WO2023132212A1 - コンデンサおよびその製造方法 - Google Patents

コンデンサおよびその製造方法 Download PDF

Info

Publication number
WO2023132212A1
WO2023132212A1 PCT/JP2022/046597 JP2022046597W WO2023132212A1 WO 2023132212 A1 WO2023132212 A1 WO 2023132212A1 JP 2022046597 W JP2022046597 W JP 2022046597W WO 2023132212 A1 WO2023132212 A1 WO 2023132212A1
Authority
WO
WIPO (PCT)
Prior art keywords
foil
cathode foil
thickness
terminal
cathode
Prior art date
Application number
PCT/JP2022/046597
Other languages
English (en)
French (fr)
Inventor
航太 福島
祐喜 大須賀
圭祐 田邉
彰真 板垣
秀之 大道
真幸 樽見
Original Assignee
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022054271A external-priority patent/JP2023100570A/ja
Application filed by 日本ケミコン株式会社 filed Critical 日本ケミコン株式会社
Publication of WO2023132212A1 publication Critical patent/WO2023132212A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material

Definitions

  • the present disclosure relates to a capacitor with a cathode foil containing a carbon layer and a manufacturing method thereof.
  • a capacitor includes an anode foil, a cathode foil, and a separator disposed between the anode foil and the cathode foil, and is capable of storing electricity.
  • basic capacitors are known that include a basic cathode foil consisting only of aluminum foil.
  • a capacitor having a cathode foil containing a carbon layer has been known (for example, Patent Document 1). The carbon layer has the effect of increasing the capacitance of the cathode foil, for example.
  • the electrode foil is connected to the extraction terminal by connection means such as stitch connection.
  • connection means such as stitch connection.
  • a stitch needle is inserted from the lead terminal side through the lead terminal and the electrode foil that are superimposed on each other, a terminal hole and a terminal piece are formed in the lead terminal, and a through hole and a terminal piece are formed in the electrode foil.
  • a foil strip is formed.
  • the terminal piece protrudes from the back surface of the electrode foil through the through hole of the electrode foil.
  • the terminal piece and the foil piece are pressed and overlapped on the back side of the electrode foil. As a result, a stitch connection is formed and the electrode foil is connected to the lead terminal.
  • the carbon layer is formed, for example, by applying a slurry mainly composed of carbon particles and a binder to the surface of the aluminum foil and binding the carbon particles together with the binder.
  • a cathode foil including a carbon layer the binder contained in the carbon layer causes a stress toward the outside from the pressed portion against the pressing force against the carbon layer, and a basic metal foil such as an aluminum foil consists only of a metal foil.
  • the cathode foil containing the carbon layer is more easily stretched than the cathode foil.
  • the stitch connection process of a cathode foil having a carbon layer when the terminal piece and the foil piece are pressed, the carbon layer stretches, and the base material of the cathode foil stretches following the carbon layer.
  • Patent Document 1 does not disclose or suggest such problems, and the configuration disclosed in Patent Document 1 cannot solve such problems.
  • an object of the present disclosure is to provide a stitch connection structure suitable for, for example, a cathode foil containing a carbon layer.
  • a capacitor includes a cathode foil including a carbon layer disposed on a surface of a base foil, and a drawer including a flat portion connected to the cathode foil by a stitch connection at a stitch connection. terminals.
  • the thickness of the stitch connection portion is less than the sum of the thickness of the cathode foil and the thickness of the flat portion.
  • the terminal end of the lead-out terminal may protrude from the foil end of the cathode foil, may coincide with the foil end, or may be 0.1 mm or less or 0.1 mm or less from the foil end. It may overlap the cathode foil at intervals of 5 millimeters or more.
  • the thickness of the stitch connection may be less than the total thickness.
  • the absolute value of the difference between the thickness of the stitch connection portion and the total thickness may be 0.02 mm or less.
  • the flat portion may have a thickness of 0.18 mm or more and 0.35 mm or less.
  • the cathode foil may have a thickness of 0.01 mm or more and 0.06 mm or less.
  • a method for manufacturing a capacitor includes steps of fabricating a cathode foil including a carbon layer disposed on a surface of a base foil; The flat portion is connected to the cathode foil by stitch connection processing so that the thickness of the stitch connection portion is equal to or less than the sum of the thickness of the cathode foil and the thickness of the flat portion. and connecting to.
  • the flat portion may be connected to the cathode foil so that the terminal end of the lead terminal protrudes from the foil end of the cathode foil, or the flat portion may be connected to the cathode foil.
  • the flat portion is moved to the cathode such that the terminal end coincides with the foil end or overlaps the cathode foil at a distance of 0.1 mm or less or 0.5 mm or more from the foil end. May be connected to foil.
  • a method for manufacturing a capacitor includes the steps of determining the thickness of a cathode foil including a carbon layer disposed on the surface of a base foil and the thickness of a flat portion of a lead terminal; determining the thickness of the stitch connection such that the thickness of the stitch connection is less than or equal to the sum of the thickness of the cathode foil and the thickness of the flat portion; adjusting the stitch connection device to crush the stitch connection to the determined thickness of the stitch connection; and connecting the flat portion to the cathode foil with the adjusted stitch connection device.
  • the stitch connection device may be adjusted so that the terminal end of the lead terminal protrudes from the foil end of the cathode foil, or in the step of adjusting the stitch connection device, The stitch connection device may be adjusted so that the terminal edge is coincident with the foil edge or overlaps the cathode foil at a distance of 0.1 millimeter or less or 0.5 millimeter or more from the foil edge.
  • the equivalent series resistance can be suppressed and stabilized.
  • FIG. 4 is a diagram showing an example of terminal connection portions of the capacitor according to the first embodiment; It is a figure which shows an example of the end surface of cathode foil.
  • 5 is a graph showing an example of the relationship between the difference ⁇ T between the thickness of the stitch connection portion and the total thickness of the cathode foil and flat portion and the equivalent series resistance (ESR).
  • ESR equivalent series resistance
  • 4 is a graph showing an example of the relationship between the difference ⁇ T and the yield strength of foil. It is a figure for demonstrating an example of the measuring method of the yield strength of foil. It is a figure which shows an example of the connection process of the extraction terminal to electrode foil.
  • FIG. 10 is a diagram for explaining a presumed mechanism of suppression of foil cracking
  • FIG. 10 is a diagram for explaining a presumed mechanism of foil cracking suppression or foil cracking
  • FIG. 10 is a diagram for explaining a presumed mechanism of suppression of foil cracking
  • FIG. 10 is a diagram for explaining a presumed mechanism of foil cracking; It is a figure which shows a modification.
  • FIG. 1 shows an example of a terminal connection portion between a cathode foil and a lead-out terminal of a capacitor according to the first embodiment.
  • FIG. 2 shows an example of the end surface of the cathode foil.
  • the terminal connection portion includes the connection location where the lead terminal 4 is connected to the cathode foil 6 by stitch connection, that is, the stitch connection portion 10 and its surrounding portion.
  • the shaded portion in A of FIG. 1 represents the stitch connection portion 10 .
  • FIG. 1B is a diagram showing a cross section taken along line IB--IB of FIG. 1A. That is, the stitch connection portion 10 is a region where the terminal piece 24 is arranged, and indicates a region including a portion where the lead terminal 4, the cathode foil 6, the foil piece 28, and the terminal piece 24 are laminated from the terminal hole 22.
  • the capacitor 2 is an example of an electronic component, such as an electrolytic capacitor.
  • Capacitor 2 includes, for example, a capacitor element (not shown), lead terminals 4, an electrolyte (not shown), a sealing member, and an exterior case.
  • a capacitor element includes a cathode foil 6, an anode foil, and a separator.
  • the cathode foil 6, the anode foil and the separator are stacked and wound such that the separator is positioned between the cathode foil 6 and the anode foil to form a wound element. This wound element forms a capacitor element.
  • the cathode foil 6 constitutes an electrode on the cathode side of the capacitor 2 .
  • Cathode foil 6 is, for example, a strip-shaped foil and includes base foil 12 and carbon layer 14 .
  • the base foil 12 is, for example, a valve metal foil such as aluminum foil, tantalum foil, niobium foil, titanium foil, hafnium foil, zirconium foil, zinc foil, tungsten foil, bismuth foil, antimony foil.
  • the surface of the base foil 12 has, as shown in FIG. Enlarged.
  • the surface of the base foil 12 may include, for example, tunnel-like or spongy etch pits, which may form depressions 16-1 and protrusions 16-2.
  • the carbon layers 14 are arranged on both sides of the base foil 12, for example.
  • the carbon layer 14 may be arranged only on one surface of the base foil 12 .
  • the carbon layer 14 partially penetrates into the depressions 16-1 of the asperities 16 as shown in FIG. That is, the carbon layer 14 has a surface shape that engages with the irregularities 16 .
  • the carbon layer 14 is arranged outside the base foil 12, and the cathode foil 6 has a two-layer structure comprising the base foil 12 and the carbon layer 14 or a three-layer structure comprising the carbon layers 14 arranged on both sides of the base foil 12. ing.
  • the carbon layer 14 contains a carbon material as a main material, and further contains a binder and a dispersant as additives.
  • Carbon materials include activated carbon, carbon black, carbon nanohorn, amorphous carbon, natural graphite, artificial graphite, graphitized ketjen black, mesoporous carbon, and fibrous carbon.
  • Activated carbon is produced using, for example, natural plant tissues such as coconut shells, synthetic resins such as phenol, and fossil fuel-derived materials such as coal, coke, or pitch as raw materials.
  • Carbon black includes ketjen black, acetylene black, channel black, thermal black and the like.
  • Fibrous carbon includes carbon nanotubes, carbon nanofibers, and the like.
  • the carbon nanotube may be a single-walled carbon nanotube having a single graphene sheet, or a multi-walled carbon nanotube (MWCNT) having two or more graphene sheets rolled coaxially and having a multi-layered tube wall.
  • MWCNT multi-walled carbon nanotube
  • the carbon material is preferably carbon black, which is spherical carbon.
  • carbon black which is spherical carbon.
  • the carbon material is also preferably a mixture containing spherical carbon and graphite.
  • Graphite is, for example, natural graphite, artificial graphite, graphitized ketjen black, or the like, and has a scaly, scaly, massive, earthy, spherical, or flaky shape.
  • Graphite is preferably in the form of flakes or flakes, and the aspect ratio of the short axis to the long axis of graphite is preferably in the range of 1:5 to 1:100.
  • the flake-like or flake-like graphite having the aforementioned aspect ratio can be formed by pushing spherical carbon into the depressions 16-1 of the unevenness 16 such as etching pits, and forming part of the carbon layer 14 even inside the etching pits. Therefore, the carbon layer 14 can be firmly adhered to the base foil 12 due to the anchor effect.
  • the average particle size of graphite is 6 micrometers (hereinafter referred to as " ⁇ m") or more and 10 ⁇ m or less, it is possible to obtain effects such as suppressing a decrease in capacitance due to high-temperature environmental loads. Further, when the average particle size of graphite is 6 ⁇ m or less, the capacitance of the capacitor 2 can be increased while suppressing the decrease in capacitance due to the high-temperature environmental load. In addition, when the average particle size of graphite is 6 ⁇ m or less, the graphite can be easily retained in the carbon layer 14, and the amount of binder to be added can be suppressed. By suppressing the addition amount of the binder, the ratio of the carbon material is increased. Therefore, the electrical resistance of cathode foil 6 can be reduced, and the equivalent series resistance of capacitor 2 can be reduced.
  • the numerical value of the average particle diameter described above is a numerical value based on the median diameter, so-called D50.
  • the mass ratio of graphite to the mixture of graphite and spherical carbon is, for example, in the range of 25% or more and 90% or less.
  • the binder is, for example, a resin-based binder such as styrene-butadiene rubber, polyvinylidene fluoride, or polytetrafluoroethylene, and binds the carbon material.
  • Dispersants are, for example, sodium carboxymethylcellulose.
  • the carbon layer 14 is produced, for example, from an aqueous solution in which spherical carbon is dispersed. The dispersant can disperse the carbon material in the aqueous solution.
  • the anode foil constitutes the electrode on the anode side of the capacitor 2 .
  • the anode foil is, for example, a valve-acting metal foil such as tantalum foil or aluminum foil, and is, for example, strip-shaped.
  • the surface of the anode foil has irregularities formed by etching, for example, and includes a dielectric oxide film formed by chemical conversion treatment, for example.
  • the unevenness formed by etching has, for example, a porous structure.
  • a separator is placed between the anode foil and the cathode foil 6 to prevent a short circuit between the anode foil and the cathode foil 6 .
  • the separator is an insulating material, including kraft, and may include other separator materials such as manila hemp, esparto, hemp, rayon, cellulose, mixtures thereof, and the like.
  • the cathode foil 6 is connected to the extraction terminal 4 by stitch connection.
  • the anode foil is connected to another unillustrated lead-out terminal (hereinafter referred to as "lead-out terminal 4" for convenience) by stitch connection or other connection means.
  • the lead terminal 4 protrudes from one end surface of the capacitor element.
  • Lead terminal 4 is made of, for example, a highly conductive metal such as aluminum.
  • the extraction terminal 4 is composed of, for example, an aluminum wire and a metal wire 17 (FIG. 7), and the aluminum wire and the metal wire 17 are connected by arc welding or the like.
  • the aluminum wire has a substantially cylindrical round bar portion and a flat portion 18 formed by pressing the round bar portion. It has an inclined portion where the thickness linearly decreases to the thickness.
  • the flat portion 18 is overlaid on the cathode foil 6 and connected to this cathode foil 6 by stitch connection to form the stitch connection portion 10 . That is, the flat portion 18 is connected to the cathode foil 6 by stitch connection at the stitch connection portion 10 .
  • the electrolyte contains at least an electrolytic solution, and is filled in the voids and separators within the capacitor element.
  • the sealing member is made of insulating rubber, for example.
  • the sealing member has an insertion hole at a position corresponding to the lead terminal 4 .
  • a lead-out terminal 4 passes through the insertion hole of the sealing member and is exposed to the outside of the capacitor 2 .
  • the exterior case is, for example, a cylindrical aluminum case with a bottom.
  • a part of the capacitor element and lead terminal 4 is inserted inside the exterior case together with the electrolyte.
  • a sealing member is installed in the opening of the outer case to seal the inside of the outer case. That is, part of the capacitor element and lead terminal 4 is sealed inside the exterior case.
  • the lead terminal 4 passes through the through hole of the sealing member and protrudes from the sealing member.
  • the flat portion 18 is connected to the cathode foil 6 by stitch connection to form the stitch connection portion 10 .
  • the flat portion 18 includes terminal holes 22 and terminal strips 24
  • the cathode foil 6 includes through holes and foil strips 28 .
  • the terminal hole 22, the terminal piece 24, the through hole and the foil piece 28 are formed by inserting a stitch needle 46 (FIG. 6) from the lead terminal 4 side.
  • the terminal hole 22 is arranged at a position overlapping the through hole.
  • the terminal piece 24 and the foil piece 28 are folded back by pressing from the side of the cathode foil 6 and are pressed against the back surface of the cathode foil 6, that is, the surface facing the terminal arrangement surface.
  • the stitch connection portion 10 is an area where the flat portion 18 and the cathode foil 6 are connected, and is defined as an area where the terminal piece 24 is arranged in A of FIG. 1, for example.
  • the flat portion 18 forming the fold and the terminal piece 24 sandwich the cathode foil 6 and the foil piece 28 from two sides, for example, from above and below.
  • the equivalent series resistance of the capacitor 2 can be suppressed and stabilized.
  • the equivalent series resistance can be further suppressed and stabilized further.
  • the thickness T2 of the cathode foil 6 and the thickness T3 of the flat portion 18 can be freely set, and may be set appropriately according to the specifications of the capacitor 2, for example. From the viewpoint of practicality or economy, the thickness T2 of the cathode foil 6 is, for example, 0.01 mm (hereinafter referred to as "mm") or more and 0.06 mm or less, and the thickness T3 of the flat portion 18 is, for example, It is 0.18 mm or more and 0.35 mm or less. When the thickness T3 of the flat portion 18 is 0.18 mm or more, the equivalent series resistance is suppressed and does not become a large value.
