WO2023130930A1 - 一种制备甲基异丁基酮的方法 - Google Patents

一种制备甲基异丁基酮的方法 Download PDF

Info

Publication number
WO2023130930A1
WO2023130930A1 PCT/CN2022/139038 CN2022139038W WO2023130930A1 WO 2023130930 A1 WO2023130930 A1 WO 2023130930A1 CN 2022139038 W CN2022139038 W CN 2022139038W WO 2023130930 A1 WO2023130930 A1 WO 2023130930A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
zinc
reaction
oxide
methyl isobutyl
Prior art date
Application number
PCT/CN2022/139038
Other languages
English (en)
French (fr)
Inventor
缪振敢
李世伍
项颖杰
Original Assignee
圣奥化学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 圣奥化学科技有限公司 filed Critical 圣奥化学科技有限公司
Publication of WO2023130930A1 publication Critical patent/WO2023130930A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/04Saturated compounds containing keto groups bound to acyclic carbon atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a kind of method of preparing methyl isobutyl ketone, more specifically, relate to a kind of method of preparing methyl isobutyl ketone in one step from mesityl oxide and methyl isobutyl alcohol.
  • Methyl isobutyl ketone also known as 4-methyl-2-pentanone
  • MIBK is a colorless and stable flammable liquid with a pleasant smell. Its explosion range in air is 1.4% to 7.5%. The source of fire is close, and airtight containers must be used for storage, stored at low temperature, and long-term contact with skin should be avoided. MIBK is slightly soluble in water, but completely miscible with some organic solvents, and is an excellent solvent.
  • MIBK is slightly soluble in water, but completely miscible with some organic solvents, and is an excellent solvent.
  • a kind of methyl isobutyl ketone production technique and equipment thereof as CN103274913A comprise the following steps: (a) raw material acetone and hydrogen are sent into fixed bed tube reactor to react, adopt B621 catalyzer; Reaction obtained after reaction The product is first condensed and separated to obtain hydrogen; the condensed solution enters the subsequent separation system; (b) the product solution is sent to the light component tower for separation, and the bottom still liquid enters the acetone tower for separation; (c) the acetone tower The pressure is controlled as a slight negative pressure, and the heavy components obtained at the bottom of the tower are sent to the dehydration tower for water removal; (d) the light components obtained at the top of the dehydration tower are sent to the waste water tower for treatment to obtain organic light components; the dehydration tower The product obtained at the bottom is sent to the product tower for purification, and the product methyl isobutyl ketone is obtained at the top of the product tower.
  • CN105130778A adopts the strongly acidic cation exchange resin catalyst treated with palladium acetate, optimizes the separation process, and purifies the by-product diisobutyl ketone (DIBK), which realizes the increase of organic matter yield and the decrease of energy consumption.
  • DIBK diisobutyl ketone
  • the present invention provides a brand-new method from raw material to catalytic system for preparing methyl isobutyl ketone, so as to realize cost advantages.
  • the invention adopts mesityl oxide (MO) and methyl isobutyl alcohol (MIBC) to carry out in-situ transfer of hydrogen under the action of a copper-based catalyst to prepare methyl isobutyl ketone in one step.
  • MO mesityl oxide
  • MIBC methyl isobutyl alcohol
  • the whole reaction process does not need an external hydrogen system, the reaction is carried out under normal pressure, the process flow is short, and it has the advantages of high atom utilization rate and high safety, and is suitable for popularizing industrial applications.
  • the present invention provides a method for preparing methyl isobutyl ketone, said method comprising reacting mesityl oxide and methyl isobutyl alcohol under the action of a copper-based catalyst to generate methyl isobutyl ketone.
  • the copper-based catalyst includes copper oxide, and the mass of copper oxide accounts for more than 50% of the total mass of the copper-based catalyst.
  • the copper-based catalyst is a copper-zinc-aluminum catalyst.
  • the copper zinc aluminum catalyst comprises copper oxide, zinc oxide and aluminum oxide.
  • the mass of copper oxide accounts for more than 50% of the total mass of the copper-zinc-aluminum catalyst.
  • the mass of copper oxide is 50%-70% of the total mass of the copper-zinc-aluminum catalyst
  • the mass of zinc oxide is the total mass of the copper-zinc-aluminum catalyst 10%-30% of the total mass of the aluminum oxide is 5%-15% of the total mass of the copper-zinc-aluminum catalyst.
  • the mass of copper oxide is 54%-64% of the total mass of the copper-zinc-aluminum catalyst
  • the mass of zinc oxide is the total mass of the copper-zinc-aluminum catalyst
  • the mass of the alumina is 7.8%-8% of the total mass of the copper-zinc-aluminum catalyst.
  • the molar ratio of mesityl oxide to methyl isobutyl alcohol is (0.1-2):1, preferably (0.8-1.2):1.
  • methyl isobutyl ketone is added to the reaction system.
  • the temperature of the reaction is 140°C-250°C, preferably 180 ⁇ 20°C.
  • the pressure of the reaction is atmospheric pressure.
  • the volume space velocity of the reaction is 0.05-0.2h -1 , preferably 0.1 ⁇ 0.02h -1 .
  • no hydrogen gas is introduced during the reaction.
  • the reaction is performed in a fixed bed reactor, such as a single tube reactor.
  • the reaction is performed under the protection of an inert gas.
  • the method includes: heating a reactor filled with a copper-based catalyst to the reaction temperature, feeding homogeneously mixed mesityl oxide and methyl isobutyl alcohol from the bottom of the reactor, The upper part of the reactor discharges the material for reaction.
  • the uniformly mixed mesityl oxide and methyl isobutyl alcohol are preheated to the reaction temperature before being sent into the reactor for reaction.
  • the reactor is a single-tube reactor with a diameter of 20 ⁇ 2 mm and a height of 700 ⁇ 100 mm, and the bed filling height of the copper-based catalyst is 500 ⁇ 50 mm.
  • Fig. 1 is the synoptic diagram that mesityl oxide and methyl isobutyl alcohol prepare methyl isobutyl ketone in one step.
  • percentages refer to mass percentages
  • ratios refer to mass ratios
  • the invention provides a brand-new method from raw material to catalytic system for preparing methyl isobutyl ketone.
  • the present invention uses mesityl oxide and methyl isobutyl alcohol to carry out the in-situ transfer of hydrogen under the action of a copper-based catalyst to prepare methyl isobutyl ketone in one step.
  • the whole reaction process does not need an external hydrogen system, the reaction is carried out under normal pressure, the process flow is short, and it has the advantages of high atom utilization rate and high safety, and is suitable for popularizing industrial applications.
  • the method for preparing methyl isobutyl ketone of the present invention comprises making mesityl oxide and methyl isobutyl alcohol undergo hydrogen transfer reaction in situ under the action of a copper-based catalyst.
  • the copper-based catalyst includes copper oxide, and the mass of copper oxide accounts for more than 50% of the total mass of the copper-based catalyst, such as >50%, 54%, or 64%.
  • the copper-based catalyst is preferably a copper-zinc-aluminum catalyst.
  • the main components of the copper-zinc-aluminum catalyst are copper oxide, aluminum oxide and zinc oxide, and the remaining components can be activated carbon.
  • the copper zinc aluminum catalyst consists of copper oxide, aluminum oxide, zinc oxide, and activated carbon.
  • the copper oxide content can be 50%-70% of the total mass of the catalyst, such as 52%, 54%, 60%, 64%, 65%, preferably 54%-64%
  • the zinc oxide content can be 10%-30% of the total mass of the catalyst, such as 12%, 14%, 20%, 24%, 25%, preferably 14%-24%
  • the alumina content can be 5%-15% of the total mass of the catalyst, such as 7%, 8%, 9%, 10%, preferably 7.8%-8%. Keeping the composition and ratio of the catalyst within the above range is conducive to the in-situ transfer of hydrogen, and the process flow is short.
  • Copper-based catalysts suitable for use in the present invention are commercially available.
  • the present invention uses a copper zinc aluminum catalyst with 54% copper oxide, 24% zinc oxide, and 8% aluminum oxide, or 64% copper oxide, 14% zinc oxide, A copper-zinc-aluminum catalyst with an alumina content of 7.8%.
  • the catalyst used in the present invention may be cylindrical.
  • the molar ratio of mesityl oxide to methyl isobutyl alcohol can be 0.1:1 to 2:1, such as 0.5:1 to 1.5:1, preferably 0.8:1 to 1.2:1, such as 1 : About 1. Adopting the preferred molar ratio of feed is beneficial to improve the conversion rate of mesityl oxide and methyl isobutyl alcohol and the selectivity of methyl isobutyl ketone.
  • methyl isobutyl ketone may optionally exist in the initial reaction system.
  • mesityl oxide, methyl isobutyl alcohol, and methyl isobutyl ketone may be mixed for reaction, or only mesityl oxide and methyl isobutyl alcohol may be mixed for reaction.
  • the initial reaction system includes methyl isobutyl ketone
  • the initial molar number of methyl isobutyl ketone added can be 0.5 to 2 times the total molar number of mesityl oxide and methyl isobutyl alcohol, such as 1 times.
  • the reaction pressure can be normal pressure, which has high safety.
  • the reaction temperature may be 140°C-250°C, such as 140°C, 160°C, 180°C, 200°C, 250°C, preferably around 180°C.
  • the reaction volume space velocity can be 0.05-0.2h -1 , such as 0.06h -1 , 0.08h -1 , 0.1h -1 , 0.12h -1 , 0.15h -1 , preferably about 0.1h -1 .
  • reaction process of the present invention there is no need to feed hydrogen.
  • the reaction is carried out under the protection of an inert gas, such as nitrogen.
  • an inert gas such as nitrogen.
  • the air in the reactor can be replaced with an inert gas before the reaction.
  • the reaction of the present invention is preferably carried out in a fixed-bed reactor, that is, preferably, the catalyst is fixedly filled in the reactor, and the flowing raw material occurs in the process of passing through the catalyst.
  • the fixed bed reactor may be a tubular reactor, such as a single tube reactor.
  • the reactor filled with the copper-based catalyst can be heated to the reaction temperature, and the uniformly mixed mesityl oxide and methyl isobutyl alcohol are fed from the bottom of the reactor and discharged from the upper part of the reactor for reaction.
  • the evenly mixed mesityl oxide and methyl isobutyl alcohol can be preheated to the reaction temperature before being sent into the reactor for reaction.
  • a single-tube reactor with a diameter of 20 ⁇ 2mm and a height of 700 ⁇ 100mm can be used, and the bed filling height of the copper-based catalyst in it can be 500 ⁇ 50mm.
  • the method for preparing methyl isobutyl ketone of the present invention comprises: after heating the reactor filled with the copper-based catalyst to the reaction temperature, the reactor is purged with an inert gas, and the mixture is uniformly
  • the mesityl oxide, methyl isobutyl alcohol and optional methyl isobutyl ketone are sent to the preheating system to be preheated to the reaction temperature, and then sent to the reactor for reaction.
  • the rate at which the raw material enters the preheating system may be 0.125-0.5 mL/min, such as 0.25 mL/min.
  • the present invention does not require external hydrogen and high-pressure circulation system, and the whole reaction is carried out under normal pressure, which has high safety;
  • the present invention adopts a relatively cheap copper-based catalyst to replace the expensive palladium noble metal catalyst, and the production cost is greatly reduced;
  • the present invention is a brand-new method for synthesizing MIBK, which is different from traditional techniques, and the product components are relatively single, and subsequent product separation and purification are easier to realize.
  • the present invention will be further described in the form of specific examples below. It should be understood that these examples are illustrative only and not intended to limit the scope of the present invention.
  • the methods and reagents used in the examples, unless otherwise stated, are conventional methods and reagents in the art.
  • the copper-zinc-aluminum columnar catalyst with a ratio of copper oxide, zinc oxide and aluminum oxide of 54:24:8 was purchased from the market, and the model was Chuanhua CB-5; copper oxide, zinc oxide, aluminum oxide
  • the copper-zinc-aluminum columnar catalyst with a ratio of 64:14:7.8 was purchased from a commercial channel, and the model was Chuanhua AF104.
  • a certain amount of copper-zinc-aluminum cylindrical catalyst (the content of copper oxide is 54%, the content of zinc oxide is 24%, and the content of aluminum oxide is 8%) is filled into a single-tube reactor with a diameter of 20 mm and a height of 700 mm, so that the catalyst bed The filling height is 500mm. Turn on the heating system to raise the temperature of the reaction device. After the temperature reaches 140°C, blow dry nitrogen gas from the top to purge the reactor for 10 minutes.
  • a certain amount of copper-zinc-aluminum cylindrical catalyst (the content of copper oxide is 54%, the content of zinc oxide is 24%, and the content of aluminum oxide is 8%) is filled into a single-tube reactor with a diameter of 20 mm and a height of 700 mm, so that the catalyst bed The filling height is 500mm. Turn on the heating system to raise the temperature of the reaction device. After the temperature reaches 160°C, blow dry nitrogen gas from the top to purge the reactor for 10 minutes.
  • a certain amount of copper-zinc-aluminum cylindrical catalyst (the content of copper oxide is 54%, the content of zinc oxide is 24%, and the content of aluminum oxide is 8%) is filled into a single-tube reactor with a diameter of 20 mm and a height of 700 mm, so that the catalyst bed The filling height is 500mm. Turn on the heating system to raise the temperature of the reaction device. After the temperature reaches 180°C, blow dry nitrogen gas from the top to purge the reactor for 10 minutes.
  • a certain amount of copper-zinc-aluminum cylindrical catalyst (the content of copper oxide is 54%, the content of zinc oxide is 24%, and the content of aluminum oxide is 8%) is filled into a single-tube reactor with a diameter of 20 mm and a height of 700 mm, so that the catalyst bed The filling height is 500mm. Turn on the heating system to raise the temperature of the reaction device. After the temperature reaches 200°C, blow dry nitrogen gas from the top to purge the reactor for 10 minutes.
  • a certain amount of copper-zinc-aluminum cylindrical catalyst (the content of copper oxide is 54%, the content of zinc oxide is 24%, and the content of aluminum oxide is 8%) is filled into a single-tube reactor with a diameter of 20 mm and a height of 700 mm, so that the catalyst bed The filling height is 500mm. Turn on the heating system to raise the temperature of the reaction device. After the temperature reaches 250°C, blow dry nitrogen gas from the top to purge the reactor for 10 minutes.
  • a certain amount of copper-zinc-aluminum cylindrical catalyst (the content of copper oxide is 54%, the content of zinc oxide is 24%, and the content of aluminum oxide is 8%) is filled into a single-tube reactor with a diameter of 20 mm and a height of 700 mm, so that the catalyst bed The filling height is 500mm. Turn on the heating system to raise the temperature of the reaction device. After the temperature reaches 180°C, blow dry nitrogen gas from the top to purge the reactor for 10 minutes.
  • a certain amount of copper-zinc-aluminum cylindrical catalyst (the content of copper oxide is 54%, the content of zinc oxide is 24%, and the content of aluminum oxide is 8%) is filled into a single-tube reactor with a diameter of 20 mm and a height of 700 mm, so that the catalyst bed The filling height is 500mm. Turn on the heating system to raise the temperature of the reaction device. After the temperature reaches 180°C, blow dry nitrogen gas from the top to purge the reactor for 10 minutes.
  • a certain amount of copper-zinc-aluminum cylindrical catalyst (the content of copper oxide is 54%, the content of zinc oxide is 24%, and the content of aluminum oxide is 8%) is filled into a single-tube reactor with a diameter of 20 mm and a height of 700 mm, so that the catalyst bed The filling height is 500mm. Turn on the heating system to raise the temperature of the reaction device. After the temperature reaches 180°C, blow dry nitrogen gas from the top to purge the reactor for 10 minutes.
  • a certain amount of copper-zinc-aluminum cylindrical catalyst (the content of copper oxide is 54%, the content of zinc oxide is 24%, and the content of aluminum oxide is 8%) is filled into a single-tube reactor with a diameter of 20 mm and a height of 700 mm, so that the catalyst bed The filling height is 500mm. Turn on the heating system to raise the temperature of the reaction device. After the temperature reaches 180°C, blow dry nitrogen gas from the top to purge the reactor for 10 minutes.
  • a certain amount of copper-zinc-aluminum cylindrical catalyst (the content of copper oxide is 64%, the content of zinc oxide is 14%, and the content of aluminum oxide is 7.8%) is filled into a single-tube reactor with a diameter of 20 mm and a height of 700 mm, so that the catalyst bed The filling height is 500mm. Turn on the heating system to raise the temperature of the reaction device. After the temperature reaches 180°C, blow dry nitrogen gas from the top to purge the reactor for 10 minutes.
  • a certain amount of copper-zinc-aluminum cylindrical catalyst (the content of copper oxide is 64%, the content of zinc oxide is 14%, and the content of aluminum oxide is 7.8%) is filled into a single-tube reactor with a diameter of 20 mm and a height of 700 mm, so that the catalyst bed The filling height is 500mm. Turn on the heating system to raise the temperature of the reaction device. After the temperature reaches 180°C, blow dry nitrogen gas from the top to purge the reactor for 10 minutes. Mix MO and MIBC at a molar ratio of 1:1, pump the mixture into the preheating system with a constant flow pump at a speed of 0.25mL/min, and enter from the bottom of the reactor after preheating to 180°C.
  • the reaction volume space velocity is 0.1h -1 , discharge from the upper part, take a sample after condensation, and analyze it by GC.
  • the MIBC conversion rate was 98.72%
  • the MO conversion rate was 97.93%
  • the MIBK selectivity was 98.15%.
  • the present invention uses mesityl oxide and methyl isobutyl alcohol to carry out in-situ transfer of hydrogen under the action of a copper-based catalyst to prepare methyl isobutyl ketone in one step.
  • the whole reaction process does not need an external hydrogen system, the reaction is carried out under normal pressure, the process flow is short, and a good MIBC conversion rate, MO conversion rate and selectivity have been achieved. It has the advantages of high atom utilization and high safety, and is suitable for the promotion of industrial application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种制备甲基异丁基酮的方法,所述方法包括使异丙叉丙酮和甲基异丁基醇在铜系催化剂的作用下进行反应生成甲基异丁基酮。本发明采用异丙叉丙酮和甲基异丁基醇在铜系催化剂的作用下进行氢的原位转移,一步制备甲基异丁基酮。整个反应过程无需外设氢气系统,反应在常压下进行,工艺流程短,具有原子利用率高、安全性高等优点,适合推广工业应用。

Description

一种制备甲基异丁基酮的方法 技术领域
本发明涉及一种制备甲基异丁基酮的方法,更具体地说,涉及一种异丙叉丙酮和甲基异丁基醇一步制备甲基异丁基酮的方法。
背景技术
甲基异丁基酮(MIBK)通常也称4-甲基-2-戊酮,是无色稳定易燃液体,有愉快气味,其在空气中爆炸范围为1.4%~7.5%,必须严禁与火源接近,贮存时必须使用密闭容器,低温保存,避免长期与皮肤接触。MIBK与水微溶,但与一些有机溶剂可完全互溶,是一种优良的溶剂。近年来由于汽车工业的快速发展,其作为合成橡胶防老剂6PPD的关键原材料,市场需求不断增长。
目前,多数企业都是采用丙酮为原材料,运用大孔酸性树脂负载贵金属钯催化剂,在固定床反应器内一步法缩合、加氢合成MIBK,然后再经过多塔连续分离提纯,最后得到MIBK产品。如CN103274913A提供了一种甲基异丁基酮生产工艺及其设备,包括以下步骤:(a)将原料丙酮和氢气送入固定床列管反应器进行反应,采用B621催化剂;反应后得到的反应产物先经过冷凝分离得到氢气;冷凝得到的溶液进入后续分离系统;(b)所述产物溶液送入轻组分塔进行分离,塔底釜液则进入丙酮塔进行分离;(c)丙酮塔塔压控制为微负压,塔底得到的重组分送入脱水塔进行水的脱除;(d)脱水塔塔顶得到的轻组分送往废水塔处理,得到有机轻组分;脱水塔塔底得到的产物送入产品塔进行提纯,产品塔顶得到产物甲基异丁基酮。虽然相对传统一步法,丙酮的平均转化率有所提升,且流程简单、副产物少,同时也提高了最大化的回收利用率和能耗,但是由于催化剂的选择以及工艺工程中的各类参数还不够完善,所以还是会导致大量能源和物料的浪费,副产物产生仍处于较高值,操作温度、压力较高,设备投资以及安全性也有待进一步提升。CN105130778A采用经醋酸钯处理的 强酸性阳离子交换树脂催化剂,对分离工艺进行了优化,并对副产物二异丁基酮(DIBK)进行了提纯,实现了有机物收率的上升和能耗的下降,但由于采用了贵金属钯催化剂,导致合成的成本总体较高,且反应压力较高,导致设备投资大,总体生产成本高。
发明内容
为了解决现有技术中存在的不足,本发明提供一种制备甲基异丁基酮的从原材料到催化体系的全新方法,实现成本优势。本发明采用异丙叉丙酮(MO)和甲基异丁基醇(MIBC)在铜系催化剂的作用下进行氢的原位转移,一步制备甲基异丁基酮。整个反应过程无需外设氢气系统,反应在常压下进行,工艺流程短,具有原子利用率高、安全性高等优点,适合推广工业应用。
具体而言,本发明提供一种制备甲基异丁基酮的方法,所述方法包括使异丙叉丙酮和甲基异丁基醇在铜系催化剂的作用下进行反应生成甲基异丁基酮。
在一个或多个实施方案中,所述铜系催化剂包含氧化铜,氧化铜的质量占所述铜系催化剂总质量的50%以上。
在一个或多个实施方案中,所述铜系催化剂为铜锌铝催化剂。
在一个或多个实施方案中,所述铜锌铝催化剂包含氧化铜、氧化锌和氧化铝。
在一个或多个实施方案中,所述铜锌铝催化剂中,氧化铜的质量占所述铜锌铝催化剂总质量的50%以上。
在一个或多个实施方案中,所述铜锌铝催化剂中,氧化铜的质量为所述铜锌铝催化剂总质量的50%-70%,氧化锌的质量为所述铜锌铝催化剂总质量的10%-30%,所述氧化铝的质量为所述铜锌铝催化剂总质量的5%-15%。
在一个或多个实施方案中,所述铜锌铝催化剂中,氧化铜的质量为所述铜锌铝催化剂总质量的54%-64%,氧化锌的质量为所述铜锌铝催化剂总质量的14%-24%,所述氧化铝的质量为所述铜锌铝催化剂总质量的7.8%-8%。
在一个或多个实施方案中,所述反应中,异丙叉丙酮和甲基异丁基醇的投料摩尔比为(0.1-2)∶1,优选(0.8-1.2)∶1。
在一个或多个实施方案中,所述反应开始时,反应体系中添加有甲基异丁基酮。
在一个或多个实施方案中,所述反应的温度为140℃-250℃,优选180±20℃。
在一个或多个实施方案中,所述反应的压力为常压。
在一个或多个实施方案中,所述反应的体积空速为0.05-0.2h -1,优选0.1±0.02h -1
在一个或多个实施方案中,所述反应过程中不通入氢气。
在一个或多个实施方案中,所述反应在固定床反应器、例如单管反应器中进行。
在一个或多个实施方案中,所述反应在惰性气体保护下进行。
在一个或多个实施方案中,所述方法包括:将填充有铜系催化剂的反应器加热至反应温度,将混合均匀的异丙叉丙酮和甲基异丁基醇由反应器底部进料、反应器上部出料进行反应。
在一个或多个实施方案中,先将混合均匀的异丙叉丙酮和甲基异丁基醇预热至反应温度后,再送入反应器进行反应。
在一个或多个实施方案中,所述反应器为直径为20±2mm、高700±100mm的单管反应器,所述铜系催化剂的床层填充高度为500±50mm。
附图说明
图1为异丙叉丙酮和甲基异丁基醇一步制备甲基异丁基酮的示意图。
具体实施方式
为使本领域技术人员可了解本发明的特点及效果,以下谨就说明书及权利要求书中提及的术语及用语进行一般性的说明及定义。除非另有指明,否则文中使用的所有技术及科学上的字词,均为本领域技术人员对于本发明所了解的通常意义,当有冲突情形时,应以本说明书的定义为准。
本文描述和公开的理论或机制,无论是对或错,均不应以任何方式限制本 发明的范围,即本发明内容可以在不为任何特定的理论或机制所限制的情况下实施。
本文中,“包含”、“包括”、“含有”以及类似的用语涵盖了“基本由......组成”和“由......组成”的意思,例如,当本文公开了“A包含B和C”时,“A基本由B和C组成”和“A由B和C组成”应当认为已被本文所公开。
在本文中,所有以数值范围或百分比范围形式界定的特征如数值、数量、含量与浓度仅是为了简洁及方便。据此,数值范围或百分比范围的描述应视为已涵盖且具体公开所有可能的次级范围及范围内的个别数值(包括整数与分数)。
本文中,若无特别说明,百分比是指质量百分比,比例是指质量比。
本文中,当描述实施方案或实施例时,应理解,其并非用来将本发明限定于这些实施方案或实施例。相反地,本发明所描述的方法及材料的所有的替代物、改良物及均等物,均可涵盖于权利要求书所限定的范围内。
本文中,为使描述简洁,未对各个实施方案或实施例中的各个技术特征的所有可能的组合都进行描述。因此,只要这些技术特征的组合不存在矛盾,各个实施方案或实施例中的各个技术特征可以进行任意的组合,所有可能的组合都应当认为是本说明书记载的范围。
本发明中,甲基异丁基醇(MIBC)转化率的计算公式为:MIBC转化率=(1-MIBC残余量/MIBC投入量)×100%。异丙叉丙酮(MO)转化率的计算公式为:MO转化率=(1-MO残余量/MO投入量)×100%。甲基异丁基酮(MIBK)选择性的计算公式为:MIBK选择性=MIBK生成量/(MIBC转化量×n(MIBK)/n(MIBC)+MO转化量×n(MIBK)/n(MO))×100%,其中n表示物质的量。
本发明提供一种制备甲基异丁基酮的从原材料到催化体系的全新方法。如图1所示,本发明采用异丙叉丙酮和甲基异丁基醇在铜系催化剂的作用下进行氢的原位转移,一步制备甲基异丁基酮。整个反应过程无需外设氢气系统,反应在常压下进行,工艺流程短,具有原子利用率高、安全性高等优点,适合推广工业应用。
本发明的制备甲基异丁基酮的方法包括使异丙叉丙酮和甲基异丁基醇在铜系催化剂的作用下进行氢的原位转移反应。
本发明中,铜系催化剂包含氧化铜,氧化铜的质量占所述铜系催化剂总质量的50%以上,例如>50%、54%、64%。铜系催化剂优选为铜锌铝催化剂。铜锌铝催化剂的主要成分为氧化铜、氧化铝和氧化锌,其余成分可以为活性炭。在一些实施方案中,铜锌铝催化剂由氧化铜、氧化铝、氧化锌和活性炭组成。铜锌铝催化剂中,氧化铜含量可以为催化剂总质量的50%-70%、例如52%、54%、60%、64%、65%、优选为54%-64%,氧化锌含量可以为催化剂总质量的10%-30%、例如12%、14%、20%、24%、25%、优选为14%-24%,氧化铝含量可以为催化剂总质量的5%-15%、例如7%、8%、9%、10%、优选为7.8%-8%。维持催化剂的组成和比例在上述范围,有利于进行氢的原位转移,工艺流程短。适用于本发明的铜系催化剂、例如铜锌铝催化剂市售可得。在一些实施方案中,本发明使用氧化铜含量为54%、氧化锌含量为24%、氧化铝含量为8%的铜锌铝催化剂,或氧化铜含量为64%、氧化锌含量为14%、氧化铝含量为7.8%的铜锌铝催化剂。本发明所用的催化剂可以呈圆柱状。
本发明中,异丙叉丙酮与甲基异丁基醇的投料摩尔比可以是0.1∶1到2∶1,例如0.5∶1到1.5∶1,优选为0.8∶1到1.2∶1、例如1∶1左右。采用优选的投料摩尔比有利于提高异丙叉丙酮与甲基异丁基醇的转化率以及甲基异丁基酮的选择性。
本发明中,甲基异丁基酮可以任选地存在于初始反应体系中。例如,可以将异丙叉丙酮和甲基异丁基醇与甲基异丁基酮混合后投入反应,也可以仅将异丙叉丙酮和甲基异丁基醇两者混合后投入反应。当初始反应体系包含甲基异丁基酮时,甲基异丁基酮的初始添加摩尔数可以是异丙叉丙酮和甲基异丁基醇的投料总摩尔数的0.5~2倍、例如1倍。
本发明中,反应压力可以为常压,安全性高。
本发明中,反应温度可以是140℃-250℃,例如140℃、160℃、180℃、200℃、250℃,优选为180℃左右。反应体积空速可以为0.05-0.2h -1,例如0.06h -1、0.08h -1、0.1h -1、0.12h -1、0.15h -1,优选为0.1h -1左右。在上述反应条件、 特别是优选的反应条件下制备甲基异丁基酮,有利于提高异丙叉丙酮与甲基异丁基醇的转化率以及甲基异丁基酮的选择性。
本发明的反应过程中无需通入氢气。反应在惰性气体、例如氮气的保护下进行。例如,可以在反应前使用惰性气体置换出反应器中的空气。
本发明的反应优选在固定床反应器中进行,即优选催化剂固定填充于反应器中,流动态的原料在通过催化剂的过程中发生。固定床反应器可以是管式反应器,例如单管反应器。
本发明中,可以将填充有铜系催化剂的反应器加热至反应温度,将混合均匀的异丙叉丙酮和甲基异丁基醇由反应器底部进料、反应器上部出料进行反应。可以先将混合均匀的异丙叉丙酮和甲基异丁基醇预热至反应温度后,再送入反应器进行反应。可以使用直径为20±2mm、高700±100mm的单管反应器,铜系催化剂在其中的床层填充高度可以为500±50mm。
在一些实施方案中,本发明的制备甲基异丁基酮的方法包括:向装填有铜系催化剂的反应器加热升温至反应温度后,通入惰性气体对反应器进行吹扫,将混合均匀的异丙叉丙酮、甲基异丁基醇和任选的甲基异丁基酮送入预加热系统预加热至反应温度、再送入反应器反应。原料进入预加热系统的速度可以是0.125-0.5mL/min,例如0.25mL/min。
本发明具有以下有益效果:
1、本发明不需要外设氢气以及高压循环系统,整个反应都在常压下进行,安全性高;
2、本发明采用了价格相对低廉的铜系催化剂替代价格昂贵的钯贵金属催化剂,生产成本大幅下降;
3、本发明为一种全新的合成MIBK方法,有别于传统工艺,且产物组分比较单一,后续产品分离提纯较容易实现。
以下将以具体实施例的方式对本发明作进一步说明。应理解,这些实施例仅仅是阐述性的,并非用于限制本发明的范围。实施例中所用到的方法和试剂, 除非另有说明,否则为本领域的常规方法和试剂。本文所述实施例中氧化铜、氧化锌、氧化铝比例为54∶24∶8的铜锌铝柱状催化剂通过市售途径购得,型号为川化CB-5;氧化铜、氧化锌、氧化铝比例为64∶14∶7.8的铜锌铝柱状催化剂通过市售途径购得,型号为川化AF104。
实施例1
向直径20mm、高700mm的单管反应器中装填一定量的铜锌铝圆柱状催化剂(氧化铜含量为54%,氧化锌含量为24%,氧化铝含量为8%),使催化剂的床层填充高度为500mm,打开加热系统,对反应装置进行升温,待温度达到140℃后,从顶部通入干燥氮气对反应器进行吹扫10min。将MO与MIBC按照1∶1的摩尔比进行混合,再加入摩尔数为MIBC与MO的摩尔数之和的MIBK混合均匀,用恒流泵以0.25mL/min的速度将混合物泵入预加热系统,预热到140℃后从反应器底部进入,上部出料,反应体积空速为0.1h -1,经过冷凝后取样,并用GC进行分析。MIBC转化率为82.14%,MO转化率为80.1%,MIBK选择性为98.60%。
实施例2
向直径20mm、高700mm的单管反应器中装填一定量的铜锌铝圆柱状催化剂(氧化铜含量为54%,氧化锌含量为24%,氧化铝含量为8%),使催化剂的床层填充高度为500mm,打开加热系统,对反应装置进行升温,待温度达到160℃后,从顶部通入干燥氮气对反应器进行吹扫10min。将MO与MIBC按照1∶1的摩尔比进行混合,再加入摩尔数为MIBC与MO的摩尔数之和的MIBK混合均匀,用恒流泵以0.25mL/min的速度将混合物泵入预加热系统,预热到160℃后从反应器底部进入,上部出料,反应体积空速为0.1h -1,经过冷凝后取样,并用GC进行分析。MIBC转化率为90.14%,MO转化率为89%,选择性为98.52%。
实施例3
向直径20mm、高700mm的单管反应器中装填一定量的铜锌铝圆柱状催化剂(氧化铜含量为54%,氧化锌含量为24%,氧化铝含量为8%),使催化剂的床层填充高度为500mm,打开加热系统,对反应装置进行升温,待温度达到180℃后,从顶部通入干燥氮气对反应器进行吹扫10min。将MO与MIBC按照1∶1的摩尔比进行混合,再加入摩尔数为MIBC与MO的摩尔数之和的MIBK混合均匀,用恒流泵以0.25mL/min的速度将混合物泵入预加热系统,预热到180℃后从反应器底部进入,上部出料,反应体积空速为0.1h -1,经过冷凝后取样,并用GC进行分析。MIBC转化率为96.14%,MO转化率为94.23%,选择性为98.33%。
实施例4
向直径20mm、高700mm的单管反应器中装填一定量的铜锌铝圆柱状催化剂(氧化铜含量为54%,氧化锌含量为24%,氧化铝含量为8%),使催化剂的床层填充高度为500mm,打开加热系统,对反应装置进行升温,待温度达到200℃后,从顶部通入干燥氮气对反应器进行吹扫10min。将MO与MIBC按照1∶1的摩尔比进行混合,再加入摩尔数为MIBC与MO的摩尔数之和的MIBK混合均匀,用恒流泵以0.25mL/min的速度将混合物泵入预加热系统,预热到200℃后从反应器底部进入,上部出料,反应体积空速为0.1h -1,经过冷凝后取样,并用GC进行分析。MIBC转化率为97.21%,MO转化率为95.72%,选择性为96.01%。
实施例5
向直径20mm、高700mm的单管反应器中装填一定量的铜锌铝圆柱状催化剂(氧化铜含量为54%,氧化锌含量为24%,氧化铝含量为8%),使催化剂的床层填充高度为500mm,打开加热系统,对反应装置进行升温,待温度达到250℃后,从顶部通入干燥氮气对反应器进行吹扫10min。将MO与MIBC按照1∶1的摩尔比进行混合,再加入摩尔数为MIBC与MO的摩尔数之和的MIBK混合均匀,用恒流泵以0.25mL/min的速度将混合物泵入预加热系统, 预热到250℃后从反应器底部进入,上部出料,反应体积空速为0.1h -1,经过冷凝后取样,并用GC进行分析。MIBC转化率为98.59%,MO转化率为97.31%,选择性为92.15%。
实施例6
向直径20mm、高700mm的单管反应器中装填一定量的铜锌铝圆柱状催化剂(氧化铜含量为54%,氧化锌含量为24%,氧化铝含量为8%),使催化剂的床层填充高度为500mm,打开加热系统,对反应装置进行升温,待温度达到180℃后,从顶部通入干燥氮气对反应器进行吹扫10min。将MO与MIBC按照0.1∶1的摩尔比进行混合,再加入摩尔数为MIBC与MO的摩尔数之和的MIBK混合均匀,用恒流泵以0.25mL/min的速度将混合物泵入预加热系统,预热到180℃后从反应器底部进入,上部出料,反应体积空速为0.1h -1,经过冷凝后取样,并用GC进行分析。MIBC转化率为54.32%,MO转化率为99.33%,选择性为98.15%。
实施例7
向直径20mm、高700mm的单管反应器中装填一定量的铜锌铝圆柱状催化剂(氧化铜含量为54%,氧化锌含量为24%,氧化铝含量为8%),使催化剂的床层填充高度为500mm,打开加热系统,对反应装置进行升温,待温度达到180℃后,从顶部通入干燥氮气对反应器进行吹扫10min。将MO与MIBC按照2∶1的摩尔比进行混合,再加入摩尔数为MIBC与MO的摩尔数之和的MIBK混合均匀,用恒流泵以0.25mL/min的速度将混合物泵入预加热系统,预热到180℃后从反应器底部进入,上部出料,反应体积空速为0.1h -1,经过冷凝后取样,并用GC进行分析。MIBC转化率为99.32%,MO转化率为45.22%,选择性为97.26%。
实施例8
向直径20mm、高700mm的单管反应器中装填一定量的铜锌铝圆柱状催 化剂(氧化铜含量为54%,氧化锌含量为24%,氧化铝含量为8%),使催化剂的床层填充高度为500mm,打开加热系统,对反应装置进行升温,待温度达到180℃后,从顶部通入干燥氮气对反应器进行吹扫10min。将MO与MIBC按照1∶1的摩尔比进行混合,再加入摩尔数为MIBC与MO的摩尔数之和的MIBK混合均匀,用恒流泵以0.125mL/min的速度将混合物泵入预加热系统,预热到180℃后从反应器底部进入,上部出料,反应体积空速为0.05h -1,经过冷凝后取样,并用GC进行分析。MIBC转化率为98.89%,MO转化率为97.77%,选择性为96.01%。
实施例9
向直径20mm、高700mm的单管反应器中装填一定量的铜锌铝圆柱状催化剂(氧化铜含量为54%,氧化锌含量为24%,氧化铝含量为8%),使催化剂的床层填充高度为500mm,打开加热系统,对反应装置进行升温,待温度达到180℃后,从顶部通入干燥氮气对反应器进行吹扫10min。将MO与MIBC按照1∶1的摩尔比进行混合,再加入摩尔数为MIBC与MO的摩尔数之和的MIBK混合均匀,用恒流泵以0.5mL/min的速度将混合物泵入预加热系统,预热到180℃后从反应器底部进入,上部出料,反应体积空速为0.2h -1,经过冷凝后取样,并用GC进行分析。MIBC转化率为87.32%,MO转化率为83.15%,选择性为98.02%。
实施例10
向直径20mm、高700mm的单管反应器中装填一定量的铜锌铝圆柱状催化剂(氧化铜含量为64%,氧化锌含量为14%,氧化铝含量为7.8%),使催化剂的床层填充高度为500mm,打开加热系统,对反应装置进行升温,待温度达到180℃后,从顶部通入干燥氮气对反应器进行吹扫10min。将MO与MIBC按照1∶1的摩尔比进行混合,再加入摩尔数为MIBC与MO的摩尔数之和的MIBK混合均匀,用恒流泵以0.25mL/min的速度将混合物泵入预加热系统,预热到180℃后从反应器底部进入,上部出料,反应体积空速为0.1h -1,经过 冷凝后取样,并用GC进行分析。MIBC转化率为97.5%,MO转化率为96.83%,选择性为98.22%。
实施例11
向直径20mm、高700mm的单管反应器中装填一定量的铜锌铝圆柱状催化剂(氧化铜含量为64%,氧化锌含量为14%,氧化铝含量为7.8%),使催化剂的床层填充高度为500mm,打开加热系统,对反应装置进行升温,待温度达到180℃后,从顶部通入干燥氮气对反应器进行吹扫10min。将MO与MIBC按照1∶1的摩尔比进行混合,用恒流泵以0.25mL/min的速度将混合物泵入预加热系统,预热到180℃后从反应器底部进入,反应体积空速为0.1h -1,上部出料,经过冷凝后取样,并用GC进行分析。MIBC转化率为98.72%,MO转化率为97.93%,MIBK选择性为98.15%。
从以上实施例的结果可以看出,本发明采用异丙叉丙酮和甲基异丁基醇在铜系催化剂的作用下进行氢的原位转移,一步制备甲基异丁基酮。整个反应过程无需外设氢气系统,反应在常压下进行,工艺流程短,取得了很好的MIBC转化率、MO转化率和选择性,具有原子利用率高、安全性高等优点,适合推广工业应用。

Claims (10)

  1. 一种制备甲基异丁基酮的方法,其特征在于,所述方法包括使异丙叉丙酮和甲基异丁基醇在铜系催化剂的作用下进行反应生成甲基异丁基酮。
  2. 如权利要求1所述的方法,其特征在于,所述铜系催化剂包含氧化铜,氧化铜的质量占所述铜系催化剂总质量的50%以上。
  3. 如权利要求1所述的方法,其特征在于,所述铜系催化剂为铜锌铝催化剂;优选地,所述铜锌铝催化剂包含氧化铜、氧化锌和氧化铝。
  4. 如权利要求3所述的方法,其特征在于,所述铜锌铝催化剂中,氧化铜的质量占所述铜锌铝催化剂总质量的50%以上;
    优选地,所述铜锌铝催化剂中,氧化铜的质量为所述铜锌铝催化剂总质量的50%-70%,氧化锌的质量为所述铜锌铝催化剂总质量的10%-30%,所述氧化铝的质量为所述铜锌铝催化剂总质量的5%-15%;
    更优选地,所述铜锌铝催化剂中,氧化铜的质量为所述铜锌铝催化剂总质量的54%-64%,氧化锌的质量为所述铜锌铝催化剂总质量的14%-24%,所述氧化铝的质量为所述铜锌铝催化剂总质量的7.8%-8%。
  5. 如权利要求1所述的方法,其特征在于,所述反应中,异丙叉丙酮和甲基异丁基醇的投料摩尔比为(0.1-2)∶1,优选(0.8-1.2)∶1。
  6. 如权利要求1所述的方法,其特征在于,所述反应开始时,反应体系中添加有甲基异丁基酮。
  7. 如权利要求1所述的方法,其特征在于,所述反应具有以下一项或多项特征:
    所述反应的温度为140℃-250℃,优选180±20℃;
    所述反应的压力为常压;
    所述反应的体积空速为0.05-0.2h -1,优选0.1±0.02h -1
    所述反应过程中不通入氢气;
    所述反应在固定床反应器、例如单管反应器中进行;
    所述反应在惰性气体保护下进行。
  8. 如权利要求1所述的方法,其特征在于,所述方法包括:将填充有铜系催化剂的反应器加热至反应温度,将混合均匀的异丙叉丙酮和甲基异丁基醇由反应器底部进料、反应器上部出料进行反应。
  9. 如权利要求7所述的方法,其特征在于,先将混合均匀的异丙叉丙酮和甲基异丁基醇预热至反应温度后,再送入反应器进行反应。
  10. 如权利要求7所述的方法,其特征在于,所述反应器为直径为20±2mm、高700±100mm的单管反应器,所述铜系催化剂的床层填充高度为500±50mm。
PCT/CN2022/139038 2022-01-04 2022-12-14 一种制备甲基异丁基酮的方法 WO2023130930A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210005993.6A CN114315540B (zh) 2022-01-04 2022-01-04 一种制备甲基异丁基酮的方法
CN202210005993.6 2022-01-04

Publications (1)

Publication Number Publication Date
WO2023130930A1 true WO2023130930A1 (zh) 2023-07-13

Family

ID=81024711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139038 WO2023130930A1 (zh) 2022-01-04 2022-12-14 一种制备甲基异丁基酮的方法

Country Status (2)

Country Link
CN (1) CN114315540B (zh)
WO (1) WO2023130930A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114315540B (zh) * 2022-01-04 2022-09-23 圣奥化学科技有限公司 一种制备甲基异丁基酮的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925796A (en) * 1997-09-16 1999-07-20 Union Carbide Chemicals & Plastics Technology Corporation Method to de-couple methyl isobutyl ketone and diisobutyl ketone co-produced from acetone and/or isopropyl alcohol
CN1772379A (zh) * 2005-10-21 2006-05-17 浙江大学 甲基异丁基醇气相催化脱氢铜系催化剂、制备方法及应用方法
US20120316363A1 (en) * 2011-06-07 2012-12-13 Jiangsu Sinorgchem Technology Co., Ltd. Method for pretreating and using copper-based catalyst
CN106278826A (zh) * 2016-08-05 2017-01-04 扬州工业职业技术学院 一种酮醇混合物的综合利用方法
CN108102683A (zh) * 2016-11-24 2018-06-01 中国科学院大连化学物理研究所 一种可再生十二醇和航空煤油范围内的支链烷烃的制备方法
CN110903164A (zh) * 2018-09-17 2020-03-24 中国石油化工股份有限公司 一种甲基异丁基酮加氢合成4-甲基-2-戊醇的方法
CN114315540A (zh) * 2022-01-04 2022-04-12 圣奥化学科技有限公司 一种制备甲基异丁基酮的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925796A (en) * 1997-09-16 1999-07-20 Union Carbide Chemicals & Plastics Technology Corporation Method to de-couple methyl isobutyl ketone and diisobutyl ketone co-produced from acetone and/or isopropyl alcohol
CN1772379A (zh) * 2005-10-21 2006-05-17 浙江大学 甲基异丁基醇气相催化脱氢铜系催化剂、制备方法及应用方法
US20120316363A1 (en) * 2011-06-07 2012-12-13 Jiangsu Sinorgchem Technology Co., Ltd. Method for pretreating and using copper-based catalyst
CN106278826A (zh) * 2016-08-05 2017-01-04 扬州工业职业技术学院 一种酮醇混合物的综合利用方法
CN108102683A (zh) * 2016-11-24 2018-06-01 中国科学院大连化学物理研究所 一种可再生十二醇和航空煤油范围内的支链烷烃的制备方法
CN110903164A (zh) * 2018-09-17 2020-03-24 中国石油化工股份有限公司 一种甲基异丁基酮加氢合成4-甲基-2-戊醇的方法
CN114315540A (zh) * 2022-01-04 2022-04-12 圣奥化学科技有限公司 一种制备甲基异丁基酮的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHU, ZHIWEN ET AL.: "Diverse synthesis of the C ring fragment of bryostatins via Zn/Cu-promoted conjugate addition of α-hydroxy iodide with enone", CHINESE CHEMICAL LETTERS, vol. 32, no. 1, 31 December 2021 (2021-12-31), XP093077524, ISSN: 1001-8417, DOI: 10.1016/j.cclet.2020.11.039 *
HUAZAO PAN: "Method for Producing Methyl Isobutyl Ketone", NATURAL GAS CHEMICAL INDUSTRY, vol. 4, 25 August 1981 (1981-08-25), pages 18 - 23, XP093077605 *
XU LIN, WANG FANG, HUANG JIEJUN, XU QING, YU LEI, FAN YINING: "Investigation on Preparation of Methyl Isobutyl Ketone through the Reduction by Isopropanol", CHINESE JOURNAL OF ORGANIC CHEMISTRY, SCIENCE PRESS, BEIJING., CN, vol. 36, no. 9, 17 May 2016 (2016-05-17), CN , pages 2232 - 2235, XP093077607, ISSN: 0253-2786, DOI: 10.6023/cjoc201603044 *

Also Published As

Publication number Publication date
CN114315540B (zh) 2022-09-23
CN114315540A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2023130930A1 (zh) 一种制备甲基异丁基酮的方法
EP3118181A1 (en) Composite metal catalyst composition, and method and apparatus for preparing 1,4-cyclohexanedimethanol using same
CN106890668A (zh) 一种生产乙酸甲酯的催化剂、其制备方法及应用
WO2014077130A1 (ja) 3-ヒドロキシテトラヒドロフランの製造方法、1,3-ブタンジオールの製造方法
CN100335473C (zh) 一种耦合工艺制备γ-丁内酯和环己酮的方法
JP2015054819A (ja) 3−ブテン−2−オール及び1,3−ブタジエンの製造方法
CN106699507B (zh) α-苯乙醇的制备方法
CN114702434A (zh) 一种四甲基哌啶醇连续化合成方法
CN109422657B (zh) 甲胺混合气体的分离同时联产甲酰胺类化合物的方法
CN112058313B (zh) 一种复合催化剂、其制备方法及其在柠檬醛合成中的应用
WO2019061358A1 (zh) 一种合成气直接生产乙酸甲酯和/或乙酸的方法
CN109761819B (zh) 一种n,n—二甲基丙胺的连续式制备方法
JPH10180111A (ja) 触媒及び2−ブテン−1−オール化合物の製造方法
US2791613A (en) Metahaloaniline production using copper oxide-chromic oxide catalysts
CN113277996B (zh) 一种灵活生产四氢呋喃和γ-丁内酯的方法
WO2014034880A1 (ja) 7-オクテナールの製造方法
WO2014101900A2 (zh) 一种低碳脂加氢制备乙醇的方法
JP7177156B2 (ja) 2,3-ブタンジオールの連続製造方法
CN114315777A (zh) 一种铃兰吡喃生产过程中含有脱水副产物和二噁烷副产物废料的资源化利用方法
CN112142600A (zh) 亚硝酸甲酯的制备方法及其应用
CN102574763B (zh) 制备4-戊烯酸的方法
EP3689845A1 (en) Method for directly producing ethanol from syngas
CN108299146A (zh) 一种α-蒎烯异构化反应的方法
CN113713817B (zh) 一种采用镍基催化剂催化丙醛加氢制正丙醇的方法
KR20120035760A (ko) 숙신산의 수소화반응에 의한 감마-부티로락톤 제조를 위한 팔라듐-알루미나 복합 촉매, 그 제조방법 및 상기 촉매를 이용한 숙신산의 수소화반응에 의한 감마-부티로락톤 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918377

Country of ref document: EP

Kind code of ref document: A1