WO2023130848A1 - 一种双向拉伸聚丙烯介电膜、改性聚丙烯材料及应用 - Google Patents

一种双向拉伸聚丙烯介电膜、改性聚丙烯材料及应用 Download PDF

Info

Publication number
WO2023130848A1
WO2023130848A1 PCT/CN2022/133482 CN2022133482W WO2023130848A1 WO 2023130848 A1 WO2023130848 A1 WO 2023130848A1 CN 2022133482 W CN2022133482 W CN 2022133482W WO 2023130848 A1 WO2023130848 A1 WO 2023130848A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
alkenyl
polypropylene
modified polypropylene
Prior art date
Application number
PCT/CN2022/133482
Other languages
English (en)
French (fr)
Inventor
张雅茹
李琦
张琦
袁浩
何金良
邵清
李君洛
权慧
王铭锑
胡军
李娟�
高达利
张龙贵
胡世勋
卢洪超
夏礼栋
Original Assignee
中国石油化工股份有限公司
中石化(北京)化工研究院有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210013459.XA external-priority patent/CN116444926A/zh
Priority claimed from CN202210014198.3A external-priority patent/CN116444929A/zh
Priority claimed from CN202210945062.4A external-priority patent/CN117567829A/zh
Priority claimed from CN202210945889.5A external-priority patent/CN117567830A/zh
Application filed by 中国石油化工股份有限公司, 中石化(北京)化工研究院有限公司, 清华大学 filed Critical 中国石油化工股份有限公司
Publication of WO2023130848A1 publication Critical patent/WO2023130848A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/04Anhydrides, e.g. cyclic anhydrides
    • C08F222/06Maleic anhydride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes

Definitions

  • the invention belongs to the field of polymers, and in particular relates to a biaxially stretched polypropylene dielectric film with high working temperature, a modified polypropylene material used to prepare the dielectric film, the biaxially stretched polypropylene dielectric film and The application of modified polypropylene material in high temperature energy storage dielectric, and a high working temperature polypropylene capacitive film and polypropylene electrotechnical film.
  • Biaxially oriented polypropylene is currently the most commercialized and widely used polymer film capacitor dielectric material. It has excellent comprehensive performance and mature large-scale preparation technology. It has been used in electric vehicles, wind power, photovoltaics, lighting and railways. Widely used in locomotive and other industries.
  • the first type of method is to improve the thermal stability of polymer dielectric materials, that is, to synthesize polymer dielectric materials with high glass transition temperature (T g ).
  • the second type of method is to introduce a second-phase filler into the polymer dielectric material to prepare a composite material, and use the filler particles to capture and scatter the carriers to suppress the leakage current of the polymer under the action of high temperature and high electric field.
  • both of these two methods have the problems of complex preparation process and difficulty in large-scale industrial production.
  • Grafting modification is a common means of polypropylene functionalization, and the commonly used methods include melt grafting and solid phase grafting.
  • Melting grafting equipment is simple and low in cost, but the reaction temperature is high, the process is difficult to control, there are many by-products, and there are few types of suitable monomers.
  • the solid-phase grafting reaction temperature is below the melting point of polypropylene, with fewer side reactions, high grafting efficiency, and a wide range of grafted monomers, such as Y.Pan et al.
  • CN111378229A discloses a long-term heat-aging resistant polypropylene composition and its preparation method.
  • the composition includes 84.55-57.9% of polypropylene, 15-40% of talcum powder, 0.1-0.3% of primary antioxidant, and 0.1% of auxiliary antioxidant ⁇ 0.3%, hindered amine antioxidant 0.05 ⁇ 0.2%, thioester antioxidant 0.1 ⁇ 0.3%, acid absorbing agent 0.1 ⁇ 1%.
  • CN202011292440.0 discloses a polypropylene material with low density, high light transmission and long-term thermo-oxidative aging resistance, wherein the main antioxidant is a compound of high molecular weight hindered phenolic antioxidant and low molecular weight hindered phenolic antioxidant.
  • the purpose of the present invention is to provide a high working temperature biaxially stretched polypropylene dielectric film, a novel graft-modified polypropylene material containing alkenyl functional monomers, the modified polypropylene material can be biaxially stretched
  • the polypropylene dielectric film is prepared by stretching process, and the polypropylene dielectric film and modified polypropylene material can maintain high energy storage efficiency and energy storage density even at relatively high operating temperatures.
  • the first aspect of the present invention provides a biaxially oriented polypropylene dielectric film with a high working temperature.
  • the raw material for the preparation of the biaxially oriented polypropylene dielectric film includes modified polypropylene grafted with alkenyl functional monomers. ;
  • the modified polypropylene grafted with alkenyl-containing functional monomers includes structural units derived from polypropylene as a matrix phase, and structural units derived from alkenyl-containing functional monomers as a dispersed phase;
  • the ash content of the modified polypropylene grafted with alkenyl functional monomer is less than 50ppm, preferably less than 36ppm, more preferably less than 30ppm;
  • the modified polypropylene grafted with alkenyl functional monomer is derived from The mass ratio of the functional monomer and the structural unit in the grafted state to the structural unit derived from the alkenyl-containing functional monomer and in the self-polymerization state is greater than or equal to 1.0;
  • the D50 of the dispersed phase is less than 450nm, preferably 50 ⁇ 400nm.
  • the maximum working temperature of the biaxially oriented polypropylene dielectric film is ⁇ 100°C, preferably 110-160°C, more preferably 120-145°C.
  • the breakdown field strength E g at -120°C is ⁇ 500MV/m, preferably 550-800MV/m;
  • the dielectric constant at -120°C and 100Hz is greater than 2.25, preferably 2.26 to 2.65;
  • the dielectric loss at -120°C and 100Hz is less than 1.55E-3, preferably less than 1.5E-3, preferably less than or equal to 1.0E-3, more preferably 1.0E-6 to 1.3E-3, and even more preferably 1.0E-3 6 ⁇ 9E-4;
  • the energy storage density at -120°C and 300MV/m is greater than 0.720J/cm 3 , preferably 0.740-2.0J/cm 3 , preferably greater than 0.780J/cm 3 , more preferably 0.780-2.0J/cm 3 , even more preferably 0.80 ⁇ 2.0J/cm 3 ;
  • the energy storage efficiency at -120°C and 300MV/m is greater than 90.0%, preferably 92.0-99.0%.
  • the biaxially oriented polypropylene dielectric film has at least one of the following characteristics: longitudinal tensile strength ⁇ 140MPa, preferably 140-170MPa; transverse tensile strength ⁇ 200MPa, preferably 205-250MPa; longitudinal elongation at break ⁇ 210%, preferably ⁇ 225%; transverse elongation at break ⁇ 60%, preferably ⁇ 62%; thickness is 0.5-15 microns, preferably 4-10 microns.
  • the second aspect of the present invention provides a modified polypropylene material for preparing a dielectric film
  • the modified polypropylene material includes a modified polypropylene grafted with an alkenyl-containing functional monomer, and the alkenyl-containing
  • the modified polypropylene grafted with functional monomers comprises a structural unit derived from polypropylene as a matrix phase, and a structural unit derived from an alkenyl-containing functional monomer as a dispersed phase; the alkenyl-containing functional monomer
  • the ash content of the grafted modified polypropylene is less than 50ppm, preferably less than 36ppm, more preferably less than 30ppm; the modified polypropylene grafted with the alkenyl functional monomer is derived from the alkenyl functional monomer and
  • the mass ratio of the structural units in the grafted state to the structural units in the self-polymerized state derived from alkenyl-containing functional monomers is greater than or equal to 1.0; the
  • the maximum working temperature of the modified polypropylene material is ⁇ 100°C, preferably 110-160°C, more preferably 120-145°C.
  • the breakdown field strength E g at -120°C is ⁇ 500MV/m, preferably 550-800MV/m;
  • the dielectric constant at -120°C and 100Hz is greater than 2.25, preferably 2.26 to 2.65;
  • the dielectric loss at -120°C and 100Hz is less than 1.55E-3, preferably less than 1.5E-3, preferably less than or equal to 1.0E-3, more preferably 1.0E-6 to 1.3E-3, and even more preferably 1.0E-3 6 ⁇ 9E-4;
  • the energy storage density at -120°C and 300MV/m is greater than 0.720J/cm 3 , preferably 0.740-2.0J/cm 3 , preferably greater than 0.780J/cm 3 , more preferably 0.780-2.0J/cm 3 , even more preferably 0.80 ⁇ 2.0J/cm 3 ;
  • the energy storage efficiency at -120°C and 300MV/m is greater than 90.0%, preferably 92.0-99.0%.
  • the third aspect of the present invention provides the application of the above-mentioned biaxially stretched polypropylene dielectric film or modified polypropylene material in energy storage dielectrics, especially high-temperature energy storage dielectrics.
  • a fourth aspect of the present invention provides a polypropylene capacitor film, the polypropylene capacitor film is one or more layers, at least one layer of which is the above-mentioned biaxially stretched polypropylene dielectric film, or at least one layer of which is composed of the above-mentioned
  • the raw material of the modified polypropylene material is obtained, preferably obtained by biaxial stretching, preferably at least one layer is obtained from the above-mentioned modified polypropylene material by biaxial stretching.
  • a fifth aspect of the present invention provides a polypropylene electrical film
  • the polypropylene electrical film is one or more layers, at least one layer of which is the above-mentioned biaxially oriented polypropylene dielectric film, or at least one layer of which is composed of the above-mentioned
  • the raw material of the modified polypropylene material is obtained, preferably obtained by biaxial stretching, preferably at least one layer is obtained from the above-mentioned modified polypropylene material by biaxial stretching.
  • the working temperature range of the biaxially stretched polypropylene dielectric film, modified polypropylene material, polypropylene capacitor film and polypropylene electrical film of the present invention is very wide, especially, it can also maintain good dielectric properties at relatively high working temperatures. Performance and energy storage performance, so it is especially suitable for high temperature and high operating field strength conditions.
  • the biaxially stretched polypropylene dielectric film, high-performance polypropylene capacitor film and polypropylene electrical film of the present invention have the advantages of good tensile properties, can take into account both mechanical and electrical properties at relatively high operating temperatures, and are suitable for high temperature, high Operating field strength conditions.
  • Fig. 1 is a photograph of the microstructure of the sample of modified polypropylene in Example 1 under a 20,000-fold electron microscope, in which the spherical dispersed phase is the aggregate of styrene structural units.
  • Fig. 2 is the photo of the microstructure of the sample sheet of modified polypropylene in Example 2 under a 20000 times electron microscope.
  • Fig. 3 is the photo of the microstructure of the sample sheet of modified polypropylene in Example 3 under a 20000 times electron microscope.
  • Fig. 4 is the photo of the microstructure of the sample sheet of modified polypropylene in Example 10 under a 20000 times electron microscope.
  • Fig. 5 is a photograph of the microstructure of the sample sheet of modified polypropylene in Comparative Example 1 under a 20,000-fold electron microscope, and there is no visible dispersed phase.
  • Figure 6 shows the TSDC test results of the products in Example 15 and Comparative Example 7.
  • the invention provides a biaxially oriented polypropylene dielectric film, wherein the raw material for preparing the biaxially oriented polypropylene dielectric film includes modified polypropylene grafted with alkenyl-containing functional monomers; the alkenyl-containing functional
  • the modified polypropylene grafted by the monomer comprises a structural unit derived from polypropylene as a matrix phase, and a structural unit derived from an alkenyl-containing functional monomer as a dispersed phase; the alkenyl-containing functional monomer is grafted
  • the ash content of the branched modified polypropylene is less than 50ppm, preferably less than 36ppm, more preferably less than 30ppm; the modified polypropylene grafted with the alkenyl functional monomer is derived from the alkenyl functional monomer and is in the The mass ratio of branched structural units to self-polymerized structural units derived from alkenyl-containing functional monomers is greater than or equal to 1.0; the
  • the maximum working temperature of the biaxially oriented polypropylene dielectric film is ⁇ 100°C, preferably 110-160°C, more preferably 120-145°C.
  • the dielectric film of the present invention has the above-mentioned excellent dielectric properties measured at 120°C.
  • the energy storage efficiencies of the films measured in the following examples at 120°C and 300MV/m are all above 90%.
  • the upper temperature limit when the energy storage efficiency reaches 90% can be used as an indication of the maximum operating temperature, thus it can be confirmed that the dielectric film of the present invention has a maximum operating temperature of at least 120°C.
  • the biaxially oriented polypropylene dielectric film has at least one of the following characteristics:
  • the breakdown field strength E g at -120°C is ⁇ 500MV/m, preferably 550-800MV/m;
  • the dielectric constant at -120°C and 100Hz is greater than 2.25, preferably 2.26 to 2.65;
  • the dielectric loss at -120°C and 100Hz is less than 1.55E-3, preferably less than 1.5E-3, preferably less than 1.0E-3, more preferably 1.0E-6 to 1.3E-3, and even more preferably 1.0E-6 ⁇ 9E-4;
  • the energy storage density at -120°C and 300MV/m is greater than 0.720J/cm 3 , preferably 0.740-2.0J/cm 3 , more preferably 0.780-2.0J/cm 3 , and even more preferably 0.80-2.0J/cm 3 ;
  • the energy storage efficiency at -120°C and 300MV/m is greater than 90.0%, preferably 92.0-99.0%.
  • the longitudinal tensile strength of the biaxially oriented polypropylene dielectric film of the present invention is ⁇ 140MPa, preferably 140-170MPa; the transverse tensile strength is ⁇ 200MPa, preferably 205-250MPa; the longitudinal elongation at break is ⁇ 210%, preferably ⁇ 225%; transverse elongation at break ⁇ 60%, preferably ⁇ 62%; thickness 0.5-15 microns, preferably 4-10 microns.
  • the structural units derived from the alkenyl-containing functional monomers and in the grafted state are combined with the The mass ratio of monomeric and self-polymerized structural units is 1.1-10, preferably 1.2-6.
  • the structural units derived from the alkenyl-containing functional monomers and in the grafted state are combined with the structural units derived from the alkenyl-containing functional monomers.
  • the mass ratio of the structural units which are permanent monomers and are in a self-polymerized state is greater than or equal to 1.5, preferably greater than or equal to 2.
  • the modified polypropylene grafted with alkenyl-containing functional monomers has at least one of the following characteristics: at 230°C, the melt flow rate under a load of 2.16 kg is 1 to 10 g/ 10min, preferably 1.5-8g/10min, more preferably 2-5g/10min; melting temperature T m is 155-168°C, preferably 157-165°C; flexural modulus is 1400-2000MPa, preferably 1500-1800MPa.
  • the "structural unit” means that it is a part of modified polypropylene, and its form is not limited. Specifically, “structural unit derived from polypropylene” refers to a product formed from polypropylene, including both in the form of a “radical” and in the form of a “polymer”. “Structural units derived from alkenyl-containing functional monomers” refer to products formed from alkenyl-containing functional monomers, which include both "group” and “self-polymerization” forms. The “structural unit” may be a repeating unit or a non-repeating independent unit.
  • a structural unit derived from an alkenyl-containing functional monomer that is "in a grafted state” refers to a structural unit derived from an alkenyl-containing functional monomer that forms a covalent bond (graft) to polypropylene.
  • the polypropylene dielectric energy storage material has a "sea-island structure", as shown in FIG. 1 .
  • “sea” is the matrix phase formed by structural units derived from polypropylene.
  • the “islands” are dispersed phases formed from structural units derived from alkenyl-containing functional monomers.
  • the graft modification can form a uniformly distributed nano-scale dispersed phase in the composite material, avoiding the problems that the inorganic filler is difficult to add and disperse.
  • the process of bulk modification is simpler, the dispersed phase is evenly dispersed, and the structure is stable, and it is not easy to cause the functional monomer layer to fall off due to external force during use.
  • the modified polypropylene is prepared by grafting reaction of polypropylene and alkenyl-containing functional monomers, preferably by suspension grafting reaction.
  • the grafting reaction in the present invention is a free radical polymerization reaction, therefore, the "in the grafted state” refers to the state in which the monomer forms a connection with another reactant after undergoing free radical polymerization.
  • the self-polymerized state refers to a state in which a monomer forms a self-polymer and is not linked (grafted) to another reactant.
  • the connection includes both direct connection and indirect connection.
  • alkenyl group in the alkenyl-containing functional monomer of the present invention is used for grafting with polypropylene, therefore, as long as the alkenyl group is located at a reactive position, all alkenyl-containing functional monomers are suitable for the present invention.
  • the alkenyl-containing functional monomer is selected from at least one of the monomers having the structure shown in formula 1,
  • R b , R c , and R d are each independently selected from H, substituted or unsubstituted alkyl;
  • R a is selected from substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or Unsubstituted aryl, substituted or unsubstituted ester, substituted or unsubstituted carboxy, substituted or unsubstituted cycloalkyl or heterocyclic, cyano, substituted or unsubstituted silyl;
  • R a and R d optionally ringed.
  • R b , R c , and R d are each independently selected from H, substituted or unsubstituted C 1 -C 6 alkyl;
  • R a is selected from substituted or unsubstituted C 1 -C 20 alkyl, substituted or unsubstituted C 1 -C 20 alkoxy, substituted or unsubstituted C 6 -C 20 aryl, substituted or unsubstituted C 1 -C 20 ester, substituted or unsubstituted C 1 -C 20 carboxyl, substituted or unsubstituted C 3 -C 20 cycloalkyl or heterocyclic group, cyano, substituted or unsubstituted C 3 -C 20 silyl;
  • R b , R c , R d are each independently selected from H, substituted or unsubstituted C 1 -C 6 alkyl;
  • R a is selected from at least one of the group shown in formula 2, the group shown in formula 3, the group shown in formula 4, the group shown in formula 5, the group shown in formula 6 and the heterocyclic group;
  • R 4 -R 8 are each independently selected from H, halogen, hydroxyl, amino, phosphoric acid, sulfonic acid, substituted or unsubstituted C 1 -C 12 alkyl, substituted or unsubstituted C 3 -C 12 cycloalkyl group, substituted or unsubstituted C 1 -C 12 alkoxy group, substituted or unsubstituted C 1 -C 12 ester group, substituted or unsubstituted C 1 -C 12 amino group , the substituted group is selected from halogen, hydroxyl, amino, phosphoric acid, sulfonic acid, C 1 -C 12 alkyl, C 3 -C 12 cycloalkyl, C 1 -C 12 alkoxy , C 1 -C 12 ester group, C 1 -C 12 amine group; preferably, R 4 -R 8 are each independently selected from H, halogen, hydroxyl, amino, substituted or unsubstitute
  • R 4 -R 10 are each independently selected from H, halogen, hydroxyl, amino, phosphoric acid, sulfonic acid, substituted or unsubstituted C 1 -C 12 alkyl, substituted or unsubstituted C 3 -C 12 cycloalkyl group, substituted or unsubstituted C 1 -C 12 alkoxy group, substituted or unsubstituted C 1 -C 12 ester group, substituted or unsubstituted C 1 -C 12 amino group , the substituted group is selected from halogen, hydroxyl, amino, phosphoric acid, sulfonic acid, C 1 -C 12 alkyl, C 3 -C 12 cycloalkyl, C 1 -C 12 alkoxy , C 1 -C 12 ester group, C 1 -C 12 amine group; preferably, R 4 -R 10 are each independently selected from H, halogen, hydroxyl, amino, substituted or unsubstitute
  • R 4 '-R 10 ' are each independently selected from H, halogen, hydroxyl, amino, phosphoric acid, sulfonic acid, substituted or unsubstituted C 1 -C 12 alkyl, substituted or unsubstituted C 3 -C 12 cycloalkyl, substituted or unsubstituted C 1 -C 12 alkoxy, substituted or unsubstituted C 1 -C 12 ester, substituted or unsubstituted C 1 -C 12 Amino group, the substituted group is selected from halogen, hydroxyl, amino, phosphoric acid, sulfonic acid, C 1 -C 12 alkyl, C 3 -C 12 cycloalkyl, C 1 -C 12 alkane Oxygen, C 1 -C 12 ester group, C 1 -C 12 amine group; preferably, R 4 '-R 10 ' are each independently selected from H, halogen, hydroxyl, amino, substituted
  • R', R", and R"' are each independently selected from substituted or unsubstituted C 1 -C 12 linear alkyl groups, substituted or unsubstituted C 3 -C 12 branched chain alkyl groups, Substituted or unsubstituted C 1 -C 12 alkoxy, substituted or unsubstituted C 1 -C 12 acyloxy; preferably, R 1 is C 2 -C 6 alkenyl, preferably monounsaturated Alkenyl; R 2 , R 3 , and R 4 are each independently selected from substituted or unsubstituted C 1 -C 6 straight chain alkyl, substituted or unsubstituted C 3 -C 6 branched chain alkyl, substituted or Unsubstituted C 1 -C 6 alkoxy, substituted or unsubstituted C 1 -C 6 acyloxy;
  • R m is selected from hydrogen and/or substituted or unsubstituted following groups: C 1 -C 20 straight chain alkyl, C 3 -C 20 branched chain alkyl, C 3 -C 12 cycloalkyl, C 3 -C 12 epoxyalkyl, C 3 -C 12 epoxyalkyl, the substituted group is selected from at least one of halogen, amino and hydroxyl;
  • the heterocyclic group is selected from imidazolyl, pyrazolyl, carbazolyl, pyrrolidinyl, pyridyl, piperidyl, caprolactam, pyrazinyl, thiazolyl, purinyl, morpholinyl, oxazolinyl .
  • the alkenyl-containing functional monomer is a styrene monomer
  • the styrene monomer is selected from the group consisting of styrene, ⁇ -methylstyrene, 1-vinylnaphthalene, 2-vinylnaphthalene, mono- or polysubstituted styrene, mono- or polysubstituted ⁇ -methylstyrene, mono- or polysubstituted 1-vinylnaphthalene, and mono- or polysubstituted 2-vinyl At least one of naphthalene; the substituted group is preferably selected from halogen, hydroxyl, amino, phosphoric acid, sulfonic acid, C 1 -C 8 straight chain alkyl, C 3 -C 8 branched chain alkyl Or cycloalkyl, C 1 -C 6 straight chain alkoxy, C 3 -C 8 branched or cycl
  • the alkenyl-containing functional monomer is an alkenyl-containing silane monomer
  • the alkenyl-containing silane monomer is selected from vinyltriethoxysilane, vinyl Trimethoxysilane, Vinyltriisopropoxysilane, Vinyltri-tert-Butoxysilane, Vinyltriacetoxysilane, Methylvinyldimethoxysilane, Ethylvinyldiethoxysilane , Allyltriethoxysilane, Allyltrimethoxysilane, Allyltriisopropoxysilane, Vinyltris( ⁇ -methoxyethoxy)silane, Allyltris( ⁇ -methyl Oxyethoxy)silane, allyltri-tert-butoxysilane, allyltriacetoxysilane, methallyldimethoxysilane and ethylallyldiethoxysilane A sort of.
  • the alkenyl-containing functional monomer is an acrylate monomer and/or an acrylic monomer
  • the acrylate monomer is selected from methyl (meth)acrylate ester, sec-butyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, (meth) Isooctyl acrylate, Lauryl (meth)acrylate, Coco oleate (meth)acrylate, Octadecyl (meth)acrylate, Dimethylaminoethyl (meth)acrylate, (meth)acrylate At least one of diethylaminoethyl acrylate, dimethylaminopropyl (meth)acrylate and glycidyl (meth)acrylate.
  • the acrylic monomer is selected from at least one of
  • the C 3 -C 12 epoxyalkylene alkyl group in the present invention refers to an alkylene group substituted with an epoxyalkylene group having 3-12 carbon atoms, for example, oxiranylmethyl group.
  • the alkenyl-containing functional monomer is an alkenyl-containing heterocyclic compound.
  • the alkenyl-containing heterocyclic monomer in the present invention can be any alkenyl-containing heterocyclic compound that can be polymerized by free radicals, and can be selected from imidazoles containing alkenyl substituents, pyrenes containing alkenyl substituents Azole, carbazole with alkenyl substituent, pyrrolidone with alkenyl substituent, pyridine or pyridinium salt with alkenyl substituent, piperidine with alkenyl substituent, caprolactam with alkenyl substituent, alkenyl substituent At least one of the pyrazine substituent, the thiazole containing alkenyl substituent, the purine containing alkenyl substituent, the morpholine containing alkenyl substituent and the oxazoline containing alkenyl substituent; preferably, the
  • the alkenyl-containing heterocyclic monomer can be selected from: 1-vinylimidazole, 2-methyl-1-vinylimidazole, N-allyl imidazole, 1-vinylpyrazole, 3 -Methyl-1-vinylpyrazole, vinylcarbazole, N-vinylpyrrolidone, 2-vinylpyridine, 3-vinylpyridine, 4-vinylpyridine, 2-methyl-5-vinylpyridine , Vinylpyridine N oxide, vinylpyridine salt, vinylpiperidine, N-vinylcaprolactam, 2-vinylpyrazine, N-vinylpiperazine, 4-methyl-5-vinylthiazole, N - at least one of vinylpurine, vinylmorpholine and vinyloxazoline.
  • the alkenyl-containing functional monomer can also be at least one of maleic anhydride, maleimide and its derivatives, itaconic anhydride, and ⁇ -methylene- ⁇ -butyrolactone .
  • the alkenyl-containing functional monomer is maleic anhydride.
  • alkenyl-containing functional monomers in the present invention can be used alone or in combination of one or more.
  • the content of the modified polypropylene grafted with the alkenyl-containing functional monomer is 1.0-28wt%, preferably 1.5-24wt%, more preferably 2.0-20wt%.
  • the polypropylene part in the modified polypropylene in the present invention may also refer to ungrafted polypropylene, which may be a propylene homopolymer or a propylene copolymer containing ethylene or butene units. More preferably, the polypropylene powder is a homopolypropylene with an isotacticity greater than 96%, preferably an isotacticity greater than 96.5%; or based on the total molar weight of structural units, the total content of ethylene units and butene units is less than 3.0mol % of copolymerized polypropylene, such as 2.5mol%, 2mol%, 1.5mol%, 1mol%, 0.9mol%, 0.8mol%, 0.7mol%, 0.6mol%, 0.5mol%, 0.4mol%, 0.3mol%, 0.2mol%, 0.1mol%, preferably, the total content of ethylene units and butene units in the copolymerized polypropylene is greater than 0 and less than 0.1mol
  • the particle size is 16 to 50 mesh; the ash content is less than 55 ppm, preferably less than 40 ppm, more preferably less than 35 ppm; the flexural modulus is 1400 to 2000MPa, preferably 1500-1800MPa.
  • the polypropylene can be homopolypropylene or copolymerized polypropylene, and preferably has at least one of the following characteristics:
  • the melt flow rate under a load of 2.16kg is 0.5-10g/10min, preferably 1-5g/10min, more preferably 2-4g/10min;
  • the melting temperature T m is above 150°C, preferably 153-180°C, more preferably 155-167°C;
  • the isotacticity is greater than 96%, preferably greater than 96.5%; or, the total content of ethylene units and butene units is less than 3.0 mol%, preferably greater than 0 and less than 0.1 mol%, or greater than 0.1 mol% and less than Equal to 3.0 mol%.
  • the polypropylene powder suitable for the present invention is commercially available, and can also be prepared by the methods described in Chinese patents CN109694427A, CN109694428A, CN104558813A, CN109912734A, CN111019025A, and CN105431459A.
  • the modified polypropylene grafted with alkenyl-containing functional monomers of the present invention can be prepared by a method comprising the following steps: in the presence of an inert gas, make the polypropylene powder and the alkenyl-containing functional monomer The reaction mixture is subjected to grafting reaction, and optionally washed with a washing solvent to obtain the modified polypropylene grafted with the alkenyl-containing functional monomer.
  • the grafting reaction of the present invention can be carried out with reference to various conventional methods in the art, preferably a suspension grafting reaction.
  • active grafting points are formed on polypropylene in the presence of alkenyl-containing functional monomers for grafting, or active grafting points are first formed on polypropylene and then treated with grafting monomers.
  • Grafting sites can be formed by treatment with free radical initiators, or by high energy ionizing radiation or microwave treatment. Free radicals generated in the polymer as a result of chemical or radiation treatment form graft sites on the polymer and initiate monomer polymerization at these sites.
  • the grafting site is initiated by a free radical initiator and the grafting reaction is further carried out.
  • the reaction mixture further includes a free radical initiator; further preferably, the free radical initiator is selected from peroxide-based free-radical initiators and/or azo-based free-radical initiators.
  • the peroxide free radical initiator is preferably selected from dibenzoyl peroxide, dicumyl peroxide, di-tert-butyl peroxide, lauroyl peroxide, lauryl peroxide, peroxide At least one of tert-butyl benzoate, diisopropyl peroxydicarbonate, tert-butyl peroxide (2-ethylhexanoate) and dicyclohexyl peroxydicarbonate; the azos are free
  • the base initiator is preferably azobisisobutyronitrile and/or azobisisoheptanonitrile.
  • the grafting point is initiated by a peroxide-based radical initiator and the grafting reaction is further performed.
  • the grafting reaction of the present invention can also be carried out by the methods described in CN106543369A, CN104499281A, CN102108112A, CN109251270A, CN1884326A and CN101492517B.
  • the present invention has no special limitation on the amount of each component in the grafting reaction.
  • the mass ratio of the free radical initiator to the alkenyl-containing functional monomer can be 0.1-10:100, preferably 0.5-5:100.
  • the mass ratio of the alkenyl-containing functional monomer to the polypropylene may be 0.5-25:100, preferably 1-20:100.
  • the present invention has no special limitation on the process conditions of the grafting reaction.
  • the temperature of the grafting reaction can be 30-110° C., preferably 60-95° C.; the time can be 0.5-10 hours, preferably 1-10 hours. 6h.
  • reaction mixture includes all the materials added to the grafting reaction system, and the materials can be added at one time or in different stages of the reaction.
  • the reaction mixture of the present invention also includes deionized water as a dispersant.
  • the mass dosage of the deionized water is 300-800% of the mass sum of the polypropylene powder and the alkenyl-containing functional monomer.
  • the reaction mixture of the present invention may also include an organic solvent as a solvent for dissolving the solid free radical initiator, the organic solvent preferably comprising C 2 -C 5 alcohols, C 2 -C 4 ethers and C 3 -C 5 ketones At least one of C 2 -C 4 alcohols, C 2 -C 3 ethers and C 3 -C 5 ketones, more preferably at least one of ethanol, ether and acetone A sort of.
  • the mass content of the organic solvent is preferably 1-35% of the mass of the polypropylene powder.
  • the preparation method of the modified polypropylene grafted with alkenyl-containing functional monomers comprises the following steps:
  • the powder is washed with a washing solvent, filtered and dried;
  • the preparation method of the modified polypropylene grafted with alkenyl functional monomer comprises the following steps:
  • the powder is washed with a washing solvent, filtered and dried;
  • the preparation method of the modified polypropylene grafted with alkenyl-containing functional monomers comprises the following steps:
  • the preparation method includes the following steps:
  • the preparation method includes the following steps:
  • the preparation method of the modified polypropylene grafted with alkenyl-containing functional monomers comprises the following steps:
  • the preparation method includes the following steps:
  • the powder is washed with a washing solvent, filtered and dried to obtain the modified polypropylene grafted with the alkenyl-containing functional monomer.
  • the preparation method includes the following steps:
  • the powder is washed with a washing solvent, filtered and dried to obtain the modified polypropylene grafted with the alkenyl-containing functional monomer.
  • the polypropylene powder used can be directly commercially purchased with a suitable particle size, or can be purchased or self-made and then screened. Therefore, the present invention may also include the step of pre-screening the polypropylene powder. Screening can be achieved by conventional sieving methods. According to a preferred embodiment, the screening pretreatment includes the following steps: use a double-layer vibrating sieve or a linear sieve equipped with a corresponding mesh screen to screen the powder, and use the polypropylene powder in the middle layer of the sieving machine as the reaction Materials, in order to obtain the raw material powder in the corresponding particle size range.
  • the preparation method of the modified polypropylene grafted with alkenyl-containing functional monomers is selected from one of the following methods:
  • the preparation method includes the following steps:
  • the preparation method includes the following steps:
  • the preparation method of the modified polypropylene grafted with alkenyl-containing functional monomers is selected from one of the following methods:
  • the preparation method includes the following steps:
  • washing solvent to the powder for washing, washing temperature is 40-130°C, washing time is 0.5-10h, after washing, filter and dry to obtain the modified polypropylene grafted with alkenyl-containing functional monomers .
  • the preparation method includes the following steps:
  • washing solvent to the powder for washing, the washing temperature is 40-130°C, and the washing time is 0.5-10h. After washing, filter and dry to obtain the modified polypropylene grafted with alkenyl-containing functional monomers .
  • the inert gas in the present invention can be various inert gases commonly used in the art, including but not limited to nitrogen and argon.
  • the washing solvent is selected from normal hexane, cyclohexane, n-heptane, petroleum ether, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, acetone, methyl ethyl ketone, One or a mixture of two or more of tetrahydrofuran, 2-methyltetrahydrofuran, benzene, toluene and xylene.
  • the washing solvent is a mixture of solvent A and solvent B
  • the solvent A is selected from normal hexane, cyclohexane, n-heptane, petroleum ether, ethyl acetate, propyl acetate, isopropyl acetate, acetic acid At least one of butyl ester, acetone, methyl ethyl ketone, tetrahydrofuran and 2-methyltetrahydrofuran
  • the solvent B is at least one of toluene and xylene.
  • the mass of the washing solvent is 2 to 20 times that of the grafted polypropylene powder.
  • the washing temperature may be 40-130° C., preferably 55-100° C.; the washing time may be 0.5-10 h, preferably 1-8 h.
  • the drying step after the reaction is preferably carried out, and both the drying step and the drying step after washing with the washing solvent are preferably vacuum drying, and the temperature may be 60-90°C.
  • the biaxially oriented polypropylene dielectric film uses the modified polypropylene as the main resin component or the only resin component.
  • the preparation raw materials of the biaxially oriented polypropylene dielectric film may also include Antioxidant and optional processing aid, or controllable amount of other resin components, preferably, based on the weight of the dielectric film, the modified polypropylene containing alkenyl functional monomer graft
  • the content is 50% by weight or more, preferably 60% by weight or more, more preferably 70% by weight or more, such as 75% by weight, 80% by weight, 85% by weight, 90% by weight, 95% by weight.
  • the method for making modified polypropylene into a polymer dielectric film can be carried out with reference to the prior art.
  • the biaxially stretched polypropylene dielectric film is prepared by a method comprising the following steps:
  • step (2) Melting and extruding the pellets obtained in step (1) and casting cast flakes to obtain modified polypropylene cast flakes;
  • the present invention also provides a modified polypropylene material for preparing a dielectric film
  • the modified polypropylene material includes a modified polypropylene grafted with an alkenyl-containing functional monomer, and the alkenyl-containing functional monomer
  • the modified polypropylene of bulk grafting comprises structural units derived from polypropylene as a matrix phase, and structural units derived from functional monomers containing alkenyl groups as a dispersed phase; the functional monomers containing alkenyl groups are grafted
  • the ash content of the modified polypropylene is less than 50ppm, preferably less than 36ppm, more preferably less than 30ppm; the modified polypropylene grafted with alkenyl functional monomer is derived from the alkenyl functional monomer and is in grafting
  • the mass ratio of the structural unit in the state to the structural unit derived from the alkenyl-containing functional monomer and in the self-polymerization state is greater than or equal to 1.0; the D
  • the maximum working temperature of the modified polypropylene material is ⁇ 100°C, preferably 110-160°C, more preferably 120-145°C.
  • the modified polypropylene material has at least one of the following characteristics:
  • the breakdown field strength E g at -120°C is ⁇ 500MV/m, preferably 550-800MV/m;
  • the dielectric constant at -120°C and 100Hz is greater than 2.25, preferably 2.26 to 2.65;
  • the dielectric loss at -120°C and 100Hz is less than 1.55E-3, preferably less than 1.5E-3, preferably less than or equal to 1.0E-3, more preferably 1.0E-6 to 1.3E-3, and even more preferably 1.0E-3 6 ⁇ 9E-4;
  • the energy storage density at -120°C and 300MV/m is greater than 0.720J/cm 3 , preferably 0.740-2.0J/cm 3 , more preferably 0.780-2.0J/cm 3 , and even more preferably 0.80-2.0J/cm 3 ;
  • the energy storage efficiency at -120°C and 300MV/m is greater than 90.0%, preferably 92.0-99.0%.
  • modified polypropylene grafted with alkenyl-containing functional monomers are as described above, and will not be repeated here.
  • modified polypropylene material may also include an antioxidant and optional processing aids.
  • the content of the antioxidant is 0.1 to 0.8 parts by weight, preferably 0.1 to 0.6 parts by weight; the content of the processing aid is 0.05 to 1 part by weight; preferably 0.05 to 0.5 part by weight.
  • the antioxidant is selected from one or more complexes of hindered phenols, hindered amines, phosphites, thios, and benzofuranones. Based on 100 parts by weight of the modified polypropylene, the content of the antioxidant may be 0.1-0.8 parts by weight, preferably 0.1-0.6 parts by weight.
  • the inventors of the present invention found in the research that selecting a suitable antioxidant compound combination and proportion can significantly improve the heat and oxygen aging resistance of the modified polypropylene material, so that the prepared film product has excellent thermal stability. stability.
  • the antioxidant is obtained by compounding antioxidant component A and antioxidant component B, and the antioxidant component A is selected from hindered phenols, hindered amines, phosphites and sulfides At least one of them, the antioxidant component B is at least one benzofuranone.
  • the weight ratio of the antioxidant component A to the antioxidant component B is 1:0.01-0.03.
  • the antioxidant component A is selected from tetrakis[ ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl) propionate] pentaerythritol ester (antioxidant 1010), tris[2, 4-di-tert-butylphenyl] phosphite (antioxidant 168), ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl) n-octadecyl propionate (antioxidant 1076 ), 2,2'-thiobis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate] (antioxidant 1035), 2,2'-methylenebis( 4-methyl-6-tert-butylphenol) (antioxidant 2246), 1,1,3-tris(2-methyl-4-hydroxy-5-tert-butylphenyl) butane (antioxidant CA) and bis(2,4-di-tert-butylphenol)
  • the antioxidant component B is selected from 3-butyl-1(3-hydrogen)-isobenzofuranone (antioxidant 501), 5-methyl-7-tert-butyl-3-(3, 4-Dimethyl)-3-hydrogen-benzofuran-2-one, 5-methyl-7-tert-butyl-3-(2,5-dimethyl)-3-hydrogen-benzofuran- At least one of 2-ketone and 5-methyl-7-tert-butyl-3-(2-hydroxy-5-methyl)-3-hydrogen-benzofuran-2-one.
  • the antioxidant is selected from the compound of antioxidant 1010 and/or antioxidant 168 and/or antioxidant 501.
  • the content of the antioxidant is preferably 0.2-0.4 parts by weight.
  • the processing aids include, but are not limited to: lubricants, acid absorbing agents, slip agents, antistatic agents, antisticking agents, and the like.
  • the dosages of various additives can be conventional choices in the art, which are well known to those skilled in the art, and will not be repeated here.
  • the processing aids used will not adversely affect the tensile film-forming properties and mechanical properties of the modified polypropylene material. Based on 100 parts by weight of the modified polypropylene, the content of the processing aid may be 0.05-1 part by weight, preferably 0.05-0.5 part by weight.
  • the processing aid is a lubricant.
  • the lubricant can be selected from polyethylene glycol lubricants, fluoropolymer lubricants, silicone lubricants, fatty alcohol lubricants, fatty acid lubricants, fatty acid ester lubricants, stearic acid amide One or more of lubricants, fatty acid metal soap lubricants, alkane and oxidized alkane lubricants, and micro-nano particle lubricants.
  • the PEG-based lubricant can be, for example, a PEG molecule with a molecular weight of 500-50,000, which can be end-capped, grafted, cross-linked, or otherwise chemically or physically modified.
  • the fluorine-containing polymer lubricant can be, for example, at least one of polytetrafluoroethylene, polyvinylidene fluoride, polyhexafluoropropylene, etc., and can also be other unimodal or multimodal fluorine-containing polymers and crystalline or Semi-crystalline fluoropolymer.
  • the silicone lubricant can be various existing oligomers or oligomers with carbon and silicon atoms as the molecular backbone and organic groups such as methyl, phenyl, alkoxy, vinyl, etc. chain compounds.
  • the fatty alcohol lubricant may be, for example, at least one of palmitic alcohol, stearyl alcohol, tallow fatty alcohol and the like.
  • the fatty acid lubricant may be, for example, stearic acid and/or 12-hydroxystearic acid.
  • the fatty acid ester lubricant may be, for example, at least one of butyl stearate, monoglyceride stearate, cetyl palmitate, stearyl stearate, and the like.
  • the stearic acid amide lubricant may be, for example, at least one of stearic acid amide, oleic acid amide, erucic acid amide, n,n-ethylene bisstearic acid amide (EBS) and the like.
  • the fatty acid metal soap lubricant can be, for example, at least one of lead stearate, calcium stearate, magnesium stearate, synthetic calcium acetate and the like.
  • the alkane and oxidized alkane lubricants may be, for example, at least one of liquid paraffin, paraffin wax, polyethylene wax, polypropylene wax, ethylene oxide wax, and the like.
  • the micro/nano particle lubricant may be, for example, powdered rubber and/or silica gel particles.
  • the processing aid is a fluoropolymer.
  • the modified polypropylene material of the present invention is prepared by mixing various components.
  • the method for making the modified polypropylene material pellets into a polymer dielectric film can be carried out with reference to the prior art, for example, the pellets can be processed by hot pressing or extrusion casting, or the pellets can be processed by biaxial stretching. The pellets are processed to form a dielectric film.
  • the pellets can be prepared by a conventional pelletizing method in the art, for example, pelletizing by a twin-screw extruder.
  • the biaxially oriented polypropylene dielectric film is prepared by a method comprising the following steps:
  • step (2) Melting and extruding the pellets obtained in step (1) and casting cast flakes to obtain modified polypropylene cast flakes;
  • the process of mixing modified polypropylene with antioxidant and processing aid and extruding and granulating generally includes: mixing the modified polypropylene material uniformly in a high-speed mixer, and mixing the uniformly mixed material Add it into a twin-screw extruder or a single-screw extruder to melt and mix it, uniformly extrude and granulate, and dry to obtain pellets.
  • the processing temperature of the twin-screw extruder can be controlled at 190-230°C.
  • the melting extrusion temperature in step (2) is 190-230° C.; the casting chill roll temperature of the casting cast sheet is 15-50° C.
  • the modified polypropylene cast sheet can have a single-layer structure or a multi-layer structure.
  • the method for preparing a dielectric film includes: putting the modified polypropylene material pellets into a hot air oven for drying, and putting the dried pellets into an extrusion casting machine for melt extrusion Extrude and cast the cast sheet, the temperature of the melt extrusion extruder is 230°C, the temperature of the screen changing area is controlled at 230°C, the temperature of the machine head is controlled at 230°C, and the temperature of the casting roll is controlled at 25°C to make a 230 ⁇ 20 ⁇ m Thick cast. Put the above-mentioned polypropylene thick cast sheet into the stretching fixture of the film biaxial stretching equipment, and adopt the bidirectional simultaneous stretching process to form it.
  • the dielectric film preferably further contains a film-forming aid.
  • the film-forming aid can be selected from at least one of an antihalogen agent, a light stabilizer, a heat stabilizer, a colorant, a filler, a slip agent, an antisticking agent and an antistatic agent.
  • the specific type of the film-forming aid is a conventional choice in the field, and will not be repeated here.
  • the biaxially stretched polypropylene dielectric film and the modified polypropylene material of the present invention can be used as energy storage dielectrics, and are particularly suitable for high temperature energy storage dielectrics because of their high working temperature.
  • the dielectric is preferably a film dielectric, which may be single or multilayer, including but not limited to capacitive films, electrotechnical films, roughened films, supercapacitor films, electrostatic films, or battery separators.
  • the polypropylene dielectric energy storage material of the invention is especially suitable for preparing capacitor films.
  • the capacitor film is a functional thin film material with electrical polarization as its basic electrical feature, and is used as a dielectric material for thin film capacitors because of its excellent insulation and dielectric properties.
  • the electrical film is a film with a thickness of less than 350 microns and excellent electrical properties. It is usually made of high molecular polymers and may contain some auxiliary materials to meet the requirements of corrosion resistance and radiation resistance of electrical products. It is generally used in electronic products. Parts insulation, automotive wiring, wire winding, insulation protection, etc.
  • the present invention provides a polypropylene capacitor film
  • the polypropylene capacitor film is one or more layers, wherein at least a part of at least one layer is the above-mentioned biaxially stretched polypropylene dielectric film, or at least one layer thereof It is made from raw materials containing the above-mentioned modified polypropylene material, preferably through biaxial stretching, and preferably at least one layer is made from the above-mentioned modified polypropylene material through biaxial stretching.
  • the present invention provides a polypropylene electrical film
  • the polypropylene electrical film is one or more layers, wherein at least a part of at least one layer is the above-mentioned biaxially stretched polypropylene dielectric film, or at least one layer is made of
  • the raw material containing the above-mentioned modified polypropylene material is obtained, preferably by two-way stretching, preferably at least one layer of which is made of the above-mentioned modified polypropylene material by two-way stretching.
  • the preparation of polypropylene capacitive film/electrical film specifically includes: adding the modified polypropylene material pellets prepared in step (1) to the casting equipment to carry out extrusion casting casting, and then casting the obtained casting in the film two-way Stretch forming in stretching equipment.
  • the casting die can be selected according to the structure of the film to be obtained.
  • a single-layer die can be used; when it is necessary to obtain a film with a multi-layer
  • the film of structure for example has the film of upper surface layer, core layer and lower surface layer three-layer structure
  • the film of structure can adopt multilayer structure composite die head, and at least one layer (such as core layer) and in described multilayer structure composite die head
  • the hopper of the extruder equipped with the above-mentioned modified polypropylene material is connected, so that at least one layer (such as the core layer) in the obtained film is a modified polypropylene layer formed by the above-mentioned modified polypropylene material.
  • the extrusion temperature may be 100-200° C.
  • the temperature of the casting chill roll may be 15-50° C.
  • the biaxial stretching includes synchronous stretching (that is, film longitudinal (MD) and transverse (TD) stretching at the same time) or step-by-step stretching (that is, film longitudinal stretching first, and then film transverse stretching). stretch).
  • the synchronous stretching method includes: first preheating the cast sheet of the modified polypropylene material, and the preheating temperature can be 120-170° C., and then performing MD and TD stretching at the same time; the conditions of the synchronous stretching method include: The stretching temperature is 150-175°C, the MD stretching ratio is more than 3 times, the TD stretching ratio is more than 3 times, the MD stretching rate is 50-300%/s, and the TD stretching rate is 50-300%/s .
  • the step-by-step stretching includes: preheating the modified polypropylene material cast sheet first, then performing MD stretching first, then preheating and then TD stretching; the conditions for the step-by-step stretching include: MD Stretching temperature is 150-170°C, TD stretching temperature is 155-175°C, MD stretching ratio is more than 3 times, TD stretching ratio is more than 5 times, MD stretching rate is 50-300%/s, TD The stretching rate is 50-300%/s.
  • the method can perform annealing and setting treatment on the stretched film, or not perform the setting treatment.
  • the method of the present invention includes annealing and setting treatment on the stretched film, wherein, after performing the setting In the case of treatment, the temperature of the annealing and setting treatment is preferably 160 to 180°C.
  • the time for the annealing and setting treatment is preferably 5 to 60 s. Performing the annealing and setting treatment on the stretched film can improve the dimensional stability of the film.
  • the method may also include carrying out surface corona treatment, trimming and winding treatment of the polypropylene film obtained, and the surface corona treatment, trimming and winding treatment are conventional operations in the art, and the present invention This is not particularly limited.
  • the film casting equipment was purchased from Sweden Labtech Company, the model is LCR400.
  • Modified polypropylene material and film properties were tested according to the following methods.
  • the MFR of polypropylene/modified polypropylene material was measured at 230°C and 2.16kg load with CEAST company's 7026 melt indexer.
  • the melting process and crystallization process of polypropylene/modified polypropylene materials were analyzed by differential scanning calorimetry.
  • the specific operation is as follows: under the protection of nitrogen, put 5 mg of sample in a crucible, heat up from 20°C to 200°C at a rate of 10°C/min, keep it warm for 5 minutes to eliminate the thermal history, and then lower the temperature at a rate of 10°C/min. Heat to 20°C, keep warm for 1min, and finally rise to 200°C at a heating rate of 10°C/min, record the scanning data of the third heating, and calculate the melting temperature Tm according to GB/T 19466.3-2004.
  • w 0 is the mass of ungrafted polypropylene
  • w 1 is the mass of grafted product
  • w 2 is the mass of insoluble matter.
  • the test method is the contact electrode method, and the electrode material is conductive rubber.
  • the test method is the 50-point electrode method.
  • the measurement method is the micrometer method.
  • the modified polypropylene material was hot pressed and extruded, and the sample obtained by soaking in liquid nitrogen for 15 minutes was brittle and fractured. The section was sprayed with gold, and then the section of the material was examined by a thermal field emission scanning electron microscope (NanoSEM 450 from FEI, USA). Characterize and obtain microscopic morphology photos. With the Nano Measurer 1.2 analysis software, 200 dispersed phases of each sample were taken and the diameter was measured, and the D50 was calculated with the data processing software. D50 represents the median particle size, that is, the particle size corresponding to when the cumulative particle size distribution percentage of a sample reaches 50%.
  • the material was pressed into a thin film with an average thickness of 50 ⁇ m, and a circular gold electrode with a diameter of 20 mm was sputtered on the surface.
  • a DC field strength of 20kV/mm for 30min at a certain polarization temperature then maintain the electric field, and quickly cool down to -100°C.
  • remove the electric field for 15 min to eliminate unfrozen trapped charges Then the temperature was increased linearly from -100°C to 150°C at a rate of 3°C/min, and the depolarization current was measured at the same time.
  • the polypropylene powders used in all the examples were sieved by vibrating sieves equipped with 16-mesh and 48-mesh sieves before the grafting reaction.
  • Fig. 1 is the photograph of the microstructure of the product in Example 1 under a 20,000-fold electron microscope, wherein the part with higher spherical brightness is the dispersed phase composed of styrene structural units. It can be seen that the particle size of the dispersed phase is small and the shape is regular. Test the graft/self-polymerization ratio ⁇ , D50, ash, MFR, Tm and flexural modulus of the grafted modified polypropylene obtained, and the results are shown in Table 1.
  • the pellets obtained above are put into a hot-air oven for drying, and the dried pellets are added to an extrusion caster of LCR400 purchased from Sweden Labtech Company for melt extrusion and casting.
  • the temperature of the extruder is 230°C
  • the temperature of the screen changing area is controlled at 230°C
  • the temperature of the head is controlled at 230°C
  • the temperature of the casting roll is controlled at 25°C to make a thick cast sheet of 230 ⁇ 20 ⁇ m.
  • the process conditions of each step include: the preheating temperature is 160°C, the stretching temperature is 160°C, The stretching ratio is 5.5 ⁇ 5.5 times, the film stretching rate is 100%/s; the film setting temperature is 160°C.
  • the various electrical performance parameters of the obtained polypropylene film were tested, and the results are shown in Table 2.
  • Fig. 2 is a photo of the microstructure of the product in Example 2 under a 20,000-fold electron microscope, in which the spherical highlighted part is the dispersed phase composed of styrene structural units.
  • the powder obtained above was subjected to granulation and preparation of film products.
  • the preparation method was the same as in Example 1, and various structural and performance parameters of the obtained grafted modified polypropylene and the obtained polypropylene film were tested. The results are shown in Table 1 and Table 2.
  • Fig. 3 is a photograph of the microstructure of the powder in Example 3 under a 20,000-fold electron microscope, in which the spherical highlighted part is the dispersed phase composed of maleic anhydride/styrene structural units.
  • the powder obtained above was subjected to granulation and preparation of film products.
  • the preparation method was the same as in Example 1, and various structural and performance parameters of the obtained grafted modified polypropylene and the obtained polypropylene film were tested. The results are shown in Table 1 and Table 2.
  • the powder obtained above was subjected to granulation and preparation of film products.
  • the preparation method was the same as in Example 1, and various structural and performance parameters of the obtained grafted modified polypropylene and the obtained polypropylene film were tested. The results are shown in Table 1 and Table 2.
  • the powder obtained above was subjected to granulation and preparation of film products.
  • the preparation method was the same as in Example 1, and various structural and performance parameters of the obtained grafted modified polypropylene and the obtained polypropylene film were tested. The results are shown in Table 1 and Table 2.
  • the powder obtained above was subjected to granulation and preparation of film products.
  • the preparation method was the same as in Example 1, and various structural and performance parameters of the obtained grafted modified polypropylene and the obtained polypropylene film were tested. The results are shown in Table 1 and Table 2.
  • Example 1 The PP1 powder in Example 1 was replaced with the PP3 powder sieved out by the middle layer of the sieving machine, and other preparation conditions and methods were the same as in Example 1, and the various structures of the obtained grafted modified polypropylene and the obtained polypropylene film were tested. and performance parameters. The results are shown in Table 1 and Table 2.
  • the powder obtained above was subjected to granulation and preparation of film products.
  • the preparation method was the same as in Example 1, and various structural and performance parameters of the obtained grafted modified polypropylene and the obtained polypropylene film were tested. The results are shown in Table 1 and Table 2.
  • Fig. 4 is a photograph of the microstructure of the powder in Example 10 under a 20,000-fold electron microscope, in which the phase with a higher spherical brightness is the dispersed phase.
  • the powder obtained above was subjected to granulation and preparation of film products.
  • the preparation method was the same as in Example 1, and various structural and performance parameters of the obtained grafted modified polypropylene and the obtained polypropylene film were tested. The results are shown in Table 1 and Table 2.
  • Example 2 The PP1 powder sieved out of the middle layer of the sieving machine in Example 1 was replaced with the PP1 powder sieved out of the upper layer of the sieving machine. Other preparation conditions and methods were the same as in Example 1, and the obtained graft modified polypropylene and the obtained polypropylene were tested. Various structural and performance parameters of the membrane. The results are shown in Table 1 and Table 2.
  • Example 2 The PP1 powder sieved out of the middle layer of the sieving machine in Example 1 was replaced with the PP1 powder sieved out of the bottom layer of the sieving machine. Other preparation conditions and methods were the same as in Example 1, and the obtained graft modified polypropylene and the obtained polypropylene were tested. Various structural and performance parameters of the membrane. The results are shown in Table 1 and Table 2.
  • the pellets obtained above are put into a hot-air oven for drying, and the dried pellets are added to an extrusion caster of LCR400 purchased from Sweden Labtech Company for melt extrusion and casting.
  • the temperature of the extruder is 230°C
  • the temperature of the screen changing area is controlled at 230°C
  • the temperature of the head is controlled at 230°C
  • the temperature of the casting roll is controlled at 25°C to make a thick cast sheet of 230 ⁇ 20 ⁇ m.
  • the process conditions of each step include: the preheating temperature is 160°C, the stretching temperature is 160°C, The stretching ratio is 5.5 ⁇ 5.5 times, the film stretching rate is 100%/s; the film setting temperature is 160°C.
  • the electrical performance parameters of the obtained polypropylene films C13 and B13 were tested, and the results are shown in Table 2.
  • the powder obtained above was subjected to granulation and preparation of film products.
  • the preparation method was the same as in Example 13, and various structural and performance parameters of the obtained grafted modified polypropylene and the obtained polypropylene film B14 were tested. The results are shown in Table 1 and Table 2.
  • the powder obtained above was subjected to granulation and preparation of film products.
  • the preparation method was the same as in Example 13.
  • Various structural and performance parameters of the obtained grafted modified polypropylene and the obtained polypropylene films C15 and B15 were tested. The results are shown in Table 1 and Table 2.
  • the powder obtained above was subjected to granulation and preparation of film products.
  • the preparation method was the same as that in Example 13.
  • Various structural and performance parameters of the obtained grafted modified polypropylene and the obtained polypropylene film B16 were tested. The results are shown in Table 1 and Table 2.
  • Example 1 The PP1 powder in Example 1 was replaced with the PP4 powder sieved out by the middle layer of the sieving machine, and the amount of deionized water added was 10.8kg. Other preparation conditions and methods were the same as in Example 1, and the obtained grafted modified polypropylene was tested. And the various structural and electrical performance parameters of the obtained polypropylene film. The results are shown in Table 1 and Table 2.
  • the powder obtained above was subjected to granulation and preparation of film products.
  • the preparation method was the same as in Example 1, and various structural and electrical performance parameters of the obtained grafted modified polypropylene and the obtained polypropylene film were tested. The results are shown in Table 1 and Table 2.
  • the powder obtained above was subjected to granulation and preparation of film products.
  • the preparation method was the same as in Example 13, and various structural and performance parameters of the obtained grafted modified polypropylene and the obtained polypropylene film D7 were tested. The results are shown in Table 1 and Table 2.
  • graft modification can significantly improve the dielectric and energy storage properties of polypropylene.
  • the polypropylene grafted modified material can still form a film normally at a higher amount of functional monomer added, but after adding a large amount of functional monomer polymer, in the process of processing Cracked and unable to form a film.
  • the energy storage efficiency of the film of the present invention at 120°C is significantly higher than that of commercially available high-temperature capacitor films, and its energy storage density and dielectric properties are also comparable to or slightly better than those of commercially available high-temperature capacitor films .
  • the pellets obtained in the above steps are put into a hot-air oven for drying, and the dried pellets are added to an extrusion caster of LCR400 purchased from Sweden Labtech Company for melt extrusion and casting, melting
  • the temperature of the extrusion extruder is 230°C
  • the temperature of the screen changing area is controlled at 230°C
  • the temperature of the head is controlled at 230°C
  • the temperature of the casting roll is controlled at 25°C to make a thick cast sheet.
  • the obtained film was subjected to performance tests such as tensile properties and electrical properties.
  • the performance parameters of the obtained polypropylene film are shown in Tables 5 and 6.
  • antioxidant 1035/168/501 (weight ratio 1:1:0.03) and processing aids into a high-speed mixer and stir for 30 seconds at high speed.
  • the total amount of the antioxidant is 0.5 parts by weight, and the amount of the fluorine-containing polymer processing aid is 0.2 parts by weight.
  • the preparation method of the film is the same as in Example 17, except that the process conditions of biaxial stretching are different, see Table 3 for details.
  • the structure and performance parameters of the obtained graft modified polypropylene and the obtained polypropylene film are shown in Tables 4, 5 and 6.
  • modified polypropylene antioxidant 1010/168/501 (weight ratio 1:1:0.05) and fluoropolymer into a high-speed mixer and stir for 30 seconds at high speed, and extrude with Coperion's WP25 twin-screw Machine granulation, twin-screw partition temperature 190-200-210-220-230-230-210°C during processing, screw speed 300rpm.
  • the total amount of the antioxidant is 0.3 parts by weight
  • the amount of the fluorine-containing polymer is 0.1 parts by weight.
  • the preparation method of the film is the same as in Example 17, except that the process conditions of biaxial stretching are different, see Table 3 for details.
  • the structure and performance parameters of the obtained graft modified polypropylene and the obtained polypropylene film are shown in Tables 4, 5 and 6.
  • the preparation method of the film is the same as in Example 17, except that the process conditions of biaxial stretching are different, see Table 3 for details.
  • the structure and performance parameters of the obtained graft modified polypropylene and the obtained polypropylene film are shown in Tables 4, 5 and 6.
  • antioxidant 1010/168/501 weight ratio 1:1:0.05
  • fluoropolymer into a high-speed mixer and stir for 30 seconds at high speed, and use Coperion
  • the twin-screw partition temperature is 190-200-210-220-230-230-210°C
  • the screw speed is 300rpm.
  • the total amount of the antioxidant is 0.3 parts by weight
  • the amount of the fluorine-containing polymer is 0.1 parts by weight.
  • the preparation method of the film is the same as in Example 17, except that the process conditions of biaxial stretching are different, see Table 3 for details.
  • the structure and performance parameters of the obtained graft modified polypropylene and the obtained polypropylene film are shown in Tables 4, 5 and 6.
  • the powder obtained above was subjected to granulation and preparation of film products, and the method and conditions were the same as in Example 17.
  • the structure and performance parameters of the obtained graft modified polypropylene and the obtained polypropylene film are shown in Tables 4, 5 and 6.
  • the powder obtained above was subjected to granulation and preparation of film products, and the method and conditions were the same as in Example 17.
  • the structure and performance parameters of the obtained graft modified polypropylene and the obtained polypropylene film are shown in Tables 4, 5 and 6.
  • Example 17 The PP1 powder in Example 17 was replaced by the PP3 powder sieved out by the middle layer of the sieving machine. Other preparation conditions and methods were the same as in Example 17, and various performance parameters of the obtained polypropylene film were tested.
  • the structure and performance parameters of the obtained graft modified polypropylene and the obtained polypropylene film are shown in Tables 4, 5 and 6.
  • the powder obtained above was subjected to granulation and preparation of film products, and the method and conditions were the same as in Example 17.
  • the structure and performance parameters of the obtained graft modified polypropylene and the obtained polypropylene film are shown in Tables 4, 5 and 6.
  • the powder obtained above was subjected to granulation and preparation of film products, and the method and conditions were the same as in Example 17.
  • the structure and performance parameters of the obtained graft modified polypropylene and the obtained polypropylene film are shown in Tables 4, 5 and 6.
  • Example 17 The PP1 powder sieved out of the middle layer of the sieving machine in Example 17 was replaced with the PP1 powder sieved out of the upper layer of the sieving machine. Other preparation conditions and methods were the same as in Example 17.
  • the obtained grafted modified polypropylene and the obtained polypropylene film The structural and performance parameters are shown in Tables 4, 5, and 6.
  • Example 17 The PP1 powder sieved out of the middle layer of the sieving machine in Example 17 was replaced with the PP1 powder sieved out of the bottom layer of the sieving machine. Other preparation conditions and methods were the same as in Example 17.
  • the obtained graft modified polypropylene and the obtained polypropylene film The structural and performance parameters are shown in Tables 4, 5, and 6.
  • the pellets obtained in the above steps are put into a hot-air oven for drying, and the dried pellets are added to an extrusion caster of LCR400 purchased from Sweden Labtech Company for melt extrusion and casting, melting
  • the temperature of the extrusion extruder is 230°C
  • the temperature of the screen changing area is controlled at 230°C
  • the temperature of the head is controlled at 230°C
  • the temperature of the casting roll is controlled at 25°C to make a thick cast sheet.
  • the obtained film was subjected to performance tests such as tensile properties and electrical properties.
  • the performance parameters of the obtained polypropylene film are shown in Tables 5 and 6.
  • the preparation method of the film is the same as in Example 32, except that the process conditions of biaxial stretching are different, see Table 3 for details.
  • the structure and performance parameters of the obtained graft modified polypropylene and the obtained polypropylene film B33 are shown in Tables 4, 5 and 6.
  • the above-mentioned polypropylene-g-methyl methacrylate powder (C34 or B34), antioxidant 1076/168/501 (weight ratio 1:1:0.04) and fluoropolymer into a high-speed mixer and stir at high speed for 30 Second, use Coperion's WP25 twin-screw extruder to granulate.
  • the twin-screw zone temperature is 190-200-210-220-230-230-210°C
  • the screw speed is 300rpm.
  • the total amount of the antioxidant is 0.3 parts by weight
  • the amount of the fluorine-containing polymer is 0.1 parts by weight.
  • the preparation method of the film is the same as in Example 32, except that the process conditions of biaxial stretching are different, see Table 3 for details.
  • the structure and performance parameters of the obtained graft modified polypropylene and the obtained polypropylene films C34 and B34 are shown in Tables 4, 5 and 6.
  • antioxidant 1010/168/501 weight ratio 1:1:0.05
  • fluorine-containing polymer into a high-speed mixer and stir for 30 seconds at high speed.
  • the WP25 twin-screw extruder of Beilong Company granulates.
  • the twin-screw partition temperature is 190-200-210-220-230-230-210°C
  • the screw speed is 300rpm.
  • the total amount of the antioxidant is 0.3 parts by weight
  • the amount of the fluorine-containing polymer is 0.1 parts by weight.
  • the preparation method of the film is the same as in Example 32, except that the process conditions of biaxial stretching are different, see Table 3 for details.
  • the structure and performance parameters of the obtained graft modified polypropylene and the obtained polypropylene film B35 are shown in Tables 4, 5 and 6.
  • Example 17 The PP1 powder in Example 17 was replaced with the PP4 powder sieved out by the middle layer of the sieving machine, the amount of deionized water added was 10.8kg, other preparation conditions and methods were the same as in Example 1, and the performance parameters of the obtained product were tested .
  • the structure and performance parameters of the obtained graft modified polypropylene and the obtained polypropylene film are shown in Tables 4, 5 and 6.
  • the powder obtained above was subjected to granulation and film preparation, the antioxidant was antioxidant 1010/168 (weight ratio 1:1), the method and conditions were the same as in Example 17.
  • the structure and performance parameters of the obtained graft modified polypropylene and the obtained polypropylene film are shown in Tables 4, 5 and 6.
  • antioxidant 1076/168/501 weight ratio 1:1:0.04
  • fluoropolymer into a high-speed mixer and stir for 30 seconds at high speed.
  • Long company WP25 twin-screw extruder is used for granulation.
  • the twin-screw partition temperature is 190-200-210-220-230-230-210°C
  • the screw speed is 300rpm.
  • the total amount of the antioxidant is 0.3 parts by weight
  • the amount of the fluorine-containing polymer is 0.1 parts by weight.
  • the preparation method of the film is the same as in Example 32.
  • the structure and performance parameters of the obtained graft modified polypropylene and the obtained polypropylene film D14 are shown in Tables 4, 5 and 6.
  • the obtained polypropylene-g-styrene powder is blended with 159g polystyrene GPPS-123, granulated and prepared as a film product. Other preparation conditions and methods are the same as in Example 17. The obtained blend and the obtained blend are tested. Various structural and performance parameters of polypropylene film. The results are shown in Tables 4, 5, and 6.
  • graft modification can significantly improve the dielectric and energy storage properties of polypropylene.
  • the polypropylene grafted modified material can still form a film normally at a higher amount of functional monomer added, but after adding a large amount of functional monomer polymer, in the process of processing Cracked and unable to form a film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明属于聚合物领域,涉及一种双向拉伸聚丙烯介电膜、改性聚丙烯材料及应用。所述双向拉伸聚丙烯介电膜的制备原料包括含烯基功能性单体接枝的改性聚丙烯;含烯基功能性单体接枝的改性聚丙烯包括作为基体相的衍生自聚丙烯的结构单元,以及作为分散相的衍生自含烯基功能性单体的结构单元;含烯基功能性单体接枝的改性聚丙烯的灰分含量小于50ppm;含烯基功能性单体接枝的改性聚丙烯中衍生自含烯基功能性单体且处于接枝态的结构单元与衍生自含烯基功能性单体且处于自聚态的结构单元的质量比大于等于1.0;所述分散相的D50小于450nm。本发明的双向拉伸聚丙烯介电膜可在较高工作温度下保持良好的介电性能和储能性能,适用于高温、高运行场强工况。

Description

一种双向拉伸聚丙烯介电膜、改性聚丙烯材料及应用 技术领域
本发明属于聚合物领域,具体地,涉及一种高工作温度的双向拉伸聚丙烯介电膜,用于制备该介电膜的改性聚丙烯材料,该双向拉伸聚丙烯介电膜和改性聚丙烯材料在高温储能电介质中的应用,以及一种高工作温度的聚丙烯电容膜和聚丙烯电工膜。
背景技术
能源是当代社会发展的动力。近年来,随着新能源、航空航天、地下资源开采、国防军工等科技领域的迅猛发展,不仅对电介质电容器的需求量逐年递增,更要求其能够在更为严苛的温度条件下使用。然而以聚合物电介质材料为主体的薄膜电容器热稳定性差,无法在高温环境下稳定工作。尤其在高电场作用下,温度升高会导致聚合物电介质内部泄漏电流呈指数上升趋势,造成充放电效率及储能密度急剧下降,无法满足应用需求。更严重的是,泄漏电流转变成焦耳热,使电容器温度持续上升,最终损坏。
双向拉伸聚丙烯(BOPP)是目前商用化程度最高、应用最为广泛的聚合物薄膜电容器介质材料,其综合性能优异、规模化制备工艺成熟,目前已在电动汽车、风电、光伏、照明和铁路机车等行业中广泛应用。
然而,聚丙烯薄膜电容器的一个固有缺点是高温条件下介电储能性能差、可靠性大幅下降。例如在室温下,BOPP即使在接近其击穿场强时充放电效率仍可高达95%以上,但在120℃温度下,其效率降低至约70%。这不仅使其储能密度大幅下降,并且还产生大量废热在器件内部聚集,最终导致器件过热损坏(热失控)。
目前,从材料角度提高聚合物电容薄膜工作温度的方法主要有两类。第一类方法是提高聚合物介质材料的热稳定性,即合成具有高玻璃化转变温度(T g)的聚合物介质材料。第二类方法是在聚合物介质材料中引入第二相填料制备复合材料,利用填料颗粒对载流子的捕获和散射作用来抑制聚合物在高温高电场作用下的泄漏电流。然而这两种方法均存在制备工艺复杂,难以大规模工业化生产的问题。
因此有必要寻找一种介电储能特性调控能力明显、制备工艺简单、贴合工程实际应用的新型改性聚丙烯组合物。
接枝改性是聚丙烯功能化的一种常见手段,通常使用的方法有熔融接枝和固相接枝。熔融接枝设备简单,成本低廉,但反应温度高,过程不易控制,副产物多,适用单体种类 较少,目前只用于酸酐类或少数丙烯酸酯类接枝物相容剂的制备。固相接枝反应温度在聚丙烯的熔点以下,副反应较少,接枝效率高,接枝单体适用范围广泛,如Y.Pan等在"Solid-phase grafting of glycidyl methacrylate onto polypropylene."(Journal of Applied Polymer Science,1997,65(10):1905-1912)中研究了聚丙烯固相接枝甲基丙烯酸缩水甘油酯(GMA)的反应条件,并指出固相接枝和熔融接枝的影响因素有巨大区别。悬浮接枝是一种特殊的固相接枝,通过在反应体系中引入水相介质作为分散剂,进一步降低反应温度,提高接枝的均匀性并降低副产物的生成。此外,李乔钧等在“聚丙烯悬浮法接枝苯乙烯的研究”(合成树脂及塑料,1996,13(1):7-10.)中对于聚丙烯悬浮接枝苯乙烯的反应条件和影响因素进行了讨论。祝宝东等在“聚丙烯水相悬浮接枝双单体苯乙烯和马来酸酐”(现代塑料加工应用,2009,5:3.)中报道了通过水相悬浮接枝得到了接枝率8.97%的聚丙烯双单体接枝物。目前尚未发现以固相或悬浮接枝改性聚丙烯作为介电储能主体材料的报道。
采用抗氧剂复配方式提高聚丙烯耐热氧老化的性能是一种常用手段。CN111378229A公开了一种耐长期热老化聚丙烯组合物及其制备方法,该组合物包括聚丙烯84.55~57.9%、滑石粉15~40%、主抗氧剂0.1~0.3%、辅助抗氧剂0.1~0.3%、受阻胺抗氧剂0.05~0.2%、硫代酯抗氧剂0.1~0.3%、吸酸剂0.1~1%组成。CN202011292440.0公开了一种低密度高透光耐长期热氧老化的聚丙烯材料,其中主抗氧剂为高分子量受阻酚类抗氧剂和低分子量受阻酚抗氧剂的复配物。
发明内容
本发明的目的在于提供一种高工作温度的双向拉伸聚丙烯介电膜,一种新型含烯基功能性单体的接枝改性聚丙烯材料,该改性聚丙烯材料可通过双向拉伸工艺制备聚丙烯介电膜,该聚丙烯介电膜和改性聚丙烯材料在较高工作温度下也可保持高储能效率和储能密度。
本发明的第一方面提供一种高工作温度的双向拉伸聚丙烯介电膜,所述双向拉伸聚丙烯介电膜的制备原料包括含烯基功能性单体接枝的改性聚丙烯;
所述含烯基功能性单体接枝的改性聚丙烯包括作为基体相的衍生自聚丙烯的结构单元,以及作为分散相的衍生自含烯基功能性单体的结构单元;所述含烯基功能性单体接枝的改性聚丙烯的灰分含量小于50ppm,优选小于36ppm,更优选小于30ppm;所述含烯基功能性单体接枝的改性聚丙烯中衍生自含烯基功能性单体且处于接枝态的结构单元与衍生自含烯基功能性单体且处于自聚态的结构单元的质量比大于等于1.0;所述分散相的D50小于450nm,优选为50~400nm。
所述双向拉伸聚丙烯介电膜的最高工作温度≥100℃,优选为110~160℃,更优选为120~145℃。
所述双向拉伸聚丙烯介电膜具有以下特征中的至少一种:
-120℃下的击穿场强E g≥500MV/m,优选为550~800MV/m;
-120℃、200MV/m场强下的直流体积电阻率ρ vg≥6.0×10 13Ω·m,优选为1.0×10 14Ω·m~1.0×10 20Ω·m,优选为1.5×10 14Ω·m~0.9×10 20Ω·m,更优选为2.0×10 14Ω·m~1.0×10 17Ω·m;
-120℃、100Hz下的介电常数大于2.25,优选为2.26~2.65;
-120℃、100Hz下的介电损耗小于1.55E-3,优选小于1.5E-3,优选小于等于1.0E-3,更优选为1.0E-6~1.3E-3,进一步优选为1.0E-6~9E-4;
-120℃、300MV/m下的储能密度大于0.720J/cm 3,优选为0.740~2.0J/cm 3,优选大于0.780J/cm 3,更优选为0.780~2.0J/cm 3,进一步优选为0.80~2.0J/cm 3
-120℃、300MV/m下的储能效率大于90.0%,优选为92.0~99.0%。
所述双向拉伸聚丙烯介电膜具有以下特征中的至少一种:纵向拉伸强度≥140MPa,优选为140~170MPa;横向拉伸强度≥200MPa,优选为205~250MPa;纵向断裂伸长率≥210%,优选≥225%;横向断裂伸长率≥60%,优选≥62%;厚度为0.5~15微米,优选为4~10微米。
本发明的第二方面提供一种用于制备介电膜的改性聚丙烯材料,所述改性聚丙烯材料包括含烯基功能性单体接枝的改性聚丙烯,所述含烯基功能性单体接枝的改性聚丙烯包括作为基体相的衍生自聚丙烯的结构单元,以及作为分散相的衍生自含烯基功能性单体的结构单元;所述含烯基功能性单体接枝的改性聚丙烯的灰分含量小于50ppm,优选小于36ppm,更优选小于30ppm;所述含烯基功能性单体接枝的改性聚丙烯中衍生自含烯基功能性单体且处于接枝态的结构单元与衍生自含烯基功能性单体且处于自聚态的结构单元的质量比大于等于1.0;所述分散相的D50小于450nm,优选为50~400nm。
所述改性聚丙烯材料的最高工作温度≥100℃,优选为110~160℃,更优选为120~145℃。
所述改性聚丙烯材料具有以下特征中的至少一种:
-120℃下的击穿场强E g≥500MV/m,优选为550~800MV/m;
-120℃、200MV/m场强下的直流体积电阻率ρ vg≥6.0×10 13Ω·m,优选为1.0×10 14Ω·m~1.0×10 20Ω·m,优选为1.5×10 14Ω·m~0.9×10 20Ω·m,更优选为2.0×10 14Ω·m~1.0×10 17Ω·m;
-120℃、100Hz下的介电常数大于2.25,优选为2.26~2.65;
-120℃、100Hz下的介电损耗小于1.55E-3,优选小于1.5E-3,优选小于等于1.0E-3,更优选为1.0E-6~1.3E-3,进一步优选为1.0E-6~9E-4;
-120℃、300MV/m下的储能密度大于0.720J/cm 3,优选为0.740~2.0J/cm 3,优选大于0.780J/cm 3,更优选为0.780~2.0J/cm 3,进一步优选为0.80~2.0J/cm 3
-120℃、300MV/m下的储能效率大于90.0%,优选为92.0~99.0%。
本发明的第三方面提供上述双向拉伸聚丙烯介电膜或改性聚丙烯材料在储能电介质中,特别是高温储能电介质的应用。
本发明的第四方面提供一种聚丙烯电容膜,该聚丙烯电容膜为一层或多层,其中至少一层为上述的双向拉伸聚丙烯介电膜,或者其中至少一层由含有上述改性聚丙烯材料的原料制得,优选经双向拉伸制得,优选其中至少一层由上述改性聚丙烯材料经双向拉伸制得。
本发明的第五方面提供一种聚丙烯电工膜,该聚丙烯电工膜为一层或多层,其中至少一层为上述的双向拉伸聚丙烯介电膜,或者其中至少一层由含有上述改性聚丙烯材料的原料制得,优选经双向拉伸制得,优选其中至少一层由上述改性聚丙烯材料经双向拉伸制得。
本发明的双向拉伸聚丙烯介电膜、改性聚丙烯材料以及聚丙烯电容膜和聚丙烯电工膜的工作温度范围很宽,特别是,在较高工作温度下也可以保持良好的介电性能和储能性能,因此尤其适用于高温、高运行场强工况。本发明的双向拉伸聚丙烯介电膜以及高性能聚丙烯电容膜和聚丙烯电工膜具有拉伸性能良好的优点,可在较高工作温度下兼顾机械性能和电性能,适用于高温、高运行场强工况。
本发明的其它特征和优点将在随后具体实施方式部分予以详细说明。
附图说明
通过结合附图对本发明示例性实施方式进行更详细的描述。
图1为实施例1中改性聚丙烯的样片在20000倍电镜下的微观结构照片,其中球形分散相即苯乙烯结构单元的聚集体。
图2为实施例2中改性聚丙烯的样片在20000倍电镜下的微观结构照片。
图3为实施例3中改性聚丙烯的样片在20000倍电镜下的微观结构照片。
图4为实施例10中改性聚丙烯的样片在20000倍电镜下的微观结构照片。
图5为对比例1中改性聚丙烯的样片在20000倍电镜下的微观结构照片,无可见分散相。
图6所示为实施例15和对比例7中产品的TSDC测试结果。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
本发明提供一种双向拉伸聚丙烯介电膜,所述双向拉伸聚丙烯介电膜的制备原料包括含烯基功能性单体接枝的改性聚丙烯;所述含烯基功能性单体接枝的改性聚丙烯包括作为基体相的衍生自聚丙烯的结构单元,以及作为分散相的衍生自含烯基功能性单体的结构单元;所述含烯基功能性单体接枝的改性聚丙烯的灰分含量小于50ppm,优选小于36ppm,更优选小于30ppm;所述含烯基功能性单体接枝的改性聚丙烯中衍生自含烯基功能性单体且处于接枝态的结构单元与衍生自含烯基功能性单体且处于自聚态的结构单元的质量比大于等于1.0;所述分散相的D50小于450nm,优选为50~400nm。
所述双向拉伸聚丙烯介电膜的最高工作温度≥100℃,优选为110~160℃,更优选为120~145℃。
本发明的介电膜具有在120℃条件下测定的上述优异的各项介电性能,例如,后文各实施例所测膜在120℃,300MV/m下的储能效率均在90%以上,储能效率达90%时的温度上限可作为最高工作温度的指征,由此可证实本发明的介电膜具有至少120℃的最高工作温度。
根据本发明一种优选实施方式,所述双向拉伸聚丙烯介电膜具有以下特征中的至少一种:
-120℃下的击穿场强E g≥500MV/m,优选为550~800MV/m;
-120℃、200MV/m场强下的直流体积电阻率ρ vg≥6.0×10 13Ω·m,优选为1.0×10 14Ω·m~1.0×10 20Ω·m,优选为1.5×10 14Ω·m~0.9×10 20Ω·m,更优选为2.0×10 14Ω·m~1.0×10 17Ω·m;例如为1.0×10 15Ω·m、1.0×10 16Ω·m,以及该范围内的任意数值;
-120℃、100Hz下的介电常数大于2.25,优选为2.26~2.65;
-120℃、100Hz下的介电损耗小于1.55E-3,优选小于1.5E-3,优选小于1.0E-3,更优选为1.0E-6~1.3E-3,进一步优选为1.0E-6~9E-4;
-120℃、300MV/m下的储能密度大于0.720J/cm 3,优选为0.740~2.0J/cm 3,更优选为0.780~2.0J/cm 3,进一步优选为0.80~2.0J/cm 3
-120℃、300MV/m下的储能效率大于90.0%,优选为92.0~99.0%。
本发明所述双向拉伸聚丙烯介电膜的纵向拉伸强度≥140MPa,优选为140~170MPa;横向拉伸强度≥200MPa,优选为205~250MPa;纵向断裂伸长率≥210%,优选≥225%;横 向断裂伸长率≥60%,优选≥62%;厚度为0.5~15微米,优选为4~10微米。
根据本发明一种实施方式,所述含烯基功能性单体接枝的改性聚丙烯中衍生自含烯基功能性单体且处于接枝态的结构单元与衍生自含烯基功能性单体且处于自聚态的结构单元的质量比为1.1~10,优选为1.2~6。
根据本发明另一种实施方式,所述含烯基功能性单体接枝的改性聚丙烯中衍生自含烯基功能性单体且处于接枝态的结构单元与衍生自含烯基功能性单体且处于自聚态的结构单元的质量比大于等于1.5,优选大于等于2。
根据本发明,优选地,所述含烯基功能性单体接枝的改性聚丙烯具有以下特征中的至少一种:在230℃,2.16kg载荷下的熔体流动速率为1~10g/10min,优选为1.5~8g/10min,进一步优选为2~5g/10min;熔融温度T m为155~168℃,优选为157~165℃;弯曲模量为1400~2000MPa,优选为1500~1800MPa。
本发明中,所述“结构单元”意指其为改性聚丙烯的一部分,其形式并不受限。具体地,“衍生自聚丙烯的结构单元”是指由聚丙烯形成的产物,其既包括“基团”形式的,也包括“聚合物”形式的。“衍生自含烯基功能性单体的结构单元”是指由含烯基功能性单体形成的产物,其既包括“基团”形式的,还包括“自聚态”形式的。所述“结构单元”可以是重复的单元,也可以是非重复的独立单元。“处于接枝态”的衍生自含烯基功能性单体的结构单元是指与聚丙烯形成共价连接(接枝)的衍生自含烯基功能性单体的结构单元。
具体地,所述聚丙烯介电储能材料为“海岛结构”,如图1所示。其中,“海”为基体相,由衍生自聚丙烯的结构单元形成。“岛”为分散相,由衍生自含烯基功能性单体的结构单元形成。
与无机填料掺杂技术相比,接枝改性可在复合材料中形成均匀分布的纳米级分散相,避免了无机填料难以添加及难以分散等问题。与表面改性相比,本体改性的工艺流程更简单,分散相分散均匀,且结构稳定,不易在使用中因外力导致功能单体层脱落。
根据本发明,优选地,所述改性聚丙烯由聚丙烯和含烯基功能性单体经接枝反应制得,优选经悬浮接枝反应制得。本发明的接枝反应是自由基聚合反应,因此,所述“处于接枝态”是指单体经过自由基聚合后,与另一反应物形成连接的状态。“所述自聚态”是指单体形成了自聚物且未连接(接枝)到另一反应物的状态。所述连接既包括直接的连接,也包括间接的连接。
本发明的含烯基功能性单体中的烯基用于与聚丙烯进行接枝,因此,只要烯基位于可反应位置的含烯基功能性单体均适用于本发明。
具体地,所述含烯基功能性单体选自具有式1所示结构的单体中的至少一种,
Figure PCTCN2022133482-appb-000001
式1中,R b、R c、R d各自独立地选自H、取代或未取代的烷基;R a选自取代或未取代的烷基、取代或未取代的烷氧基、取代或未取代的芳基、取代或未取代的酯基、取代或未取代的羧基、取代或未取代的环烷基或杂环基、氰基、取代或未取代的硅烷基;R a和R d任选地成环。
根据本发明一种优选实施方式,R b、R c、R d各自独立地选自H、取代或未取代的C 1-C 6烷基;R a选自取代或未取代的C 1-C 20烷基、取代或未取代的C 1-C 20烷氧基、取代或未取代的C 6-C 20芳基、取代或未取代的C 1-C 20酯基、取代或未取代的C 1-C 20羧基、取代或未取代的C 3-C 20环烷基或杂环基、氰基、取代或未取代的C 3-C 20硅烷基;所述取代的基团为卤素、-OH、-NH 2、=O、C 1-C 12烷基、C 3-C 6环烷基、C 1-C 12的烷氧基、C 1-C 12的酰氧基;R a和R d任选地与双键共同形成4-6元杂环。
根据本发明一种更优选的实施方式,其中,R b、R c、R d各自独立地选自H、取代或未取代的C 1-C 6烷基;
R a选自式2所示基团、式3所示基团、式4所示基团、式5所示基团、式6所示基团和杂环基团中的至少一种;
Figure PCTCN2022133482-appb-000002
式2中,R 4-R 8各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 4-R 8各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基;
Figure PCTCN2022133482-appb-000003
式3中,R 4-R 10各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 4-R 10各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基,所述取代的基团选自卤素、羟基、氨基、C 1-C 6的烷基、C 1-C 6的烷氧基;
Figure PCTCN2022133482-appb-000004
式4中,R 4’-R 10’各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 4’-R 10’各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基,所述取代的基团选自卤素、羟基、氨基、C 1-C 6的烷基、C 1-C 6的烷氧基;
Figure PCTCN2022133482-appb-000005
式5中,R’、R”、R”’各自独立地选自取代或未取代的C 1-C 12的直链烷基、取代或未取代的C 3-C 12的支链烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酰氧基;优选地,R 1为C 2-C 6的烯基,优选为单不饱和烯基;R 2、R 3、R 4各自独立地选自取代或未取代的C 1-C 6的直链烷基、取代或未取代的C 3-C 6的支链烷基、取代或未取代的C 1-C 6的烷氧基、取代或未取代的C 1-C 6的酰氧基;
Figure PCTCN2022133482-appb-000006
式6中,R m选自氢和/或取代或未取代的以下基团:C 1-C 20直链烷基、C 3-C 20支链烷基、C 3-C 12环烷基、C 3-C 12环氧烷基、C 3-C 12环氧烷基烷基,所述取代的基团选自卤素、氨基和羟基中的至少一种;
所述杂环基团选自咪唑基、吡唑基、咔唑基、吡咯烷酮基、吡啶基、哌啶基、己内酰胺基、吡嗪基、噻唑基、嘌呤基、吗啉基、噁唑啉基。
根据本发明一种具体实施方式,所述含烯基功能性单体为苯乙烯类单体,所述苯乙烯类单体选自苯乙烯、α-甲基苯乙烯、1-乙烯基萘、2-乙烯基萘、单取代或多取代的苯乙烯,单取代或多取代的α-甲基苯乙烯、单取代或多取代的1-乙烯基萘和单取代或多取代的2-乙烯基萘中的至少一种;所述取代的基团优选选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 8的直链烷基、C 3-C 8的支链烷基或环烷基、C 1-C 6的直链烷氧基、C 3-C 8的支链烷氧基或环状烷氧基、C 1-C 8的直链酯基、C 3-C 8的支链酯基或环状酯基、C 1-C 8的直链胺基以及C 3-C 8的支链胺基或环状胺基中的至少一种;优选地,所述苯乙烯类单体选自苯乙烯、α-甲基苯乙烯、2-甲基苯乙烯、3-甲基苯乙烯和4-甲基苯乙烯中的至少一种。
根据本发明一种具体实施方式,所述含烯基功能性单体为含烯基的硅烷类单体,所述含烯基的硅烷类单体选自乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三异丙氧基硅烷、乙烯基三叔丁氧基硅烷、乙烯基三乙酰氧基硅烷、甲基乙烯基二甲氧基硅烷、乙基乙烯基二乙氧基硅烷、烯丙基三乙氧基硅烷、烯丙基三甲氧基硅烷、烯丙基三异丙氧基硅烷、乙烯基三(β-甲氧乙氧基)硅烷、烯丙基三(β-甲氧乙氧基)硅烷、烯丙基三叔丁氧基硅烷、烯丙基三乙酰氧基硅烷、甲基烯丙基二甲氧基硅烷和乙基烯丙基二乙氧基硅烷中的至少一种。
根据本发明一种具体实施方式,所述含烯基功能性单体为丙烯酸酯类单体和/或丙烯酸类单体,优选地,所述丙烯酸酯类单体选自(甲基)丙烯酸甲酯、(甲基)丙烯酸仲丁酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸异丁酯、(甲基)丙烯酸叔丁酯、(甲基)丙烯酸异辛酯、(甲基)丙烯酸十二烷基酯、(甲基)丙烯酸椰子油酸酯、(甲基)丙烯酸十八烷基酯、(甲基)丙烯酸二甲氨基乙酯、(甲基)丙烯酸二乙氨基乙酯、(甲基)丙烯酸二甲氨基丙酯和(甲基)丙烯酸缩水甘油酯中的至少一种。优选地,所述丙烯酸类单体选自丙烯酸、甲基丙烯酸和2-乙基丙烯酸中的至少一种。
本发明中C 3-C 12环氧烷基烷基是指具有3-12个碳原子的环氧烷基取代的烷基,例如,环氧乙烷基甲基。
根据本发明一种具体实施方式,所述含烯基功能性单体为含烯基的杂环类化合物。本发明所述含烯基的杂环类单体可以是任何能够通过自由基进行聚合的含烯基的杂环类化合物,可选自含烯基取代基的咪唑、含烯基取代基的吡唑、含烯基取代基的咔唑、含烯基取代基的吡咯烷酮、含烯基取代基的吡啶或吡啶盐、含烯基取代基的哌啶、含烯基取代基的己内酰胺、含烯基取代基的吡嗪、含烯基取代基的噻唑、含烯基取代基的嘌呤、含烯基 取代基的吗啉和含烯基取代基的噁唑啉中的至少一种;优选地,所述含烯基的杂环类单体为含单烯基的杂环类单体。
具体地,所述含烯基的杂环类单体可选自:1-乙烯基咪唑、2-甲基-1-乙烯基咪唑、N-烯丙基咪唑、1-乙烯基吡唑、3-甲基-1-乙烯基吡唑、乙烯基咔唑、N-乙烯基吡咯烷酮、2-乙烯基吡啶、3-乙烯基吡啶、4-乙烯基吡啶、2-甲基-5-乙烯基吡啶、乙烯基吡啶N氧化物、乙烯基吡啶盐、乙烯基哌啶、N-乙烯基己内酰胺、2-乙烯基吡嗪、N-乙烯基哌嗪、4-甲基-5-乙烯基噻唑、N-乙烯基嘌呤、乙烯基吗啉和乙烯基噁唑啉中的至少一种。
根据本发明,所述含烯基功能性单体还可以为马来酸酐、马来酰亚胺及其衍生物、衣康酸酐、α-亚甲基-γ-丁内酯中的至少一种。优选地,所述含烯基功能性单体为马来酸酐。
本发明中各种类型的含烯基功能性单体均可以单独使用,也可以一种或多种复配使用。
优选地,所述含烯基功能性单体接枝的改性聚丙烯中衍生自含烯基功能性单体的含量为1.0~28wt%,优选1.5~24wt%,更优选2.0~20wt%。
本发明中的所述改性聚丙烯中的聚丙烯部分,亦可指未接枝的聚丙烯,其可以是丙烯均聚物或含有乙烯或丁烯单元的丙烯共聚物。较为优选地,聚丙烯粉料为等规度大于96%,优选等规度大于96.5%的均聚聚丙烯;或基于结构单元总摩尔量,乙烯单元和丁烯单元的总含量低于3.0mol%的共聚聚丙烯,例如为2.5mol%、2mol%、1.5mol%、1mol%、0.9mol%、0.8mol%、0.7mol%、0.6mol%、0.5mol%、0.4mol%、0.3mol%、0.2mol%、0.1mol%,优选地,共聚聚丙烯中乙烯单元和丁烯单元的总含量大于0且小于0.1mol%,或者大于0.1mol%且小于等于3.0mol%。
根据本发明,为获得前述特征的改性聚丙烯,优选采用具有如下特征的聚丙烯:粒径为16~50目;灰分小于55ppm,优选小于40ppm,更优选小于35ppm;弯曲模量为1400~2000MPa,优选为1500~1800MPa。
除具有上述特征外,所述聚丙烯可以为均聚聚丙烯或共聚聚丙烯,还优选具有以下特征的至少一种:
-230℃,2.16kg载荷下的熔体流动速率为0.5~10g/10min,优选为1~5g/10min,进一步优选为2~4g/10min;
-熔融温度T m为150℃以上,优选为153~180℃,进一步优选为155~167℃;
-等规度大于96%,优选等规度大于96.5%;或者,乙烯单元和丁烯单元的总含量低于3.0mol%,优选为大于0且小于0.1mol%,或者大于0.1mol%且小于等于3.0mol%。
适用于本发明的聚丙烯粉料可商购获得,也可通过中国专利CN109694427A, CN109694428A,CN104558813A,CN109912734A,CN111019025A,CN105431459A中记载的方法制备而得。
本发明的所述含烯基功能性单体接枝的改性聚丙烯可通过包括以下步骤的方法制备得到:在惰性气体存在下,使包括聚丙烯粉料和含烯基功能性单体的反应混合物进行接枝反应,任选地经过洗涤溶剂洗涤,得到所述含烯基功能性单体接枝的改性聚丙烯。
本发明的接枝反应可参考本领域常规的各种方法进行,优选为悬浮接枝反应。如,在接枝用含烯基功能性单体的存在下在聚丙烯上形成活性接枝点,或者先在聚丙烯上形成活性接枝点接着用接枝用单体进行处理。接枝点可通过自由基引发剂处理形成,或进行高能电离辐射或微波处理来形成。在聚合物中作为化学或辐射处理的结果而产生的自由基在聚合物上形成接枝点并在这些点上引发单体聚合。
优选地,通过自由基引发剂引发接枝点并进一步进行接枝反应。在这种情况下,所述反应混合物还包括自由基引发剂;进一步优选地,所述自由基引发剂选自过氧化物类自由基引发剂和/或偶氮类自由基引发剂。
其中,所述过氧化物类自由基引发剂优选选自过氧化二苯甲酰、过氧化二异丙苯、二叔丁基过氧化物、过氧化月桂酰、过氧化十二酰、过氧化苯甲酸叔丁酯、过氧化二碳酸二异丙基酯、过氧化(2-乙基己酸)叔丁酯和过氧化二碳酸二环己基酯中的至少一种;所述偶氮类自由基引发剂优选为偶氮二异丁腈和/或偶氮二异庚腈。
更优选地,通过过氧化物类自由基引发剂引发接枝点并进一步进行接枝反应。
此外,本发明的接枝反应也可以通过CN106543369A、CN104499281A、CN102108112A、CN109251270A、CN1884326A和CN101492517B中描述的方法进行。
在满足上述产品特征的前提下,本发明对接枝反应中各组分的用量没有特别的限定,具体地,所述自由基引发剂与所述含烯基功能性单体的质量比可以为0.1~10:100,优选为0.5~5:100。所述含烯基功能性单体与所述聚丙烯的质量比可以为0.5~25:100,优选为1~20:100。
本发明对接枝反应的工艺条件也没有特别的限定,具体地,所述接枝反应的温度可以为30~110℃,优选为60~95℃;时间可以为0.5~10h,优选为1~6h。
本发明中,所述“反应混合物”包括加入到接枝反应体系中的所有物料,物料可以一次性加入,也可以在反应的不同阶段加入。
本发明的反应混合物中还包括作为分散剂的去离子水。所述去离子水的质量用量为聚丙烯粉料和含烯基功能性单体的质量总和的300~800%。
本发明的反应混合物中还可以包括有机溶剂,作为溶解固体自由基引发剂的溶剂,所 述有机溶剂优选包括C 2-C 5醇类、C 2-C 4醚类和C 3-C 5酮类中的至少一种,更优选包括C 2-C 4醇类、C 2-C 3醚类和C 3-C 5酮类中的至少一种,最优选为乙醇、乙醚和丙酮中的至少一种。所述有机溶剂的质量含量优选为聚丙烯粉料质量的1~35%。
根据本发明一种实施方式,所述含烯基功能性单体接枝的改性聚丙烯的制备方法包括以下步骤:
a.将聚丙烯粉料置于密闭反应器中,进行惰性气体置换;
b.将自由基引发剂与含烯基功能性单体加入到所述密闭反应器中,搅拌混合;
c.加入去离子水,使反应体系升温至接枝反应温度,进行接枝反应;任选地在加入去离子水之前或之后使反应体系进行溶胀;
d.反应结束后,进行过滤、任选地进行干燥,得到粉料;
e.任选地,所述粉料经过洗涤溶剂洗涤,进行过滤、干燥;
f.得到所述含烯基功能性单体接枝的改性聚丙烯;或者
所述含烯基功能性单体接枝的改性聚丙烯的制备方法包括以下步骤:
a.将聚丙烯粉料置于密闭反应器中,进行惰性气体置换;
b.将有机溶剂和自由基引发剂混合,加入到所述密闭反应器中;
c.除去所述有机溶剂,加入含烯基功能性单体,任选地使反应体系进行溶胀;
d.加入去离子水,使反应体系升温至接枝反应温度,进行接枝反应;
e.反应结束后,进行过滤、任选地进行干燥,得到粉料;
f.任选地,所述粉料经过洗涤溶剂洗涤,进行过滤、干燥;
g.得到所述含烯基功能性单体接枝的改性聚丙烯。
根据本发明一种实施方式,所述含烯基功能性单体接枝的改性聚丙烯的制备方法包括以下步骤:
方式一,所述制备方法包括以下步骤:
a.将聚丙烯粉料置于密闭反应器中,进行惰性气体置换;
b.将自由基引发剂与含烯基功能性单体加入到所述密闭反应器中,搅拌混合;
c.加入去离子水,使反应体系升温至接枝反应温度,进行接枝反应;任选地在加入去离子水之前或之后使反应体系进行溶胀;
d.反应结束后,进行过滤、干燥,得到所述含烯基功能性单体接枝的改性聚丙烯。
方式二,所述制备方法包括以下步骤:
a.将聚丙烯粉料置于密闭反应器中,进行惰性气体置换;
b.将有机溶剂和自由基引发剂混合,加入到所述密闭反应器中;
c.除去所述有机溶剂,加入含烯基功能性单体,任选地使反应体系进行溶胀;
d.加入去离子水,使反应体系升温至接枝反应温度,进行接枝反应;
e.反应结束后,进行过滤、干燥,得到所述含烯基功能性单体接枝的改性聚丙烯。
根据本发明另一种实施方式,所述含烯基功能性单体接枝的改性聚丙烯的制备方法包括以下步骤:
方式一,所述制备方法包括以下步骤:
a.将聚丙烯粉料置于密闭反应器中,进行惰性气体置换;
b.将自由基引发剂与含烯基功能性单体加入到所述密闭反应器中,搅拌混合;
c.加入去离子水,使反应体系升温至接枝反应温度,进行接枝反应;任选地在加入去离子水之前或之后使反应体系进行溶胀;
d.反应结束后,进行过滤、任选地进行干燥,得到粉料;
e.所述粉料经过洗涤溶剂洗涤,进行过滤、干燥,得到所述含烯基功能性单体接枝的改性聚丙烯。
方式二,所述制备方法包括以下步骤:
a.将聚丙烯粉料置于密闭反应器中,进行惰性气体置换;
b.将有机溶剂和自由基引发剂混合,加入到所述密闭反应器中;
c.除去所述有机溶剂,加入含烯基功能性单体,任选地使反应体系进行溶胀;
d.加入去离子水,使反应体系升温至接枝反应温度,进行接枝反应;
e.反应结束后,进行过滤、任选地进行干燥,得到粉料;
f.所述粉料经过洗涤溶剂洗涤,进行过滤、干燥,得到所述含烯基功能性单体接枝的改性聚丙烯。
根据本发明的方法,所用的聚丙烯粉料可直接商购合适粒径的产品,也可以购买或自制后进行筛选。因此,本发明还可以包括对聚丙烯粉料进行筛选预处理的步骤。可采用常规的过筛方法实现筛选。根据一种优选实施方式,所述筛选预处理包括以下步骤:采用配有相应目数筛网的双层振动筛或直线筛进行粉料的筛选,并采用筛分机中层的聚丙烯粉料作为反应物料,以得到相应粒径范围的原料粉料。
根据本发明一种更具体的实施方式,所述含烯基功能性单体接枝的改性聚丙烯的制备方法选自以下方式之一:
方式一,所述制备方法包括以下步骤:
a.采用配有16目和48目筛网的双层振动筛或直线筛进行粉料的筛选,并采用筛分机中层的聚丙烯粉料作为反应物料;
b.将所述筛分机中层的聚丙烯粉料置于密闭反应器中,进行惰性气体置换;
c.将自由基引发剂溶解于含烯基功能性单体中,配制成溶液,加入到装有聚丙烯的密闭反应器中,搅拌混合;
d.加入去离子水,体系升温至接枝聚合温度30~110℃,反应0.5~10小时;任选地在加入去离子水之前或之后使反应体系进行溶胀;
e.反应结束后,进行过滤、干燥,得到所述含烯基功能性单体接枝的改性聚丙烯。
方式二,所述制备方法包括以下步骤:
a.采用配有16目和48目筛网的双层振动筛或直线筛进行粉料的筛选,并采用筛分机中层的聚丙烯粉料作为反应物料;
b.将所述筛分机中层的聚丙烯粉料置于密闭反应器中,进行惰性气体置换;
c.将有机溶剂和自由基引发剂混合,加入到所述密闭反应器中;
c.除去所述有机溶剂,加入含烯基功能性单体,任选地使反应体系进行溶胀;
d.加入去离子水,体系升温至接枝聚合温度30~110℃,反应0.5~10小时;
e.反应结束后,进行过滤、干燥,得到所述含烯基功能性单体接枝的改性聚丙烯。
根据本发明另一种更具体的实施方式,所述含烯基功能性单体接枝的改性聚丙烯的制备方法选自以下方式之一:
方式一,所述制备方法包括以下步骤:
a.采用配有16目和48目筛网的双层振动筛或直线筛进行粉料的筛选,并采用筛分机中层的聚丙烯粉料作为反应物料;
b.将所述筛分机中层的聚丙烯粉料置于密闭反应器中,进行惰性气体置换;
c.将自由基引发剂溶解于含烯基功能性单体中,配制成溶液,加入到装有聚丙烯的密闭反应器中,搅拌混合;
d.加入去离子水,体系升温至接枝聚合温度30~110℃,反应0.5~10小时;任选地在加入去离子水之前或之后使反应体系进行溶胀;
e.反应结束后,进行过滤、任选地进行干燥,得到粉料;
f.所述粉料中加入洗涤溶剂洗涤,洗涤温度40~130℃,洗涤时间为0.5~10h,洗涤后进行过滤、干燥,得到所述含烯基功能性单体接枝的改性聚丙烯。
方式二,所述制备方法包括以下步骤:
a.采用配有16目和48目筛网的双层振动筛或直线筛进行粉料的筛选,并采用筛分机中层的聚丙烯粉料作为反应物料;
b.将所述筛分机中层的聚丙烯粉料置于密闭反应器中,进行惰性气体置换;
c.将有机溶剂和自由基引发剂混合,加入到所述密闭反应器中;
d.除去所述有机溶剂,加入含烯基功能性单体,任选地使反应体系进行溶胀;
e.加入去离子水,体系升温至接枝聚合温度30~110℃,反应0.5~10小时;
f.反应结束后,进行过滤、任选地进行干燥,得到粉料;
g.所述粉料中加入洗涤溶剂洗涤,洗涤温度40~130℃,洗涤时间为0.5~10h,洗涤后进行过滤、干燥,得到所述含烯基功能性单体接枝的改性聚丙烯。
本发明的所述惰性气体可以为本领域常用的各种惰性气体,包括但不限于氮气、氩气。
根据本发明一种优选实施方式,所述洗涤溶剂选自正己烷、环己烷、正庚烷、石油醚、乙酸乙酯、乙酸丙酯、乙酸异丙酯、乙酸丁酯、丙酮、甲乙酮、四氢呋喃、2-甲基四氢呋喃、苯、甲苯和二甲苯中的一种或两种以上的混合物。优选地,所述洗涤溶剂为溶剂A与溶剂B的混合物,所述溶剂A选自正己烷、环己烷、正庚烷、石油醚、乙酸乙酯、乙酸丙酯、乙酸异丙酯、乙酸丁酯、丙酮、甲乙酮、四氢呋喃和2-甲基四氢呋喃中的至少一种,所述溶剂B为甲苯和二甲苯中的至少一种。
根据本发明一种优选实施方式,所述洗涤溶剂的质量为接枝聚丙烯粉料质量的2~20倍。
如前所述,所述洗涤的温度可以为40~130℃,优选为55~100℃;时间可以为0.5~10h,优选为1~8h。
反应后的干燥步骤优选进行,该干燥步骤与洗涤溶剂洗涤后的干燥步骤均优选采用真空干燥,温度可以为60~90℃。
根据本发明,所述双向拉伸聚丙烯介电膜以所述改性聚丙烯为主要树脂组分或唯一树脂组分,此外,所述双向拉伸聚丙烯介电膜的制备原料还可以包括抗氧剂以及任选的加工助剂,或可控量的其他树脂组分,优选地,以介电膜的重量为基准,所述含烯基功能性单体接枝的改性聚丙烯的含量为50重量%以上,优选为60重量%以上,更优选为70重量%以上,例如75重量%,80重量%,85重量%,90重量%,95重量%。
将改性聚丙烯制成聚合物介电膜的方法可以参照现有技术进行,根据本发明一种具体实施方式,所述双向拉伸聚丙烯介电膜由包括以下步骤的方法制得:
(1)将所述含烯基功能性单体接枝的改性聚丙烯与抗氧剂以及任选的加工助剂混合并造粒;
(2)将步骤(1)所得粒料进行熔融挤出并流延铸片,得到改性聚丙烯铸片;
(3)将所述改性聚丙烯铸片进行双向拉伸,得到所述双向拉伸聚丙烯介电膜。
本发明还提供一种用于制备介电膜的改性聚丙烯材料,所述改性聚丙烯材料包括含烯 基功能性单体接枝的改性聚丙烯,所述含烯基功能性单体接枝的改性聚丙烯包括作为基体相的衍生自聚丙烯的结构单元,以及作为分散相的衍生自含烯基功能性单体的结构单元;所述含烯基功能性单体接枝的改性聚丙烯的灰分含量小于50ppm,优选小于36ppm,更优选小于30ppm;所述含烯基功能性单体接枝的改性聚丙烯中衍生自含烯基功能性单体且处于接枝态的结构单元与衍生自含烯基功能性单体且处于自聚态的结构单元的质量比大于等于1.0;所述分散相的D50小于450nm,优选为50~400nm。
所述改性聚丙烯材料的最高工作温度≥100℃,优选为110~160℃,更优选为120~145℃。
根据本发明一种优选实施方式,所述改性聚丙烯材料具有以下特征中的至少一种:
-120℃下的击穿场强E g≥500MV/m,优选为550~800MV/m;
-120℃、200MV/m场强下的直流体积电阻率ρ vg≥6.0×10 13Ω·m,优选为1.0×10 14Ω·m~1.0×10 20Ω·m,优选为1.5×10 14Ω·m~0.9×10 20Ω·m,更优选为2.0×10 14Ω·m~1.0×10 17Ω·m;例如为1.0×10 15Ω·m、1.0×10 16Ω·m,以及该范围内的任意数值;
-120℃、100Hz下的介电常数大于2.25,优选为2.26~2.65;
-120℃、100Hz下的介电损耗小于1.55E-3,优选小于1.5E-3,优选小于等于1.0E-3,更优选为1.0E-6~1.3E-3,进一步优选为1.0E-6~9E-4;
-120℃、300MV/m下的储能密度大于0.720J/cm 3,优选为0.740~2.0J/cm 3,更优选为0.780~2.0J/cm 3,进一步优选为0.80~2.0J/cm 3
-120℃、300MV/m下的储能效率大于90.0%,优选为92.0~99.0%。
所述含烯基功能性单体接枝的改性聚丙烯的其他具体限定如前所述,在此不再赘述。
进一步地,所述改性聚丙烯材料还可以包括抗氧剂以及任选的加工助剂。
根据本发明,优选地,以改性聚丙烯的含量为100重量份计,所述抗氧剂的含量为0.1~0.8重量份,优选为0.1~0.6重量份;所述加工助剂的含量为0.05~1重量份;优选为0.05~0.5重量份。
根据本发明的一些实施方式,所述抗氧剂选自受阻酚、受阻胺、亚磷酸酯类、硫代类、苯并呋喃酮类中的一种或多种复配。以改性聚丙烯的含量为100重量份计,所述抗氧剂的含量可以为0.1~0.8重量份,优选为0.1~0.6重量份。
本发明的发明人在研究中发现,选择合适的抗氧剂复配组合及配比比例能够使改性聚丙烯材料的耐热氧老化性能显著提升,从而使制得的膜制品具有出色的热稳定性。具体地,所述抗氧剂由抗氧剂组分A和抗氧剂组分B复配得到,所述抗氧剂组分A选自受阻酚、受阻胺、亚磷酸酯类和硫代类中的至少一种,所述抗氧剂组分B为至少一种苯并呋喃酮类。 优选地,所述抗氧剂组分A与所述抗氧剂组分B的重量比为1:0.01-0.03。
更具体地,所述抗氧剂组分A选自四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯(抗氧剂1010)、三[2,4-二叔丁基苯基]亚磷酸酯(抗氧剂168)、β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯(抗氧剂1076)、2,2’-硫代双[3-(3,5-二叔丁基-4-羟基苯基)丙酸酯](抗氧剂1035)、2,2'-亚甲基双(4-甲基-6-叔丁基苯酚)(抗氧剂2246)、1,1,3-三(2-甲基-4-羟基-5-叔丁基苯基)丁烷(抗氧剂CA)和双(2,4-二叔丁基苯酚)季戊四醇二亚磷酸酯(抗氧剂626)中的至少一种。所述抗氧剂组分B选自3-丁基-1(3-氢)-异苯并呋喃酮(抗氧剂501)、5-甲基-7-叔丁基-3-(3,4-二甲基)-3-氢-苯并呋喃-2-酮、5-甲基-7-叔丁基-3-(2,5-二甲基)-3-氢-苯并呋喃-2-酮、5-甲基-7-叔丁基-3-(2-羟基-5-甲基)-3-氢-苯并呋喃-2-酮中的至少一种。
根据本发明的具体实施方式,所述抗氧剂选自抗氧剂1010和/或抗氧剂168和/或抗氧剂501的复配。根据本发明的优选实施方式,所述改性聚丙烯材料中,以改性聚丙烯材料为100重量份计,所述抗氧剂的含量优选为0.2~0.4重量份。
根据本发明,所述加工助剂包括但不限于:润滑剂、吸酸剂、爽滑剂、抗静电剂、防粘剂等。各种助剂的用量均可以为本领域的常规选择,对此本领域技术人员均能知悉,在此不作赘述。所用的加工助剂不会对改性聚丙烯材料的拉伸成膜性、力学性能产生不利的影响。以改性聚丙烯的含量为100重量份计,所述加工助剂的含量可以为0.05~1重量份,优选为0.05~0.5重量份。
根据本发明的一些实施方式,所述加工助剂为润滑剂。所述润滑剂可选自聚乙二醇类润滑剂、含氟聚合物类润滑剂、有机硅类润滑剂、脂肪醇类润滑剂、脂肪酸类润滑剂、脂肪酸酯类润滑剂、硬脂酸酰胺类润滑剂、脂肪酸金属皂类润滑剂、烷烃及氧化烷烃类润滑剂和微纳米粒子类润滑剂中的一种或多种。
具体地,所述PEG类润滑剂例如可以为分子量为500~50000的PEG分子,其可以经过封端、接枝、交联处理,也可以经过其他化学改性或物理改性。所述含氟聚合物类润滑剂例如可以为聚四氟乙烯、聚偏氟乙烯、聚六氟丙烯等中的至少一种,也可以为其他单峰或多峰的含氟聚合物以及结晶或半结晶的含氟聚合物。所述有机硅润滑剂可以为现有的各种以碳、硅原子为分子主链,以甲基、苯基、烷氧基、乙烯基等有机基团的低聚物或齐聚物为侧链的化合物。所述脂肪醇类润滑剂例如可以为软脂肪醇、硬脂肪醇、牛油脂肪醇等中的至少一种。所述脂肪酸类润滑剂例如可以硬脂酸和/或12-羟基硬脂酸。所述脂肪酸酯类润滑剂例如可以为硬脂酸丁酯、硬脂酸单甘油脂、棕榈酸十六烷基酯、硬脂酸十八烷基酯等中的至少一种。所述硬脂酸酰胺类润滑剂例如可以为硬脂酸酰胺、油酸酰胺、芥酸酰胺、n,n-乙撑双硬脂酸酰胺(EBS)等中的至少一种。所述脂肪酸金属皂类润滑剂例如可以 为硬脂酸铅、硬脂酸钙、硬脂酸镁、合成醋酸钙等中的至少一种。所述烷烃及氧化烷烃类润滑剂例如可以为液体石蜡、固体石蜡、聚乙烯蜡、聚丙烯蜡、氧化乙烯蜡等中的至少一种。所述微纳米粒子类润滑剂例如可以为粉末橡胶和/或硅胶微粒。
根据本发明的具体实施方式,所述加工助剂为含氟聚合物。
以上各种加工助剂均可商购获得。
本发明的所述改性聚丙烯材料由各组分混合制得。
将改性聚丙烯材料粒料制成聚合物介电膜的方法可以参照现有技术进行,例如可以采用热压或挤出流延法对所述粒料进行加工,或双向拉伸法对所述粒料进行加工,从而形成介电膜。
所述粒料可通过本领域常规制粒方法制得,例如,通过双螺杆挤出机造粒。
根据本发明一种具体实施方式,所述双向拉伸聚丙烯介电膜由包括以下步骤的方法制得:
(1)将所述改性聚丙烯材料混合造粒;
(2)将步骤(1)所得粒料进行熔融挤出并流延铸片,得到改性聚丙烯铸片;
(3)将所述改性聚丙烯铸片进行双向拉伸,得到所述双向拉伸聚丙烯介电膜。
步骤(1)中将改性聚丙烯和抗氧剂、加工助剂混合并挤出造粒的过程通常可以包括:将所述改性聚丙烯材料在高速搅拌机中混合均匀,将混合均匀的物料加入至双螺杆挤出机或单螺杆挤出机中熔融混合并均匀挤出造粒,烘干,从而得到粒料。其中,所述双螺杆挤出机的加工温度可以控制为190~230℃。
根据本发明,步骤(2)所述熔融挤出的温度为190~230℃;所述流延铸片的流延急冷辊温度为15~50℃。所述改性聚丙烯铸片可为单层结构或多层结构。
根据本发明一种具体实施方式,制备介电膜的方法包括:将改性聚丙烯材料粒料放入热风烘箱中进行干燥,并将干燥后的粒料加入挤出流延机中进行熔融挤出并流延铸片,熔融挤出挤出机温度为230℃,换网区温度控制在230℃,机头温度控制在230℃,流延辊温度控制在25℃,制成230±20μm的厚铸片。将上述聚丙烯厚铸片放入到薄膜双向拉伸设备的拉伸夹具中,采用双向同步拉伸工艺成型。
为了提高所述介电膜的性能,介电膜优选还含有成膜助剂。所述成膜助剂可以选自抗卤素剂、光稳定剂、热稳定剂、着色剂、填料、爽滑剂、抗粘剂和抗静电剂中的至少一种。所述成膜助剂的具体种类为本领域常规的选择,在此不再赘述。
本发明所述的双向拉伸聚丙烯介电膜、改性聚丙烯材料可用作储能电介质,由于其工作温度很高,因此特别适用作高温储能电介质。所述电介质优选为膜电介质,其可为单层 或多层,包括但不限于电容膜、电工膜、粗化膜、超级电容器膜、静电膜或电池隔膜。本发明的聚丙烯介电储能材料尤其适用于制备电容膜。所述电容膜,是以电极化为基本电学特征的功能薄膜材料,因其优良的绝缘性能和介电性能作为介质材料应用于薄膜电容器。所述电工膜,是厚度在350微米以下,具有优异电气性能的薄膜,通常以高分子聚合物为原料,可以包含一些辅助材料,满足电工产品耐腐蚀、耐辐照等要求,一般用于电子零件的绝缘、汽车配线、电线缠绕、绝缘保护等方面。
具体地,本发明提供一种聚丙烯电容膜,该聚丙烯电容膜为一层或多层,其中至少一层中的至少一部分为上述的双向拉伸聚丙烯介电膜,或者其中至少一层由含有上述改性聚丙烯材料的原料制得,优选经双向拉伸制得,优选其中至少一层由上述改性聚丙烯材料经双向拉伸制得。
另外,本发明提供一种聚丙烯电工膜,该聚丙烯电工膜为一层或多层,其中至少一层中的至少一部分为上述的双向拉伸聚丙烯介电膜,或者其中至少一层由含有上述改性聚丙烯材料的原料制得,优选经双向拉伸制得,优选其中至少一层由上述改性聚丙烯材料经双向拉伸制得。
聚丙烯电容膜/电工膜的制备具体包括:将步骤(1)制得的改性聚丙烯材料粒料加入到流延设备中进行挤出流延铸片,然后将得到的铸片在薄膜双向拉伸设备中进行拉伸成型。在挤出流延的过程中,铸片模头可以根据需要获得的膜的结构进行选择,例如,当需要获得具有单层结构的薄膜时,可以采用单层模头;当需要获得具有多层结构的薄膜(例如具有上表层、芯层和下表层三层结构的薄膜)时,可以采用多层结构复合模头,并且所述多层结构复合模头中至少一层(如芯层)与装有上述改性聚丙烯材料的挤出机料斗连通,这样能够使得到的薄膜中的至少一层(如芯层)为由上述改性聚丙烯材料形成的改性聚丙烯层。在挤出过程中,挤出温度可以为100-200℃,流延急冷辊的温度可以为15~50℃。
本发明中,所述双向拉伸包括同步法拉伸(即同时进行薄膜纵向(MD)和横向(TD)拉伸)或分步法拉伸(即先进行薄膜纵向拉伸,再进行薄膜横向拉伸)。
所述同步法拉伸包括:先将改性聚丙烯材料铸片进行预热,预热温度可以为120~170℃,而后同时进行MD和TD拉伸;所述同步法拉伸的条件包括:拉伸温度为150~175℃,MD拉伸倍率为3倍以上,TD拉伸倍率为3倍以上,MD拉伸速率为50~300%/s,TD拉伸速率为50~300%/s。
所述分步法拉伸包括:先将改性聚丙烯材料铸片进行预热,而后先进行MD拉伸,再预热而后进行TD拉伸;所述分步法拉伸的条件包括:MD拉伸温度为150~170℃,TD拉伸温度为155~175℃,MD拉伸倍率为3倍以上,TD拉伸倍率为5倍以上,MD拉伸速率 为50~300%/s,TD拉伸速率为50~300%/s。
根据本发明,该方法可以对拉伸后的薄膜进行退火定形处理,也可以不进行该定形处理,优选情况下,本发明方法包括对拉伸后的薄膜进行退火定形处理,其中,在进行定形处理的情形下,该退火定形处理的温度优选为160~180℃。该退火定形处理的时间优选为5~60s。对拉伸后的薄膜进行该退火定形处理可以起到提高薄膜尺寸稳定性的作用。
根据本发明,该方法还可以包括将所得的聚丙烯薄膜进行表面电晕处理、裁边和收卷处理,该表面电晕处理、裁边和收卷处理为本领域常规的操作,本发明对此并无特别的限定。
下面结合实施例对本发明作进一步说明,但本发明的范围并不局限于这些实施例。
以下实施例和对比例中:
薄膜流延设备购自瑞典Labtech公司,型号为LCR400。
薄膜双向拉伸设备购自德国Brückner公司,型号为Karo IV。
改性聚丙烯材料和膜性能按照以下方法进行测试。
1、聚丙烯/改性聚丙烯材料的灰分含量测定:
按照GB/T 9345-2008中规定的方法进行测定。
2、聚丙烯的等规度测定:
按照GB/T 2412-2008中规定的方法进行测定。
3、熔体流动速率MFR的测定:
按GB/T 3682-2018中规定的方法,用CEAST公司7026型熔融指数仪,在230℃,2.16kg载荷下测定聚丙烯/改性聚丙烯材料的MFR。
4、熔融温度T m的测定:
采用差示扫描量热仪对聚丙烯/改性聚丙烯材料的熔融过程和结晶过程进行分析。具体操作为:在氮气保护下,将5mg样品置于坩埚中,以10℃/min的升温速度从20℃升温到200℃,保温5min以消除热历史,然后以10℃/min的降温速度降至20℃,保温1min,最后以10℃/min的升温速度升至200℃,记录第三次升温的扫描数据,根据GB/T 19466.3-2004计算熔融温度Tm。
5、参数η的测定:
将1~2g接枝产物用适量二甲苯沸腾回流,至颗粒完全溶解,趁热将二甲苯溶液倒入6倍量的有机溶剂(乙酸乙酯或丙酮)中沉淀,将混合液静置1小时至不溶物完全析出后,将混合液用减压漏斗过滤,滤出的不溶物即为纯的接枝产物,烘干称重。功能性单体结构 单元接枝部分和自聚部分的比例为:
Figure PCTCN2022133482-appb-000007
式中,w 0是未接枝的聚丙烯的质量,w 1是接枝产物的质量,w 2是不溶物的质量。
6、弯曲模量的测定:
按照GB/T 9341-2008中规定的方法进行测定。
7、直流体积电阻率的测定:
按照GB/T 13542.2-2009中规定的方法进行测定,测试方法为接触电极法,电极材料为导电橡皮。
8、击穿场强的测定:
按照GB/T 13542.2-2009中规定的方法进行测定,测试方法为50点电极法。
9、储能密度和储能效率测定:
参考以下文献中规定的方法进行测定。
Yuan,C.,Zhou,Y.,Zhu,Y.et al.Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage.Nat.Commun.11,3919(2020).
10、介电常数与介电损耗因数的测定:
参考以下文献中规定的方法进行测定。
Yuan,C.,Zhou,Y.,Zhu,Y.et al.Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage.Nat.Commun.11,3919(2020).
11、膜的厚度:
按照GB/T 13542.3-2006中规定的方法进行测定,测量方法为千分尺法。
12、分散相的表征和D50的计算:
将改性聚丙烯材料通热压、挤出得到的样条用液氮浸泡15分钟后脆断,对断面进行喷金处理,再通过热场发射扫描电镜(美国FEI公司NanoSEM 450)对材料断面进行表征,得到微观形貌照片。通过Nano Measurer 1.2分析软件,取每个样品200个分散相并测量直径,用数据处理软件计算D50。D50代表中值粒径,即一个样品的累计粒度分布百分数达到50%时所对应的粒径。
13、膜的拉伸强度和断裂伸长率的测定:
按照GB/T 13542.2-2009中规定的方法进行测定。
14、TSDC的测定:
参考以下文献中规定的方法进行测定。
Tian Fuqiang,Bu Wenbin,Shi Linshuang,et al.Theory of modified thermally stimulated  current and direct determination of trap level distribution[J].Journal of Electrostatics,2011,69(1):7-10.
将材料压制成平均厚度50μm的薄膜,表面喷溅20mm直径的圆形金电极。测试时先在一定极化温度下用20kV/mm的直流场强极化30min,然后保持电场,快速降温至-100℃。之后撤去电场15min以消除未冻结的陷阱电荷。然后从-100℃开始以3℃/min的速度线性升温至150℃,同时测量其去极化电流。
实施例
实施例中所用的原料描述于下表A和表B中。
表A
名称 描述
PP1 参考CN109694428A方法自制
PP2 参考CN109694428A方法自制
PP3 参考CN109694429A方法自制
PP4 参考CN109694429A方法自制
过氧化二苯甲酰 百灵威科技有限公司(J&K Chemicals)
过氧化月桂酰 百灵威科技有限公司(J&K Chemicals)
过氧化(2-乙基己酸)叔丁酯 阿达玛斯试剂有限公司(adamas-beta)
苯乙烯 百灵威科技有限公司(J&K Chemicals)
甲基丙烯酸甲酯 百灵威科技有限公司(J&K Chemicals)
乙烯基三乙氧基硅烷 百灵威科技有限公司(J&K Chemicals)
甲基丙烯酸缩水甘油酯 百灵威科技有限公司(J&K Chemicals)
丙烯酸 国药集团化学试剂有限公司(Sinopharm Chemicals)
丙烯酸甲酯 国药集团化学试剂有限公司(Sinopharm Chemicals)
4-乙烯基吡啶 百灵威科技有限公司(J&K Chemicals)
马来酸酐 国药集团化学试剂有限公司(Sinopharm Chemicals)
聚苯乙烯GPPS-123 上海赛科石油化工有限责任公司
抗氧剂1010 巴斯夫
抗氧剂168 巴斯夫
抗氧剂1035 巴斯夫
抗氧剂501 奇钛化学
含氟聚合物 3M公司FX5920
表B实施例中所用粉料的性质
Figure PCTCN2022133482-appb-000008
所有实施例中采用的聚丙烯粉料在接枝反应前采用配有16目和48目筛网的振动筛进行筛分。
实施例1
采用筛分机中层筛出的PP1粉料5.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧,将7.2g过氧化(2-乙基己酸)叔丁酯和400g苯乙烯配制成均一溶液后,加入反应釜与粉料搅拌混合30分钟,再加入已除氧的去离子水17.8kg并升温至50℃溶胀2小时。将溶胀后的粉料升温至95℃,反应4小时。反应结束后,冷却降温,滤除液态组分,将产物在70℃下真空干燥10小时,得到聚丙烯-g-苯乙烯粉料。图1为实施例1中产品在20000倍电镜下的微观结构照片,其中球形亮度较高的部分即为苯乙烯结构单元构成的分散相。可以看出,分散相的粒径较小,形态规整。测试所得接枝改性聚丙烯的接枝/自聚比η、D50、灰分、MFR、Tm和弯曲模量,结果如表1所示。
称取上述聚丙烯-g-苯乙烯粉料、抗氧剂1010/168(重量比1:1)加入高速搅拌机混匀。用科倍隆公司WP25型双螺杆挤出机造粒,加工过程中双螺杆分区温度190-200-210-220-230-230-220℃,螺杆转速300rpm。造粒得到聚丙烯-g-苯乙烯粒料。以聚丙烯-g-苯乙烯粉料的用量为100重量份计,抗氧剂的用量为0.3重量份。
将上述得到的粒料放入热风烘箱中进行干燥,并将干燥后的粒料加入购自瑞典Labtech公司的型号为LCR400的挤出流延机中进行熔融挤出并流延铸片,熔融挤出挤出机温度为230℃,换网区温度控制在230℃,机头温度控制在230℃,流延辊温度控制在25℃,制成230±20μm的厚铸片。
将上述聚丙烯厚铸片放入到膜双向拉伸设备的拉伸夹具中,采用双向同步拉伸工艺成型,各步工艺条件包括:预热温度为160℃,拉伸温度为160℃,拉伸倍率5.5×5.5倍,膜拉伸速率为100%/s;膜定形温度为160℃。测试所得聚丙烯膜的各项电学性能参数,结果 如表2所示。
实施例2
采用筛分机中层筛出的PP2粉料5.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧。将13.5g过氧化(2-乙基己酸)叔丁酯和1001g苯乙烯配制成均一溶液后,加入反应釜与粉料搅拌混合,并升温至40℃溶胀3小时。再通过加料罐加入已除氧并预热至40℃的去离子水36.0kg,将反应釜升温至90℃,反应6小时。反应结束后,冷却降温,滤除液态组分,将产物在70℃下真空干燥10小时,得到聚丙烯-g-苯乙烯粉料。图2为实施例2中产品在20000倍电镜下的微观结构照片,其中球形高亮部分即苯乙烯结构单元构成的分散相。
将上述得到的粉料进行造粒及膜产品的制备,制备方法同实施例1,测试所得接枝改性聚丙烯和所得聚丙烯膜的各项结构和性能参数。结果如表1和表2所示。
实施例3
采用筛分机中层筛出的PP2粉料5.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧。将3.1g过氧化二苯甲酰和112g苯乙烯和13.9g马来酸酐配制成均一溶液后,加入反应釜与粉料搅拌混合,在室温下溶胀8小时,升温至92℃。再通过加料罐加入已除氧并预热至92℃的去离子水16.4kg,反应4小时。反应结束后,冷却降温,滤除液态组分,将产物在70℃下真空干燥10小时,得到聚丙烯-g-马来酸酐/苯乙烯粉料。图3为实施例3中粉料在20000倍电镜下的微观结构照片,其中球形高亮部分即为马来酸酐/苯乙烯结构单元构成的分散相。
将上述得到的粉料进行造粒及膜产品的制备,制备方法同实施例1,测试所得接枝改性聚丙烯和所得聚丙烯膜的各项结构和性能参数。结果如表1和表2所示。
实施例4
采用筛分机中层筛出的PP1粉料5.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧。将2.5g过氧化二苯甲酰和250.5g甲基丙烯酸甲酯配制成均一溶液后,加入反应釜与粉料搅拌混合30min,加入已除氧的去离子水26.3kg。将反应釜升温至91℃,反应3小时。反应结束后,冷却降温,滤除液态组分,将产物在70℃下真空干燥10小时,得到聚丙烯-g-甲基丙烯酸甲酯的粉料。
将上述得到的粉料进行造粒及膜产品的制备,制备方法同实施例1,测试所得接枝改 性聚丙烯和所得聚丙烯膜的各项结构和性能参数。结果如表1和表2所示。
实施例5
采用筛分机中层筛出的PP2粉料5.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧。将6.2g过氧化二苯甲酰和198.0g苯乙烯和52.0g马来酸酐配制成均一溶液后,加入反应釜与粉料搅拌混合,在室温下溶胀6小时,升温至90℃。再通过加料罐加入已除氧并预热至90℃的去离子水22.6kg,反应4小时。反应结束后,冷却降温,滤除液态组分,将产物在70℃下真空干燥10小时,得到聚丙烯-g-马来酸酐/苯乙烯粉料。
将上述得到的粉料进行造粒及膜产品的制备,制备方法同实施例1,测试所得接枝改性聚丙烯和所得聚丙烯膜的各项结构和性能参数。结果如表1和表2所示。
实施例6
采用筛分机中层筛出的PP1粉料5.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧。将31g过氧化月桂酰和603g乙烯基三乙氧基硅烷配制成均一溶液后,加入反应釜与粉料搅拌混合20min,加入已除氧的去离子水19.6kg。将反应釜升温至91℃,反应7小时。反应结束后,冷却降温,滤除液态组分,将产物在70℃下真空干燥10小时,得到聚丙烯-g-乙烯基三乙氧基硅烷的粉料。
将上述得到的粉料进行造粒及膜产品的制备,制备方法同实施例1,测试所得接枝改性聚丙烯和所得聚丙烯膜的各项结构和性能参数。结果如表1和表2所示。
实施例7
采用筛分机中层筛出的PP2粉料5.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧。将6.2g过氧化二苯甲酰和115.0g丙烯酸甲酯和38.0g丙烯酸配制成均一溶液后,加入反应釜与粉料搅拌混合40min,升温至95℃。再通过加料罐加入已除氧并预热至90℃的去离子水36.1kg,反应4小时。反应结束后,冷却降温,滤除液态组分,将产物在70℃下真空干燥10小时,得到聚丙烯-g-丙烯酸甲酯/丙烯酸粉料。
将上述得到的粉料进行造粒及膜产品的制备,制备方法同实施例1,测试所得接枝改性聚丙烯和所得聚丙烯膜的各项结构和性能参数。结果如表1和表2所示。
实施例8
将实施例1中的PP1粉料替换成采用筛分机中层筛出的PP3粉料,其它制备条件和方法和实施例1相同,测试所得接枝改性聚丙烯和所得聚丙烯膜的各项结构和性能参数。结果如表1和表2所示。
实施例9
采用筛分机中层筛出的PP2粉料5.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧。将8.8g过氧化二苯甲酰和355g 4-乙烯基吡啶配制成均一溶液后,加入反应釜与粉料搅拌混合30分钟,加入已除氧的去离子水27.8kg,并升温至50℃溶胀2小时。将反应釜升温至92℃,反应6小时。反应结束后,冷却降温,滤除液态组分,将产物在70℃下真空干燥10小时,得到聚丙烯-g-4-乙烯基吡啶粉料。
将上述得到的粉料进行造粒及膜产品的制备,制备方法同实施例1,测试所得接枝改性聚丙烯和所得聚丙烯膜的各项结构和性能参数。结果如表1和表2所示。
实施例10
采用筛分机中层筛出的PP1粉料5.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧。将1.35g过氧化二苯甲酰和76g甲基丙烯酸缩水甘油酯配制成均一溶液后,加入反应釜与粉料搅拌混合30min,加入已除氧的去离子水16.7kg。将反应釜升温至93℃,反应2.5小时。反应结束后,冷却降温,滤除液态组分,将产物在70℃下真空干燥10小时,得到聚丙烯-g-甲基丙烯酸缩水甘油酯的粉料。图4为实施例10中粉料在20000倍电镜下的微观结构照片,其中球形亮度较高部分相即分散相。
将上述得到的粉料进行造粒及膜产品的制备,制备方法同实施例1,测试所得接枝改性聚丙烯和所得聚丙烯膜的各项结构和性能参数。结果如表1和表2所示。
实施例11
将实施例1中的筛分机中层筛出的PP1粉料替换成筛分机上层筛出的PP1粉料,其它制备条件和方法与实施例1相同,测试所得接枝改性聚丙烯和所得聚丙烯膜的各项结构和性能参数。结果如表1和表2所示。
实施例12
将实施例1中的筛分机中层筛出的PP1粉料替换成筛分机底层筛出的PP1粉料,其它 制备条件和方法与实施例1相同,测试所得接枝改性聚丙烯和所得聚丙烯膜的各项结构和性能参数。结果如表1和表2所示。
实施例13
采用筛分机中层筛出的PP1粉料5.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧,将7.2g过氧化(2-乙基己酸)叔丁酯和400g苯乙烯配制成均一溶液后,加入反应釜与粉料搅拌混合30分钟,再加入已除氧的去离子水17.8kg并升温至50℃溶胀2小时。将溶胀后的粉料升温至95℃,反应4小时。反应结束后,冷却降温,滤除液态组分,将产物在70℃下真空干燥10小时,得到聚丙烯-g-苯乙烯粉料C13。测试所得接枝改性聚丙烯的接枝/自聚比η、D50、灰分、MFR、Tm和弯曲模量,结果如表1所示。
称取上述1.5kg聚丙烯-g-苯乙烯粉料C13,加入3kg二甲苯、20kg四氢呋喃,密闭反应系统,并升温至70℃搅拌洗涤5小时。搅拌结束后,过滤出去液相,将产物在70℃下真空干燥10小时,得到聚丙烯-g-苯乙烯粉料B13。测试所得接枝改性聚丙烯的接枝/自聚比η、D50、灰分、MFR、Tm和弯曲模量,结果如表1所示。
称取上述聚丙烯-g-苯乙烯粉料(C13或B13)、抗氧剂1010/168(重量比1:1)加入高速搅拌机混匀。用科倍隆公司WP25型双螺杆挤出机造粒,加工过程中双螺杆分区温度190-200-210-220-230-230-220℃,螺杆转速300rpm。造粒得到聚丙烯-g-苯乙烯粒料。以聚丙烯-g-苯乙烯粉料的用量为100重量份计,抗氧剂的用量为0.3重量份。
将上述得到的粒料放入热风烘箱中进行干燥,并将干燥后的粒料加入购自瑞典Labtech公司的型号为LCR400的挤出流延机中进行熔融挤出并流延铸片,熔融挤出挤出机温度为230℃,换网区温度控制在230℃,机头温度控制在230℃,流延辊温度控制在25℃,制成230±20μm的厚铸片。
将上述聚丙烯厚铸片放入到膜双向拉伸设备的拉伸夹具中,采用双向同步拉伸工艺成型,各步工艺条件包括:预热温度为160℃,拉伸温度为160℃,拉伸倍率5.5×5.5倍,膜拉伸速率为100%/s;膜定形温度为160℃。测试所得聚丙烯膜C13和B13的各项电学性能参数,结果如表2所示。
实施例14
采用筛分机中层筛出的PP2粉料3.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧。将8.2g过氧化(2-乙基己酸)叔丁酯和63g苯乙烯、 470g甲基丙烯酸甲酯配制成均一溶液后,加入反应釜与粉料搅拌混合,并升温至60℃溶胀2小时。再通过加料罐加入已除氧并预热至60℃的去离子水18.1kg,将反应釜升温至90℃,反应6小时。反应结束后,冷却降温,滤除液态组分。加入丙酮23kg、正庚烷2公斤,升温至55℃,搅拌3小时,搅拌结束后,过滤出去液相,将产物在70℃下真空干燥10小时,得到聚丙烯-g-甲基丙烯酸甲酯/苯乙烯粉料B14。
将上述得到的粉料进行造粒及膜产品的制备,制备方法同实施例13,测试所得接枝改性聚丙烯和所得聚丙烯膜B14的各项结构和性能参数。结果如表1和表2所示。
实施例15
采用筛分机中层筛出的PP1粉料5.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧。将2.5g过氧化二苯甲酰和250.5g甲基丙烯酸甲酯配制成均一溶液后,加入反应釜与粉料搅拌混合30min,加入已除氧的去离子水26.3kg。将反应釜升温至91℃,反应3小时。反应结束后,冷却降温,滤除液态组分,将产物在70℃下真空干燥10小时,得到聚丙烯-g-甲基丙烯酸甲酯的粉料C15。
称取上述3kg聚丙烯-g-甲基丙烯酸甲酯粉料C15,加入10kg二甲苯、20kg乙酸乙酯,密闭反应系统,并升温至70℃搅拌洗涤7小时。搅拌结束后,过滤出去液相,将产物在70℃下真空干燥10小时,得到2.965kg聚丙烯-g-甲基丙烯酸甲酯粉料B15。TSDC的测定结果如图6所示。
将上述得到的粉料进行造粒及膜产品的制备,制备方法同实施例13,测试所得接枝改性聚丙烯和所得聚丙烯膜C15和B15的各项结构和性能参数。结果如表1和表2所示。
实施例16
采用筛分机中层筛出的PP2粉料1.5kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧。将1.9g过氧化二苯甲酰和59.7g苯乙烯和15.6g马来酸酐配制成均一溶液后,加入反应釜与粉料搅拌混合,在室温下溶胀6小时,升温至90℃。再通过加料罐加入已除氧并预热至90℃的去离子水7.0kg,反应4小时。反应结束后,冷却降温,滤除液态组分。加入丙酮25kg,升温至55℃搅拌5小时,搅拌结束后,过滤出去液相,将产物在70℃下真空干燥10小时,得到聚丙烯-g-马来酸酐/苯乙烯粉料B16。
将上述得到的粉料进行造粒及膜产品的制备,制备方法同实施例13,测试所得接枝改性聚丙烯和所得聚丙烯膜B16的各项结构和性能参数。结果如表1和表2所示。
对比例1
采用筛分机中层筛出的PP1粉料5.0kg进行造粒及膜产品的制备,制备条件和方法同实施例1,测试聚丙烯和所得聚丙烯膜的各项结构和性能参数。结果如表1和表2所示。图5为PP1粉料在20000倍电镜下的微观结构照片,无可见分散相。
对比例2
将实施例1中的PP1粉料替换成采用筛分机中层筛出的PP4粉料,去离子水加入量为10.8kg,其它制备条件和方法与实施例1相同,测试所得接枝改性聚丙烯和所得聚丙烯膜的各项结构和电学性能参数。结果如表1和表2所示。
对比例3
采用筛分机中层筛出的PP2粉料5.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧。将18.6g过氧化二苯甲酰和735g 4-乙烯基吡啶配制成均一溶液后,加入反应釜与粉料搅拌混合30分钟,加入已除氧的去离子水36.7kg,并升温至50℃溶胀2小时。将反应釜升温至92℃,反应6小时。反应结束后,冷却降温,滤除液态组分,将产物在70℃下真空干燥10小时,得到聚丙烯-g-4-乙烯基吡啶粉料。
将上述得到的粉料进行造粒及膜产品的制备,制备方法同实施例1,测试所得接枝改性聚丙烯和所得聚丙烯膜的各项结构和电学性能参数。结果如表1和表2所示。
对比例4
采用筛分机中层筛出的PP1粉料5.0kg,加入400g聚苯乙烯GPPS-123进行造粒及膜产品的制备,其它制备条件和方法与实施例1相同,测试所得聚丙烯膜的各项电学性能参数。结果如表2所示。
对比例5
采用筛分机中层筛出的PP1粉料5.0kg,加入1000g聚苯乙烯GPPS-123进行造粒及膜产品的制备,其它制备条件和方法与实施例2相同,双向拉伸制膜时,膜发生破裂。
对比例6
测试铜峰MPP03高温膜的各项性能参数,结果如表2所示。
对比例7
采用筛分机中层筛出的PP1粉料5.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧。将2.0g过氧化二苯甲酰和188.2g甲基丙烯酸甲酯配制成均一溶液后,加入反应釜与粉料搅拌混合30min,加入已除氧的去离子水25.9kg。将反应釜升温至90℃,反应3小时。反应结束后,冷却降温,滤除液态组分,将产物在70℃下真空干燥10小时,得到5.168kg聚丙烯-g-甲基丙烯酸甲酯的粉料D7。TSDC的测定结果如图6所示。
将上述得到的粉料进行造粒及膜产品的制备,制备方法同实施例13,测试所得接枝改性聚丙烯和所得聚丙烯膜D7的各项结构和性能参数。结果如表1和表2所示。
表1
Figure PCTCN2022133482-appb-000009
表2
Figure PCTCN2022133482-appb-000010
通过对比D1和C1可看出,接枝改性可以显著提高聚丙烯的介电及储能性能。
通过对比D2和C1可看出,采用灰分高的聚丙烯作为反应原料,即使制备条件相同,接枝相的尺寸更小,其储能效率和储能性能也明显低于低灰分聚丙烯改性物。
通过对比D3和C9以及D1可看出,如果分散相相尺寸过大,产物的击穿强度相比D1几乎没有提高,其它介电性能和储能性能相比D1也没有明显提高,与接枝改性的实施例C9差异显著。
通过对比D4和C1-C12可看出,采用直接加入接枝单体聚合物的方式,接枝单体聚合物与聚丙烯共混的界面作用力较弱,击穿强度低,储能性能相比D1反而有所下降。
通过对比D5和C2可看出,在较高的功能性单体加入量下,聚丙烯接枝改性材料仍可正常成膜,而加入大量的功能性单体聚合物后,在加工过程中破裂,无法成膜。
通过对比D6和C1-C12可看出,本发明的膜在120℃下的储能效率明显高于市售高温电容膜,储能密度和介电性能也与市售高温电容膜相当或略优。
通过C11-C12可看出,将聚丙烯基础料的粒度控制到优选范围,可以使产品具有更好的绝缘性能和储能性能。
通过对比B13和C13,B15和C15可看出,采用溶剂洗涤工艺降低自聚物的影响,可有效提高材料的介电性能(直流体积电阻率大幅提高)。
B15和D7的最终产品中含有相同总量的接枝单体,通过对比B15和D7,以及TSDC的测定可以看出,在接枝单体总含量相同的情况下,具有更高的接枝/自聚比η的B15具有明显改变的接枝相组成,从而产生不同的电荷陷阱,最终可有效提高材料的介电性能。
实施例17
采用筛分机中层筛出的PP1粉料5.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧,将7.2g过氧化(2-乙基己酸)叔丁酯和400g苯乙烯配制成均一溶液后,加入反应釜与粉料搅拌混合30分钟,再加入已除氧的去离子水17.8kg并升温至50℃溶胀2小时。将溶胀后的粉料升温至95℃,反应4小时。反应结束后,冷却降温,滤除液态组分,将产物在70℃下真空干燥10小时,得到聚丙烯-g-苯乙烯粉料。测试所得接枝改性聚丙烯的接枝/自聚比η、D50、灰分、MFR、Tm和弯曲模量,结果如表4所示。
称取上述聚丙烯-g-苯乙烯粉料、抗氧剂1010/168/501(重量比1:1:0.03)和加工助剂放入高速搅拌机中高速搅拌30秒,用科倍隆公司WP25型双螺杆挤出机造粒,加工过程中双螺杆分区温度190-200-210-220-230-230-210℃,螺杆转速300rpm。以改性聚丙烯用量 为100重量份计,抗氧剂总用量为0.3重量份,加工助剂含氟聚合物用量为0.1重量份。
将上述步骤得到的粒料放入热风烘箱中进行干燥,并将干燥后的粒料加入购自瑞典Labtech公司的型号为LCR400的挤出流延机中进行熔融挤出并流延铸片,熔融挤出挤出机温度为230℃,换网区温度控制在230℃,机头温度控制在230℃,流延辊温度控制在25℃,制成厚铸片。
将上述厚铸片放入到膜双向拉伸设备的拉伸夹具中,采用先纵向(MD)拉伸后横向(TD)拉伸的双向分步拉伸工艺成型,各步工艺条件如表3所示:MD预热温度为155℃,MD拉伸温度为155℃,MD拉伸倍率5倍,MD拉伸速率为200%/s;TD预热温度为170℃,TD拉伸温度为170℃,TD拉伸倍率为7倍,膜TD拉伸速率为300%/s;膜定形温度为175℃。得到双向拉伸聚丙烯膜。
将得到的膜进行拉伸性能、电性能等性能测试。所得聚丙烯膜的性能参数如表5、6所示。
实施例18
采用筛分机中层筛出的PP2粉料5.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧。将13.5g过氧化(2-乙基己酸)叔丁酯和1001g苯乙烯配制成均一溶液后,加入反应釜与粉料搅拌混合,并升温至40℃溶胀3小时。再通过加料罐加入已除氧并预热至40℃的去离子水36.0kg,将反应釜升温至90℃,反应6小时。反应结束后,冷却降温,滤除液态组分,将产物在70℃下真空干燥10小时,得到聚丙烯-g-苯乙烯粉料。
将上述聚丙烯-g-苯乙烯粉料、抗氧剂1035/168/501(重量比1:1:0.03)和加工助剂放入高速搅拌机中高速搅拌30秒,用科倍隆公司WP25型双螺杆挤出机造粒,加工过程中双螺杆分区温度190-200-210-220-230-230-210℃,螺杆转速300rpm。以改性聚丙烯用量为100重量份计,抗氧剂总用量为0.5重量份,含氟聚合物加工助剂用量为0.2重量份。
本实施例中,膜的制备方法同实施例17,不同之处在于,双向拉伸的工艺条件不同,具体见表3。所得接枝改性聚丙烯和所得聚丙烯膜的结构和性能参数如表4、5、6所示。
实施例19
采用筛分机中层筛出的PP2粉料5.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧。将3.1g过氧化二苯甲酰和112g苯乙烯和13.9g马来酸酐配制成均一溶液后,加入反应釜与粉料搅拌混合,在室温下溶胀8小时,升温至 92℃。再通过加料罐加入已除氧并预热至92℃的去离子水16.4kg,反应4小时。反应结束后,冷却降温,滤除液态组分,将产物在70℃下真空干燥10小时,得到聚丙烯-g-马来酸酐/苯乙烯粉料。
将上述改性聚丙烯、抗氧剂1010/168/501(重量比1:1:0.05)和含氟聚合物放入高速搅拌机中高速搅拌30秒,用科倍隆公司WP25型双螺杆挤出机造粒,加工过程中双螺杆分区温度190-200-210-220-230-230-210℃,螺杆转速300rpm。以改性聚丙烯用量为100重量份计,抗氧剂总用量为0.3重量份,含氟聚合物用量为0.1重量份。
本实施例中,膜的制备方法同实施例17,不同之处在于,双向拉伸的工艺条件不同,具体见表3。所得接枝改性聚丙烯和所得聚丙烯膜的结构和性能参数如表4、5、6所示。
实施例20
采用筛分机中层筛出的PP1粉料5.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧。将2.5g过氧化二苯甲酰和250.5g甲基丙烯酸甲酯配制成均一溶液后,加入反应釜与粉料搅拌混合30min,加入已除氧的去离子水26.3kg。将反应釜升温至91℃,反应3小时。反应结束后,冷却降温,滤除液态组分,将产物在70℃下真空干燥10小时,得到聚丙烯-g-甲基丙烯酸甲酯的粉料。
将上述聚丙烯-g-甲基丙烯酸甲酯、抗氧剂1076/168/501(重量比1:1:0.04)和含氟聚合物放入高速搅拌机中高速搅拌30秒,用科倍隆公司WP25型双螺杆挤出机造粒,加工过程中双螺杆分区温度190-200-210-220-230-230-210℃,螺杆转速300rpm。以改性聚丙烯用量为100重量份计,抗氧剂总用量为0.3重量份,含氟聚合物用量为0.1重量份。
本实施例中,膜的制备方法同实施例17,不同之处在于,双向拉伸的工艺条件不同,具体见表3。所得接枝改性聚丙烯和所得聚丙烯膜的结构和性能参数如表4、5、6所示。
实施例21
采用筛分机中层筛出的PP2粉料5.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧。将6.2g过氧化二苯甲酰和198.0g苯乙烯和52.0g马来酸酐配制成均一溶液后,加入反应釜与粉料搅拌混合,在室温下溶胀6小时,升温至90℃。再通过加料罐加入已除氧并预热至90℃的去离子水22.6kg,反应4小时。反应结束后,冷却降温,滤除液态组分,将产物在70℃下真空干燥10小时,得到聚丙烯-g-马来酸酐/苯乙烯粉料。
将上述聚丙烯-g-苯乙烯/马来酸酐、抗氧剂1010/168/501(重量比1:1:0.05)和含氟聚 合物放入高速搅拌机中高速搅拌30秒,用科倍隆公司WP25型双螺杆挤出机造粒,加工过程中双螺杆分区温度190-200-210-220-230-230-210℃,螺杆转速300rpm。以改性聚丙烯用量为100重量份计,抗氧剂总用量为0.3重量份,含氟聚合物用量为0.1重量份。
本实施例中,膜的制备方法同实施例17,不同之处在于,双向拉伸的工艺条件不同,具体见表3。所得接枝改性聚丙烯和所得聚丙烯膜的结构和性能参数如表4、5、6所示。
实施例22
采用筛分机中层筛出的PP1粉料5.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧。将31g过氧化月桂酰和603g乙烯基三乙氧基硅烷配制成均一溶液后,加入反应釜与粉料搅拌混合20min,加入已除氧的去离子水19.6kg。将反应釜升温至91℃,反应7小时。反应结束后,冷却降温,滤除液态组分,将产物在70℃下真空干燥10小时,得到聚丙烯-g-乙烯基三乙氧基硅烷的粉料。
将上述得到的粉料进行造粒及膜产品的制备,方法和条件同实施例17。所得接枝改性聚丙烯和所得聚丙烯膜的结构和性能参数如表4、5、6所示。
实施例23
采用筛分机中层筛出的PP2粉料5.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧。将6.2g过氧化二苯甲酰和115.0g丙烯酸甲酯和38.0g丙烯酸配制成均一溶液后,加入反应釜与粉料搅拌混合40min,升温至95℃。再通过加料罐加入已除氧并预热至90℃的去离子水36.1kg,反应4小时。反应结束后,冷却降温,滤除液态组分,将产物在70℃下真空干燥10小时,得到聚丙烯-g-丙烯酸甲酯/丙烯酸粉料。
将上述得到的粉料进行造粒及膜产品的制备,方法和条件同实施例17。所得接枝改性聚丙烯和所得聚丙烯膜的结构和性能参数如表4、5、6所示。
实施例24
将实施例17中的PP1粉料替换成采用筛分机中层筛出的PP3粉料,其它制备条件和方法和实施例17相同,测试所得聚丙烯膜的各项性能参数。所得接枝改性聚丙烯和所得聚丙烯膜的结构和性能参数如表4、5、6所示。
实施例25
采用筛分机中层筛出的PP2粉料5.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧。将8.8g过氧化二苯甲酰和355g 4-乙烯基吡啶配制成均一溶液后,加入反应釜与粉料搅拌混合30分钟,加入已除氧的去离子水27.8kg,并升温至50℃溶胀2小时。将反应釜升温至92℃,反应6小时。反应结束后,冷却降温,滤除液态组分,将产物在70℃下真空干燥10小时,得到聚丙烯-g-4-乙烯基吡啶粉料。
将上述得到的粉料进行造粒及膜产品的制备,方法和条件同实施例17。所得接枝改性聚丙烯和所得聚丙烯膜的结构和性能参数如表4、5、6所示。
实施例26
采用筛分机中层筛出的PP1粉料5.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧。将1.35g过氧化二苯甲酰和76g甲基丙烯酸缩水甘油酯配制成均一溶液后,加入反应釜与粉料搅拌混合30min,加入已除氧的去离子水16.7kg。将反应釜升温至93℃,反应2.5小时。反应结束后,冷却降温,滤除液态组分,将产物在70℃下真空干燥10小时,得到聚丙烯-g-甲基丙烯酸缩水甘油酯的粉料。
将上述得到的粉料进行造粒及膜产品的制备,方法和条件同实施例17。所得接枝改性聚丙烯和所得聚丙烯膜的结构和性能参数如表4、5、6所示。
实施例27
根据实施例17的方法制备改性聚丙烯和聚丙烯膜,不同之处在于,抗氧剂为抗氧剂1010/168(重量比1:1),所得接枝改性聚丙烯和所得聚丙烯膜的结构和性能参数如表4、5、6所示。
实施例28
根据实施例18的方法制备改性聚丙烯和聚丙烯膜,不同之处在于,抗氧剂为抗氧剂501,所得接枝改性聚丙烯和所得聚丙烯膜的结构和性能参数如表4、5、6所示。
实施例29
根据实施例19的方法制备改性聚丙烯和聚丙烯膜,不同之处在于,抗氧剂为抗氧剂1010/168/501(重量比1:1:0.01),所得接枝改性聚丙烯和所得聚丙烯膜的结构和性能参数如表4、5、6所示。
实施例30
将实施例17中的筛分机中层筛出的PP1粉料替换成筛分机上层筛出的PP1粉料,其它制备条件和方法与实施例17相同,所得接枝改性聚丙烯和所得聚丙烯膜的结构和性能参数如表4、5、6所示。
实施例31
将实施例17中的筛分机中层筛出的PP1粉料替换成筛分机底层筛出的PP1粉料,其它制备条件和方法与实施例17相同,所得接枝改性聚丙烯和所得聚丙烯膜的结构和性能参数如表4、5、6所示。
实施例32
采用筛分机中层筛出的PP1粉料5.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧,将7.2g过氧化(2-乙基己酸)叔丁酯和400g苯乙烯配制成均一溶液后,加入反应釜与粉料搅拌混合30分钟,再加入已除氧的去离子水17.8kg并升温至50℃溶胀2小时。将溶胀后的粉料升温至95℃,反应4小时。反应结束后,冷却降温,滤除液态组分,将产物在70℃下真空干燥10小时,得到聚丙烯-g-苯乙烯粉料C32。测试所得接枝改性聚丙烯的接枝/自聚比η、D50、灰分、MFR、Tm和弯曲模量,结果如表4所示。
称取上述1.5kg聚丙烯-g-苯乙烯粉料C32,加入3kg二甲苯、20kg四氢呋喃,密闭反应系统,并升温至70℃搅拌洗涤5小时。搅拌结束后,过滤出去液相,将产物在70℃下真空干燥10小时,得到聚丙烯-g-苯乙烯粉料B32。测试所得接枝改性聚丙烯的接枝/自聚比η、D50、灰分、MFR、Tm和弯曲模量,结果如表4所示。
称取上述聚丙烯-g-苯乙烯粉料(C32或B32)、抗氧剂1010/168/501(重量比1:1:0.03)和加工助剂放入高速搅拌机中高速搅拌30秒,用科倍隆公司WP25型双螺杆挤出机造粒,加工过程中双螺杆分区温度190-200-210-220-230-230-210℃,螺杆转速300rpm。以改性聚丙烯用量为100重量份计,抗氧剂总用量为0.3重量份,加工助剂含氟聚合物用量为0.1重量份。
将上述步骤得到的粒料放入热风烘箱中进行干燥,并将干燥后的粒料加入购自瑞典Labtech公司的型号为LCR400的挤出流延机中进行熔融挤出并流延铸片,熔融挤出挤出机温度为230℃,换网区温度控制在230℃,机头温度控制在230℃,流延辊温度控制在25℃,制成厚铸片。
将上述厚铸片放入到膜双向拉伸设备的拉伸夹具中,采用先纵向(MD)拉伸后横向 (TD)拉伸的双向分步拉伸工艺成型,各步工艺条件如表4所示:MD预热温度为155℃,MD拉伸温度为155℃,MD拉伸倍率5倍,MD拉伸速率为200%/s;TD预热温度为170℃,TD拉伸温度为170℃,TD拉伸倍率为7倍,膜TD拉伸速率为300%/s;膜定形温度为175℃。得到双向拉伸聚丙烯膜C32和B32。
将得到的膜进行拉伸性能、电性能等性能测试。所得聚丙烯膜的性能参数如表5、6所示。
实施例33
采用筛分机中层筛出的PP2粉料3.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧。将8.2g过氧化(2-乙基己酸)叔丁酯和63g苯乙烯、470g甲基丙烯酸甲酯配制成均一溶液后,加入反应釜与粉料搅拌混合,并升温至60℃溶胀2小时。再通过加料罐加入已除氧并预热至60℃的去离子水18.1kg,将反应釜升温至90℃,反应6小时。反应结束后,冷却降温,滤除液态组分。加入丙酮23kg、正庚烷2公斤,升温至55℃,搅拌3小时,搅拌结束后,过滤出去液相,将产物在70℃下真空干燥10小时,得到聚丙烯-g-甲基丙烯酸甲酯/苯乙烯粉料B33。
将上述聚丙烯-g-甲基丙烯酸甲酯/苯乙烯粉料、抗氧剂1035/168/501(重量比1:1:0.03)和加工助剂放入高速搅拌机中高速搅拌30秒,用科倍隆公司WP25型双螺杆挤出机造粒,加工过程中双螺杆分区温度190-200-210-220-230-230-210℃,螺杆转速300rpm。以改性聚丙烯用量为100重量份计,抗氧剂总用量为0.5重量份,含氟聚合物加工助剂用量为0.2重量份。
膜的制备方法同实施例32,不同之处在于,双向拉伸的工艺条件不同,具体见表3。所得接枝改性聚丙烯和所得聚丙烯膜B33的结构和性能参数如表4、5、6所示。
实施例34
采用筛分机中层筛出的PP1粉料5.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧。将2.5g过氧化二苯甲酰和250.5g甲基丙烯酸甲酯配制成均一溶液后,加入反应釜与粉料搅拌混合30min,加入已除氧的去离子水26.3kg。将反应釜升温至91℃,反应3小时。反应结束后,冷却降温,滤除液态组分,将产物在70℃下真空干燥10小时,得到聚丙烯-g-甲基丙烯酸甲酯的粉料C34。
称取上述3kg聚丙烯-g-甲基丙烯酸甲酯粉料C34,加入10kg二甲苯、20kg乙酸乙酯,密闭反应系统,并升温至70℃搅拌洗涤7小时。搅拌结束后,过滤出去液相,将产 物在70℃下真空干燥10小时,得到2.965kg聚丙烯-g-甲基丙烯酸甲酯粉料B34。
将上述聚丙烯-g-甲基丙烯酸甲酯粉料(C34或B34)、抗氧剂1076/168/501(重量比1:1:0.04)和含氟聚合物放入高速搅拌机中高速搅拌30秒,用科倍隆公司WP25型双螺杆挤出机造粒,加工过程中双螺杆分区温度190-200-210-220-230-230-210℃,螺杆转速300rpm。以改性聚丙烯用量为100重量份计,抗氧剂总用量为0.3重量份,含氟聚合物用量为0.1重量份。
膜的制备方法同实施例32,不同之处在于,双向拉伸的工艺条件不同,具体见表3。所得接枝改性聚丙烯和所得聚丙烯膜C34和B34的结构和性能参数如表4、5、6所示。
实施例35
采用筛分机中层筛出的PP2粉料1.5kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧。将1.9g过氧化二苯甲酰和59.7g苯乙烯和15.6g马来酸酐配制成均一溶液后,加入反应釜与粉料搅拌混合,在室温下溶胀6小时,升温至90℃。再通过加料罐加入已除氧并预热至90℃的去离子水7.0kg,反应4小时。反应结束后,冷却降温,滤除液态组分。加入丙酮25kg,升温至55℃搅拌5小时,搅拌结束后,过滤出去液相,将产物在70℃下真空干燥10小时,得到聚丙烯-g-马来酸酐/苯乙烯粉料B35。
将上述聚丙烯-g-马来酸酐/苯乙烯粉料、抗氧剂1010/168/501(重量比1:1:0.05)和含氟聚合物放入高速搅拌机中高速搅拌30秒,用科倍隆公司WP25型双螺杆挤出机造粒,加工过程中双螺杆分区温度190-200-210-220-230-230-210℃,螺杆转速300rpm。以改性聚丙烯用量为100重量份计,抗氧剂总用量为0.3重量份,含氟聚合物用量为0.1重量份。
膜的制备方法同实施例32,不同之处在于,双向拉伸的工艺条件不同,具体见表3。所得接枝改性聚丙烯和所得聚丙烯膜B35的结构和性能参数如表4、5、6所示。
对比例8
采用筛分机中层筛出的PP1粉料5.0kg进行造粒及膜产品的制备,抗氧剂为抗氧剂1010/168(重量比1:1),其他制备条件和方法同实施例17,测试所得产品的各项性能参数。聚丙烯和所得聚丙烯膜的结构和性能参数如表4、5、6所示。
对比例9
将实施例17中的PP1粉料替换成采用筛分机中层筛出的PP4粉料,去离子水加入量 为10.8kg,其它制备条件和方法与实施例1相同,测试所得产品的各项性能参数。所得接枝改性聚丙烯和所得聚丙烯膜的结构和性能参数如表4、5、6所示。
对比例10
采用筛分机中层筛出的PP2粉料5.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧。将18.6g过氧化二苯甲酰和735g 4-乙烯基吡啶配制成均一溶液后,加入反应釜与粉料搅拌混合30分钟,加入已除氧的去离子水36.7kg,并升温至50℃溶胀2小时。将反应釜升温至92℃,反应6小时。反应结束后,冷却降温,滤除液态组分,将产物在70℃下真空干燥10小时,得到聚丙烯-g-4-乙烯基吡啶粉料。
将上述得到的粉料进行造粒及膜产品的制备,抗氧剂为抗氧剂1010/168(重量比1:1),方法和条件同实施例17。所得接枝改性聚丙烯和所得聚丙烯膜的结构和性能参数如表4、5、6所示。
对比例11
采用筛分机中层筛出的PP1粉料5.0kg,加入400g聚苯乙烯GPPS-123进行造粒及膜产品的制备,其它制备条件和方法与实施例17相同,测试所得产品的各项性能参数。所得聚丙烯膜的性能参数如表5、6所示。
对比例12
采用筛分机中层筛出的PP1粉料5.0kg,加入1000g聚苯乙烯GPPS-123进行造粒及膜产品的制备,抗氧剂为抗氧剂1010/168(重量比1:1),其它制备条件和方法与实施例18相同,双向拉伸制膜时,膜发生破裂。
对比例13
测试铜峰MPP03高温膜的各项性能参数,结果如表5、6所示。
对比例14
采用筛分机中层筛出的PP1粉料5.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧。将2.0g过氧化二苯甲酰和188.2g甲基丙烯酸甲酯配制成均一溶液后,加入反应釜与粉料搅拌混合30min,加入已除氧的去离子水25.9kg。将反应釜升温至90℃,反应3小时。反应结束后,冷却降温,滤除液态组分,将产物在70℃下真空干燥10小时,得到5.168kg聚丙烯-g-甲基丙烯酸甲酯的粉料D14。
将上述聚丙烯-g-甲基丙烯酸甲酯粉料、抗氧剂1076/168/501(重量比1:1:0.04)和含氟聚合物放入高速搅拌机中高速搅拌30秒,用科倍隆公司WP25型双螺杆挤出机造粒,加工过程中双螺杆分区温度190-200-210-220-230-230-210℃,螺杆转速300rpm。以改性聚丙烯用量为100重量份计,抗氧剂总用量为0.3重量份,含氟聚合物用量为0.1重量份。
膜的制备方法同实施例32。所得接枝改性聚丙烯和所得聚丙烯膜D14的结构和性能参数如表4、5、6所示。
对比例15
采用筛分机中层筛出的PP1粉料5.0kg,加入到配有双层四叶搅拌桨和挡板的50L反应釜中,密闭反应系统,氮气置换除氧,将3.9g过氧化(2-乙基己酸)叔丁酯和200g苯乙烯配制成均一溶液后,加入反应釜与粉料搅拌混合30分钟,再加入已除氧的去离子水17.2kg并升温至50℃溶胀2小时。将溶胀后的粉料升温至95℃,反应4小时。反应结束后,冷却降温,滤除液态组分,将产物在70℃下真空干燥10小时,得到聚丙烯-g-苯乙烯粉料5.168kg,接枝/自聚比η为2.11。
将得到的聚丙烯-g-苯乙烯粉料与159g聚苯乙烯GPPS-123进行共混、造粒及膜产品的制备,其它制备条件和方法与实施例17相同,测试所得共混物和所得聚丙烯膜的各项结构和性能参数。结果如表4、5、6所示。
表3双向拉伸工艺条件
Figure PCTCN2022133482-appb-000011
表4
Figure PCTCN2022133482-appb-000012
表5
Figure PCTCN2022133482-appb-000013
表6
Figure PCTCN2022133482-appb-000014
通过对比D8和C17可看出,接枝改性可以显著提高聚丙烯的介电及储能性能。
通过对比D9和C17可看出,采用灰分高的聚丙烯作为反应原料,即使制备条件相同,接枝相的尺寸更小,其储能效率和储能性能也明显低于低灰分聚丙烯改性物。
通过对比D10和C25及D8可看出,如果分散相相尺寸过大,产物的击穿强度相比D8几乎没有提高,其它介电性能和储能性能相比D8也没有明显提高,与接枝改性的实施例C25差异显著。
通过对比D11和C17-C31可看出,采用直接加入接枝单体聚合物的方式,接枝单体聚合物与聚丙烯共混的界面作用力较弱,击穿强度低,储能性能相比D8反而有所下降。
通过对比D12和C18可看出,在较高的功能性单体加入量下,聚丙烯接枝改性材料仍可正常成膜,而加入大量的功能性单体聚合物后,在加工过程中破裂,无法成膜。
通过对比D13和C17-C31可看出,本发明的膜在120℃下的储能效率明显高于市售高温电容膜,储能密度和介电性能也与市售高温电容膜相当或略优。
通过C30-C31可看出,将聚丙烯基础料的粒度控制到优选范围,可以使产品具有更好的绝缘性能和储能性能。
通过对比B32和C32,B34和C34可看出,采用溶剂洗涤工艺降低自聚物的影响,可有效提高材料的介电性能(直流体积电阻率大幅提高)。
B34和D14的最终产品中含有相同总量的接枝单体,通过对比B34和D14,以及TSDC的测定可以看出,在接枝单体总含量相同的情况下,具有更高的接枝/自聚比η的B34具有明显改变的接枝相组成,从而产生不同的电荷陷阱,最终可有效提高材料的介电性能。
通过对比D15和C17可看出,在苯乙烯总含量相同的情况下,接枝/自聚比η高,产品具有较好的绝缘性能和储能性能。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
在本文中措辞“包括”与“包含”可互换使用,涵盖“基本上由……组成”、“由……组成”和“是”。

Claims (53)

  1. 一种双向拉伸聚丙烯介电膜,其特征在于,所述双向拉伸聚丙烯介电膜的制备原料包括含烯基功能性单体接枝的改性聚丙烯;
    所述含烯基功能性单体接枝的改性聚丙烯包括作为基体相的衍生自聚丙烯的结构单元,以及作为分散相的衍生自含烯基功能性单体的结构单元;所述含烯基功能性单体接枝的改性聚丙烯的灰分含量小于50ppm,优选小于36ppm,更优选小于30ppm;所述含烯基功能性单体接枝的改性聚丙烯中衍生自含烯基功能性单体且处于接枝态的结构单元与衍生自含烯基功能性单体且处于自聚态的结构单元的质量比大于等于1.0;所述分散相的D50小于450nm,优选为50~400nm。
  2. 根据权利要求1所述的双向拉伸聚丙烯介电膜,其中,所述双向拉伸聚丙烯介电膜的最高工作温度≥100℃,优选为110~160℃,更优选为120~145℃。
  3. 根据权利要求1或2所述的双向拉伸聚丙烯介电膜,其中,所述双向拉伸聚丙烯介电膜具有以下特征中的至少一种:
    -120℃下的击穿场强E g≥500MV/m,优选为550~800MV/m;
    -120℃、200MV/m场强下的直流体积电阻率ρ vg≥6.0×10 13Ω·m,优选为1.0×10 14Ω·m~1.0×10 20Ω·m,优选为1.5×10 14Ω·m~0.9×10 20Ω·m,更优选为2.0×10 14Ω·m~1.0×10 17Ω·m;
    -120℃、100Hz下的介电常数大于2.25,优选为2.26~2.65;
    -120℃、100Hz下的介电损耗小于1.55E-3,优选小于1.5E-3,优选小于等于1.0E-3,更优选为1.0E-6~1.3E-3,进一步优选为1.0E-6~9E-4;
    -120℃、300MV/m下的储能密度大于0.720J/cm 3,优选为0.740~2.0J/cm 3,更优选为0.780~2.0J/cm 3,进一步优选为0.80~2.0J/cm 3
    -120℃、300MV/m下的储能效率大于90.0%,优选为92.0~99.0%。
  4. 根据权利要求1-3中任意一项所述的双向拉伸聚丙烯介电膜,其特征在于,所述双向拉伸聚丙烯介电膜具有以下特征中的至少一种:纵向拉伸强度≥140MPa,优选为140~170MPa;横向拉伸强度≥200MPa,优选为205~250MPa;纵向断裂伸长率≥210%,优选≥225%;横向断裂伸长率≥60%,优选≥62%;厚度为0.5~15微米,优选为4~10微米。
  5. 根据权利要求1所述的双向拉伸聚丙烯介电膜,其中,所述含烯基功能性单体接枝的改性聚丙烯中衍生自含烯基功能性单体且处于接枝态的结构单元与衍生自含烯基功能性单体且处于自聚态的结构单元的质量比为1.1~10,优选为1.2~6。
  6. 根据权利要求1所述的双向拉伸聚丙烯介电膜,其中,所述含烯基功能性单体接枝的改性聚丙烯中衍生自含烯基功能性单体且处于接枝态的结构单元与衍生自含烯基功能性单体且处于自聚态的结构单元的质量比大于等于1.5,优选大于等于2。
  7. 根据权利要求1-6中任意一项所述的双向拉伸聚丙烯介电膜,其中,所述含烯基功能性单体接枝的改性聚丙烯具有以下特征中的至少一种:在230℃,2.16kg载荷下的熔体流动速率为1~10g/10min,优选为1.5~8g/10min,进一步优选为2~5g/10min;熔融温度T m为155~168℃,优选为157~165℃;弯曲模量为1400~2000MPa,优选为1500~1800MPa。
  8. 根据权利要求1-7中任意一项所述的双向拉伸聚丙烯介电膜,其中,所述含烯基功能性单体选自具有式1所示结构的单体中的至少一种,
    Figure PCTCN2022133482-appb-100001
    式1中,R b、R c、R d各自独立地选自H、取代或未取代的烷基;R a选自取代或未取代的烷基、取代或未取代的烷氧基、取代或未取代的芳基、取代或未取代的酯基、取代或未取代的羧基、取代或未取代的环烷基或杂环基、氰基、取代或未取代的硅烷基;R a和R d任选地成环。
  9. 根据权利要求8所述的双向拉伸聚丙烯介电膜,其中,R b、R c、R d各自独立地选自H、取代或未取代的C 1-C 6烷基;R a选自取代或未取代的C 1-C 20烷基、取代或未取代的C 1-C 20烷氧基、取代或未取代的C 6-C 20芳基、取代或未取代的C 1-C 20酯基、取代或未取代的C 1-C 20羧基、取代或未取代的C 3-C 20环烷基或杂环基、氰基、取代或未取代的C 3-C 20硅烷基;所述取代的基团为卤素、-OH、-NH 2、=O、C 1-C 12烷基、C 3-C 6环烷基、C 1-C 12的烷氧基、C 1-C 12的酰氧基;R a和R d任选地与双键共同形成4-6元杂环。
  10. 根据权利要求9所述的双向拉伸聚丙烯介电膜,其中,R b、R c、R d各自独立地选 自H、取代或未取代的C 1-C 6烷基;
    R a选自式2所示基团、式3所示基团、式4所示基团、式5所示基团、式6所示基团和杂环基团中的至少一种;
    Figure PCTCN2022133482-appb-100002
    式2中,R 4-R 8各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 4-R 8各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基;
    Figure PCTCN2022133482-appb-100003
    式3中,R 4-R 10各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 4-R 10各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基,所述取代的基团选自卤素、羟基、氨基、C 1-C 6的烷基、C 1-C 6的烷氧基;
    Figure PCTCN2022133482-appb-100004
    式4中,R 4’-R 10’各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、 取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 4’-R 10’各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基,所述取代的基团选自卤素、羟基、氨基、C 1-C 6的烷基、C 1-C 6的烷氧基;
    Figure PCTCN2022133482-appb-100005
    式5中,R’、R”、R”’各自独立地选自取代或未取代的C 1-C 12的直链烷基、取代或未取代的C 3-C 12的支链烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酰氧基;优选地,R 1为C 2-C 6的烯基,优选为单不饱和烯基;R 2、R 3、R 4各自独立地选自取代或未取代的C 1-C 6的直链烷基、取代或未取代的C 3-C 6的支链烷基、取代或未取代的C 1-C 6的烷氧基、取代或未取代的C 1-C 6的酰氧基;
    Figure PCTCN2022133482-appb-100006
    式6中,R m选自氢和/或取代或未取代的以下基团:C 1-C 20直链烷基、C 3-C 20支链烷基、C 3-C 12环烷基、C 3-C 12环氧烷基、C 3-C 12环氧烷基烷基,所述取代的基团选自卤素、氨基和羟基中的至少一种;
    所述杂环基团选自咪唑基、吡唑基、咔唑基、吡咯烷酮基、吡啶基、哌啶基、己内酰胺基、吡嗪基、噻唑基、嘌呤基、吗啉基、噁唑啉基。
  11. 根据权利要求10所述的双向拉伸聚丙烯介电膜,其中,所述含烯基功能性单体为苯乙烯类单体,所述苯乙烯类单体选自苯乙烯、α-甲基苯乙烯、1-乙烯基萘、2-乙烯基萘、单取代或多取代的苯乙烯、单取代或多取代的α-甲基苯乙烯、单取代或多取代的1-乙烯基萘和单取代或多取代的2-乙烯基萘中的至少一种;所述取代的基团优选选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 8的直链烷基、C 3-C 8的支链烷基或环烷基、C 1-C 6的直链烷氧基、C 3-C 8的支链烷氧基或环状烷氧基、C 1-C 8的直链酯基、C 3-C 8的支链酯基或环状酯基、C 1-C 8的直链胺基以及C 3-C 8的支链胺基或环状胺基中的至少一种;优选地,所述苯乙烯类单体选自苯乙烯、α-甲基苯乙烯、2-甲基苯乙烯、3-甲基苯乙烯和4-甲基苯乙烯中的至少一种。
  12. 根据权利要求10所述的双向拉伸聚丙烯介电膜,其中,所述含烯基功能性单体为含烯基的硅烷类单体,所述含烯基的硅烷类单体选自乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三异丙氧基硅烷、乙烯基三叔丁氧基硅烷、乙烯基三乙酰氧基硅烷、甲基乙烯基二甲氧基硅烷、乙基乙烯基二乙氧基硅烷、烯丙基三乙氧基硅烷、烯丙基三甲氧基硅烷、烯丙基三异丙氧基硅烷、乙烯基三(β-甲氧乙氧基)硅烷、烯丙基三(β-甲氧乙氧基)硅烷、烯丙基三叔丁氧基硅烷、烯丙基三乙酰氧基硅烷、甲基烯丙基二甲氧基硅烷和乙基烯丙基二乙氧基硅烷中的至少一种。
  13. 根据权利要求10所述的双向拉伸聚丙烯介电膜,其中,所述含烯基功能性单体为丙烯酸酯类单体和/或丙烯酸类单体,优选地,所述丙烯酸酯类单体选自(甲基)丙烯酸甲酯、(甲基)丙烯酸仲丁酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸异丁酯、(甲基)丙烯酸叔丁酯、(甲基)丙烯酸异辛酯、(甲基)丙烯酸十二烷基酯、(甲基)丙烯酸椰子油酸酯、(甲基)丙烯酸十八烷基酯、(甲基)丙烯酸二甲氨基乙酯、(甲基)丙烯酸二乙氨基乙酯、(甲基)丙烯酸二甲氨基丙酯和(甲基)丙烯酸缩水甘油酯中的至少一种;优选地,所述丙烯酸类单体选自丙烯酸、甲基丙烯酸和2-乙基丙烯酸中的至少一种。
  14. 根据权利要求9所述的双向拉伸聚丙烯介电膜,其中,所述含烯基功能性单体为马来酸酐、马来酰亚胺及其衍生物、衣康酸酐、α-亚甲基-γ-丁内酯中的至少一种,优选地,所述含烯基功能性单体为马来酸酐。
  15. 根据权利要求1-14中任意一项所述的双向拉伸聚丙烯介电膜,其中,所述聚丙烯的粒径为16~50目;灰分小于55ppm,优选小于40ppm,更优选小于35ppm;弯曲模量为1400~2000MPa,优选为1500~1800MPa。
  16. 根据权利要求1-15中任意一项所述的双向拉伸聚丙烯介电膜,其中,所述聚丙烯为均聚聚丙烯或共聚聚丙烯,优选具有以下特征的至少一种:
    -230℃,2.16kg载荷下的熔体流动速率为0.5~10g/10min,优选为1~5g/10min,进一步优选为2~4g/10min;
    -熔融温度T m为150℃以上,优选为153~180℃,进一步优选为155~167℃;
    -等规度大于96%,优选等规度大于96.5%;或者,乙烯单元和丁烯单元的总含量低于3.0mol%,优选为大于0且小于0.1mol%,或者大于0.1mol%且小于等于3.0mol%。
  17. 根据权利要求1-16中任意一项所述的双向拉伸聚丙烯介电膜,其中,所述含烯基功能性单体接枝的改性聚丙烯通过包括以下步骤的方法制备得到:在惰性气体存在下,使包括聚丙烯粉料和含烯基功能性单体的反应混合物进行接枝反应,任选地经过洗涤溶剂洗涤,得到所述含烯基功能性单体接枝的改性聚丙烯。
  18. 根据权利要求17所述的双向拉伸聚丙烯介电膜,其中,所述反应混合物还包括自由基引发剂和以下组分中的至少一种:去离子水和/或有机溶剂,所述去离子水的质量含量为聚丙烯粉料和含烯基功能性单体质量总和的300~800%,所述有机溶剂的质量含量为聚丙烯粉料质量的1~35%。
  19. 根据权利要求18所述的双向拉伸聚丙烯介电膜,其中,所述含烯基功能性单体接枝的改性聚丙烯的制备方法包括以下步骤:
    a.将聚丙烯粉料置于密闭反应器中,进行惰性气体置换;
    b.将自由基引发剂与含烯基功能性单体加入到所述密闭反应器中,搅拌混合;
    c.加入去离子水,使反应体系升温至接枝反应温度,进行接枝反应;任选地在加入去离子水之前或之后使反应体系进行溶胀;
    d.反应结束后,进行过滤、任选地进行干燥,得到粉料;
    e.任选地,所述粉料经过洗涤溶剂洗涤,进行过滤、干燥;
    f.得到所述含烯基功能性单体接枝的改性聚丙烯;或者
    所述含烯基功能性单体接枝的改性聚丙烯的制备方法包括以下步骤:
    a.将聚丙烯粉料置于密闭反应器中,进行惰性气体置换;
    b.将有机溶剂和自由基引发剂混合,加入到所述密闭反应器中;
    c.除去所述有机溶剂,加入含烯基功能性单体,任选地使反应体系进行溶胀;
    d.加入去离子水,使反应体系升温至接枝反应温度,进行接枝反应;
    e.反应结束后,进行过滤、任选地进行干燥,得到粉料;
    f.任选地,所述粉料经过洗涤溶剂洗涤,进行过滤、干燥;
    g.得到所述含烯基功能性单体接枝的改性聚丙烯;
    其中,所述接枝反应的温度为30~110℃,优选为60~95℃;时间为0.5~10h,优选为1~6h。
  20. 根据权利要求17所述的双向拉伸聚丙烯介电膜,其中,还包括对聚丙烯粉料进 行筛选预处理的步骤,优选地,所述筛选预处理包括以下步骤:采用配有相应目数筛网的双层振动筛或直线筛进行粉料的筛选,并采用筛分机中层的聚丙烯粉料作为反应物料。
  21. 根据权利要求17所述的双向拉伸聚丙烯介电膜,其中,所述洗涤溶剂选自正己烷、环己烷、正庚烷、石油醚、乙酸乙酯、乙酸丙酯、乙酸异丙酯、乙酸丁酯、丙酮、甲乙酮、四氢呋喃、2-甲基四氢呋喃、苯、甲苯和二甲苯中的一种或两种以上的混合物。优选地,所述洗涤溶剂为溶剂A与溶剂B的混合物,所述溶剂A选自正己烷、环己烷、正庚烷、石油醚、乙酸乙酯、乙酸丙酯、乙酸异丙酯、乙酸丁酯、丙酮、甲乙酮、四氢呋喃和2-甲基四氢呋喃中的至少一种,所述溶剂B为甲苯和二甲苯中的至少一种;
    所述洗涤溶剂的质量为接枝聚丙烯粉料质量的2~20倍。
  22. 根据权利要求17所述的双向拉伸聚丙烯介电膜,其中,所述洗涤的温度为40~130℃,优选为55~100℃;时间为0.5~10h,优选为1~8h。
  23. 根据权利要求1-22中任意一项所述的双向拉伸聚丙烯介电膜,其中,所述双向拉伸聚丙烯介电膜的制备原料还包括抗氧剂以及任选的加工助剂,其中,以改性聚丙烯的含量为100重量份计,所述抗氧剂的含量为0.1~0.8重量份,优选为0.1~0.6重量份;所述加工助剂的含量为0.05~1重量份;优选为0.05~0.5重量份;以介电膜的重量为基准,所述含烯基功能性单体接枝的改性聚丙烯的含量为50重量%以上,优选为60重量%以上,更优选为70重量%以上。
  24. 根据权利要求23所述的双向拉伸聚丙烯介电膜,其中,所述抗氧剂选自受阻酚、受阻胺、亚磷酸酯类、硫代类、苯并呋喃酮类中的一种或多种复配;
    优选地,所述抗氧剂由抗氧剂组分A和抗氧剂组分B复配得到,所述抗氧剂组分A选自受阻酚、受阻胺、亚磷酸酯类和硫代类中的至少一种,所述抗氧剂组分B为至少一种苯并呋喃酮类;
    更优选地,所述抗氧剂组分A选自四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯、三[2,4-二叔丁基苯基]亚磷酸酯、β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯、2,2'-亚甲基双(4-甲基-6-叔丁基苯酚)、2,2’-硫代双[3-(3,5-二叔丁基-4-羟基苯基)丙酸酯]、1,1,3-三(2-甲基-4-羟基-5-叔丁基苯基)丁烷和双(2,4-二叔丁基苯酚)季戊四醇二亚磷酸酯中的至少一种;所述抗氧剂组分B选自3-丁基-1(3-氢)-异苯并呋喃酮、5-甲基-7-叔丁基-3-(3,4-二甲 基)-3-氢-苯并呋喃-2-酮、5-甲基-7-叔丁基-3-(2,5-二甲基)-3-氢-苯并呋喃-2-酮、5-甲基-7-叔丁基-3-(2-羟基-5-甲基)-3-氢-苯并呋喃-2-酮中的至少一种;
    进一步优选地,所述抗氧剂组分A与所述抗氧剂组分B的重量比为1:0.01-0.03。
  25. 根据权利要求23所述的双向拉伸聚丙烯介电膜,其中,所述加工助剂选自润滑剂、吸酸剂、爽滑剂、抗静电剂和防粘剂中的至少一种;
    所述润滑剂选自聚乙二醇类润滑剂、含氟聚合物类润滑剂、有机硅类润滑剂、脂肪醇类润滑剂、脂肪酸类润滑剂、脂肪酸酯类润滑剂、硬脂酸酰胺类润滑剂、脂肪酸金属皂类润滑剂、烷烃及氧化烷烃类润滑剂和微纳米粒子类润滑剂中的至少一种。
  26. 根据权利要求1-25中任意一项所述的双向拉伸聚丙烯介电膜,其中,所述双向拉伸聚丙烯介电膜由包括以下步骤的方法制得:
    (1)将所述制备原料混合并造粒;
    (2)将步骤(1)所得粒料进行熔融挤出并流延铸片,得到改性聚丙烯铸片;
    (3)将所述改性聚丙烯铸片进行双向拉伸,得到所述双向拉伸聚丙烯介电膜。
  27. 一种用于制备介电膜的改性聚丙烯材料,其特征在于,所述改性聚丙烯材料包括含烯基功能性单体接枝的改性聚丙烯,所述含烯基功能性单体接枝的改性聚丙烯包括作为基体相的衍生自聚丙烯的结构单元,以及作为分散相的衍生自含烯基功能性单体的结构单元;所述含烯基功能性单体接枝的改性聚丙烯的灰分含量小于50ppm,优选小于36ppm,更优选小于30ppm;所述含烯基功能性单体接枝的改性聚丙烯中衍生自含烯基功能性单体且处于接枝态的结构单元与衍生自含烯基功能性单体且处于自聚态的结构单元的质量比大于等于1.0;所述分散相的D50小于450nm,优选为50~400nm。
  28. 根据权利要求27所述的改性聚丙烯材料,其中,所述改性聚丙烯材料的最高工作温度≥100℃,优选为110~160℃,更优选为120~145℃。
  29. 根据权利要求27或28所述的改性聚丙烯材料,其中,所述改性聚丙烯材料具有以下特征中的至少一种:
    -120℃下的击穿场强E g≥500MV/m,优选为550~800MV/m;
    -120℃、200MV/m场强下的直流体积电阻率ρ vg≥6.0×10 13Ω·m,优选为1.0×10 14Ω·m~1.0×10 20Ω·m,优选为1.5×10 14Ω·m~0.9×10 20Ω·m,更优选为 2.0×10 14Ω·m~1.0×10 17Ω·m;
    -120℃、100Hz下的介电常数大于2.25,优选为2.26~2.65;
    -120℃、100Hz下的介电损耗小于1.55E-3,优选小于1.5E-3,优选小于等于1.0E-3,更优选为1.0E-6~1.3E-3,进一步优选为1.0E-6~9E-4;
    -120℃、300MV/m下的储能密度大于0.720J/cm 3,优选为0.740~2.0J/cm 3,更优选为0.780~2.0J/cm 3,进一步优选为0.80~2.0J/cm 3
    -120℃、300MV/m下的储能效率大于90.0%,优选为92.0~99.0%。
  30. 根据权利要求27所述的改性聚丙烯材料,其中,所述含烯基功能性单体接枝的改性聚丙烯中衍生自含烯基功能性单体且处于接枝态的结构单元与衍生自含烯基功能性单体且处于自聚态的结构单元的质量比为1.1~10,优选为1.2~6。
  31. 根据权利要求27所述的改性聚丙烯材料,其中,所述含烯基功能性单体接枝的改性聚丙烯中衍生自含烯基功能性单体且处于接枝态的结构单元与衍生自含烯基功能性单体且处于自聚态的结构单元的质量比大于等于1.5,优选大于等于2。
  32. 根据权利要求27-31中任意一项所述的改性聚丙烯材料,其中,所述含烯基功能性单体接枝的改性聚丙烯具有以下特征中的至少一种:在230℃,2.16kg载荷下的熔体流动速率为1~10g/10min,优选为1.5~8g/10min,进一步优选为2~5g/10min;熔融温度T m为155~168℃,优选为157~165℃;弯曲模量为1400~2000MPa,优选为1500~1800MPa。
  33. 根据权利要求27-32中任意一项所述的改性聚丙烯材料,其中,所述含烯基功能性单体选自具有式1所示结构的单体中的至少一种,
    Figure PCTCN2022133482-appb-100007
    式1中,R b、R c、R d各自独立地选自H、取代或未取代的烷基;R a选自取代或未取代的烷基、取代或未取代的烷氧基、取代或未取代的芳基、取代或未取代的酯基、取代或未取代的羧基、取代或未取代的环烷基或杂环基、氰基、取代或未取代的硅烷基;R a和R d任选地成环。
  34. 根据权利要求33所述的改性聚丙烯材料,其中,R b、R c、R d各自独立地选自H、取代或未取代的C 1-C 6烷基;R a选自取代或未取代的C 1-C 20烷基、取代或未取代的C 1-C 20烷氧基、取代或未取代的C 6-C 20芳基、取代或未取代的C 1-C 20酯基、取代或未取代的C 1-C 20羧基、取代或未取代的C 3-C 20环烷基或杂环基、氰基、取代或未取代的C 3-C 20硅烷基;所述取代的基团为卤素、-OH、-NH 2、=O、C 1-C 12烷基、C 3-C 6环烷基、C 1-C 12的烷氧基、C 1-C 12的酰氧基;R a和R d任选地与双键共同形成4-6元杂环。
  35. 根据权利要求34所述的改性聚丙烯材料,其中,R b、R c、R d各自独立地选自H、取代或未取代的C 1-C 6烷基;
    R a选自式2所示基团、式3所示基团、式4所示基团、式5所示基团、式6所示基团和杂环基团中的至少一种;
    Figure PCTCN2022133482-appb-100008
    式2中,R 4-R 8各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 4-R 8各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基;
    Figure PCTCN2022133482-appb-100009
    式3中,R 4-R 10各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 4-R 10各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基,所述取代的基团选自卤素、羟 基、氨基、C 1-C 6的烷基、C 1-C 6的烷氧基;
    Figure PCTCN2022133482-appb-100010
    式4中,R 4’-R 10’各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 4’-R 10’各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基,所述取代的基团选自卤素、羟基、氨基、C 1-C 6的烷基、C 1-C 6的烷氧基;
    Figure PCTCN2022133482-appb-100011
    式5中,R’、R”、R”’各自独立地选自取代或未取代的C 1-C 12的直链烷基、取代或未取代的C 3-C 12的支链烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酰氧基;优选地,R 1为C 2-C 6的烯基,优选为单不饱和烯基;R 2、R 3、R 4各自独立地选自取代或未取代的C 1-C 6的直链烷基、取代或未取代的C 3-C 6的支链烷基、取代或未取代的C 1-C 6的烷氧基、取代或未取代的C 1-C 6的酰氧基;
    Figure PCTCN2022133482-appb-100012
    式6中,R m选自氢和/或取代或未取代的以下基团:C 1-C 20直链烷基、C 3-C 20支链烷基、C 3-C 12环烷基、C 3-C 12环氧烷基、C 3-C 12环氧烷基烷基,所述取代的基团选自卤素、氨基和羟基中的至少一种;
    所述杂环基团选自咪唑基、吡唑基、咔唑基、吡咯烷酮基、吡啶基、哌啶基、己内酰胺基、吡嗪基、噻唑基、嘌呤基、吗啉基、噁唑啉基。
  36. 根据权利要求35所述的改性聚丙烯材料,其中,所述含烯基功能性单体为苯乙烯类单体,所述苯乙烯类单体选自苯乙烯、α-甲基苯乙烯、1-乙烯基萘、2-乙烯基萘、单取代或多取代的苯乙烯,单取代或多取代的α-甲基苯乙烯、单取代或多取代的1-乙烯基萘 和单取代或多取代的2-乙烯基萘中的至少一种;所述取代的基团优选选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 8的直链烷基、C 3-C 8的支链烷基或环烷基、C 1-C 6的直链烷氧基、C 3-C 8的支链烷氧基或环状烷氧基、C 1-C 8的直链酯基、C 3-C 8的支链酯基或环状酯基、C 1-C 8的直链胺基以及C 3-C 8的支链胺基或环状胺基中的至少一种;优选地,所述苯乙烯类单体选自苯乙烯、α-甲基苯乙烯、2-甲基苯乙烯、3-甲基苯乙烯和4-甲基苯乙烯中的至少一种。
  37. 根据权利要求35所述的改性聚丙烯材料,其中,所述含烯基功能性单体为含烯基的硅烷类单体,所述含烯基的硅烷类单体选自乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三异丙氧基硅烷、乙烯基三叔丁氧基硅烷、乙烯基三乙酰氧基硅烷、甲基乙烯基二甲氧基硅烷、乙基乙烯基二乙氧基硅烷、烯丙基三乙氧基硅烷、烯丙基三甲氧基硅烷、烯丙基三异丙氧基硅烷、乙烯基三(β-甲氧乙氧基)硅烷、烯丙基三(β-甲氧乙氧基)硅烷、烯丙基三叔丁氧基硅烷、烯丙基三乙酰氧基硅烷、甲基烯丙基二甲氧基硅烷和乙基烯丙基二乙氧基硅烷中的至少一种。
  38. 根据权利要求35所述的改性聚丙烯材料,其中,所述含烯基功能性单体为丙烯酸酯类单体和/或丙烯酸类单体,优选地,所述丙烯酸酯类单体选自(甲基)丙烯酸甲酯、(甲基)丙烯酸仲丁酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸异丁酯、(甲基)丙烯酸叔丁酯、(甲基)丙烯酸异辛酯、(甲基)丙烯酸十二烷基酯、(甲基)丙烯酸椰子油酸酯、(甲基)丙烯酸十八烷基酯、(甲基)丙烯酸二甲氨基乙酯、(甲基)丙烯酸二乙氨基乙酯、(甲基)丙烯酸二甲氨基丙酯和(甲基)丙烯酸缩水甘油酯中的至少一种;优选地,所述丙烯酸类单体选自丙烯酸、甲基丙烯酸和2-乙基丙烯酸中的至少一种。
  39. 根据权利要求34所述的改性聚丙烯材料,其中,所述含烯基功能性单体为马来酸酐、马来酰亚胺及其衍生物、衣康酸酐、α-亚甲基-γ-丁内酯中的至少一种,优选地,所述含烯基功能性单体为马来酸酐。
  40. 根据权利要求27-39中任意一项所述的改性聚丙烯材料,其中,所述聚丙烯的粒径为16~50目;灰分小于55ppm,优选小于40ppm,更优选小于35ppm;弯曲模量为1400~2000MPa,优选为1500~1800MPa。
  41. 根据权利要求27-40中任意一项所述的改性聚丙烯材料,其中,所述聚丙烯为均 聚聚丙烯或共聚聚丙烯,优选具有以下特征的至少一种:
    -230℃,2.16kg载荷下的熔体流动速率为0.5~10g/10min,优选为1~5g/10min,进一步优选为2~4g/10min;
    -熔融温度T m为150℃以上,优选为153~180℃,进一步优选为155~167℃;
    -等规度大于96%,优选等规度大于96.5%;或者,乙烯单元和丁烯单元的总含量低于3.0mol%,优选为大于0且小于0.1mol%,或者大于0.1mol%且小于等于3.0mol%。
  42. 根据权利要求27-41中任意一项所述的改性聚丙烯材料,其中,所述含烯基功能性单体接枝的改性聚丙烯通过包括以下步骤的方法制备得到:在惰性气体存在下,使包括聚丙烯粉料和含烯基功能性单体的反应混合物进行接枝反应,任选地经过洗涤溶剂洗涤,得到所述含烯基功能性单体接枝的改性聚丙烯。
  43. 根据权利要求42所述的改性聚丙烯材料,其中,所述反应混合物还包括自由基引发剂和以下组分中的至少一种:去离子水和/或有机溶剂,所述去离子水的质量含量为聚丙烯粉料和含烯基功能性单体质量总和的300~800%,所述有机溶剂的质量含量为聚丙烯粉料质量的1~35%。
  44. 根据权利要求43所述的改性聚丙烯材料,其中,所述含烯基功能性单体接枝的改性聚丙烯的制备方法包括以下步骤:
    a.将聚丙烯粉料置于密闭反应器中,进行惰性气体置换;
    b.将自由基引发剂与含烯基功能性单体加入到所述密闭反应器中,搅拌混合;
    c.加入去离子水,使反应体系升温至接枝反应温度,进行接枝反应;任选地在加入去离子水之前或之后使反应体系进行溶胀;
    d.反应结束后,进行过滤、任选地进行干燥,得到粉料;
    e.任选地,所述粉料经过洗涤溶剂洗涤,进行过滤、干燥;
    f.得到所述含烯基功能性单体接枝的改性聚丙烯;或者
    所述含烯基功能性单体接枝的改性聚丙烯的制备方法包括以下步骤:
    a.将聚丙烯粉料置于密闭反应器中,进行惰性气体置换;
    b.将有机溶剂和自由基引发剂混合,加入到所述密闭反应器中;
    c.除去所述有机溶剂,加入含烯基功能性单体,任选地使反应体系进行溶胀;
    d.加入去离子水,使反应体系升温至接枝反应温度,进行接枝反应;
    e.反应结束后,进行过滤、任选地进行干燥,得到粉料;
    f.任选地,所述粉料经过洗涤溶剂洗涤,进行过滤、干燥;
    g.得到所述含烯基功能性单体接枝的改性聚丙烯;
    其中,所述接枝反应的温度为30~110℃,优选为60~95℃;时间为0.5~10h,优选为1~6h。
  45. 根据权利要求42所述的改性聚丙烯材料,其中,还包括对聚丙烯粉料进行筛选预处理的步骤,优选地,所述筛选预处理包括以下步骤:采用配有相应目数筛网的双层振动筛或直线筛进行粉料的筛选,并采用筛分机中层的聚丙烯粉料作为反应物料。
  46. 根据权利要求42所述的改性聚丙烯材料,其中,所述洗涤溶剂选自正己烷、环己烷、正庚烷、石油醚、乙酸乙酯、乙酸丙酯、乙酸异丙酯、乙酸丁酯、丙酮、甲乙酮、四氢呋喃、2-甲基四氢呋喃、苯、甲苯和二甲苯中的一种或两种以上的混合物。优选地,所述洗涤溶剂为溶剂A与溶剂B的混合物,所述溶剂A选自正己烷、环己烷、正庚烷、石油醚、乙酸乙酯、乙酸丙酯、乙酸异丙酯、乙酸丁酯、丙酮、甲乙酮、四氢呋喃和2-甲基四氢呋喃中的至少一种,所述溶剂B为甲苯和二甲苯中的至少一种;
    所述洗涤溶剂的质量为接枝聚丙烯粉料质量的2~20倍。
  47. 根据权利要求42所述的改性聚丙烯材料,其中,所述洗涤的温度为40~130℃,优选为55~100℃;时间为0.5~10h,优选为1~8h。
  48. 根据权利要求27-47所述的改性聚丙烯材料,其特征在于,所述改性聚丙烯材料还包括抗氧剂以及任选的加工助剂,其中,以改性聚丙烯的含量为100重量份计,所述抗氧剂的含量为0.1~0.8重量份,优选为0.1~0.6重量份;所述加工助剂的含量为0.05~1重量份;优选为0.05~0.5重量份。
  49. 根据权利要求48所述的改性聚丙烯材料,其中,所述抗氧剂选自受阻酚、受阻胺、亚磷酸酯类、硫代类、苯并呋喃酮类中的一种或多种复配;
    优选地,所述抗氧剂由抗氧剂组分A和抗氧剂组分B复配得到,所述抗氧剂组分A选自受阻酚、受阻胺、亚磷酸酯类和硫代类中的至少一种,所述抗氧剂组分B为至少一种苯并呋喃酮类;
    更优选地,所述抗氧剂组分A选自四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯、 三[2,4-二叔丁基苯基]亚磷酸酯、β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳醇酯、2,2'-亚甲基双(4-甲基-6-叔丁基苯酚)、2,2’-硫代双[3-(3,5-二叔丁基-4-羟基苯基)丙酸酯]、1,1,3-三(2-甲基-4-羟基-5-叔丁基苯基)丁烷和双(2,4-二叔丁基苯酚)季戊四醇二亚磷酸酯中的至少一种;所述抗氧剂组分B选自3-丁基-1(3-氢)-异苯并呋喃酮、5-甲基-7-叔丁基-3-(3,4-二甲基)-3-氢-苯并呋喃-2-酮、5-甲基-7-叔丁基-3-(2,5-二甲基)-3-氢-苯并呋喃-2-酮、5-甲基-7-叔丁基-3-(2-羟基-5-甲基)-3-氢-苯并呋喃-2-酮中的至少一种;
    进一步优选地,所述抗氧剂组分A与所述抗氧剂组分B的重量比为1:0.01-0.03。
  50. 根据权利要求48所述的改性聚丙烯材料,其中,所述加工助剂选自润滑剂、吸酸剂、爽滑剂、抗静电剂和防粘剂中的至少一种;
    所述润滑剂选自聚乙二醇类润滑剂、含氟聚合物类润滑剂、有机硅类润滑剂、脂肪醇类润滑剂、脂肪酸类润滑剂、脂肪酸酯类润滑剂、硬脂酸酰胺类润滑剂、脂肪酸金属皂类润滑剂、烷烃及氧化烷烃类润滑剂和微纳米粒子类润滑剂中的至少一种。
  51. 权利要求1-26中任意一项所述的双向拉伸聚丙烯介电膜、权利要求27-50中任意一项所述的改性聚丙烯材料在制备储能电介质、特别是高温储能电介质中的应用,所述电介质优选为单层/多层的介电膜,优选为电容膜、电工膜、粗化膜、超级电容器膜、静电膜或电池隔膜。
  52. 一种聚丙烯电容膜,该聚丙烯电容膜为一层或多层,其中至少一层为权利要求1-26中任意一项所述的双向拉伸聚丙烯介电膜,或者其中至少一层由含有权利要求27-50中任意一项所述的改性聚丙烯材料的原料制得,优选经双向拉伸制得,优选其中至少一层由权利要求27-50中任意一项所述的改性聚丙烯材料经双向拉伸制得。
  53. 一种聚丙烯电工膜,该聚丙烯电工膜为一层或多层,其中至少一层为权利要求1-26中任意一项所述的双向拉伸聚丙烯介电膜,或者其中至少一层由含有权利要求27-50中任意一项所述的改性聚丙烯材料的原料制得,优选经双向拉伸制得,优选其中至少一层由权利要求27-50中任意一项所述的改性聚丙烯材料经双向拉伸制得。
PCT/CN2022/133482 2022-01-06 2022-11-22 一种双向拉伸聚丙烯介电膜、改性聚丙烯材料及应用 WO2023130848A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202210014198.3 2022-01-06
CN202210013459.XA CN116444926A (zh) 2022-01-06 2022-01-06 一种聚丙烯介电储能材料及其应用与电容膜
CN202210013459.X 2022-01-06
CN202210014198.3A CN116444929A (zh) 2022-01-06 2022-01-06 一种改性聚丙烯组合物、双向拉伸聚丙烯薄膜及应用与聚丙烯电容膜
CN202210945889.5 2022-08-08
CN202210945062.4A CN117567829A (zh) 2022-08-08 2022-08-08 改性聚丙烯组合物、双向拉伸聚丙烯薄膜及应用与聚丙烯电容膜
CN202210945062.4 2022-08-08
CN202210945889.5A CN117567830A (zh) 2022-08-08 2022-08-08 一种高工作温度聚丙烯介电储能材料及其应用与电容膜