  • FIG. 3 is a graph showing an example of the relationship between the difference ⁇ T between the thickness T1 and the total thickness Tt and the equivalent series resistance (ESR).
  • FIG. 4 is a graph showing an example of the relationship between the difference ⁇ T and the yield strength of the foil.
  • FIG. 5 is a diagram for explaining an example of a method for measuring yield strength of foil.
  • the carbon layer-containing foil represents the cathode foil 6 including the carbon layer 14.
  • the cathode foil 6 having a thickness T2 of 0.02 mm and a thickness T3 of 0.23 mm were used.
  • a lead-out terminal 4 is used that includes a flat portion 18 having a flat portion. That is, the total thickness Tt is 0.25 mm, and when the thickness T1 of the stitch connection portion 10 is 0.25 mm, the difference ⁇ T is 0.00 mm.
  • the equivalent series resistance of the capacitor 2 using the carbon layer-containing foil decreases as the value of the difference ⁇ T decreases. Further, in the connection between the cathode foil 6 and the lead terminal 4, there is no connection having an extremely high equivalent series resistance in the region of the difference ⁇ T of 0.00 mm or less. According to the graph shown in FIG. 3, the equivalent series resistance is suppressed and stable when the thickness T1 of the stitch connection portion 10 is equal to or less than the total thickness Tt.
  • the graph shown in FIG. 3 includes equivalent series resistance data for capacitors using basic cathode foils for comparison.
  • a basic cathode foil represents a cathode foil without a carbon layer, and the thickness of the basic cathode foil is 0.02 mm, which is the same as the thickness T2 of the cathode foil 6 in this test.
  • the equivalent series resistance of the capacitor 2 using the carbon layer-containing foil is lower than that of the capacitor using the basic cathode foil at the same difference ⁇ T, and with less variation.
  • the capacitor 2 using a carbon layer-containing foil has a suppressed and stable equivalent series resistance. can be obtained.
  • the yield strength of the carbon layer-containing foil increases until the difference ⁇ T decreases to -0.02 mm.
  • the difference ⁇ T is ⁇ 0.02 mm or more and 0.00 mm or less
  • relatively high yield strength of the foil can be obtained. That is, it is preferable that the thickness T1 of the stitch connection portion 10 is equal to or less than the total thickness Tt, and the absolute value of the difference ⁇ T (
  • the graph shown in FIG. 4B shows the yield strength of the above-described basic cathode foil.
  • the yield strength of the basic cathode foil is highest when the difference ⁇ T is 0.00 mm, and decreases as the difference ⁇ T becomes smaller than 0.00 mm.
  • T1 ⁇ Tt and “
  • FIG. 5 shows an example of a method for measuring the yield strength of foil.
  • a pulling force F perpendicular to the foil 32 and directed upward to the second major surface 36 of the foil 32 is applied to the pull point X of the lead terminal 4 attached to the first major surface 34 of the foil 32 .
  • Foil 32 is a carbon layer containing foil, ie cathode foil 6, or a basic cathode foil.
  • the yield strength of the foil is defined as the magnitude of the tensile force F when the foil 32 cracks, for example.
  • the test of yield strength of the foil is not limited to the test shown in FIG. 5 as long as the yield strength of the foil can be relatively evaluated.
  • the pulling point X may be set arbitrarily as long as it is fixed in a series of tests. [Capacitor manufacturing process]
  • the manufacturing process of the capacitor 2 is an example of the manufacturing method of the capacitor of the present disclosure. 4, the step of grasping the thickness T3 of the flat portion 18, the step of determining the thickness T1 of the stitch connection portion 10, the adjustment step of the stitch connection device 40 (FIG. 6), and the step of connecting the lead terminal 4 to the electrode foil (hereinafter referred to as (referred to as “connection step of lead terminals”), a capacitor element fabrication process, and a capacitor element encapsulation process.
  • the surface of the valve action metal foil such as tantalum foil or aluminum foil is etched to form irregularities on the surface of the valve action metal foil.
  • the valve action metal foil is chemically treated to form a dielectric oxide film on the surface of the valve action metal foil.
  • the valve-acting metal foil is etched, for example, by applying an electric current to the valve-acting metal foil immersed in an aqueous chloride solution such as hydrochloric acid or salt.
  • the applied current may be direct current or alternating current.
  • valve action metal foil In the chemical conversion treatment of the valve action metal foil, for example, voltage is applied to the valve action metal foil immersed in an electrolytic solution containing a solution of ammonium borate, ammonium borate, ammonium phosphate, ammonium adipate, or the like. An anode foil is produced by cutting the formed valve action metal foil.
  • valve action metal foil such as aluminum foil, tantalum foil, niobium foil, titanium foil, hafnium foil, zirconium foil, zinc foil, tungsten foil, bismuth foil and antimony foil is etched.
  • the base foil 12 is produced by forming the irregularities 16 on the surface of the valve metal foil.
  • the etching on the cathode foil 6 side may be the same as or different from the etching on the anode foil side.
  • a carbon layer 14 is formed on the valve metal foil after etching, that is, the base foil 12 , and the base foil 12 with the carbon layer 14 formed thereon is cut to form the cathode foil 6 .
  • the carbon layer 14 is produced as follows.
  • the above-described carbon material, binder and dispersant are added to the diluent and mixed by dispersing treatment such as mixer, jet mixing (jet impingement), ultracentrifugation or ultrasonic treatment to form a slurry.
  • the binder is added, for example, in an amount necessary for binding the carbon material
  • the dispersant is added, for example, in an amount necessary for dispersing the carbon material. Therefore, the amount of binder and dispersant to be added is smaller than the amount of carbon material to be added.
  • the graphite may be pulverized with a pulverizer such as a bead mill or ball mill to adjust the average particle size of the graphite before addition to the diluent.
  • diluents examples include alcohols, hydrocarbon solvents, aromatic solvents, amide solvents, water and mixtures thereof.
  • Alcohols are, for example, methanol, ethanol or 2-propanol.
  • Amide solvents are, for example, N-methyl-2-pyrrolidone (NMP) or N,N-dimethylformamide (DMF).
  • the slurry is applied to the valve action metal foil after etching, that is, the base foil 12 . Since the unevenness 16 is formed on the base foil 12, the carbon material enters into the unevenness 16 to improve adhesion. After drying the slurry to volatilize the solvent and form the carbon layer 14, the carbon layer 14 is pressed. In addition to the formation of the unevenness 16, if a press working step is added, the carbon material can be pushed into the pores of the unevenness 16, and the carbon material can be deformed along the uneven surface of the unevenness 16, resulting in a carbon layer. Adhesion and fixability between 14 and base foil 12 are further improved. When the carbon material contains graphite, the graphite is aligned and deformed along the irregularities 16 of the base foil 12 by pressing.
  • the spherical carbon is pushed into the recesses 16-1 such as the pores of the base foil 12. As shown in FIG. As a result, the slurry adheres to the base foil 12 to obtain the carbon layer 14 that adheres to the base foil 12 .
  • the carbon material is only spherical carbon, particularly by using spherical carbon having an average primary particle size of 100 nm or less, the spherical carbon tends to enter the depressions 16-1. The interface resistance with becomes easy to decrease.
  • the carbon layer 14 does not contain graphite, the coefficient of static friction on the surface of the carbon layer 14 is improved, and when the terminal piece 24 is pressed against the foil piece 28, it becomes less slippery, and stitch connection with stable connectivity can be obtained.
  • the separator member is cut to produce the separator.
  • the thickness T2 of the cathode foil 6 and the thickness T3 of the flat portion 18 of the lead terminal 4 are determined.
  • the dimensional official values such as dimensional standard values or dimensional inspection values of the thicknesses T2 and T3 are referred to, and these dimensional official values are grasped as grasped values of the thicknesses T2 and T3.
  • the thicknesses T2 and T3 may be actually measured in the step of grasping the thicknesses T2 and T3, and the measured values obtained by the measurements may be grasped as the grasped values of the thicknesses T2 and T3.
  • the total thickness Tt is obtained by adding the grasped value of the thickness T2 and the grasped value of the thickness T3.
  • the thickness T1 is determined so that the thickness T1 is equal to or less than the total thickness Tt. As already mentioned, it is preferable to determine the thickness T1 so that the absolute value of the difference ⁇ T is 0.02 mm or less or the thickness T2 of the cathode foil 6 or less.
  • Adjusting the stitch connecting device 40 includes adjusting device settings, such as distance settings, for example.
  • the lead terminals 4 are connected to the cathode foil 6 and the anode foil, respectively.
  • a stitch connection device 40 is used in the step of connecting the lead terminal 4 to the cathode foil 6 .
  • Stitch connection device 40 includes, for example, first mold 42 , second mold 44 , stitch needle 46 and mold 48 .
  • the cathode foil 6 is placed on a first mold 42 such as a lower mold, and the lead terminals 4 are overlapped on the upper surface of the cathode foil 6, that is, the terminal arrangement surface.
  • a second mold 44 such as an upper mold is placed on the upper surface of the lead terminal 4 . Therefore, the cathode foil 6 and the lead terminal 4 are sandwiched between the first die 42 and the second die 44 and held by the first die 42 and the second die 44 .
  • the cathode foil 6 placed on the first mold 42 is the cathode foil 6 before the through holes and the foil pieces 28 are formed. and lead terminal 4 before terminal piece 24 is formed.
  • the first mold 42 has through holes 50 and the second mold 44 has through holes 52 .
  • Through hole 50 has a hole shape slightly larger than the cross-sectional shape of mold 48 .
  • Through hole 52 has a hole shape slightly larger than the shape of the cross section of stitch needle 46 .
  • the through hole 52 is smaller than the through hole 50 and is located directly above the through hole 50 .
  • the stitch needle 46 has, for example, a cylindrical shank with an acute angle and a pyramidal tip, and is positioned above the through hole 52 .
  • the stitch needle 46 is lowered in the direction of the arrow shown in FIG. 6A, and the stitch needle 46 is inserted through the lead terminal 4 and the cathode foil 6 from the lead terminal 4 side as shown in FIG.
  • a through hole and a foil piece 28 are formed in the cathode foil 6
  • a terminal hole 22 and a terminal piece 24 are formed in the lead-out terminal 4 .
  • the lowered stitch needle 46 is lifted and pulled out from the lead-out terminal 4 and the cathode foil 6 .
  • the mold 48 has, for example, a flat pressing surface on its upper side and is arranged below the through hole 50 .
  • the molding die 48 is lifted in the direction of the arrow shown in FIG. 6B, and the pressing surface presses the lead terminal 4 and the cathode foil 6, especially the terminal piece 24 and the foil piece 28 from the cathode foil 6 side.
  • the terminal strip 24 and foil strip 28 are sandwiched between a second die 44 and a molding die 48 .
  • the terminal piece 24 and the foil piece 28 are folded back by pressing, and the lead terminal 4 is connected to the cathode foil 6 .
  • the adjusted stitch connection device 40 adjusts the thickness T1 of the stitch connection portion 10 to be equal to or less than the total thickness Tt.
  • the pressing surface of the mold 48 before being lifted is indicated by a dashed line.
  • the stitch connection device 40 raises the mold 48 by the travel distance L to crush the stitch connection 10 with the second mold 44 and the mold 48 .
  • the thickness T 1 of the crushed stitch connection 10 corresponds to the distance S between the second die 44 and the forming die 48 .
  • Travel distance L or distance S is an example of a device setting, such as a distance setting for stitch connection device 40, for example.
  • the moving distance L or the distance S is set in the stitch connection device 40, and the thickness T1 of the stitch connection portion 10 is adjusted.
  • the distance setting of the stitch connection device 40 may be the crush distance of the stitch connection 10, for example.
  • the crushing distance is defined as a distance from a contact surface formed by contact between the first mold 42 and the cathode foil 6 as a reference surface.
  • the stitch connecting device 40 raises the pressing surface of the forming die 48 to the reference surface so that the thickness T1 is adjusted to the total thickness Tt.
  • the stitch connector 40 raises the pressing surface of the mold 48 to 0.02 mm above the contact surface so that the thickness T1 is greater than the total thickness Tt.
  • the thickness is adjusted to 0.02 mm thinner.
  • the adjustment of the stitch connecting device 40 includes adjusting the position of the upper limit switch of the cylinder that raises the forming die 48, adjusting the amount of rotation of the screw of the screw elevator, and adjusting and setting the position of the stopper that stops the rising of the forming die 48 by contact. It can be any computer-controlled adjustment using value data, or any other adjustment.
  • the process of connecting the lead terminal 4 to the anode foil may be the same as or different from the process of connecting the lead terminal 4 to the cathode foil 6 .
  • the crush distance settings may be different. Since the anode foil does not have a carbon layer formed on its surface, it is easily stretched by the stress directed outward from the pressed portions of the terminal piece 24 and the foil piece 28, like the cathode foil 6, which is a carbon layer-containing foil. Not likely. Rather, in the anode foil, unevenness is formed on the surface of the valve metal foil as described above, and a dielectric oxide film is formed on the unevenness by chemical conversion treatment. The dielectric oxide film is hard and reduces the stretchability and flexibility of the anode foil.
  • the thickness of the stitch connection portion is the same as the thickness of the flat portion 18 of the lead terminal 4 and the thickness of the anode foil in order to suppress the pressure applied to the anode foil. It is preferable to press the anode foil and the lead-out terminal 4 so that the total thickness of the anode foil and the lead-out terminal 4 is equal to or greater than the total thickness of . Therefore, in connection between the anode foil and the lead terminal 4, it is preferable that the thickness T1 of the stitch connection portion 10 and the thickness of the flat portion 18 of the lead terminal 4 and the foil are different.
  • the first separator is arranged between the anode foil and the cathode foil 6 and the second separator is arranged outside the anode foil or the cathode foil 6 .
  • a capacitor element is fabricated by winding the anode foil, the cathode foil 6, and the first and second separators.
  • the capacitor element impregnated with an electrolyte such as an electrolytic solution is inserted into the exterior case, and then a sealing member is attached to the opening of the exterior case to fabricate the capacitor 2 .
  • the cathode foil 6 including the carbon layer 14 tends to stretch during stitch connection processing. Therefore, the degree of difficulty of connecting the cathode foil 6 including the carbon layer 14 and the lead terminal 4 is higher than the difficulty of connecting the cathode foil and the lead terminal 4 in connection processing such as stitch connection processing. . Therefore, in the capacitor 2 according to the first embodiment, the stitch connection is stabilized by adjusting and managing the crushing thickness of the stitch connection portion 10 in the stitch connection process, that is, the thickness T1 of the stitch connection portion 10. can be done.
  • the equivalent series resistance of the capacitor 2 is suppressed and stabilized. be able to. If the thickness T1 of the stitch connection portion 10 is adjusted so that the thickness T1 of the stitch connection portion 10 is less than the total thickness Tt, the equivalent series resistance of the capacitor 2 can be further suppressed and stabilized. can be done.
  • the capacitor 2 can obtain relatively high foil yield strength.
  • a stitch connection suitable for the properties of the cathode foil 6 containing the carbon layer 14 can be realized, and the stability or reliability of the capacitor 2 provided with the cathode foil 6 containing the carbon layer 14 can be enhanced.
  • the capacitor 2 of the second embodiment has, for example, the configuration of the capacitor 2 described in the first embodiment.
  • the content described in the first embodiment is incorporated into the second embodiment by reference, and the re-description in the second embodiment is omitted.
  • FIG. 7 shows an example of lead terminals and cathode foils of a capacitor according to the second embodiment.
  • the configuration shown in FIG. 7 is an example, and the technology of the present disclosure is not limited to such a configuration.
  • the press mark is a mark formed on the drawer terminal 4, especially the flat portion 18, by pressing the mold such as the second die 44 or the forming die 48 in the lead terminal connection process described above. , traces formed on the flat portion 18 of the lead-out terminal 4 by pressing the mold end portion 70 (FIGS. 12 and 13) of the second mold 44.
  • the press mark end 68 is formed, for example, on the metal wire 17 side of the flat portion 18 .
  • Terminal end 66 of extraction terminal 4 is recessed from foil end 62 of cathode foil 6, for example.
  • a distance Y1 (unit: mm) between the terminal end 66 and the foil end 62 is preferably 0.1 or less or 0.5 or more.
  • Distance Y1 may be 0.0 and terminal edge 66 may coincide with foil edge 62 . That is, the distance Y1 is adjusted or managed within the range represented by the following formula (3), for example. 0.0 ⁇ Y1 ⁇ 0.1, or 0.5 ⁇ Y1 (3)
  • the maximum value of distance Y1 may be set from the viewpoint of the structure or performance of capacitor 2 .
  • the lead terminal 4 may protrude from the foil end 62 . The protruding lead terminal 4 suppresses cracking of the cathode foil 6 .
  • a press-marked end 68 of the lead-out terminal 4 is recessed, for example, from the foil end 64 of the cathode foil 6 .
  • the distance Z1 (unit: mm) between the press mark edge 68 and the foil edge 64 is preferably 0.1 or less.
  • the distance Z1 may be 0.0 and the press mark edge 68 may coincide with the foil edge 64 .
  • the distance Z1 is adjusted or managed within the range represented by the following formula (4), for example. 0.0 ⁇ Z1 ⁇ 0.1 (4)
  • the press scar end 68 may protrude from the foil end 64 .
  • the press mark end 68 is adjusted or managed to protrude from the foil end 64, cracking of the cathode foil 6 is suppressed.
  • FIG. 8 shows the results of the first experiment, showing how foil cracks occur at distances Y1 and Y2 (hereinafter referred to as "distances Y1 and Y2").
  • a foil crack is defined as a crack extending from the foil edge 62 of the cathode foil 6 to the terminal piece 24 of the stitch connection 10 .
  • a foil crack may be formed in the cathode foil 6 by pressing the lead terminal 4 and the cathode foil 6, for example, in the process of connecting the lead terminals described above.
  • cracks that do not meet the above definition, such as cracks that do not reach the terminal piece 24, are not treated as foil cracks.
  • a distance Y2 (unit: mm) is defined as the distance between the terminal end 66 of the lead terminal 4 projecting from the foil end 62 of the cathode foil 6 and the foil end 62 .
  • the first experiment confirmed the presence or absence of foil cracks when the distances Y1 and Y2 between the terminal end 66 and the foil end 62 were changed as conditions for stitch connection of the lead terminal 4 to the cathode foil 6 including the carbon layer 14. This is an experiment for
  • the foil end 62 of the cathode foil 6 is sandwiched and fixed between the second die 44 and the forming die 48 with the lead terminal 4 therebetween in the step of connecting the lead terminal.
  • the cathode foil 6 including the carbon layer 14 stretches more easily than the basic cathode foil (that is, the cathode foil not including the carbon layer).
  • the fixation of the foil end 62 suppresses elongation of the foil end 62, and presumably suppresses foil cracking of the cathode foil 6. be.
  • the fixation at or near the foil end 62 causes the foil end to It is presumed that the elongation of 62 is suppressed, and the cracking of the cathode foil 6 is presumed to be suppressed.
  • the protruding foil end portion 72 is not sandwiched between the second die 44 and the forming die 48 via the lead terminal 4 in the process of connecting the lead terminal. become free.
  • the distance of the protruding foil end 72 that is, the distance Y1 is, for example, 0.5 mm or more, and the area of the protruding foil end 72 is large, the stress propagating from the mold 48 and the lead-out terminal 4 to the cathode foil 6 is applied to the protruding foil.
  • 10A and 10C represent the stress propagating to the cathode foil 6. As shown in FIG.
  • the molding die It is presumed that the stress propagating from 48 and lead-out terminal 4 to cathode foil 6 propagates to projecting foil end 72, and the extension of cathode foil 6 increases due to this stress. Therefore, it is presumed that foil cracking of the cathode foil 6 occurs.
  • FIG. 11 shows the results of the second experiment, showing how foil cracks occur at distances Z1 and Z2 (hereinafter referred to as "distances Z1 and Z2").
  • the definition of foil crack is the same as that in the first experiment, except that foil edge 62 is changed to foil edge 64 .
  • cracks that do not meet the above definition such as cracks that do not reach the terminal piece 24, are not treated as foil cracks.
  • a distance Z2 (unit: mm) is defined as the distance between the foil end 64 and the press scar end 68 of the lead terminal 4 projecting from the foil end 64 of the cathode foil 6 .
  • the press-marked end 68 protrudes from the foil end 64
  • the pressed area of the lead-out terminal 4 overlaps the cathode foil 6 up to the foil end 64 .
  • the foil end 64 of the cathode foil 6 is sandwiched and fixed between the second die 44 and the forming die 48 with the lead terminals 4 interposed therebetween.
  • the cathode foil 6 including the carbon layer 14 stretches more easily than the basic cathode foil (that is, the cathode foil not including the carbon layer).
  • the fixing of the foil end 64 causes the foil end It is presumed that the elongation of 64 is suppressed, and the cracking of the cathode foil 6 is presumed to be suppressed.
  • the fixation at or near the foil edge 64 It is presumed that elongation of the foil end 64 is suppressed, and that cracking of the cathode foil 6 is suppressed.
  • Foil cracks in the cathode foil 6 do not affect the performance and vibration resistance of the capacitor 2 .
  • the vibration resistance of the capacitor 2 is affected, for example. Therefore, by adjusting or controlling the distances Y1 and Y2 between the terminal end 66 and the foil end 62 so as to satisfy the condition (1) or condition (2), the vibration resistance of the capacitor 2 can be improved.
  • the vibration resistance of the capacitor 2 can be enhanced by adjusting or controlling the distances Z1 and Z2 between the press scar edge 68 and the foil edge 64 so as to satisfy the condition (4).
  • the equivalent series resistance of capacitor 2 can be maintained for a long period of time even when used in an environment where vibration is applied.
  • the manufacturing process of the capacitor 2 is an example of the manufacturing method of the capacitor of the present disclosure. 4, the step of grasping the thickness T3 of the flat portion 18, the step of determining the thickness T1 of the stitch connection portion 10, the adjustment step of the stitch connection device 40, the connection step of the lead terminal, the production step of the capacitor element, and the encapsulation step of the capacitor element. including.
  • Anode foil manufacturing process, cathode foil 6 manufacturing process, separator manufacturing process, thickness T2 of cathode foil 6 and thickness T3 of flat portion 18 of lead terminal 4 grasping process, thickness T1 of stitch connection portion 10 determination process, capacitor element fabrication process, and capacitor element encapsulation process are the same as those described in the first embodiment. Descriptions of these processes described in the first embodiment are omitted.
  • the same processing as the adjustment process of the stitch connection device 40 in the first embodiment is performed, and the distances Y1, Y2 and the distances Z1, Z2 are also adjusted.
  • the arrangement position of the extraction terminal 4 with respect to the cathode foil 6 is adjusted so as to satisfy the above condition (1) or (2).
  • the second pressure applied to the cathode foil 6 is applied so that the press mark end 68 to be formed on the lead terminal 4 by the pressing of 2 satisfies the above condition (3) or condition (4) after the step of connecting the lead terminal.
  • the arrangement position of the mold 44, particularly the arrangement position of the mold end portion 70, is adjusted.
  • the distances Y1, Y2 and the distances Z1, Z2 are adjusted by, for example, position adjustment of an alignment device for the lead terminal 4 or the cathode foil 6, position adjustment of the second mold 44 or the mold 48, or a plurality of these position adjustments. done. For example, when the cathode foil 6 is fixed at the reference position, the distances Y1 and Y2 are adjusted by adjusting the position of the lead terminal 4. FIG. When the positions of the cathode foil 6 and the lead terminal 4 are fixed, the distances Z1 and Z2 are adjusted by adjusting the position of the second mold 44, especially the position of the mold end portion 70. FIG.
  • the distances Y1, Y2 and the distances Z1, Z2 basically match before and after the step of connecting the lead terminals. Therefore, conditions (1) to (4) for capacitor 2 can be used in the adjustment process of stitch connection device 40 .
  • the step of connecting the lead terminals is the same as the lead terminals in the first embodiment, except that the lead terminals 4 are connected to the cathode foil 6 after the distances Y1 and Y2 and the distances Z1 and Z2 have been adjusted. is the same as the connection process of .
  • the molding die 48 is lifted in the direction of the arrow shown in FIG.
  • a press mark is formed on the lead-out terminal 4 by pressing of the second mold 44 , and a press mark end 68 is formed at the contact position of the mold end 70 .
  • the thickness T1 of the stitch connection portion 10 is adjusted to be equal to or less than the total thickness Tt.
  • the cathode foil 6 is pressed until the thickness T1 becomes equal to or less than the total thickness Tt, and the stress applied to the cathode foil 6 is equal to the pressure applied to the basic cathode foil described above. be larger than Therefore, the cathode foil 6 is easily stretched in the width direction of the foil (longitudinal direction of the lead terminal 4).
  • the foil ends 62 and 64 are fixed or generated when the stress is generated by adjusting the position of the terminal end 66 or the press mark end 68 by protruding, matching or recessing, or by adjusting the distance Y1, Y2 or the distance Z1, Z2.
  • the stress is widely distributed. Even if the stress applied to the cathode foil 6 is large, foil cracking can be suppressed by fixing the foil ends 62 and 64 or dispersing the stress.
  • the capacitor element is a wound element.
  • the capacitor element may also be a laminated element in which, for example, a plurality of flat anode foils, cathode foils 6 and separators are laminated.
  • the materials of the anode foil, cathode foil 6, separator, outer case, sealing member and electrolyte are not limited to those described in the above embodiments. These materials may be aluminum electrolytic capacitors or other materials employed in similar capacitors. For example, a phenolic laminated plate having external terminals attached thereto may be used as the sealing member, and after impregnating the aforementioned capacitor element with an electrolytic solution, lead terminals led out from the capacitor element may be connected to the external terminals of the sealing member. A structure in which the capacitor element and the sealing member are preferably inserted into an exterior case and sealed with the sealing member may be employed.
  • the material of the carbon layer 14 is not limited to those described in the above embodiments.
  • the material forming the carbon layer 14 may be any conductive member containing carbon.
  • the state of adhesion or engagement of the carbon layer 14 with the base foil 12 is not limited to that described in the above embodiment.
  • the thickness T1 of the stitch connection portion 10 should be adjusted to be equal to or less than the total thickness Tt.
  • the pressure-receiving portion that receives pressure from the mold 48 may have a total thickness Tt or less as a whole.
  • the lead terminal 4 is arranged on the cathode foil 6, the stitch needle 46 pierces the lead terminal 4 and the cathode foil 6 from above, and the molding die 48 cuts the lead terminal 4 and the cathode foil from below. 6 is pressed.
  • the relative arrangement of the lead terminal 4, cathode foil 6, stitch needle 46 and mold 48 are matched or similar.
  • the extraction terminal 4, the cathode foil 6, the stitch needle 46 and the mold 48 may be arranged upside down with respect to their arrangement in the embodiment, or may be rotated by an arbitrary angle.
  • the thickness T1 of the stitch connection portion 10 is adjusted by adjusting the device setting of the stitch connection device 40, for example, the distance setting.
  • the means for adjusting the thickness T1 is not limited to adjusting the distance setting.
  • the pressing pressure P (C in FIG. 6) applied by the mold 48 to the lead-out terminal 4 and the cathode foil 6 is adjusted, and the thickness T1 decreases as the applied pressure increases.
  • height T1 may be adjusted.
  • the adjustment of stitch connection device 40 may be, for example, adjustment of device settings, such as the pressure setting at which mold 48 applies pressure to lead terminal 4 and cathode foil 6 .
  • both the cathode foil 6 and the lead terminal 4 are held between the first die 42 and the second die 44, and the stitch needle 46 is attached to the lead terminal 4 and the cathode foil 6.
  • the step of inserting the foil piece 28 and the terminal piece 24 and the step of pressing the foil piece 28 and the terminal piece 24 with the molding die 48 to form the stitch connection portion 10 are performed, the present invention is not limited to this.
  • the stitch needle 46 is inserted through the lead terminal 4 and the cathode foil 6, and the foil pieces 28 and After the step of forming the terminal piece 24, the holding by the first mold 42 and the second mold 44 is released, and the cathode foil 6 and the lead-out terminal 4 are connected with the foil piece 28 and the terminal piece 24 formed.
  • the cathode foil 6 is sent to the next step, and the side of the cathode foil 6 on which the foil piece 28 and the terminal piece 24 are formed is pressed with a molding die having a flat pressing surface so as to sandwich from the drawer terminal 4 side, and the stitch connection portion 10 is pressed. may be formed.
  • the distances Y1, Y2 and the distances Z1, Z2 are adjusted. However, either the distances Y1, Y2 and the distances Z1, Z2 may be adjusted, or the distances Y1, Y2 and the distances Z1, Z2 may not be adjusted. The effect of the first embodiment can be obtained even if the distances Y1, Y2 and the distances Z1, Z2 are not adjusted.
  • the shapes of the foil ends 62, 64 and the terminal end 66 are almost unchanged except for cracks.
  • the shape of the foil ends 62, 64 and the terminal end 66 may be changed by pressing in the process of connecting the lead terminals.
  • the foil end 62 and the terminal end 66 may bulge outward, for example, as shown in FIG. Even if the foil end 62 and the terminal end 66 bulge outward, the position of the corner portion 76 of the terminal end 66 and the position of the foil end 62 near the corner portion 76 do not substantially change.
  • the distances Y1 and Y2 before and after the connecting process of the lead terminals can basically be matched.
  • the foil end 64 and the press-marked end 68 may bulge outward, for example, by pressing in the process of connecting the lead terminals. Even if the foil edge 64 and the press-marked edge 68 bulge outward, the position of the corner of the press-marked edge 68 and the position of the foil edge 64 near the corner do not substantially change. That is, by measuring the minimum distances Z1 and Z2 between the corners of the press mark edge 68 and the foil edge 64, the distances Z1 and Z2 before and after the connection process of the lead terminals can basically be matched.
  • the positions of both ends of the second mold 44 match the positions of both ends of the mold 48 in the longitudinal direction of the lead-out terminal 4 .
  • the positions of both ends or one end of the second mold 44 may be different from the positions of both ends or one end of the mold 48, and results similar to those of the first and second experiments can be obtained. Be expected.
  • the stitch connecting device 40 is adjusted to adjust the distances Y1, Y2 and the distances Z1, Z2.
  • the width of the cathode foil 6 or the length of the flat portion 18 of the lead terminal 4 may be further adjusted to adjust the distances Y1 and Y2 or the distances Z1 and Z2.
  • both the cathode foil 6 and the lead terminal 4 are sandwiched between the first die 42 and the second die 44, and the stitch needle 46 is attached to the lead terminal 4 and the cathode foil 6.
  • the step of inserting and forming the foil piece 28 and the terminal piece 24 has been performed, the present invention is not limited to this.
  • a through-hole is previously formed in a portion of the cathode foil 6 where the through-hole is to be formed by the stitch needle 46, and the lead-out terminal 4 is superimposed on the cathode foil 6 so as to cover the through-hole.
  • the cathode foil 6 tends to stretch. Since the easily stretchable foil piece 28 is not present between the terminal piece 24 and the cathode foil 6, the cathode foil 6 overlapping the foil piece 28 is prevented from being stretched by pressing, and the connection between the lead-out terminal 4 and the cathode foil 6 is improved. can be stabilized.
  • the stitch connection portion is a region where the terminal piece 24 is arranged, and indicates a region including a portion where the lead terminal 4, the cathode foil 6, and the terminal piece 24 are laminated from the terminal hole 22.
  • the technique of the present disclosure is useful because it can be used for connection between a cathode foil containing a carbon layer and a lead-out terminal, and a capacitor containing these.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本開示は、たとえばカーボン層を含む陰極箔に適したステッチ接続構造を提供することを目的とする。 コンデンサ(2)は、基材箔(12)の表面に配置されたカーボン層(14)を含む陰極箔(6)と、前記陰極箔にステッチ接続部(10)でステッチ接続により接続された平坦部(18)を含む引出し端子(4)とを含む。前記ステッチ接続部の厚さ(T1)が前記陰極箔の厚さ(T2)と前記平坦部の厚さ(T3)の合計厚さ(Tt)以下である。

Description

コンデンサおよびその製造方法
 本開示は、カーボン層を含む陰極箔を備えるコンデンサおよびその製造方法に関する。
 コンデンサは、陽極箔と、陰極箔と、陽極箔および陰極箔の間に配置されたセパレータとを含み、電気を蓄えることが可能である。このようなコンデンサに関し、アルミニウム箔のみからなる基本的な陰極箔を含む基本的なコンデンサが知られている。また、近年、カーボン層を含む陰極箔を備えるコンデンサが知られている(たとえば、特許文献1)。カーボン層は、たとえば陰極箔の静電容量を高めるという作用を有する。
特開2006-80111号公報
 電極箔はステッチ接続などの接続手段で引出し端子に接続される。ステッチ接続を形成するためのステッチ接続処理では、互いに重ねられた引出し端子および電極箔に引出し端子側からステッチ針が挿通され、引出し端子に端子孔および端子片が形成され、電極箔に貫通孔および箔片が形成される。端子片は、電極箔の貫通孔を通って電極箔の背面から突出する。端子片および箔片は押圧されて、電極箔の背面に重ねられる。その結果、ステッチ接続が形成され、電極箔が引出し端子に接続される。
 ところで、カーボン層は、たとえば、主に炭素粒子とバインダーとで構成されるスラリーをアルミニウム箔の表面に塗布して、バインダーにより炭素粒子同士を結合させることで形成される。カーボン層を含む陰極箔では、カーボン層に含有されるバインダーにより、カーボン層に対する押圧力に対して、押圧部分を中心に外側に向かう応力が生じ、アルミニウム箔などの金属箔のみからなる基本的な陰極箔に比べてカーボン層を含む陰極箔は伸び易くなる。カーボン層を有する陰極箔のステッチ接続処理では、端子片および箔片が押圧されるときにカーボン層が伸び、陰極箔の基材がカーボン層に追従して伸びる。つまり、カーボン層を有する陰極箔は、ステッチ接続処理において、基本的な陰極箔よりも伸び易いという課題がある。陰極箔が伸びると押圧力が弱まるため、引出し端子を陰極箔にステッチ接続処理により接続しづらいという課題がある。
 特許文献1には、斯かる課題の開示や示唆はなく、特許文献1に開示された構成では斯かる課題を解決することができない。
 そこで、本開示は、たとえばカーボン層を含む陰極箔に適したステッチ接続構造を提供することを目的とする。
 本開示の第1の側面によれば、コンデンサは、基材箔の表面に配置されたカーボン層を含む陰極箔と、前記陰極箔にステッチ接続部でステッチ接続により接続された平坦部を含む引出し端子とを含む。前記ステッチ接続部の厚さが前記陰極箔の厚さと前記平坦部の厚さの合計厚さ以下である。
 上記コンデンサにおいて、前記引出し端子の端子端が、前記陰極箔の箔端から突出してもよく、または、前記箔端に一致してもよく、または、前記箔端から0.1ミリメートル以下もしくは0.5ミリメートル以上の間隔で前記陰極箔に重なってもよい。
 上記コンデンサにおいて、前記ステッチ接続部の厚さが前記合計厚さ未満でもよい。
 上記コンデンサにおいて、前記ステッチ接続部の厚さと前記合計厚さとの差の絶対値が0.02ミリメートル以下でもよい。
 上記コンデンサにおいて、前記平坦部の厚さが0.18ミリメートル以上0.35ミリメートル以下でもよい。前記陰極箔の厚さが0.01ミリメートル以上0.06ミリメートル以下でもよい。
 本開示の第2の側面によれば、コンデンサの製造方法は、基材箔の表面に配置されたカーボン層を含む陰極箔を作製する工程と、前記陰極箔の端子配置面に引出し端子の平坦部を配置し、ステッチ接続部の厚さが前記陰極箔の厚さと前記平坦部の厚さの合計厚さ以下となるように、ステッチ接続処理により前記平坦部を前記ステッチ接続部で前記陰極箔に接続する工程とを含む。
 前記平坦部を前記陰極箔に接続する工程において、前記引出し端子の端子端が前記陰極箔の箔端から突出するように前記平坦部を前記陰極箔に接続してもよく、または前記平坦部を前記陰極箔に接続する工程において、前記端子端が前記箔端に一致もしくは前記箔端から0.1ミリメートル以下もしくは0.5ミリメートル以上の間隔で前記陰極箔に重なるように前記平坦部を前記陰極箔に接続してもよい。
 本開示の第3の側面によれば、コンデンサの製造方法は、基材箔の表面に配置されたカーボン層を含む陰極箔の厚さと、引出し端子の平坦部の厚さとを把握する工程と、ステッチ接続部の厚さが前記陰極箔の前記厚さと前記平坦部の前記厚さの合計厚さ以下になるように、前記ステッチ接続部の前記厚さを決定する工程と、ステッチ接続装置が前記ステッチ接続部の決定された前記厚さになるまで前記ステッチ接続部を押し潰すように、前記ステッチ接続装置を調整する工程と、調整された前記ステッチ接続装置により前記平坦部を前記陰極箔に接続する工程と、を含む。
 前記ステッチ接続装置を調整する工程において、前記引出し端子の端子端が前記陰極箔の箔端から突出するように前記ステッチ接続装置を調整してもよく、または前記ステッチ接続装置を調整する工程において、前記端子端が前記箔端に一致もしくは前記箔端から0.1ミリメートル以下もしくは0.5ミリメートル以上の間隔で前記陰極箔に重なるように前記ステッチ接続装置を調整してもよい。
 本開示の上記側面によれば、たとえば次のいずれかの効果が得られる。
 (1) ステッチ接続部の厚さが陰極箔の厚さと引出し端子の平坦部の厚さの合計厚さ以下であるので、等価直列抵抗が抑制され、且つ安定させることができる。
 (2) 陰極箔の性質に適したステッチ接続を実現できる。
 (3) カーボン層を含む陰極箔を備えるコンデンサの安定性または信頼性を高めることができる。
第1の実施の形態に係るコンデンサの端子接続部の一例を示す図である。 陰極箔の端面の一例を示す図である。 ステッチ接続部の厚さと陰極箔および平坦部の合計厚さの差ΔTと等価直列抵抗(ESR)の関係の一例を示すグラフである。 差ΔTと箔の耐力強度の関係の一例を示すグラフである。 箔の耐力強度の測定方法の一例を説明するための図である。 電極箔への引出し端子の接続工程の一例を示す図である。 第2の実施の形態に係るコンデンサの引出し端子と陰極箔の一例を示す図である。 第1の実験結果を示す図である。 箔割れ抑制の推定メカニズムを説明するための図である。 箔割れ抑制または箔割れの推定メカニズムを説明するための図である。 第2の実験結果を示す図である。 箔割れ抑制の推定メカニズムを説明するための図である。 箔割れの推定メカニズムを説明するための図である。 変形例を示す図である。
 以下、図面を参照して実施の形態を説明する。

第1の実施の形態
 図1は、第1の実施の形態に係るコンデンサの陰極箔と引出し端子の端子接続部の一例を示している。図2は、陰極箔の端面の一例を示している。図1および図2に示す構成は一例であって、斯かる構成に本開示の技術が限定されるものではない。なお、第1の実施の形態において、端子接続部は、ステッチ接続により引出し端子4が陰極箔6に接続されている接続場所、つまりステッチ接続部10とその周囲部分を含むものとする。図1のAにおいて網掛けが付されている部分は、ステッチ接続部10を表している。図1のBは、図1のAのIB-IB線断面を示す図である。すなわち、ステッチ接続部10は、端子片24が配置されている領域であり、端子孔22から引出し端子4、陰極箔6、箔片28、端子片24が積層された箇所を含む領域を指す。
 コンデンサ2は電子部品の一例であり、たとえば電解コンデンサである。コンデンサ2は、たとえば不図示のコンデンサ素子と、引出し端子4と、不図示の電解質と封口部材と外装ケースとを含む。
 コンデンサ素子は、陰極箔6と、陽極箔と、セパレータとを含む。セパレータが陰極箔6と陽極箔の間に配置されるように、陰極箔6、陽極箔およびセパレータは重ねられるとともに巻回されて、巻回素子が形成される。この巻回素子がコンデンサ素子を形成する。
 陰極箔6は、コンデンサ2の陰極側の電極を構成する。陰極箔6は、たとえば帯状の箔であって、基材箔12とカーボン層14とを含んでいる。基材箔12は、たとえば、アルミニウム箔、タンタル箔、ニオブ箔、チタン箔、ハフニウム箔、ジルコニウム箔、亜鉛箔、タングステン箔、ビスマス箔、アンチモン箔などの弁作用金属箔である。基材箔12の表面は、図2に示されているように、たとえばエッチングにより形成された凹凸16、つまり、くぼみ16-1と突出16-2とを有し、基材箔12の表面積が拡大されている。基材箔12の表面は、たとえばトンネル状または海綿状のエッチングピットを含んでもよく、このトンネル状または海綿状のエッチングピットがくぼみ16-1および突出16-2を形成してもよい。
 カーボン層14は、たとえば基材箔12の両面に配置されている。カーボン層14は、基材箔12の一面にのみ配置されてもよい。カーボン層14は、図2に示されているように部分的に凹凸16のくぼみ16-1の内部に侵入し、そのため基材箔12の凹凸16に密着かつ係合している。つまり、カーボン層14は凹凸16に係合する表面形状を有する。カーボン層14は基材箔12の外側に配置され、陰極箔6は基材箔12およびカーボン層14による二層構造または基材箔12の両面にカーボン層14を配置した三層構造を有している。カーボン層14は、主材として炭素材を含み、更に、添加剤としてバインダーおよび分散剤を含む。
 炭素材は、活性炭、カーボンブラック、カーボンナノホーン、無定形炭素、天然黒鉛、人造黒鉛、黒鉛化ケッチェンブラック、メソポーラス炭素、繊維状炭素等である。活性炭は、たとえば、やしがらなどの天然植物組織、フェノールなどの合成樹脂、石炭、コークスまたはピッチなどの化石燃料由来のものを原料として生成される。カーボンブラックは、ケッチェンブラック、アセチレンブラック、チャネルブラックまたはサーマルブラック等である。繊維状炭素は、カーボンナノチューブ、カーボンナノファイバ等である。カーボンナノチューブは、グラフェンシートが1層である単層カーボンナノチューブでも、2層以上のグラフェンシートが同軸状に丸まり、チューブ壁が多層をなす多層カーボンナノチューブ(MWCNT)でもよい。
 炭素材は、球状炭素であるカーボンブラックが好ましい。一次粒子径が平均100ナノメートル以下である球状のカーボンブラックを用いることにより、カーボン層14は密になり、またカーボン層14は拡面層と密着し易くなるため、カーボン層14と基材箔12との界面抵抗は下がり易くなる。炭素材は、球状炭素と黒鉛とを含む混合物でも好ましい。黒鉛は、たとえば天然黒鉛、人造黒鉛、または黒鉛化ケッチェンブラックなどであり、鱗片状、鱗状、塊状、土状、球状または薄片状などの形状を有する。黒鉛は、鱗片状または薄片状であることが好ましく、黒鉛の短径と長径とのアスペクト比が1:5~1:100の範囲であることが好ましい。既述のアスペクト比を有する鱗片状または薄片状の黒鉛は、たとえばエッチングピットなどの凹凸16のくぼみ16-1に球状カーボンを押し込み、カーボン層14の一部がエッチングピットの内部にまで形成できる。そのため、アンカー効果により、カーボン層14が強固に基材箔12に密着できる。
 黒鉛の平均粒径が6マイクロメートル(以下、「μm」と表す)以上10μm以下であると、高温環境負荷による静電容量の低下を抑制できるなどの効果が得られる。また、黒鉛の平均粒径が6μm以下であると、高温環境負荷による静電容量の低下を抑制しつつ、コンデンサ2の静電容量を増加させることができる。また、黒鉛の平均粒径が6μm以下であると、黒鉛をカーボン層14内に留め置き易くなり、バインダーの添加量を抑制できる。バインダーの添加量の抑制により、炭素材の比率が増加する。そのため、陰極箔6の電気抵抗を低減でき、コンデンサ2の等価直列抵抗を低減できる。なお、既述の平均粒径の数値はメジアン径、所謂D50に基づく数値である。
 炭素材が黒鉛と球状炭素の混合物である場合において、黒鉛と球状炭素の併用による作用を得るため、黒鉛と球状炭素の混合物に対する黒鉛の質量比〔黒鉛の質量/(黒鉛の質量+球状炭素の質量)〕は、たとえば25%以上90%以下の範囲である。
 バインダーは、たとえばスチレンブタジエンゴム、ポリフッ化ビニリデンまたはポリテトラフルオロエチレンなどの樹脂系バインダーであって、炭素材を結合させる。分散剤は、たとえばカルボキシメチルセルロースナトリウムである。カーボン層14は、たとえば球状炭素が分散された水溶液から作製される。分散剤は、炭素材を水溶液に分散させることができる。
 陽極箔は、コンデンサ2の陽極側の電極を構成する。陽極箔は、たとえば、タンタル箔、アルミニウム箔などの弁作用金属箔であって、たとえば帯状の箔である。陽極箔の表面は、たとえばエッチングにより形成された凹凸を有するとともに、たとえば化成処理により形成された誘電体酸化皮膜を含んでいる。エッチングにより形成された凹凸は、たとえば多孔質構造を有している。
 セパレータは、陽極箔と陰極箔6の間に配置され、陽極箔と陰極箔6の間の短絡を防止する。セパレータは、絶縁材料であって、クラフトを含み、マニラ麻、エスパルト、ヘンプ、レーヨン、セルロース、これらの混合材などの他のセパレータ部材を含んでもよい。
 陰極箔6は引出し端子4にステッチ接続により接続されている。陽極箔は不図示の他の引出し端子(以下、便宜上「引出し端子4」という)にステッチ接続または他の接続手段により接続されている。引出し端子4は、コンデンサ素子の一端面から突出している。引出し端子4は、たとえば導電性のよい金属、たとえばアルミニウムなどの導電性金属で形成されている。引出し端子4は、たとえばアルミニウム線と金属線17(図7)とから構成されており、アルミニウム線と金属線17とはアーク溶接等で接続されている。アルミニウム線は、略円柱形状の丸棒部と、この丸棒部がプレス加工等されて形成された平坦部18とを備えており、丸棒部は、平坦部18側に、平坦部18の厚みまで直線的に厚みが減少する傾斜部を有している。平坦部18は、陰極箔6に重ねられ、この陰極箔6にステッチ接続により接続され、ステッチ接続部10が形成される。つまり、平坦部18は、陰極箔6にステッチ接続部10でステッチ接続により接続されている。
 電解質は少なくとも電解液を含み、コンデンサ素子内の空隙やセパレータに充填されている。
 封口部材は、たとえば絶縁性ゴムで形成されている。封口部材は引出し端子4に対応する位置に挿通孔を有している。引出し端子4が封口部材の挿通孔を貫通し、コンデンサ2の外側に露出している。
 外装ケースは、たとえば有底筒状のアルミニウムケースである。コンデンサ素子および引出し端子4の一部は、電解質とともに外装ケースの内部に挿入される。外装ケースの開口部に封口部材が設置されて、外装ケースの内部が密封される。つまり、コンデンサ素子および引出し端子4の一部は外装ケースの内部に密封される。引出し端子4は、封口部材の貫通孔を貫通し、封口部材から突出する。
 既述の通り、平坦部18が陰極箔6にステッチ接続により接続され、ステッチ接続部10が形成される。平坦部18は、端子孔22および端子片24を含み、陰極箔6は貫通孔および箔片28を含む。端子孔22、端子片24、貫通孔および箔片28は、引出し端子4側からのステッチ針46(図6)の挿通により形成される。端子孔22は、貫通孔に重なる位置に配置される。端子片24および箔片28は、陰極箔6側からの押圧により折返され、陰極箔6の背面、つまり端子配置面の対向面に押当てられている。
 ステッチ接続部10は、平坦部18と陰極箔6が接続している領域であって、たとえば図1のAにおいて端子片24が配置されている領域として定義される。ステッチ接続部10では、図1のBに示すように、折り返しを形成する平坦部18および端子片24が陰極箔6および箔片28を2方面、たとえば上下方面から挟み込んでいる。
 ステッチ接続部10の厚さT1は、陰極箔6の厚さT2と平坦部18の厚さT3の合計厚さTt以下であり、以下の式(1)のように表される。
       T1≦Tt=T2+T3           ・・・(1)
 ステッチ接続部10の厚さT1が合計厚さTt以下であると、コンデンサ2の等価直列抵抗を抑制するとともに安定させることができ、厚さT1が合計厚さTt未満であると、コンデンサ2の等価直列抵抗を一層抑制するとともに一層安定させることができる。陰極箔6の厚さT2および平坦部18の厚さT3は、自由に設定可能であり、たとえばコンデンサ2の仕様に応じて適宜に設定されてもよい。実用性または経済性の観点から、陰極箔6の厚さT2は、たとえば0.01ミリメートル(以下、「mm」と表す)以上0.06mm以下であり、平坦部18の厚さT3は、たとえば0.18mm以上0.35mm以下である。平坦部18の厚さT3が、0.18mm以上の場合、等価直列抵抗が抑制されて大きな値にならず、0.35mm以下の場合、素子の体積効率が悪化しない。
 図3は、厚さT1と合計厚さTtの差ΔTと等価直列抵抗(ESR)の関係の一例を示すグラフである。図4は、差ΔTと箔の耐力強度の関係の一例を示すグラフである。図5は、箔の耐力強度の測定方法の一例を説明するための図である。差ΔTは以下の式(2)のように表される。
       ΔT=T1-Tt              ・・・(2)
 図3および図4において、カーボン層含有箔は、カーボン層14を含む陰極箔6を表す。差ΔTと等価直列抵抗の関係を求めた試験、および差ΔTと箔の耐力強度の関係を求めた試験では、0.02mmの厚さT2を有する陰極箔6および0.23mmの厚さT3を有する平坦部18を含む引出し端子4が使用されている。つまり、合計厚さTtは0.25mmであり、ステッチ接続部10の厚さT1が0.25mmであるとき、差ΔTが0.00mmになる。
 図3に示されているグラフでは、差ΔTの値が小さくなるにつれて、カーボン層含有箔を用いたコンデンサ2の等価直列抵抗が減少している。また、陰極箔6と引出し端子4の接続では、0.00mm以下の差ΔTの領域において、極端に高い等価直列抵抗を有する接続がない。図3に示されているグラフによれば、ステッチ接続部10の厚さT1が合計厚さTt以下であると、等価直列抵抗が抑制され、且つ安定している。
 図3に示されているグラフは、比較のために、基本的な陰極箔を用いたコンデンサの等価直列抵抗のデータを含んでいる。基本的な陰極箔は、カーボン層を含まない陰極箔を表し、基本的な陰極箔の厚さは、この試験における陰極箔6の厚さT2と同じ0.02mmである。カーボン層含有箔を用いたコンデンサ2の等価直列抵抗は、同一の差ΔTにおける基本的な陰極箔を用いたコンデンサの等価直列抵抗よりも小さく、且つばらつきが小さいことが解る。つまり、基本的な陰極箔を用いたコンデンサでは優位性が見られない「T1≦Tt」という要件を満たすことにより、カーボン層含有箔を用いたコンデンサ2は、抑制され、且つ安定した等価直列抵抗を得ることができる。
 図4のAに示されているグラフでは、差ΔTが-0.02mmに減少するまで、カーボン層含有箔の耐力強度が上昇している。このグラフでは、差ΔTが-0.02mm以上0.00mm以下であると、比較的高い箔の耐力強度が得られる。つまり、ステッチ接続部10の厚さT1は合計厚さTt以下であって、差ΔTの絶対値(|ΔT|)は、0.02mm、つまり陰極箔6の厚さT2以下であることが好ましい。
 図4のBに示されているグラフは、比較として、既述の基本的な陰極箔の耐力強度を示している。基本的な陰極箔の耐力強度は、差ΔTが0.00mmで最も高く、差ΔTが0.00mmよりも小さくなるにつれて小さくなる。つまり、基本的な陰極箔を含むコンデンサでは優位性が見られない「T1≦Tt」且つ「|ΔT|≦0.02mm、または|ΔT|≦T2」という要件を満たすことにより、カーボン層含有箔を用いたコンデンサ2は、比較的高い箔の耐力強度を得ることができる。
 図5は、箔の耐力強度の測定方法の一例を示している。箔32の第1主表面34に取付けられた引出し端子4の引っ張り点Xに、箔32に垂直で、箔32の第2主表面36の上方に向かう引っ張り力Fが加えられる。箔32は、カーボン層含有箔、つまり陰極箔6、または基本的な陰極箔である。箔の耐力強度は、たとえば箔32に割れが生じたときの引っ張り力Fの大きさとして定義される。箔の耐力強度の試験は、箔の耐力強度の大きさを相対的に評価できればよく、図5に示されている試験に限定されるものではない。また、引っ張り点Xは、一連の試験において固定されていればよく、任意に設定すればよい。

〔コンデンサの製造工程〕
 コンデンサ2の製造工程は、本開示のコンデンサの製造方法の一例であって、たとえば陽極箔の作製工程、陰極箔6の作製工程、セパレータの作製工程、陰極箔6の厚さT2と、引出し端子4の平坦部18の厚さT3の把握工程、ステッチ接続部10の厚さT1の決定工程、ステッチ接続装置40(図6)の調整工程、電極箔への引出し端子4の接続工程(以下、「引出し端子の接続工程」という)、コンデンサ素子の作製工程、コンデンサ素子の封入工程を含む。
 陽極箔の作製工程では、タンタル箔、アルミニウム箔などの弁作用金属箔の表面をエッチングして、弁作用金属箔の表面に凹凸を形成する。エッチング処理後の弁作用金属箔を化成処理して、弁作用金属箔の表面に誘電体酸化皮膜を形成する。弁作用金属箔は、たとえば、塩酸、食塩などの塩化物水溶液に浸された弁作用金属箔に電流を印加することにより、エッチングされる。印加される電流は、直流でもよく、交流でもよい。弁作用金属箔の化成処理では、たとえば、ホウ酸アンモニウム、硼酸アンモニウム、リン酸アンモニウム、アジピン酸アンモニウムなどの溶液を含む電解液に浸された弁作用金属箔に電圧が印加される。化成された弁作用金属箔を裁断して、陽極箔が作製される。
 陰極箔6の作製工程では、アルミニウム箔、タンタル箔、ニオブ箔、チタン箔、ハフニウム箔、ジルコニウム箔、亜鉛箔、タングステン箔、ビスマス箔、アンチモン箔などの弁作用金属箔の表面をエッチングして、弁作用金属箔の表面に凹凸16を形成して、基材箔12が作製される。陰極箔6側のエッチングは、陽極箔側のエッチングと同じでもよく、異なっていてもよい。エッチング処理後の弁作用金属箔、つまり基材箔12にカーボン層14を形成し、カーボン層14が形成された基材箔12を裁断して、陰極箔6が作製される。
 カーボン層14は次のように作製される。既述の炭素材、バインダーおよび分散剤を希釈液に加え、ミキサー、ジェットミキシング(噴流衝合)、超遠心処理、超音波処理などの分散処理によりこれらを混合して、スラリーを形成する。バインダーは、たとえば炭素材の結合のために必要な量だけ添加され、分散剤は、たとえば炭素材の分散のために必要な量だけ添加される。そのため、バインダーおよび分散剤の添加量は、炭素材の添加量よりも微量である。炭素材として黒鉛を用いる場合、黒鉛は、ビーズミル、ボールミルなどの粉砕機により粉砕して、黒鉛の平均粒径が、希釈液への添加前に調整されていてもよい。
 希釈液は、たとえばアルコール、炭化水素系溶媒、芳香族系溶媒、アミド系溶媒、水およびこれらの混合物などである。アルコールは、たとえばメタノール、エタノールまたは2-プロパノールである。アミド系溶媒は、たとえばN-メチル-2-ピロリドン(NMP)またはN,N-ジメチルホルムアミド(DMF)である。
 スラリーをエッチング処理後の弁作用金属箔、つまり基材箔12に塗布する。基材箔12には、凹凸16が形成されているため、炭素材が凹凸16に入り込み密着性が向上する。スラリーを乾燥させて溶媒を揮発させてカーボン層14を形成した後、カーボン層14をプレスする。凹凸16の形成に加えてプレス加工の工程も加えると、炭素材を凹凸16の細孔にまで押し込むことができ、また炭素材を凹凸16の凹凸面に沿って変形させることができ、カーボン層14と基材箔12との密着性および定着性は更に向上する。炭素材が黒鉛を含む場合、プレスにより、黒鉛が整列されるとともに、黒鉛が基材箔12の凹凸16に沿うように変形する。また、黒鉛が凹凸16に圧接されるときに球状炭素が基材箔12の細孔などのくぼみ16-1の内部に押し込まれる。これにより、スラリーが基材箔12に密着し、基材箔12に密着するカーボン層14が得られる。炭素材が、球状炭素のみの場合、特に一次粒子径が平均100ナノメートル以下である球状炭素を用いることにより、くぼみ16-1に球状炭素が入り込みやすくなるため、カーボン層14と基材箔12との界面抵抗は下がり易くなる。また、黒鉛を含まないことにより、カーボン層14の表面の静止摩擦係数が向上し、端子片24を箔片28に押圧した際に滑りにくくなり、接続性が安定したステッチ接続が得られる。
 セパレータの作製工程では、既述のセパレータ部材を裁断して、セパレータが作製される。
 陰極箔6の厚さT2と、引出し端子4の平坦部18の厚さT3の把握工程では、陰極箔6の厚さT2と、平坦部18の厚さT3とを把握する。たとえば、厚さT2、T3の寸法規格値または寸法検査値などの寸法公的値を参照して、この寸法公的値を厚さT2、T3の把握値として把握する。厚さT2、T3の把握工程において厚さT2、T3を実際に測定し、測定により得られた測定値を厚さT2、T3の把握値として把握してもよい。厚さT2の把握値と厚さT3の把握値とを足すことにより、合計厚さTtが求められる。
 ステッチ接続部10の厚さT1の決定工程では、厚さT1が合計厚さTt以下となるように、厚さT1を決定する。なお、既に述べた通り、差ΔTの絶対値が0.02mm以下または陰極箔6の厚さT2以下となるように、厚さT1を決定することが好ましい。
 ステッチ接続装置40の調整工程では、ステッチ接続装置40が、決定された厚さT1になるまでステッチ接続部10を押し潰すように、ステッチ接続装置40を調整する。ステッチ接続装置40の調整は、たとえば距離設定などの装置設定の調整を含む。
 引出し端子の接続工程では、引出し端子4を陰極箔6および陽極箔のそれぞれに接続する。陰極箔6への引出し端子4の接続工程では、ステッチ接続装置40が用いられる。ステッチ接続装置40は、たとえば第1の型42、第2の型44、ステッチ針46および成形型48を含む。
 図6のAに示すように、陰極箔6が下型などの第1の型42の上に設置され、引出し端子4が陰極箔6の上面、つまり端子配置面に重ねられる。上型などの第2の型44が引出し端子4の上面に設置される。そのため、陰極箔6および引出し端子4が第1の型42および第2の型44の間に挟まれて、第1の型42および第2の型44により保持される。第1の型42の上に設置される陰極箔6は、貫通孔および箔片28が形成される前の陰極箔6であり、陰極箔6の上に重ねられる引出し端子4は、端子孔22および端子片24が形成される前の引出し端子4である。
 第1の型42は透孔50を有し、第2の型44は透孔52を有している。透孔50は、成形型48の横断面の形状よりもわずかに大きい孔形状を有する。透孔52は、ステッチ針46の横断面の形状よりもわずかに大きい孔形状を有する。透孔52は透孔50よりも小さく、透孔50の真上に配置されている。ステッチ針46はたとえば円柱状の軸部に鋭角、且つ角錐形の先端部を有し、透孔52の上に配置される。
 ステッチ針46を図6のAに示されている矢印の向きに下降させ、図6のBに示すように、ステッチ針46が引出し端子4および陰極箔6に引出し端子4側から挿通される。ステッチ針46の挿通により、貫通孔および箔片28が陰極箔6に形成され、端子孔22および端子片24が引出し端子4に形成される。下降されたステッチ針46を上昇させて、ステッチ針46を引出し端子4および陰極箔6から抜き去る。
 成形型48は、たとえば平坦な押し当て面を上側に有し、透孔50の下側に配置される。成形型48を図6のBに示されている矢印の向きに上昇させ、押し当て面が引出し端子4および陰極箔6、特に端子片24および箔片28を陰極箔6側から押圧する。図6のCに示されるように、端子片24および箔片28は第2の型44と成形型48の間に挟まれる。端子片24および箔片28が押圧により折返されて、引出し端子4が陰極箔6に接続される。
 調整されたステッチ接続装置40は、ステッチ接続部10の厚さT1を合計厚さTt以下に調整する。図6のCには、上昇前の成形型48の押し当て面が破線により示されている。ステッチ接続装置40は、成形型48を移動距離Lだけ上昇させて、第2の型44および成形型48によりステッチ接続部10を押し潰す。押し潰されたステッチ接続部10の厚さT1は、第2の型44と成形型48の間の距離Sに一致する。移動距離Lまたは距離Sは、たとえばステッチ接続装置40の距離設定などの装置設定の一例である。ステッチ接続装置40の調整工程では、たとえば移動距離Lまたは距離Sがステッチ接続装置40に設定されて、ステッチ接続部10の厚さT1が調整される。ステッチ接続装置40の距離設定は、たとえばステッチ接続部10の押し潰し距離でもよい。押し潰し距離は、第1の型42と陰極箔6の接触により形成される接触面を基準面として、この基準面からの距離として定義される。押し潰し距離が0.00mmに設定されると、ステッチ接続装置40は、成形型48の押し当て面を基準面まで上昇させて、厚さT1が合計厚さTtに調整される。押し潰し距離が0.02mmに設定されると、ステッチ接続装置40は、成形型48の押し当て面を、接触面の0.02mm上方まで上昇させて、厚さT1が合計厚さTtよりも0.02mm薄い厚さに調整される。
 ステッチ接続装置40の調整は、成形型48を上昇させるシリンダーの上限リミットスイッチの位置調整、ねじ式昇降機のねじの回転量の調整、接触により成形型48の上昇を停止させるストッパーの位置調整、設定値データを用いたコンピュータ制御による調整の何れでもよく、またはその他の調整でもよい。
 陽極箔への引出し端子4の接続工程は、陰極箔6への引出し端子4の接続工程と同じでもよく、異なっていてもよい。特に、押し潰し距離の設定は、異なっていてもよい。陽極箔では、表面にカーボン層が形成されていないため、カーボン層含有箔である陰極箔6のように、端子片24および箔片28の押圧部分を中心に外側に向かう応力によって、伸び易くなる可能性は小さい。むしろ、陽極箔では、前述したように弁作用金属箔の表面に凹凸が形成され、凹凸の上に化成処理により誘電体酸化皮膜が形成されている。誘電体酸化皮膜は硬く、陽極箔の延伸性や柔軟性が低下する。陽極箔を高容量化するためには、より高倍率の拡面化処理により陽極箔の表面積を拡大させているが、陽極箔の高容量化に伴い誘電体酸化皮膜の面積も拡大し、結果として、陽極箔が脆弱になり、硬くなり、素材自体が持つ柔軟性が極度に低下し易い。このように硬化し、かつ柔軟性が低下した陽極箔のステッチ接続処理では、陽極箔に加わる圧力を抑制するため、ステッチ接続部の厚さが引出し端子4の平坦部18と陽極箔の厚さの合計厚さ以上になるように陽極箔および引出し端子4を押圧することが好ましい。そのため、陽極箔と引出し端子4との接続においては、ステッチ接続部10の厚さT1と引出し端子4の平坦部18と箔の厚さの大小関係を異ならせることが好ましい。
 コンデンサ素子の作製工程では、第1のセパレータを陽極箔および陰極箔6の間に配置するとともに第2のセパレータを陽極箔または陰極箔6の外側に配置する。陽極箔、陰極箔6、第1および第2のセパレータを巻回して、コンデンサ素子が作製される。
 コンデンサ素子の封入工程では、電解液などの電解質が含浸されたコンデンサ素子が外装ケースの内部に挿入され、その後外装ケースの開口部に封口部材が取り付けられて、コンデンサ2が作製される。
 第1の実施の形態によれば、たとえば以下の効果が得られる。
 (1) カーボン層14を含む陰極箔6は、ステッチ接続処理において箔が伸び易い。そのため、カーボン層14を含む陰極箔6と引出し端子4の接続の難易度は、ステッチ接続処理などの接続処理において、既述の基本的な陰極箔と引出し端子4の接続の難易度よりも高い。そこで、第1の実施の形態に係るコンデンサ2では、ステッチ接続処理におけるステッチ接続部10の潰し厚さ、つまりステッチ接続部10の厚さT1を調整および管理することで、ステッチ接続を安定させることができる。
 (2) ステッチ接続部10の厚さT1が合計厚さTt以下となるように、ステッチ接続部10の厚さT1が調整されているので、コンデンサ2の等価直列抵抗を抑制し、且つ安定させることができる。ステッチ接続部10の厚さT1が合計厚さTt未満となるように、ステッチ接続部10の厚さT1が調整されていると、コンデンサ2の等価直列抵抗を一層抑制し、且つ一層安定させることができる。
 (3) 差ΔTの絶対値が0.02mm以下または陰極箔6の厚さT2以下であると、コンデンサ2は、比較的高い箔の耐力強度を得ることができる。
 (4) カーボン層14を含む陰極箔6の性質に適したステッチ接続を実現でき、カーボン層14を含む陰極箔6を備えるコンデンサ2の安定性または信頼性を高めることができる。
 (5) 成形型48により押圧される陰極箔6の周辺を第1の型42と第2の型44により挟み込み、陰極箔6を拘束することで、カーボン層14の外側に向かう応力を抑制することができ、安定性または信頼性を高めることができる。また、図6に示すように、第1の型42と第2の型44により引出し端子4の角部を挟むことで、陰極箔6の引出し端子4の角部との接触部に、成形型48による押圧時の応力が伝播することを防ぐことができる。そのため、箔の耐力強度の試験のような力が陰極箔6に加わったときに、陰極箔6の引出し端子4の角部との接触部から割れが生じ難くなる。

第2の実施の形態
 第2の実施の形態のコンデンサ2は、たとえば第1の実施の形態で記述したコンデンサ2の構成を有する。第1の実施の形態に記述されている内容は、参照により第2の実施の形態に組み入れることとし、第2の実施の形態での再度の記載を割愛する。
 図7は、第2の実施の形態に係るコンデンサの引出し端子と陰極箔の一例を示している。図7に示す構成は一例であって、斯かる構成に本開示の技術が限定されるものではない。第2の実施の形態のコンデンサ2では、引出し端子4の端子端66、プレス痕端68の位置がそれぞれ陰極箔6の箔端62、箔端64に対して調整または管理され、陰極箔6の箔割れが抑制される。プレス痕は、既述の引出し端子の接続工程において、第2の型44、成形型48などの型の押圧により引出し端子4、特に平坦部18に形成される痕跡であり、プレス痕端68は、第2の型44の型端部70(図12、図13)の押圧により引出し端子4の平坦部18に形成される痕跡である。つまり、プレス痕端68は、押圧される領域の境界を表す。プレス痕端68は、たとえば平坦部18の金属線17側に形成される。
 引出し端子4の端子端66は、たとえば陰極箔6の箔端62から引っ込んでいる。端子端66と箔端62の間の距離Y1(単位:mm)は、0.1以下、または0.5以上であることが好ましい。距離Y1が0.0であり、端子端66が箔端62に一致してもよい。つまり、距離Y1は、たとえば以下の式(3)で表される範囲に調整または管理される。
       0.0≦Y1≦0.1、または0.5≦Y1  ・・・(3)
 距離Y1が0.5以上の場合、距離Y1が大きくなるにつれて、陰極箔6の箔割れが抑制されることが予想される。したがって、距離Y1の最大値は、コンデンサ2の構造または性能の観点から設定されればよい。また、引出し端子4は、箔端62から突出してもよい。突出している引出し端子4は、陰極箔6の箔割れを抑制する。
 引出し端子4のプレス痕端68は、たとえば陰極箔6の箔端64から引っ込んでいる。プレス痕端68と箔端64の間の距離Z1(単位:mm)は、0.1以下であることが好ましい。距離Z1が0.0であり、プレス痕端68が箔端64に一致してもよい。つまり、距離Z1は、たとえば以下の式(4)で表される範囲に調整または管理される。
       0.0≦Z1≦0.1            ・・・(4)
 また、プレス痕端68は、箔端64から突出してもよい。プレス痕端68が箔端64から突出するように調整または管理されると、陰極箔6の箔割れが抑制される。
 図8は、第1の実験結果を示し、距離Y1またはY2(以下、「距離Y1、Y2」という)における箔割れの発生状況を示している。箔割れは、陰極箔6の箔端62からステッチ接続部10の端子片24まで延びる亀裂として定義される。箔割れは、たとえば既述の引出し端子の接続工程において、引出し端子4および陰極箔6への押圧により陰極箔6に形成されることがある。なお、第1の実験では、既述の定義に該当しない亀裂、たとえば端子片24に到達していない亀裂は、箔割れとして扱わない。距離Y2(単位:mm)は、陰極箔6の箔端62から突出する引出し端子4の端子端66と箔端62の間の距離として定義される。第1の実験は、カーボン層14を含む陰極箔6に対する引出し端子4のステッチ接続の条件として、端子端66と箔端62の間の距離Y1、Y2を変更したときの箔割れの有無を確認するための実験である。
 端子端66が箔端62から突出しているとき、箔割れが発生しなかった。また、端子端66が箔端62に一致し、または箔端62から引っ込んでいるとき、上記の式(3)で表される距離Y1の範囲において、箔割れが発生しなかった。距離Y1が0.2mm、0.3mmまたは0.4mmであるとき、箔割れを有する実験片が確認された。第1の実験では、以下に示す条件(1)または条件(2)を満たすコンデンサ2は、条件(1)、(2)から外れるコンデンサ2に比べて、箔割れを発生させ難いことが解かった。
 条件(1): 端子端66が箔端62から突出する。
 条件(2): 距離Y1が上記の式(3)の範囲内の値である。つまり、端子端66が箔端62に一致し、または箔端62から0.1mm以下もしくは0.5mm以上の間隔で陰極箔6に重なる。
 図9のAに示すように端子端66が箔端62から突出しているとき、引出し端子4が陰極箔6の箔端62まで重なる。そのため、引出し端子の接続工程において、図9のBに示すように、陰極箔6の箔端62が引出し端子4を介して、第2の型44および成形型48に挟まれ、固定される。既に述べた通り、カーボン層14を含む陰極箔6は、基本的な陰極箔(つまり、カーボン層を含まない陰極箔)に比べて伸び易い。しかしながら、端子端66が箔端62から突出しているとき、箔端62の固定により、箔端62の伸びが抑制されるものと推定され、陰極箔6の箔割れが抑制されるものと推定される。端子端66が箔端62に一致しているとき、および端子端66が箔端62からわずかに(たとえば0.1mm)引っ込んでいるとき、箔端62または箔端62近傍の固定により、箔端62の伸びが抑制されるものと推定され、陰極箔6の箔割れが抑制されるものと推定される。
 図10のAに示すように端子端66が箔端62から引っ込んでいるとき、陰極箔6が引出し端子4から突出して、突出箔端部72が形成される。引出し端子の接続工程において、図10のB、図10のCに示すように、突出箔端部72は、引出し端子4を介して第2の型44および成形型48に挟まれることがなく、自由な状態になる。突出箔端部72の距離、つまり距離Y1がたとえば0.5mm以上であり、突出箔端部72の領域が広いとき、成形型48および引出し端子4から陰極箔6に伝搬する応力が、突出箔端部72およびその周辺領域を含む緩衝領域74に分散されるものと推定され、陰極箔6の箔割れが抑制されるものと推定される。なお、図10のAおよび図10のCにおける矢印は、陰極箔6に伝搬する応力を表している。
 端子端66が箔端62から引っ込んでいても、突出箔端部72の距離、つまり距離Y1がたとえば0.2mm以上0.4mm以下であり、突出箔端部72の領域が狭いとき、成形型48および引出し端子4から陰極箔6に伝搬する応力が、突出箔端部72に伝搬して、この応力による陰極箔6の伸びが大きくなるものと推定される。そのため、陰極箔6の箔割れが発生するものと推定される。
 図11は、第2の実験結果を示し、距離Z1またはZ2(以下、「距離Z1、Z2」という)における箔割れの発生状況を示している。箔割れの定義は、箔端62が箔端64に変更される以外、第1の実験における箔割れの定義と同じである。第2の実験では、既述の定義に該当しない亀裂、たとえば端子片24に到達していない亀裂は、箔割れとして扱わない。距離Z2(単位:mm)は、陰極箔6の箔端64から突出する引出し端子4のプレス痕端68と箔端64の間の距離として定義される。第2の実験は、カーボン層14を含む陰極箔6に対する引出し端子4のステッチ接続の条件として、プレス痕端68と箔端64の間の距離Z1、Z2を変更したときの箔割れの有無を確認するための実験である。
 プレス痕端68が箔端64から突出しているとき、箔割れが発生しなかった。また、プレス痕端68が箔端64に一致し、または箔端64から引っ込んでいるとき、上記の式(4)で表される距離Z1の範囲において、箔割れが発生しなかった。距離Z1が0.2mmまたは0.3mmであるとき、箔割れを有する実験片が確認された。第2の実験では、以下に示す条件(3)または条件(4)を満たすコンデンサ2は、条件(3)、(4)から外れるコンデンサ2に比べて、箔割れを発生させ難いことが解かった。
 条件(3): プレス痕端68が箔端64から突出する。
 条件(4): 距離Z1が上記の式(4)の範囲内の値である。つまり、プレス痕端68が箔端64に一致し、または箔端64から0.1mm以下の間隔で陰極箔6に重なる。
 図12のAに示すようにプレス痕端68が箔端64から突出しているとき、引出し端子4の押圧される領域が陰極箔6の箔端64まで重なる。引出し端子の接続工程において、図12のBに示すように、陰極箔6の箔端64が引出し端子4を介して、第2の型44および成形型48に挟まれ、固定される。既に述べた通り、カーボン層14を含む陰極箔6は、基本的な陰極箔(つまり、カーボン層を含まない陰極箔)に比べて伸び易い。しかしながら、プレス痕端68が箔端64よりも外側に形成されるように陰極箔6および引出し端子4が第2の型44および成形型48に挟まれるとき、箔端64の固定により、箔端64の伸びが抑制されるものと推定され、陰極箔6の箔割れが抑制されるものと推定される。プレス痕端68が箔端64に一致しているとき、およびプレス痕端68が箔端64からわずかに(たとえば0.1mm)引っ込んでいるとき、箔端64または箔端64近傍の固定により、箔端64の伸びが抑制されるものと推定され、陰極箔6の箔割れが抑制されるものと推定される。
 図13のA、図13のBに示すようにプレス痕端68が箔端64から0.2mmまたは0.3mm引っ込んでいるとき、陰極箔6が引出し端子4の押圧される領域から突出して、箔端64およびその近傍が自由な状態になる。成形型48および引出し端子4からの応力が陰極箔6の箔端64およびその近傍に伝搬する。そのため、カーボン層14を含む陰極箔6の箔端64およびその近傍が変形するものと推定され、陰極箔6の箔割れが発生するものと推定される。
 0.4mm以上の距離Z1において、陰極箔6の箔割れが抑制される条件が存在する可能性がある。距離Y1が0.5mm以上になると箔割れが抑制されるように、距離Z1がたとえば0.5mm以上になると、箔割れが抑制される可能性がある。第2の実験結果は、0.4mm以上の距離Z1において、0.2mm、0.3mmと同様の結果をもたらすことを示唆するものではない。
 陰極箔6の箔割れは、コンデンサ2の性能や耐振性に影響を及ぼすものではない。しかし、コンデンサ2の金属線17に対して、想定される以上の振動が加わり、その振動が引出し端子4と陰極箔6との接続部に伝搬した場合、たとえばコンデンサ2の耐振性に影響する。そのため、条件(1)または条件(2)を満たすように端子端66と箔端62の間の距離Y1、Y2を調整または管理することで、コンデンサ2の耐振性を高めることができ、条件(3)または条件(4)を満たすようにプレス痕端68と箔端64の間の距離Z1、Z2を調整または管理することで、コンデンサ2の耐振性を高めることができる。振動が加わる環境での使用でも、たとえばコンデンサ2の等価直列抵抗を長期間維持することができる。

〔コンデンサの製造工程〕
 コンデンサ2の製造工程は、本開示のコンデンサの製造方法の一例であって、たとえば陽極箔の作製工程、陰極箔6の作製工程、セパレータの作製工程、陰極箔6の厚さT2と、引出し端子4の平坦部18の厚さT3の把握工程、ステッチ接続部10の厚さT1の決定工程、ステッチ接続装置40の調整工程、引出し端子の接続工程、コンデンサ素子の作製工程、コンデンサ素子の封入工程を含む。陽極箔の作製工程、陰極箔6の作製工程、セパレータの作製工程、陰極箔6の厚さT2と、引出し端子4の平坦部18の厚さT3の把握工程、ステッチ接続部10の厚さT1の決定工程、コンデンサ素子の作製工程、コンデンサ素子の封入工程は、第1の実施の形態で説明したこれらの工程と同様である。第1の実施の形態で説明したこれらの工程の説明を省略する。
 ステッチ接続装置40の調整工程では、第1の実施の形態におけるステッチ接続装置40の調整工程と同様の処理が行われるとともに、距離Y1、Y2および距離Z1、Z2の調整処理が行われる。距離Y1、Y2の調整処理では、上記の条件(1)または条件(2)を満たすように、たとえば陰極箔6に対する引出し端子4の配置位置が調整され、距離Z1、Z2の調整処理では、型の押圧により引出し端子4に形成されることになるプレス痕端68が、引出し端子の接続工程後において上記の条件(3)または条件(4)を満たすように、たとえば陰極箔6に対する第2の型44の配置位置、特に型端部70の配置位置が調整される。距離Y1、Y2および距離Z1、Z2の調整は、たとえば、引出し端子4もしくは陰極箔6のアライメント装置の位置調整、第2の型44もしくは成形型48の位置調整、または複数のこれらの位置調整により行われる。たとえば、陰極箔6が基準位置に固定される場合、引出し端子4の位置調整により距離Y1、Y2が調整される。陰極箔6および引出し端子4の位置が固定される場合、第2の型44の位置調整、特に型端部70の位置調整により距離Z1、Z2が調整される。距離Y1、Y2および距離Z1、Z2は、基本的には、引出し端子の接続工程の前後で一致する。そのため、ステッチ接続装置40の調整工程では、コンデンサ2における条件(1)~(4)を使用することができる。
 引出し端子の接続工程は、距離Y1、Y2および距離Z1、Z2の調整処理が行われた状態で、引出し端子4が陰極箔6に接続されることを除き、第1の実施の形態における引出し端子の接続工程と同様である。なお、第1の実施の形態における引出し端子の接続工程では説明が省略されているが、成形型48を図6のBに示されている矢印の向きに上昇させ、押し当て面が引出し端子4および陰極箔6を陰極箔6側から押圧するとき、第2の型44の押圧により引出し端子4にプレス痕が形成され、型端部70の当接位置にプレス痕端68が形成される。
 第2の実施の形態によれば、たとえば以下の効果が得られる。
 (1) 箔割れが抑制され、たとえば引出し端子4と陰極箔6の間の接続を安定させることができる。
 (2) カーボン層14を含む陰極箔6のステッチ接続のため、ステッチ接続部10の厚さT1が既述の合計厚さTt以下となるように調整される。つまり、引出し端子の接続工程では、陰極箔6は、厚さT1が合計厚さTt以下となるまでプレスされ、陰極箔6に加えられる応力は、既述の基本的な陰極箔に加えられる圧力よりも大きくなる。そのため、陰極箔6が箔の幅方向(引出し端子4の長手方向)に伸び易くなる。そこで、端子端66もしくはプレス痕端68の突出、一致もしくは引っ込みによる位置調整、または距離Y1、Y2もしくは距離Z1、Z2の距離調整により、応力発生時に箔端62、64が固定され、または発生した応力が広く分散される。陰極箔6に加えられる応力が大きくても、箔端62、64の固定または応力の分散により箔割れが抑制でき、たとえば引出し端子4と陰極箔6の間の接続を安定させることができる。
 (3) 箔割れの抑制により、振動による割れの拡大リスクを抑制でき、コンデンサ2の耐振性を高めることができる。
 (4) 箔割れを抑制することで、コンデンサ2の信頼性を向上することができる。
 以上説明した実施の形態について、その特徴事項や変形例を以下に列挙する。
 (1) 上記実施の形態では、コンデンサ素子は巻回素子である。しかしながら、コンデンサ素子は、たとえば平坦な複数の陽極箔、陰極箔6およびセパレータが積層された積層素子でもよい。
 (2) 陽極箔、陰極箔6、セパレータ、外装ケース、封口部材および電解質の素材は上記実施の形態で記述したものに限定されない。これらの素材は、アルミ電解コンデンサまたは類似のコンデンサで採用されている他の素材でもよい。たとえば、外部端子を取り付けたフェノール積層板を封口部材として用いてもよく、前述のコンデンサ素子に電解液を含浸させた後、コンデンサ素子から導出した引出し端子を封口部材の外部端子に接続してもよく、コンデンサ素子および封口部材を外装ケースに挿入して、封口部材で封止した構造としてもよい。
 (3) カーボン層14の素材は上記実施の形態で述べたものに限定されない。カーボン層14を形成する素材は、カーボンを含む任意の導電性部材でもよい。また、基材箔12に対するカーボン層14の密着または係合状態は、上記実施の形態で述べたものに限定されない。
 (4) 上記実施の形態では、少なくともステッチ接続部10の厚さT1が合計厚さTt以下に調整されていればよい。成形型48から圧力を受ける受圧部が、全体的に合計厚さTt以下の厚さを有していてもよい。
 (5) 上記実施の形態では、引出し端子4が陰極箔6の上に配置され、ステッチ針46が上から引出し端子4および陰極箔6を刺し、成形型48が下から引出し端子4および陰極箔6を押圧している。しかしながら、引出し端子4、陰極箔6、ステッチ針46および成形型48の相対的な配置が一致または類似していればよい。引出し端子4、陰極箔6、ステッチ針46および成形型48がたとえば実施の形態におけるこれらの配置に対して上下逆になるように、または任意の角度ほど回転させて配置されていてもよい。
 (6) 上記実施の形態では、ステッチ接続装置40の装置設定、たとえば距離設定の調整により、ステッチ接続部10の厚さT1を調整している。しかしながら厚さT1の調整手段は、距離設定の調整に限らない。たとえば、成形型48が引出し端子4および陰極箔6に加える押し付け圧力P(図6のC)の大きさを調整し、加えられる圧力が大きくなると厚さT1が薄くなるという関係を利用して厚さT1を調整してもよい。ステッチ接続装置40の調整は、たとえば、成形型48が引出し端子4および陰極箔6に圧力を加える際の圧力設定などの装置設定の調整でもよい。
 (7) 上記実施の形態では、陰極箔6と引出し端子4の両方を第1の型42と第2の型44によって挟んで保持した状態で、ステッチ針46を引出し端子4および陰極箔6に挿通して箔片28および端子片24を形成する工程および、成形型48により箔片28および端子片24を押圧し、ステッチ接続部10を形成する工程を行ったが、これに限らない。たとえば、陰極箔6と引出し端子4の両方を第1の型42と第2の型44に挟んで保持した状態で、ステッチ針46を引出し端子4および陰極箔6に挿通し、箔片28および端子片24を形成する工程を経た後、第1の型42と第2の型44による保持を解除し、箔片28および端子片24が形成された状態で、陰極箔6と引出し端子4を次の工程に送り、陰極箔6の箔片28および端子片24が形成された面側と、引出し端子4側から挟むように平坦な押し当て面を備える成形型で押圧してステッチ接続部10を形成してもよい。
 (8) 第2の実施の形態では、距離Y1、Y2および距離Z1、Z2が調整されている。しかしながら、距離Y1、Y2および距離Z1、Z2の何れかが調整されてもよく、距離Y1、Y2および距離Z1、Z2が調整されなくてもよい。距離Y1、Y2および距離Z1、Z2が調整されなくても、第1の実施の形態の効果を得ることができる。
 (9) 第2の実施の形態では、割れが発生する部分を除き、箔端62、64および端子端66の形状がほとんど変化していない。しかしながら、引出し端子の接続工程における押圧により箔端62、64および端子端66の形状が変化してもよい。引出し端子の接続工程における押圧により、図14に示すように箔端62および端子端66がたとえば外側に膨らんでもよい。箔端62および端子端66が外側に膨らんでも、端子端66の角部76の位置および角部76近傍の箔端62の位置は、ほぼ変わらない。つまり、角部76と箔端62の最小距離を距離Y1、Y2として計測すれば、引出し端子の接続工程の前後の距離Y1、Y2を基本的には一致させることができる。また、引出し端子の接続工程における押圧により箔端64およびプレス痕端68がたとえば外側に膨らんでもよい。箔端64およびプレス痕端68が外側に膨らんでも、プレス痕端68の角部の位置および角部近傍の箔端64の位置は、ほぼ変わらない。つまり、プレス痕端68の角部と箔端64の最小距離を距離Z1、Z2として計測すれば、引出し端子の接続工程の前後の距離Z1、Z2を基本的には一致させることができる。
 (10) 第2の実施の形態では、引出し端子4の長手方向において、第2の型44の両端の位置が成形型48の両端の位置と一致している。しかしながら、第2の型44の両端または一端の位置が成形型48の両端または一端の位置と異なっていてもよく、第1の実験結果および第2の実験結果と同様の結果が得られるものと期待される。
 (11) 第2の実施の形態では、ステッチ接続装置40の調整により、距離Y1、Y2および距離Z1、Z2が調整されている。しかしながら、距離Y1、Y2または距離Z1、Z2の調整のために、陰極箔6の箔幅または引出し端子4の平坦部18の長さをさらに調整してもよい。調整項目の増加により、調整の自由度を高めることができる。
 (12) 上記実施の形態では、陰極箔6と引出し端子4の両方を第1の型42と第2の型44によって挟んで保持した状態で、ステッチ針46を引出し端子4および陰極箔6に挿通して箔片28および端子片24を形成する工程を行ったが、これに限らない。たとえば、陰極箔6のステッチ針46によって貫通孔を形成する箇所に予め貫通孔を形成し、この貫通孔を覆うように引出し端子4を陰極箔6に重ねたうえで、陰極箔6と引出し端子4の両方を第1の型42と第2の型44によって挟んで保持した状態で予め陰極箔6に形成した貫通孔と一致する位置に端子孔22が形成されるようにステッチ針46を引出し端子4に挿通させてもよい。このようにすると、陰極箔6にステッチ針46が挿通する位置には、貫通孔が形成されているため、ステッチ針46が陰極箔6を突き刺すことはなく、箔片28が形成されないか、形成されても小さい箔片28が形成されることになる。そのため、成形型48により端子片24が押圧される際、上記実施の形態のように、箔片28が端子片24と陰極箔6の間に存在しない。既に述べたように、表面にカーボン層が形成されている場合、陰極箔6は伸び易くなる。端子片24と陰極箔6との間に伸び易い箔片28を存在させないことで、箔片28と重なる陰極箔6の押圧による伸びが抑制され、引出し端子4と陰極箔6との接続をより安定させることができる。なお、この場合、ステッチ接続部は、端子片24が配置されている領域であり、端子孔22から引出し端子4、陰極箔6、端子片24が積層された箇所を含む領域を指す。
 以上説明したように、本開示の最も好ましい実施の形態等について説明したが、本開示は、上記記載に限定されるものではなく、請求の範囲に記載され、または明細書に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能であることは勿論であり、斯かる変形や変更が、本開示の範囲に含まれることは言うまでもない。
 本開示の技術は、カーボン層を含む陰極箔と引出し端子の接続およびこれらを含むコンデンサに用いることができ、有用である。
 2 コンデンサ
 4 引出し端子
 6 陰極箔
 10 ステッチ接続部
 12 基材箔
 14 カーボン層
 16 凹凸
 16-1 くぼみ
 16-2 突出
 17 金属線
 18 平坦部
 22 端子孔
 24 端子片
 28 箔片
 32 箔
 34 第1主表面
 36 第2主表面
 40 ステッチ接続装置
 42 第1の型
 44 第2の型
 46 ステッチ針
 48 成形型
 50、52 透孔
 62、64 箔端
 66 端子端
 68 プレス痕端
 70 型端部
 72 突出箔端部
 74 緩衝領域
 76 角部
                                                                                

Claims (9)

  1.  基材箔の表面に配置されたカーボン層を含む陰極箔と、
     前記陰極箔にステッチ接続部でステッチ接続により接続された平坦部を含む引出し端子と、
     を備え、
     前記ステッチ接続部の厚さが前記陰極箔の厚さと前記平坦部の厚さの合計厚さ以下であることを特徴とするコンデンサ。
  2.  前記引出し端子の端子端が、
     前記陰極箔の箔端から突出し、または、
     前記箔端に一致し、または、
     前記箔端から0.1ミリメートル以下もしくは0.5ミリメートル以上の間隔で前記陰極箔に重なる
     ことを特徴とする請求項1に記載のコンデンサ。
  3.  前記ステッチ接続部の厚さが前記合計厚さ未満であることを特徴とする請求項1または請求項2に記載のコンデンサ。
  4.  前記ステッチ接続部の厚さと前記合計厚さとの差の絶対値が0.02ミリメートル以下であることを特徴とする請求項1ないし請求項3のいずれか一項に記載のコンデンサ。
  5.  前記平坦部の厚さが0.18ミリメートル以上0.35ミリメートル以下であり、
     前記陰極箔の厚さが0.01ミリメートル以上0.06ミリメートル以下であることを特徴とする請求項1ないし請求項4のいずれか一項に記載のコンデンサ。
  6.  基材箔の表面に配置されたカーボン層を含む陰極箔を作製する工程と、
     前記陰極箔の端子配置面に引出し端子の平坦部を配置し、ステッチ接続部の厚さが前記陰極箔の厚さと前記平坦部の厚さの合計厚さ以下となるように、ステッチ接続処理により前記平坦部を前記ステッチ接続部で前記陰極箔に接続する工程と
     を備えることを特徴とするコンデンサの製造方法。
  7.  前記平坦部を前記陰極箔に接続する工程において、前記引出し端子の端子端が前記陰極箔の箔端から突出するように前記平坦部を前記陰極箔に接続し、または
     前記平坦部を前記陰極箔に接続する工程において、前記端子端が前記箔端に一致もしくは前記箔端から0.1ミリメートル以下もしくは0.5ミリメートル以上の間隔で前記陰極箔に重なるように前記平坦部を前記陰極箔に接続する
     ことを特徴とする請求項6に記載のコンデンサの製造方法。
  8.  基材箔の表面に配置されたカーボン層を含む陰極箔の厚さと、引出し端子の平坦部の厚さとを把握する工程と、
     ステッチ接続部の厚さが前記陰極箔の前記厚さと前記平坦部の前記厚さの合計厚さ以下になるように、前記ステッチ接続部の前記厚さを決定する工程と、
     ステッチ接続装置が前記ステッチ接続部の決定された前記厚さになるまで前記ステッチ接続部を押し潰すように、前記ステッチ接続装置を調整する工程と、
     調整された前記ステッチ接続装置により前記平坦部を前記陰極箔に接続する工程と
     を備えることを特徴とするコンデンサの製造方法。
  9.  前記ステッチ接続装置を調整する工程において、前記引出し端子の端子端が前記陰極箔の箔端から突出するように前記ステッチ接続装置を調整し、または
     前記ステッチ接続装置を調整する工程において、前記端子端が前記箔端に一致もしくは前記箔端から0.1ミリメートル以下もしくは0.5ミリメートル以上の間隔で前記陰極箔に重なるように前記ステッチ接続装置を調整することを特徴とする請求項8に記載のコンデンサの製造方法。
                                                                                    
PCT/JP2022/046597 2022-01-06 2022-12-19 コンデンサおよびその製造方法 WO2023132212A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-000950 2022-01-06
JP2022000950 2022-01-06
JP2022-054271 2022-03-29
JP2022054271A JP2023100570A (ja) 2022-01-06 2022-03-29 コンデンサおよびその製造方法

Publications (1)

Publication Number Publication Date
WO2023132212A1 true WO2023132212A1 (ja) 2023-07-13

Family

ID=87073555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046597 WO2023132212A1 (ja) 2022-01-06 2022-12-19 コンデンサおよびその製造方法

Country Status (1)

Country Link
WO (1) WO2023132212A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236401A (ja) * 1995-02-24 1996-09-13 Matsushita Electric Ind Co Ltd アルミ電解コンデンサの製造方法
JP2009130338A (ja) * 2007-11-28 2009-06-11 Elna Co Ltd アルミニウム電極箔に対するタブ端子の接続方法およびアルミニウム電解コンデンサ並びに固体電解コンデンサ
JP2011077260A (ja) * 2009-09-30 2011-04-14 Nippon Chemicon Corp 電解コンデンサの製造方法
JP2018120939A (ja) * 2017-01-25 2018-08-02 日本ケミコン株式会社 コンデンサおよびその製造方法
JP2021097164A (ja) * 2019-12-18 2021-06-24 日本ケミコン株式会社 電解コンデンサ及び電解コンデンサの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236401A (ja) * 1995-02-24 1996-09-13 Matsushita Electric Ind Co Ltd アルミ電解コンデンサの製造方法
JP2009130338A (ja) * 2007-11-28 2009-06-11 Elna Co Ltd アルミニウム電極箔に対するタブ端子の接続方法およびアルミニウム電解コンデンサ並びに固体電解コンデンサ
JP2011077260A (ja) * 2009-09-30 2011-04-14 Nippon Chemicon Corp 電解コンデンサの製造方法
JP2018120939A (ja) * 2017-01-25 2018-08-02 日本ケミコン株式会社 コンデンサおよびその製造方法
JP2021097164A (ja) * 2019-12-18 2021-06-24 日本ケミコン株式会社 電解コンデンサ及び電解コンデンサの製造方法

Similar Documents

Publication Publication Date Title
KR102320546B1 (ko) 전극, 그 전극을 사용한 전기 이중층 캐패시터 및 전극의 제조 방법
KR20170137028A (ko) 에너지 저장 디바이스를 위한 나노구조 전극
JP6134917B2 (ja) キャパシタ
JPWO2006070617A1 (ja) 分極性電極体とその製造方法、及びこれを用いた電気化学キャパシタ
JP2006210883A (ja) 分極性電極体とその製造方法、及びこれを用いた電気化学キャパシタ
JP5855493B2 (ja) エネルギ貯蔵体の電極及びその製造方法
JP2023103483A (ja) 電極体、電極体を備える電解コンデンサ、及び電極体の製造方法
JP2007200979A (ja) 電気二重層キャパシタ
WO2023132212A1 (ja) コンデンサおよびその製造方法
JP2023100570A (ja) コンデンサおよびその製造方法
JP2005223197A (ja) 電解コンデンサ
TWI546831B (zh) 電雙層電容之碳電極、其製造方法以及電雙層電容
WO2022045122A1 (ja) 電解コンデンサ及び電解コンデンサの製造方法
JP4831771B2 (ja) 固体電解コンデンサ
JP2008028137A (ja) 固体電解コンデンサ
WO2024034640A1 (ja) コンデンサおよびその製造方法
JP2023146859A (ja) コンデンサおよびその製造方法
JP7404848B2 (ja) 電解コンデンサの製造方法
JP2023023395A (ja) コンデンサおよびその製造方法
JP2023085753A (ja) コンデンサおよびその製造方法
JP2021097163A (ja) 電解コンデンサ及び電解コンデンサの製造方法
JP2024016384A (ja) コンデンサおよびその製造方法
KR102016520B1 (ko) 고전압 슈퍼커패시터 및 그 제조방법
TWI838940B (zh) 電極體、具備電極體的電解電容器以及電極體的製造方法
EP4293693A1 (en) Capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918797

Country of ref document: EP

Kind code of ref document: A1