WO2022266902A1 - 光学镜头、摄像模组及电子设备 - Google Patents

光学镜头、摄像模组及电子设备 Download PDF

Info

Publication number
WO2022266902A1
WO2022266902A1 PCT/CN2021/101897 CN2021101897W WO2022266902A1 WO 2022266902 A1 WO2022266902 A1 WO 2022266902A1 CN 2021101897 W CN2021101897 W CN 2021101897W WO 2022266902 A1 WO2022266902 A1 WO 2022266902A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
optical axis
object side
optical lens
Prior art date
Application number
PCT/CN2021/101897
Other languages
English (en)
French (fr)
Inventor
华露
杨健
李明
Original Assignee
欧菲光集团股份有限公司
江西晶超光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧菲光集团股份有限公司, 江西晶超光学有限公司 filed Critical 欧菲光集团股份有限公司
Priority to PCT/CN2021/101897 priority Critical patent/WO2022266902A1/zh
Publication of WO2022266902A1 publication Critical patent/WO2022266902A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present application relates to the technical field of optical imaging, in particular to an optical lens, a camera module and electronic equipment.
  • optical lenses need to increase the number of lenses to correct aberrations.
  • the increase in the number of lenses increases the difficulty of processing and assembling the lenses, and increases the volume of the optical lens. Therefore, in the related art, under the design trend of thin, light and miniaturized optical lenses, the image quality of optical lenses is poor, the resolution is low, and the imaging quality of optical lenses is not clear enough, it is difficult to meet people's high-definition requirements of optical lenses. imaging requirements.
  • the application discloses an optical lens, camera module and electronic equipment, which can realize the thin and small design of the optical lens, and at the same time, have the characteristics of large aperture and large image surface, improve the image quality of the optical lens, and improve the optical quality of the optical lens. Lens resolution and imaging clarity.
  • the present application provides an optical lens, which includes a first lens, a second lens, a third lens, a fourth lens, fifth lens, sixth lens, seventh lens, eighth lens, ninth lens and tenth lens;
  • the first lens has positive refractive power, the object side of the first lens is convex at the near optical axis, and the image side of the first lens is concave at the near optical axis;
  • the second lens has positive refractive power, the object side of the second lens is convex at the near optical axis, and the image side of the second lens is concave at the near optical axis;
  • the third lens has refractive power
  • the fourth lens has a positive refractive power
  • the fifth lens has refractive power
  • the sixth lens has refractive power, and the image side of the sixth lens is convex at the near optical axis;
  • the seventh lens has refractive power
  • the eighth lens has refractive power, and the object side of the eighth lens is concave at the near optical axis;
  • the ninth lens has a negative refractive power, and the object side and the image side of the ninth lens are both concave at the near optical axis;
  • the tenth lens has a negative refractive power, the object side of the tenth lens is convex at the near optical axis, and the image side of the tenth lens is concave at the near optical axis;
  • optical lens satisfies the following relationship:
  • f is the effective focal length of the optical lens
  • EPD is the entrance pupil diameter of the optical lens
  • the positive refractive power provided by the first lens and the convex-concave surface design of the object side and the image side at the near optical axis are beneficial to ensure that the first lens has sufficient light gathering ability.
  • Cooperating with the positive refractive power of the second lens and the convex-concave surface design on the near optical axis of the object side and the image side it can assist the first lens to converge the light and help to correct some aberrations produced by the first lens.
  • the positive refractive power of the fourth lens it is beneficial to shorten the total optical length of the optical lens and realize the miniaturization design of the optical lens.
  • the refractive power provided by the sixth lens and the convex surface design of the image side at the near optical axis are conducive to the smooth transition of the marginal light to the seventh lens, and the sixth lens has a reasonable edge inclination, which can ensure a small light deflection angle to avoid stray light.
  • the positive or negative refractive power provided by the eighth lens and the concave surface design of the object side at the near optical axis are conducive to correcting the aberrations produced by the front and rear lenses (the seventh lens and the eighth lens), and can also be combined with the front and rear lenses. Maintaining a reasonable air gap is conducive to shortening the total optical length of the optical lens, increasing the size of the image surface, and ensuring the feasibility of forming and assembling the eighth lens.
  • the negative refractive power provided by the ninth lens and the concave surface design of the object side and the image side at the near optical axis make the ninth lens have a relatively distorted surface shape, which is beneficial to effectively correct aberrations such as astigmatism and distortion to ensure The imaging quality of the central field of view can also avoid the situation that the surface shape is too distorted and cannot be processed.
  • the negative refractive power provided by the tenth lens and the convex-concave surface design of the object side and image side at the near optical axis are conducive to enabling the optical lens to obtain a large image surface to match the photosensitive chip with higher pixels.
  • the marginal light enters the image plane with a small deflection angle, so that the edge of the image plane can also obtain higher relative brightness, avoid vignetting and improve the image quality.
  • the optical lens satisfies the following relationship: 1.8 ⁇ f/EPD ⁇ 2
  • the optical lens satisfies the following relationship: TTL/Imgh ⁇ 1.41; wherein, TTL is the distance from the object side of the first lens to the imaging plane of the optical lens on the optical axis (that is, the The total optical length of the optical lens), Imgh is the radius of the maximum effective imaging circle of the optical lens (i.e. the half image height of the optical lens).
  • the ratio of the total length of the optical lens to the half-image height within a reasonable range, it is beneficial to make the structure of the optical lens more compact and ultra-thin on the premise that the optical lens has a larger image surface. features to meet the design requirements for miniaturization.
  • the optical lens satisfies the following relationship: 1.5 ⁇ (f1-f)/(r12-r11) ⁇ 15; wherein, f1 is the focal length of the first lens, and r11 is the object side surface of the first lens The radius of curvature at the optical axis, r12 is the radius of curvature of the image side of the first lens at the optical axis.
  • the optical lens satisfies the following relationship: 3.5 ⁇ f2/(r22-r21) ⁇ 17.5; wherein, f2 is the focal length of the second lens, r21 is the object side of the second lens at the optical axis The radius of curvature, r22 is the radius of curvature of the image side of the second lens at the optical axis.
  • the radius of curvature of the object side and the image side of the second lens can be effectively constrained, providing a suitable positive refractive power for the optical lens, so that the second lens can obtain sufficient optical convergence capability , so that it is beneficial to eliminate the stray light generated by the first lens, and then it is beneficial to correct chromatic aberration, and promote the balance of various aberrations of the optical lens to obtain good imaging quality.
  • the optical lens satisfies the following relationship: 0.5 ⁇ f4/f ⁇ 4; wherein, f4 is the focal length of the fourth lens.
  • the fourth lens By rationally configuring the positive refractive power provided by the fourth lens, it is beneficial to correct the aberration produced by the front lens group (that is, the lens group composed of the first lens, the second lens and the third lens), Therefore, it is beneficial to ensure the overall aberration balance of the optical lens; at the same time, it is also beneficial to make the light in the external field of view have a smaller deflection angle, so that a gentle transition to the image plane can be realized to improve the imaging quality of the optical lens.
  • the front lens group that is, the lens group composed of the first lens, the second lens and the third lens
  • the optical lens satisfies the following relationship: 5 ⁇
  • the astigmatism contribution of the image side of the sixth lens can be effectively controlled, thereby helping to ensure the imaging quality of the intermediate field of view; at the same time, the sixth lens has a reasonable thickness, and the The air gap between the sixth lens and the front and rear lenses is arranged reasonably, which is beneficial to shorten the total optical length of the optical lens and improve the assembly stability of the optical lens.
  • the optical lens satisfies the following relational formula: 0.55 ⁇ ctal/TTL ⁇ 0.6; wherein, ctal is the sum of the thicknesses of each lens of the optical lens on the optical axis (that is, the thickness of ten lenses on the optical axis sum), TTL is the distance on the optical axis from the object side of the first lens to the imaging surface of the optical lens (that is, the total optical length of the optical lens).
  • the optical lens By controlling the ratio of the total thickness of each lens to the total optical length of the optical lens within a reasonable range, it is beneficial for the optical lens to have a sufficient air gap ratio, thereby ensuring the stability and imaging quality of the optical lens; At the same time, it is also beneficial to shorten the total optical length of the optical lens, reduce the assembly difficulty of each lens, and improve the assembly stability of each lens.
  • optical lens satisfies the following relationship: 4 ⁇ (sd101-sd81)/(et10-et8) ⁇ 75;
  • sd81 is the maximum effective semi-diameter of the object side of the eighth lens
  • et8 is on the optical axis from the maximum effective radius of the object side of the eighth lens to the maximum effective radius of the image side of the eighth lens distance (that is, the edge thickness of the eighth lens)
  • sd101 is the maximum effective radius of the object side of the tenth lens
  • et10 is the maximum effective radius of the object side of the tenth lens to the tenth lens The distance on the optical axis of the maximum effective radius of the image side of the lens (ie the edge thickness of the tenth lens).
  • the cantilever portion is surrounded and accommodated in the gap between the casing and the peripheral wall of the lens assembly.
  • optical lens satisfies the following relationship: 0.5 ⁇ (sag92-sag102)/(sag91-sag101) ⁇ 2;
  • sag91 is the sagittal height of the object side of the ninth lens at the maximum effective radius (that is, the intersection of the object side of the ninth lens and the optical axis to the maximum effective radius of the object side of the ninth lens is in parallel light
  • sag92 is the sagittal height of the image side of the ninth lens at the maximum effective radius (that is, the distance between the intersection of the image side of the ninth lens and the optical axis to the image side of the ninth lens
  • the maximum effective radius is the distance on the direction parallel to the optical axis
  • sag101 is the sagittal height of the object side of the tenth lens at the maximum effective radius (that is, the intersection of the object side of the tenth lens and the optical axis to the first
  • the maximum effective radius of the object side of the tenth lens is in the distance on the direction parallel to the optical axis
  • sag102 is the sagittal height of the image side of the tenth lens at the maximum effective radius (that
  • the surface shapes of the ninth lens and the tenth lens can be effectively constrained, and the degree of bending of light rays at the ninth lens and the tenth lens can be reduced, thereby helping to reduce the optical lens
  • the amount of astigmatism ensures that the peripheral field of view light has a small deflection angle to improve the relative brightness of the peripheral field of view of the optical lens and improve the imaging quality of the optical lens; at the same time, it can also prevent the ninth lens from being too curved , so as to improve the processability of the ninth lens.
  • the degree of curvature of the object side and the image side of the tenth lens is insufficient, which is not conducive to correcting aberrations such as field curvature and spherical aberration of the optical lens, and cannot guarantee good imaging quality; and
  • the upper limit of the above relationship is exceeded, the sagittal height of the object side and image side of the ninth lens at the maximum effective radius is too large, the surface shape is too curved, and the sensitivity increases, which is not conducive to the processing and molding of the ninth lens.
  • an embodiment of the present application provides a camera module, the camera module includes a photosensitive chip and the optical lens as described in the first aspect, and the photosensitive chip is arranged on the image side of the optical lens.
  • the camera module with the optical lens can meet the light and small design, and at the same time, it is beneficial to make the camera module have the characteristics of a large image area, improve the image quality, and improve the resolution and imaging clarity.
  • the shooting quality in the environment is conducive to shooting in dark light environments such as night scenes, rainy days, and starry sky.
  • an embodiment of the present application provides an electronic device, the electronic device includes a casing and the camera module as described in the second aspect, and the camera module is disposed on the casing.
  • the electronic device with the camera module can satisfy the thin and small design, and at the same time, it is beneficial to make the camera module have the characteristics of a large image area, improve the image quality, and improve the resolution and imaging clarity.
  • the shooting quality in the environment is conducive to shooting in dark light environments such as night scenes, rainy days, and starry sky.
  • the optical lens adopts ten lenses, the number of lenses is reasonable, the structure is ingenious, and the volume is small.
  • the optical lens satisfy the following relationship: 1.8 ⁇ f/EPD ⁇ 2
  • the light, thin and miniaturized design of the optical lens, on the one hand, is conducive to increasing the aperture of the optical lens, so that the optical lens has the characteristics of a large aperture, has a larger amount of light, and can realize dark environment.
  • the optical lens can also obtain sufficient luminous flux under low-light conditions and improve low-light shooting conditions, so that while achieving high-quality and high-definition shooting effects, it is conducive to shooting in low-light environments such as night scenes, rainy days, and starry sky, and improves user shooting experience.
  • FIG. 1 is a schematic structural view of the optical lens disclosed in the first embodiment of the present application.
  • Fig. 2 is the spherical aberration diagram (mm), the astigmatism curve diagram (mm) and the distortion curve diagram (%) of the optical lens disclosed in the first embodiment of the present application;
  • FIG. 3 is a schematic structural view of the optical lens disclosed in the second embodiment of the present application.
  • Fig. 4 is the spherical aberration diagram (mm), the astigmatism curve diagram (mm) and the distortion curve diagram (%) of the optical lens disclosed in the second embodiment of the present application;
  • Fig. 5 is a schematic structural diagram of the optical lens disclosed in the third embodiment of the present application.
  • Fig. 6 is the spherical aberration diagram (mm), the astigmatism curve diagram (mm) and the distortion curve diagram (%) of the optical lens disclosed in the third embodiment of the present application;
  • Fig. 7 is a schematic structural view of the optical lens disclosed in the fourth embodiment of the present application.
  • Fig. 8 is the spherical aberration diagram (mm), the astigmatism curve diagram (mm) and the distortion curve diagram (%) of the optical lens disclosed in the fourth embodiment of the present application;
  • FIG. 9 is a schematic structural view of the optical lens disclosed in the fifth embodiment of the present application.
  • Fig. 10 is the spherical aberration diagram (mm), the astigmatism curve diagram (mm) and the distortion curve diagram (%) of the optical lens disclosed in the fifth embodiment of the present application;
  • Fig. 11 is a schematic structural view of the optical lens disclosed in the sixth embodiment of the present application.
  • Fig. 12 is the spherical aberration diagram (mm), the astigmatism curve diagram (mm) and the distortion curve diagram (%) of the optical lens disclosed in the sixth embodiment of the present application;
  • FIG. 13 is a schematic structural view of the camera module disclosed in the present application.
  • FIG. 14 is a schematic structural diagram of an electronic device disclosed in the present application.
  • installed disposed
  • provided a connection or an integral structure
  • it may be a mechanical connection or an electrical connection
  • it may be a direct connection or an indirect connection through an intermediary
  • internal connectivity Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • first means two or more.
  • the present application discloses an optical lens 100, the optical lens 100 includes a first lens L1, a second lens arranged in sequence along the optical axis O from the object side to the image side L2, third lens L3, fourth lens L4, fifth lens L5, sixth lens L6, seventh lens L7, eighth lens L8, ninth lens L9, and tenth lens L10.
  • the light enters the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6, the seventh lens L7, the Eight lenses L8 , ninth lens L9 and tenth lens L10 are finally imaged on the imaging surface 101 of the optical lens 100 .
  • the first lens L1 has a positive refractive power
  • the second lens L2 has a positive refractive power
  • the third lens L3 has a refractive power (for example, a positive refractive power or a negative refractive power)
  • the fourth lens L4 has a positive refractive power
  • the fifth lens L4 has a positive refractive power.
  • L5, sixth lens L6, seventh lens L7 and eighth lens L8 respectively have refractive power (eg, positive or negative refractive power)
  • ninth lens L9 has negative refractive power
  • tenth lens L10 has negative refractive power.
  • the object side S1 of the first lens L1 can be convex at the near optical axis O
  • the image side S2 of the first lens L1 can be concave at the near optical axis O
  • the object side S1 of the first lens L1 can be at the circumference It may be a convex surface
  • the image side S2 of the first lens L1 may be a concave surface at the circumference.
  • the object side S3 of the second lens L2 can be convex at the near optical axis O
  • the image side S4 of the second lens L2 can be concave at the near optical axis O
  • the object side S3 of the second lens L2 can be convex at the circumference
  • the image side S4 of the second lens L2 may be concave at the circumference.
  • the object side S5 of the third lens L3 can be convex or concave at the near optical axis O
  • the image side S6 of the third lens L3 can be convex or concave at the near optical axis O
  • the object side S5 of the third lens L3 can be convex or concave.
  • the object side S7 of the fourth lens L4 can be convex or concave at the near optical axis O
  • the image side S8 of the fourth lens L4 can be convex or concave at the near optical axis O
  • the object side S7 of the fourth lens L4 The circumference can be convex or concave
