WO2023131008A1 - 一种光学镜头、内窥镜成像系统及内窥镜 - Google Patents

一种光学镜头、内窥镜成像系统及内窥镜 Download PDF

Info

Publication number
WO2023131008A1
WO2023131008A1 PCT/CN2022/142436 CN2022142436W WO2023131008A1 WO 2023131008 A1 WO2023131008 A1 WO 2023131008A1 CN 2022142436 W CN2022142436 W CN 2022142436W WO 2023131008 A1 WO2023131008 A1 WO 2023131008A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
image
optical
cemented
convex
Prior art date
Application number
PCT/CN2022/142436
Other languages
English (en)
French (fr)
Inventor
王迎智
周毅
董先公
Original Assignee
极限人工智能有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 极限人工智能有限公司 filed Critical 极限人工智能有限公司
Publication of WO2023131008A1 publication Critical patent/WO2023131008A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00186Optical arrangements with imaging filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/005Flexible endoscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/008Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras designed for infrared light

Definitions

  • the present application relates to the technical field of optical elements, in particular to an optical lens, an endoscope imaging system and an endoscope.
  • the optical lens is an essential part of the imaging system, which directly affects the quality of the imaging and affects the realization and effect of the algorithm.
  • Optical lenses can be divided into short-focus lenses, medium-focus lenses, and telephoto lenses from the focal length; from the field of view, there are wide-angle, standard, and telephoto lenses; on the structure, there are fixed-aperture fixed-focus lenses, manual aperture fixed-focus lenses, Auto-iris fixed-focus lenses, manual zoom lenses, auto-zoom lenses, auto-iris electric zoom lenses, electric three-variable (aperture, focal length, and focus) lenses, etc.
  • Optical lenses are widely used, for example, endoscopes are provided with optical lenses. Doctors can use the endoscope to observe the lesions in the body, which is conducive to formulating the best treatment plan.
  • the optical lens used in the endoscope has the defect of poor imaging quality.
  • the present application provides an optical lens that solves or partially solves the problem of poor imaging quality of optical lenses in endoscopes in the prior art.
  • An optical lens applied to an endoscope, the optical lens includes a first lens, a first cemented lens, a filter, a fourth lens, a diaphragm, and a second cemented lens arranged in sequence from an object side to an image side and the seventh lens;
  • the object-side surface of the first lens is convex, and the image-side surface of the first lens is concave;
  • the object-side surface of the first cemented lens is a plane, and the image-side surface of the first cemented lens is a convex surface;
  • the object-side surface of the fourth lens is a convex surface, and the image-side surface of the fourth lens is a plane;
  • the object side surface of the second cemented lens is convex, and the image side surface of the second cemented lens is convex;
  • the object-side surface of the seventh lens is concave, and the image-side surface of the seventh lens is plane.
  • the first lens satisfies
  • f2 represents the focal length of the image-side surface of the first lens
  • f L1 represents the focal length of the first lens
  • the first cemented lens sequentially includes a second lens and a third lens from the object side to the image side;
  • the object-side surface of the second lens is a plane, and the image-side surface of the second lens is concave;
  • the object-side surface of the third lens is convex, and the image-side surface of the third lens is convex.
  • the first lens and the second lens satisfy 0 ⁇ f 4 /d ⁇ 15;
  • f represents the focal length of the image-side surface of the second lens
  • d represents the distance from the apex of the image-side surface of the first lens to the apex of the image-side surface of the second lens.
  • the second lens and the third lens satisfy:
  • f 3 represents the focal length of the object-side surface of the second lens
  • f 5 represents the focal length of the image-side surface of the third lens
  • f L2 represents the focal length of the second lens
  • f L3 represents the third lens
  • the focal length of the lens, f L23 represents the focal length of the first cemented lens.
  • the second cemented lens sequentially includes a fifth lens and a sixth lens from the object side to the image side;
  • the object-side surface of the fifth lens is convex, and the image-side surface of the fifth lens is concave;
  • the object-side surface of the sixth lens is convex, and the image-side surface of the sixth lens is convex.
  • the first lens, the first cemented lens, the filter, the fourth lens, the second cemented lens and the seventh lens are all glass lenses.
  • the fourth lens and the seventh lens are crown glass.
  • the Abbe numbers of the fourth lens and the seventh lens are greater than or equal to 60.
  • the filter is an infrared filter.
  • a light-shielding coating is provided on the outer periphery of the object-side surface of the first lens, and the light-shielding coating encloses a rectangular light-transmitting window.
  • the optical lens also includes a front mirror group and a rear mirror group;
  • the front lens group includes a front housing and the first lens; the front housing is in a cylindrical structure and encloses a first inner cavity; the first lens is located in the front housing one end;
  • the rear lens group includes a rear housing, the first cemented lens, the filter, the fourth lens, the diaphragm, the second cemented lens and the seventh lens;
  • the rear casing has a cylindrical structure and encloses a second inner cavity; the first cemented lens, the filter, the fourth lens, the aperture, the second cemented lens, the The seventh lens is arranged in the second inner cavity;
  • One end of the rear housing is inserted into the first inner cavity, and the rear housing is connected with the front housing.
  • the wall of the first inner cavity is provided with a matte coating; and/or, the wall of the second inner cavity is provided with a matte coating.
  • the optical lens of the present application includes a first cemented lens and a second cemented lens, which can effectively reduce paraxial spherical aberration and correct marginal chromatic aberration, thereby improving the resolution of the peripheral field of view, shortening the focal length, and further increasing the field of view range to improve image quality.
  • Another object of the present application is to provide an endoscope imaging system and an endoscope to solve or partially solve the problem of poor imaging quality of optical lenses in existing endoscopes.
  • An endoscope imaging system comprising an image sensor and the above-mentioned optical lens, the image sensor is located at the imaging surface of the optical lens, and the image sensor is used to convert the optical image formed by the optical lens into an electrical signal .
  • An endoscope comprises the above-mentioned endoscope imaging system, a lens, a bendable part, an abdominal component and a control handle connected in sequence, and the image sensor and the optical lens are arranged in the lens.
  • the endoscope imaging system and the endoscope have the same advantages as the above-mentioned optical lens over the prior art, and will not be repeated here.
  • FIG. 1 is a schematic structural view of an endoscope provided in an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of an optical lens provided in an embodiment of the present application.
  • FIG. 3 is a schematic structural view of an object-side surface of a first lens provided in an embodiment of the present application
  • Fig. 4 is the modulation transfer function graph of the optical lens provided by the embodiment of the present application.
  • Fig. 5 is the chromatic aberration diagram of the optical lens provided by the embodiment of the present application.
  • Fig. 6 is a field curvature diagram of the optical lens provided by the embodiment of the present application.
  • FIG. 7 is a distortion diagram of the optical lens provided by the embodiment of the present application.
  • an embodiment of the present application discloses an optical lens, the optical lens is applied to an endoscope, and the optical lens includes a first lens 4121, a first cemented lens arranged in sequence from the object side to the image side 4130, optical filter 4128, fourth lens 4124, diaphragm 4129, second cemented lens 4131 and the seventh lens 4127;
  • the object side surface 41211 of the first lens is a convex surface, and the image side surface 41212 of the first lens It is a concave surface;
  • the object-side surface of the first cemented lens 4130 is a plane, and the image-side surface of the first cemented lens 4130 is a convex surface;
  • the object-side surface 41241 of the fourth lens is a convex surface, and the object-side surface of the fourth lens is convex.
  • the image-side surface 41242 is a plane; the object-side surface of the second cemented lens 4131 is a convex surface, and the image-side surface of the second cemented lens 4131 is a convex surface; the object-side surface 41271 of the seventh lens is concave, and the object-side surface 41271 of the seventh lens is concave.
  • the image-side surface 41272 of the seventh lens is a plane.
  • the optical lens in the embodiment of the present application includes a first cemented lens 4130 and a second cemented lens 4131 two sets of cemented lenses, which can effectively reduce paraxial spherical aberration and correct marginal chromatic aberration, thereby improving the resolution of the peripheral field of view and shortening the focal length. Further increase the field of view and improve imaging quality.
  • the first lens 4121 satisfies 0 ⁇ f 2 /f L1 ⁇ 2; wherein, f 2 represents the focal length of the image-side surface 41212 of the first lens, and f L1 represents the first lens 4121 focal length.
  • the first lens 4121 When the first lens 4121 satisfies 0 ⁇ f 2 /f L1 ⁇ 2, it can effectively increase the angle of view, ensure that the angle of view of the optical lens is not less than 70°, and effectively reduce the angle between the light and the optical axis , reduce the burden of correcting aberrations of subsequent lenses, and reduce the aperture of subsequent lenses.
  • the first cemented lens 4130 includes a second lens 4122 and a third lens 4123 in sequence from the object side to the image side; the object-side surface 41221 of the second lens is a plane, The image-side surface 41222 of the second lens is concave; the object-side surface 41231 of the third lens is convex, and the image-side surface 41232 of the third lens is convex.
  • the first lens 4121 and the second lens 4122 satisfy 0 ⁇ f 4 /d ⁇ 15; wherein, f4 represents the focal length of the image-side surface 41222 of the second lens, and d represents the The distance from the apex of the image-side surface 41212 of the first lens to the apex of the image-side surface 41222 of the second lens.
  • the first lens 4121 and the second lens 4122 satisfying the above conditional formula can effectively prevent the reflection of light from the image-side surface 41232 of the third lens from converging on the image-side surface 41222 of the second lens, and then reflect to the imaging surface to generate ghost images. Avoid ghost images that affect image quality.
  • the second lens 4122 and the third lens 4123 satisfy: 0 ⁇ (f 3 /f L2 +f 5 /f L3 )/f L23 ⁇ 3; wherein, f 3 means that the first The focal length of the object side surface 41221 of the second lens, f5 represents the focal length of the image side surface 41232 of the third lens, f L2 represents the focal length of the second lens 4122, f L3 represents the focal length of the third lens 4123, f L23 represents the focal length of the first cemented lens 4130 .
  • the second lens 4122 and the third lens 4123 satisfy the above conditional formula, which can effectively control the curvature half-warp of the object-side surface of the first cemented lens 4130 and the image-side surface of the first cemented lens 4130, avoiding the surface of the first cemented lens 4130 Excessive bending ensures that the light will not have a large refraction angle after passing through the first cemented lens 4130 , thereby reducing the tolerance sensitivity of the first cemented lens 4130 and effectively improving the assembly yield.
  • the second cemented lens 4131 includes a fifth lens 4125 and a sixth lens 4126 in sequence from the object side to the image side; the object-side surface 41251 of the fifth lens is a convex surface, The image-side surface 41252 of the fifth lens is concave; the object-side surface 41261 of the sixth lens is convex, and the image-side surface 41262 of the sixth lens is convex.
  • the fourth lens 4124, the fifth lens 4125, the sixth lens 4126, and the seventh lens 4127 control the distortion in a small range through the reasonable distribution of optical power, which is beneficial to improve the magnification of the peripheral field of view and make the peripheral field of view
  • the field of view gets more pixels and improves the resolution of the edge field of view.
  • the optical lens of the embodiment of the present application has more excellent resolution and resolving power performance.
  • the chromatic aberration is less than 0.01 in the 0.7 field of view, and the chromatic aberration is well controlled.
  • the field curvature is less than 0.5 at 0.7 field of view, and less than 0.1 at full field of view; the distortion is less than 0.8% at 0.7 field of view, and less than 1% at full field of view.
  • the optical lens has excellent performance in 0.7 field of view and full field of view.
  • the first lens 4121, the first cemented lens 4130, the filter 4128, the fourth lens 4124, the second cemented lens 4131 and the seventh lens 4127 are all for the glass lens.
  • the optical lens has good thermal stability and mechanical strength, and the temperature The drift is small, which is conducive to long-term stable work in a confined space.
  • the fourth lens 4124 and the seventh lens 4127 are crown glass.
  • the Abbe numbers of the fourth lens 4124 and the seventh lens 4127 are greater than or equal to 60.
  • the Abbe number greater than or equal to 60 is a high Abbe number.
  • the fourth lens 4124 and the seventh lens 4127 use crown glass with a high Abbe number, which greatly reduces the occurrence of chromatic spherical aberration, suppresses dispersion, and improves imaging quality.
  • high-brightness white light cold light source is usually used as the illumination source, and endoscopic surgical instruments are usually in primary metal color, which is easy to produce bright spots and high-contrast images.
  • the fourth lens 4124 and the seventh lens 4127 The generation of chromatic aberration under this condition can be greatly reduced, and the image quality can be improved.
  • the filter 4128 is an infrared filter.
  • the optical filter is an optical device used to select the required radiation band.
  • the infrared filter selects the infrared band.
  • the infrared band includes a wide range of wavelengths, from 780nm-4um.
  • the use of infrared filters can reduce the influence of infrared bands on the image sensor and enhance the image of the surgical field.
  • the filter can also be a cut-off filter or a half-pass filter for red light of a specific wavelength (640nm-680nm), which prevents or reduces the passage of red light, thereby enhancing the detection of the tissue in the abdominal cavity.
  • a specific wavelength 640nm-680nm
  • a light-shielding coating is provided on the outer periphery of the object-side surface 41211 of the first lens, and the light-shielding coating surrounds a rectangular light-transmitting window 41213 .
  • the diaphragm 4129 is an aperture diaphragm. Using the diaphragm 4129 can obtain a large depth of field, reduce spherical aberration and astigmatism, reduce distortion, improve imaging quality, and reduce image processing workload.
  • the optical lens 412 also includes a front mirror group and a rear mirror group; the front mirror group includes a front housing and the first lens 4121; the The front housing has a cylindrical structure and surrounds a first inner cavity; the first lens 4121 is located at one end of the front housing; the rear mirror group includes a rear housing, the first glued The lens 4130, the filter 4128, the fourth lens 4124, the aperture 4129, the second cemented lens 4131 and the seventh lens 4127; the rear casing is in a cylindrical structure, and The second inner cavity is surrounded; the first cemented lens 4130, the filter 4128, the fourth lens 4124, the diaphragm 4129, the second cemented lens 4131 and the seventh lens 4127 are all It is arranged in the second inner cavity; one end of the rear housing is inserted into the first inner cavity, and the rear housing is connected with the front housing.
  • the optical lens 412 includes a front lens group and a rear lens group. When the optical lens 412 is assembled, the focus can be adjusted by inserting one end of the rear housing into the first inner cavity, which is easy to assemble and focus.
  • the cavity wall of the first inner cavity is provided with a matte coating; and/or, the cavity wall of the second inner cavity is provided with a matte coating.
  • the cavity wall of the first inner cavity is provided with a matte coating
  • the cavity wall of the second inner cavity is provided with a matte coating, which can reduce the imaging noise caused by stray light reflected by the inner wall.
  • the optical lens in the embodiment of the present application has excellent field curvature, distortion control, distortion ⁇ 2%, extremely small chromatic aberration, large depth of field, and focus-free design. Moreover, due to the structure of the optical lens, the fault-tolerant ability to processing accuracy and assembly accuracy is greatly improved. And the average MTF@50lp/mm>0.7 in the 0.7 field of view at the object distance of 30mm-50mm, and the high-frequency MTF@120lp/mm>0.5, and the attenuation is very small in the depth of field. And achieve a large field of view of 70 ⁇ 3°, and maintain a sense of spatial distance suitable for human eyes.
  • the optical lens provided by the embodiment of the present application has a maximum magnification of about 0.12 times, and when used in conjunction with a 27-inch to 42-inch display device, a visual magnification effect of up to 40 times can be obtained, which greatly facilitates The doctor's delicate manipulation of tiny tissues.
  • An embodiment of the present application also discloses an endoscope imaging system, including an image sensor and the above-mentioned optical lens 412, the image sensor is located at the imaging surface 4132 of the optical lens 412, and the image sensor is used to The optical image formed by the optical lens 412 is converted into an electrical signal.
  • an embodiment of the present application also discloses an endoscope, including the above-mentioned endoscope imaging system, and sequentially connected lens 411 , bendable part 413 , abdominal insertion component 417 and control handle 419 , The image sensor and the optical lens 412 are disposed in the lens 411 .
  • the optical lens 412 has the advantages of high resolution, micro distortion, small field curvature and extremely small chromatic aberration, which makes the endoscope imaging system and endoscope have better imaging effects.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Lenses (AREA)

Abstract

本申请涉及光学元件技术领域,具体涉及一种光学镜头、内窥镜成像系统及内窥镜。光学镜头应用于内窥镜,光学镜头包括自物方至像方依次排布的第一透镜、第一胶合透镜、滤光片、第四透镜、光阑、第二胶合透镜和第七透镜;第一透镜的物侧表面为凸面,第一透镜的像侧表面为凹面;第一胶合透镜的物侧表面为平面,第一胶合透镜的像侧表面为凸面;第四透镜的物侧表面为凸面,第四透镜的像侧表面为平面;第二胶合透镜的物侧表面为凸面,第二胶合透镜的像侧表面为凸面;第七透镜的物侧表面为凹面,第七透镜的像侧表面为平面。本申请的光学镜头可以有效减小近轴球差,矫正边缘色差,从而提高边缘视场解像力,缩短焦距,进一步增大视场范围,提高成像质量。

Description

一种光学镜头、内窥镜成像系统及内窥镜
本申请要求在2022年1月4日提交中国专利局、申请号为202210001145.8、发明名称为“一种光学镜头、内窥镜成像系统及内窥镜”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学元件技术领域,具体涉及一种光学镜头、内窥镜成像系统及内窥镜。
背景技术
光学镜头是成像系统中必不可少的部件,直接影响成像质量的优劣,影响算法的实现和效果。光学镜头从焦距上可分为短焦镜头、中焦镜头,长焦镜头;从视场大小分有广角、标准,远摄镜头;结构上分有固定光圈定焦镜头,手动光圈定焦镜头,自动光圈定焦镜头,手动变焦镜头、自动变焦镜头,自动光圈电动变焦镜头,电动三可变(光圈、焦距、聚焦均可变)镜头等。光学镜头的应用非常的广泛,例如,内窥镜就设置有光学镜头。医生利用内窥镜可以观察身体内的病变,有利于制定出最佳的治疗方案。但现有技术中,内窥镜中使用的光学镜头具有成像质量差的缺陷。
发明内容
因此,本申请提供一种光学镜头,解决或部分解决现有技术中内窥镜中的光学镜头具有成像质量差的问题。
为达到上述目的,本申请的技术方案是这样实现的:
一种光学镜头,应用于内窥镜,所述光学镜头包括自物方至像方依次排布的第一透镜、第一胶合透镜、滤光片、第四透镜、光阑、第二胶合透镜和第七透镜;
所述第一透镜的物侧表面为凸面,所述第一透镜的像侧表面为凹面;
所述第一胶合透镜的物侧表面为平面,所述第一胶合透镜的像侧表面为凸面;
所述第四透镜的物侧表面为凸面,所述第四透镜的像侧表面为平面;
所述第二胶合透镜的物侧表面为凸面,所述第二胶合透镜的像侧表面为 凸面;
所述第七透镜的物侧表面为凹面,所述第七透镜的像侧表面为平面。
可选地,所述第一透镜满足,
0<f 2/f L1<2;
其中,f 2表示所述第一透镜的像侧表面的焦距,f L1表示所述第一透镜的焦距。
可选地,所述第一胶合透镜自物方至像方依次包括第二透镜和第三透镜;
所述第二透镜的物侧表面为平面,所述第二透镜的像侧表面为凹面;
所述第三透镜的物侧表面为凸面,所述第三透镜的像侧表面为凸面。
可选地,所述第一透镜和所述第二透镜满足,0<f 4/d<15;
其中,f 4表示所述第二透镜的像侧表面的焦距,d表示所述第一透镜的像侧表面顶点到所述第二透镜的像侧表面顶点的距离。
可选地,所述第二透镜和所述第三透镜满足:
0<(f 3/f L2+f 5/f L3)/f L23<3;
其中,f 3表示所述第二透镜的物侧表面的焦距,f 5表示所述第三透镜的像侧表面的焦距,f L2表示所述第二透镜的焦距,f L3表示所述第三透镜的焦距,f L23表示所述第一胶合透镜的焦距。
可选地,所述第二胶合透镜自物方至像方依次包括第五透镜和第六透镜;
所述第五透镜的物侧表面为凸面,所述第五透镜的像侧表面为凹面;
所述第六透镜的物侧表面为凸面,所述第六透镜的像侧表面为凸面。
可选地,所述第一透镜、所述第一胶合透镜、所述滤光片、所述第四透镜、所述第二胶合透镜和所述第七透镜均为玻璃透镜。
可选地,所述第四透镜和所述第七透镜为冕牌玻璃。
可选地,所述第四透镜和所述第七透镜的阿贝数大于等于60。
可选地,所述滤光片为红外滤光片。
可选地,所述第一透镜的物侧表面的外周设置遮光涂层,所述遮光涂层围成矩形透光窗口。
可选地,所述光学镜头还包括前置镜组和后置镜组;
所述前置镜组包括前置壳体和所述第一透镜;所述前置壳体呈筒状结构,且围成第一内腔;所述第一透镜位于所述前置壳体的一端;
所述后置镜组包括后置壳体、所述第一胶合透镜、所述滤光片、所述第四透镜、所述光阑、所述第二胶合透镜和所述第七透镜;所述后置壳体呈筒状结构,且围成第二内腔;所述第一胶合透镜、所述滤光片、所述第四透镜、所述光阑、所述第二胶合透镜、所述第七透镜均设置于所述第二内腔内;
所述后置壳体的一端插入到所述第一内腔中,所述后置壳体与所述前置壳体连接。
可选地,所述第一内腔的腔壁设置有消光涂层;和/或,所述第二内腔的腔壁设置有消光涂层。
本申请的光学镜头包括第一胶合透镜和第二胶合透镜两组粘合体透镜,可以有效减小近轴球差、矫正边缘色差,从而提高边缘视场解像力,缩短焦距,进一步增大视场范围,提高成像质量。
本申请的另一目的在于提出一种内窥镜成像系统及内窥镜,以解决或部分解决现有内窥镜中的光学镜头具有成像质量差的问题。
为达到上述目的,本申请的技术方案是这样实现的:
一种内窥镜成像系统,包括图像传感器和上述的光学镜头,所述图像传感器位于所述光学镜头的成像面处,所述图像传感器用于将所述光学镜头形成的光学图像转换为电信号。
一种内窥镜,包括上述的内窥镜成像系统,以及依次连接的镜头、可弯部、入腹组件和控制手柄,所述镜头内设有所述图像传感器和所述光学镜头。
所述内窥镜成像系统及内窥镜与上述的光学镜头相对于现有技术所具有的优势相同,在此不再赘述。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种内窥镜的结构示意图;
图2为本申请实施例提供的一种光学镜头的结构示意图;
图3为本申请实施例提供的一种第一透镜的物侧表面的结构示意图;
图4为本申请实施例提供的光学镜头的调制传递函数曲线图;
图5为本申请实施例提供的光学镜头的色差示图;
图6为本申请实施例提供的光学镜头的场曲示图;
图7为本申请实施例提供的光学镜头的畸变示图。
附图标记说明:
411-镜头;
412-光学镜头;
4121-第一透镜;41211-第一透镜的物侧表面;41212-第一透镜的像侧表面;41213-透光窗口;
4122-第二透镜;41221-第二透镜的物侧表面;41222-第二透镜的像侧表面;
4123-第三透镜;41231-第三透镜的物侧表面;41232-第三透镜的像侧表面;
4124-第四透镜;41241-第四透镜的物侧表面;41242-第四透镜的像侧表面;
4125-第五透镜;41251-第五透镜的物侧表面;41252-第五透镜的像侧表面;
4126-第六透镜;41261-第六透镜的物侧表面;41262-第六透镜的像侧表面;
4127-第七透镜;41271-第七透镜的物侧表面;41272-第七透镜的像侧表面;
4128-滤光片;4129-光阑;4130-第一胶合透镜;4131-第二胶合透镜;4132-成像面;
413-可弯部;417-入腹组件;419-控制手柄。
具体实施例
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、 “左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
如图2所示,本申请一实施例公开了一种光学镜头,光学镜头应用于内窥镜,所述光学镜头包括自物方至像方依次排布的第一透镜4121、第一胶合透镜4130、滤光片4128、第四透镜4124、光阑4129、第二胶合透镜4131和第七透镜4127;所述第一透镜的物侧表面41211为凸面,所述第一透镜的像侧表面41212为凹面;所述第一胶合透镜4130的物侧表面为平面,所述第一胶合透镜4130的像侧表面为凸面;所述第四透镜的物侧表面41241为凸面,所述第四透镜的像侧表面41242为平面;所述第二胶合透镜4131的物侧表面为凸面,所述第二胶合透镜4131的像侧表面为凸面;所述第七透镜的物侧表面41271为凹面,所述第七透镜的像侧表面41272为平面。
本申请实施例中的光学镜头包括第一胶合透镜4130和第二胶合透镜4131两组粘合体透镜,可以有效减小近轴球差、矫正边缘色差,从而提高边缘视场解像力,缩短焦距,进一步增大视场范围,提高成像质量。
在一实施例中,所述第一透镜4121满足,0<f 2/f L1<2;其中,f 2表示所述第一透镜的像侧表面41212的焦距,f L1表示所述第一透镜4121的焦距。
当第一透镜4121满足0<f 2/f L1<2时,可以有效地增大视场角,保证光学镜头的视场角不小于70°,并且有效地减小光线与光轴的夹角,减小后续镜片矫正像差的负担,减小后续镜片的口径。
如图2所示,在一实施例中,所述第一胶合透镜4130自物方至像方依次包括第二透镜4122和第三透镜4123;所述第二透镜的物侧表面41221为平面,所述第二透镜的像侧表面41222为凹面;所述第三透镜的物侧表面41231为凸面,所述第三透镜的像侧表面41232为凸面。
在一实施例中,所述第一透镜4121和所述第二透镜4122满足,0<f 4/d<15;其中,f4表示所述第二透镜的像侧表面41222的焦距,d表示所述第一透镜的像侧表面41212顶点到所述第二透镜的像侧表面41222顶点的距离。
第一透镜4121和第二透镜4122满足以上条件式可以有效地避免第三透镜的像侧表面41232的光线反射汇聚在第二透镜的像侧表面41222上,进而 反射到成像面上产生鬼影,避免鬼影对成像质量产生影响。
在一实施例中,所述第二透镜4122和所述第三透镜4123满足:0<(f 3/f L2+f 5/f L3)/f L23<3;其中,f 3表示所述第二透镜的物侧表面41221的焦距,f 5表示所述第三透镜的像侧表面41232的焦距,f L2表示所述第二透镜4122的焦距,f L3表示所述第三透镜4123的焦距,f L23表示所述第一胶合透镜4130的焦距。
第二透镜4122和第三透镜4123满足上述条件式,可以有效地控制第一胶合透镜4130的物侧表面和第一胶合透镜4130的像侧表面的曲率半经,避免第一胶合透镜4130的表面出现过度弯曲,保证光线通过第一胶合透镜4130后不会有较大的折射角,从而降低第一胶合透镜4130的公差敏感度,有效地提升组装良率。
如图2所示,在一实施例中,所述第二胶合透镜4131自物方至像方依次包括第五透镜4125和第六透镜4126;所述第五透镜的物侧表面41251为凸面,所述第五透镜的像侧表面41252为凹面;所述第六透镜的物侧表面41261为凸面,所述第六透镜的像侧表面41262为凸面。
本申请实施例中透镜数据如下表所示,
Figure PCTCN2022142436-appb-000001
第四透镜4124、第五透镜4125、第六透镜4126和第七透镜4127通过光焦度的合理分配,将畸变控制在很小的范围内,有利于提高边缘视场的放大倍率,使边缘视场获得更多像素,提高边缘视场的解像力。
如图4所示,中心视场下,MTF50>120lp/mm;0.7视场下MTF50>68lp/mm,本申请实施例的光学镜头具有更优异的分辨率和解析力表现。
如图5所示,0.7视场下色差小于0.01,对色差控制好。
如图6和图7所示,在0.7视场下场曲小于0.5,全视场下场曲小于0.1;在0.7视场下畸变小于0.8%,全视场下畸变小于1%。0.7视场和全视场中光学镜头具有优秀表现。
在一实施例中,所述第一透镜4121、所述第一胶合透镜4130、所述滤光片4128、所述第四透镜4124、所述第二胶合透镜4131和所述第七透镜4127均为玻璃透镜。
第一透镜4121、第一胶合透镜4130、滤光片4128、第四透镜4124、第二胶合透镜4131和第七透镜4127均为玻璃透镜时,光学镜头具有良好的热稳定性和机械强度,温漂小,有利于在密闭空间内的长时间稳定工作。
在一实施例中,所述第四透镜4124和所述第七透镜4127为冕牌玻璃。
在一实施例中,所述第四透镜4124和所述第七透镜4127的阿贝数大于等于60。
阿贝数大于等于60为高阿贝数,第四透镜4124和第七透镜4127使用高阿贝数的冕牌玻璃,大大减少色球差的产生,抑制色散,提高成像质量。
在腔镜手术应用条件下,通常使用高亮度白光冷光源作为照明光源,且腔镜手术器械通常都是金属原色,容易产生高亮光斑及高对比反差图像,第四透镜4124和第七透镜4127可以极大减少了该条件下色差的产生,提高了图像质量。
在一实施例中,所述滤光片4128为红外滤光片。
滤光片是用来选取所需辐射波段的光学器件,红外滤光片选取的是红外波段,红外波段包括的波长范围很宽广,从780nm-4um。使用红外滤光片可以减少红外波段对图像传感器的影响,增强手术视野图像。
可选地,滤光片还可以是针对特定波长(640nm~680nm)的红光的截止滤光片或半通滤光片,阻止或减少红光通过,从而在腹腔内组织观察过程中 增强对血管的显示效果。
如图3所示,在一实施例中,所述第一透镜的物侧表面41211的外周设置遮光涂层,所述遮光涂层围成矩形透光窗口41213。
在一实施例中,光阑4129为孔径光阑,使用光阑4129可以获得大景深,减少球差和像散,减少畸变,提高成像质量,减少图像处理工作量。
如图2所示,在一实施例中,所述光学镜头412还包括前置镜组和后置镜组;所述前置镜组包括前置壳体和所述第一透镜4121;所述前置壳体呈筒状结构,且围成第一内腔;所述第一透镜4121位于所述前置壳体的一端;所述后置镜组包括后置壳体、所述第一胶合透镜4130、所述滤光片4128、所述第四透镜4124、所述光阑4129、所述第二胶合透镜4131和所述第七透镜4127;所述后置壳体呈筒状结构,且围成第二内腔;所述第一胶合透镜4130、所述滤光片4128、所述第四透镜4124、所述光阑4129、所述第二胶合透镜4131和所述第七透镜4127均设置于所述第二内腔内;所述后置壳体的一端插入到所述第一内腔中,所述后置壳体与所述前置壳体连接。
光学镜头412包括前置镜组和后置镜组,光学镜头412组装时,可以通过后置壳体的一端插入到第一内腔中的深度进行调焦,易于装配调焦。
在一实施例中,所述第一内腔的腔壁设置有消光涂层;和/或,所述第二内腔的腔壁设置有消光涂层。
第一内腔的腔壁设置有消光涂层,以及第二内腔的腔壁设置有消光涂层,可以减少内壁反射杂光对成像的噪声。
本申请实施例中的光学镜头具有极好的像场场曲,畸变控制,畸变<2%,极小色差;大景深、免对焦设计。且由于光学镜头的结构使其对加工精度及装配精度的容错能力大幅提升。且30mm-50mm物距下0.7视场平均MTF@50lp/mm>0.7,高频MTF@120lp/mm>0.5,且在景深范围内衰减很小。并且实现较大视场角70±3°,且保持适合人眼观察的空间距离感。
此外,在景深范围内,本申请实施例提供的光学镜头最大约0.12倍的高放大倍率,与27英寸~42英寸的显示设备配合使用,可以获得最大40倍的视觉放大效果,极大地方便了医生对微小组织的精细操作。
本申请一实施例还公开了一种内窥镜成像系统,包括图像传感器和上述的光学镜头412,所述图像传感器位于所述光学镜头412的成像面4132处,所述图像传感器用于将所述光学镜头412形成的光学图像转换为电信号。
如图1所示,本申请一实施例还公开了一种内窥镜,包括上述的内窥镜 成像系统,以及依次连接的镜头411、可弯部413、入腹组件417和控制手柄419,所述镜头411内设有所述图像传感器和所述光学镜头412。
光学镜头412具有高分辨率、微畸变、小场曲和极小色差的优点,这使得内窥镜成像系统和内窥镜具有更加优秀的成像效果。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本申请创造的保护范围之中。

Claims (15)

  1. 一种光学镜头,其中,应用于内窥镜,所述光学镜头包括自物方至像方依次排布的第一透镜(4121)、第一胶合透镜(4130)、滤光片(4128)、第四透镜(4124)、光阑(4129)、第二胶合透镜(4131)和第七透镜(4127);
    所述第一透镜的物侧表面(41211)为凸面,所述第一透镜的像侧表面(41212)为凹面;
    所述第一胶合透镜(4130)的物侧表面为平面,所述第一胶合透镜(4130)的像侧表面为凸面;
    所述第四透镜的物侧表面(41241)为凸面,所述第四透镜的像侧表面(41242)为平面;
    所述第二胶合透镜(4131)的物侧表面为凸面,所述第二胶合透镜(4131)的像侧表面为凸面;
    所述第七透镜的物侧表面(41271)为凹面,所述第七透镜的像侧表面(41272)为平面。
  2. 根据权利要求1所述的光学镜头,其中,所述第一透镜(4121)满足,
    0<f 2/f L1<2;
    其中,f 2表示所述第一透镜的像侧表面(41212)的焦距,f L1表示所述第一透镜(4121)的焦距。
  3. 根据权利要求2所述的光学镜头,其中,所述第一胶合透镜(4130)自物方至像方依次包括第二透镜(4122)和第三透镜(4123);
    所述第二透镜的物侧表面(41221)为平面,所述第二透镜的像侧表面(41222)为凹面;
    所述第三透镜的物侧表面(41231)为凸面,所述第三透镜的像侧表面(41232)为凸面。
  4. 根据权利要求3所述的光学镜头,其中,所述第一透镜(4121)和所述第二透镜(4122)满足,0<f 4/d<15;
    其中,f 4表示所述第二透镜的像侧表面(41222)的焦距,d表示所述第一透镜的像侧表面(41212)顶点到所述第二透镜的像侧表面(41222)顶点的距离。
  5. 根据权利要求3或4所述的光学镜头,其中,所述第二透镜(4122)和所述第三透镜(4123)满足:
    0<(f 3/f L2+f 5/f L3)/f L23<3;
    其中,f 3表示所述第二透镜的物侧表面(41221)的焦距,f 5表示所述第三透镜的像侧表面(41232)的焦距,f L2表示所述第二透镜(4122)的焦距,f L3表示所述第三透镜(4123)的焦距,f L23表示所述第一胶合透镜(4130)的焦距。
  6. 根据权利要求1所述的光学镜头,其中,所述第二胶合透镜(4131)自物方至像方依次包括第五透镜(4125)和第六透镜(4126);
    所述第五透镜的物侧表面(41251)为凸面,所述第五透镜的像侧表面(41252)为凹面;
    所述第六透镜的物侧表面(41261)为凸面,所述第六透镜的像侧表面(41262)为凸面。
  7. 根据权利要求1所述的光学镜头,其中,所述第一透镜(4121)、所述第一胶合透镜(4130)、所述滤光片(4128)、所述第四透镜(4124)、所述第二胶合透镜(4131)和所述第七透镜(4127)均为玻璃透镜。
  8. 根据权利要求7所述的光学镜头,其中,所述第四透镜(4124)和所述第七透镜(4127)为冕牌玻璃。
  9. 根据权利要求8所述的光学镜头,其中,所述第四透镜(4124)和所述第七透镜(4127)的阿贝数大于等于60。
  10. 根据权利要求1所述的光学镜头,其中,所述滤光片(4128)为红外滤光片。
  11. 根据权利要求1所述的光学镜头,其中,所述第一透镜的物侧表面(41211)的外周设置遮光涂层,所述遮光涂层围成矩形透光窗口(41213)。
  12. 根据权利要求1所述的光学镜头,其中,所述光学镜头(412)还包括前置镜组和后置镜组;
    所述前置镜组包括前置壳体和所述第一透镜(4121);所述前置壳体呈筒状结构,且围成第一内腔;所述第一透镜(4121)位于所述前置壳体的一端;
    所述后置镜组包括后置壳体、所述第一胶合透镜(4130)、所述滤光片(4128)、所述第四透镜(4124)、所述光阑(4129)、所述第二胶合透镜(4131)和所述第七透镜(4127);所述后置壳体呈筒状结构,且围成第二内腔;所述第一胶合透镜(4130)、所述滤光片(4128)、所述第四透镜(4124)、所述光阑(4129)、所述第二胶合透镜(4131)、所述第七透镜(4127)均设置于所述第二内腔内;
    所述后置壳体的一端插入到所述第一内腔中,所述后置壳体与所述前置壳体连接。
  13. 根据权利要求12所述的光学镜头,其中,
    所述第一内腔的腔壁设置有消光涂层;和/或,
    所述第二内腔的腔壁设置有消光涂层。
  14. 一种内窥镜成像系统,其中,包括图像传感器和权利要求1-13中任一项所述的光学镜头(412),所述图像传感器位于所述光学镜头(412)的成像面(4132)处,所述图像传感器用于将所述光学镜头(412)形成的光学图像转换为电信号。
  15. 一种内窥镜,其中,包括权利要求14所述的内窥镜成像系统,以及依次连接的镜头(411)、可弯部(413)、入腹组件(417)和控制手柄(419),所述镜头(411)内设有所述图像传感器和所述光学镜头(412)。
PCT/CN2022/142436 2022-01-04 2022-12-27 一种光学镜头、内窥镜成像系统及内窥镜 WO2023131008A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210001145.8 2022-01-04
CN202210001145.8A CN114002826B (zh) 2022-01-04 2022-01-04 一种光学镜头、内窥镜成像系统及内窥镜

Publications (1)

Publication Number Publication Date
WO2023131008A1 true WO2023131008A1 (zh) 2023-07-13

Family

ID=79932549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142436 WO2023131008A1 (zh) 2022-01-04 2022-12-27 一种光学镜头、内窥镜成像系统及内窥镜

Country Status (2)

Country Link
CN (1) CN114002826B (zh)
WO (1) WO2023131008A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114002826B (zh) * 2022-01-04 2022-05-03 极限人工智能有限公司 一种光学镜头、内窥镜成像系统及内窥镜
CN114869198A (zh) * 2022-04-01 2022-08-09 上海安翰医疗技术有限公司 成像元件及胶囊内窥镜

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1896798A (zh) * 2005-10-12 2007-01-17 中国科学院长春光学精密机械与物理研究所 护目型头盔显示系统
CN104020551A (zh) * 2014-05-22 2014-09-03 秦皇岛视听机械研究所 只使用两种光学材料的数字短焦投影镜头
JP2015094922A (ja) * 2013-11-14 2015-05-18 オリンパスメディカルシステムズ株式会社 内視鏡対物光学系
CN107076967A (zh) * 2015-09-07 2017-08-18 Hoya株式会社 内窥镜用变倍光学系统及内窥镜
CN110737073A (zh) * 2019-10-29 2020-01-31 广东弘景光电科技股份有限公司 广角高像素4k光学系统及其应用的摄像模组
CN111868599A (zh) * 2018-03-27 2020-10-30 奥林巴斯株式会社 内窥镜用物镜光学系统
CN214157260U (zh) * 2020-11-09 2021-09-10 珠海普生医疗科技有限公司 一种内窥镜透明先端部
CN113854935A (zh) * 2021-12-02 2021-12-31 极限人工智能有限公司 内窥镜及手术机器人
CN114002826A (zh) * 2022-01-04 2022-02-01 极限人工智能有限公司 一种光学镜头、内窥镜成像系统及内窥镜

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2232101C2 (de) * 1972-06-30 1982-05-27 Fa. Carl Zeiss, 7920 Heidenheim Lichtstarkes photographisches Objektiv vom erweiterten Gauss-Typ
JP5457775B2 (ja) * 2009-09-30 2014-04-02 オリンパス株式会社 光学系
JP5450704B2 (ja) * 2012-03-26 2014-03-26 株式会社フジクラ 電気ケーブルおよび外筒付き撮像機構、内視鏡、電気ケーブルおよび外筒付き撮像機構の製造方法
CN204683550U (zh) * 2015-04-01 2015-10-07 深圳市理邦精密仪器股份有限公司 一体化宫颈管电子阴道镜系统
CN106772950B (zh) * 2017-02-28 2022-05-24 成都聚像光学技术有限公司 一种全分离式内窥镜物镜
CN110542978B (zh) * 2018-05-28 2021-12-17 宁波舜宇车载光学技术有限公司 光学镜头
CN110794552B (zh) * 2018-08-03 2021-09-10 宁波舜宇车载光学技术有限公司 光学镜头
CN110632744B (zh) * 2019-09-12 2021-09-28 江西联创电子有限公司 广角成像镜头
CN111522137A (zh) * 2020-05-26 2020-08-11 重庆金山科技(集团)有限公司 一种内窥镜物镜、内窥镜及成像方法
CN112698502B (zh) * 2020-12-30 2022-04-12 江西联创电子有限公司 光学成像镜头及成像设备
CN113633245B (zh) * 2021-08-23 2023-10-13 华中科技大学鄂州工业技术研究院 一种探头式荧光共聚焦内窥镜耦合物镜光学系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1896798A (zh) * 2005-10-12 2007-01-17 中国科学院长春光学精密机械与物理研究所 护目型头盔显示系统
JP2015094922A (ja) * 2013-11-14 2015-05-18 オリンパスメディカルシステムズ株式会社 内視鏡対物光学系
CN104020551A (zh) * 2014-05-22 2014-09-03 秦皇岛视听机械研究所 只使用两种光学材料的数字短焦投影镜头
CN107076967A (zh) * 2015-09-07 2017-08-18 Hoya株式会社 内窥镜用变倍光学系统及内窥镜
CN111868599A (zh) * 2018-03-27 2020-10-30 奥林巴斯株式会社 内窥镜用物镜光学系统
CN110737073A (zh) * 2019-10-29 2020-01-31 广东弘景光电科技股份有限公司 广角高像素4k光学系统及其应用的摄像模组
CN214157260U (zh) * 2020-11-09 2021-09-10 珠海普生医疗科技有限公司 一种内窥镜透明先端部
CN113854935A (zh) * 2021-12-02 2021-12-31 极限人工智能有限公司 内窥镜及手术机器人
CN114002826A (zh) * 2022-01-04 2022-02-01 极限人工智能有限公司 一种光学镜头、内窥镜成像系统及内窥镜

Also Published As

Publication number Publication date
CN114002826B (zh) 2022-05-03
CN114002826A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
WO2023131008A1 (zh) 一种光学镜头、内窥镜成像系统及内窥镜
CN106842549B (zh) 内窥用摄像物镜光学系统
CN101551509A (zh) 内窥镜用物镜光学系统
CN110764226B (zh) 一种大视场微型显微物镜
WO2008137324A2 (en) Color-corrected optical system, in particular a color-corrected endoscope
CN106842518B (zh) 内窥用摄像物镜光学系统
CN106842548B (zh) 内窥用摄像物镜光学系统
WO2023284557A1 (zh) 成像设备、光学镜头以及内窥镜
CN106842504B (zh) 内窥用摄像物镜光学系统
CN106842547B (zh) 内窥用摄像物镜光学系统
CN214278536U (zh) 一种广角微型内窥镜光学成像系统
CN218383453U (zh) 成像镜组、内窥镜物镜及内窥镜
CN215264211U (zh) 光学成像镜头
CN107703606B (zh) 内窥镜用物镜光学系统以及内窥镜
CN206321859U (zh) 内窥用摄像物镜光学系统
CN112748556B (zh) 一种内窥镜光学系统
CN115586624A (zh) 成像镜组、内窥镜物镜及内窥镜
CN109031619A (zh) 一种超广角医用内窥镜镜头
CN112630934A (zh) 一种高清医疗卡口镜头
CN113589519A (zh) 细管径高清内窥镜光学系统
Yang et al. Optical System Design for Micro Medical Electronic Endoscope.
JPH075377A (ja) 変倍光学系およびこれを持った内視鏡システム
CN217821057U (zh) 定焦适配器光学系统及4k内窥镜
CN111399195A (zh) 超广角镜头
CN108761746A (zh) 大景深广角腹腔镜/胸腔镜镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918450

Country of ref document: EP

Kind code of ref document: A1