Publications (1)

Publication Number Publication Date
WO2023130848A1 true WO2023130848A1 (zh) 2023-07-13

Family

ID=87073032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133482 WO2023130848A1 (zh) 2022-01-06 2022-11-22 一种双向拉伸聚丙烯介电膜、改性聚丙烯材料及应用

Country Status (1)

Country Link
WO (1) WO2023130848A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116903910A (zh) * 2023-09-14 2023-10-20 河南华佳新材料技术有限公司 一种轨道交通电容器用金属化薄膜及其制备方法

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1198759A (zh) * 1996-08-09 1998-11-11 东丽株式会社 聚丙烯膜及用其作电介质的电容器
JP2004214641A (ja) * 2002-12-16 2004-07-29 Dainippon Printing Co Ltd 太陽電池モジュール用充填材シートおよびそれを使用した太陽電池モジュール
CN101600757A (zh) * 2007-02-01 2009-12-09 帝人杜邦薄膜日本有限公司 电绝缘用双轴取向膜、包含其的膜电容器构成构件以及包含其的膜电容器
CN101786332A (zh) * 2010-02-10 2010-07-28 沧州明珠塑料股份有限公司 一种湿法制备多层聚烯烃微孔膜的方法
CN103052661A (zh) * 2010-08-06 2013-04-17 北欧化工公司 具有高ac击穿强度的双向拉伸聚丙烯薄膜
CN103155207A (zh) * 2010-10-14 2013-06-12 凸版印刷株式会社 锂离子电池用外包装材料
CN103764732A (zh) * 2011-08-30 2014-04-30 博里利斯股份公司 用于制造电容器膜的方法
JP2014210841A (ja) * 2013-04-17 2014-11-13 株式会社カネカ 熱接着性を有する変性ポリオレフィン系樹脂からなるタブリード封止用接着フィルム
CN104804143A (zh) * 2015-05-14 2015-07-29 华东理工大学 一种马来酸酐接枝聚丙烯的制备方法
CN108699265A (zh) * 2016-03-17 2018-10-23 东丽株式会社 双轴取向聚丙烯薄膜、金属膜层叠薄膜和薄膜电容器
CN109694428A (zh) * 2017-10-20 2019-04-30 中国石油化工股份有限公司 一种聚丙烯及其制备方法和应用
CN109694429A (zh) * 2017-10-20 2019-04-30 中国石油化工股份有限公司 一种聚丙烯及其制备方法和应用
CN111072855A (zh) * 2018-10-18 2020-04-28 中国石油化工股份有限公司 极性聚丙烯和聚丙烯组合物以及聚丙烯薄膜及其制备方法
CN113563520A (zh) * 2020-04-29 2021-10-29 中国石油化工股份有限公司 一种含有酸酐基团的聚丙烯接枝物作为绝缘材料的应用和绝缘材料
CN113563528A (zh) * 2020-04-29 2021-10-29 中国石油化工股份有限公司 一种芳香烯烃接枝改性聚丙烯作为绝缘材料的应用和绝缘材料
CN113563529A (zh) * 2020-04-29 2021-10-29 中国石油化工股份有限公司 一种硅烷改性的聚丙烯接枝物及其制备方法与应用
CN113563525A (zh) * 2020-04-29 2021-10-29 中国石油化工股份有限公司 一种接枝改性聚丙烯作为绝缘材料的应用和绝缘材料
CN113563527A (zh) * 2020-04-29 2021-10-29 中国石油化工股份有限公司 一种接枝改性聚丙烯材料及其制备方法与应用
CN113563526A (zh) * 2020-04-29 2021-10-29 中国石油化工股份有限公司 一种芳香烯烃接枝改性聚丙烯材料及其制备方法与应用
CN113563524A (zh) * 2020-04-29 2021-10-29 中国石油化工股份有限公司 一种硅烷改性的聚丙烯接枝物作为绝缘材料的应用和绝缘材料
WO2021218104A1 (zh) * 2020-04-29 2021-11-04 中国石油化工股份有限公司 一种接枝改性聚丙烯材料及其制备方法
WO2021218102A1 (zh) * 2020-04-29 2021-11-04 中国石油化工股份有限公司 一种含有酸酐基团的聚丙烯接枝物及其制备方法

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1198759A (zh) * 1996-08-09 1998-11-11 东丽株式会社 聚丙烯膜及用其作电介质的电容器
JP2004214641A (ja) * 2002-12-16 2004-07-29 Dainippon Printing Co Ltd 太陽電池モジュール用充填材シートおよびそれを使用した太陽電池モジュール
CN101600757A (zh) * 2007-02-01 2009-12-09 帝人杜邦薄膜日本有限公司 电绝缘用双轴取向膜、包含其的膜电容器构成构件以及包含其的膜电容器
CN101786332A (zh) * 2010-02-10 2010-07-28 沧州明珠塑料股份有限公司 一种湿法制备多层聚烯烃微孔膜的方法
CN103052661A (zh) * 2010-08-06 2013-04-17 北欧化工公司 具有高ac击穿强度的双向拉伸聚丙烯薄膜
CN103155207A (zh) * 2010-10-14 2013-06-12 凸版印刷株式会社 锂离子电池用外包装材料
CN103764732A (zh) * 2011-08-30 2014-04-30 博里利斯股份公司 用于制造电容器膜的方法
JP2014210841A (ja) * 2013-04-17 2014-11-13 株式会社カネカ 熱接着性を有する変性ポリオレフィン系樹脂からなるタブリード封止用接着フィルム
CN104804143A (zh) * 2015-05-14 2015-07-29 华东理工大学 一种马来酸酐接枝聚丙烯的制备方法
CN108699265A (zh) * 2016-03-17 2018-10-23 东丽株式会社 双轴取向聚丙烯薄膜、金属膜层叠薄膜和薄膜电容器
CN109694428A (zh) * 2017-10-20 2019-04-30 中国石油化工股份有限公司 一种聚丙烯及其制备方法和应用
CN109694429A (zh) * 2017-10-20 2019-04-30 中国石油化工股份有限公司 一种聚丙烯及其制备方法和应用
CN111072855A (zh) * 2018-10-18 2020-04-28 中国石油化工股份有限公司 极性聚丙烯和聚丙烯组合物以及聚丙烯薄膜及其制备方法
CN113563520A (zh) * 2020-04-29 2021-10-29 中国石油化工股份有限公司 一种含有酸酐基团的聚丙烯接枝物作为绝缘材料的应用和绝缘材料
CN113563528A (zh) * 2020-04-29 2021-10-29 中国石油化工股份有限公司 一种芳香烯烃接枝改性聚丙烯作为绝缘材料的应用和绝缘材料
CN113563529A (zh) * 2020-04-29 2021-10-29 中国石油化工股份有限公司 一种硅烷改性的聚丙烯接枝物及其制备方法与应用
CN113563525A (zh) * 2020-04-29 2021-10-29 中国石油化工股份有限公司 一种接枝改性聚丙烯作为绝缘材料的应用和绝缘材料
CN113563527A (zh) * 2020-04-29 2021-10-29 中国石油化工股份有限公司 一种接枝改性聚丙烯材料及其制备方法与应用
CN113563526A (zh) * 2020-04-29 2021-10-29 中国石油化工股份有限公司 一种芳香烯烃接枝改性聚丙烯材料及其制备方法与应用
CN113563524A (zh) * 2020-04-29 2021-10-29 中国石油化工股份有限公司 一种硅烷改性的聚丙烯接枝物作为绝缘材料的应用和绝缘材料
WO2021218104A1 (zh) * 2020-04-29 2021-11-04 中国石油化工股份有限公司 一种接枝改性聚丙烯材料及其制备方法
WO2021218102A1 (zh) * 2020-04-29 2021-11-04 中国石油化工股份有限公司 一种含有酸酐基团的聚丙烯接枝物及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116903910A (zh) * 2023-09-14 2023-10-20 河南华佳新材料技术有限公司 一种轨道交通电容器用金属化薄膜及其制备方法
CN116903910B (zh) * 2023-09-14 2023-12-01 河南华佳新材料技术有限公司 一种轨道交通电容器用金属化薄膜及其制备方法

Similar Documents

Publication Publication Date Title
JP7112568B2 (ja) リチウムイオン電池用セパレータ
JP6945707B2 (ja) 架橋セパレータを用いたリチウムイオン電池
WO2023130848A1 (zh) 一种双向拉伸聚丙烯介电膜、改性聚丙烯材料及应用
Gong et al. All-organic sandwich-structured BOPP/PVDF/BOPP dielectric films with significantly improved energy density and charge–discharge efficiency
KR20180071961A (ko) 축전 디바이스용 세퍼레이터, 및 이를 사용한 적층체, 권회체 및 이차 전지
JP2018200788A (ja) リチウムイオン二次電池用セパレータ
CN113903597A (zh) 一种碳量子点/聚合物介电复合材料及其制备方法和应用
JP2018170281A (ja) 蓄電デバイス用セパレータ、蓄電デバイス及びリチウムイオン二次電池
CN115073870A (zh) 一种改性钛酸钡/含氟共聚物复合材料及其制备方法
CN116444928A (zh) 一种薄膜电容器用聚丙烯粗化膜及其制备方法与金属化聚丙烯薄膜
TW201351759A (zh) 離子聚合物膜材料及其製備方法和鋰二次電池
CN116444927A (zh) 一种低voc改性聚丙烯组合物、双向拉伸聚丙烯薄膜及应用与绿色环保型聚丙烯电容膜
CN116444929A (zh) 一种改性聚丙烯组合物、双向拉伸聚丙烯薄膜及应用与聚丙烯电容膜
CN117567829A (zh) 改性聚丙烯组合物、双向拉伸聚丙烯薄膜及应用与聚丙烯电容膜
CN116444926A (zh) 一种聚丙烯介电储能材料及其应用与电容膜
JP2010087253A (ja) キャパシタフィルム
CN116656050B (zh) 一种光伏用聚丙烯金属化膜及其制备方法
CN117567830A (zh) 一种高工作温度聚丙烯介电储能材料及其应用与电容膜
WO2023011515A1 (zh) 一种柔性聚丙烯改性绝缘材料及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918300

Country of ref document: EP

Kind code of ref document: A1