  • the image side S8 of the fourth lens L4 can be convex or concave at the circumference.
  • the object side S9 of the fifth lens L5 can be convex or concave at the near optical axis O
  • the image side S10 of the fifth lens L5 can be convex or concave at the near optical axis O
  • the object side S9 of the fifth lens L5 Both the surface and the image side S10 can be concave at the circumference.
  • the object side S11 of the sixth lens L6 can be convex or concave at the near optical axis O
  • the image side S12 of the sixth lens L6 can be convex at the near optical axis O
  • the object side S11 of the sixth lens L6 can be at the circumference It can be convex or concave
  • the image side S12 of the sixth lens L6 can be convex at the circumference.
  • the object side S13 of the seventh lens L7 can be convex or concave at the near optical axis O
  • the image side S14 of the seventh lens L7 can be convex or concave at the near optical axis O
  • the object side S13 of the seventh lens L7 And like side S14 all can be concave surface at the circumference place.
  • the object side S15 of the eighth lens L8 can be concave at the near optical axis O
  • the image side S16 of the eighth lens L8 can be convex or concave at the near optical axis O
  • the object side S15 and the image side of the eighth lens L8 can be S16 can be convex at the circumference.
  • the object side S17 of the ninth lens L9 can be concave at the near optical axis O
  • the image side S18 of the ninth lens L9 can be concave at the near optical axis O
  • the object side S17 of the ninth lens L9 can be concave at the circumference
  • the image side S18 of the ninth lens L9 can be convex at the circumference.
  • the object side S19 of the tenth lens L10 can be convex at the near optical axis O
  • the image side S20 of the tenth lens L10 can be concave at the near optical axis O
  • the object side S19 of the tenth lens L10 can be concave at the circumference
  • the image side S20 of the tenth lens L10 may be convex at the circumference.
  • the optical lens 100 is mostly used in electronic devices such as mobile phones, tablet computers, and smart watches
  • the material of the seventh lens L7 , the eighth lens L8 , the ninth lens L9 and the tenth lens L10 can be made of plastic, so that the optical lens 100 has a good optical effect while reducing the overall weight of the optical lens 100 .
  • the aforementioned first lens L1, second lens L2, third lens L3, fourth lens L4, fifth lens L5, sixth lens L6, seventh lens L7, eighth lens L8, ninth lens L9 and third lens All ten lenses L10 can be aspherical.
  • At least one of the object side S19 and the image side S20 of the tenth lens L10 is provided with at least one inflection point.
  • an aspheric optical surface it can be made into a shape other than a spherical surface, so that more control variables can be obtained and used to reduce aberrations, thereby providing better resolution and improving the relationship between the ninth lens L9 and the tenth lens L10. The compactness between them can effectively reduce the total length of the optical lens 100 .
  • the optical lens 100 further includes a diaphragm 102 , which can be an aperture diaphragm or a field diaphragm, and can be disposed between the object side of the optical lens 100 and the object side S1 of the first lens L1 .
  • the aperture 102 can also be arranged between two adjacent lenses, for example, between the second lens L2 and the third lens L3, and the setting can be adjusted according to the actual situation. The embodiment does not specifically limit this.
  • the optical lens 100 also includes a filter L11, such as an infrared filter, and the infrared filter is arranged between the image side S20 of the tenth lens L10 and the imaging surface 101 of the optical lens 100, thereby filtering out
  • a filter L11 such as an infrared filter
  • the infrared filter is arranged between the image side S20 of the tenth lens L10 and the imaging surface 101 of the optical lens 100, thereby filtering out
  • the optical lens 100 can be used as an infrared optical lens, that is, the optical lens 100 can also image images in dim environments and other special application scenarios. A better image effect can be obtained.
  • the optical lens 100 satisfies the following relationship: 1.8 ⁇ f/EPD ⁇ 2; wherein, f is the effective focal length of the optical lens 100 , and EPD is the entrance pupil diameter of the optical lens 100 .
  • f is the effective focal length of the optical lens 100
  • EPD is the entrance pupil diameter of the optical lens 100 .
  • the optical lens 100 can also obtain sufficient luminous flux under low-light conditions and improve low-light shooting conditions, so that while achieving high-quality and high-definition shooting effects, it is conducive to shooting in low-light environments such as night scenes, rainy days, and starry sky, and improves user shooting experience.
  • the optical lens 100 satisfies the following relationship: TTL/Imgh ⁇ 1.41.
  • TTL is the distance from the object side S1 of the first lens L1 to the imaging surface 101 of the optical lens 100 on the optical axis O (that is, the total optical length of the optical lens 100)
  • Imgh is the radius of the maximum effective imaging circle of the optical lens 100 ( That is, the half-image height of the optical lens 100).
  • the optical lens 100 satisfies the following relationship: 1.5 ⁇ (f1-f)/(r12-r11) ⁇ 15; wherein, f1 is the focal length of the first lens L1, and r11 is the object side surface S1 of the first lens L1 The radius of curvature at the optical axis O, r12 is the radius of curvature of the image side S2 of the first lens L1 at the optical axis O.
  • the optical lens 100 By restricting the surface shapes of the object side S1 and the image side S2 of the first lens L1, it is beneficial to reduce the bending degree of the light at the image side S2 of the first lens L1, thereby helping to reduce the amount of astigmatism of the optical lens 100, and Reducing the risk of ghost images can ensure that the optical lens 100 has a larger field of view and at the same time make the optical lens 100 have less distortion, which is beneficial to improving the imaging quality of the optical lens 100 .
  • the optical lens 100 satisfies the following relationship: 3.5 ⁇ f2/(r22-r21) ⁇ 17.5; wherein, f2 is the focal length of the second lens L2, and r21 is the object side surface S3 of the second lens L2 on the optical axis O
  • the radius of curvature at , r22 is the radius of curvature of the image side S4 of the second lens L2 at the optical axis O.
  • the radius of curvature of the object side S3 and the image side S4 of the second lens L2 can be effectively constrained, providing a suitable positive refractive power for the optical lens 100, so that the second lens L2 can obtain sufficient optical convergence capability, Therefore, it is beneficial to eliminate the stray light generated by the first lens L1 , further to correct the chromatic aberration, and promote the balance of various aberrations of the optical lens 100 to obtain good imaging quality.
  • the optical lens 100 satisfies the following relationship: 0.5 ⁇ f4/f ⁇ 4; wherein, f4 is the focal length of the fourth lens L4.
  • f4 is the focal length of the fourth lens L4.
  • the positive refractive power provided by the fourth lens L4 is not enough, which is not conducive to the overall aberration balance of the optical lens 100; and when it is lower than the lower limit of the relational expression, the positive refractive power contributed by the fourth lens L4 Too large is not conducive to correcting the aberration generated by the front lens group, making it difficult for the optical lens 100 to achieve an overall aberration balance, thereby making it difficult to obtain higher imaging quality.
  • the optical lens 1 satisfies the following relationship: 5 ⁇
  • the astigmatism contribution of the image side S12 of the sixth lens L6 can be effectively controlled, thereby helping to ensure the imaging quality of the intermediate field of view; meanwhile, the sixth lens L6 has a reasonable thickness, and the sixth lens L6 has a reasonable thickness, and the sixth lens L6 has a reasonable thickness.
  • the air gap between the six lenses L6 and the front and rear lenses is arranged reasonably, which is beneficial to shorten the total optical length of the optical lens 100 and improve the assembly stability of the optical lens 100 .
  • the value of the radius of curvature of the image side S12 of the sixth lens L6 is too small, which may easily lead to an overly curved surface, resulting in low machinability of the molding process of the sixth lens L6, which will result in the formation of the sixth lens L6.
  • the manufacturing of the six lenses L6 is relatively difficult, thereby increasing the manufacturing difficulty and manufacturing cost of the optical lens 100; and when it is lower than the lower limit of the above relational expression, the value of the radius of curvature of the image side S12 of the sixth lens L6 is too large, which is not conducive to ensuring The equalization of distortion results in low imaging quality of the optical lens 100 .
  • the optical lens 100 satisfies the following relationship: 0.55 ⁇ ctal/TTL ⁇ 0.6; wherein, ctal is the sum of the thicknesses of the respective lenses of the optical lens 100 on the optical axis (that is, the thickness of ten lenses on the optical axis O total thickness), TTL is the distance from the object side S1 of the first lens L1 to the imaging surface 101 of the optical lens 100 on the optical axis O (that is, the total optical length of the optical lens 100 ).
  • the optical lens 100 By controlling the ratio of the total thickness of each lens to the total optical length of the optical lens 100 within a reasonable range, it is beneficial for the optical lens 100 to have a sufficient air gap ratio, thereby ensuring the stability and imaging quality of the optical lens 100; It is beneficial to shorten the total optical length of the optical lens 100 , reduce the assembly difficulty of each lens, and improve the assembly stability of each lens.
  • the optical lens 100 satisfies the following relationship: 4 ⁇ (sd101-sd81)/(et10-et8) ⁇ 75;
  • sd81 is the maximum effective radius of the object side S15 of the eighth lens L
  • et8 is the maximum effective radius of the object side S15 of the eighth lens L8 to the maximum effective radius of the image side S16 of the eighth lens L8 on the optical axis O
  • sd101 is the maximum effective semi-diameter of the object side S19 of the tenth lens L10
  • et10 is the maximum effective radius of the object side S19 of the tenth lens L10 to the tenth lens L10
  • the maximum effective radius of the image side S20 is on the optical axis O (that is, the edge thickness of the tenth lens L10).
  • the optical lens 100 satisfies the following relationship: 0.5 ⁇ (sag92-sag102)/(sag91-sag101) ⁇ 2;
  • sag91 is the sagittal height of the object side S17 of the ninth lens L9 at the maximum effective radius (that is, the intersection point of the object side S17 of the ninth lens L9 and the optical axis O is parallel to the maximum effective radius of the object side S17 of the ninth lens L9
  • sag92 is the sagittal height of the image side S18 of the ninth lens L9 at the maximum effective radius (that is, the intersection point of the image side S18 of the ninth lens L9 and the optical axis O to the image of the ninth lens L9
  • sag101 is the sagittal height of the object side S19 of the tenth lens L10 at the maximum effective radius (that is, the distance between the object side S19 of the tenth lens L10 and the optical axis O Intersection to the maximum effective radius of the object side surface S19 of the tenth lens
  • the maximum effective radius of the surface is closer than the intersection point of the surface and the optical axis O Close to the image side of the optical lens 100; when the sagittal height value is negative, in a direction parallel to the optical axis O, the maximum effective radius of the surface is closer to the optical lens than the intersection point of the surface and the optical axis O The object side of 100.
  • the surface shapes of the ninth lens L9 and the tenth lens L10 can be effectively constrained, which is beneficial to reduce the bending degree of the light rays at the ninth lens L9 and the tenth lens L10, thereby helping to reduce the optical lens 100
  • the amount of astigmatism ensures that the light at the edge of the field of view has a small deflection angle, so as to improve the relative brightness of the edge of the field of view of the optical lens 100 and improve the imaging quality of the optical lens 100; at the same time, it can also avoid the ninth lens L9 from being too curved, thereby effectively It is beneficial to improve the workability of the ninth lens L9.
  • the degree of curvature of the object side S19 and the image side S20 of the tenth lens is not enough, which is not conducive to correcting aberrations such as spherical aberration of the optical lens 100, and cannot guarantee good imaging quality;
  • the sagittal height of the object side S17 and the image side S18 of the ninth lens L9 at the maximum effective radius is too large, the surface shape is too curved, and the sensitivity increases, which is not conducive to the processing and molding of the ninth lens L9.
  • optical lens 100 of this embodiment will be described in detail below in conjunction with specific parameters.
  • the structural diagram of the optical lens 100 disclosed in the first embodiment of the present application is shown in FIG. 1 .
  • the optical lens 100 includes a diaphragm 102 , a first lens L1 , and a second lens arranged in sequence along the optical axis O from the object side to the image side.
  • L2 third lens L3, fourth lens L4, fifth lens L5, sixth lens L6, seventh lens L7, eighth lens L8, ninth lens L9, tenth lens L10, and filter L11.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6, the seventh lens L7, the eighth lens L8, the ninth lens L9 and the tenth lens The material of the lens L10 can be referred to the description of the above-mentioned specific embodiments, and will not be repeated here.
  • the first lens L1 has a positive refractive power
  • the second lens L2 has a positive refractive power
  • the third lens L3 has a negative refractive power
  • the fourth lens L4 has a positive refractive power
  • the fifth lens L5 has a negative refractive power
  • the sixth lens L3 has a negative refractive power.
  • Lens L6 has positive refractive power
  • seventh lens L7 has positive refractive power
  • eighth lens L8 has positive refractive power
  • ninth lens L9 has negative refractive power
  • tenth lens L10 has negative refractive power.
  • the object side S1 and the image side S2 of the first lens L1 are respectively convex and concave at the near optical axis O; the object side S1 and image side S2 of the first lens L1 are respectively convex and concave at the circumference.
  • the object side S3 and image side S4 of the second lens L2 are respectively convex and concave at the near optical axis O; the object side S3 and image side S4 of the second lens L2 are respectively concave and convex at the circumference.
  • the object side S5 and image side S6 of the third lens L3 are respectively convex and concave at the near optical axis O; the object side S5 and image side S6 of the third lens L3 are respectively concave and convex at the circumference.
  • the object side S7 and the image side S8 of the fourth lens L4 are both convex at the near optical axis O; the object side S7 and the image side S8 of the four lenses L4 are respectively concave and convex at the circumference.
  • the object side S9 and image side S10 of the fifth lens L5 are respectively concave and convex at the near optical axis O; the object side S9 and image side S10 of the fifth lens L5 are both concave at the circumference.
  • the object side S11 and image side S12 of the sixth lens L6 are respectively concave and convex at the near optical axis O; the object side S11 and image side S12 of the sixth lens L6 are respectively concave and convex at the circumference.
  • the object side S13 and the image side S14 of the seventh lens L7 are respectively convex and concave at the near optical axis O; the object side S13 and image side S14 of the seventh lens L7 are both concave at the circumference.
  • the object side S115 and image side S16 of the eighth lens L8 are respectively concave and convex at the near optical axis O; the object side S15 and image side S16 of the eighth lens L8 are both convex at the circumference.
  • the object side S17 and image side S18 of the ninth lens L9 are both concave at the near optical axis O; the object side S17 and image side S18 of the ninth lens L9 are concave and convex at the circumference respectively.
  • the object side S19 and the image side S20 of the tenth lens L10 are respectively convex and concave at the near optical axis O; the object side S19 and image side S20 of the tenth lens L10 are respectively concave and convex at the circumference.
  • other parameters of the optical lens 100 are given in Table 1 below.
  • the elements along the optical axis O of the optical lens 100 from the object side to the image side are arranged in sequence according to the order of the elements in Table 1 from top to bottom.
  • the surface with a smaller surface number is the object side of the lens
  • the surface with a larger surface number is the image side of the lens.
  • surface numbers 2 and 3 correspond to the object side S1 and image side of the first lens L1 respectively. S2.
  • the Y radius in Table 1 is the radius of curvature of the object side or image side of the corresponding surface number at the near optical axis O.
  • the first value in the "thickness" parameter column of the lens is the thickness of the lens on the optical axis O, and the second value is the distance from the image side of the lens to the rear surface on the optical axis O.
  • the value of the diaphragm 102 in the "thickness" parameter column is the distance from the diaphragm 102 to the vertex of the next surface (the vertex refers to the intersection point of the surface and the optical axis O) on the optical axis O, and the default is from the object side of the first lens L1 to the last
  • the direction of the image side of each lens is the positive direction of the optical axis O.
  • the value is negative, it indicates that the diaphragm 102 is set on the right side of the apex of the rear surface. If the thickness of the diaphragm 102 is positive, the diaphragm 102 is behind The left side of a surface vertex.
  • the units of Y radius, thickness and focal length in Table 1 are mm.
  • the reference wavelength of the effective focal length of each lens in Table 1 is 555 nm, and the reference wavelength of the refractive index and Abbe number is 587.6 nm.
  • the object side and the image side of any one of the first lens L1 to the tenth lens L10 are aspherical surfaces, and the surface type x of each aspheric lens can be defined by but not limited to the following aspheric surface formula :
  • x is the distance vector height of the aspheric surface from the apex of the aspheric surface at the position of height h along the optical axis;
  • k is the cone coefficient;
  • Ai is the correction coefficient corresponding to the high-order item of the i-th item of the aspheric surface.
  • Table 2 shows the high-order term coefficients A4, A6, A8, A10, A12, A14, A16, A18 and A20 that can be used for each aspheric mirror surface S1-S20 in the first embodiment.
  • FIG. 2 shows spherical aberration curves of the optical lens 100 in the first embodiment at wavelengths of 470nm, 510nm, 555nm, 610nm and 650nm.
  • the abscissa along the X-axis direction represents focus shift
  • the ordinate along the Y-axis direction represents a normalized field of view. It can be seen from (A) in FIG. 2 that the spherical aberration value of the optical lens 100 in the first embodiment is better, indicating that the imaging quality of the optical lens 100 in this embodiment is better.
  • FIG. 2 is an astigmatism diagram of the optical lens 100 in the first embodiment at a wavelength of 555 nm.
  • the abscissa along the X-axis direction represents the focal shift
  • the ordinate along the Y-axis direction represents the image height
  • the unit is mm.
  • the astigmatism curve represents the curvature T of the meridional imaging plane and the curvature S of the sagittal imaging plane. It can be seen from (B) in FIG. 2 that at this wavelength, the astigmatism of the optical lens 100 is better compensated.
  • (C) in FIG. 2 is a distortion curve of the optical lens 100 in the first embodiment at a wavelength of 555 nm.
  • the abscissa along the X-axis direction represents the distortion
  • the ordinate along the Y-axis direction represents the image height
  • the unit is mm. It can be seen from (C) in FIG. 2 that the distortion of the optical lens 100 is well corrected at a wavelength of 555 nm.
  • FIG. 3 is a schematic structural diagram of an optical lens 100 according to a second embodiment of the present application.
  • the optical lens 100 includes a diaphragm 102, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6, which are sequentially arranged from the object side to the image side along the optical axis O , the seventh lens L7, the eighth lens L8, the ninth lens L9, the tenth lens L10 and the filter L11.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6, the seventh lens L7, the eighth lens L8, the ninth lens L9 and the tenth lens The material of the lens L10 can be referred to the description of the above-mentioned specific embodiments, and will not be repeated here.
  • the difference between the refractive power of each lens and the refractive power of each lens in the first embodiment is that the third lens L3 has a positive refractive power.
  • the difference between the surface type of each lens and the surface type of each lens in the first embodiment is that: the object side S5 and the image side S6 of the third lens L3 at the near optical axis O are respectively Concave and convex; the object side S7 and image side S8 of the fourth lens L4 are respectively concave and convex at the near optical axis O, and the object side S7 and image side S8 of the fourth lens L4 are respectively convex and concave at the circumference;
  • the object side S9 and image side S10 of the fifth lens L5 are concave at the near optical axis O; the object side S11 and image side S12 of the sixth lens L6 are convex at the near optical axis O, and the object side of the sixth lens L6 S11 and the image side S
  • Table 4 shows the high-order term coefficients that can be used for each aspheric mirror surface in the second embodiment, wherein each aspheric surface type can be defined by the formula given in the first embodiment.
  • FIG. 4 shows the spherical aberration curves of the optical lens 100 in the second embodiment at the wavelengths of 470nm, 510nm, 555nm, 610nm and 650nm.
  • the abscissa along the X-axis direction represents focus shift
  • the ordinate along the Y-axis direction represents a normalized field of view. It can be seen from (A) in FIG. 4 that the spherical aberration value of the optical lens 100 in the second embodiment is better, indicating that the imaging quality of the optical lens 100 in this embodiment is better.
  • FIG. 4 is an astigmatism diagram of the optical lens 100 in the second embodiment at a wavelength of 555 nm.
  • the abscissa along the X-axis direction represents the focal shift
  • the ordinate along the Y-axis direction represents the image height
  • the unit is mm.
  • the astigmatism curve represents the curvature T of the meridional imaging plane and the curvature S of the sagittal imaging plane. It can be seen from (B) in FIG. 4 that the astigmatism of the optical lens 100 is better compensated.
  • (C) in FIG. 4 is a distortion curve of the optical lens 100 in the second embodiment at a wavelength of 555 nm.
  • the abscissa along the X-axis direction represents the distortion
  • the ordinate along the Y-axis direction represents the image height
  • the unit is mm. It can be seen from (C) in FIG. 4 that the distortion of the optical lens 100 is well corrected at a wavelength of 555 nm.
  • FIG. 5 shows a schematic structural diagram of an optical lens 100 according to a third embodiment of the present application.
  • the optical lens 100 includes a stop 102, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6, which are sequentially arranged from the object side to the image side along the optical axis O , the seventh lens L7, the eighth lens L8, the ninth lens L9, the tenth lens L10 and the filter L11.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6, the seventh lens L7, the eighth lens L8, the ninth lens L9 and the tenth lens The material of the lens L10 can be referred to the description of the above-mentioned specific embodiments, and will not be repeated here.
  • the difference between the refractive power of each lens and the refractive power of each lens in the first embodiment is that the eighth lens L8 has negative refractive power.
  • the surface shape of each lens can refer to the above-mentioned first embodiment, and will not be repeated here.
  • Table 6 shows the high-order term coefficients that can be used for each aspheric mirror surface in the third embodiment, wherein each aspheric surface type can be defined by the formula given in the first embodiment.
  • FIG. 6 shows the spherical aberration curves of the optical lens 100 in the third embodiment at wavelengths of 470nm, 510nm, 555nm, 610nm and 650nm.
  • the abscissa along the X-axis direction represents focus shift
  • the ordinate along the Y-axis direction represents a normalized field of view. It can be seen from (A) in FIG. 6 that the spherical aberration value of the optical lens 100 in the third embodiment is better, indicating that the imaging quality of the optical lens 100 in this embodiment is better.
  • FIG. 6 is an astigmatism diagram of the optical lens 100 in the third embodiment at a wavelength of 555 nm.
  • the abscissa along the X-axis direction represents the focal shift
  • the ordinate along the Y-axis direction represents the image height
  • the unit is mm.
  • the astigmatism curve represents the curvature T of the meridional imaging plane and the curvature S of the sagittal imaging plane. It can be seen from (B) in FIG. 6 that the astigmatism of the optical lens 100 is better compensated.
  • (C) in FIG. 6 is a distortion curve of the optical lens 100 in the third embodiment at a wavelength of 555 nm.
  • the abscissa along the X-axis direction represents distortion
  • the ordinate along the Y-axis direction represents the image height
  • the unit is mm. It can be seen from (C) in FIG. 6 that the distortion of the optical lens 100 is well corrected at a wavelength of 555 nm.
  • FIG. 7 is a schematic structural diagram of the optical lens 100 disclosed in the fourth embodiment of the present application.
  • the optical lens 100 includes a diaphragm 102, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6, which are sequentially arranged from the object side to the image side along the optical axis O , the seventh lens L7, the eighth lens L8, the ninth lens L9, the tenth lens L10 and the filter L11.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6, the seventh lens L7, the eighth lens L8, the ninth lens L9 and the tenth lens The material of the lens L10 can be referred to the description of the above-mentioned specific embodiments, and will not be repeated here.
  • the difference between the refractive power of each lens and the refractive power of each lens in the first embodiment is that the sixth lens L6 has negative refractive power.
  • the difference between the surface type of each lens and the surface type of each lens in the first embodiment is that: the object side S15 and the image side S16 of the eighth lens L8 are both at the near optical axis O. concave.
  • the total optical length TTL of the optical lens 100 is 7.31mm
  • the aperture size FNO 1.9 as an example.
  • the other parameters in the fourth embodiment are given in Table 7 below, and the definition of each parameter can be obtained from the foregoing description, and will not be repeated here. It can be understood that the units of Y radius, thickness and focal length in Table 7 are mm. In addition, the reference wavelength of the effective focal length of each lens in Table 7 is 555 nm, and the reference wavelength of the refractive index and Abbe number is 587.6 nm.
  • Table 8 shows the high-order term coefficients that can be used for each aspheric mirror surface in the fourth embodiment, wherein each aspheric surface type can be defined by the formula given in the first embodiment.
  • FIG. 8 shows the spherical aberration curves of the optical lens 100 in the fourth embodiment at the wavelengths of 470nm, 510nm, 555nm, 610nm and 650nm.
  • the abscissa along the X-axis direction represents focus shift
  • the ordinate along the Y-axis direction represents a normalized field of view. It can be seen from (A) in FIG. 8 that the spherical aberration value of the optical lens 100 in the fourth embodiment is better, indicating that the imaging quality of the optical lens 100 in this embodiment is better.
  • FIG. 8 is an astigmatism diagram of the optical lens 100 in the fourth embodiment at a wavelength of 555 nm.
  • the abscissa along the X-axis direction represents the focal shift
  • the ordinate along the Y-axis direction represents the image height
  • the unit is mm.
  • the astigmatism curve represents the curvature T of the meridional imaging plane and the curvature S of the sagittal imaging plane. It can be seen from (B) in FIG. 8 that the astigmatism of the optical lens 100 is better compensated.
  • (C) in FIG. 8 is a distortion curve of the optical lens 100 in the fourth embodiment at a wavelength of 555 nm.
  • the abscissa along the X-axis direction represents the distortion
  • the ordinate along the Y-axis direction represents the image height
  • the unit is mm. It can be seen from (C) in FIG. 8 that the distortion of the optical lens 100 is well corrected at a wavelength of 555 nm.
  • FIG. 9 is a schematic structural diagram of the optical lens 100 disclosed in the fifth embodiment of the present application.
  • the optical lens 100 includes a diaphragm 102, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6, which are sequentially arranged from the object side to the image side along the optical axis O , the seventh lens L7, the eighth lens L8, the ninth lens L9, the tenth lens L10 and the filter L11.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6, the seventh lens L7, the eighth lens L8, the ninth lens L9 and the tenth lens The material of the lens L10 can be referred to the description of the above-mentioned specific embodiments, and will not be repeated here.
  • the difference between the refractive power of each lens and the refractive power of each lens in the first embodiment is that: the fifth lens L5 has a positive refractive power, and the seventh lens L7 has a negative refractive power.
  • the difference between the surface type of each lens and the surface type of each lens in the first embodiment is that: the object side S11 and the image side S12 of the sixth lens L6 are convex at the circumference, and the sixth lens L6 is convex.
  • the object side S13 and the image side S14 of the seven lenses L7 are concave at the near optical axis O.
  • the total optical length TTL of the optical lens 100 is 7.29mm
  • the aperture size FNO 1.97 as an example.
  • the other parameters in the fifth embodiment are given in Table 9 below, and the definition of each parameter can be obtained from the foregoing description, and will not be repeated here. It can be understood that the units of Y radius, thickness and focal length in Table 9 are mm. In addition, the reference wavelength of the effective focal length of each lens in Table 9 is 555 nm, and the reference wavelength of the refractive index and Abbe number is 587.6 nm.
  • Table 10 shows the higher-order coefficients that can be used for each aspheric mirror surface in the fifth embodiment, wherein each aspheric surface type can be defined by the formula given in the first embodiment.
  • FIG. 10 shows the spherical aberration curves of the optical lens 100 in the fifth embodiment at the wavelengths of 470nm, 510nm, 555nm, 610nm and 650nm.
  • the abscissa along the X-axis direction represents focus shift
  • the ordinate along the Y-axis direction represents a normalized field of view. It can be seen from (A) in FIG. 10 that the spherical aberration value of the optical lens 100 in the fifth embodiment is better, indicating that the imaging quality of the optical lens 100 in this embodiment is better.
  • FIG. 10 is an astigmatism diagram of the optical lens 100 in the fifth embodiment at a wavelength of 555 nm.
  • the abscissa along the X-axis direction represents the focal shift
  • the ordinate along the Y-axis direction represents the image height
  • the unit is mm.
  • the astigmatism curve represents the curvature T of the meridional imaging plane and the curvature S of the sagittal imaging plane. It can be seen from (B) in FIG. 10 that the astigmatism of the optical lens 100 is better compensated.
  • (C) in FIG. 10 is a distortion curve of the optical lens 100 in the fifth embodiment at a wavelength of 555 nm.
  • the abscissa along the X-axis direction represents the distortion
  • the ordinate along the Y-axis direction represents the image height
  • the unit is mm. It can be seen from (C) in FIG. 10 that the distortion of the optical lens 100 is well corrected at a wavelength of 555 nm.
  • FIG. 11 is a schematic structural diagram of the optical lens 100 disclosed in the fifth embodiment of the present application.
  • the optical lens 100 includes a diaphragm 102, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6, which are sequentially arranged from the object side to the image side along the optical axis O , the seventh lens L7, the eighth lens L8, the ninth lens L9, the tenth lens L10 and the filter L11.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6, the seventh lens L7, the eighth lens L8, the ninth lens L9 and the tenth lens The material of the lens L10 can be referred to the description of the above-mentioned specific embodiments, and will not be repeated here.
  • the difference between the refractive power of each lens and the refractive power of each lens in the first embodiment is that the seventh lens L7 has negative refractive power.
  • the difference between the surface type of each lens and the surface type of each lens in the first embodiment is that: the object side S7 and the image side S8 of the fourth lens L4 at the near optical axis O are respectively Convex and concave, the object side S9 and image side S10 of the fifth lens L5 are respectively convex and concave at the near optical axis O, and the object side S11 and image side S12 of the sixth lens L6 are convex at the near optical axis O.
  • the total optical length TTL of the optical lens 100 is 7.29mm
  • the aperture size FNO 1.935 as an example.
  • the other parameters in the sixth embodiment are given in Table 11 below, and the definition of each parameter can be obtained from the foregoing description, and will not be repeated here. It can be understood that the units of Y radius, thickness and focal length in Table 11 are mm.
  • the reference wavelength of the effective focal length of each lens in Table 11 is 555 nm, and the reference wavelength of the refractive index and Abbe number is 587.6 nm.
  • Table 12 shows the high-order term coefficients that can be used for each aspheric mirror surface in the sixth embodiment, wherein each aspheric surface type can be defined by the formula given in the first embodiment.
  • FIG. 12 shows the spherical aberration curves of the optical lens 100 in the fifth embodiment at wavelengths of 470nm, 510nm, 555nm, 610nm and 650nm.
  • the abscissa along the X-axis direction represents focus shift
  • the ordinate along the Y-axis direction represents a normalized field of view. It can be seen from (A) in FIG. 10 that the spherical aberration value of the optical lens 100 in the fifth embodiment is better, indicating that the imaging quality of the optical lens 100 in this embodiment is better.
  • (B) in FIG. 10 is the light astigmatism diagram of the optical lens 100 in the fifth embodiment at a wavelength of 555 nm.
  • the abscissa along the X-axis direction represents the focal shift
  • the ordinate along the Y-axis direction represents the image height
  • the unit is mm.
  • the astigmatism curve represents the curvature T of the meridional imaging plane and the curvature S of the sagittal imaging plane. It can be seen from (B) in FIG. 12 that the astigmatism of the optical lens 100 is better compensated.
  • (C) in FIG. 10 is a distortion curve of the optical lens 100 in the fifth embodiment at a wavelength of 555 nm.
  • the abscissa along the X-axis direction represents the distortion
  • the ordinate along the Y-axis direction represents the image height
  • the unit is mm. It can be seen from (C) in FIG. 12 that the distortion of the optical lens 100 is well corrected at a wavelength of 555 nm.
  • Table 13 is a summary of the ratios of the relational expressions in the first embodiment to the sixth embodiment of the present application.
  • the present application also discloses a camera module.
  • the camera module 200 includes a photosensitive chip 201 and an optical lens 100 as described in any one of the first to sixth embodiments above.
  • the photosensitive chip 201 is disposed on the image side of the optical lens 100 .
  • the optical lens 100 can be used to receive the light signal of the subject and project it to the photosensitive chip 201, and the photosensitive chip 201 can be used to convert the light signal corresponding to the subject into an image signal. I won't go into details here.
  • the camera module 200 having the above-mentioned optical lens 100 can make the optical lens 100 meet the requirements of thin and small design, and at the same time, it is beneficial to make the camera module have the characteristics of a large image surface and improve the image quality. Improve resolution and imaging clarity. At the same time, it is also beneficial to make the optical lens have the characteristics of a large aperture, which has a larger amount of light, and can achieve sufficient luminous flux in a dim environment, improving the shooting conditions in dark light, thereby effectively improving the performance of the camera module in dark light.
  • the shooting quality in the environment is conducive to shooting in dark light environments such as night scenes, rainy days, and starry sky. Since the above-mentioned technical effects have been introduced in detail in the embodiment of the optical lens 100 , details will not be repeated here.
  • the present application also discloses an electronic device.
  • the electronic device 300 includes a casing 301 and the above-mentioned camera module 200 .
  • the camera module 200 is set on the casing 301 to obtain image information.
  • the electronic device 300 may be, but not limited to, a mobile phone, a tablet computer, a notebook computer, a smart watch, a monitor, and the like. It can be understood that the electronic device 300 having the aforementioned camera module 200 also has all the technical effects of the aforementioned optical lens 100 .
  • the electronic device 300 can make the optical lens 100 satisfies the light and small design while satisfying the thin and small design, and is conducive to making the camera module have the characteristics of a large image surface, improving Image quality, improve resolution and imaging clarity.
  • the shooting quality in the environment is conducive to shooting in dark light environments such as night scenes, rainy days, and starry sky. Since the above-mentioned technical effects have been introduced in detail in the embodiment of the optical lens 100 , details will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本申请公开一种光学镜头、摄像模组及电子设备,光学镜头包括沿光轴从物侧至像侧依次设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜、第八透镜、第九透镜和第十透镜;第一透镜具有正屈折力,第二透镜具有负屈折力,第四透镜具有正屈折力,第九透镜具有负屈折力,第十透镜具有负屈折力,光学镜头满足以下关系:1.8<f/EPD<2,f为光学镜头的有效焦距,EPD为光学镜头的入瞳直径。本发明提供的光学镜头、摄像模组及电子设备,能够在满足轻薄、小型化设计的同时,具有大光圈、大像面的特点,改善光学镜头的画质感,提高光学镜头的分辨率和成像清晰度。

Description

光学镜头、摄像模组及电子设备 技术领域
本申请涉及光学成像技术领域,尤其涉及一种光学镜头、摄像模组及电子设备。
背景技术
目前,随着摄像技术的发展,人们对光学镜头的成像品质的要求越来越高,不仅要求光学镜头更加轻薄小型化,同时还要达到更高的成像质量。为了达到更高的成像质量,光学镜头需要增加透镜的数量来矫正像差。但是,透镜数量的增加又提高了透镜的加工成型、组装的难度,以及增大了光学镜头的体积。因此,相关技术中,在满足光学镜头轻薄小型化的设计趋势下,光学镜头的画质感较差、分辨率较低,且光学镜头的成像质量也不够清晰,难以满足人们对光学镜头的高清成像要求。
发明内容
本申请公开了一种光学镜头、摄像模组及电子设备,能够在实现光学镜头的轻薄、小型化设计的同时,具有大光圈、大像面的特点,改善光学镜头的画质感,提高光学镜头的分辨率和成像清晰度。
为了实现上述目的,第一方面,本申请提供一种光学镜头,所述光学镜头包括沿光轴从物侧至像侧依次设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜、第八透镜、第九透镜和第十透镜;
所述第一透镜具有正屈折力,所述第一透镜的物侧面于近光轴处为凸面,所述第一透镜的像侧面于近光轴处为凹面;
所述第二透镜具有正屈折力,所述第二透镜的物侧面于近光轴处为凸面,所述第二透镜的像侧面于近光轴处为凹面;
所述第三透镜具有屈折力;
所述第四透镜具有正屈折力;
所述第五透镜具有屈折力;
所述第六透镜具有屈折力,所述第六透镜的像侧面于近光轴处为凸面;
所述第七透镜具有屈折力;
所述第八透镜具有屈折力,所述第八透镜的物侧面于近光轴处为凹面;
所述第九透镜具有负屈折力,所述第九透镜的物侧面和像侧面于近光轴处均为凹面;
所述第十透镜具有负屈折力,所述第十透镜的物侧面于近光轴处为凸面,所述第十透镜的像侧面于近光轴处为凹面;
所述光学镜头满足以下关系式:
1.8<f/EPD<2;其中,f为所述光学镜头的有效焦距,EPD为所述光学镜头的入瞳直径。
在本申请提供的光学镜头中,第一透镜提供的正屈折力及物侧面和像侧面于近光轴处的凸凹面面型设计,有利于保证第一透镜具有足够的光线汇聚能力。配合第二透镜的正屈折力及物侧面和像侧面于近光轴处的凸凹面面型设计,可以辅助第一透镜汇聚光线,有利于校正第一透镜产生的部分像差。同时配合第四透镜的正屈折力,有利于缩短光学镜头的光学总长,实现光学镜头的小型化设计。第六透镜提供的屈折力和像侧面于近光轴处的凸面面型设计,有利于边缘光线顺利向第七透镜过渡,而且使第六透镜具有合理的边缘倾角,可以保证较小的光线偏转角,避免出现杂散光。而第八透镜提供的正或负屈折力及物侧面于近光轴处的凹面面型设计,有利于矫正前后透镜(第七透镜和第八透镜)产生的像差,而且还能与前后透镜保持合理的空气间隙,有利于缩短光学镜头的光学总长,增大像面大小,保证第八透镜成型组装的可行性。第九透镜提供的负屈折力及物侧面和像侧面于近光轴处的凹面面型设计,使得第九透镜具有较为扭曲的面型形状,有利于通过有效矫正像散畸变等像差来保证中心视场的成像品质,同时也可避免面型过于扭曲而无法加工成型的情况。而第十透镜提供的负屈折力及物侧面和像侧面于近光轴处的凸凹面面型设计,有利于使光学镜头获得大像面,以匹配更高像素的感光芯片,同时还有利于边缘光线以较小的偏转角射入到像面,从而使得像面边缘也可获得较高的相对亮度,避免暗角,提升成像质量。
也即是说,通过选取合适数量的透镜并合理配置各个透镜的屈折力、面型,有利于提高所述光学镜头的分辨率和成像清晰度,以达到所述光学镜头的高清成像要求,同时使所述光学镜头满足以下关系式:1.8<f/EPD<2时,有利于在缩短所述光学 镜头的光学总长,以实现所述光学镜头的轻薄、小型化设计的同时,一方面,有利于增大所述光学镜头的光圈,以使所述光学镜头具有大光圈的特点,具有更大的进光量,可以实现昏暗环境下也能获得足够的光通量,改善暗光拍摄条件,从而能够在实现高画质高清晰的拍摄效果的同时,有利于适用于夜景、雨天、星空等暗光环境拍摄,提高用户拍摄体验。另一方面,还有利于增大所述光学镜头的像面大小,以使所述光学镜头具有大像面的特点,改善所述光学镜头的画质感,以及提高所述光学镜头的分辨率和成像清晰度,使所述光学镜头具有更好的成像效果,满足人们对所述光学镜头的高清成像要求。
进一步地,所述光学镜头满足以下关系式:TTL/Imgh<1.41;其中,TTL为所述第一透镜的物侧面至所述光学镜头的成像面于所述光轴上的距离(即所述光学镜头的光学总长),Imgh为所述光学镜头的最大有效成像圆的半径(即所述光学镜头的半像高)。
通过控制所述光学镜头的总长和半像高的比值在合理的范围内,有利于在所述光学镜头具有较大像面的前提下,使得所述光学镜头的结构更加紧凑,具有超薄的特性,满足小型化的设计要求。
进一步地,所述光学镜头满足以下关系式:1.5<(f1-f)/(r12-r11)<15;其中,f1为所述第一透镜的焦距,r11为所述第一透镜的物侧面于光轴处的曲率半径,r12为所述第一透镜的像侧面于光轴处的曲率半径。
通过约束所述第一透镜的物侧面和像侧面的面型,有利于降低光线在所述第一透镜的像侧面处的弯曲程度,从而有利于减小所述光学镜头的像散量,以及降低鬼影风险,可以保证所述光学镜头具有较大的视场角的同时,使得所述光学镜头具有小畸变,进而有利于提升所述光学镜头的成像质量。
进一步地,所述光学镜头满足以下关系式:3.5<f2/(r22-r21)<17.5;其中,f2为所述第二透镜的焦距,r21为所述第二透镜的物侧面于光轴处的曲率半径,r22为所述第二透镜的像侧面于光轴处的曲率半径。
通过上述关系式限定,可以有效地约束所述第二透镜的物侧面和像侧面的曲率半径,为所述光学镜头提供合适的正屈折力,使所述第二透镜可以获得足够的光学汇聚能力,从而有利于消除所述第一透镜产生的杂散光,进而有利于矫正色差,促进所述光学镜头各种像差的平衡,以获得良好的成像品质。
进一步地,所述光学镜头满足以下关系式:0.5<f4/f<4;其中,f4为所述第四透镜的焦距。
通过合理配置所述第四透镜提供的正屈折力,有利于矫正前透镜组(即由所述第一透镜、所述第二透镜和所述第三透镜组成的透镜组)产生的像差,从而有利于保证所述光学镜头整体的像差平衡;同时还有利于使外视场光线具有较小的偏转角,这样可以实现向像面平缓的过渡,以提高光学镜头的成像质量。
进一步地,所述光学镜头满足以下关系式:5<|r62|/ct6<56;其中,r62为所述第六透镜的像侧面于光轴处的曲率半径,ct6为所述第六透镜于光轴上的厚度。
通过上述关系式限定,可有效地控制所述第六透镜的像侧面的像散量贡献,从而有利于保证中间视场的成像质量;同时还使得所述第六透镜具有合理的厚度,以及使得所述第六透镜与前后透镜的空气间隙配置合理,有利于缩短所述光学镜头的光学总长,提高所述光学镜头的组装稳定性。
进一步地,所述光学镜头满足以下关系式:0.55<ctal/TTL<0.6;其中,ctal为所述光学镜头的各个透镜于光轴上的厚度的总和(即十个透镜于光轴上的厚度总和),TTL为所述第一透镜的物侧面至所述光学镜头的成像面于光轴上的距离(即所述光学镜头的光学总长)。
通过控制各个透镜的厚度总和与所述光学镜头的光学总长的比值在合理的范围内,有利于所述光学镜头具有足够的空气间隙占比,从而保证所述光学镜头的稳定性和成像品质;同时还有利于缩短所述光学镜头的光学总长,降低各个透镜的组装难度,提高各个透镜的组装稳定性。
进一步地,所述光学镜头满足以下关系式:4<(sd101-sd81)/(et10-et8)<75;
其中,sd81为所述第八透镜的物侧面的最大有效半口径,et8为所述第八透镜的物侧面的最大有效半径处至所述第八透镜的像侧面的最大有效半径处于光轴上的距离(即所述第八透镜的边缘厚度),sd101为所述第十透镜的物侧面的最大有效半口 径,et10为所述第十透镜的物侧面的最大有效半径处至所述第十透镜的像侧面的最大有效半径处于光轴上的距离(即第十透镜的边缘厚度)。
通过上述关系式限定,可以避免所述第十透镜和所述第八透镜的边缘厚度和最大有效半径相差过大,从而有利于减小所述光学镜头的体积,使得所述光学镜头满足小型化设计,同时还能降低所述第八透镜和所述第十透镜的组装难度,而且还有利于提升所述光学镜头的解像力。其中,所述悬臂部环绕容置在所述机壳与所述镜头组件的外周壁之间的空隙中。
进一步地,所述光学镜头满足以下关系式:0.5<(sag92-sag102)/(sag91-sag101)<2;
其中,sag91为所述第九透镜的物侧面于最大有效半径处的矢高(即所述第九透镜的物侧面与光轴的交点至所述第九透镜的物侧面的最大有效半径处于平行光轴的方向上的距离),sag92为所述第九透镜的像侧面于最大有效半径处的矢高(即所述第九透镜的像侧面与光轴的交点至所述第九透镜的像侧面的最大有效半径处于平行光轴的方向上的距离),sag101为所述第十透镜的物侧面于最大有效半径处的矢高(即所述第十透镜的物侧面与光轴的交点至所述第十透镜的物侧面的最大有效半径处于平行光轴的方向上的距离),sag102为所述第十透镜的像侧面于最大有效半径处的矢高(即所述第十透镜的像侧面与光轴的交点至所述第十透镜的像侧面的最大有效半径处于平行光轴的方向上的距离)。
通过上述关系式限定,能够有效约束所述第九透镜和所述第十透镜的面型,降低光线在所述第九透镜和第十透镜的弯曲程度,从而有利于减小所述光学镜头的像散量,保证边缘视场光线具有较小的偏转角,以提升所述光学镜头的边缘视场的相对亮度,提升所述光学镜头的成像品质;同时还可以避免所述第九透镜过于弯曲,从而有利于提高所述第九透镜的可加工性。而当低于上述关系式的下限时,所述第十透镜的物侧面和像侧面弯曲程度不够,不利于矫正所述光学镜头的场曲球差等像差,无法保证良好的成像质量;而超过上述关系式的上限时,所述第九透镜的物侧面和像侧面于最大有效半径处的矢高过大,面型过于弯曲,敏感度增加,不利于所述第九透镜的加工成型。
第二方面,本申请实施例提供一种摄像模组,所述摄像模组包括感光芯片和如第一方面所述的光学镜头,所述感光芯片设置于所述光学镜头的像侧。具有所述光学镜头的摄像模组能够在满足轻薄、小型化设计的同时,有利于使得所述摄像模组具有大像面的特点,改善画质感,提高分辨率和成像清晰度。同时还有利于使所述光学镜头具有大光圈的特点,具有更大的进光量,可以实现昏暗环境下也能获得足够的光通量,改善暗光拍摄条件,从而可有效提升摄像模组于暗光环境下的拍摄质量,有利于适用于夜景、雨天、星空等暗光环境拍摄。
第三个方面,本申请实施例提供一种电子设备,所述电子设备包括壳体和如第二方面所述的摄像模组,所述摄像模组设于所述壳体。具有所述摄像模组的电子设备,能够在满足轻薄、小型化设计的同时,有利于使得所述摄像模组具有大像面的特点,改善画质感,提高分辨率和成像清晰度。同时还有利于使所述光学镜头具有大光圈的特点,具有更大的进光量,可以实现昏暗环境下也能获得足够的光通量,改善暗光拍摄条件,从而可有效提升摄像模组于暗光环境下的拍摄质量,有利于适用于夜景、雨天、星空等暗光环境拍摄。
与现有技术相比,本发明的有益效果在于:
本发明实施例提供的光学镜头、摄像模组及电子设备,所述光学镜头采用十片式透镜,透镜枚数合理,结构巧妙,体积较小。通过选取合适数量的透镜并合理配置各个透镜的屈折力、面型,同时使光学镜头满足以下关系式:1.8<f/EPD<2时,有利于在缩短所述光学镜头的光学总长,以实现所述光学镜头的轻薄、小型化设计的同时,一方面,有利于增大所述光学镜头的光圈,以使所述光学镜头具有大光圈的特点,具有更大的进光量,可以实现昏暗环境下也能获得足够的光通量,改善暗光拍摄条件,从而能够在实现高画质高清晰的拍摄效果的同时,有利于适用于夜景、雨天、星空等暗光环境拍摄,提高用户拍摄体验。另一方面,还有利于增大所述光学镜头的像面大小,以使所述光学镜头具有大像面的特点,改善所述光学镜头的画质感,以及提高所述光学镜头的分辨率和成像清晰度,使所述光学镜头具有更好的成像效果,满足人们对所述光学镜头的高清成像要求。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请第一实施例公开的光学镜头的结构示意图;
图2是本申请第一实施例公开的光学镜头的光线球差图(mm)、像散曲线图(mm)及畸变曲线图(%);
图3是本申请第二实施例公开的光学镜头的结构示意图;
图4是本申请第二实施例公开的光学镜头的光线球差图(mm)、像散曲线图(mm)和畸变曲线图(%);
图5是本申请第三实施例公开的光学镜头的结构示意图;
图6是本申请第三实施例公开的光学镜头的光线球差图(mm)、像散曲线图(mm)和畸变曲线图(%);
图7是本申请第四实施例公开的光学镜头的结构示意图;
图8是本申请第四实施例公开的光学镜头的光线球差图(mm)、像散曲线图(mm)和畸变曲线图(%);
图9是本申请第五实施例公开的光学镜头的结构示意图;
图10是本申请第五实施例公开的光学镜头的光线球差图(mm)、像散曲线图(mm)和畸变曲线图(%);
图11是本申请第六实施例公开的光学镜头的结构示意图;
图12是本申请第六实施例公开的光学镜头的光线球差图(mm)、像散曲线图(mm)和畸变曲线图(%);
图13是本申请公开的摄像模组的结构示意图;
图14是本申请公开的电子设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请中,术语“上”、“下”、“左”、“右”、“前”、“后”、“顶”、“底”、“内”、“外”、“中”、“竖直”、“水平”、“横向”、“纵向”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本申请及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。
并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本申请中的具体含义。
此外,术语“安装”、“设置”、“设有”、“连接”、“相连”应做广义理解。例如,可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
此外,术语“第一”、“第二”等主要是用于区分不同的装置、元件或组成部分(具体的种类和构造可能相同也可能不同),并非用于表明或暗示所指示装置、元件或组成部分的相对重要性和数量。除非另有说明,“多个”的含义为两个或两个以上。
下面将结合具体实施例和附图对本申请的技术方案作进一步的说明。
请参阅图1,根据本申请的第一方面,本申请公开了一种光学镜头100,所述光学镜头100包括沿光轴O从物侧至像侧依次设置的第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、第九透镜L9和第十透镜L10。成像时,光线从第一透镜L1的物侧依次进入第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、第九透镜L9和第十透镜L10并最终成像于光学镜头100的成像面101上。其中,第一透镜L1具有正屈折力,第二透镜L2具有正屈折力,第三透镜L3具有屈折力(例如正屈折 力或负屈折力),第四透镜L4具有正屈折力,第五透镜L5、第六透镜L6、第七透镜L7和第八透镜L8分别具有屈折力(例如正屈折力或负屈折力),第九透镜L9具有负屈折力,第十透镜L10具有负屈折力。
进一步地,第一透镜L1的物侧面S1于近光轴O处可为凸面,第一透镜L1的像侧面S2于近光轴O处可为凹面,第一透镜L1的物侧面S1于圆周处可为凸面,第一透镜L1的像侧面S2于圆周处可为凹面。第二透镜L2的物侧面S3于近光轴O处可为凸面,第二透镜L2的像侧面S4于近光轴O处可为凹面,第二透镜L2的物侧面S3于圆周处可为凸面,第二透镜L2的像侧面S4于圆周处可为凹面。第三透镜L3的物侧面S5于近光轴O处可为凸面或者是凹面,第三透镜L3的像侧面S6于近光轴O处可为凸面或者是凹面,第三透镜L3的物侧面S5于圆周处可为凹面,第三透镜L3的像侧面S6于圆周处可为凸面。第四透镜L4的物侧面S7于近光轴O处可为凸面或者是凹面,第四透镜L4的像侧面S8于近光轴O处可为凸面或者是凹面,第四透镜L4的物侧面S7于圆周处可为凸面或者是凹面,第四透镜L4的像侧面S8于圆周处可为凸面或者是凹面。第五透镜L5的物侧面S9于近光轴O处可为凸面或者是凹面,第五透镜L5的像侧面S10于近光轴O处可为凸面或者是凹面,第五透镜L5的物侧面S9和像侧面S10于圆周处均可为凹面。第六透镜L6的物侧面S11于近光轴O处可为凸面或者是凹面,第六透镜L6的像侧面S12于近光轴O处可为凸面,第六透镜L6的物侧面S11于圆周处可为凸面或凹面,第六透镜L6的像侧面S12于圆周处可为凸面。第七透镜L7的物侧面S13于近光轴O处可为凸面或者是凹面,第七透镜L7的像侧面S14于近光轴O处可为凸面或者是凹面,第七透镜L7的物侧面S13和像侧面S14于圆周处均可为凹面。第八透镜L8的物侧面S15于近光轴O处可为凹面,第八透镜L8的像侧面S16于近光轴O处可为凸面或者是凹面,第八透镜L8的物侧面S15和像侧面S16于圆周处均可为凸面。第九透镜L9的物侧面S17于近光轴O处可为凹面,第九透镜L9的像侧面S18于近光轴O处可为凹面,第九透镜L9的物侧面S17于圆周处可为凹面,第九透镜L9的像侧面S18于圆周处可为凸面。第十透镜L10的物侧面S19于近光轴O处可为凸面,第十透镜L10的像侧面S20于近光轴O处可为凹面,第十透镜L10的物侧面S19于圆周处可为凹面,第十透镜L10的像侧面S20于圆周处可为凸面。
考虑到光学镜头100多应用于例如手机、平板电脑、智能手表等电子设备,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、第九透镜L9和第十透镜L10的材质均可为塑料,从而使得光学镜头100具有良好的光学效果的同时,还可减轻光学镜头100的整体重量。同时,前述的第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、第九透镜L9和第十透镜L10均可为非球面。
进一步地,第十透镜L10的物侧面S19与像侧面S20中的至少一个面设置有至少一个反曲点。通过使用非球面的光学面可制作成球面以外的形状,可以获得较多的控制变量并用以消减像差,从而可以提供更好的解像力,以及有利于提高第九透镜L9和第十透镜L10之间的紧凑性,以有效降低光学镜头100的总长度。
一些实施例中,光学镜头100还包括光阑102,光阑102可为孔径光阑或视场光阑,其可设置在光学镜头100的物侧与第一透镜L1的物侧面S1之间。可以理解的是,在其他实施例中,该光阑102也可设置在相邻的两个透镜之间,例如设置在第二透镜L2和第三透镜L3之间,根据实际情况调整设置,本实施例对此不作具体限定。
一些实施例中,光学镜头100还包括滤光片L11,例如红外滤光片,红外滤光片设于第十透镜L10的像侧面S20与光学镜头100的成像面101之间,从而可滤除诸如可见光等其他波段的光线,而仅让红外光通过,因此,所述光学镜头100可作为红外光学镜头使用,即,光学镜头100能够在昏暗的环境及其他特殊的应用场景下也能成像并能获得较好的影像效果。
一些实施例中,光学镜头100满足以下关系式:1.8<f/EPD<2;其中,f为光学镜头100的有效焦距,EPD为光学镜头100的入瞳直径。满足上述关系式时,能够在满足超薄小型化设计的基础上,有利于增大光学镜头100的光圈,以使光学镜头100具有大光圈的特点,具有更大的进光量,可以实现昏暗环境下也能获得足够的光通量,改善暗光拍摄条件,从而能够在实现高画质高清晰的拍摄效果的同时,有利于适用于夜景、雨天、星空等暗光环境拍摄,提高用户拍摄体验。另一方面,还有利于增大光学镜头100的像面大小,以使光学镜头100具有大像面的特点,改善光学镜头100的画质感,以及提高光学镜头100 的分辨率和成像清晰度,使光学镜头100具有更好的成像效果,满足人们对光学镜头100的高清成像要求。
一些实施例中,光学镜头100满足以下关系式:TTL/Imgh<1.41。其中,TTL为第一透镜L1的物侧面S1至光学镜头100的成像面101于光轴O上的距离(即光学镜头100的光学总长),Imgh为光学镜头100的最大有效成像圆的半径(即光学镜头100的半像高)。通过控制光学镜头100的光学总长和半像高的比值在合理的范围内,有利于在光学镜头100具有较大像面的前提下,使得光学镜头100的结构更加紧凑,具有超薄的特性,满足小型化的设计要求;而当超过关系式的上限时,光学镜头100的光学总长过长,不利于光学镜头100的小型化。
一些实施例中,光学镜头100满足以下关系式:1.5<(f1-f)/(r12-r11)<15;其中,f1为第一透镜L1的焦距,r11为第一透镜L1的物侧面S1于光轴O处的曲率半径,r12为第一透镜L1的像侧面S2于光轴O处的曲率半径。通过约束第一透镜L1的物侧面S1和像侧面S2的面型,有利于降低光线在第一透镜L1的像侧面S2处的弯曲程度,从而有利于减小光学镜头100的像散量,以及降低鬼影风险,可以保证光学镜头100具有较大的视场角的同时,使得光学镜头100具有小畸变,进而有利于提升光学镜头100的成像质量。
一些实施例中,光学镜头100满足以下关系式:3.5<f2/(r22-r21)<17.5;其中,f2为第二透镜L2的焦距,r21为第二透镜L2的物侧面S3于光轴O处的曲率半径,r22为第二透镜L2的像侧面S4于光轴O处的曲率半径。通过上述关系式限定,可以有效地约束第二透镜L2的物侧面S3和像侧面S4的曲率半径,为光学镜头100提供合适的正屈折力,使第二透镜L2可以获得足够的光学汇聚能力,从而有利于消除第一透镜L1产生的杂散光,进而有利于矫正色差,促进光学镜头100各种像差的平衡,以获得良好的成像品质。
一些实施例中,光学镜头100满足以下关系式:0.5<f4/f<4;其中,f4为第四透镜L4的焦距。通过合理配置第四透镜L4提供的正屈折力,有利于矫正前透镜组(即由第一透镜L1、第二透镜L2和第三透镜L3组成的透镜组)产生的像差,从而有利于保证光学镜头100整体的像差平衡;同时还有利于使外视场光线具有较小的偏转角,这样可以实现向像面平缓的过渡,以提高光学镜头100的成像质量。而当超过关系式的上限时,第四透镜L4提供的正屈折力不够,不利于光学镜头100整体的像差平衡;而当低于关系式的下限时,第四透镜L4贡献的正屈折力过大,不利于矫正前透镜组产生的像差,使得光学镜头100难以达到整体的像差平衡,从而难以获得较高的成像质量。
一些实施例中,光学镜头1满足以下关系式:5<|r62|/ct6<56;其中,r62为第六透镜L6的像侧面S12于光轴O处的曲率半径,ct6为第六透镜L6于光轴O上的厚度。
通过上述关系式限定,可有效地控制第六透镜L6的像侧面S12的像散量贡献,从而有利于保证中间视场的成像质量;同时还使得第六透镜L6具有合理的厚度,以及使得第六透镜L6与前后透镜的空气间隙配置合理,有利于缩短光学镜头100的光学总长,提高光学镜头100的组装稳定性。而当超过上述关系式的上限时,第六透镜L6的像侧面S12的曲率半径值过小,易导致面型过于弯曲,导致第六透镜L6成型工艺的可加工性较低,从而会导致第六透镜L6的制造相对困难,从而会增加光学镜头100的制造难度和制造成本;而当低于上述关系式的下限时,第六透镜L6的像侧面S12的曲率半径值过大,不利于保证畸变量的均衡,导致光学镜头100的成像质量较低。
一些实施例中,光学镜头100满足以下关系式:0.55<ctal/TTL<0.6;其中,ctal为光学镜头100的各个透镜于光轴上的厚度的总和(即十个透镜于光轴O上的厚度总和),TTL为第一透镜L1的物侧面S1至光学镜头100的成像面101于光轴O上的距离(即光学镜头100的光学总长)。
通过控制各个透镜的厚度总和与光学镜头100的光学总长的比值在合理的范围内,有利于光学镜头100具有足够的空气间隙占比,从而保证光学镜头100的稳定性和成像品质;同时还有利于缩短光学镜头100的光学总长,降低各个透镜的组装难度,提高各个透镜的组装稳定性。
一些实施例中,光学镜头100满足以下关系式:4<(sd101-sd81)/(et10-et8)<75;
其中,sd81为第八透镜L8的物侧面S15的最大有效半口径,et8为第八透镜L8的物侧面S15的最大有效半径处至第八 透镜L8的像侧面S16的最大有效半径处于光轴O上的距离(即第八透镜L8的边缘厚度),sd101为第十透镜L10的物侧面S19的最大有效半口径,et10为第十透镜L10的物侧面S19的最大有效半径处至第十透镜L10的像侧面S20的最大有效半径处于光轴O上的距离(即第十透镜L10的边缘厚度)。
通过上述关系式限定,可以避免第十透镜L10和第八透镜L8的边缘厚度和最大有效半径相差过大,从而有利于减小光学镜头100的体积,使得光学镜头100满足小型化设计,同时还能降低第八透镜L8和第十透镜L10的组装难度,而且还有利于提升光学镜头100的解像力。
一些实施例中,光学镜头100满足以下关系式:0.5<(sag92-sag102)/(sag91-sag101)<2;
其中,sag91为第九透镜L9的物侧面S17于最大有效半径处的矢高(即第九透镜L9的物侧面S17与光轴O的交点至第九透镜L9的物侧面S17的最大有效半径处于平行光轴O的方向上的距离),sag92为第九透镜L9的像侧面S18于最大有效半径处的矢高(即第九透镜L9的像侧面S18与光轴O的交点至第九透镜L9的像侧面S18的最大有效半径处于平行光轴O的方向上的距离),sag101为第十透镜L10的物侧面S19于最大有效半径处的矢高(即第十透镜L10的物侧面S19与光轴O的交点至第十透镜L10的物侧面S19的最大有效半径处于平行光轴O的方向上的距离),sag102为第十透镜L10的像侧面S20于最大有效半径处的矢高(即第十透镜L10的像侧面S20与光轴O的交点至第十透镜L10的像侧面S20的最大有效半径处于平行光轴O的方向上的距离)。当透镜的物侧面或像侧面于最大有效半径处的矢高值为正值时,在平行于光轴O的方向上,该面的最大有效半径处相较于该面与光轴O的交点更靠近光学镜头100的的像侧;当该矢高值为负值时,在平行于光轴O的方向上,该面的最大有效半径处相较于该面与光轴O的交点更靠近光学镜头100的物侧。
通过上述关系式限定,能够有效地约束第九透镜L9和第十透镜L10的面型,有利于降低光线在第九透镜L9和第十透镜L10的弯曲程度,从而有利于减小光学镜头100的像散量,保证边缘视场光线具有较小的偏转角,以提升光学镜头100的边缘视场的相对亮度,提升光学镜头100的成像品质;同时还可以避免第九透镜L9过于弯曲,从而有利于提高第九透镜L9的可加工性。而当低于上述关系式的下限时,第十透镜的物侧面S19和像侧面S20弯曲程度不够,不利于矫正光学镜头100的场曲球差等像差,无法保证良好的成像质量;而超过上述关系式的上限时,第九透镜L9的物侧面S17和像侧面S18于最大有效半径处的矢高过大,面型过于弯曲,敏感度增加,不利于第九透镜L9的加工成型。
以下将结合具体参数对本实施例的光学镜头100进行详细说明。
第一实施例
本申请的第一实施例公开的光学镜头100的结构示意图如图1所示,光学镜头100包括沿光轴O从物侧向像侧依次设置的光阑102、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、第九透镜L9、第十透镜L10和滤光片L11。其中,关于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、第九透镜L9和第十透镜L10的材料可参见上述具体实施方式所述,此处不再赘述。
进一步地,第一透镜L1具有正屈折力,第二透镜L2具有正屈折力,第三透镜L3具有负屈折力,第四透镜L4具有正屈折力,第五透镜L5具有负屈折力,第六透镜L6具有正屈折力,第七透镜L7具有正屈折力,第八透镜L8具有正屈折力,第九透镜L9具有负屈折力,第十透镜L10具有负屈折力。
更进一步地,第一透镜L1的物侧面S1、像侧面S2于近光轴O处分别为凸面和凹面;第一透镜L1的物侧面S1、像侧面S2于圆周处分别为凸面和凹面。第二透镜L2的物侧面S3、像侧面S4于近光轴O处分别为凸面和凹面;第二透镜L2的物侧面S3、像侧面S4于圆周处分别为凹面和凸面。第三透镜L3的物侧面S5、像侧面S6于近光轴O处分别为凸面和凹面;第三透镜L3的物侧面S5、像侧面S6于圆周处分别为凹面和凸面。第四透镜L4的物侧面S7、像侧面S8于近光轴O处均为凸面;四透镜L4的物侧面S7、像侧面S8于圆周处分别为凹面和凸面。第五透镜L5的物侧面S9、像侧面S10于近光轴O处分别为凹面和凸面;第五透镜L5的物侧面S9、像侧面S10于圆周处均为凹面。第六透镜L6的物侧面S11、像侧面S12于近光轴 O处分别为凹面和凸面;第六透镜L6的物侧面S11、像侧面S12于圆周处分别为凹面和凸面。第七透镜L7的物侧面S13、像侧面S14于近光轴O处分别为凸面和凹面;第七透镜L7的物侧面S13、像侧面S14于圆周处均为凹面。第八透镜L8的物侧面S115、像侧面S16于近光轴O处分别为凹面和凸面;第八透镜L8的物侧面S15、像侧面S16于圆周处均为凸面。第九透镜L9的物侧面S17、像侧面S18于近光轴O处均为凹面;第九透镜L9的物侧面S17、像侧面S18于圆周处分别为凹面和凸面。第十透镜L10的物侧面S19、像侧面S20于近光轴O处分别为凸面和凹面;第十透镜L10的物侧面S19、像侧面S20于圆周处分别为凹面和凸面。
具体地,以所述光学镜头100的有效焦距f=5.754mm、所述光学镜头100的视场角FOV=83.3°、所述光学镜头100的光学总长TTL=7.30mm、光圈大小FNO=1.99为例,光学镜头100的其他参数由下表1给出。其中,沿光学镜头100的光轴O由物侧向像侧的各元件依次按照表1从上至下的各元件的顺序排列。在同一透镜中,面序号较小的表面为该透镜的物侧面,面序号较大的表面为该透镜的像侧面,如面序号2和3分别对应第一透镜L1的物侧面S1和像侧面S2。表1中的Y半径为相应面序号的物侧面或像侧面于近光轴O处的曲率半径。透镜的“厚度”参数列中的第一个数值为该透镜于光轴O上的厚度,第二个数值为该透镜的像侧面至后一表面于光轴O上的距离。光阑102于“厚度”参数列中的数值为光阑102至后一表面顶点(顶点指表面与光轴O的交点)于光轴O上的距离,默认第一透镜L1物侧面到最后一枚镜片像侧面的方向为光轴O的正方向,当该值为负时,表明光阑102设置于后一表面顶点的右侧,若光阑102厚度为正值时,光阑102在后一表面顶点的左侧。可以理解的是,表1中的Y半径、厚度、焦距的单位均为mm。且表1中各个透镜的有效焦距的参考波长为555nm,折射率、阿贝数的参考波长为587.6nm。
表1
Figure PCTCN2021101897-appb-000001
在第一实施例中,第一透镜L1至第十透镜L10的任意一个透镜的物侧面和像侧面均为非球面,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
Figure PCTCN2021101897-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中Y半径R的倒数);k为圆锥系数;Ai是非球面第i项高次项相对应的修正系数。表2给出了可用于第一实施例中各个非球面镜面S1-S20的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表2
Figure PCTCN2021101897-appb-000003
请参阅图2中的(A),图2中的(A)示出了第一实施例中的光学镜头100在波长为470nm、510nm、555nm、610nm以及650nm下的光线球差曲线图。图2中的(A)中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示归一化视场。由图2中的(A)可以看出,第一实施例中的光学镜头100的球差数值较佳,说明本实施例中的光学镜头100的成像质量较好。
请参阅图2中的(B),图2中的(B)为第一实施例中的光学镜头100在波长为555nm下的光线像散图。其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示像高,单位为mm。像散曲线表示子午成像面弯曲T和弧矢成像面弯曲S,由图2中的(B)可以看出,在该波长下,光学镜头100的像散得到了较好的补偿。
请参阅图2中的(C),图2中的(C)为第一实施例中的光学镜头100在波长为555nm下的畸变曲线图。其中,沿X轴方向的横坐标表示畸变,沿Y轴方向的纵坐标表示像高,单位为mm。由图2中的(C)可以看出,在波长555nm下,该光学镜头100的畸变得到了很好的校正。
第二实施例
请参照图3,图3为本申请第二实施例的光学镜头100的结构示意图。光学镜头100包括沿光轴O从物侧向像侧依次设置的光阑102、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、第九透镜L9、第十透镜L10和滤光片L11。其中,关于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、第九透镜L9和第十透镜L10的材料可参见上述具体实施方式所述,此处不再赘述。
进一步地,在第二实施例中,各个透镜的屈折力与第一实施例中的各个透镜的屈折力的区别在于:第三透镜L3具有正屈折力。同时,在第二实施例中,各个透镜的面型与第一实施例中的各个透镜的面型的区别在于:第三透镜L3的物侧面S5、像侧面S6于近光轴O处分别为凹面和凸面;第四透镜L4的物侧面S7、像侧面S8于近光轴O处分别为凹面和凸面,第四透镜L4的物侧面S7、像侧面S8于圆周处分别为凸面和凹面;第五透镜L5的物侧面S9、像侧面S10于近光轴O处均为凹面;第六透镜L6的物侧面S11、像侧面S12于近光轴O处均为凸面,第六透镜L6的物侧面S11、像侧面S12于圆周处均为凸面;第七透镜L7的物侧面S13、像侧面S14于近光轴O处均为凸面。
在第二实施例中,以光学镜头100的有效焦距f=5.616mm、光学镜头100的视场角的FOV=85.1°、光学镜头100的光学总长TTL=7.30mm、光圈大小FNO=1.97为例。
该第二实施例中的其他各项参数由下列表3给出,且其中各参数的定义可由前述实施例的说明中得出,此处不加以赘述。可以理解的是,表3中的Y半径、厚度、焦距的单位均为mm。且表3中各个透镜的有效焦距的参考波长为555nm,折射率、阿贝数的参考波长为587.6nm。
表3
Figure PCTCN2021101897-appb-000004
Figure PCTCN2021101897-appb-000005
在第二实施例中,表4给出了可用于第二实施例中各个非球面镜面的高次项系数,其中,各个非球面面型可由第一实施例中给出的公式限定。
表4
Figure PCTCN2021101897-appb-000006
进一步地,请参阅图4中的(A),示出了第二实施例中的光学镜头100在波长为470nm、510nm、555nm、610nm以及650nm下的光线球差曲线图。图4中的(A)中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示归一化视场。由图4中的(A)可以看出,第二实施例中的光学镜头100的球差数值较佳,说明本实施例中的光学镜头100的成像质量较好。
请参阅图4中的(B),图4中的(B)为第二实施例中的光学镜头100在波长为555nm下的光线像散图。其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示像高,单位为mm。像散曲线表示子午成像面弯曲T和弧矢成像面弯曲S,由图4中的(B)可以看出,光学镜头100的像散得到了较好的补偿。
请参阅图4中的(C),图4中的(C)为第二实施例中的光学镜头100在波长为555nm下的畸变曲线图。其中,沿X轴方向的横坐标表示畸变,沿Y轴方向的纵坐标表示像高,单位为mm。由图4中的(C)可以看出,在波长555nm下,该光学镜头100的畸变得到了很好的校正。
第三实施例
请参照图5,图5示出了本申请第三实施例的光学镜头100的结构示意图。光学镜头100包括沿光轴O从物侧向像侧依次设置的光阑102、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、第九透镜L9、第十透镜L10和滤光片L11。其中,关于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、第九透镜L9和第十透镜L10的材料可参见上述具体实施方式所述,此处不再赘述。
进一步地,在第三实施例中,各个透镜的屈折力与第一实施例中的各个透镜的屈折力的区别在于:第八透镜L8具有负屈折力。同时,在第三实施例中,各个透镜的面型可参见上述第一实施例所述,此处不再赘述。
在第三实施例中,以光学镜头100的有效焦距f=5.781mm、光学镜头100的视场角的FOV=83.1°、光学镜头100的光学总长TTL=7.26mm、光圈大小FNO=1.96为例。
该第三实施例中的其他各项参数由下列表5给出,且其中各参数的定义可由前述说明中得出,此处不加以赘述。可以理解的是,表5中的Y半径、厚度、焦距的单位均为mm。且表5中各个透镜的有效焦距的参考波长为555nm,折射率、阿贝数的参考波长为587.6nm。
表5
Figure PCTCN2021101897-appb-000007
在第三实施例中,表6给出了可用于第三实施例中各个非球面镜面的高次项系数,其中,各个非球面面型可由第一实施 例中给出的公式限定。
表6
Figure PCTCN2021101897-appb-000008
进一步地,请参阅图6中的(A),示出了第三实施例中的光学镜头100在波长为470nm、510nm、555nm、610nm以及650nm下的光线球差曲线图。图6中的(A)中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示归一化视场。由图6中的(A)可以看出,第三实施例中的光学镜头100的球差数值较佳,说明本实施例中的光学镜头100的成像质量较好。
请参阅图6中的(B),图6中的(B)为第三实施例中的光学镜头100在波长为555nm下的光线像散图。其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示像高,单位为mm。像散曲线表示子午成像面弯曲T和弧矢成像面弯曲S,由图6中的(B)可以看出,光学镜头100的像散得到了较好的补偿。
请参阅图6中的(C),图6中的(C)为第三实施例中的光学镜头100在波长为555nm下的畸变曲线图。其中,沿X轴 方向的横坐标表示畸变,沿Y轴方向的纵坐标表示像高,单位为mm。由图6中的(C)可以看出,在波长555nm下,该光学镜头100的畸变得到了很好的校正。
第四实施例
请参阅图7,为本申请第四实施例公开的光学镜头100的结构示意图。光学镜头100包括沿光轴O从物侧向像侧依次设置的光阑102、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、第九透镜L9、第十透镜L10和滤光片L11。其中,关于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、第九透镜L9和第十透镜L10的材料可参见上述具体实施方式所述,此处不再赘述。
进一步地,在第四实施例中,各个透镜的屈折力与第一实施例中的各个透镜的屈折力的区别在于:第六透镜L6具有负屈折力。同时,在第四实施例中,各个透镜的面型与第一实施例中的各个透镜的面型的区别在于:第八透镜L8的物侧面S15、像侧面S16于近光轴O处均为凹面。
在第四实施例中,以光学镜头100的焦距f=5.822mm、光学镜头100的视场角的FOV=82.7°、光学镜头100的光学总长TTL=7.31mm、光圈大小FNO=1.9为例。
该第四实施例中的其他各项参数由下列表7给出,且其中各参数的定义可由前述说明中得出,此处不加以赘述。可以理解的是,表7中的Y半径、厚度、焦距的单位均为mm。且表7中各个透镜的有效焦距的参考波长为555nm,折射率、阿贝数的参考波长为587.6nm。
表7
Figure PCTCN2021101897-appb-000009
在第四实施例中,表8给出了可用于第四实施例中各个非球面镜面的高次项系数,其中,各个非球面面型可由第一实施例中给出的公式限定。
表8
Figure PCTCN2021101897-appb-000010
Figure PCTCN2021101897-appb-000011
进一步地,请参阅图8中的(A),示出了第四实施例中的光学镜头100在波长为470nm、510nm、555nm、610nm以及650nm下的光线球差曲线图。图8中的(A)中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示归一化视场。由图8中的(A)可以看出,第四实施例中的光学镜头100的球差数值较佳,说明本实施例中的光学镜头100的成像质量较好。
请参阅图8中的(B),图8中的(B)为第四实施例中的光学镜头100在波长为555nm下的光线像散图。其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示像高,单位为mm。像散曲线表示子午成像面弯曲T和弧矢成像面弯曲S,由图8中的(B)可以看出,光学镜头100的像散得到了较好的补偿。
请参阅图8中的(C),图8中的(C)为第四实施例中的光学镜头100在波长为555nm下的畸变曲线图。其中,沿X轴方向的横坐标表示畸变,沿Y轴方向的纵坐标表示像高,单位为mm。由图8中的(C)可以看出,在波长555nm下,该光学镜头100的畸变得到了很好的校正。
第五实施例
请参阅图9,为本申请第五实施例公开的光学镜头100的结构示意图。光学镜头100包括沿光轴O从物侧向像侧依次设置的光阑102、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、第九透镜L9、第十透镜L10和滤光片L11。其中,关于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、第九透镜L9和第十透镜L10的材料可参见上述具体实施方式所述,此处不再赘述。
进一步地,各个透镜的屈折力与第一实施例中的各个透镜的屈折力的区别在于:第五透镜L5具有正屈折力,第七透镜L7具有负屈折力。同时,在第五实施例中,各个透镜的面型与第一实施例中的各个透镜的面型的区别在于:第六透镜L6的物侧面S11、像侧面S12于圆周处均为凸面,第七透镜L7的物侧面S13、像侧面S14于近光轴O处均为凹面,。
在第五实施例中,以光学镜头100的焦距f=5.676mm、光学镜头100的视场角的FOV=84.3°、光学镜头100的光学总长TTL=7.29mm、光圈大小FNO=1.97为例。
该第五实施例中的其他各项参数由下列表9给出,且其中各参数的定义可由前述说明中得出,此处不加以赘述。可以理解的是,表9中的Y半径、厚度、焦距的单位均为mm。且表9中各个透镜的有效焦距的参考波长为555nm,折射率、阿贝数的参考波长为587.6nm。
表9
Figure PCTCN2021101897-appb-000012
在第五实施例中,表10给出了可用于第五实施例中各个非球面镜面的高次项系数,其中,各个非球面面型可由第一实施例中给出的公式限定。
表10
Figure PCTCN2021101897-appb-000013
Figure PCTCN2021101897-appb-000014
进一步地,请参阅图10中的(A),示出了第五实施例中的光学镜头100在波长为470nm、510nm、555nm、610nm以及650nm下的光线球差曲线图。图10中的(A)中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示归一化视场。由图10中的(A)可以看出,第五实施例中的光学镜头100的球差数值较佳,说明本实施例中的光学镜头100的成像质量较好。
请参阅图10中的(B),图10中的(B)为第五实施例中的光学镜头100在波长为555nm下的光线像散图。其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示像高,单位为mm。像散曲线表示子午成像面弯曲T和弧矢成像面弯曲S,由图10中的(B)可以看出,光学镜头100的像散得到了较好的补偿。
请参阅图10中的(C),图10中的(C)为第五实施例中的光学镜头100在波长为555nm下的畸变曲线图。其中,沿X轴方向的横坐标表示畸变,沿Y轴方向的纵坐标表示像高,单位为mm。由图10中的(C)可以看出,在波长555nm下,该光学镜头100的畸变得到了很好的校正。
第六实施例
请参阅图11,为本申请第五实施例公开的光学镜头100的结构示意图。光学镜头100包括沿光轴O从物侧向像侧依次设置的光阑102、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、第九透镜L9、第十透镜L10和滤光片L11。其中,关于第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第 五透镜L5、第六透镜L6、第七透镜L7、第八透镜L8、第九透镜L9和第十透镜L10的材料可参见上述具体实施方式所述,此处不再赘述。
进一步地,各个透镜的屈折力与第一实施例中的各个透镜的屈折力的区别在于:第七透镜L7具有负屈折力。同时,在第六实施例中,各个透镜的面型与第一实施例中的各个透镜的面型的区别在于:第四透镜L4的物侧面S7、像侧面S8于近光轴O处分别为凸面和凹面,第五透镜L5的物侧面S9、像侧面S10于近光轴O处分别为凸面和凹面,第六透镜L6的物侧面S11、像侧面S12于近光轴O处均为凸面。
在第六实施例中,以光学镜头100的焦距f=5.681mm、光学镜头100的视场角的FOV=84.0°、光学镜头100的光学总长TTL=7.29mm、光圈大小FNO=1.935为例。
该第六实施例中的其他各项参数由下列表11给出,且其中各参数的定义可由前述说明中得出,此处不加以赘述。可以理解的是,表11中的Y半径、厚度、焦距的单位均为mm。表11中各个透镜的有效焦距的参考波长为555nm,折射率、阿贝数的参考波长为587.6nm。
表11
Figure PCTCN2021101897-appb-000015
在第六实施例中,表12给出了可用于第六实施例中各个非球面镜面的高次项系数,其中,各个非球面面型可由第一实施例中给出的公式限定。
表12
Figure PCTCN2021101897-appb-000016
Figure PCTCN2021101897-appb-000017
进一步地,请参阅图12中的(A),示出了第五实施例中的光学镜头100在波长为470nm、510nm、555nm、610nm以及650nm下的光线球差曲线图。图12中的(A)中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示归一化视场。由图10中的(A)可以看出,第五实施例中的光学镜头100的球差数值较佳,说明本实施例中的光学镜头100的成像质量较好。
请参阅图12中的(B),图10中的(B)为第五实施例中的光学镜头100在波长为555nm下的光线像散图。其中,沿X轴方向的横坐标表示焦点偏移,沿Y轴方向的纵坐标表示像高,单位为mm。像散曲线表示子午成像面弯曲T和弧矢成像面弯曲S,由图12中的(B)可以看出,光学镜头100的像散得到了较好的补偿。
请参阅图12中的(C),图10中的(C)为第五实施例中的光学镜头100在波长为555nm下的畸变曲线图。其中,沿X轴方向的横坐标表示畸变,沿Y轴方向的纵坐标表示像高,单位为mm。由图12中的(C)可以看出,在波长555nm下,该光学镜头100的畸变得到了很好的校正。
请参阅表13,表13为本申请第一实施例至第六实施例中各关系式的比值汇总。
表13
关系式/实施例 第一实施例 第二实施例 第三实施例 第四实施例 第五实施例 第六实施例
1.8<f/EPD<2 1.990 1.970 1.960 1.900 1.970 1.935
TTL/Imgh<1.41 1.404 1.400 1.396 1.406 1.401 1.401
1.5<(f1-f)/(r12-r11)<15 2.61 1.98 5.50 14.58 2.14 6.12
3.5<f2/(r22-r21)<17.5 9.37 17.18 6.37 3.88 11.31 5.73
0.5<f4/f<4 1.27 1.20 1.15 0.85 3.90 3.51
5<|r62|/ct6<56 15.29 5.95 19.46 55.50 9.87 11.10
0.55<ctal/TTL<0.6 0.568 0.592 0.571 0.581 0.586 0.582
4<(sd101-sd81)/(et10-et8)<75 6.33 15.04 7.12 73.70 4.33 10.87
0.5<(sag92-sag102)/(sag91-sag101)<2 0.89 0.74 1.20 0.69 1.73 1.26
请参阅图13,本申请还公开了一种摄像模组,摄像模组200包括感光芯片201和如上述第一实施例至第六实施例中任一实施例所述的光学镜头100,所述感光芯片201设置于光学镜头100的像侧。光学镜头100可用于接收被摄物的光信号并投射到感光芯片201,感光芯片201可用于将对应于被摄物的光信号转换为图像信号。这里不做赘述。可以理解的,具有上述光学镜头100的摄像模组200能够在使得光学镜头100在满足轻薄、小型化设计的同时,有利于使得所述摄像模组具有大像面的特点,改善画质感,提高分辨率和成像清晰度。同时还有利于使所述光学镜头具有大光圈的特点,具有更大的进光量,可以实现昏暗环境下也能获得足够的光通量,改善暗光拍摄条件,从而可有效提升摄像模组于暗光环境下的拍摄质量,有利于适用于夜景、雨天、星空等暗光环境拍摄。由于上述技术效果已在光学镜头100的实施例中做了详细介绍,此处就不再赘述。
请参阅图14,本申请还公开了一种电子设备,所述电子设备300包括壳体301和如上述的摄像模组200,摄像模组200设于壳体301以获取影像信息。其中,电子设备300可以但不限于手机、平板电脑、笔记本电脑、智能手表、监控器等。可以理解的,具有上述摄像模组200的电子设备300,也具有上述光学镜头100的全部技术效果。即,所述电子设备300能够在使得光学镜头100在满足轻薄、小型化设计的同时,能够在满足轻薄、小型化设计的同时,有利于使得所述摄像模组具有大像面的特点,改善画质感,提高分辨率和成像清晰度。同时还有利于使所述光学镜头具有大光圈的特点,具有更大的进光量,可以实现昏暗环境下也能获得足够的光通量,改善暗光拍摄条件,从而可有效提升摄像模组于暗光环境下的拍摄质量,有利于适用于夜景、雨天、星空等暗光环境拍摄。由于上述技术效果已在光学镜头100的实施例中做了详细介绍,此处就不再赘述。
以上对本发明实施例公开的一种光学镜头、摄像模组及电子设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的光学镜头、摄像模组及电子设备及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种光学镜头,其特征在于,所述光学镜头包括沿光轴从物侧至像侧依次设置的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜、第六透镜、第七透镜、第八透镜、第九透镜和第十透镜;
    所述第一透镜具有正屈折力,所述第一透镜的物侧面于近光轴处为凸面,所述第一透镜的像侧面于近光轴处为凹面;
    所述第二透镜具有正屈折力,所述第二透镜的物侧面于近光轴处为凸面,所述第二透镜的像侧面于近光轴处为凹面;
    所述第三透镜具有屈折力;
    所述第四透镜具有正屈折力;
    所述第五透镜具有屈折力;
    所述第六透镜具有屈折力,所述第六透镜的像侧面于近光轴处为凸面;
    所述第七透镜具有屈折力;
    所述第八透镜具有屈折力,所述第八透镜的物侧面于近光轴处为凹面;
    所述第九透镜具有负屈折力,所述第九透镜的物侧面和像侧面于近光轴处均为凹面;
    所述第十透镜具有负屈折力,所述第十透镜的物侧面于近光轴处为凸面,所述第十透镜的像侧面于近光轴处为凹面;
    所述光学镜头满足以下关系式:
    1.8<f/EPD<2;
    其中,f为所述光学镜头的有效焦距,EPD为所述光学镜头的入瞳直径。
  2. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系式:
    TTL/Imgh<1.41;
    其中,TTL为所述第一透镜的物侧面至所述光学镜头的成像面于所述光轴上的距离,Imgh为所述光学镜头的最大有效成像圆的半径。
  3. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系式:
    1.5<(f1-f)/(r12-r11)<15;和/或
    3.5<f2/(r22-r21)<17.5;
    其中,f1为所述第一透镜的焦距,r11为所述第一透镜的物侧面于光轴处的曲率半径,r12为所述第一透镜的像侧面于光轴处的曲率半径,f2为所述第二透镜的焦距,r21为所述第二透镜的物侧面于光轴处的曲率半径,r22为所述第二透镜的像侧面于光轴处的曲率半径。
  4. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系式:
    0.5<f4/f<4;
    其中,f4为所述第四透镜的焦距。
  5. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系式:
    5<|r62|/ct6<56;
    其中,r62为所述第六透镜的像侧面于光轴处的曲率半径,ct6为所述第六透镜于光轴上的厚度。
  6. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系式:
    0.55<ctal/TTL<0.6;
    其中,ctal为所述光学镜头的各个透镜于光轴上的厚度的总和,TTL为所述第一透镜的物侧面至所述光学镜头的成像面于光轴上的距离。
  7. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系式:
    4<(sd101-sd81)/(et10-et8)<75;
    其中,sd81为所述第八透镜的物侧面的最大有效半口径,et8为所述第八透镜的物侧面的最大有效半径处至所述第八透镜的像侧面的最大有效半径处于光轴上的距离,sd101为所述第十透镜的物侧面的最大有效半口径,et10为所述第十透镜的物侧面的最大有效半径处至所述第十透镜的像侧面的最大有效半径处于光轴上的距离。
  8. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系式:
    0.5<(sag92-sag102)/(sag91-sag101)<2;
    其中,sag91为所述第九透镜的物侧面于最大有效半径处的矢高,sag92为所述第九透镜的像侧面于最大有效半径处的矢高,sag101为所述第十透镜的物侧面于最大有效半径处的矢高,sag102为所述第十透镜的像侧面于最大有效半径处的矢高。
  9. 一种摄像模组,其特征在于,所述摄像模组包括感光芯片和如权利要求1-8任一项所述的光学镜头,所述感光芯片设置于所述光学镜头的像侧。
  10. 一种电子设备,其特征在于,所述电子设备包括壳体和如权利要求9所述的摄像模组,所述摄像模组设于所述壳体。
PCT/CN2021/101897 2021-06-23 2021-06-23 光学镜头、摄像模组及电子设备 WO2022266902A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/101897 WO2022266902A1 (zh) 2021-06-23 2021-06-23 光学镜头、摄像模组及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/101897 WO2022266902A1 (zh) 2021-06-23 2021-06-23 光学镜头、摄像模组及电子设备

Publications (1)

Publication Number Publication Date
WO2022266902A1 true WO2022266902A1 (zh) 2022-12-29

Family

ID=84545048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101897 WO2022266902A1 (zh) 2021-06-23 2021-06-23 光学镜头、摄像模组及电子设备

Country Status (1)

Country Link
WO (1) WO2022266902A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117148590A (zh) * 2023-10-26 2023-12-01 江西联昊光电有限公司 光学系统及近眼显示设备
CN117270162A (zh) * 2023-09-28 2023-12-22 武昌理工学院 一种摄像光学镜头及摄像光学系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111505805A (zh) * 2020-06-11 2020-08-07 浙江舜宇光学有限公司 摄像镜头组
JP2021076740A (ja) * 2019-11-11 2021-05-20 株式会社コシナ 大口径撮像光学系
CN112859291A (zh) * 2021-02-01 2021-05-28 浙江舜宇光学有限公司 摄像镜头

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021076740A (ja) * 2019-11-11 2021-05-20 株式会社コシナ 大口径撮像光学系
CN111505805A (zh) * 2020-06-11 2020-08-07 浙江舜宇光学有限公司 摄像镜头组
CN112859291A (zh) * 2021-02-01 2021-05-28 浙江舜宇光学有限公司 摄像镜头

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117270162A (zh) * 2023-09-28 2023-12-22 武昌理工学院 一种摄像光学镜头及摄像光学系统
CN117270162B (zh) * 2023-09-28 2024-03-29 武昌理工学院 一种摄像光学镜头及摄像光学系统
CN117148590A (zh) * 2023-10-26 2023-12-01 江西联昊光电有限公司 光学系统及近眼显示设备
CN117148590B (zh) * 2023-10-26 2024-03-15 江西联昊光电有限公司 光学系统及近眼显示设备

Similar Documents

Publication Publication Date Title
WO2021184165A1 (zh) 光学系统、摄像模组及电子装置
CN113534407B (zh) 光学镜头、摄像模组及电子设备
CN113138458A (zh) 光学系统、取像模组及电子设备
CN113933968A (zh) 光学镜头、摄像模组及电子设备
CN113946038B (zh) 光学镜头、摄像模组及电子设备
WO2022266902A1 (zh) 光学镜头、摄像模组及电子设备
CN113391430A (zh) 光学系统、镜头模组和电子设备
CN114167583B (zh) 光学镜头、摄像模组及电子设备
CN115480364A (zh) 光学镜头、摄像模组及电子设备
CN114578512A (zh) 光学系统、摄像模组及电子设备
CN113156612A (zh) 光学系统、取像模组及电子设备
CN116027527B (zh) 光学镜头、摄像模组及电子设备
WO2021087669A1 (zh) 光学系统、取像装置及电子装置
CN113484985B (zh) 光学镜头、摄像模组及电子设备
CN114675407B (zh) 光学系统、镜头模组及电子设备
CN114755803B (zh) 光学镜头、摄像模组及电子设备
CN114578525B (zh) 光学系统、镜头模组和电子设备
CN114415343B (zh) 光学系统、摄像模组及电子设备
CN114706197B (zh) 光学镜头、摄像模组及电子设备
CN114326052B (zh) 光学系统、取像模组及电子设备
CN113960759B (zh) 光学镜头、摄像模组及电子设备
CN114153050B (zh) 光学系统和具有其的取像模组、电子装置
CN113933969B (zh) 光学镜头、摄像模组及电子设备
CN212989754U (zh) 光学镜头、摄像模组及电子设备
CN114740595B (zh) 光学镜头、摄像模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE