光沢感を抑え、実施例4の織物よりも更に天然繊維調を感じるものであった。
 (比較例1)
 ポリエチレンテレフタレートセミダル延伸糸56dtex/24フィラメント(二酸化チタン含有量:
1.5質量%、丸断面)を芯糸として用い、鞘糸としてポリエチレンテレフタレートセミダル90dtex/72フィラメント(二酸化チタン含有量:1.5質量%、丸断面)を熱延伸した後に、芯糸フィード率よりも4.3%多く送り込み、乱流加工ノズルを用いてエアー交絡を施したタスラン加工糸を巻き取った。
 得られたタスラン加工糸は122dtex-96フィラメント、糸長差3.8%、最大熱収縮応力3.2cNであった。
 得られたタスラン加工糸に撚りをかけず、経糸に使用し、緯糸として、ポリエチレンテレフタレートとポリブチレンテレフタレートからなるサイドバイサイド型原糸に仮撚り加工を施した112T-72フィラメントの仮撚り加工糸(仮撚加工糸1)を用いた。経糸密度98本/2.54cm、緯糸密度60本/2.54cmの設計でAJLにて平織物を作成した。次いで、得られた生機を常法により精錬、熱セット、分散染料染色、乾燥、仕上げセットの順で染色仕上げを実施した。
こうして得られた織物は経糸密度122本/2.54cm、緯糸密度63本/2.54cmであり、軽量ではあるが、経方向のストレッチ性が無く、着用快適性に劣るものであった。結果を表1に示す。
 (比較例2)
 織物の経糸および緯糸として、ポリエチレンテレフタレートとポリブチレンテレフタレートからなるサイドバイサイド型原糸(二酸化チタン含有量:PET1.4質量%、PBT1.5質量%)に仮撚り加工を施した112T-72フィラメントの仮撚加工糸(仮撚加工糸1)を用い、経糸密度79本/2.54cm、緯糸密度70本/2.54cmで製織し、実施例1と同様に仕上げ加工を行った。
 得られた織物は経糸密度107本/2.54cm、緯糸密度94本/2.54cmであり、高いストレッチ性を有すものの、合成繊維特有の光沢によるギラツキを有し、天然繊維調に劣るものであった。結果を表1に示す。
 (比較例3)
 ポリエチレンテレフタレートとポリブチレンテレフタレートからなるサイドバイサイド型原糸(二酸化チタン含有量:PET1.4質量%、PBT1.5質量%)130dtex-72フィラメントを2本引き揃えて芯糸とし、延伸しヒーター温度168℃で熱処理を実施し複合加工糸芯糸164dtex-144フィラメントを得た。鞘糸としてポリエチレンテレフタレートセミダル150dtex-72フィラメント(二酸化チタン含有量:1.5質量%、丸断面)を芯糸フィード率よりも5.2%多く送り込み、乱流加工ノズルを用いてエアー交絡して巻き取った。
得られた複合加工糸(複合加工糸4)は342dtex-216フィラメント、糸長差3.4%、最大熱収縮応力42.4cNであった
 次いで、ポリエチレンテレフタレートとポリブチレンテレフタレートからなるサイドバイサイド型原糸(二酸化チタン含有量:PET1.4質量%、PBT1.5質量%)に常法により仮撚り加工を施し、336dtex-144フィラメントの仮撚加工糸(仮撚加工糸2)を得た。
 経糸に複合加工糸3、緯糸仮撚り加工糸2を使用し、経糸密度50本/2.54cm、緯糸密度37本/2.54cmで製織し、実施例1同様の染色仕上げ加工を行った。
 得られた織物は経糸密度66本/2.54cm、緯糸密度51本/2.54cmであり、ストレッチ性は十分に有するものの、生地が重く軽量性に欠け、着用快適性に劣るものであった。結果を表1に示す。
 (比較例4)
 実施例1で得られた複合加工糸を経糸および緯糸として使用し、経二重織物組織として、経糸密度158本/2.54cm、緯糸密度60本/2.54cmで製織し、実施例1と同様に仕上げ加工を行った。
 得られた織物は経糸密度207本/2.54cm、緯糸密度80本/2.54cmであり、高いストレッチ性を有すものの、軽量性に欠け、着用快適性に劣るものであった。結果を表1に示す。
 (比較例5)
 経糸としてポリエチレンテレフタレートとポリトリメチレンテレフタレートからなるサイドバイサイド型原糸(二酸化チタン含有量:PET1.4質量%、PTT1.3質量%)に仮撚加工を施した112T-72フィラメントの仮撚加工糸1を使用し、緯糸として実施例1で得られた複合加工糸1を用いた以外は、実施例1と同様に処理した。結果を表1に示す。
 ポリトリメチレンテレフタレートはストレッチ性を得ることができるが、高ストレッチで密度の甘い織物であるので、収縮が強すぎ、シボ立ちによる外観品位の低下(目視で評価)および洗濯収縮(JIS L1930:2014 C4M法に準ずる3回洗濯 タンブル乾燥後の収縮率(JIS L1096:2010 H-2法に準拠)で評価)、プレス収縮(JIS L1096:2010 H-2法に準拠した評価)が強く、シボ立ち、耐洗濯性の点で前記他例に比較して劣るものであった。
Figure JPOXMLDOC01-appb-T000001

Claims (12)

  1.  経糸および緯糸のいずれにも、異なる2成分のポリマーがサイドバイサイド型または偏心芯鞘型に成形されたストレッチ性繊維を含む織物であり、かつ、
    経糸および緯糸のうち、いずれか一方または両方に前記ストレッチ性繊維と、当該ストレッチ性繊維とは異種のマルチフィラメント繊維とを混繊してなる複合加工糸を含み、
    前記異なる2成分のポリマーは、構造が異なる異種のポリマーの組み合わせ、極限粘度の異なるポリマーの組み合わせから選択される組み合わせであり、前記ポリマーはポリエチレンテレフタレートおよびポリブチレンテレフタレートから選択されるポリエステル系ポリマーであり、
    目付が100g/m~200g/mであるストレッチ性織物。
  2.  前記ストレッチ性繊維の単糸繊度が0.5~3.0dtexかつ、前記複合加工糸の総繊度が100~300dtexである請求項1記載のストレッチ性織物。
  3.  前記マルチフィラメント繊維が、単一成分からなるマルチフィラメントである請求項1または2記載のストレッチ性織物。
  4.  前記マルチフィラメント繊維が丸断面、多葉断面から選択される横断面形状を有する請求項1~3のいずれか記載のストレッチ性織物。
  5.  前記マルチフィラメント繊維がカチオン可染ポリエステルマルチフィラメントである。請求項1~4のいずれか記載のストレッチ性織物。
  6.  前記マルチフィラメント繊維が0.5~3.0質量%の艶消し剤を含む請求項1~5のいずれか記載のストレッチ性織物。
  7.  ストレッチ性織物に混率0~5質量%の割合でポリウレタン弾性糸が含まれる請求項1~6のいずれか記載のストレッチ性織物。
  8.  前記複合加工糸中の前記ストレッチ性繊維の割合が20~70質量%である請求項1~7のいずれか記載のストレッチ性織物。
  9.  前記複合加工糸中の前記ストレッチ性繊維および前記マルチフィラメント繊維のうち、いずれかもしくは両方が繊維軸方向に太細斑を有する請求項1~8のいずれか記載のストレッチ性織物。
  10.  経糸または緯糸に前記複合加工糸を含み、他方の緯糸または経糸に前記ストレッチ性繊維からなる仮撚加工糸を含む請求項1~9のいずれか記載のストレッチ性織物。
  11.  前記ストレッチ性織物の経糸方向、緯糸方向のいずれの方向にも12%以上の伸長率を有する請求項1~10のいずれか記載のストレッチ性織物。
  12.  請求項1~11のいずれかに記載のストレッチ性織物を用いてなる、衣料品、寝袋から選択される繊維製品。
PCT/JP2022/047118 2022-01-06 2022-12-21 ストレッチ性織物および繊維製品 WO2023132242A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280080275.3A CN118434925A (zh) 2022-01-06 2022-12-21 伸缩性机织物以及纤维制品
JP2022580401A JPWO2023132242A1 (ja) 2022-01-06 2022-12-21
KR1020247020555A KR20240128681A (ko) 2022-01-06 2022-12-21 스트레치성 직물 및 섬유 제품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-000935 2022-01-06
JP2022000935 2022-01-06

Publications (1)

Publication Number Publication Date
WO2023132242A1 true WO2023132242A1 (ja) 2023-07-13

Family

ID=87073677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047118 WO2023132242A1 (ja) 2022-01-06 2022-12-21 ストレッチ性織物および繊維製品

Country Status (4)

Country Link
JP (1) JPWO2023132242A1 (ja)
KR (1) KR20240128681A (ja)
CN (1) CN118434925A (ja)
WO (1) WO2023132242A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1053927A (ja) * 1996-07-31 1998-02-24 Toray Textile Kk 複合捲縮糸、その製造方法および編織物
JPH1143835A (ja) * 1997-04-15 1999-02-16 Toray Ind Inc 織編物とその製造法および複合糸
JP2010024600A (ja) * 2008-07-24 2010-02-04 Teijin Fibers Ltd 芯鞘型複合糸および布帛および衣料
JP2020186503A (ja) * 2019-03-28 2020-11-19 ユニチカトレーディング株式会社 ポリエステル複合仮撚糸、ストレッチ性織編物、およびこれらの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4853847B2 (ja) 2006-01-26 2012-01-11 東レ・テキスタイル株式会社 ポリエステル混繊糸およびその織編物
JP2015017341A (ja) 2013-07-12 2015-01-29 東洋紡Stc株式会社 伸縮性布帛およびその製造方法
JP2019183299A (ja) 2018-04-03 2019-10-24 帝人株式会社 布帛および繊維製品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1053927A (ja) * 1996-07-31 1998-02-24 Toray Textile Kk 複合捲縮糸、その製造方法および編織物
JPH1143835A (ja) * 1997-04-15 1999-02-16 Toray Ind Inc 織編物とその製造法および複合糸
JP2010024600A (ja) * 2008-07-24 2010-02-04 Teijin Fibers Ltd 芯鞘型複合糸および布帛および衣料
JP2020186503A (ja) * 2019-03-28 2020-11-19 ユニチカトレーディング株式会社 ポリエステル複合仮撚糸、ストレッチ性織編物、およびこれらの製造方法

Also Published As

Publication number Publication date
JPWO2023132242A1 (ja) 2023-07-13
CN118434925A (zh) 2024-08-02
KR20240128681A (ko) 2024-08-26

Similar Documents

Publication Publication Date Title
WO2001057297A1 (fr) Tissu elastique
JP7207776B2 (ja) タオル地及びその製造方法
JP2004124348A (ja) 複合織編物
JP2006214056A (ja) 織物
JP4460836B2 (ja) 芯地用複合糸、芯地用布帛及び芯地用布帛の製造方法
JP4497648B2 (ja) 複合弾性糸及びその製造方法
JP2004218163A (ja) 芯地用複合糸及び芯地用布帛
WO2023132242A1 (ja) ストレッチ性織物および繊維製品
JP2006077338A (ja) ストレッチシャツ地織物
JP2001303378A (ja) 複合糸
JP7292066B2 (ja) 混繊追撚糸及び織編物
JP2004183191A (ja) 伸縮性紡績糸及び織編物並びにその製造方法
JP4252839B2 (ja) アセテート複合仮撚加工糸とその撚糸及び同撚糸を使った織物
JP2006219796A (ja) 織物
JP3534025B2 (ja) 交織織物
KR102276508B1 (ko) 위사 삽입 방식에 의해 제조되는 애슬레저용 원단 및 그 제조방법
JP3465640B2 (ja) 長短複合紡績糸および織物
JP2003155636A (ja) ストレッチ複合紡績糸及び織物
JP3992604B2 (ja) ポリエステル混繊糸
JP2002317348A (ja) ボトム用ストレッチ織物
JPH04202821A (ja) 複合捲縮糸
JP2022119638A (ja) ラン防止シングル編地
JPH08170238A (ja) 複合捲縮糸
JP4100486B2 (ja) ストレッチシャツ地
JPH1193031A (ja) ストレッチ裏地

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022580401

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918826

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280080275.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE