WO2023284557A1 - 成像设备、光学镜头以及内窥镜 - Google Patents

成像设备、光学镜头以及内窥镜 Download PDF

Info

Publication number
WO2023284557A1
WO2023284557A1 PCT/CN2022/102731 CN2022102731W WO2023284557A1 WO 2023284557 A1 WO2023284557 A1 WO 2023284557A1 CN 2022102731 W CN2022102731 W CN 2022102731W WO 2023284557 A1 WO2023284557 A1 WO 2023284557A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
end surface
optical
image
optical lens
Prior art date
Application number
PCT/CN2022/102731
Other languages
English (en)
French (fr)
Inventor
吴沛
姚卫忠
周奇明
罗正春
蒋青锋
Original Assignee
浙江华诺康科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江华诺康科技有限公司 filed Critical 浙江华诺康科技有限公司
Priority to EP22841195.5A priority Critical patent/EP4307025A1/en
Publication of WO2023284557A1 publication Critical patent/WO2023284557A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/005Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having spherical lenses only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/02Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only

Definitions

  • the present application relates to the technical field of medical imaging equipment, in particular to imaging equipment, optical lenses and endoscopes.
  • optical lenses have been used more and more in the medical field, especially in the field of medical endoscopy, where the requirements for optical imaging lenses are getting higher and higher.
  • the requirements for pixels are higher.
  • the large field of view miniature microscopic objective lens includes a first lens with positive diopter brightness, a second lens with positive diopter brightness, and a lens with negative diopter brightness from the object end to the image end along the optical axis direction.
  • the lens and a lens with positive diopter brightness consist of a third lens, a fourth lens with positive diopter brightness, a fifth lens with negative diopter brightness, a sixth lens with negative diopter brightness, and an imaging surface.
  • the lens consists of six elements, the size of the entire lens is too large to complete the miniaturization design, and the pixels are relatively low.
  • the size of the lens is large, and the miniaturization design cannot be completed, nor can it meet the requirements for high pixels, and no effective solution has been proposed.
  • an imaging device an optical lens, and an endoscope.
  • an embodiment of the present application provides an imaging device, including an imaging element and an optical lens;
  • the imaging element is used to convert the optical image formed by the optical lens into an electrical signal
  • the optical lens is used to image an object, including a first lens, a second lens, a third lens, a fourth lens and a fifth lens, and sequentially provided with a diaphragm located on the same optical path from the object side to the image side, The first lens, the second lens, the third lens, the fourth lens, the fifth lens, and an imaging surface;
  • the first lens has a positive refractive power, and the first lens includes a first object end surface and a first image end surface;
  • the second lens has a negative refractive power, and the second lens includes a second object end surface and a second image end surface;
  • the third lens has a negative refractive power, and the third lens includes a third object end surface and a third image end surface;
  • the fifth lens has a positive refractive power, and the fifth lens includes a fifth object end surface and a fifth image end surface;
  • the first object end surface, the second object end surface, the fourth object end surface, the fourth image end surface, the fifth object end surface and the fifth image end surface are all convex; the first image The end surface, the second image end surface, the third object end surface and the third image end surface are all concave surfaces;
  • the third lens and the fourth lens are combined into a cemented lens group; the cemented lens group satisfies the following relationship:
  • f represents the focal length of the optical lens
  • f g1 represents the focal length of the cemented lens group
  • FOV represents the field of view of the optical lens.
  • the embodiment of the present application provides an optical lens for imaging an object, including a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • a diaphragm, the first lens, the second lens, the third lens, the fourth lens, the fifth lens, and an imaging surface are sequentially arranged on the same optical path from the side to the image side;
  • the first lens has a positive refractive power, and the first lens includes a first object end surface and a first image end surface;
  • the second lens has a negative refractive power, and the second lens includes a second object end surface and a second image end surface;
  • the third lens has a negative refractive power, and the third lens includes a third object end surface and a third image end surface;
  • the fourth lens has a positive refractive power, and the fourth lens includes a fourth object end surface and a fourth image end surface;
  • the fifth lens has a positive refractive power, and the fifth lens includes a fifth object end surface and a fifth image end surface;
  • the first object end surface, the second object end surface, the fourth object end surface, the fourth image end surface, the fifth object end surface and the fifth image end surface are all convex; the first image The end surface, the second image end surface, the third object end surface and the third image end surface are all concave surfaces;
  • the third lens and the fourth lens are combined into a cemented lens group; the cemented lens group satisfies the following relationship:
  • f represents the focal length of the optical lens
  • f g1 represents the focal length of the cemented lens group
  • FOV represents the field of view of the optical lens.
  • the optical lens further includes a filter
  • the optical filter is arranged on the optical path between the fifth lens and the imaging surface.
  • the diaphragm is an aperture diaphragm.
  • the first lens, the second lens, the third lens, the fourth lens and the fifth lens are spherical lenses
  • the first lens, the second lens, the third lens, the fourth lens and the fifth lens are aspheric lenses.
  • the optical lens satisfies the following relationship:
  • TTL represents the total optical length of the optical lens
  • f represents the focal length of the optical lens
  • the optical lens satisfies the following relationship:
  • BFL represents the optical back focus of the optical lens
  • TL represents the lens group length of the optical lens
  • the optical lens satisfies the following relationship:
  • R4 represents the central curvature radius of the second image end surface
  • R5 represents the central curvature radius of the third object end surface
  • the first lens, the second lens, the third lens, the fourth lens and the fifth lens are all made of glass.
  • the optical lens satisfies at least one of the following conditional expressions:
  • Vd1 represents the Abbe number of the lens of the first lens
  • Vd2 represents the Abbe number of the lens of the second lens
  • Vd4 represents the Abbe number of the lens of the fourth lens.
  • the optical lens satisfies at least one of the following conditional expressions:
  • Nd2 represents the refractive index of the second lens
  • Nd3 represents the refractive index of the third lens
  • Nd4 represents the refractive index of the fourth lens
  • Nd5 represents the refractive index of the fifth lens.
  • the optical lens satisfies the following conditional formula:
  • f1 represents the focal length of the first lens
  • f2 represents the focal length of the second lens
  • f5 represents the focal length of the fifth lens.
  • the embodiment of the present application provides an endoscope, including a connecting tube and the optical lens as described in the second aspect;
  • Fig. 1 is a schematic structural diagram of an optical lens according to one or more embodiments.
  • FIG. 2 is a graph of an optical transfer function (MTF) at room temperature in the visible light band according to one or more embodiments.
  • MTF optical transfer function
  • FIG. 4 is a diagram of distortion in the visible light band according to one or more embodiments.
  • FIG. 5 is a diagram of a first lateral light fan in the visible light band according to one or more embodiments.
  • FIG. 6 is a diagram of a second lateral light fan in the visible light band according to one or more embodiments.
  • Figure 7 is a diagram of a third lateral light fan in the visible light band according to one or more embodiments.
  • FIG. 8 is a diagram of a fourth lateral light fan in the visible light band according to one or more embodiments.
  • Figure 9 is a fifth transverse light fan diagram in the visible light band according to one or more embodiments.
  • FIG. 10 is a first spot diagram in the visible light band according to one or more embodiments.
  • Figure 11 is a second spot plot in the visible light band according to one or more embodiments.
  • Figure 12 is a diagram of a third spot in the visible light band according to one or more embodiments.
  • Figure 13 is a diagram of a fourth spot in the visible light band according to one or more embodiments.
  • Figure 14 is a fifth spot plot in the visible light band according to one or more embodiments.
  • FIG. 15 is a graph of an optical transfer function (MTF) at room temperature in the visible light band according to one or more embodiments.
  • MTF optical transfer function
  • FIG. 16 is a field curvature diagram in the visible light band according to one or more embodiments.
  • Figure 17 is a graph of distortion in the visible light band according to one or more embodiments.
  • FIG. 18 is a schematic structural diagram of an imaging device according to one or more embodiments.
  • Fig. 19 is a schematic structural diagram of an endoscope according to one or more embodiments.
  • an optical lens 12 provided by an embodiment of the present application is used to image an object, including a first lens L1, a second lens L2, a third lens L3, a fourth lens L4 and a fifth lens L5
  • the first lens L1 has a positive refractive power
  • the first lens L1 includes a first object end surface and a first image end surface
  • the second lens L2 has a negative refractive power
  • the second lens L2 includes a second object end surface and a second image end surface End face
  • the third lens L3 has a negative refractive power
  • the third lens L3 includes a third object end face and a third image end face
  • the fourth lens L4 has a positive refractive power
  • the fourth lens L4 includes a fourth object end face and a fourth image end face
  • the fifth lens L5 has positive refractive power
  • f represents the focal length of the optical lens 12
  • f g1 represents the focal length of the cemented lens group
  • FOV represents the field of view angle of the optical lens 12.
  • This application solves the problem that the size of the lens in the imaging device 100 is too large to complete the miniaturization design, and adopts specific surface shape matching and reasonable focal length allocation to achieve a more compact structure while satisfying high pixels.
  • relational expression (1) can define the structure of the cemented lens group and the structure of the entire optical lens 12 , specifically, define the focal length and total length of the entire optical lens 12 , that is, control the miniaturization design of the structure.
  • the structure of the optical lens 12 adopted is as follows: from the object side to the image side, the first lens L1, the second lens L2, the third lens L3, the fourth lens L4 and the fifth lens L5 on the same optical path are sequentially included, and each lens is combined
  • the specific surface shape is matched with the focal length allocation satisfying the relation (1), and the structure is more compact while satisfying high pixels.
  • the optical lens 12 also includes a filter L6; the filter L6 is arranged on the optical path between the fifth lens L5 and the imaging surface 14, and can filter the first lens L1, the second lens L2, the second lens The three lenses L3, the fourth lens L4, and the fifth lens L5 form a protection. Moreover, the filter L6 has a filtering effect, so the imaging effect can be further improved. Filter L6 is usually a planar structure. The lenses of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 have various structural forms.
  • the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are spherical lenses.
  • the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are aspherical lenses.
  • a spherical lens means that both the inner and outer sides of the lens are spherical, or one side is spherical and the other half is flat.
  • the surface shape of an aspherical lens is determined by a number of high-order equations, and the radii of each point on the surface shape are different.
  • an aspheric lens can be selected, which can reduce the lens thickness.
  • the aperture stop 13 is an aperture stop, and the distance between the aperture stop and the first lens L1 is less than or equal to 0.4 mm; in one embodiment, the distance between the aperture stop and the first lens L1 may be 0.2 mm.
  • the optical lens 12 satisfies the following relationship:
  • TTL represents the total optical length of the optical lens 12 ;
  • f represents the focal length of the optical lens 12 .
  • the optical lens 12 satisfies the relational expression (1) and also satisfies the relational expression (2).
  • the focal length can be allocated reasonably to reduce the aberration;
  • the optical lens 12 satisfies the following relationship:
  • BFL represents the optical back focus of the optical lens 12
  • TL represents the lens group length of the optical lens 12
  • the optical lens 12 satisfies relational expression (3) while satisfying relational expression (1).
  • the optical lens 12 may also satisfy the relational expression (1), the relational expression (2) and the relational expression (3) at the same time, which is not limited.
  • the optical lens 12 satisfies the following relationship:
  • R4 represents the central curvature radius of the second image end surface
  • R5 represents the central curvature radius of the third object end surface.
  • relational expression (4) to reasonably limit the central radius of curvature of the second image end surface and the central curvature radius of the third object end surface to define the shapes of the second lens L2 and the third lens L3, so that the second lens L2 and the third lens
  • the lenses L3 all have negative refractive power, which is beneficial to reduce the aperture and total length of subsequent lenses, and realize the miniaturization of the optical lens 12 .
  • the optical lens 12 can satisfy relational expression (1), relational expression (2), relational expression (3) and relational expression (4) at the same time.
  • the optical lens 12 can simultaneously satisfy relational expression (1), relational expression (2) and relational expression (4).
  • relational expression (1) relational expression (1)
  • relational expression (2) relational expression (4)
  • relational expression (4) relational expression (4)
  • the optical lens 12 satisfies the following conditional formula (5):
  • conditional formula (5) is used to allocate the focal lengths of the first lens L1 , the second lens L2 and the fifth lens L5 , and further optimize the allocation scheme of the focal lengths to limit the structure of the optical lens 12 .
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4 and the fifth lens L5 can all be made of glass. Materials are requested.
  • the optical lens 12 satisfies the following conditional formula (6):
  • Vd1 represents the Abbe number of the first lens L1
  • Vd2 represents the Abbe number of the second lens L2
  • Vd4 represents the Abbe number of the fourth lens L4.
  • requirements are set for the Abbe numbers of the first lens L1 , the second lens L2 , and the fourth lens L4 .
  • the specific requirements are: the lens Abbe number Vd1 of the first lens L1 ⁇ 82; the lens Abbe number Vd2 of the second lens L2 ⁇ 65; the lens Abbe number Vd4 of the fourth lens L4 ⁇ 71.
  • these three conditions may not be satisfied at the same time. For example: as long as one, two or all three are satisfied at the same time, it can be realized.
  • the lens Abbe number Vd1 ⁇ 82 of the first lens L1 can be satisfied; or, the lens Abbe number Vd2 of the second lens L2 ⁇ 65; or, the lens Abbe number Vd4 of the fourth lens L4 ⁇ 71.
  • the lens Abbe number Vd1 ⁇ 82 of the first lens L1 and the lens Abbe number Vd2 ⁇ 65 of the second lens L2 can be satisfied; it can also be the lens that only meets the Abbe number of the first lens L1
  • the number Vd1 ⁇ 82, the Abbe number Vd4 ⁇ 71 of the fourth lens L4 it can also only satisfy the Abbe number Vd2 ⁇ 65 of the second lens L2; the Abbe number Vd4 ⁇ 71 of the fourth lens L4, etc.
  • the optical lens 12 satisfies the following conditional formula (7):
  • the refractive index Nd2 of the second lens L2 ⁇ 1.45, the refractive index Nd2 of the third lens L3 ⁇ 1.82, and the refractive indices of other lenses are not limited.
  • the three conditions can be: the refractive index of the second lens L2 Nd2 ⁇ 1.45, the refractive index of the third lens L3 Nd2 ⁇ 1.82, the refractive index of the fifth lens L5 Nd5 ⁇ 1.87, for the lenses of other lenses
  • the refractive index is not limited, and the above permutations and combinations are not listed here.
  • the optical lens 12 provided in this embodiment is used for imaging an object.
  • a diaphragm 13 When imaging an object, a diaphragm 13, a first lens L1, a second lens L2, and a first lens L1 located on the same optical path are arranged sequentially from the object side to the image side.
  • the first lens L1 has positive refractive power, and the first lens L1 includes the first object end surface and the first image end surface;
  • the second lens L2 has a negative refractive power, and the second lens L2 includes a second object end surface and a second image end surface;
  • the third lens L3 has a negative refractive power, and the third lens L3 includes a third object end surface and a third image end surface;
  • the fourth lens L4 has a positive refractive power, the fourth lens L4 includes a fourth object end surface and a fourth image end surface;
  • the fifth lens L5 has a positive refractive power, and the fifth lens L5 includes a fifth object end surface and a fifth image end surface;
  • the filter L6 includes The sixth object end surface and the sixth image end surface; wherein, the first object end surface, the second object end surface, the fourth object end surface, the fourth object end surface, the fifth object end surface and the fifth image end surface are all convex
  • f represents the focal length of the optical lens 12
  • f g1 represents the focal length of the cemented lens group
  • FOV represents the field of view angle of the optical lens 12.
  • each lens of the optical lens 12 is shown in Table 1, wherein R represents the radius of curvature, T c represents the center thickness, N d represents the d-line refractive index of the material, and V d represents the Abbe of the material number.
  • the optical technical indicators of the optical lens 12 in the present embodiment are as follows:
  • the optical transfer function refers to a function that takes the spatial frequency as a variable and characterizes the relative change of the modulation degree and the lateral phase shift during the imaging process.
  • Using the optical transfer function to evaluate the imaging quality of the imaging system is a more accurate, intuitive and common way. The higher the curve and the smoother it is, the better the imaging quality is, and it is well corrected for various aberrations (such as: spherical aberration, coma, astigmatism, field curvature, axial chromatic aberration, vertical axis chromatic aberration, etc.).
  • FIG. 2 it is a graph of the optical transfer function (Modulation Transfer Function, MTF) of the optical lens 12 of this embodiment at a normal temperature in the visible light band.
  • MTF Modulation Transfer Function
  • the abscissa is the spatial frequency
  • the ordinate is the optical transfer function (MTF) value.
  • TS0.0000MM means it is located in the center of the imaging area.
  • Field curvature is also called "image field curvature".
  • image field curvature When there is field curvature in the lens, the intersection point of the entire beam does not coincide with the ideal image point. Although a clear image point can be obtained at each specific point, the entire image plane is a curved surface .
  • the curvature of field in this embodiment is controlled within ⁇ 0.2 mm.
  • T represents the meridian field curvature
  • S represents the sagittal field curvature.
  • the field curvature curve shows the distance from the current focal plane or image plane to the paraxial focal plane as a function of field coordinates.
  • the meridional field curvature data is the distance from the currently determined focal plane to the paraxial focal plane measured along the Z axis, and is measured on the meridian (YZ plane).
  • the sagittal field curvature data measures the distance measured on a plane perpendicular to the meridian plane.
  • the baseline in the schematic diagram is on the optical axis, and the top of the curve represents the maximum field of view (angle or height), and no unit is set on the vertical axis. This is because the curves are always normalized with the largest radial field of view.
  • lens distortion is actually a general term for the inherent perspective distortion of optical lenses, that is, the distortion caused by perspective. This distortion is very detrimental to the imaging quality of photos.
  • the purpose of photography is to reproduce, not Exaggeration; but because this is the inherent characteristic of the lens (convex lens gathers light, concave lens diverges light), it cannot be eliminated, but can only be improved.
  • the distortion of the fixed-focus lens provided in this embodiment is only 1.0%.
  • the purpose of setting the distortion in this way is to balance the focal length, the field of view and the size of the corresponding camera target surface.
  • the distortion caused by the distortion can be corrected through post-image processing. Therefore, imaging can support the use of detection equipment with a maximum target surface of 1/2 inch.
  • Fig. 5, Fig. 6, Fig. 7, Fig. 8 and Fig. 9, they are light fan diagrams under each field of view.
  • IMA:0.000MM means that the intersection height of the chief ray of 0 field of view and the imaging surface 14 (IMA) is 0.
  • EX and EY refer to the difference between the height on the imaging surface 14 of the light on the specific pupil in the light fan of the current field of view incident on the imaging surface 14 and the height of the chief ray of the current field of view on the imaging surface 14 .
  • PY represents the pupil coordinates on the meridian light fan;
  • PX represents the pupil coordinates on the sagittal light fan.
  • the light fan diagrams appear in pairs in each field of view. It can be seen from the above figure that the curves are relatively concentrated, and the spherical aberration and dispersion are also well controlled.
  • Fig. 10 As shown in Fig. 10, Fig. 11, Fig. 12, Fig. 13 and Fig. 14, they are point diagrams under each field of view. From the above diagrams, it can be seen that the spot radius is small and concentrated, and the corresponding aberration and coma Poor is also very good.
  • This application adopts the above-mentioned specific surface shape collocation and reasonable focal length allocation, and the structure is more compact while satisfying high pixels.
  • the total mechanical length of the optical lens 12 does not exceed 31mm; the number of lenses is small, the processability is good, and the cost control is low; the lenses will compensate each other at different temperatures, making the temperature characteristics better. There was no noticeable change in performance.
  • the optical lens 12 provided in the second embodiment has the same structure as the optical lens 12 in the first embodiment, except that the parameters of each lens are different.
  • each lens of the optical lens 12 is shown in Table 2, wherein, R represents the radius of curvature, T c represents the center thickness, N d represents the d-line refractive index of the material, and V d represents the material Abbe number of .
  • the optical technical indicators of the optical lens 12 in the present embodiment are as follows:
  • the distortion in this embodiment is well controlled within 1.0%. Therefore, by adopting the specific surface shape matching and reasonable focal length distribution of the present application, the structure is more compact while satisfying high pixels.
  • the total mechanical length of the optical lens 12 does not exceed 31 mm; the number of lenses is small, the processability is good, and the cost control is low; the MTF value of the full field of view is 100 lp/mm, reaching above 0.6.
  • the lenses will compensate each other at different temperatures, so that the temperature characteristics are better, and there is no obvious change in imaging performance at 5-40°C.
  • an endoscope 200 is provided in this embodiment, including a connecting tube 21 and the optical lens 12 in any one of the above-mentioned embodiments; the connecting tube 21 is connected to the optical lens 12 for transmitting optical Optical image of lens 12.
  • the connecting tube 21 can be a fiber insertion tube, and can also be an adjustable delivery tube.
  • the endoscope 200 also has the above-mentioned characteristics because the optical lens 12 has the characteristics of miniaturization, high imaging quality, good processability, low cost, and large target surface.
  • an imaging device 100 is provided in this embodiment, including an imaging element 11 and an optical lens 12 in any one of the above embodiments; the imaging element 11 is used to convert the optical image formed by the optical lens 12 for electrical signals.
  • a stop 13 , a first lens L1 , a second lens L2 , a third lens L3 , a fourth lens L4 , a fifth lens L5 , and an imaging surface 14 are arranged in sequence from the object side to the image side on the same optical path.
  • the imaging element 11 may be a CMOS (Complementary Metal Oxide Semiconductor, Complementary Metal Oxide Semiconductor) image sensor, or a CCD (Charge Coupled Device, Charge Coupled Device) image sensor.
  • the imaging device 100 may be a computer or any other electronic device loaded with the optical lens 12 .
  • the imaging device 100 also has the above-mentioned characteristics because the optical lens 12 has the characteristics of miniaturization, guaranteed imaging quality, good processability, low cost, and large target surface.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Lenses (AREA)

Abstract

一种成像设备(100)、光学镜头(12)以及内窥镜(200)。成像设备(100)包括成像元件(11)和光学镜头(12);成像元件(11)用于将光学镜头(12)形成的光学图像转换为电信号;光学镜头(12),用于对物体进行成像,包括第一透镜(L1)、第二透镜(L2)、第三透镜(L3)、第四透镜(L4)和第五透镜(L5),从物侧到像侧依次设置有位于同一光路上的光阑(13)、第一透镜(L1)、第二透镜(L2)、第三透镜(L3)、第四透镜(L4)、第五透镜(L5)以及成像面(14)。

Description

成像设备、光学镜头以及内窥镜
相关申请
本申请要求2021年7月16日申请的,申请号为202110808035.8,发明名称为“成像设备、光学镜头以及内窥镜”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及医学影像设备技术领域,特别是涉及成像设备、光学镜头以及内窥镜。
背景技术
得益于近年来智慧医疗的高速发展,光学镜头在医疗领域得到越来越多的应用,尤其是在医疗内窥镜领域,对光学成像镜头的要求越来越高。另外随着摄像系统逐步向4K高清的方向发展,对像素要求更高。内窥镜在医疗用领域的应用中,利用被插入到体腔内的内窥镜来得到体腔内的各种部位的图像,使用该图像来对观察部位进行诊断。
在相关技术中的大视场微型显微物镜,沿其光轴方向从物端到像端依次包括具有正屈亮度的第一透镜、具有正屈亮度的第二透镜、一个具有负屈亮度的透镜和一个具有正屈亮度的透镜组成的第三透镜、具有正屈亮度的第四透镜、具有负屈亮度的第五透镜、具有负屈亮度的第六透镜以及成像面。该镜头由六片组成,整个镜头尺寸较大,无法完成小型化设计,而且像素也比较低。
目前针对相关技术中,镜头尺寸较大,无法完成小型化设计,也不能满足对高像素的要求,尚未提出有效的解决方案。
发明内容
根据本申请的各种实施例,提供了一种成像设备、光学镜头以及内窥镜。
第一方面,本申请实施例提供了一种成像设备,包括成像元件和光学镜头;
所述成像元件用于将所述光学镜头形成的光学图像转换为电信号;
所述光学镜头,用于对物体进行成像,包括第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,从物侧到像侧依次设置有位于同一光路上的光阑、所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜以及成像面;
所述第一透镜具有正光焦度,所述第一透镜包括第一物端面和第一像端面;
所述第二透镜具有负光焦度,所述第二透镜包括第二物端面和第二像端面;
所述第三透镜具有负光焦度,所述第三透镜包括第三物端面和第三像端面;
所述第四透镜具有正光焦度,所述第四透镜包括第四物端面和第四像端面;
所述第五透镜具有正光焦度,所述第五透镜包括第五物端面和第五像端面;
所述第一物端面、所述第二物端面、所述第四物端面、所述第四像端面、所述第五物端面以及所述第五像端面均为凸面;所述第一像端面、所述第二像端面、所述第三物端面以及所述第三像端面均为凹 面;
所述第三透镜和所述第四透镜组合成胶合透镜组;所述胶合透镜组满足以下关系式:
Figure PCTCN2022102731-appb-000001
其中,f表示光学镜头的焦距;f g1表示所述胶合透镜组的焦距;FOV表示光学镜头的视场角。
第二方面,本申请实施例提供了一种光学镜头,用于对物体进行成像,包括第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,对物体进行成像时从物侧到像侧依次设置有位于同一光路上的光阑、所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜以及成像面;
所述第一透镜具有正光焦度,所述第一透镜包括第一物端面和第一像端面;
所述第二透镜具有负光焦度,所述第二透镜包括第二物端面和第二像端面;
所述第三透镜具有负光焦度,所述第三透镜包括第三物端面和第三像端面;
所述第四透镜具有正光焦度,所述第四透镜包括第四物端面和第四像端面;
所述第五透镜具有正光焦度,所述第五透镜包括第五物端面和第五像端面;
所述第一物端面、所述第二物端面、所述第四物端面、所述第四像端面、所述第五物端面以及所述第五像端面均为凸面;所述第一像端面、所述第二像端面、所述第三物端面以及所述第三像端面均为凹面;
所述第三透镜和所述第四透镜组合成胶合透镜组;所述胶合透镜组满足以下关系式:
Figure PCTCN2022102731-appb-000002
其中,f表示所述光学镜头的焦距;f g1表示所述胶合透镜组的焦距;FOV表示所述光学镜头的视场角。
在其中一些实施例中,所述光学镜头还包括滤光片;
所述滤光片设置于所述第五透镜和所述成像面之间的光路上。
在其中一些实施例中,所述光阑为孔径光阑。
在其中一些实施例中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜以及所述第五透镜为球面镜片;
或,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜以及所述第五透镜为非球面镜片。
在其中一些实施例中,所述光学镜头满足以下关系式:
TTL/f≤1.3;
其中,TTL表示所述光学镜头的光学总长;f表示所述光学镜头的焦距。
在其中一些实施例中,所述光学镜头满足以下关系式:
BFL/TL≤0.6;
其中,BFL表示所述光学镜头的光学后焦;TL表示所述光学镜头的透镜组长度。
在其中一些实施例中,所述光学镜头满足以下关系式:
Figure PCTCN2022102731-appb-000003
其中,R4表示所述第二像端面的中心曲率半径;R5表示所述第三物端面的中心曲率半径。
在其中一些实施例中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜以及所述第五透镜的材质均为玻璃材质。
在其中一些实施例中,所述光学镜头满足至少一个以下条件式:
Vd1≤82;
Vd2≤65;
Vd4≤71;
其中,Vd1表示所述第一透镜的镜片阿贝数;Vd2表示所述第二透镜的镜片阿贝数;Vd4表示所述第四透镜的镜片阿贝数。
在其中一些实施例中,所述光学镜头满足至少一个以下条件式:
Nd2≥1.45;
Nd3≤1.82;
Nd4≤1.63;
Nd5≤1.87;
其中,Nd2表示所述第二透镜的镜片折射率;Nd3表示所述第三透镜的镜片折射率;Nd4表示所述第四透镜的镜片折射率;Nd5表示所述第五透镜的镜片折射率。
在其中一些实施例中,所述光学镜头满足以下条件式:
f1≤21mm;
f2≤-31mm;
f5≤19mm;
其中,f1表示所述第一透镜的焦距;f2表示所述第二透镜的焦距;f5表示所述第五透镜的焦距。
第三方面,本申请实施例提供了一种内窥镜,包括连接管和如第二方面所述的光学镜头;
所述连接管,与所述光学镜头连接,用于传输所述光学镜头的光学图像。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些申请的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的申请、目前描述的实施例和/或示例以及目前理解的这些申请的最佳模式中的任何一者的范围的限制。
在附图中:
图1为根据一个或多个实施例的光学镜头的结构示意图。
图2为根据一个或多个实施例的在可见光波段常温状态的光学传递函数(MTF)曲线图。
图3为根据一个或多个实施例的在可见光波段的场曲图。
图4为根据一个或多个实施例的在可见光波段的畸变图。
图5为根据一个或多个实施例的在可见光波段的第一横向光扇图。
图6为根据一个或多个实施例的在可见光波段的第二横向光扇图。
图7为根据一个或多个实施例的在可见光波段的第三横向光扇图。
图8为根据一个或多个实施例的在可见光波段的第四横向光扇图。
图9为根据一个或多个实施例的在可见光波段的第五横向光扇图。
图10为根据一个或多个实施例的在可见光波段的第一点图。
图11为根据一个或多个实施例的在可见光波段的第二点图。
图12为根据一个或多个实施例的在可见光波段的第三点图。
图13为根据一个或多个实施例的在可见光波段的第四点图。
图14为根据一个或多个实施例的在可见光波段的第五点图。
图15为根据一个或多个实施例的在可见光波段常温状态的光学传递函数(MTF)曲线图。
图16为根据一个或多个实施例的在可见光波段的场曲图。
图17为根据一个或多个实施例的在可见光波段的畸变图。
图18为根据一个或多个实施例的成像设备的结构示意图。
图19为根据一个或多个实施例的内窥镜的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行描述和说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。基于本申请提供的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。此外,还可以理解的是,虽然这种开发过程中所作出的努力可能是复杂并且冗长的,然而对于与本申请公开的内容相关的本领域的普通技术人员而言,在本申请揭露的技术内容的基础上进行的一些设计,制造或者生产等变更只是常规的技术手段,不应当理解为本申请公开的内容不充分。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域普通技术人员显式地和隐式地理解的是,本申请所描述的实施例在不冲突的情况下,可以与其它实施例相结合。
除非另作定义,本申请所涉及的技术术语或者科学术语应当为本申请所属技术领域内具有一般技能的人士所理解的通常意义。本申请当元件被称为“设于”另一个元件,它可以直接设在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“设置于”另一个元件,它可以是直接设置在另一个元件上或者可能同时存在居中元件。当一个元件被认为是“固定于”另一个元件,它可以是直接固定在另一个元件上或者可能同时存在居中元件。本申请所涉及的术语“第一”、“第二”、“第三”等仅仅是区别类似的对象,不代表针对对象的特定排序。在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本申请所使用的术语“和/或”包括一个或多个相关的所列项目 的任意的和所有的组合。
请参阅图1,本申请一实施例提供的一种光学镜头12,用于对物体进行成像,包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4和第五透镜L5,对物体进行成像时从物侧到像侧依次设置有位于同一光路上的光阑13、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及成像面14;第一透镜L1具有正光焦度,第一透镜L1包括第一物端面和第一像端面;第二透镜L2具有负光焦度,第二透镜L2包括第二物端面和第二像端面;第三透镜L3具有负光焦度,第三透镜L3包括第三物端面和第三像端面;第四透镜L4具有正光焦度,第四透镜L4包括第四物端面和第四像端面;第五透镜L5具有正光焦度,第五透镜L5包括第五物端面和第五像端面;第一物端面、第二物端面、第四物端面、第四像端面、第五物端面以及第五像端面均为凸面;第一像端面、第二像端面、第三物端面以及第三像端面均为凹面;第三透镜L3和第四透镜L4组合成胶合透镜组;胶合透镜组满足以下关系式:
Figure PCTCN2022102731-appb-000004
其中,f表示光学镜头12的焦距;f g1表示胶合透镜组的焦距;FOV表示光学镜头12的视场角。
本申请解决了成像设备100中镜头尺寸较大,无法完成小型化设计的问题,采用特定的表面形状搭配和合理的焦距分配,实现在满足高像素的同时结构更加紧凑。
于本实施例中,关系式(1)能够限定胶合透镜组的结构及整个光学镜头12的结构,具体的是限定光学镜头12整体的焦距和总长,即可控制结构的小型化设计。采用的光学镜头12结构为:从物侧到像侧依次包括位于同一光路上的第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5,结合每个透镜特定的表面形状搭配和满足关系式(1)的焦距分配,在满足高像素的同时结构更加紧凑。
在其中一个实施例中,光学镜头12还包括滤光片L6;滤光片L6设置于第五透镜L5和成像面14之间的光路上,能够对第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5形成保护。且滤光片L6具有过滤作用,因此能够进一步提高成像效果。滤光片L6通常是平面结构。而第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的镜片有多种结构形式。比如:第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5为球面镜片。又或者,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5为非球面镜片。需要知道的是,球面镜片是指镜片的内外两面都为球面,或一面是球面,另一半是平面。而非球面镜片的面形是由多项高次方程决定面形上各点的半径均不相同的镜片。可选的,可以选择非球面镜片,其能够降低镜片厚度。
下面对光学镜头12需要满足的各关系式或条件式进行详细说明。
在其中一个实施例中,光阑13为孔径光阑,其与第一透镜L1的距离小于或等于0.4mm;在一个实施例中,孔径光阑和第一透镜L1的距离可以为0.2mm。
在其中一个实施例中,光学镜头12满足以下关系式:
TTL/f≤1.3;        (2)
其中,TTL表示光学镜头12的光学总长;f表示光学镜头12的焦距。在本实施例中,光学镜头12在满足关系式(1)的同时,也满足关系式(2),通过限定焦距来限定光学总长,能够合理分配焦距以 降低像差;同时也有利于限制光学镜头12的整体尺寸。
在其中一个实施例中,光学镜头12满足以下关系式:
BFL/TL≤0.6;       (3)
其中,BFL表示光学镜头12的光学后焦;TL表示光学镜头12的透镜组长度。在本实施例中,光学镜头12在满足关系式(1)的同时,也满足关系式(3)。通过限定光学后焦来限定透镜组长度,能够合理分配焦距以提高像素;同时也有利于限制光学镜头12的整体尺寸。于其他实施例中,光学镜头12也可以是同时满足关系式(1)、关系式(2)以及关系式(3),对此并不进行限制。
在其中一个实施例中,光学镜头12满足以下关系式:
Figure PCTCN2022102731-appb-000005
其中,R4表示第二像端面的中心曲率半径;R5表示第三物端面的中心曲率半径。利用关系式(4)来合理地限定第二像端面的中心曲率半径和第三物端面的中心曲率半径,来限定第二透镜L2和第三透镜L3的形状,使得第二透镜L2和第三透镜L3均具有负光焦度,有利于减小后续透镜的口径和总长,实现所述光学镜头12小型化。于一个实施例中,光学镜头12可以同时满足关系式(1)、关系式(2)、关系式(3)以及关系式(4)。于另一个实施例中,光学镜头12可以同时满足关系式(1)、关系式(2)以及关系式(4)。如前所述,满足的关系式越多,光学镜头12达到的效果越好,即结构更加紧凑,同时成像质量也能够保障。
在其中一个实施例中,光学镜头12满足以下条件式(5):
f1≤21mm;f2≤-31mm;f5≤19mm;       (5)
其中,f1表示第一透镜L1的焦距;f2表示第二透镜L2的焦距;f5表示第五透镜L5的焦距。在本实施例中,利用条件式(5)对第一透镜L1、第二透镜L2以及第五透镜L5的焦距进行分配,进一步优化焦距的分配方案,来限制光学镜头12的结构。
为了控制成本,同时使镜片具有良好的加工性能,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质可以均为玻璃材质,那么对各镜片的材料提出要求。
在其中一个实施例中,光学镜头12满足以下条件式(6):
Vd1≤82;Vd2≤65;Vd4≤71;       (6)
其中,Vd1表示第一透镜L1的镜片阿贝数;Vd2表示第二透镜L2的镜片阿贝数;Vd4表示第四透镜L4的镜片阿贝数。
在本实施例中,对第一透镜L1、第二透镜L2、第四透镜L4的镜片阿贝数提出要求。具体的要求为:第一透镜L1的镜片阿贝数Vd1≤82;第二透镜L2的镜片阿贝数Vd2≤65;第四透镜L4的镜片阿贝数Vd4≤71。对于光学镜头12来说,这三个条件可以不是同时满足。比如:只要满足其中一个、两个或者同时满足三个都是可以实现。满足其中一个的时候,可以只满足第一透镜L1的镜片阿贝数Vd1≤82;或,第二透镜L2的镜片阿贝数Vd2≤65;或,第四透镜L4的镜片阿贝数Vd4≤71。满足其中两个的时候,可以是只满足第一透镜L1的镜片阿贝数Vd1≤82、第二透镜L2的镜片阿贝数Vd2≤65;也可以是只满足第一透镜L1的镜片阿贝数Vd1≤82、第四透镜L4的镜片阿贝数Vd4≤71;也可以是只满足第二透镜L2的镜片阿贝数Vd2≤65;第四透镜L4的镜片阿贝数Vd4≤71,等情况。在此不一 一举例,上述排列组合的情况。而且对于第三透镜L3和第五透镜L5的镜片阿贝数并不进行限制。通过上述参数的设置,合理控制给镜片之间的距离,同时使光学镜头12结构更加紧凑,有利于缩短光学镜头12的总长。
在其中一个实施例中,光学镜头12满足以下条件式(7):
Nd2≥1.45;Nd3≤1.82;Nd4≤1.63;Nd5≤1.87;         (7)
其中,Nd2表示第二透镜L2的镜片折射率;Nd3表示第三透镜L3的镜片折射率;Nd4表示第四透镜L4的镜片折射率;Nd5表示第五透镜L5的镜片折射率。对于光学镜头12来说,这四个条件可以不是同时满足。比如:只要满足其中一个、两个、三个、四个或者同时满足三个都是可以实现。比如,满足一个的情况可以是:第二透镜L2的镜片折射率Nd2≥1.45,对其他透镜的镜片的折射率并不进行限制。满足两个的情况可以是:第二透镜L2的镜片折射率Nd2≥1.45,第三透镜L3的镜片折射率Nd2≥1.82,对其他透镜的镜片的折射率并不进行限制。满足三个的情况可以是:第二透镜L2的镜片折射率Nd2≥1.45,第三透镜L3的镜片折射率Nd2≥1.82,第五透镜L5的镜片折射率Nd5≤1.87,对其他透镜的镜片的折射率并不进行限制,在此不一一举例上述排列组合的情况。通过上述参数的设置,合理控制给镜片之间的距离,同时使光学镜头12结构更加紧凑,有利于缩短光学镜头12的总长。
下面提供具体实施例进行详细说明:
实施例一
本实施例提供的光学镜头12,用于对物体进行成像,对物体进行成像时从物侧到像侧依次设置有位于同一光路上的光阑13、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、滤光片L6以及成像面14;第一透镜L1具有正光焦度,第一透镜L1包括第一物端面和第一像端面;第二透镜L2具有负光焦度,第二透镜L2包括第二物端面和第二像端面;第三透镜L3具有负光焦度,第三透镜L3包括第三物端面和第三像端面;第四透镜L4具有正光焦度,第四透镜L4包括第四物端面和第四像端面;第五透镜L5具有正光焦度,第五透镜L5包括第五物端面和第五像端面;滤光片L6包括第六物端面和第六像端面;其中,第一物端面、第二物端面、第四物端面、第四像端面、第五物端面以及第五像端面均为凸面;第一像端面、第二像端面、第三物端面以及第三像端面均为凹面;第三透镜L3和第四透镜L4组合成胶合透镜组;胶合透镜组满足以下关系式:
Figure PCTCN2022102731-appb-000006
其中,f表示光学镜头12的焦距;f g1表示胶合透镜组的焦距;FOV表示光学镜头12的视场角。
于本实施例中,光学镜头12各镜片的相关参数如表1所示,其中,R代表曲率半径,T c代表中心厚度,N d代表材料的d线折射率,V d代表材料的阿贝数。
表1(各镜片的相关参数);
Figure PCTCN2022102731-appb-000007
基于上述各镜片的相关参数,于本实施例光学镜头12的光学技术指标如下:
光学镜头12的光学总长TTL≤30.5mm;光学镜头12的焦距f:25mm;光学镜头12的视场角:18°;光学镜头12的光学畸变:1.0%;光学镜头12的光圈FNO:FNO≤4.0;镜头像面尺寸:≥φ8mm。
需要知道的是,光学传递函数是指以空间频率为变量,表征成像过程中调制度和横向相移的相对变化的函数。使用光学传递函数来评价成像系统的成像质量,是较准确、直观和常见的方式。其曲线越高、越平滑,表明成像质量越好,对各种像差(如:球差、慧差、象散、场曲、轴向色差、垂轴色差等)进行了很好的校正。
如图2所示,为本实施例光学镜头12在可见光波段常温状态的光学传递函数(Modulation Transfer Function,MTF)曲线图。图中,横坐标为空间频率,纵坐标为光学传递函数(MTF)值。TS0.0000MM表示位于成像区域的中心。从图中可以看出光学传递函数(MTF)曲线图平滑且集中,而且全视场(半像高Y’=4.0mm)MTF平均值达到0.6以上,全视场MTF值在100lp/mm情况下,达到0.6以上。由此可见能够达到高像素的成像要求。
场曲又称“像场弯曲”,当透镜存在场曲时,整个光束的交点不与理想像点重合,虽然在每个特定点都能得到清晰的像点,但整个像平面则是一个曲面。如图3和图4所示,在本实施例中的场曲控制在±0.2mm以内。图中,T代表子午场曲,S代表弧矢场曲。场曲曲线显示作为视场坐标函数当前的焦平 面或像平面到近轴焦面的距离。子午场曲数据是沿着Z轴测量的从当前所确定的聚焦面到近轴焦面的距离,并且是在子午(YZ面)上测量的。弧矢场曲数据测量的是在与子午面垂直的平面上测量的距离,示意图中的基线是在光轴上,曲线顶部代表最大视场(角度或高度),在纵轴上不设置单位,这是因为曲线总是用最大的径向视场来进行归一化的。
从图4中可知,在本实施例中的畸变控制得较好,在1.0%以内。参考多个波长(0.486mm、0.588mm、0.656mm、0.436mm和0.900mm)的曲线在图4中发生了重合。一般来说,镜头畸变实际上是光学透镜固有的透视失真的总称,也就是因为透视原因造成的失真,这种失真对于照片的成像质量是非常不利的,毕竟摄影的目的是为了再现,而非夸张;但因为这是透镜的固有特性(凸透镜汇聚光线、凹透镜发散光线),所以无法消除,只能改善。本实施例提供的定焦镜头畸变仅为1.0%,这样设置畸变是为了平衡焦距,视场角及对应相机靶面的大小,畸变造成的形变可以通过后期图像处理对其进行校正。因此成像可最大支持靶面为1/2英寸的探测设备使用。
如图5、图6、图7、图8以及图9所示,为每个视场下的光扇图。比如:IMA:0.000MM表示0视场主光线与成像面14(IMA)相交高度为0。EX和EY是指当前视场光扇内特定光瞳上的光线入射到成像面14,在成像面14上的高度与当前视场的主光线在成像面14上的高度之差。PY表示子午光扇上的光瞳坐标;PX表示弧矢光扇上的光瞳坐标。且在每个视场下光扇图都是成对出现。从上述图中可以看出曲线较为集中,球差及色散也控制得较好。
如图10、图11、图12、图13以及图14所示,为每个视场下的点图,从上述图中可以看出光斑半径较小,也比较集中,对应的像差和慧差也很好。
本申请采用上述特定的表面形状搭配和合理的焦距分配,在满足高像素的同时结构更加紧凑。光学镜头12机械总长不超过31mm;镜片数量较少,加工性好,且成本控制较低;在不同温度下各镜片之间会相互补偿,使得温度特性较好,在5-40℃下,成像性能无明显变化。
实施例二
第二实施例提供的光学镜头12与实施例一中的光学镜头12的结构相同,不同之处在于,各透镜的参数不同。
具体的,于本实施例中,光学镜头12各镜片的相关参数如表2所示,其中,R代表曲率半径,T c代表中心厚度,N d代表材料的d线折射率,V d代表材料的阿贝数。
表2(各镜片的相关参数);
Figure PCTCN2022102731-appb-000008
基于上述各镜片的相关参数,于本实施例光学镜头12的光学技术指标如下:
光学镜头12的光学总长TTL≤30.5mm;光学镜头12的焦距f:25mm;光学镜头12的视场角:18°;光学镜头12的光学畸变:1.0%;光学镜头12的光圈FNO:FNO≤4.0;镜头像面尺寸:≥φ8mm。
在本实施例中,如图15、图16以及图17所示,提供了光学镜头12在可见光波段常温状态的光学传递函数(MTF)曲线图、场曲图以及畸变图。由图可知,本实施例中也能具有类似第一实施例的效果。比如,如图15所示,光学传递函数(MTF)曲线图平滑且集中,而且全视场(半像高Y’=4.0mm)MTF平均值达到0.6以上,全视场MTF值在100lp/mm情况下,达到0.6以上。如图16所示,本实施例中的场曲控制在±0.2mm以内。如图17所示,在本实施例中的畸变控制得较好,在1.0%以内。因此,采用本申请的特定的表面形状搭配和合理的焦距分配,在满足高像素的同时结构更加紧凑。光学镜头12机械总长不超过31mm;镜片数量较少,加工性好,且成本控制较低;全视场MTF值在100lp/mm情况下,达到0.6以上。在不同温度下各镜片之间会相互补偿,使得温度特性较好,在5-40℃下,成像性能无明显变化。
如图19所示,于本实施例中提供一种内窥镜200,包括连接管21和上述任意一个实施例中的光学镜头12;连接管21与所述光学镜头12连接,用于传输光学镜头12的光学图像。连接管21可以是纤维插入管,还可以是可调输送管。由于光学镜头12具有结构小型化的同时能够保障成像质量、加工性 好、成本低、具有大靶面等特点,使得内窥镜200也具有上述特点。
如图18所示,于本实施例中提供一种成像设备100,包括成像元件11和上述任意一个实施例中的光学镜头12;成像元件11用于将所述光学镜头12形成的光学图像转换为电信号。
从物侧到像侧依次设置有位于同一光路上的光阑13、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及成像面14。
具体的,成像元件11可以是CMOS(Complementary Metal Oxide Semiconductor,互补性金属氧化物半导体)图像传感器,还可以是CCD(Charge Coupled Device,电荷耦合器件)图像传感器。成像设备100可以是电脑或者其他任意一种形态的装载了光学镜头12的电子设备。由于光学镜头12具有结构小型化的同时能够保障成像质量、加工性好、成本低、具有大靶面等特点,使得成像设备100也具有上述特点。
本领域的技术人员应该明白,以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (13)

  1. 一种成像设备,其特征在于,包括成像元件和光学镜头;
    所述成像元件用于将所述光学镜头形成的光学图像转换为电信号;
    所述光学镜头,用于对物体进行成像,包括第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,从物侧到像侧依次设置有位于同一光路上的光阑、所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜以及成像面;
    所述第一透镜具有正光焦度,所述第一透镜包括第一物端面和第一像端面;
    所述第二透镜具有负光焦度,所述第二透镜包括第二物端面和第二像端面;
    所述第三透镜具有负光焦度,所述第三透镜包括第三物端面和第三像端面;
    所述第四透镜具有正光焦度,所述第四透镜包括第四物端面和第四像端面;
    所述第五透镜具有正光焦度,所述第五透镜包括第五物端面和第五像端面;
    所述第一物端面、所述第二物端面、所述第四物端面、所述第四像端面、所述第五物端面以及所述第五像端面均为凸面;所述第一像端面、所述第二像端面、所述第三物端面以及所述第三像端面均为凹面;
    所述第三透镜和第四透镜组合成胶合透镜组;所述胶合透镜组满足以下关系式:
    Figure PCTCN2022102731-appb-100001
    其中,f表示光学镜头的焦距;f g1表示所述胶合透镜组的焦距;FOV表示光学镜头的视场角。
  2. 一种光学镜头,用于对物体进行成像,其特征在于,包括第一透镜、第二透镜、第三透镜、第四透镜和第五透镜,对物体进行成像时从物侧到像侧依次设置有位于同一光路上的光阑、所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜以及成像面;
    所述第一透镜具有正光焦度,所述第一透镜包括第一物端面和第一像端面;
    所述第二透镜具有负光焦度,所述第二透镜包括第二物端面和第二像端面;
    所述第三透镜具有负光焦度,所述第三透镜包括第三物端面和第三像端面;
    所述第四透镜具有正光焦度,所述第四透镜包括第四物端面和第四像端面;
    所述第五透镜具有正光焦度,所述第五透镜包括第五物端面和第五像端面;
    所述第一物端面、所述第二物端面、所述第四物端面、所述第四像端面、所述第五物端面以及所述第五像端面均为凸面;所述第一像端面、所述第二像端面、所述第三物端面以及所述第三像端面均为凹面;
    所述第三透镜和所述第四透镜组合成胶合透镜组;所述胶合透镜组满足以下关系式:
    Figure PCTCN2022102731-appb-100002
    其中,f表示所述光学镜头的焦距;f g1表示所述胶合透镜组的焦距;FOV表示所述光学镜头的视场角。
  3. 根据权利要求2所述的光学镜头,其中,所述光学镜头还包括滤光片;
    所述滤光片设置于所述第五透镜和所述成像面之间的光路上。
  4. 根据权利要求2所述的光学镜头,其中,所述光阑为孔径光阑。
  5. 根据权利要求2所述的光学镜头,其中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜以及所述第五透镜为球面镜片;
    或,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜以及所述第五透镜为非球面镜片。
  6. 根据权利要求2-5任意一项所述的光学镜头,其中,所述光学镜头满足以下关系式:
    TTL/f≤1.3;
    其中,TTL表示所述光学镜头的光学总长;f表示所述光学镜头的焦距。
  7. 根据权利要求2-5任意一项所述的光学镜头,其中,所述光学镜头满足以下关系式:
    BFL/TL≤0.6;
    其中,BFL表示所述光学镜头的光学后焦;TL表示所述光学镜头的透镜组长度。
  8. 根据权利要求2-5任意一项所述的光学镜头,其中,所述光学镜头满足以下关系式:
    Figure PCTCN2022102731-appb-100003
    其中,R4表示所述第二像端面的中心曲率半径;R5表示所述第三物端面的中心曲率半径。
  9. 根据权利要求2-5任意一项所述的光学镜头,其中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜以及所述第五透镜的材质均为玻璃材质。
  10. 根据权利要求9所述的光学镜头,其中,所述光学镜头满足以下条件式:
    Vd1≤82;
    Vd2≤65;
    Vd4≤71;
    其中,Vd1表示所述第一透镜的镜片阿贝数;Vd2表示所述第二透镜的镜片阿贝数;Vd4表示所述第四透镜的镜片阿贝数。
  11. 根据权利要求9所述的光学镜头,其中,所述光学镜头满足至少一个以下条件式:
    Nd2≥1.45;
    Nd3≤1.82;
    Nd4≤1.63;
    Nd5≤1.87;
    其中,Nd2表示所述第二透镜的镜片折射率;Nd3表示所述第三透镜的镜片折射率;Nd4表示所述第四透镜的镜片折射率;Nd5表示所述第五透镜的镜片折射率。
  12. 根据权利要求2-5任意一项所述的光学镜头,其中,所述光学镜头满足至少一个以下条件式:
    f1≤21mm;
    f2≤-31mm;
    f5≤19mm;
    其中,f1表示所述第一透镜的焦距;f2表示所述第二透镜的焦距;f5表示所述第五透镜的焦距。
  13. 一种内窥镜,其特征在于,包括连接管和如权利要求2-12任意一项所述的光学镜头;
    所述连接管,与所述光学镜头连接,用于传输所述光学镜头的光学图像。
PCT/CN2022/102731 2021-07-16 2022-06-30 成像设备、光学镜头以及内窥镜 WO2023284557A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22841195.5A EP4307025A1 (en) 2021-07-16 2022-06-30 Imaging device, optical lens, and endoscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110808035.8A CN113687494B (zh) 2021-07-16 2021-07-16 成像设备、光学镜头以及内窥镜
CN202110808035.8 2021-07-16

Publications (1)

Publication Number Publication Date
WO2023284557A1 true WO2023284557A1 (zh) 2023-01-19

Family

ID=78577382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102731 WO2023284557A1 (zh) 2021-07-16 2022-06-30 成像设备、光学镜头以及内窥镜

Country Status (3)

Country Link
EP (1) EP4307025A1 (zh)
CN (1) CN113687494B (zh)
WO (1) WO2023284557A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113687494B (zh) * 2021-07-16 2023-03-10 浙江华诺康科技有限公司 成像设备、光学镜头以及内窥镜
CN114384678B (zh) * 2022-03-24 2022-07-29 浙江华诺康科技有限公司 一种内窥镜用物镜及内窥镜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090201592A1 (en) * 2008-02-07 2009-08-13 Yasuharu Yamada Imaging optical system and imaging apparatus comprising the same
CN107526151A (zh) * 2017-08-23 2017-12-29 舜宇光学(中山)有限公司 视觉镜头
CN112379508A (zh) * 2020-12-14 2021-02-19 天津欧菲光电有限公司 光学系统、取像模组及电子设备
CN212965581U (zh) * 2020-08-20 2021-04-13 江西特莱斯光学有限公司 一种亮度均匀镜头
CN113687494A (zh) * 2021-07-16 2021-11-23 浙江华诺康科技有限公司 成像设备、光学镜头以及内窥镜

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09133859A (ja) * 1995-11-10 1997-05-20 Asahi Optical Co Ltd 撮影レンズ
JP5210196B2 (ja) * 2009-02-05 2013-06-12 富士フイルム株式会社 投写レンズおよびこれを用いた投写型表示装置
CN101923204A (zh) * 2009-06-16 2010-12-22 鸿富锦精密工业(深圳)有限公司 投影镜头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090201592A1 (en) * 2008-02-07 2009-08-13 Yasuharu Yamada Imaging optical system and imaging apparatus comprising the same
CN107526151A (zh) * 2017-08-23 2017-12-29 舜宇光学(中山)有限公司 视觉镜头
CN212965581U (zh) * 2020-08-20 2021-04-13 江西特莱斯光学有限公司 一种亮度均匀镜头
CN112379508A (zh) * 2020-12-14 2021-02-19 天津欧菲光电有限公司 光学系统、取像模组及电子设备
CN113687494A (zh) * 2021-07-16 2021-11-23 浙江华诺康科技有限公司 成像设备、光学镜头以及内窥镜

Also Published As

Publication number Publication date
CN113687494B (zh) 2023-03-10
EP4307025A1 (en) 2024-01-17
CN113687494A (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
WO2023284557A1 (zh) 成像设备、光学镜头以及内窥镜
WO2023193377A1 (zh) 光学变焦镜头、成像设备和内窥镜
CN106842548B (zh) 内窥用摄像物镜光学系统
CN114384677B (zh) 一种内窥镜用物镜及内窥镜
WO2017113557A9 (zh) 摄像镜头
CN204705759U (zh) 一种透镜系统和镜头
CN106842547B (zh) 内窥用摄像物镜光学系统
WO2022266902A1 (zh) 光学镜头、摄像模组及电子设备
CN112987259B (zh) 光学系统、取像模组及电子设备
CN108681047B (zh) 摄像光学镜头
WO2021087669A1 (zh) 光学系统、取像装置及电子装置
CN108983393B (zh) 摄像光学镜头
WO2022151157A1 (zh) 光学系统、取像模组及电子设备
CN114675407A (zh) 光学系统、镜头模组及电子设备
TWI748354B (zh) 望遠式成像鏡頭
CN110908085B (zh) 摄像光学镜头
CN109031613B (zh) 摄像光学镜头
CN108957697B (zh) 摄像光学镜头
CN108646392B (zh) 摄像光学镜头
CN107976781B (zh) 摄像光学镜头
CN114384678B (zh) 一种内窥镜用物镜及内窥镜
CN218866209U (zh) 光学系统、摄像模组及终端设备
CN216210193U (zh) 一种定焦镜头
CN114967068B (zh) 成像系统及光学镜头
CN220188791U (zh) 光学成像系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841195

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022841195

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022841195

Country of ref document: EP

Effective date: 20231011

NENP Non-entry into the national phase

Ref country code: DE