WO2021218104A1 - 一种接枝改性聚丙烯材料及其制备方法 - Google Patents

一种接枝改性聚丙烯材料及其制备方法 Download PDF

Info

Publication number
WO2021218104A1
WO2021218104A1 PCT/CN2020/127507 CN2020127507W WO2021218104A1 WO 2021218104 A1 WO2021218104 A1 WO 2021218104A1 CN 2020127507 W CN2020127507 W CN 2020127507W WO 2021218104 A1 WO2021218104 A1 WO 2021218104A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
group
unsubstituted
alkyl
modified polypropylene
Prior art date
Application number
PCT/CN2020/127507
Other languages
English (en)
French (fr)
Inventor
袁浩
宋文波
何金良
邵清
李琦
张琦
施红伟
李娟�
王宇韬
胡军
张晓萌
周垚
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司北京化工研究院
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司北京化工研究院, 清华大学 filed Critical 中国石油化工股份有限公司
Priority to AU2020445735A priority Critical patent/AU2020445735A1/en
Priority to KR1020227041551A priority patent/KR20230030567A/ko
Priority to EP20933507.4A priority patent/EP4144795A1/en
Priority to US17/997,403 priority patent/US20230174699A1/en
Priority to CA3181555A priority patent/CA3181555A1/en
Priority to JP2022566142A priority patent/JP2023523784A/ja
Priority to BR112022021863A priority patent/BR112022021863A2/pt
Publication of WO2021218104A1 publication Critical patent/WO2021218104A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • C08F255/04Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms on to ethene-propene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes

Definitions

  • the present invention belongs to the field of polymers. Specifically, it relates to a graft-modified polypropylene material, a preparation method of the graft-modified polypropylene material, a graft-modified polypropylene material prepared by the preparation method, and The application of the grafted modified polypropylene material and a cable.
  • high molecular polymer materials have been widely used as insulation materials for power equipment in the field of electrical engineering and the power industry.
  • the simple structure polymer plastic insulation material represented by polyethylene is particularly widely used.
  • the cross-linked polyethylene, copolymerized polyolefin and rubber materials developed on this basis are widely used in motor and transformer insulation, and line insulation.
  • the circuit breaker is insulated.
  • Vinyl polymer insulation material has good mechanical properties and thermal properties, excellent electrical insulation properties and lower prices. It is a relatively mature insulation material developed in engineering.
  • polypropylene material As a simple structure of high molecular plastic, polypropylene material has all the advantages of polyethylene material. Compared with polyethylene, polypropylene has better electrical insulation properties and a higher melting point. As an insulating material, it is expected to adapt to more severe working environments. However, polypropylene has slightly worse mechanical properties than polyethylene, especially brittle at low temperatures, and cannot be used directly as an insulating material. Therefore, for polypropylene materials, it is necessary to modify the materials to achieve comprehensive regulation of electrical, mechanical, and thermal properties, in order to maintain better insulation properties at higher temperatures and electric fields.
  • the purpose of the present invention is to overcome the above-mentioned defects of the prior art and provide a new type of graft-modified polypropylene material, which can take into account both mechanical and electrical properties at higher operating temperatures, and is suitable for high temperature and high operating field strength conditions. .
  • the first aspect of the present invention provides a graft-modified polypropylene material for insulating materials, characterized in that the graft-modified polypropylene material includes a structural unit derived from copolymerized polypropylene and a polymer derived from an alkenyl group.
  • the structural unit of the monomer based on the weight of the graft-modified polypropylene material, the content of the structural unit in the grafted state derived from the vinyl group-containing polymerized monomer in the graft-modified polypropylene material is 0.1 to 14 wt%, preferably 0.2 to 7.5 wt%; the copolymerized polypropylene has at least one of the following characteristics: the comonomer content is 0.5 to 40 mol%, preferably 0.5 to 30 mol%, more preferably 4 to 25 wt%, It is further preferably 4-22wt%; the content of xylene solubles is 2-80wt%, preferably 18-75wt%, more preferably 30-70wt%, still more preferably 30-67wt%; soluble comonomer The content is 10 to 70 wt%, preferably 10 to 50 wt%, more preferably 20 to 35 wt%; the intrinsic viscosity ratio of soluble matter to polypropylene is
  • the second aspect of the present invention provides a method for preparing a graft-modified polypropylene material for insulating materials, the preparation method comprising: in the presence of an inert gas, reacting the copolymerized polypropylene and the vinyl group-containing polymer monomer The mixture undergoes a graft reaction to obtain the graft-modified polypropylene material; the conditions of the graft reaction are such that: based on the weight of the graft-modified polypropylene material, the graft-modified polypropylene material is derived
  • the content of the structural unit in the grafted state from the polymerized monomer containing the alkenyl group is 0.1-14% by weight, preferably 0.2-7.5% by weight; the copolymer polypropylene has at least one of the following characteristics: the comonomer content is 0.5 to 40 mol%, preferably 0.5 to 30 mol%, more preferably 4 to 25 wt%, still more preferably 4 to 22 w
  • the third aspect of the present invention provides a graft-modified polypropylene material for insulating materials prepared by the above preparation method.
  • the fourth aspect of the present invention provides the application of the above-mentioned graft-modified polypropylene material as an insulating material.
  • a fifth aspect of the present invention provides a cable, characterized in that the cable comprises: at least one conductor and at least one electrical insulating layer surrounding the conductor; wherein the material of the electrical insulating layer is the above-mentioned grafted modified poly Acrylic material.
  • a sixth aspect of the present invention provides an insulating material, characterized in that the insulating material comprises the above-mentioned grafted modified polypropylene material.
  • Fig. 1 is a schematic cross-sectional view of a cable according to an embodiment of the present invention.
  • the first aspect of the present invention provides a graft-modified polypropylene material for insulating materials, the graft-modified polypropylene material comprising a structural unit derived from copolymerized polypropylene and a structure derived from a vinyl group-containing polymer monomer Unit; based on the weight of the graft-modified polypropylene material, the content of the structural unit in the graft-modified polypropylene material derived from the polymerized monomer containing alkenyl groups and in the grafted state is 0.1-14% by weight, preferably It is 0.2 ⁇ 7.5wt%.
  • the copolymerized polypropylene has at least one of the following characteristics: the comonomer content is 0.5-40 mol%, preferably 0.5-30 mol%, more preferably 4-25% by weight, further preferably 4-22% by weight; xylene can be The soluble content is 2 to 80% by weight, preferably 18 to 75% by weight, more preferably 30 to 70% by weight, further preferably 30 to 67% by weight; the comonomer content in solubles is 10 to 70% by weight, preferably 10 to 50 wt%, more preferably 20 to 35 wt%; the intrinsic viscosity ratio of soluble matter to polypropylene is 0.3 to 5, preferably 0.5 to 3, more preferably 0.8 to 1.3.
  • the "structural unit” means that it is a part of the graft-modified polypropylene material, and its form is not limited.
  • structural unit derived from copolymerized polypropylene refers to a product formed from copolymerized polypropylene, which includes both the "group” form and the “polymer” form.
  • structural units derived from polymerized monomers containing alkenyl groups refer to products formed from polymerized monomers containing alkenyl groups, which include both "group” forms and “monomers” forms, as well as “polymers” "Form.
  • the "structural unit” may be a repeating unit or a non-repeating independent unit.
  • the structural unit derived from an alkenyl group-containing polymerized monomer "in a grafted state” refers to a structural unit derived from an alkenyl group-containing polymerized monomer that forms a covalent connection (graft) with the copolymerized polypropylene.
  • the graft-modified polypropylene material is prepared by a graft reaction of copolymerized polypropylene and an ethylenic group-containing polymer monomer, preferably by a solid-phase graft reaction.
  • the grafting reaction of the present invention is a radical polymerization reaction. Therefore, the “in a grafted state” refers to a state where a reactant forms a connection with another reactant after undergoing radical polymerization.
  • the connection includes both direct connection and indirect connection.
  • the vinyl group-containing polymerized monomers may polymerize individually or with each other to form a certain amount of ungrafted polymer.
  • graft-modified polypropylene material in the present invention includes both the product (crude product) directly prepared by the grafting reaction of copolymerized polypropylene and vinyl-containing polymer monomer, and also includes the grafted product obtained by further purifying the product. Branch modified polypropylene pure product.
  • the copolymerized polypropylene (the base polypropylene in the present invention) is a propylene copolymer containing ethylene or higher ⁇ -olefin or a mixture thereof.
  • the C 2 -C 8 ⁇ -olefins other than propylene include, but are not limited to: ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene At least one of ene and 1-octene is preferably ethylene and/or 1-butene. More preferably, the copolymer polypropylene is composed of propylene and ethylene.
  • the copolymerized polypropylene of the present invention may be a heterophasic propylene copolymer.
  • the heterophasic propylene copolymer may contain a propylene homopolymer or propylene random copolymer matrix component (1), and another propylene copolymer component (2) dispersed therein.
  • the comonomer is randomly distributed on the main chain of the propylene polymer.
  • the copolymerized polypropylene of the present invention is a heterophasic propylene copolymer prepared in situ in a reactor by an existing process.
  • the heterophasic propylene copolymer contains a propylene homopolymer matrix or a random copolymer matrix (1), and dispersed therein contains one or more ethylene or higher alpha-olefin copolymer monomers.
  • the heterophasic propylene copolymer may be a sea-island structure or a bi-continuous structure.
  • the random copolymer matrix (1) is a copolymer in which comonomers are randomly distributed on the polymer chain. In other words, it is composed of two monomer units of random length (including single molecules) in an alternating sequence.
  • the comonomer in the matrix (1) is selected from ethylene or butene. It is particularly preferred that the comonomer in the matrix (1) is ethylene.
  • the propylene copolymer (2) dispersed in the homopolymer or copolymer matrix (1) of the heterophasic propylene copolymer is substantially amorphous.
  • the copolymerized polypropylene has at least one of the following characteristics: the comonomer content is 0.5-40 mol%, preferably 0.5-30 mol%, more preferably 4-25 wt%, and further Preferably it is 4-22wt%; the content of xylene solubles is 2-80wt%, preferably 18-75wt%, more preferably 30-70wt%, still more preferably 30-67wt%; comonomer content in solubles It is 10 to 70 wt%, preferably 10 to 50 wt%, more preferably 20 to 35 wt%; the intrinsic viscosity ratio of soluble matter to polypropylene is 0.3 to 5, preferably 0.5 to 3, and more preferably 0.8 to 1.3.
  • the copolymerized polypropylene further has at least one of the following characteristics: the melt flow rate at 230°C under a load of 2.16 kg is 0.01-60 g/10min, preferably 0.05-35 g/10min, More preferably, it is 0.5-15 g/10min.
  • the melting temperature Tm is 100°C or higher, preferably 110 to 180°C, more preferably 110 to 170°C, still more preferably 120 to 170°C, still more preferably 120 to 166°C.
  • the weight average molecular weight is preferably 20 ⁇ 10 4 to 60 ⁇ 10 4 g/mol.
  • the base polypropylene with high Tm has satisfactory impact strength and flexibility at both low temperature and high temperature.
  • the graft-modified polypropylene of the present invention can withstand higher Advantages of working temperature.
  • the copolymerized polypropylene of the present invention is preferably a porous granular or powdered resin.
  • the copolymerized polypropylene further has at least one of the following characteristics: the flexural modulus is 10 to 1000 MPa, preferably 50 to 600 MPa; the elongation at break is ⁇ 200%, preferably the elongation at break is ⁇ 300%.
  • the tensile strength of the copolymerized polypropylene is greater than 5 MPa, preferably 10-40 MPa.
  • the copolymerized polypropylene of the present invention can include, but is not limited to, any commercially available polypropylene powder suitable for the present invention, such as NS06 of Sinopec Wuhan Petrochemical, SPF179 of Sinopec Qilu Petrochemical, etc., and can also pass Chinese patents CN1081683, CN1108315, CN1228096, CN1281380, CN1132865C and CN102020733A are produced by polymerization process described in CN1228096, CN1281380, CN1132865C and CN102020733A.
  • the graft-modified polypropylene material has at least one of the following characteristics: the melt flow rate at 230°C under a load of 2.16 kg is 0.01-30g/10min, preferably 0.05-20g /10min, more preferably 0.1-10g/10min, more preferably 0.2-8g/10min; flexural modulus is 10-1250MPa, preferably 20-1000MPa, more preferably 50-600MPa; elongation at break ⁇ 200%, Preferably, the elongation at break is ⁇ 300%.
  • the tensile strength of the graft-modified polypropylene material is greater than 5 MPa, preferably 10-40 MPa.
  • the graft-modified polypropylene material has at least one of the following characteristics:
  • the working temperature of the graft-modified polypropylene material is ⁇ 90°C, preferably 90-160°C;
  • the breakdown field strength of the grafted modified polypropylene material at 90°C E g ⁇ 180kV/mm, preferably 180 ⁇ 800kV/mm;
  • the breakdown field strength change rate ⁇ E/E obtained from the breakdown field strength E at 90°C is greater than 0.7%, preferably 0.8%-50%, more preferably 2%-35%, still more preferably 5%-25% ;
  • ⁇ vg the graft-modified propylene polymer material at 90 °C, 15kV / mm field strength and the DC volume resistivity ⁇ v copolymerized polypropylene at 90 °C, 15kV / mm field strength of
  • the ratio of ⁇ vg/ ⁇ v is greater than 1, preferably 1.1-50, more preferably 1.15-20, and still more preferably 1.2-10.
  • the dielectric constant of the graft-modified polypropylene material at 90° C. and 50 Hz is greater than 2.0, preferably 2.1-2.5.
  • the vinyl group-containing polymerizable monomer is selected from at least one monomer having the structure shown in Formula 1,
  • R b, R c, R d are each independently selected from H, substituted or unsubstituted alkyl group;
  • R a is selected from substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy, substituted or Unsubstituted aryl group, substituted or unsubstituted ester group, substituted or unsubstituted carboxyl group, substituted or unsubstituted cycloalkyl or heterocyclic group, cyano group, substituted or unsubstituted silyl group.
  • R b, R c, R d are each independently selected from H, substituted or unsubstituted C 1 -C 6 alkyl group;
  • R a is selected from substituted or unsubstituted C 1 -C 20 alkyl Group, substituted or unsubstituted C 1 -C 20 alkoxy group, substituted or unsubstituted C 6 -C 20 aryl group, substituted or unsubstituted C 1 -C 20 ester group, substituted or unsubstituted C 1- C 20 carboxyl group, substituted or unsubstituted C 3 -C 20 cycloalkyl or heterocyclic group, cyano group, substituted or unsubstituted C 3 -C 20 silyl group;
  • the substituted group is halogen, hydroxyl, amino , C 1 -C 12 alkyl, C 3 -C 6 cycloalkyl, C 1 -C 12 alkoxy, C 1 -
  • R b , R c and Rd are each independently selected from H, substituted or unsubstituted C 1 -C 6 alkyl;
  • R a is selected from the group represented by formula 2, the group represented by formula 3, the group represented by formula 4, the group represented by formula 5, the group represented by formula 6, the group represented by formula 6 and the group represented by formula 7 Combinations of groups, heterocyclic groups;
  • R 4 -R 8 are each independently selected from H, halogen, hydroxyl, amino, phosphoric acid, sulfonic acid, substituted or unsubstituted C 1 -C 12 alkyl, substituted or unsubstituted C 3 -C 12 cycloalkyl, substituted or unsubstituted C 1 -C 12 alkoxy, substituted or unsubstituted C 1 -C 12 ester group, substituted or unsubstituted C 1 -C 12 amine group ,
  • the substituted group is selected from halogen, hydroxyl, amino, phosphoric acid, sulfonic acid, C 1 -C 12 alkyl, C 3 -C 12 cycloalkyl, C 1 -C 12 alkoxy , C 1 -C 12 ester group, C 1 -C 12 amine group; preferably, R 4 -R 8 are each independently selected from H, halogen, hydroxyl, amino, substituted or unsubstituted
  • R 4 -R 10 are each independently selected from H, halogen, hydroxyl, amino, phosphoric acid, sulfonic acid, substituted or unsubstituted C 1 -C 12 alkyl, substituted or unsubstituted C 3 -C 12 cycloalkyl, substituted or unsubstituted C 1 -C 12 alkoxy, substituted or unsubstituted C 1 -C 12 ester group, substituted or unsubstituted C 1 -C 12 amine group ,
  • the substituted group is selected from halogen, hydroxyl, amino, phosphoric acid, sulfonic acid, C 1 -C 12 alkyl, C 3 -C 12 cycloalkyl, C 1 -C 12 alkoxy , C 1 -C 12 ester group, C 1 -C 12 amine group; preferably, R 4 -R 10 are each independently selected from H, halogen, hydroxyl, amino, substituted or unsubstituted
  • R 4 '-R 10' are each independently selected from H, halo, hydroxy, amino, phosphoric acid group, a sulfonic acid group, a substituted or unsubstituted C 1 -C 12 alkyl, substituted or non-substituted C 3 -C 12 cycloalkyl, substituted or unsubstituted C 1 -C 12 alkoxy, substituted or unsubstituted C 1 -C 12 ester group, substituted or unsubstituted C 1 -C 12 An amino group, the substituted group is selected from halogen, hydroxyl, amino, phosphoric acid, sulfonic acid, C 1 -C 12 alkyl, C 3 -C 12 cycloalkyl, C 1 -C 12 alkane alkoxy, C 1 -C 12 ester group of, C 1 -C 12 group; preferably, R 4 '-R 10' are each independently selected from H, halo, hydroxy, amino, phospho
  • R', R", and R"' are each independently selected from substituted or unsubstituted C 1 -C 12 linear alkyl groups, substituted or unsubstituted C 3 -C 12 branched chain alkyl groups, A substituted or unsubstituted C 1 -C 12 alkoxy group, a substituted or unsubstituted C 1 -C 12 acyloxy group; preferably, R 1 is a C 2 -C 6 alkenyl group, preferably a monounsaturated Alkenyl; R 2 , R 3 , R 4 are each independently selected from substituted or unsubstituted C 1 -C 6 linear alkyl, substituted or unsubstituted C 3 -C 6 branched alkyl, substituted or Unsubstituted C 1 -C 6 alkoxy, substituted or unsubstituted C 1 -C 6 acyloxy;
  • R m is selected from the following substituted or unsubstituted groups: C 1 -C 20 linear alkyl, C 3 -C 20 branched alkyl, C 3 -C 12 cycloalkyl, C 3 -C 12 epoxy alkyl group, C 3 -C 12 epoxy alkyl group, the substituted group is selected from at least one of halogen, amino group and hydroxyl group;
  • the heterocyclic group is selected from imidazolyl, pyrazolyl, carbazolyl, pyrrolidone, pyridyl, piperidinyl, caprolactam, pyrazinyl, thiazolyl, purinyl, morpholinyl, oxazolinyl .
  • the graft-modified polypropylene material is an aromatic olefin graft-modified polypropylene material
  • the vinyl-containing polymer monomer is a styrenic monomer, which is grafted and modified with an aromatic olefin.
  • the weight of the polypropylene material is based on the weight, and the content of the structural unit derived from the styrene monomer and in the grafted state in the aromatic olefin grafted modified polypropylene material is 0.5 to 14 wt%, preferably 1 to 7.5 wt% %, more preferably 1.5-5wt%;
  • the styrenic monomer is selected from at least one of a monomer having a structure represented by formula 8, a monomer having a structure represented by formula 9, and a monomer having a structure represented by formula 10;
  • R 1 , R 2 , and R 3 are each independently selected from H, substituted or unsubstituted C 1 -C 6 alkyl;
  • R 4 -R 8 are each independently selected from H, halogen, hydroxyl, and amino , Phosphoric acid group, sulfonic acid group, substituted or unsubstituted C 1 -C 12 alkyl, substituted or unsubstituted C 3 -C 12 cycloalkyl, substituted or unsubstituted C 1 -C 12 alkoxy Group, substituted or unsubstituted C 1 -C 12 ester group, substituted or unsubstituted C 1 -C 12 amine group, the substituted group is selected from halogen, hydroxyl, amino, phosphoric acid, sulfonic acid group , C 1 -C 12 alkyl group, C 3 -C 12 cycloalkyl group, C 1 -C 12 alkoxy group, C 1 -C 12 ester group
  • R 1 , R 2 , and R 3 are each independently selected from H, substituted or unsubstituted C 1 -C 6 alkyl;
  • R 4 -R 10 are each independently selected from H, halogen, hydroxyl, and amino , Phosphoric acid group, sulfonic acid group, substituted or unsubstituted C 1 -C 12 alkyl, substituted or unsubstituted C 3 -C 12 cycloalkyl, substituted or unsubstituted C 1 -C 12 alkoxy Group, substituted or unsubstituted C 1 -C 12 ester group, substituted or unsubstituted C 1 -C 12 amine group, the substituted group is selected from halogen, hydroxyl, amino, phosphoric acid, sulfonic acid group , C 1 -C 12 alkyl group, C 3 -C 12 cycloalkyl group, C 1 -C 12 alkoxy group, C 1 -C 12 ester group
  • R 1 ', R 2 ', R 3 ' is independently selected from H, substituted or unsubstituted of C 1 -C 6 alkyl;
  • R 4' -R 10 ' are each independently selected from H, Halogen, hydroxyl, amino, phosphoric acid, sulfonic acid, substituted or unsubstituted C 1 -C 12 alkyl, substituted or unsubstituted C 3 -C 12 cycloalkyl, substituted or unsubstituted C 1- C 12 alkoxy group, substituted or unsubstituted C 1 -C 12 ester group, substituted or unsubstituted C 1 -C 12 amine group, the substituted group is selected from halogen, hydroxyl, amino, phosphoric acid Group, sulfonic acid group, C 1 -C 12 alkyl group, C 3 -C 12 cycloalkyl group, C 1 -C 12 alkoxy group, C 1 -C 12 ester group, C
  • the styrenic monomer is selected from the group consisting of styrene, ⁇ -methylstyrene, 1-vinylnaphthalene, 2-vinylnaphthalene, mono- or multi-substituted styrene, and mono- or multi-substituted ⁇ -At least one of methyl styrene, mono- or poly-substituted 1-vinyl naphthalene and mono- or poly-substituted 2-vinyl naphthalene; the substituted group is preferably selected from halogen, hydroxyl, amino, Phosphoric acid group, sulfonic acid group, C 1 -C 8 linear alkyl group, C 3 -C 8 branched chain alkyl or cycloalkyl group, C 1 -C 6 linear alkoxy group, C 3 -C 8 A branched or cyclic alkoxy group, a C 1 -C 8 straight chain
  • the styrenic monomer is selected from at least one of styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene and 4-methylstyrene.
  • the aromatic olefin grafted modified polypropylene material has at least one of the following characteristics: the melt flow rate at 230° C. under a load of 2.16 kg is 0.01-30 g/10 min, preferably 0.05 ⁇ 20g/10min, more preferably 0.1 ⁇ 10g/10min, more preferably 0.2 ⁇ 8g/10min; flexural modulus is 10 ⁇ 1250MPa, preferably 20 ⁇ 1000MPa, more preferably 50 ⁇ 600MPa; elongation at break ⁇ 200 %, preferably breaking elongation ⁇ 300%.
  • the tensile strength of the aromatic olefin graft modified polypropylene material is greater than 5 MPa, preferably 10-40 MPa.
  • the aromatic olefin graft modified polypropylene material has at least one of the following characteristics:
  • the working temperature of the aromatic olefin grafted modified polypropylene material is ⁇ 90°C, preferably 90-160°C;
  • the breakdown field strength of the aromatic olefin grafted modified polypropylene material at 90°C E g ⁇ 200kV/mm, preferably 200 ⁇ 800kV/mm;
  • the breakdown field strength change rate ⁇ E/E obtained from the breakdown field strength E of propylene at 90°C is greater than 1.5%, preferably 1.6%-40%, more preferably 5%-30%, still more preferably 10%- 20%;
  • the direct current volume resistivity ⁇ vg of the aromatic olefin grafted modified polypropylene material at 90°C and 15kV/mm field strength and the direct current volume resistivity of the copolymer polypropylene at 90°C and 15kV/mm field strength ratio ⁇ v ⁇ vg / ⁇ v is greater than 1, preferably 1.5 to 50, more preferably 2 to 20, more preferably from 3 to 10.
  • the graft-modified polypropylene material is a silane-modified polypropylene graft
  • the alkenyl-containing polymerized monomer is an alkenyl-containing silane monomer, which is modified with silane.
  • the weight of the polypropylene graft is based on the weight, and the content of the structural unit in the grafted state derived from the alkenyl-containing silane monomer in the silane-modified polypropylene graft is 0.2-6wt%, Preferably it is 0.2 ⁇ 2.5wt%;
  • the alkenyl group-containing silane monomer is selected from at least one monomer having the structure represented by formula 11,
  • R 1 is a C 2 -C 12 alkenyl group, preferably a monounsaturated alkenyl group
  • R 2 , R 3 , and R 4 are each independently selected from substituted or unsubstituted C 1 -C 12 linear alkyl groups , Substituted or unsubstituted C 3 -C 12 branched alkyl groups, substituted or unsubstituted C 1 -C 12 alkoxy groups, substituted or unsubstituted C 1 -C 12 acyloxy groups;
  • R 1 is a C 2 -C 6 alkenyl group, preferably a monounsaturated alkenyl group
  • R 2 , R 3 , and R 4 are each independently selected from substituted or unsubstituted C 1 -C 6 linear alkyl groups, substituted Or unsubstituted C 3 -C 6 branched alkyl, substituted or unsubstituted C 1 -C 6 alkoxy, substitute
  • the alkenyl-containing silane monomer is selected from vinyl triethoxy silane, vinyl trimethoxy silane, vinyl triisopropoxy silane, vinyl tri-tert-butoxy silane, vinyl Triacetoxysilane, methyl vinyl dimethoxy silane, ethyl vinyl diethoxy silane, allyl triethoxy silane, allyl trimethoxy silane, allyl triisopropyl Oxysilane, vinyl tris ( ⁇ -methoxyethoxy) silane, allyl tris ( ⁇ -methoxyethoxy) silane, allyl tri-tert-butoxy silane, allyl triacetoxy At least one of silane, methallyldimethoxysilane, and ethylallyldiethoxysilane.
  • the silane-modified polypropylene graft has at least one of the following characteristics: the melt flow rate at 230° C. under a load of 2.16 kg is 0.01-30 g/10 min, preferably 0.05 ⁇ 20g/10min, more preferably 0.1 ⁇ 10g/10min, more preferably 0.2 ⁇ 8g/10min; flexural modulus of 10 ⁇ 1000MPa, preferably 50 ⁇ 600MPa; breaking elongation ⁇ 200%, preferably breaking elongation ⁇ 300%.
  • the tensile strength of the silane-modified polypropylene graft is greater than 5 MPa, preferably 10-40 MPa.
  • the silane-modified polypropylene graft has at least one of the following characteristics:
  • the working temperature of the silane-modified polypropylene graft is ⁇ 90°C, preferably 90-160°C;
  • the breakdown field strength of the silane-modified polypropylene graft at 90°C E g ⁇ 200kV/mm, preferably 200-800kV/mm;
  • the breakdown field strength change rate ⁇ E/E obtained from the breakdown field strength E of propylene at 90°C is greater than 0.7%, preferably 0.8%-40%, more preferably 2%-20%, still more preferably 6%- 15%;
  • the DC volume resistivity of the silane-modified polypropylene graft at 90°C and 15kV/mm field strength is ⁇ vg ⁇ 6 ⁇ 10 12 ⁇ m, preferably 6 ⁇ 10 12 ⁇ m ⁇ 1.0 ⁇ 10 20 ⁇ m;
  • the direct current volume resistivity ⁇ vg of the silane-modified polypropylene graft at 90°C and 15kV/mm field strength and the direct current volume resistivity of the copolymer polypropylene at 90°C and 15kV/mm field strength ratio ⁇ v ⁇ vg / ⁇ v is greater than 1, preferably 1.1 to 8.0, more preferably 1.15 to 3, more preferably 1.2 to 1.8.
  • the vinyl group-containing polymerizable monomers are acrylic ester monomers and optionally acrylic monomers.
  • the grafted modified polypropylene Based on the weight of the grafted modified polypropylene material, the grafted modified polypropylene The content of the structural units in the grafted state derived from acrylic monomers and optional acrylic monomers in the flexible polypropylene material is 0.3-7wt%, preferably 0.8-5wt%;
  • the acrylic monomer is selected from at least one monomer having a structure represented by formula 12;
  • R 1 , R 2 , and R 3 are each independently selected from H, C 1 -C 6 linear alkyl, C 3 -C 6 branched alkyl;
  • R 4 is selected from the following substituted or unsubstituted groups: C 1 -C 20 linear alkyl group, C 3 -C 20 branched chain alkyl group, C 3 -C 12 cycloalkyl group, C 3 -C 12 epoxy alkyl group, C 3 -C 12 epoxy alkyl group ,
  • the substituted group is selected from at least one of halogen, amino and hydroxyl;
  • the acrylic monomer is selected from methyl (meth)acrylate, sec-butyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, (meth)acrylate ) Isobutyl acrylate, tert-butyl (meth)acrylate, isooctyl (meth)acrylate, dodecyl (meth)acrylate, coconut oleate (meth)acrylate, (meth)acrylic acid At least one of octadecyl ester, dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, and glycidyl (meth)acrylate A sort of;
  • the acrylic monomer is selected from at least one monomer having a structure represented by formula 13;
  • R 1 , R 2 , and R 3 are each independently selected from H, C 1 -C 6 linear alkyl, and C 3 -C 6 branched alkyl;
  • the acrylic monomer is selected from at least one of acrylic acid, methacrylic acid and 2-ethacrylic acid.
  • C 3 -C 12 alkylene oxide alkyl refers to an alkylene oxide substituted with an alkylene oxide having 3-12 carbon atoms, for example, an oxirane methyl group.
  • the molar ratio of the structural unit derived from the acrylic monomer to the structural unit derived from the acrylic monomer is 1:0-2, preferably 1:0.125-1.
  • the vinyl group-containing polymerizable monomer is an acrylic monomer and optionally an acrylic monomer
  • the graft-modified polypropylene material has at least one of the following characteristics: °C, the melt flow rate under a load of 2.16 kg is 0.01-30g/10min, preferably 0.05-20g/10min, more preferably 0.1-10g/10min, more preferably 0.2-8g/10min; flexural modulus is 10 ⁇ 1100 MPa, preferably 20-1000 MPa, more preferably 50-600 MPa; breaking elongation ⁇ 200%, preferably breaking elongation ⁇ 300%.
  • the tensile strength of the graft-modified polypropylene material is greater than 5 MPa, preferably 10-40 MPa.
  • the vinyl group-containing polymerizable monomer is an acrylic monomer and optionally an acrylic monomer
  • the graft-modified polypropylene material has at least one of the following characteristics:
  • the working temperature of the graft-modified polypropylene material is ⁇ 90°C, preferably 90-160°C;
  • the breakdown field strength of the grafted modified polypropylene material at 90°C E g ⁇ 180kV/mm, preferably 180 ⁇ 800kV/mm;
  • the breakdown field strength change rate ⁇ E/E obtained by the breakdown field strength E at 90°C is greater than 2%, preferably 2.5%-50%, more preferably 4%-35%, still more preferably 5%-25% ;
  • ⁇ vg the graft-modified propylene polymer material at 90 °C, 15kV / mm field strength and the DC volume resistivity ⁇ v copolymerized polypropylene at 90 °C, 15kV / mm field strength of
  • the ratio of ⁇ vg/ ⁇ v is greater than 1.5, preferably 1.8-30, more preferably 2-10, and still more preferably 2.5-6.
  • the graft-modified polypropylene material is a modified material of polypropylene grafted with a heterocyclic ring
  • the alkenyl-containing polymerizable monomer is an alkenyl-containing heterocyclic monomer.
  • the weight of the modified material of polypropylene grafted heterocyclic ring is based on the weight, and the content of the structural unit in the grafted state derived from the alkenyl group-containing heterocyclic monomer in the modified material of polypropylene grafted heterocyclic ring is 0.5-6wt%, preferably 0.5-4wt%;
  • the alkenyl-containing heterocyclic monomer is selected from the group consisting of imidazoles with alkenyl substituents, pyrazoles with alkenyl substituents, carbazoles with alkenyl substituents, pyrrolidones with alkenyl substituents, Pyridine or pyridine salt with alkenyl substituent, piperidine with alkenyl substituent, caprolactam with alkenyl substituent, pyrazine with alkenyl substituent, thiazole with alkenyl substituent, and alkenyl substituent At least one of purine, morpholine with alkenyl substituent and oxazoline with alkenyl substituent; preferably, the alkenyl-containing heterocyclic monomer is a monoalkenyl-containing heterocyclic monomer monomer.
  • the alkenyl-containing heterocyclic monomer is selected from: 1-vinylimidazole, 2-methyl-1-vinylimidazole, N-allylimidazole, 1-vinylpyrazole, 3- Methyl-1-vinylpyrazole, vinylcarbazole, N-vinylpyrrolidone, 2-vinylpyridine, 3-vinylpyridine, 4-vinylpyridine, 2-methyl-5-vinylpyridine, Vinylpyridine N-oxide, vinylpyridine salt, vinylpiperidine, N-vinylcaprolactam, 2-vinylpyrazine, N-vinylpiperazine, 4-methyl-5-vinylthiazole, N- At least one of vinyl purine, vinyl morpholine, and vinyl oxazoline.
  • the modified material of the polypropylene grafted heterocyclic ring has at least one of the following characteristics: the melt flow rate at 230° C. under a load of 2.16 kg is 0.01 to 30 g/10 min, preferably 0.05-20g/10min, more preferably 0.1-10g/10min, more preferably 0.2-8g/10min; flexural modulus of 10-1000MPa, preferably 50-500MPa; elongation at break ⁇ 200%, preferably elongation at break Rate ⁇ 300%.
  • the tensile strength of the modified material of the polypropylene grafted heterocyclic ring is greater than 5 MPa, preferably 10-40 MPa.
  • the modified material of the polypropylene grafted heterocyclic ring has at least one of the following characteristics:
  • the working temperature of the modified material of the polypropylene grafted heterocyclic ring is ⁇ 90°C, preferably 90-160°C;
  • the breakdown field strength of the modified material of the polypropylene grafted heterocyclic ring at 90°C is E g ⁇ 190kV/mm, preferably 190 ⁇ 800kV/mm;
  • the breakdown field strength change rate ⁇ E/E obtained by the breakdown field strength E of polypropylene at 90°C is greater than 1%, preferably 1.5%-50%, more preferably 2%-35%, still more preferably 5% ⁇ 25%;
  • the direct current volume resistivity ⁇ vg of the polypropylene grafted heterocyclic modified material at 90°C and 15kV/mm field strength and the direct current volume resistance of the copolymer polypropylene at 90°C and 15kV/mm field strength The ratio ⁇ vg/ ⁇ v of the rate ⁇ v is greater than 1, preferably 1.1-20, more preferably 1.2-10, and still more preferably 1.3-4.
  • the polypropylene graft of the present invention can be prepared by a method including the following steps: in the presence of an inert gas, a reaction mixture comprising copolymerized polypropylene and an alkenyl-containing polymerized monomer is subjected to a solid phase grafting reaction to obtain the The polypropylene grafts.
  • the second aspect of the present invention provides a method for preparing a graft-modified polypropylene material for insulating materials, the preparation method comprising: in the presence of an inert gas, reacting the copolymerized polypropylene and the vinyl group-containing polymer monomer The mixture undergoes a graft reaction to obtain the graft-modified polypropylene material;
  • the conditions of the grafting reaction are such that: based on the weight of the graft-modified polypropylene material, the content of structural units in the graft-modified polypropylene material that are derived from polymer monomers containing alkenyl groups and are in a grafted state It is 0.1-14 wt%, preferably 0.2-7.5 wt%.
  • the copolymerized polypropylene has at least one of the following characteristics: the comonomer content is 0.5-40 mol%, preferably 0.5-30 mol%, more preferably 4-25% by weight, further preferably 4-22% by weight; xylene can be The soluble content is 2 to 80% by weight, preferably 18 to 75% by weight, more preferably 30 to 70% by weight, further preferably 30 to 67% by weight; the comonomer content in solubles is 10 to 70% by weight, preferably 10 to 50 wt%, more preferably 20 to 35 wt%; the intrinsic viscosity ratio of soluble matter to polypropylene is 0.3 to 5, preferably 0.5 to 3, more preferably 0.8 to 1.3.
  • the grafting reaction of the present invention can be carried out with reference to various methods conventional in the art, preferably a solid phase grafting reaction.
  • active grafting points are formed on the copolymerized polypropylene, or the active grafting points are formed on the copolymerized polypropylene first and then treated with the grafting monomer.
  • the graft points can be formed by treatment with a free radical initiator, or by high-energy ionizing radiation or microwave treatment. Free radicals generated in the polymer as a result of chemical or radiation treatment form graft points on the polymer and initiate monomer polymerization at these points.
  • the grafting point is initiated by a free radical initiator and the grafting reaction is further carried out.
  • the reaction mixture further includes a free radical initiator; further preferably, the free radical initiator is selected from peroxide radical initiators and/or azo radical initiators.
  • the peroxide radical initiator is preferably selected from the group consisting of dibenzoyl peroxide, dicumyl peroxide, di-tert-butyl peroxide, lauroyl peroxide, lauroyl peroxide, and peroxide At least one of tert-butyl benzoate, diisopropyl peroxydicarbonate, tert-butyl peroxide (2-ethylhexanoic acid), and dicyclohexyl peroxydicarbonate; the azo group is free
  • the base initiator is preferably azobisisobutyronitrile and/or azobisisoheptonitrile.
  • the grafting point is initiated by a peroxide-based free radical initiator and the grafting reaction is further performed.
  • the grafting reaction of the present invention can also be carried out by the methods described in CN106543369A, CN104499281A, CN102108112A, CN109251270A, CN1884326A and CN101492517B.
  • the process conditions of the grafting reaction in the present invention are also not particularly limited.
  • the temperature of the grafting reaction may be 30-130°C, preferably 60-120°C; the time may be 0.5-10h, preferably 1- 5h.
  • the present invention does not specifically limit the amount of each component in the grafting reaction, specifically,
  • the mass ratio of the radical initiator to the styrenic monomer is 0.1-10:100, preferably 0.5-5:100.
  • the mass ratio of the styrene monomer to the copolymerized polypropylene is 0.5-16:100, preferably 1-12:100, and more preferably 2-10:100.
  • the conditions of the grafting reaction are such that: based on the weight of the aromatic olefin grafted modified polypropylene material, the aromatic olefin grafted modified polypropylene material is derived from a styrene monomer and is in a grafted state.
  • the content of the unit is 0.5 to 14 wt%, preferably 1 to 7.5 wt%, more preferably 1.5 to 5 wt%.
  • the mass ratio of the radical initiator to the alkenyl-containing silane monomer is 0.1-10:100, preferably 0.5-6:100.
  • the mass ratio of the alkenyl group-containing silane monomer to the copolymerized polypropylene is 0.5-12:100, preferably 0.8-9:100, and more preferably 1-6:100.
  • the conditions of the grafting reaction are such that: based on the weight of the silane-modified polypropylene graft, the silane-modified polypropylene graft is derived from an alkenyl-containing silane monomer and is in the grafting process.
  • the content of the structural unit in the state is 0.2-6wt%, preferably 0.2-2.5wt%.
  • the ratio of the mass of the free radical initiator to the total mass of acrylic monomers and optional acrylic monomers is 0.1-10:100, preferably It is 0.5 ⁇ 5:100.
  • the ratio of the total mass of the acrylic monomers and optional acrylic monomers to the mass of the copolymerized polypropylene is 0.1-10:100, preferably 0.5-8:100, more preferably 0.8-7: 100.
  • the conditions of the grafting reaction are such that: based on the weight of the graft-modified polypropylene material, the graft-modified polypropylene material is derived from acrylic monomers and optional acrylic monomers and is in the grafted state.
  • the content of dendritic structural units is 0.3 to 7 wt%, preferably 0.8 to 5 wt%.
  • the mass ratio of the radical initiator to the alkenyl-containing heterocyclic monomer is 0.1-10:100, preferably 0.5-5:100.
  • the mass ratio of the alkenyl group-containing heterocyclic monomer to the copolymerized polypropylene is 0.3-12:100, preferably 0.5-10:100.
  • the conditions of the grafting reaction are such that: based on the weight of the polypropylene grafted heterocyclic modified material, the polypropylene grafted heterocyclic modified material is derived from an alkenyl group-containing heterocyclic monomer and
  • the content of the structural unit in the grafted state is 0.5-6 wt%, preferably 0.5-4 wt%.
  • reaction mixture includes all the materials added to the grafting reaction system.
  • the materials can be added at one time or can be added at different stages of the reaction.
  • the reaction mixture of the present invention may also include a dispersant, and the dispersant is preferably water or an aqueous solution of sodium chloride.
  • the mass dosage of the dispersant is preferably 50-300% of the mass of the copolymerized polypropylene.
  • the reaction mixture of the present invention may also include an interface agent, which is an organic solvent having a swelling effect on polyolefin, preferably at least one of the following organic solvents having a swelling effect on copolymer polypropylene: ether solvent , Ketone solvent, aromatic hydrocarbon solvent, alkane solvent; more preferably at least one of the following organic solvents: chlorinated benzene, polychlorinated benzene, C 6 or more alkanes or cycloalkanes, benzene, C 1 -C 4- alkyl substituted benzene, C 2 -C 6 fatty ether, C 3 -C 6 fatty ketone, decalin; more preferably at least one of the following organic solvents: benzene, toluene, xylene, chlorobenzene, tetrahydrofuran , Ether, acetone, hexane, cyclohexane, decalin, heptane.
  • the reaction mixture of the present invention may also include an organic solvent as a solvent for dissolving the solid free radical initiator.
  • the organic solvent preferably includes C 2 -C 5 alcohols, C 2 -C 4 ethers and C 3 -C 5 ketones. At least one of C 2 -C 4 alcohols, C 2 -C 3 ethers and C 3 -C 5 ketones, and most preferably at least one of ethanol, ether and acetone A sort of.
  • the mass content of the organic solvent is preferably 1 to 35% of the mass of the copolymerized polypropylene.
  • the preparation method of the graft-modified polypropylene material can be selected from one of the following methods:
  • the preparation method includes the following steps:
  • the preparation method includes the following steps:
  • the method of the present invention if there are volatile components in the system after the reaction, the method of the present invention preferably includes a step of devolatilization.
  • the devolatilization can be carried out by any conventional method, including at the end of the grafting process. Vacuum extraction or use a stripping agent. Suitable stripping agents include, but are not limited to, inert gases.
  • the "graft-modified polypropylene material" of the present invention includes both the product (crude product) directly prepared by the grafting reaction of copolymerized polypropylene and vinyl group-containing polymer monomer, as well as further purification of the product
  • the obtained pure graft-modified polypropylene product therefore, in the preparation method of the present invention, the step of purifying the crude product can be optionally included.
  • Various methods conventional in the art can be used for the purification, such as extraction methods.
  • the present invention does not specifically limit the grafting efficiency of the grafting reaction, but a higher grafting efficiency is more conducive to obtaining a polypropylene graft with the required properties through a one-step grafting reaction. Therefore, it is preferable to control the grafting efficiency of the grafting reaction to 5-100%, more preferably 5-80%.
  • the concept of grafting efficiency is well known to those skilled in the art, and refers to the total amount of vinyl group-containing polymerized monomers grafted/the total amount of vinyl group-containing polymerized monomers in the reaction feed.
  • the grafting efficiency of the grafting reaction is preferably controlled to be 30-100%, more preferably 35-80%.
  • alkenyl-containing silane monomers it is preferable to control the grafting efficiency of the grafting reaction to 5-100%, more preferably 5-60%.
  • acrylic monomers and optional acrylic monomers it is preferable to control the grafting efficiency of the grafting reaction to 30-100%, more preferably 35-80%.
  • heterocyclic monomers containing alkenyl groups it is preferable to control the grafting efficiency of the grafting reaction to 30-100%, more preferably 35-80%.
  • the inert gas of the present invention can be various inert gases commonly used in the field, including but not limited to nitrogen and argon.
  • the third aspect of the present invention provides a graft-modified polypropylene material for insulating materials prepared by the above preparation method.
  • the fourth aspect of the present invention provides the application of the above-mentioned graft-modified polypropylene material as an insulating material.
  • the insulating material is a cable insulating material; preferably a DC cable insulating material.
  • the insulating material is a cable insulating layer material.
  • the graft-modified polypropylene used in the present invention can be directly used as the basic material of the insulating material without blending other polymers.
  • a fifth aspect of the present invention provides a cable, which includes:
  • the material of the electrical insulation layer is the grafted modified polypropylene material.
  • the core of the present invention is to use a new material as the electrical insulation layer of the cable. Therefore, the present invention does not specifically limit the form and specific structure of the cable, and various conventional cable forms (DC or AC, single core or Multi-core) and corresponding structures.
  • DC or AC, single core or Multi-core various conventional cable forms
  • other layer structures and other layer materials can be conventionally selected in the field.
  • the cable of the present invention may be a DC cable or an AC cable; preferably a DC cable; more preferably, the cable is a medium-high voltage DC cable or an ultra-high voltage DC cable.
  • low voltage (LV) means a voltage lower than 1kV
  • medium voltage (MV) means a voltage in the range of 1kV to 40kV
  • high voltage (HV) means a voltage higher than 40kV, preferably higher than 50kV
  • EHV ultra-high voltage
  • the cable has at least one cable core, and each of the cable cores sequentially includes a conductor, an optional conductor shielding layer, an electrical insulation layer, and an optional electrical insulation shielding from the inside to the outside. Layer, optional metal shielding layer.
  • the conductor shielding layer, the electrical insulation shielding layer, and the metal shielding layer can all be set as required, and generally, they are used in cables above 6kV.
  • the cable may also include an armor and/or sheath layer.
  • the cable of the present invention may be a single-core cable or a multi-core cable.
  • the cable may further include a filling layer and/or a tape layer.
  • the filling layer is formed of a filling material filled between the cores.
  • the wrapping layer covers the outer sides of all the wire cores to ensure that the wire core and the filling layer are round, prevent the wire core from being scratched by the armor, and play a flame retardant effect.
  • the conductor is a conductive element usually made of a metal material, preferably aluminum, copper or other alloys, and includes one or more metal wires.
  • the DC resistance and the number of filaments of the conductor must meet the requirements of GB/T 3956.
  • the preferred conductor adopts a compact and twisted circular structure with a nominal cross-sectional area less than or equal to 800 mm 2 ; or a split conductor structure with a nominal cross-sectional area greater than or equal to 1000 mm 2 and the number of conductors is not less than 170.
  • the conductor shielding layer may be a covering layer made of materials such as polypropylene, polyolefin elastomer, carbon black, etc.
  • the volume resistivity at 23°C is less than 1.0 ⁇ m, and the volume at 90°C is Resistivity ⁇ 3.5 ⁇ m, the melt flow rate at 230°C under a load of 2.16kg is usually 0.01-30g/10min, preferably 0.05-20g/10min, more preferably 0.1-10g/10min, more preferably 0.2 ⁇ 8g/10min; tensile strength ⁇ 12.5MPa; elongation at break ⁇ 150%.
  • the thickness of the thinnest point of the conductor shielding layer is not less than 0.5mm, and the average thickness is not less than 1.0mm.
  • the material of the electrical insulation layer is at least one graft-modified polypropylene material means that the substrate constituting the electrical insulation layer is the graft-modified polypropylene material, except for the graft-modified polypropylene material.
  • the propylene material can also contain additional components, such as polymer components or additives, preferably additives such as antioxidants, stabilizers, processing aids, flame retardants, water tree retarding additives, acid or ion scavengers, Any one or more of inorganic fillers, voltage stabilizers and anti-copper agents.
  • additives such as antioxidants, stabilizers, processing aids, flame retardants, water tree retarding additives, acid or ion scavengers, Any one or more of inorganic fillers, voltage stabilizers and anti-copper agents.
  • the types and amounts of additives used are conventional and known to those skilled in the art.
  • the preparation method of the electrical insulation layer of the present invention can also adopt conventional methods in the field of cable preparation.
  • the grafted modified polypropylene material is mixed with optional various additives, granulated by a twin-screw extruder, and then the obtained The pellets are extruded through an extruder to produce an electrical insulation layer.
  • the conductor shielding material and the grafted modified polypropylene material pellets can be co-extruded to form a structure of a conductor shielding layer + an electrical insulation layer, or a structure of a conductor shielding layer + an electrical insulation layer + an electrical insulation shielding layer.
  • Conventional methods and process conditions in this field can be used for specific operations.
  • the thickness of the electrical insulation layer of the present invention can be only 50%-95% of the nominal thickness of the XLPE insulation layer in GB/T 12706.
  • the thickness of the electrical insulation layer is 70% to 90% of the nominal thickness of the XLPE insulating layer in GB/T 12706; the eccentricity is not more than 10%.
  • the electrically insulating shielding layer may be a covering layer made of polypropylene, polyolefin elastomer, carbon black and other materials, and the volume resistivity at 23°C is less than 1.0 ⁇ m, and the temperature is less than 1.0 ⁇ m at 90°C.
  • the volume resistivity is less than 3.5 ⁇ m.
  • the melt flow rate under a load of 2.16kg at 230°C is 0.01-30g/10min, preferably 0.05-20g/10min, more preferably 0.1-10g/10min, more preferably 0.2-8g/10min; tensile strength ⁇ 12.5MPa; Elongation at break ⁇ 150%.
  • the thickness of the thinnest point of the electrical insulation shielding layer is not less than 0.5mm, and the average thickness is not less than 1.0mm.
  • the metal shielding layer may be a copper tape shielding layer or a copper wire shielding layer.
  • the filling layer may be a polymer material, such as PE/PP/PVC or recycled rubber materials.
  • the covering layer/armor layer is usually made of copper wire metal cage, lead or aluminum metal sheath, etc., and wraps the metal covering layer on the outer surface of the electrical insulation shielding layer, which has a direct current at room temperature.
  • the volume resistivity is less than or equal to 1000 ⁇ m.
  • the material of the sheath layer may be any of polyvinyl chloride, polyethylene, or low-smoke halogen-free materials.
  • the sheath layer includes both an inner sheath layer and an outer sheath layer.
  • the conductor shielding layer, the electrical insulation layer, and the sheath layer can be formed by extrusion coating by an extruder, and the metal shielding layer and the armor can be formed by wrapping.
  • the cable of the present invention can be prepared by various preparation processes conventional in the field, and the present invention is not particularly limited to this.
  • the method for preparing the cable is as follows:
  • the multiple monofilament conductors (such as aluminum) are pressed and twisted to obtain the conductor core; or the stranding operation is performed, and then the stranded monofilament conductors are twisted to obtain the conductor Inner core.
  • modified polypropylene particles mix modified polypropylene materials with optional additives, and pelletize them with a twin-screw extruder.
  • conductor shielding layer and electrical insulation layer Preparation of conductor shielding layer and electrical insulation layer: the conductor shielding material and the above-mentioned modified polypropylene particles are co-extrusion coated outside the conductor core by an extruder to form a conductor shielding layer + electrical insulation layer, or to form a conductor shielding layer + Electrical insulation layer + electrical insulation shielding layer (outer shielding layer).
  • Preparation of the metal shielding layer Copper tape or copper wire is wrapped around the electrical insulation layer (electrical insulation shielding layer) to form a metal shielding layer.
  • the sheath layer pellets are extruded outside the metal shielding layer through an extruder to form the inner sheath layer.
  • Armour preparation use galvanized steel/stainless steel/aluminum alloy to make steel wire or steel tape armor, with single-layer armor left to the left or double armor inner layer to the right and outer layer to the left to wrap the inner sheath On the layer, the steel wire or steel tape should be tightly armored to minimize the gap between adjacent steel wires/steel tapes.
  • the sheath layer pellets are extruded outside the armor through an extruder to form the outer sheath layer. Finally, the cable is produced.
  • the graft-modified polypropylene material of the present invention can take into account both mechanical properties and electrical properties at a higher working temperature, and is suitable for high temperature and high operating field strength working conditions.
  • the graft-modified polypropylene material of the present invention avoids performance degradation caused by the migration of small molecules, and therefore has better stability.
  • the cable of the present invention can still maintain or even have a higher volume resistivity and stronger breakdown resistance at a higher working temperature, and its mechanical properties can also meet the requirements of cable use.
  • the electrical insulation layer made of the grafted modified polypropylene material has the advantages of thinner thickness, better heat dissipation, and smaller weight than the electrical insulation layer of conventional cables. Therefore, the cable has a wider range of applications.
  • the sixth aspect of the present invention provides an insulating material, characterized in that the insulating material comprises at least one of the above-mentioned graft-modified polypropylene materials.
  • the content of the at least one graft-modified polypropylene material is 20-100% by weight, preferably 40-100% by weight, more preferably 60-100% by weight, more preferably It is 80-100wt%, more preferably 90-100wt%.
  • the insulating material further contains additives, such as antioxidants, stabilizers, processing aids, flame retardants, water tree retarding additives, acid or ion scavengers, inorganic fillers, voltage stabilizers, and anti-copper agents.
  • additives such as antioxidants, stabilizers, processing aids, flame retardants, water tree retarding additives, acid or ion scavengers, inorganic fillers, voltage stabilizers, and anti-copper agents.
  • additives such as antioxidants, stabilizers, processing aids, flame retardants, water tree retarding additives, acid or ion scavengers, inorganic fillers, voltage stabilizers, and anti-copper agents.
  • the types and amounts of additives are conventional and known to those skilled in the art.
  • the present invention also includes the embodiments described in the following paragraphs.
  • Paragraph 1 A method for preparing an insulating material using a graft-modified polypropylene material, characterized in that the graft-modified polypropylene material comprises a structural unit derived from copolymerized polypropylene and a polymer derived from a vinyl group-containing monomer Structural unit; based on the weight of the graft-modified polypropylene material, the content of the structural unit in the graft-modified polypropylene material derived from the polymerized monomer containing alkenyl groups and in the grafted state is 0.1-14% by weight, Preferably it is 0.2 ⁇ 7.5wt%;
  • the copolymerized polypropylene has at least one of the following characteristics: the comonomer content is 0.5-40 mol%, preferably 0.5-30 mol%, more preferably 4-25% by weight, further preferably 4-22% by weight; xylene can be The soluble content is 2 to 80% by weight, preferably 18 to 75% by weight, more preferably 30 to 70% by weight, further preferably 30 to 67% by weight; the comonomer content in solubles is 10 to 70% by weight, preferably 10 to 50 wt%, more preferably 20 to 35 wt%; the intrinsic viscosity ratio of soluble matter to polypropylene is 0.3 to 5, preferably 0.5 to 3, more preferably 0.8 to 1.3.
  • Paragraph 2 The method according to paragraph 1, wherein the copolymerized polypropylene has at least one of the following characteristics: a melt flow rate at 230° C. under a load of 2.16 kg is 0.01 to 60 g/10 min, preferably 0.05 ⁇ 35g/10min, more preferably 0.5-15g/10min; melting temperature Tm is 100°C or higher, preferably 110-180°C, more preferably 110-170°C, still more preferably 120-170°C, still more preferably 120- 166°C; the weight average molecular weight is 20 ⁇ 10 4 ⁇ 60 ⁇ 10 4 g/mol.
  • Paragraph 3 The method according to paragraph 1 or 2, wherein the comonomer of the copolymerized polypropylene is selected from at least one of C 2 -C 8 ⁇ -olefins other than propylene; preferably, the The comonomer of copolymerized polypropylene is selected from at least one of ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene and 1-octene ; Further preferably, the comonomer of the copolymerized polypropylene is ethylene and/or 1-butene; further preferably, the copolymerized polypropylene is composed of propylene and ethylene.
  • Paragraph 4 The method according to any one of paragraphs 1 to 3, wherein the graft-modified polypropylene material is prepared by solid-phase grafting reaction of copolymerized polypropylene and vinyl group-containing polymer monomers.
  • Paragraph 5 The method according to any one of paragraphs 1-4, wherein the graft-modified polypropylene material has at least one of the following characteristics: a melt flow rate at 230° C. under a load of 2.16 kg 0.01-30g/10min, preferably 0.05-20g/10min, more preferably 0.1-10g/10min, more preferably 0.2-8g/10min; flexural modulus is 10-1250MPa, preferably 20-1000MPa, more preferably 50-600MPa; breaking elongation ⁇ 200%, preferably breaking elongation ⁇ 300%.
  • flexural modulus is 10-1250MPa, preferably 20-1000MPa, more preferably 50-600MPa
  • breaking elongation ⁇ 200% preferably breaking elongation ⁇ 300%.
  • Paragraph 6 The method according to any one of paragraphs 1-5, wherein the graft-modified polypropylene material has at least one of the following characteristics:
  • the working temperature of the graft-modified polypropylene material is ⁇ 90°C, preferably 90-160°C;
  • the breakdown field strength of the grafted modified polypropylene material at 90°C E g ⁇ 180kV/mm, preferably 180 ⁇ 800kV/mm;
  • the breakdown field strength change rate ⁇ E/E obtained from the breakdown field strength E at 90°C is greater than 0.7%, preferably 0.8%-50%, more preferably 2%-35%, still more preferably 5%-25% ;
  • ⁇ vg the graft-modified propylene polymer material at 90 °C, 15kV / mm field strength and the DC volume resistivity ⁇ v copolymerized polypropylene at 90 °C, 15kV / mm field strength of
  • the ratio of ⁇ vg/ ⁇ v is greater than 1, preferably 1.1-50, more preferably 1.15-20, and still more preferably 1.2-10.
  • Paragraph 7 The method according to any one of paragraphs 1-6, wherein the vinyl group-containing polymerizable monomer is selected from at least one monomer having the structure represented by Formula 1,
  • R b, R c, R d are each independently selected from H, substituted or unsubstituted alkyl group;
  • R a is selected from substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy, substituted or Unsubstituted aryl group, substituted or unsubstituted ester group, substituted or unsubstituted carboxyl group, substituted or unsubstituted cycloalkyl or heterocyclic group, cyano group, substituted or unsubstituted silyl group.
  • R b, R c, R d are each independently selected from H, substituted or unsubstituted C 1 -C 6 alkyl group;
  • R a is selected from substituted or unsubstituted C 1 -C 20 alkyl group, substituted or unsubstituted C 1 -C 20 alkoxy group, substituted or unsubstituted C 6 -C 20 aryl group, substituted or unsubstituted C 1 -C 20 ester group, substituted or Unsubstituted C 1 -C 20 carboxyl group, substituted or unsubstituted C 3 -C 20 cycloalkyl or heterocyclic group, cyano group, substituted or unsubstituted C 3 -C 20 silyl group; the substituted group It is halogen, hydroxy, amino, C 1 -C 12 alkyl, C 3 -C 6 cycloalkyl, C 1 -C 12 alkoxy,
  • Paragraph 9 The method according to Paragraph 7, wherein R b , R c , and Rd are each independently selected from H, substituted or unsubstituted C 1 -C 6 alkyl;
  • R a is selected from the group represented by formula 2, the group represented by formula 3, the group represented by formula 4, the group represented by formula 5, the group represented by formula 6, the group represented by formula 6 and the group represented by formula 7 Combinations of groups, heterocyclic groups;
  • R 4 -R 8 are each independently selected from H, halogen, hydroxyl, amino, phosphoric acid, sulfonic acid, substituted or unsubstituted C 1 -C 12 alkyl, substituted or unsubstituted C 3 -C 12 cycloalkyl, substituted or unsubstituted C 1 -C 12 alkoxy, substituted or unsubstituted C 1 -C 12 ester group, substituted or unsubstituted C 1 -C 12 amine group ,
  • the substituted group is selected from halogen, hydroxyl, amino, phosphoric acid, sulfonic acid, C 1 -C 12 alkyl, C 3 -C 12 cycloalkyl, C 1 -C 12 alkoxy , C 1 -C 12 ester group, C 1 -C 12 amine group; preferably, R 4 -R 8 are each independently selected from H, halogen, hydroxyl, amino, substituted or unsubstituted
  • R 4 -R 10 are each independently selected from H, halogen, hydroxyl, amino, phosphoric acid, sulfonic acid, substituted or unsubstituted C 1 -C 12 alkyl, substituted or unsubstituted C 3 -C 12 cycloalkyl, substituted or unsubstituted C 1 -C 12 alkoxy, substituted or unsubstituted C 1 -C 12 ester group, substituted or unsubstituted C 1 -C 12 amine group ,
  • the substituted group is selected from halogen, hydroxyl, amino, phosphoric acid, sulfonic acid, C 1 -C 12 alkyl, C 3 -C 12 cycloalkyl, C 1 -C 12 alkoxy , C 1 -C 12 ester group, C 1 -C 12 amine group; preferably, R 4 -R 10 are each independently selected from H, halogen, hydroxyl, amino, substituted or unsubstituted
  • R 4 '-R 10' are each independently selected from H, halo, hydroxy, amino, phosphoric acid group, a sulfonic acid group, a substituted or unsubstituted C 1 -C 12 alkyl, substituted or non-substituted C 3 -C 12 cycloalkyl, substituted or unsubstituted C 1 -C 12 alkoxy, substituted or unsubstituted C 1 -C 12 ester group, substituted or unsubstituted C 1 -C 12 An amino group, the substituted group is selected from halogen, hydroxyl, amino, phosphoric acid, sulfonic acid, C 1 -C 12 alkyl, C 3 -C 12 cycloalkyl, C 1 -C 12 alkane alkoxy, C 1 -C 12 ester group of, C 1 -C 12 group; preferably, R 4 '-R 10' are each independently selected from H, halo, hydroxy, amino, phospho
  • R', R", and R"' are each independently selected from substituted or unsubstituted C 1 -C 12 linear alkyl groups, substituted or unsubstituted C 3 -C 12 branched chain alkyl groups, A substituted or unsubstituted C 1 -C 12 alkoxy group, a substituted or unsubstituted C 1 -C 12 acyloxy group; preferably, R 1 is a C 2 -C 6 alkenyl group, preferably a monounsaturated Alkenyl; R 2 , R 3 , R 4 are each independently selected from substituted or unsubstituted C 1 -C 6 linear alkyl, substituted or unsubstituted C 3 -C 6 branched alkyl, substituted or Unsubstituted C 1 -C 6 alkoxy, substituted or unsubstituted C 1 -C 6 acyloxy;
  • R m is selected from the following substituted or unsubstituted groups: C 1 -C 20 linear alkyl, C 3 -C 20 branched alkyl, C 3 -C 12 cycloalkyl, C 3 -C 12 epoxy alkyl group, C 3 -C 12 epoxy alkyl group, the substituted group is selected from at least one of halogen, amino group and hydroxyl group;
  • the heterocyclic group is selected from imidazolyl, pyrazolyl, carbazolyl, pyrrolidone, pyridyl, piperidinyl, caprolactam, pyrazinyl, thiazolyl, purinyl, morpholinyl, oxazolinyl .
  • Paragraph 10 The method according to paragraph 7, wherein the graft-modified polypropylene material is an aromatic olefin graft-modified polypropylene material, and the alkenyl-containing polymer monomer is a styrenic monomer with aromatic
  • the weight of the olefin graft-modified polypropylene material is based on the weight of the aromatic olefin graft-modified polypropylene material, and the content of the structural unit derived from the styrene monomer and in the grafted state in the aromatic olefin graft-modified polypropylene material is 0.5-14% by weight, preferably 1 to 7.5 wt%, more preferably 1.5 to 5 wt%;
  • the styrenic monomer is selected from at least one of a monomer having a structure represented by formula 8, a monomer having a structure represented by formula 9, and a monomer having a structure represented by formula 10;
  • R 1 , R 2 , and R 3 are each independently selected from H, substituted or unsubstituted C 1 -C 6 alkyl;
  • R 4 -R 8 are each independently selected from H, halogen, hydroxyl, and amino , Phosphoric acid group, sulfonic acid group, substituted or unsubstituted C 1 -C 12 alkyl, substituted or unsubstituted C 3 -C 12 cycloalkyl, substituted or unsubstituted C 1 -C 12 alkoxy Group, substituted or unsubstituted C 1 -C 12 ester group, substituted or unsubstituted C 1 -C 12 amine group, the substituted group is selected from halogen, hydroxyl, amino, phosphoric acid, sulfonic acid group , C 1 -C 12 alkyl group, C 3 -C 12 cycloalkyl group, C 1 -C 12 alkoxy group, C 1 -C 12 ester group
  • R 1 , R 2 , and R 3 are each independently selected from H, substituted or unsubstituted C 1 -C 6 alkyl;
  • R 4 -R 10 are each independently selected from H, halogen, hydroxyl, and amino , Phosphoric acid group, sulfonic acid group, substituted or unsubstituted C 1 -C 12 alkyl, substituted or unsubstituted C 3 -C 12 cycloalkyl, substituted or unsubstituted C 1 -C 12 alkoxy Group, substituted or unsubstituted C 1 -C 12 ester group, substituted or unsubstituted C 1 -C 12 amine group, the substituted group is selected from halogen, hydroxyl, amino, phosphoric acid, sulfonic acid group , C 1 -C 12 alkyl group, C 3 -C 12 cycloalkyl group, C 1 -C 12 alkoxy group, C 1 -C 12 ester group
  • R 1 ', R 2 ', R 3 ' is independently selected from H, substituted or unsubstituted of C 1 -C 6 alkyl;
  • R 4' -R 10 ' are each independently selected from H, Halogen, hydroxyl, amino, phosphoric acid, sulfonic acid, substituted or unsubstituted C 1 -C 12 alkyl, substituted or unsubstituted C 3 -C 12 cycloalkyl, substituted or unsubstituted C 1- C 12 alkoxy group, substituted or unsubstituted C 1 -C 12 ester group, substituted or unsubstituted C 1 -C 12 amine group, the substituted group is selected from halogen, hydroxyl, amino, phosphoric acid Group, sulfonic acid group, C 1 -C 12 alkyl group, C 3 -C 12 cycloalkyl group, C 1 -C 12 alkoxy group, C 1 -C 12 ester group, C
  • the styrenic monomer is selected from the group consisting of styrene, ⁇ -methylstyrene, 1-vinylnaphthalene, 2-vinylnaphthalene, mono- or multi-substituted styrene, and mono- or multi-substituted ⁇ -At least one of methyl styrene, mono- or poly-substituted 1-vinyl naphthalene and mono- or poly-substituted 2-vinyl naphthalene; the substituted group is preferably selected from halogen, hydroxyl, amino, Phosphoric acid group, sulfonic acid group, C 1 -C 8 linear alkyl group, C 3 -C 8 branched chain alkyl or cycloalkyl group, C 1 -C 6 linear alkoxy group, C 3 -C 8 A branched or cyclic alkoxy group, a C 1 -C 8 straight chain
  • the styrenic monomer is selected from at least one of styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene and 4-methylstyrene.
  • Paragraph 11 The method according to paragraph 10, wherein the aromatic olefin graft-modified polypropylene material has at least one of the following characteristics: a melt flow rate of 0.01-30 g at 230°C and a load of 2.16 kg /10min, preferably 0.05-20g/10min, more preferably 0.1-10g/10min, more preferably 0.2-8g/10min; flexural modulus is 10-1250MPa, preferably 20-1000MPa, more preferably 50-600MPa; The elongation at break is ⁇ 200%, preferably the elongation at break is ⁇ 300%.
  • Paragraph 12 The method according to paragraph 10, wherein the aromatic olefin graft modified polypropylene material has at least one of the following characteristics:
  • the working temperature of the aromatic olefin grafted modified polypropylene material is ⁇ 90°C, preferably 90-160°C;
  • the breakdown field strength of the aromatic olefin grafted modified polypropylene material at 90°C E g ⁇ 200kV/mm, preferably 200 ⁇ 800kV/mm;
  • the breakdown field strength change rate ⁇ E/E obtained from the breakdown field strength E of propylene at 90°C is greater than 1.5%, preferably 1.6%-40%, more preferably 5%-30%, still more preferably 10%- 20%;
  • the direct current volume resistivity ⁇ vg of the aromatic olefin grafted modified polypropylene material at 90°C and 15kV/mm field strength and the direct current volume resistivity of the copolymer polypropylene at 90°C and 15kV/mm field strength ratio ⁇ v ⁇ vg / ⁇ v is greater than 1, preferably 1.5 to 50, more preferably 2 to 20, more preferably from 3 to 10.
  • Paragraph 13 The method according to any one of paragraphs 1-12, wherein the insulating material is a cable insulating material; preferably a DC cable insulating material.
  • Paragraph 14 The method according to paragraph 13, wherein the insulating material is a cable insulating layer material.
  • the comonomer content was determined by quantitative Fourier transform infrared (FTIR) spectroscopy.
  • FTIR quantitative Fourier transform infrared
  • NMR quantitative nuclear magnetic resonance
  • Use Polymer Char's CRYST-EX instrument for testing Use trichlorobenzene solvent, heat up to 150°C for dissolution, keep constant temperature for 90 minutes, take samples for test, then cool down to 35°C, keep constant temperature for 70 minutes, take samples for test.
  • the CEAST 7026 melt index meter was used to measure at 230°C and a load of 2.16kg.
  • a differential scanning calorimeter was used to analyze the melting process and crystallization process of the material.
  • the specific operation is: under the protection of nitrogen, the 5-10 mg sample is measured from 20°C to 200°C using a three-stage temperature rise and fall measurement method, and the change in heat flow reflects the melting and crystallization process of the material, thereby calculating the melting temperature Tm.
  • the parameter M1 represents the content of the structural unit in the grafted state derived from the vinyl group-containing polymerized monomer in the polypropylene graft.
  • the calculation formula of M1 and GE is as follows:
  • w 0 is the mass of the PP matrix
  • w 1 is the mass of the grafted product before extraction
  • w 2 is the mass of the grafted product after extraction
  • w 3 is the mass of the polymerized monomer containing alkenyl groups.
  • the ratio of the electrical conductivity of the main insulation of the cable is equal to the electrical conductivity of the main insulation of the cable at 90°C divided by the electrical conductivity of the main insulation of the cable at 30°C.
  • the cable is continuously pressurized for 2 hours with 1.85 times the rated voltage of negative polarity. If there is no breakdown or discharge, it is passed, otherwise it is not passed.
  • the cable is heated to 90°C under the rated use temperature, and is first pressurized for 8 hours with 1.85 times the rated voltage, then cooled naturally and the voltage is removed for 16 hours, and the cycle is 12 days. Pass without breakdown.
  • Copolymer polypropylene 1 Refer to the method described in CN101679557A Copolypropylene 2 Refer to the method described in CN101679557A Copolypropylene 3 Refer to the method described in CN101679557A Copolypropylene 4 Self-made according to the method described in CN101058654A Copolypropylene 5 Self-made according to the method described in CN101058654A Copolypropylene 6 Self-made according to the method described in CN101058654A Polypropylene T30S Homopolymer polypropylene, Sinopec Zhenhai Refining & Chemical Dibenzoyl peroxide Bailingwei Technology Co., Ltd. J&K Chemicals Lauroyl Peroxide Bailingwei Technology Co., Ltd. J&K Chemicals
  • Co-polypropylene 2 Co-polypropylene used in Examples 2A, 2B, 2C, and 2D.
  • Co-polypropylene 3 Co-polypropylene used in Examples 3A, 3B, 3C, and 3D.
  • Example 1A Weigh 2.0 kg of the basic copolymer polypropylene powder of Example 1A, add it to a 10L reaction kettle with mechanical stirring, seal the reaction system, and replace with nitrogen to remove oxygen. Add 0.6 g of dibenzoyl peroxide and 30 g of styrene, stir and mix for 60 minutes, swell at 40°C for 4 hours, raise the temperature to 95°C, and react for 4 hours. After the reaction, the temperature was purged with nitrogen to obtain a polypropylene-g-styrene material product A7. The performance parameters of the products obtained are tested, and the results are shown in Table 1.
  • Example 1A Weigh 2.0 kg of the basic copolymer polypropylene powder of Example 1A, add it to a 10L reaction kettle with mechanical stirring, seal the reaction system, and replace with nitrogen to remove oxygen. Add 4 g of dibenzoyl peroxide and 200 g of styrene, stir and mix for 60 min, swell at 40°C for 4 hours, raise the temperature to 95°C, and react for 4 hours. After the reaction, the temperature was purged with nitrogen to obtain a polypropylene-g-styrene material product A8. The performance parameters of the products obtained are tested, and the results are shown in Table 1.
  • polyvinyl triethoxy silane 10 g lauroyl peroxide and 200 g vinyl triethoxy silane are dispersed in 800 ml of deionized water, stirred and mixed, heated to 90° C., and reacted for 4 hours. After the reaction, the reaction system was cooled to room temperature, filtered and dried to obtain 125 g of polyvinyltriethoxysilane.
  • Example 1A Comparing the data of Example 1A and Comparative Example 1A, it can be seen that using T30S powder as the basic powder, the flexural modulus of the obtained polypropylene-g-styrene material product is too high, and the mechanical properties of the material are poor, which cannot meet the requirements of insulating material processing. need.
  • Example 1A Comparing the data of Example 1A and Comparative Example 2A, it can be seen that excessive addition of styrene monomer (too high M1 value) will result in a significant decrease in the elongation at break of the obtained polypropylene-g-styrene material product, which affects the material The mechanical properties of the material, and the breakdown field strength and volume resistivity of the material decrease, which affects the electrical performance of the material.
  • Example 1A Comparing the data of Example 1A and Comparative Example 3A, it can be seen that the method of blending polystyrene leads to a significant decrease in the breakdown field strength and volume resistivity of the material, which greatly affects the electrical properties of the material.
  • Example 1B Comparing the data of Example 1B and Comparative Example 1B, it can be seen that using T30S powder as the basic powder, the flexural modulus of the obtained polypropylene-g-silane material product is too high, and the mechanical properties of the material are poor, which cannot meet the processing requirements of insulating materials. .
  • Example 1B Comparing the data of Example 1B and Comparative Example 3B, it can be seen that the method of blending polyvinyltriethoxysilane instead results in a substantial decrease in the breakdown field strength and volume resistivity of the product, which greatly affects the electrical performance of the product.
  • Example 1C Comparing the data of Example 1C and Comparative Example 1C, it can be seen that using T30S powder as the basic powder, the flexural modulus of the obtained polypropylene-g-acrylate material product is too high, and the mechanical properties of the material are poor, which cannot meet the requirements of insulating material processing. need.
  • Example 1C Comparing the data of Example 1C and Comparative Example 2C, it can be seen that excessive addition of acrylate monomers (too high M1 value) will result in the breakdown field strength and volume resistivity of the obtained polypropylene-g-acrylate material product. Decrease, affecting the electrical performance of the product.
  • Example 1C Comparing the data of Example 1C and Comparative Example 3C, it can be seen that the method of blending acrylate polymers instead causes the breakdown field strength and volume resistivity of the product to drop significantly, which greatly affects the electrical properties of the product.
  • Example 1D Comparing the data of Example 1D and Comparative Example 1D, it can be seen that using T30S powder as the basic powder, the flexural modulus of the obtained polypropylene-g-heterocyclic material product is too high, and the mechanical properties of the material are poor, which cannot meet the requirements of insulating material processing. need.
  • Example 1D Comparing the data of Example 1D and Comparative Example 3D, it can be seen that the method of blending heterocyclic polymers actually causes the breakdown field strength and volume resistivity of the product to drop significantly, which greatly affects the electrical properties of the product.
  • the preparation of the conductor a plurality of aluminum monofilament conductors are subjected to a stranding operation, and then the stranded monofilament conductors are twisted to obtain an aluminum conductor inner core.
  • Preparation of aromatic olefin modified polypropylene particles blend the following components by mass: the aromatic olefin modified polypropylene material 100 obtained in Example A1, Example A3, Example A5, Example A7 and Example A8 Parts, antioxidant 1010/168/calcium stearate (mass ratio 2:2:1) 0.3 parts.
  • Conductor shielding material PSD_WMP-00012 (Zhejiang Wanma Co., Ltd.) and the above-mentioned aromatic olefin modified polypropylene particles are co-extruded and coated outside the conductor core by an extruder to form a conductor Shielding layer + electrical insulating layer, or forming a conductor shielding layer + electrical insulating layer + electrical insulating shielding layer (outer shielding layer), the extrusion temperature is 160-220°C.
  • T1 copper is used to wrap the copper tape outside the electrical insulation layer (electrical insulation shielding layer) to form a metal shielding layer.
  • PVC particles (Dongguan Haichuang Electronics Co., Ltd.) of the brand St-2 are extruded outside the metal shielding layer through an extruder to form an inner sheath layer.
  • Armour preparation Use 304 stainless steel to make a steel wire armor with a nominal diameter of 1.25mm. A single layer of armor is left-wrapped on the inner sheath layer. The armor is tight to minimize the gap between adjacent steel wires. .
  • PVC particles (Dongguan Haichuang Electronics Co., Ltd.) of the brand St-2 are extruded outside the armor through an extruder to form an outer sheath layer.
  • cables with energy levels in the range of 6-35kV are prepared based on the materials of Example A1, Example A3, Example A5, Example A7, and Example A8.
  • the cross-sectional area of the cable conductor is 240-400mm 2 , and the conductor is shielded.
  • the thickness of the layer is 1 to 3 mm
  • the thickness of the electrical insulation layer is 2 to 8 mm
  • the thickness of the electrical insulation shielding layer is 0.5 to 1.5 mm
  • the armor thickness is 0.5 to 1 mm
  • the thickness of the inner sheath layer is 1 to 2 mm
  • the thickness of the outer sheath layer is not less than 1.8 mm.
  • the preparation of the conductor a plurality of aluminum monofilament conductors are subjected to a stranding operation, and then the stranded monofilament conductors are twisted to obtain an aluminum conductor inner core.
  • Preparation of alkenyl-containing silane-modified polypropylene particles blend the following components by mass: 100 parts of alkenyl-containing silane-modified polypropylene obtained in Examples B1-B4 and B6-B7, Antioxidant 1010/168/calcium stearate (mass ratio 2:2:1) 0.3 parts. Use twin-screw extruder to granulate, rotate speed 300r/min, and granulate temperature 210-230°C.
  • Conductor shielding material PSD_WMP-00012 Zhejiang Wanma Co., Ltd.
  • the above-mentioned alkenyl-containing silane-modified polypropylene particles are co-extrusion coated outside the conductor core by an extruder Form a conductor shielding layer + electrical insulation layer, or form a conductor shielding layer + electrical insulation layer + electrical insulation shielding layer (outer shielding layer), and the extrusion temperature is 160-220°C.
  • T1 copper is used to wrap the copper tape outside the electrical insulation layer (electrical insulation shielding layer) to form a metal shielding layer.
  • PVC particles (Dongguan Haichuang Electronics Co., Ltd.) of the brand St-2 are extruded outside the metal shielding layer through an extruder to form an inner sheath layer.
  • Armour preparation Use 304 stainless steel to make a steel wire armor with a nominal diameter of 1.25mm. A single layer of armor is left-wrapped on the inner sheath layer. The armor is tight to minimize the gap between adjacent steel wires. .
  • PVC particles (Dongguan Haichuang Electronics Co., Ltd.) of the brand St-2 are extruded outside the armor through an extruder to form an outer sheath layer.
  • thermoplastic cable with the modified polypropylene insulation layer is obtained.
  • the schematic diagram of the cable structure is shown in Figure 1.
  • cables with energy levels in the range of 6 ⁇ 35kV are prepared based on the materials of Examples B1-B4 and Examples B6-B7.
  • the cross-sectional area of the cable conductor is 240 ⁇ 400mm 2
  • the thickness of the conductor shielding layer is 1 ⁇ 3mm
  • the electrical insulation The thickness of the layer is 2-8mm
  • the thickness of the electrical insulation shielding layer is 0.5-1.5mm
  • the thickness of the armor is 0.5-1mm
  • the thickness of the inner sheath layer is 1-2mm
  • the thickness of the outer sheath layer is not less than 1.8mm.
  • the preparation of the conductor a plurality of aluminum monofilament conductors are subjected to a stranding operation, and then the stranded monofilament conductors are twisted to obtain an aluminum conductor inner core.
  • Preparation of acrylate-modified polypropylene particles Blend the following components by mass: the acrylate-modified polypropylene material 100 obtained in Example C1, Example C3, Example C5, Example C7, and Example C8 Parts, antioxidant 1010/168/calcium stearate (mass ratio 2:2:1) 0.3 parts, anti-copper agent MDA-5 0.05 parts. Use twin-screw extruder to granulate, rotate speed 300r/min, and granulate temperature 210-230°C.
  • Conductor shielding material PSD_WMP-00012 Zhejiang Wanma Co., Ltd.
  • acrylic modified polypropylene particles are co-extrusion coated outside the conductor core through an extruder to form a conductor shield Layer + electrical insulation layer, or form a conductor shielding layer + electrical insulation layer + electrical insulation shielding layer (outer shielding layer), the extrusion temperature is 160-220°C.
  • T1 copper is used to wrap the copper tape outside the electrical insulation layer (electrical insulation shielding layer) to form a metal shielding layer.
  • PVC particles (Dongguan Haichuang Electronics Co., Ltd.) of the brand St-2 are extruded outside the metal shielding layer through an extruder to form an inner sheath layer.
  • Armour preparation Use 304 stainless steel to make a steel wire armor with a nominal diameter of 1.25mm. A single layer of armor is left-wrapped on the inner sheath layer. The armor is tight to minimize the gap between adjacent steel wires. .
  • PVC particles (Dongguan Haichuang Electronics Co., Ltd.) of the brand St-2 are extruded outside the armor through an extruder to form an outer sheath layer.
  • cables with energy levels in the range of 6 ⁇ 35kv are prepared based on embodiment C1, embodiment C3, embodiment C5, embodiment C7 and embodiment C8.
  • the cross-sectional area of the cable conductor is 240-400mm 2 and the thickness of the conductor shielding layer 1 ⁇ 3mm, the thickness of the electrical insulation layer is 2 ⁇ 8mm, the thickness of the electrical insulation shielding layer is 0.5 ⁇ 1.5mm, the armor thickness is 0.5 ⁇ 1mm, the thickness of the inner sheath layer is 1-2mm, and the thickness of the outer sheath layer is not less than 1.8mm.
  • the preparation of the conductor a plurality of aluminum monofilament conductors are subjected to a stranding operation, and then the stranded monofilament conductors are twisted to obtain an aluminum conductor inner core.
  • Preparation of modified material particles of polypropylene grafted heterocyclic ring Blend the following components by mass: Example D2, Example D3, Example D5 and Example D7 to obtain the modified polypropylene grafted heterocyclic ring 100 parts of sexual materials, 0.3 parts of antioxidant 1010/168/calcium stearate (mass ratio 2:2:1). Use twin-screw extruder to granulate, rotate speed 300r/min, and granulate temperature 210-230°C.
  • Conductor shielding material PSD_WMP-00012 Zhejiang Wanma Co., Ltd.
  • the above-mentioned polypropylene grafted heterocyclic modified material particles are co-extruded outside the conductor core through an extruder Coating to form a conductor shielding layer + electrical insulating layer, or forming a conductor shielding layer + electrical insulating layer + electrical insulating shielding layer (outer shielding layer), the extrusion temperature is 160-210°C.
  • T1 copper is used to wrap the copper tape outside the electrical insulation layer (electrical insulation shielding layer) to form a metal shielding layer.
  • PVC particles (Dongguan Haichuang Electronics Co., Ltd.) of the brand St-2 are extruded outside the metal shielding layer through an extruder to form an inner sheath layer.
  • Armour preparation Use 304 stainless steel to make a steel wire armor with a nominal diameter of 1.25mm. A single layer of armor is left-wrapped on the inner sheath layer. The armor is tight to minimize the gap between adjacent steel wires. .
  • PVC particles (Dongguan Haichuang Electronics Co., Ltd.) of the brand St-2 are extruded outside the armor through an extruder to form an outer sheath layer.
  • the method is based on the above-described embodiment, D2, D3 Example embodiments, as in Example D5 and D7 of the material obtained in Example level in the range of 6 ⁇ 35kV cable embodiment, the cable conductor cross-sectional area of 240 ⁇ 400mm 2, each conductor shield layer thickness of 1 to 3mm, the thickness of the electrical insulation layer is 2-8mm, the thickness of the electrical insulation shielding layer is 0.5-1.5mm, the thickness of the armor is 0.5-1mm, the thickness of the inner sheath layer is 1-2mm, and the thickness of the outer sheath layer is not less than 1.8mm.
  • Preparation of the conductor 76 aluminum monofilaments with a diameter of 2.5 mm are pressed and twisted to obtain an aluminum conductor inner core.
  • Preparation of aromatic olefin modified polypropylene particles blend the following components by mass: 100 parts of aromatic olefin modified polypropylene obtained in Example 2A, antioxidant 1010/168/calcium stearate (mass ratio 2:2:1) 0.3 parts. Use twin-screw extruder to pelletize, rotating speed 300r/min, pelletizing temperature 210 ⁇ 230°C.
  • Conductor shielding material PSD_WMP-00012 (Zhejiang Wanma Co., Ltd.) and the above-mentioned aromatic olefin modified polypropylene particles are co-extruded and coated outside the conductor core by an extruder to form a conductor Shielding layer + electrical insulating layer, or forming a conductor shielding layer + electrical insulating layer + electrical insulating shielding layer (outer shielding layer), the extrusion temperature is 190-220°C.
  • Preparation of the metal shielding layer 25 T1 copper metal wires with a diameter of 0.3mm are used for copper wire wrapping outside the electrical insulating layer (electrical insulating shielding layer) to form a metal shielding layer.
  • PVC particles (Dongguan Haichuang Electronics Co., Ltd.) of the brand St-2 are extruded outside the metal shielding layer through an extruder to form an inner sheath layer.
  • Armor preparation Use 50 304 stainless steel wires with a diameter of 6.0mm to make a single-layer steel wire armor. The gap is the smallest.
  • PVC particles (Dongguan Haichuang Electronics Co., Ltd.) of the brand St-2 are extruded outside the armor through an extruder to form an outer sheath layer.
  • a cable with an energy level in the range of 10kV is prepared based on the material of Example 2A.
  • the cross-sectional area of the cable conductor is 400mm 2
  • the average thickness of the conductor shielding layer is 1.04mm
  • the average thickness of the electrical insulation layer is 2.53mm
  • the electrical insulation shielding The average thickness of the layer is 1.05mm
  • the average thickness of the metal shielding layer is 0.92mm
  • the cable insulation eccentricity is 5.1%
  • the average thickness of the armor is 6.00mm
  • the average thickness of the inner sheath is 1.80mm
  • the average thickness of the outer sheath is 1.80mm.
  • the thickness is 2.45mm.
  • the electrical conductivity test result of the main insulation of the cable the electrical conductivity ratio of the cable at 90°C and 30°C is 47.5.
  • the cable insulation space charge injection test result the electric field distortion of the cable is 18.3%.
  • DC withstand voltage test result the cable passed without breakdown and discharge.
  • Load cycle test result the cable passed without breakdown.
  • Preparation of the conductor 76 aluminum monofilaments with a diameter of 2.5 mm are pressed and twisted to obtain an aluminum conductor inner core.
  • Preparation of alkenyl-containing silane-modified polypropylene particles blend the following components by mass: 100 parts of alkenyl-containing silane-modified polypropylene obtained in Example 5B, antioxidant 1010/168/hard Calcium fatty acid (mass ratio 2:2:1) 0.3 parts. Use twin-screw extruder to pelletize, rotating speed 300r/min, pelletizing temperature 210 ⁇ 230°C.
  • Conductor shielding material PSD_WMP-00012 Zhejiang Wanma Co., Ltd.
  • the above-mentioned alkenyl-containing silane-modified polypropylene particles are co-extrusion coated outside the conductor core by an extruder Form a conductor shielding layer + electrical insulation layer, or form a conductor shielding layer + electrical insulation layer + electrical insulation shielding layer (outer shielding layer), and the extrusion temperature is 190-220°C.
  • Preparation of the metal shielding layer 25 T1 copper metal wires with a diameter of 0.3mm are used for copper wire wrapping outside the electrical insulating layer (electrical insulating shielding layer) to form a metal shielding layer.
  • PVC particles (Dongguan Haichuang Electronics Co., Ltd.) of the brand St-2 are extruded outside the metal shielding layer through an extruder to form an inner sheath layer.
  • Armor preparation Use 50 304 stainless steel wires with a diameter of 6.0mm to make a single-layer steel wire armor. The gap is the smallest.
  • PVC particles (Dongguan Haichuang Electronics Co., Ltd.) of the brand St-2 are extruded outside the armor through an extruder to form an outer sheath layer.
  • thermoplastic cable with the modified polypropylene insulation layer is obtained.
  • the schematic diagram of the cable structure is shown in Figure 1.
  • a cable with an energy level of 10kV is prepared based on the material of Example 5B.
  • the cross-sectional area of the cable conductor is 400mm 2
  • the average thickness of the conductor shielding layer is 1.05mm
  • the average thickness of the electrical insulation layer is 2.95mm.
  • the average thickness is 1.18mm
  • the average thickness of the metal shielding layer is 0.95mm
  • the cable insulation eccentricity is 5.2%
  • the average thickness of the armor is 5.95mm
  • the average thickness of the inner sheath layer is 2.44mm
  • the average thickness of the outer sheath layer is 2.80mm .
  • the electrical conductivity test result of the main insulation of the cable the electrical conductivity ratio of the cable at 90°C and 30°C is 56.8.
  • the cable insulation space charge injection test result the electric field distortion of the cable is 17.5%.
  • DC withstand voltage test result the cable passed without breakdown and discharge.
  • Load cycle test result the cable passed without breakdown.
  • Preparation of acrylic monomer-modified polypropylene particles Blend the following components by mass: 100 parts of the modified polypropylene material obtained in Example 2C, and 1024 0.3 parts of antioxidant. Use twin-screw extruder to pelletize, rotating speed 300r/min, pelletizing temperature 210 ⁇ 230°C.
  • Conductor shielding material PSD_WMP-00012 Zhejiang Wanma Co., Ltd.
  • the above modified polypropylene particles are co-extrusion coated outside the conductor core through an extruder to form a conductor shielding layer+ Electrical insulation layer, or formation of conductor shielding layer + electrical insulation layer + electrical insulation shielding layer (outer shielding layer), the extrusion temperature is 190-220°C.
  • Preparation of the metal shielding layer 25 T1 copper metal wires with a diameter of 0.3mm are used for copper wire wrapping outside the electrical insulating layer (electrical insulating shielding layer) to form a metal shielding layer.
  • PVC particles (Dongguan Haichuang Electronics Co., Ltd.) of the brand St-2 are extruded outside the metal shielding layer through an extruder to form an inner sheath layer.
  • Armor preparation Use 50 304 stainless steel wires with a diameter of 6.0mm to make a single-layer steel wire armor. The gap is the smallest.
  • PVC particles (Dongguan Haichuang Electronics Co., Ltd.) of the brand St-2 are extruded outside the armor through an extruder to form an outer sheath layer.
  • a cable with an energy level of 10kV is prepared based on the material of Example 2C.
  • the cross-sectional area of the cable conductor is 400mm 2
  • the average thickness of the conductor shielding layer is 1.19mm
  • the average thickness of the electrical insulation layer is 2.96mm.
  • the average thickness is 1.06mm
  • the average thickness of the metal shielding layer is 0.94mm
  • the cable insulation eccentricity is 4.9%
  • the average thickness of the armor is 5.93mm
  • the average thickness of the inner sheath layer is 2.07mm
  • the average thickness of the outer sheath layer is 2.75mm.
  • the electrical conductivity test results of the main insulation of the cable the electrical conductivity ratio of the cable at 90°C and 30°C is 69.4.
  • the cable insulation space charge injection test result the electric field distortion of the cable is 18.6%.
  • DC withstand voltage test result the cable passed without breakdown and discharge.
  • Load cycle test result the cable passed without breakdown.
  • Preparation of the conductor 76 aluminum monofilaments with a diameter of 2.5 mm are pressed and twisted to obtain an aluminum conductor inner core.
  • Preparation of polypropylene grafted heterocyclic modified material particles the following parts by mass were blended: 100 parts of polypropylene grafted heterocyclic modified material obtained in Example 1D, and 1035 0.3 parts of antioxidant. Use twin-screw extruder to pelletize, rotating speed 300r/min, pelletizing temperature 210 ⁇ 230°C.
  • Conductor shielding material PSD_WMP-00012 Zhejiang Wanma Co., Ltd.
  • the above-mentioned polypropylene grafted heterocyclic modified material particles are co-extruded outside the conductor core through an extruder Coated to form a conductor shielding layer + electrical insulation layer, or form a conductor shielding layer + electrical insulation layer + electrical insulation shielding layer (outer shielding layer), and the extrusion temperature is 190-210°C.
  • Preparation of the metal shielding layer 25 T1 copper metal wires with a diameter of 0.3mm are used for copper wire wrapping outside the electrical insulating layer (electrical insulating shielding layer) to form a metal shielding layer.
  • PVC particles (Dongguan Haichuang Electronics Co., Ltd.) of the brand St-2 are extruded outside the metal shielding layer through an extruder to form an inner sheath layer.
  • Armor preparation use 50 304 stainless steel wires with a diameter of 6.0mm to make steel wire armor.
  • the single layer of armor is left-wrapped on the inner sheath layer.
  • the armor is tight to minimize the gap between adjacent steel wires. .
  • PVC particles (Dongguan Haichuang Electronics Co., Ltd.) of the brand St-2 are extruded outside the armor through an extruder to form an outer sheath layer.
  • a cable with an energy level of 10kV is prepared based on the material of Example 1D.
  • the cross-sectional area of the cable conductor is 400mm 2
  • the average thickness of the conductor shielding layer is 1.07mm
  • the average thickness of the electrical insulation layer is 2.64mm.
  • the average thickness is 1.00mm
  • the average thickness of the metal shielding layer is 1.00mm
  • the cable insulation eccentricity is 5.4%
  • the average thickness of the armor is 5.94mm
  • the average thickness of the inner sheath layer is 2.25mm
  • the average thickness of the outer sheath layer is 2.40mm .
  • the electrical conductivity test results of the main insulation of the cable the electrical conductivity ratio of the cable at 90°C and 30°C is 52.1.
  • the cable insulation space charge injection test result the electric field distortion of the cable is 16.2%.
  • DC withstand voltage test result the cable passed without breakdown and discharge.
  • Load cycle test result the cable passed without breakdown.
  • the cable with the grafted modified polypropylene material used as the main insulation layer of the present invention has a higher working temperature than existing cables, and can maintain or even have a higher volume resistivity at a higher working temperature. And stronger breakdown resistance.
  • the electrical insulation layer made of the grafted modified polypropylene material has the advantages of thinner thickness, better heat dissipation and smaller weight than the electrical insulation layer of conventional cables.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Graft Or Block Polymers (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Abstract

一种用于绝缘材料的接枝改性聚丙烯材料及其制备方法,该接枝改性聚丙烯材料包括衍生自共聚聚丙烯的结构单元和衍生自含烯基聚合单体的结构单元;以接枝改性聚丙烯材料的重量为基准,所述接枝改性聚丙烯材料中衍生自含烯基聚合单体且处于接枝态的结构单元的含量为0.1-14wt%;所述共聚聚丙烯具有以下特征中的至少一种:共聚单体含量为0.5-40mol%;二甲苯可溶物含量为2-80wt%;可溶物中共聚单体含量为10-70wt%;可溶物与聚丙烯的特性粘数比为0.3-5。其可在较高工作温度下兼顾机械性能和电性能。

Description

一种接枝改性聚丙烯材料及其制备方法 技术领域
本发明属于聚合物领域,具体地,涉及一种接枝改性聚丙烯材料,一种接枝改性聚丙烯材料的制备方法,由该制备方法制得的接枝改性聚丙烯材料,以及该接枝改性聚丙烯材料的应用和一种电缆。
背景技术
高分子聚合物材料因具有优良的电气绝缘性能与较低的制造成本,在电气工程领域和电力行业中作为电力设备的绝缘材料而得到了大量的应用。其中以聚乙烯为代表的简单结构高分子塑料绝缘材料的应用尤为广泛,在此基础上发展起来的交联型聚乙烯、共聚型聚烯烃与橡胶材料被广泛应用在电机与变压器绝缘、线路绝缘、断路器绝缘上。乙烯基高分子绝缘材料具有较好的机械性能与热性能,优良的电气绝缘性能与较低的价格,是一种工程上发展较为成熟的绝缘材料。
随着电力行业的迅猛发展,电网系统朝着更高电压等级与更大的电能输送容量迈进,对绝缘材料的性能提出了更高的要求。在这一趋势下,传统的聚乙烯类绝缘材料已无法满足更高的长期工作温度与电场(目前在运的交联聚乙烯的绝缘材料的最高长期使用温度为70℃)。因此迫切需要开发新型的电力设备绝缘材料以适应更高工作温度和场强下的使用要求。
聚丙烯材料作为一种简单结构的高分子塑料,具有聚乙烯材料的一切优点。而且相比聚乙烯,聚丙烯具有更好的电气绝缘性能和更高的熔点,作为绝缘材料有望适应更加严苛的工作环境。然而,聚丙烯的机械性能较聚乙烯稍差,尤其在低温下较脆,不能直接作为绝缘材料使用。因此对于聚丙烯材料,有必要对其进行材料改性以实现电气性能、机械性能和热性能的综合调控,以期在更高温度和电场下保持较好的绝缘性能。
大量文献和数据表明在聚丙烯材料中掺杂纳米颗粒进行改性是提升电气绝缘性能的一种有效途径。但是在实际制备中会遇到纳米颗粒掺杂行为难以控制的困难,从而导致纳米颗粒易于团聚反而使得绝缘性能下降的问题,限制了其在实际工程中的广泛应用。
因此有必要寻找一种绝缘性能调控能力明显、可兼顾机械性能和热性能、性能稳定、制备方便,贴合工程实际应用的新型改性聚丙烯材料。
发明内容
本发明的目的在于克服上述现有技术的缺陷,提供一种新型接枝改性聚丙烯材料,其可在较高工作温度下兼顾机械性能和电性能,适用于高温、高运行场强工况。
本发明的第一方面提供一种用于绝缘材料的接枝改性聚丙烯材料,其特征在于,该接枝改性聚丙烯材料包括衍生自共聚聚丙烯的结构单元和衍生自含烯基聚合单体的结构单元;以接枝改性聚丙烯材料的重量为基准,所述接枝改性聚丙烯材料中衍生自含烯基聚合单体且处于接枝态的结构单元的含量为0.1~14wt%,优选为0.2~7.5wt%;所述共聚聚丙烯具有以下特征中的至少一种:共聚单体含量为0.5~40mol%,优选为0.5~30mol%,更优选为4~25wt%,进一步优选为4~22wt%;二甲苯可溶物含量为2~80wt%,优选为18~75wt%,更优选为30~70wt%,进一步优选为30~67wt%;可溶物中共聚单体含量为10~70wt%,优选为10~50wt%,更优选为20~35wt%;可溶物与聚丙烯的特性粘数比为0.3~5,优选为0.5~3,更优选为0.8~1.3。
本发明的第二方面提供一种用于绝缘材料的接枝改性聚丙烯材料的制备方法,该制备方法包括:在惰性气体存在下,使包括共聚聚丙烯和含烯基聚合单体的反应混合物进行接枝反应,得到所述接枝改性聚丙烯材料;所述接枝反应的条件使得:以接枝改性聚丙烯材料的重量为基准,所述接枝改性聚丙烯材料中衍生自含烯基聚合单体且处于接枝态的结构单元的含量为0.1~14wt%,优选为0.2~7.5wt%;所述共聚聚丙烯具有以下特征中的至少一种:共聚单体含量为0.5~40mol%,优选为0.5~30mol%,更优选为4~25wt%,进一步优选为4~22wt%;二甲苯可溶物含量为2~80wt%,优选为18~75wt%,更优选为30~70wt%,进一步优选为30~67wt%;可溶物中共聚单体含量为10~70wt%,优选为10~50wt%,更优选为20~35wt%;可溶物与聚丙烯的特性粘数比为0.3~5,优选为0.5~3,更优选为0.8~1.3。
本发明的第三方面提供由上述制备方法制得的用于绝缘材料的接枝改性聚丙烯材料。
本发明的第四方面提供上述接枝改性聚丙烯材料作为绝缘材料的应用。
本发明的第五方面提供一种电缆,其特征在于,该电缆包括:至少一个导体以及至少一个围绕所述导体的电绝缘层;其中,所述电绝缘层的材料为上述接枝改性聚丙烯材料。
本发明的第六方面提供一种绝缘材料,其特征在于,该绝缘材料包含上述接枝改性聚丙烯材料。
附图简要描述
图1是根据本发明一种实施方案的电缆的剖面示意图。
附图标记说明
1-导体;2-导体屏蔽层;3-电绝缘层;4-电绝缘屏蔽层;5-金属屏蔽层;6-内护套层; 7-铠装;8-外护套层。
发明详述
本发明的第一方面提供一种用于绝缘材料的接枝改性聚丙烯材料,该接枝改性聚丙烯材料包括衍生自共聚聚丙烯的结构单元和衍生自含烯基聚合单体的结构单元;以接枝改性聚丙烯材料的重量为基准,所述接枝改性聚丙烯材料中衍生自含烯基聚合单体且处于接枝态的结构单元的含量为0.1~14wt%,优选为0.2~7.5wt%。
所述共聚聚丙烯具有以下特征中的至少一种:共聚单体含量为0.5~40mol%,优选为0.5~30mol%,更优选为4~25wt%,进一步优选为4~22wt%;二甲苯可溶物含量为2~80wt%,优选为18~75wt%,更优选为30~70wt%,进一步优选为30~67wt%;可溶物中共聚单体含量为10~70wt%,优选为10~50wt%,更优选为20~35wt%;可溶物与聚丙烯的特性粘数比为0.3~5,优选为0.5~3,更优选为0.8~1.3。
本发明中,所述“结构单元”意指其为接枝改性聚丙烯材料的一部分,其形式并不受限。具体地,“衍生自共聚聚丙烯的结构单元”是指由共聚聚丙烯形成的产物,其既包括“基团”形式的,也包括“聚合物”形式的。“衍生自含烯基聚合单体的结构单元”是指由含烯基聚合单体形成的产物,其既包括“基团”形式的,也包括“单体”形式的,还包括“聚合物”形式的。所述“结构单元”可以是重复的单元,也可以是非重复的独立单元。
“处于接枝态”的衍生自含烯基聚合单体的结构单元是指与共聚聚丙烯形成共价连接(接枝)的衍生自含烯基聚合单体的结构单元。
本发明中,共聚聚丙烯的“共聚单体”的含义为本领域技术人员公知,是指与丙烯共聚的单体。
根据本发明,优选地,所述接枝改性聚丙烯材料由共聚聚丙烯和含烯基聚合单体经接枝反应制得,优选经固相接枝反应制得。本发明的接枝反应是自由基聚合反应,因此,所述“处于接枝态”是指反应物经过自由基聚合后,与另一反应物形成连接的状态。所述连接既包括直接的连接,也包括间接的连接。
在接枝反应过程中,含烯基聚合单体可能各自或相互聚合形成一定量的未接枝的聚合物。本发明的术语“接枝改性聚丙烯材料”既包括由共聚聚丙烯和含烯基聚合单体经接枝反应直接制得的产物(粗品),也包括将该产物进行进一步纯化得到的接枝改性聚丙烯纯品。
根据本发明,共聚聚丙烯(本发明中的基础聚丙烯)为含有乙烯或高级α-烯烃的丙烯共聚物或者其混合物。具体地,所述共聚聚丙烯的共聚单体选自除丙烯外的C 2-C 8的α-烯烃中的至少一种。所述除丙烯外的C 2-C 8的α-烯烃包括但不限于:乙烯、1-丁烯、1-戊烯、 4-甲基-1-戊烯、1-己烯、1-庚烯和1-辛烯中的至少一种,优选为乙烯和/或1-丁烯,进一步优选地,所述共聚聚丙烯由丙烯和乙烯组成。
本发明的共聚聚丙烯可以为多相丙烯共聚物。多相丙烯共聚物可以含有丙烯均聚物或丙烯无规共聚物基质组分(1),以及分散在其中的另一丙烯共聚物组分(2)。在丙烯无规共聚物中,共聚单体无规地分布在丙烯聚合物的主链上。优选地,本发明的共聚聚丙烯为通过现有工艺在反应器内原位(in situ)制备的多相丙烯共聚物。
根据一种优选的实施方式,所述多相丙烯共聚物含有丙烯均聚物基质或无规共聚物基质(1),以及分散在其中的含有一种或多种乙烯或高级α-烯烃共聚单体的丙烯共聚物组分(2)。所述多相丙烯共聚物可以为海岛结构或双连续结构。
在本领域中已知有两种多相丙烯共聚物,含有丙烯无规共聚物作为基质相的多相丙烯共聚物或含有丙烯均聚物作为基质相的多相丙烯共聚物。无规共聚物基质(1)是共聚用单体部分无规地分布在聚合物链上形成的共聚物,换言之,由随机长度(包含单分子)的两种单体单元交替顺序组成。优选基质(1)中的共聚单体选自乙烯或丁烯。特别优选基质(1)中的共聚单体为乙烯。
优选地,分散在多相丙烯共聚物的均聚物或共聚物基质(1)中的丙烯共聚物(2)基本上是无定形的。术语“基本上是无定形的”在此是指丙烯共聚物(2)比均聚物或共聚物基质(1)具有更低的结晶度。
根据本发明,除上述组成特征以外,所述共聚聚丙烯具有以下特征中的至少一种:共聚单体含量为0.5~40mol%,优选为0.5~30mol%,更优选为4~25wt%,进一步优选为4~22wt%;二甲苯可溶物含量为2~80wt%,优选为18~75wt%,更优选为30~70wt%,进一步优选为30~67wt%;可溶物中共聚单体含量为10~70wt%,优选为10~50wt%,更优选为20~35wt%;可溶物与聚丙烯的特性粘数比为0.3~5,优选为0.5~3,更优选为0.8~1.3。
根据本发明,优选地,所述共聚聚丙烯还具有以下特征中的至少一种:在230℃,2.16kg载荷下的熔体流动速率为0.01~60g/10min,优选为0.05~35g/10min,进一步优选为0.5~15g/10min。熔融温度Tm为100℃以上,优选为110~180℃,进一步优选为110~170℃,进一步优选为120~170℃,进一步优选为120~166℃。重均分子量优选为20×10 4~60×10 4g/mol。具有高Tm的基础聚丙烯在低温和高温下均具有令人满意的冲击强度和柔韧性,此外,在使用具有高Tm基础聚丙烯时,本发明的接枝改性聚丙烯具有能承受较高工作温度的优点。本发明所述共聚聚丙烯优选为多孔颗粒状或粉状树脂。
根据本发明,优选地,所述共聚聚丙烯还具有以下特征中的至少一种:弯曲模量为10~1000MPa,优选为50~600MPa;断裂伸长率≥200%,优选断裂伸长率≥300%。优选地, 所述共聚聚丙烯的拉伸强度大于5MPa,优选为10~40MPa。
本发明所述共聚聚丙烯可以包括但不限于中国石化武汉石化的NS06,中国石化齐鲁石化的SPF179等任意可商业获得的适于本发明的聚丙烯粉料,也可以通过中国专利CN1081683、CN1108315、CN1228096、CN1281380、CN1132865C和CN102020733A等中记载的聚合工艺生产得到。常用的聚合工艺包括Basell公司的Spheripol工艺,三井油化公司的Hypol工艺,Borealis公司的Borstar PP工艺,DOW化学公司的Unipol工艺,INEOS(原BP-Amoco)公司的Innovene气相法工艺等。
根据本发明,优选地,所述接枝改性聚丙烯材料具有以下特征中的至少一种:在230℃,2.16kg载荷下的熔体流动速率为0.01~30g/10min,优选为0.05~20g/10min,进一步优选为0.1~10g/10min,更优选为0.2~8g/10min;弯曲模量为10~1250MPa,优选为20~1000MPa,更优选为50~600MPa;断裂伸长率≥200%,优选断裂伸长率≥300%。优选地,所述接枝改性聚丙烯材料的拉伸强度大于5MPa,优选为10~40MPa。
根据本发明,优选地,所述接枝改性聚丙烯材料具有以下特征中的至少一种:
-所述接枝改性聚丙烯材料的工作温度≥90℃,优选为90~160℃;
-所述接枝改性聚丙烯材料在90℃下的击穿场强E g≥180kV/mm,优选为180~800kV/mm;
-所述接枝改性聚丙烯材料在90℃下的击穿场强E g与所述共聚聚丙烯在90℃下的击穿场强E的差值△E除以所述共聚聚丙烯在90℃下的击穿场强E所得的击穿场强变化率△E/E大于0.7%,优选为0.8%~50%,更优选为2%~35%,进一步优选为5%~25%;
-所述接枝改性聚丙烯材料在90℃、15kV/mm场强下的直流体积电阻率ρ vg≥6×10 12Ω·m,优选为6×10 12Ω·m~1.0×10 20Ω·m;
-所述接枝改性聚丙烯材料在90℃、15kV/mm场强下的直流体积电阻率ρ vg与所述共聚聚丙烯在90℃、15kV/mm场强下的直流体积电阻率ρ v的比值ρ vg/ρ v大于1,优选为1.1~50,更优选为1.15~20,进一步优选为1.2~10。
优选地,所述接枝改性聚丙烯材料在90℃、50Hz下的介电常数大于2.0,优选2.1~2.5。
根据本发明,所述含烯基聚合单体选自具有式1所示结构的单体中的至少一种,
Figure PCTCN2020127507-appb-000001
式1中,R b、R c、R d各自独立地选自H、取代或未取代的烷基;R a选自取代或未取代的烷基、取代或未取代的烷氧基、取代或未取代的芳基、取代或未取代的酯基、取代或未取代的羧基、取代或未取代的环烷基或杂环基、氰基、取代或未取代的硅烷基。
根据本发明,优选地,R b、R c、R d各自独立地选自H、取代或未取代的C 1-C 6烷基;R a选自取代或未取代的C 1-C 20烷基、取代或未取代的C 1-C 20烷氧基、取代或未取代的C 6-C 20芳基、取代或未取代的C 1-C 20酯基、取代或未取代的C 1-C 20羧基、取代或未取代的C 3-C 20环烷基或杂环基、氰基、取代或未取代的C 3-C 20硅烷基;所述取代的基团为卤素、羟基、氨基、C 1-C 12烷基、C 3-C 6环烷基、C 1-C 12的烷氧基、C 1-C 12的酰氧基。
根据本发明,优选地,R b、R c、R d各自独立地选自H、取代或未取代的C 1-C 6烷基;
R a选自式2所示基团、式3所示基团、式4所示基团、式5所示基团、式6所示基团、式6所示基团和式7所示基团的组合、杂环基团;
Figure PCTCN2020127507-appb-000002
式2中,R 4-R 8各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 4-R 8各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基;
Figure PCTCN2020127507-appb-000003
式3中,R 4-R 10各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 4-R 10各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基,所述取代的基团选自卤素、羟基、氨基、C 1-C 6的烷基、C 1-C 6的烷氧基;
Figure PCTCN2020127507-appb-000004
式4中,R 4’-R 10’各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 4’-R 10’各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基,所述取代的基团选自卤素、羟基、氨基、C 1-C 6的烷基、C 1-C 6的烷氧基;
Figure PCTCN2020127507-appb-000005
式5中,R’、R”、R”’各自独立地选自取代或未取代的C 1-C 12的直链烷基、取代或未取代的C 3-C 12的支链烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酰氧基;优选地,R 1为C 2-C 6的烯基,优选为单不饱和烯基;R 2、R 3、R 4各自独立地选自取代或未取代的C 1-C 6的直链烷基、取代或未取代的C 3-C 6的支链烷基、取代或未取代的C 1-C 6的烷氧基、取代或未取代的C 1-C 6的酰氧基;
Figure PCTCN2020127507-appb-000006
式6中,R m选自取代或未取代的以下基团:C 1-C 20直链烷基、C 3-C 20支链烷基、C 3-C 12环烷基、C 3-C 12环氧烷基、C 3-C 12环氧烷基烷基,所述取代的基团选自卤素、氨基和羟基中的至少一种;
所述杂环基团选自咪唑基、吡唑基、咔唑基、吡咯烷酮基、吡啶基、哌啶基、己内酰胺基、吡嗪基、噻唑基、嘌呤基、吗啉基、噁唑啉基。
根据本发明一种优选实施方式,所述接枝改性聚丙烯材料为芳香烯烃接枝改性聚丙烯材料,所述含烯基聚合单体为苯乙烯类单体,以芳香烯烃接枝改性聚丙烯材料的重量为基准,所述芳香烯烃接枝改性聚丙烯材料中衍生自苯乙烯类单体且处于接枝态的结构单元的含量为0.5~14wt%,优选为1~7.5wt%,更优选为1.5~5wt%;
优选地,所述苯乙烯类单体选自具有式8所示结构的单体、具有式9所示结构的单体和具有式10所示结构的单体中的至少一种;
Figure PCTCN2020127507-appb-000007
式8中,R 1、R 2、R 3各自独立地选自H、取代或未取代的C 1-C 6的烷基;R 4-R 8各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 1、R 2、R 3各自独立地选自H、取代或未取代的C 1-C 3的烷基,R 4-R 8各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基;
Figure PCTCN2020127507-appb-000008
式9中,R 1、R 2、R 3各自独立地选自H、取代或未取代的C 1-C 6的烷基;R 4-R 10各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 1、R 2、R 3各自独立地选自H、取代或未取代的C 1-C 3的烷基,R 4-R 10各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基,所述取代的基团选自卤素、羟基、氨基、C 1-C 6的烷基、C 1-C 6的烷氧基;
Figure PCTCN2020127507-appb-000009
式10中,R 1’、R 2’、R 3’各自独立地选自H、取代或未取代的C 1-C 6的烷基;R 4’-R 10’各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 1’、R 2’、R 3’各自独立地选自H、取代或未取代的C 1-C 3的烷基,R 4’-R 10’各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基,所述取代的基团选自卤素、羟基、氨基、C 1-C 6的烷基、C 1-C 6的烷氧基;
优选地,所述苯乙烯类单体选自苯乙烯、α-甲基苯乙烯、1-乙烯基萘、2-乙烯基萘、单取代或多取代的苯乙烯,单取代或多取代的α-甲基苯乙烯、单取代或多取代的1-乙烯基萘和单取代或多取代的2-乙烯基萘中的至少一种;所述取代的基团优选选自卤素,羟基,氨基,磷酸基,磺酸基,C 1-C 8的直链烷基、C 3-C 8的支链烷基或环烷基、C 1-C 6的直链烷氧基,C 3-C 8的支链烷氧基或环状烷氧基、C 1-C 8的直链酯基、C 3-C 8的支链酯基或环状酯基、C 1-C 8的直链胺基以及C 3-C 8的支链胺基或环状胺基中的至少一种。
更优选地,所述苯乙烯类单体选自苯乙烯、α-甲基苯乙烯、2-甲基苯乙烯、3-甲基苯乙烯和4-甲基苯乙烯中的至少一种。
根据本发明,优选地,所述芳香烯烃接枝改性聚丙烯材料具有以下特征中的至少一种:在230℃,2.16kg载荷下的熔体流动速率为0.01~30g/10min,优选为0.05~20g/10min,进一步优选为0.1~10g/10min,更优选为0.2~8g/10min;弯曲模量为10~1250MPa,优选为20~1000MPa,更优选为50~600MPa;断裂伸长率≥200%,优选断裂伸长率≥300%。优选地,所述芳香烯烃接枝改性聚丙烯材料的拉伸强度大于5MPa,优选为10~40MPa。
根据本发明,优选地,所述芳香烯烃接枝改性聚丙烯材料具有以下特征中的至少一种:
-所述芳香烯烃接枝改性聚丙烯材料的工作温度≥90℃,优选为90~160℃;
-所述芳香烯烃接枝改性聚丙烯材料在90℃下的击穿场强E g≥200kV/mm,优选为200~800kV/mm;
-所述芳香烯烃接枝改性聚丙烯材料在90℃下的击穿场强E g与所述共聚聚丙烯在90℃ 下的击穿场强E的差值△E除以所述共聚聚丙烯在90℃下的击穿场强E所得的击穿场强变化率△E/E大于1.5%,优选为1.6%~40%,更优选为5%~30%,进一步优选为10%~20%;
-所述芳香烯烃接枝改性聚丙烯材料在90℃、15kV/mm场强下的直流体积电阻率ρ vg≥1.0×10 13Ω·m,优选为1.5×10 13Ω·m~1.0×10 20Ω·m;
-所述芳香烯烃接枝改性聚丙烯材料在90℃、15kV/mm场强下的直流体积电阻率ρ vg与所述共聚聚丙烯在90℃、15kV/mm场强下的直流体积电阻率ρ v的比值ρ vg/ρ v大于1,优选为1.5~50,更优选为2~20,进一步优选为3~10。
根据本发明一种具体实施方式,所述接枝改性聚丙烯材料为硅烷改性的聚丙烯接枝物,所述含烯基聚合单体为含烯基的硅烷类单体,以硅烷改性的聚丙烯接枝物的重量为基准,所述硅烷改性的聚丙烯接枝物中衍生自含烯基的硅烷类单体且处于接枝态的结构单元的含量为0.2~6wt%,优选为0.2~2.5wt%;
优选地,所述含烯基的硅烷类单体选自具有式11所示结构的单体中的至少一种,
Figure PCTCN2020127507-appb-000010
其中,R 1为C 2-C 12的烯基,优选为单不饱和烯基;R 2、R 3、R 4各自独立地选自取代或未取代的C 1-C 12的直链烷基、取代或未取代的C 3-C 12的支链烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酰氧基;优选地,R 1为C 2-C 6的烯基,优选为单不饱和烯基;R 2、R 3、R 4各自独立地选自取代或未取代的C 1-C 6的直链烷基、取代或未取代的C 3-C 6的支链烷基、取代或未取代的C 1-C 6的烷氧基、取代或未取代的C 1-C 6的酰氧基;
更优选地,所述含烯基的硅烷类单体选自乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三异丙氧基硅烷、乙烯基三叔丁氧基硅烷、乙烯基三乙酰氧基硅烷、甲基乙烯基二甲氧基硅烷、乙基乙烯基二乙氧基硅烷、烯丙基三乙氧基硅烷、烯丙基三甲氧基硅烷、烯丙基三异丙氧基硅烷、乙烯基三(β-甲氧乙氧基)硅烷、烯丙基三(β-甲氧乙氧基)硅烷、烯丙基三叔丁氧基硅烷、烯丙基三乙酰氧基硅烷、甲基烯丙基二甲氧基硅烷和乙基烯丙基二乙氧基硅烷中的至少一种。
根据本发明,优选地,所述硅烷改性的聚丙烯接枝物具有以下特征中的至少一种:在230℃,2.16kg载荷下的熔体流动速率为0.01~30g/10min,优选为0.05~20g/10min,进一步优选为0.1~10g/10min,更优选为0.2~8g/10min;弯曲模量为10~1000MPa,优选为50~600MPa;断裂伸长率≥200%,优选断裂伸长率≥300%。优选地,所述硅烷改性的聚丙烯接枝物的拉伸强度大于5MPa,优选为10~40MPa。
根据本发明,优选地,所述硅烷改性的聚丙烯接枝物具有以下特征中的至少一种:
-所述硅烷改性的聚丙烯接枝物的工作温度≥90℃,优选为90~160℃;
-所述硅烷改性的聚丙烯接枝物在90℃下的击穿场强E g≥200kV/mm,优选为200~800kV/mm;
-所述硅烷改性的聚丙烯接枝物在90℃下的击穿场强E g与所述共聚聚丙烯在90℃下的击穿场强E的差值△E除以所述共聚聚丙烯在90℃下的击穿场强E所得的击穿场强变化率△E/E大于0.7%,优选为0.8%~40%,更优选为2%~20%,进一步优选为6%~15%;
-所述硅烷改性的聚丙烯接枝物在90℃、15kV/mm场强下的直流体积电阻率ρ vg≥6×10 12Ω·m,优选为6×10 12Ω·m~1.0×10 20Ω·m;
-所述硅烷改性的聚丙烯接枝物在90℃、15kV/mm场强下的直流体积电阻率ρ vg与所述共聚聚丙烯在90℃、15kV/mm场强下的直流体积电阻率ρ v的比值ρ vg/ρ v大于1,优选为1.1~8.0,更优选为1.15~3,进一步优选为1.2~1.8。
根据本发明一种具体实施方式,所述含烯基聚合单体为丙烯酸酯类单体以及任选的丙烯酸类单体,以接枝改性聚丙烯材料的重量为基准,所述接枝改性聚丙烯材料中衍生自丙烯酸酯类单体以及任选的丙烯酸类单体且处于接枝态的结构单元的含量为0.3~7wt%,优选为0.8~5wt%;
优选地,所述丙烯酸酯类单体选自具有式12所示结构的单体中的至少一种;
Figure PCTCN2020127507-appb-000011
其中,R 1、R 2、R 3各自独立地选自H、C 1-C 6直链烷基、C 3-C 6支链烷基;R 4选自取代或未取代的以下基团:C 1-C 20直链烷基、C 3-C 20支链烷基、C 3-C 12环烷基、C 3-C 12环氧烷基、C 3-C 12环氧烷基烷基,所述取代的基团选自卤素、氨基和羟基中的至少一种;
更优选地,所述丙烯酸酯类单体选自(甲基)丙烯酸甲酯、(甲基)丙烯酸仲丁酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸异丁酯、(甲基)丙烯酸叔丁酯、(甲基)丙烯酸异辛酯、(甲基)丙烯酸十二烷基酯、(甲基)丙烯酸椰子油酸酯、(甲基)丙烯酸十八烷基酯、(甲基)丙烯酸二甲氨基乙酯、(甲基)丙烯酸二乙氨基乙酯、(甲基)丙烯酸二甲氨基丙酯和(甲基)丙烯酸缩水甘油酯中的至少一种;
优选地,所述丙烯酸类单体选自具有式13所示结构的单体中的至少一种;
Figure PCTCN2020127507-appb-000012
其中,R 1、R 2、R 3各自独立地选自H、C 1-C 6直链烷基、C 3-C 6支链烷基;
更优选地,所述丙烯酸类单体选自丙烯酸、甲基丙烯酸和2-乙基丙烯酸中的至少一种。
本发明中C 3-C 12环氧烷基烷基是指具有3-12个碳原子的环氧烷基取代的烷基,例如,环氧乙烷基甲基。
根据本发明,优选地,衍生自丙烯酸酯类单体的结构单元与衍生自丙烯酸类单体的结构单元的摩尔比为1:0~2,优选为1:0.125~1。
根据本发明,优选地,所述含烯基聚合单体为丙烯酸酯类单体以及任选的丙烯酸类单体,所述接枝改性聚丙烯材料具有以下特征中的至少一种:在230℃,2.16kg载荷下的熔体流动速率为0.01~30g/10min,优选为0.05~20g/10min,进一步优选为0.1~10g/10min,更优选为0.2~8g/10min;弯曲模量为10~1100MPa,优选为20~1000MPa,更优选为50~600MPa;断裂伸长率≥200%,优选断裂伸长率≥300%。优选地,所述接枝改性聚丙烯材料的拉伸强度大于5MPa,优选为10~40MPa。
根据本发明,优选地,所述含烯基聚合单体为丙烯酸酯类单体以及任选的丙烯酸类单体,所述接枝改性聚丙烯材料具有以下特征中的至少一种:
-所述接枝改性聚丙烯材料的工作温度≥90℃,优选为90~160℃;
-所述接枝改性聚丙烯材料在90℃下的击穿场强E g≥180kV/mm,优选为180~800kV/mm;
-所述接枝改性聚丙烯材料在90℃下的击穿场强E g与所述共聚聚丙烯在90℃下的击穿场强E的差值△E除以所述共聚聚丙烯在90℃下的击穿场强E所得的击穿场强变化率△E/E大于2%,优选为2.5%~50%,更优选为4%~35%,进一步优选为5%~25%;
-所述接枝改性聚丙烯材料在90℃、15kV/mm场强下的直流体积电阻率ρ vg≥1.0×10 13Ω·m,优选为1.5×10 13Ω·m~1.0×10 20Ω·m;
-所述接枝改性聚丙烯材料在90℃、15kV/mm场强下的直流体积电阻率ρ vg与所述共聚聚丙烯在90℃、15kV/mm场强下的直流体积电阻率ρ v的比值ρ vg/ρ v大于1.5,优选为1.8~30,更优选为2~10,进一步优选为2.5~6。
根据本发明一种具体实施方式,所述接枝改性聚丙烯材料为聚丙烯接枝杂环的改性材料,所述含烯基聚合单体为含烯基的杂环类单体,以聚丙烯接枝杂环的改性材料的重量为基准,所述聚丙烯接枝杂环的改性材料中衍生自含烯基的杂环类单体且处于接枝态的结构 单元的含量为0.5~6wt%,优选为0.5~4wt%;
优选地,所述含烯基的杂环类单体选自含烯基取代基的咪唑、含烯基取代基的吡唑、含烯基取代基的咔唑、含烯基取代基的吡咯烷酮、含烯基取代基的吡啶或吡啶盐、含烯基取代基的哌啶、含烯基取代基的己内酰胺、含烯基取代基的吡嗪、含烯基取代基的噻唑、含烯基取代基的嘌呤、含烯基取代基的吗啉和含烯基取代基的噁唑啉中的至少一种;优选地,所述含烯基的杂环类单体为含单烯基的杂环类单体。
优选地,所述含烯基的杂环类单体选自:1-乙烯基咪唑、2-甲基-1-乙烯基咪唑、N-烯丙基咪唑、1-乙烯基吡唑、3-甲基-1-乙烯基吡唑、乙烯基咔唑、N-乙烯基吡咯烷酮、2-乙烯基吡啶、3-乙烯基吡啶、4-乙烯基吡啶、2-甲基-5-乙烯基吡啶、乙烯基吡啶N氧化物、乙烯基吡啶盐、乙烯基哌啶、N-乙烯基己内酰胺、2-乙烯基吡嗪、N-乙烯基哌嗪、4-甲基-5-乙烯基噻唑、N-乙烯基嘌呤、乙烯基吗啉和乙烯基噁唑啉中的至少一种。
根据本发明,优选地,所述聚丙烯接枝杂环的改性材料具有以下特征中的至少一种:在230℃,2.16kg载荷下的熔体流动速率为0.01~30g/10min,优选为0.05~20g/10min,进一步优选为0.1~10g/10min,更优选为0.2~8g/10min;弯曲模量为10~1000MPa,优选为50~500MPa;断裂伸长率≥200%,优选断裂伸长率≥300%。优选地,所述聚丙烯接枝杂环的改性材料的拉伸强度大于5MPa,优选为10~40MPa。
根据本发明,优选地,所述聚丙烯接枝杂环的改性材料具有以下特征中的至少一种:
-所述聚丙烯接枝杂环的改性材料的工作温度≥90℃,优选为90~160℃;
-所述聚丙烯接枝杂环的改性材料在90℃下的击穿场强E g≥190kV/mm,优选为190~800kV/mm;
-所述聚丙烯接枝杂环的改性材料在90℃下的击穿场强E g与所述共聚聚丙烯在90℃下的击穿场强E的差值△E除以所述共聚聚丙烯在90℃下的击穿场强E所得的击穿场强变化率△E/E大于1%,优选为1.5%~50%,更优选为2%~35%,进一步优选为5%~25%;
-所述聚丙烯接枝杂环的改性材料在90℃、15kV/mm场强下的直流体积电阻率ρ vg≥7×10 12Ω·m,优选为7×10 12Ω·m~1.0×10 20Ω·m;
-所述聚丙烯接枝杂环的改性材料在90℃、15kV/mm场强下的直流体积电阻率ρ vg与所述共聚聚丙烯在90℃、15kV/mm场强下的直流体积电阻率ρ v的比值ρ vg/ρ v大于1,优选为1.1~20,更优选为1.2~10,进一步优选为1.3~4。
本发明的所述聚丙烯接枝物可通过包括以下步骤的方法制备得到:在惰性气体存在下,使包括共聚聚丙烯和含烯基聚合单体的反应混合物进行固相接枝反应,得到所述聚丙烯接枝物。
本发明的第二方面提供一种用于绝缘材料的接枝改性聚丙烯材料的制备方法,该制备方法包括:在惰性气体存在下,使包括共聚聚丙烯和含烯基聚合单体的反应混合物进行接枝反应,得到所述接枝改性聚丙烯材料;
所述接枝反应的条件使得:以接枝改性聚丙烯材料的重量为基准,所述接枝改性聚丙烯材料中衍生自含烯基聚合单体且处于接枝态的结构单元的含量为0.1~14wt%,优选为0.2~7.5wt%。
所述共聚聚丙烯具有以下特征中的至少一种:共聚单体含量为0.5~40mol%,优选为0.5~30mol%,更优选为4~25wt%,进一步优选为4~22wt%;二甲苯可溶物含量为2~80wt%,优选为18~75wt%,更优选为30~70wt%,进一步优选为30~67wt%;可溶物中共聚单体含量为10~70wt%,优选为10~50wt%,更优选为20~35wt%;可溶物与聚丙烯的特性粘数比为0.3~5,优选为0.5~3,更优选为0.8~1.3。
本发明的接枝反应可参考本领域常规的各种方法进行,优选为固相接枝反应。如,在接枝用含烯基聚合单体的存在下在共聚聚丙烯上形成活性接枝点,或者先在共聚聚丙烯上形成活性接枝点接着用接枝用单体进行处理。接枝点可通过自由基引发剂处理形成,或进行高能电离辐射或微波处理来形成。在聚合物中作为化学或辐射处理的结果而产生的自由基在聚合物上形成接枝点并在这些点上引发单体聚合。
优选地,通过自由基引发剂引发接枝点并进一步进行接枝反应。在这种情况下,所述反应混合物还包括自由基引发剂;进一步优选地,所述自由基引发剂选自过氧化物类自由基引发剂和/或偶氮类自由基引发剂。
其中,所述过氧化物类自由基引发剂优选选自过氧化二苯甲酰、过氧化二异丙苯、二叔丁基过氧化物、过氧化月桂酰、过氧化十二酰、过氧化苯甲酸叔丁酯、过氧化二碳酸二异丙基酯、过氧化(2-乙基己酸)叔丁酯和过氧化二碳酸二环己基酯中的至少一种;所述偶氮类自由基引发剂优选为偶氮二异丁腈和/或偶氮二异庚腈。
更优选地,通过过氧化物类自由基引发剂引发接枝点并进一步进行接枝反应。
此外,本发明的接枝反应也可以通过CN106543369A、CN104499281A、CN102108112A、CN109251270A、CN1884326A和CN101492517B中描述的方法进行。
本发明对接枝反应的工艺条件也没有特别的限定,具体地,所述接枝反应的温度可以为30~130℃,优选为60~120℃;时间可以为0.5~10h,优选为1~5h。
在满足上述产品特征的前提下,本发明对接枝反应中各组分的用量没有特别的限定,具体地,
对于苯乙烯类单体,所述自由基引发剂与苯乙烯类单体的质量比为0.1~10:100,优选 为0.5~5:100。所述苯乙烯类单体与所述共聚聚丙烯的质量比为0.5~16:100,优选为1~12:100,进一步优选为2~10:100。所述接枝反应的条件使得:以芳香烯烃接枝改性聚丙烯材料的重量为基准,所述芳香烯烃接枝改性聚丙烯材料中衍生自苯乙烯类单体且处于接枝态的结构单元的含量为0.5~14wt%,优选为1~7.5wt%,更优选为1.5~5wt%。
对于含烯基的硅烷类单体,所述自由基引发剂与含烯基的硅烷类单体的质量比为0.1~10:100,优选为0.5~6:100。所述含烯基的硅烷类单体与所述共聚聚丙烯的质量比为0.5~12:100,优选为0.8~9:100,进一步优选为1~6:100。所述接枝反应的条件使得:以硅烷改性的聚丙烯接枝物的重量为基准,所述硅烷改性的聚丙烯接枝物中衍生自含烯基的硅烷类单体且处于接枝态的结构单元的含量为0.2~6wt%,优选为0.2~2.5wt%。
对于丙烯酸酯类单体和任选的丙烯酸类单体,所述自由基引发剂的质量与丙烯酸酯类单体以及任选的丙烯酸类单体的总质量的比为0.1~10:100,优选为0.5~5:100。所述丙烯酸酯类单体以及任选的丙烯酸类单体的总质量与所述共聚聚丙烯的质量的比为0.1~10:100,优选为0.5~8:100,进一步优选为0.8~7:100。所述接枝反应的条件使得:以接枝改性聚丙烯材料的重量为基准,所述接枝改性聚丙烯材料中衍生自丙烯酸酯类单体以及任选的丙烯酸类单体且处于接枝态的结构单元的含量为0.3~7wt%,优选为0.8~5wt%。
对于含烯基的杂环类单体,所述自由基引发剂与含烯基的杂环类单体的质量比为0.1~10:100,优选为0.5~5:100。所述含烯基的杂环类单体与所述共聚聚丙烯的质量比为0.3~12:100,优选为0.5~10:100。所述接枝反应的条件使得:以聚丙烯接枝杂环的改性材料的重量为基准,所述聚丙烯接枝杂环的改性材料中衍生自含烯基的杂环类单体且处于接枝态的结构单元的含量为0.5~6wt%,优选为0.5~4wt%。
本发明中,所述“反应混合物”包括加入到接枝反应体系中的所有物料,物料可以一次性加入,也可以在反应的不同阶段加入。
本发明的反应混合物中还可以包括分散剂,所述分散剂优选为水或氯化钠的水溶液。所述分散剂的质量用量优选为共聚聚丙烯质量的50~300%。
本发明的反应混合物中还可以包括界面剂,所述界面剂为对聚烯烃具有溶胀作用的有机溶剂,优选为对共聚聚丙烯具有溶胀作用的下述有机溶剂中的至少一种:醚类溶剂、酮类溶剂、芳烃类溶剂、烷烃类溶剂;更优选为下述有机溶剂中的至少一种:氯代苯、多氯代苯、C 6以上的烷烃或环烷烃、苯、C 1-C 4烷基取代苯、C 2-C 6脂肪醚、C 3-C 6脂肪酮、十氢萘;进一步优选为下述有机溶剂中的至少一种:苯、甲苯、二甲苯、氯苯、四氢呋喃、乙醚、丙酮、己烷、环己烷、十氢萘、庚烷。所述界面剂的质量含量优选为共聚聚丙烯质量的1~30%,进一步优选为10~25%。
本发明的反应混合物中还可以包括有机溶剂,作为溶解固体自由基引发剂的溶剂,所述有机溶剂优选包括C 2-C 5醇类、C 2-C 4醚类和C 3-C 5酮类中的至少一种,更优选包括C 2-C 4醇类、C 2-C 3醚类和C 3-C 5酮类中的至少一种,最优选为乙醇、乙醚和丙酮中的至少一种。所述有机溶剂的质量含量优选为共聚聚丙烯质量的1~35%。
本发明的接枝改性聚丙烯材料的制备方法中,对于含烯基聚合单体和共聚聚丙烯的限定与前述相同,在此不再赘述。
根据本发明,所述接枝改性聚丙烯材料的制备方法可选自以下方式之一:
方式一,所述制备方法包括以下步骤:
a.将共聚聚丙烯置于密闭反应器中,进行惰性气体置换;
b.将自由基引发剂与含烯基聚合单体加入到所述密闭反应器中,搅拌混合;
c.任选地加入界面剂,并任选地使反应体系进行溶胀;
d.任选地加入分散剂,使反应体系升温至接枝反应温度,进行接枝反应;
e.反应结束后,任选地进行过滤(使用水相分散剂情况下)、干燥,得到所述接枝改性聚丙烯材料。
更具体地,所述制备方法包括以下步骤:
a.将共聚聚丙烯置于密闭反应器中,进行惰性气体置换;
b.将自由基引发剂溶解于含烯基聚合单体中,配制成溶液,加入到装有共聚聚丙烯的密闭反应器中,搅拌混合;
c.加入界面剂0~30份,并任选地使反应体系在20~60℃下溶胀0~24小时;
d.加入分散剂0~300份,体系升温至接枝聚合温度30~130℃,反应0.5~10小时;
e.反应结束后,任选地进行过滤(使用水相分散剂情况下)、干燥,得到所述接枝改性聚丙烯材料。
方式二,所述制备方法包括以下步骤:
a.将共聚聚丙烯置于密闭反应器中,进行惰性气体置换;
b.将有机溶剂和自由基引发剂混合,加入到所述密闭反应器中;
c.除去所述有机溶剂;
d.加入含烯基聚合单体,任选地加入界面剂,并任选地使反应体系进行溶胀;
e.任选地加入分散剂,使反应体系升温至接枝反应温度,进行接枝反应;
f.反应结束后,任选地进行过滤(使用水相分散剂情况下)、干燥,得到所述接枝改性聚丙烯材料。
更具体地,所述制备方法包括以下步骤:
a.将共聚聚丙烯置于密闭反应器中,进行惰性气体置换;
b.将有机溶剂和自由基引发剂混合,配制成溶液加入到装有共聚聚丙烯的密闭反应器中;
c.惰性气体吹扫或通过真空除去所述有机溶剂;
d.加入含烯基聚合单体,加入界面剂0~30份,并任选地使反应体系在20~60℃下溶胀0~24小时;
e.加入分散剂0~300份,体系升温至接枝聚合温度30~130℃,反应0.5~10小时;
f.反应结束后,任选地进行过滤(使用水相分散剂情况下)、干燥,得到所述接枝改性聚丙烯材料。
根据本发明的方法,若反应结束后体系中存在挥发性组分,则本发明的方法优选包括脱挥发份的步骤,所述脱挥发份可以通过任何常规方法进行,包括在接枝工艺结束时真空提取或使用汽提剂。合适的汽提剂包括但不限于惰性气体。
如上所述,本发明的“接枝改性聚丙烯材料”既包括由共聚聚丙烯和含烯基聚合单体经接枝反应直接制得的产物(粗品),也包括将该产物进行进一步纯化得到的接枝改性聚丙烯纯品,因此,本发明的制备方法中,可任选的包括对粗品进行纯化的步骤。所述纯化可采用本领域常规的各种方法,如抽提法。
本发明对所述接枝反应的接枝效率没有特别的限定,但是较高的接枝效率更有利于通过一步接枝反应即得到所需性能的聚丙烯接枝物。因此,优选控制所述接枝反应的接枝效率为5~100%,进一步优选为5~80%。所述接枝效率的概念为本领域技术人员公知,是指接枝上的含烯基聚合单体的总量/反应投料的含烯基聚合单体的总量。
优选地,对于苯乙烯类单体,优选控制所述接枝反应的接枝效率为30~100%,进一步优选为35~80%。对于含烯基的硅烷类单体,优选控制所述接枝反应的接枝效率为5~100%,进一步优选为5~60%。对于丙烯酸酯类单体和任选的丙烯酸类单体,优选控制所述接枝反应的接枝效率为30~100%,进一步优选为35~80%。对于含烯基的杂环类单体,优选控制所述接枝反应的接枝效率为30~100%,进一步优选为35~80%。
本发明的所述惰性气体可以为本领域常用的各种惰性气体,包括但不限于氮气、氩气。
本发明的第三方面提供由上述制备方法制得的用于绝缘材料的接枝改性聚丙烯材料。
本发明的第四方面提供上述接枝改性聚丙烯材料作为绝缘材料的应用。
进一步优选地,所述绝缘材料为电缆绝缘材料;优选为直流电缆绝缘材料。
更优选地,所述绝缘材料为电缆绝缘层材料。
本发明所用接枝改性聚丙烯可直接作为绝缘材料的基础材料,无需共混其他聚合物。
本发明的第五方面提供一种电缆,该电缆包括:
至少一个导体以及至少一个围绕所述导体的电绝缘层;
其中,所述电绝缘层的材料为所述的接枝改性聚丙烯材料。
本发明的核心在于采用一种新材料作为电缆的电绝缘层,因此,本发明对于电缆的形式和具体结构没有特别限定,可采用本领域常规的各种电缆形式(直流或交流、单芯或多芯)及所对应各种结构。本发明的电缆中,除电绝缘层采用新型接枝改性聚丙烯材料外,其他层结构、其他层材质均可以为本领域常规选择。
本发明的所述电缆可以为直流电缆或交流电缆;优选为直流电缆;更优选地,所述电缆为中高压直流电缆或超高压直流电缆。本发明中,低压(LV)表示低于1kV的电压,中压(MV)表示在1kV至40kV范围内的电压,高压(HV)表示高于40kV、优选高于50kV的电压,超高压(EHV)表示至少230kV的电压。
根据本发明一种优选实施方式,所述电缆具有至少一个缆芯,每个所述缆芯由内至外依次包括:导体、任选的导体屏蔽层、电绝缘层、任选的电绝缘屏蔽层、任选的金属屏蔽层。其中,所述导体屏蔽层、电绝缘屏蔽层和金属屏蔽层均可根据需要设置,一般地,在6kV以上的电缆中使用。
除上述结构外,所述电缆还可以包括铠装和/或护套层。
本发明的所述电缆可为单芯电缆或多芯电缆,对于多芯电缆,所述电缆还可以包括填充层和/或包带层。所述填充层由填充于各线芯之间的填充材料形成。所述包带层包覆于所有线芯的外侧,保证线芯及填充层呈圆形,防止线芯被铠装划伤,并起到阻燃作用。
本发明的电缆中,所述导体是通常由金属材料,优选铝、铜或其它合金制成的导电元件,包括一种或多种金属导线。所述导体的直流电阻和单丝根数需符合GB/T 3956的要求。优选的导体采用紧压绞合圆形结构,标称截面积小于等于800mm 2;或采用分割导体结构,标称截面积大于等于1000mm 2,导体根数不少于170根。
本发明的电缆中,所述导体屏蔽层可以是由聚丙烯、聚烯烃弹性体和炭黑等材料制成的覆盖层,23℃下的体积电阻率<1.0Ω·m,90℃下的体积电阻率<3.5Ω·m,在230℃,2.16kg载荷下的熔体流动速率通常为0.01~30g/10min,优选为0.05~20g/10min,进一步优选为0.1~10g/10min,更优选为0.2~8g/10min;拉伸强度≥12.5MPa;断裂伸长率≥150%。所述导体屏蔽层最薄点的厚度不小于0.5mm,平均厚度不低于1.0mm。
本发明的电缆中,所述电绝缘层的材料为至少一种接枝改性聚丙烯材料是指构成电绝 缘层的基材为所述接枝改性聚丙烯材料,除接枝改性聚丙烯材料外还可包含另外的组分,如聚合物组分或添加剂,优选包含添加剂,如抗氧化剂、稳定剂、加工助剂、阻燃剂、水树阻滞添加剂、酸或离子清除剂、无机填料、电压稳定剂和抗铜剂中的任一种或多种。添加剂的种类和使用量为常规且为本领域技术人员已知的。
本发明的电绝缘层的制备方法也可以采用电缆制备领域的常规方法,例如,将接枝改性聚丙烯材料与任选的各种添加剂混合,用双螺杆挤出机造粒,再将所得粒料通过挤出机挤出,制得电绝缘层。通常地,可将导体屏蔽料与接枝改性聚丙烯材料粒料共挤出,形成导体屏蔽层+电绝缘层的结构,或形成导体屏蔽层+电绝缘层+电绝缘屏蔽层的结构。具体操作均可采用本领域常规方法和工艺条件。
由于采用所述接枝改性聚丙烯材料,本发明所述电绝缘层的厚度可以仅为GB/T 12706中XLPE绝缘层标称厚度值的50%~95%,优选地,电绝缘层的厚度为GB/T 12706中XLPE绝缘层标称厚度值的70%~90%;偏心度不大于10%。
本发明的电缆中,所述电绝缘屏蔽层可以为由聚丙烯、聚烯烃弹性体和炭黑等材料制成的覆盖层,23℃下的体积电阻率<1.0Ω·m,90℃下的体积电阻率<3.5Ω·m。在230℃,2.16kg载荷下的熔体流动速率为0.01~30g/10min,优选为0.05~20g/10min,进一步优选为0.1~10g/10min,更优选为0.2~8g/10min;拉伸强度≥12.5MPa;断裂伸长率≥150%。所述电绝缘屏蔽层的最薄点厚度不小于0.5mm,平均厚度不低于1.0mm。
本发明的电缆中,所述金属屏蔽层可以为铜带屏蔽层或铜丝屏蔽层。
本发明的电缆中,所述填充层可以为高分子材料,如PE/PP/PVC或回收的橡胶材料等。
本发明的电缆中,所述包带层/铠装层通常是由铜丝金属笼、铅或铝制金属套等制成的、包裹电绝缘屏蔽层外表面的金属覆盖层,其室温下直流体积电阻率≤1000Ω·m。
本发明的电缆中,所述护套层的材质可以为聚氯乙烯、聚乙烯或低烟无卤材料中的任一种。所述护套层既包括内护套层,也包括外护套层。
以上各层结构均可采用本领域的常规方法制得。例如,所述导体屏蔽层、电绝缘层、护套层可通过挤出机挤出包覆形成,所述金属屏蔽层和铠装可通过绕包形成。
本发明的所述电缆可通过本领域常规的各种制备工艺制得,本发明对此没有特别限定。
根据本发明一种具体实施方式,所述电缆的制备方法如下:
导体的制备:将多条单丝导体(如铝制)进行紧压绞合操作,得到导体内芯;或进行束丝操作,然后将束丝后的各单丝导体进行绞合操作,得到导体内芯。
改性聚丙烯颗粒的制备:将改性聚丙烯材料与任选的添加剂混合,用双螺杆挤出机造粒。
导体屏蔽层和电绝缘层的制备:导体屏蔽料和上述改性聚丙烯颗粒,在导体内芯外通过挤出机共挤出包覆形成导体屏蔽层+电绝缘层,或形成导体屏蔽层+电绝缘层+电绝缘屏蔽层(外屏蔽层)。
金属屏蔽层的制备:在电绝缘层(电绝缘屏蔽层)外进行铜带或铜丝绕包,形成金属屏蔽层。
内护套层的制备:将护套层粒料在金属屏蔽层外通过挤出机挤出形成内护套层。
铠装的制备:使用镀锌钢/不锈钢/铝合金制成钢丝或钢带铠装,由单层铠装左向或双层铠装内层右向、外层左向绕包在内护套层上,钢丝或钢带铠装应紧密,使相邻钢丝/钢带间的间隙为最小。
外护套层的制备:将护套层粒料在铠装外通过挤出机挤出形成外护套层。最终制得所述电缆。
本发明的接枝改性聚丙烯材料可在较高工作温度下兼顾机械性能和电性能,适用于高温、高运行场强工况。此外,与加入小分子添加剂的材料相比,本发明的接枝改性聚丙烯材料避免了小分子迁移导致的性能下降,因此具有更好的稳定性。
相比现有电缆,本发明的电缆在更高工作温度下依然能够保持甚至具有更高的体积电阻率和更强的耐击穿性能,同时其机械性能亦能满足电缆使用要求。在保证相同电压等级和绝缘水平条件下,所述接枝改性聚丙烯材料所制的电绝缘层相比常规电缆的电绝缘层具有厚度更薄、散热更好和重量更小等优点。因此,该电缆具有更宽的应用范围。
本发明的第六方面提供一种绝缘材料,其特征在于,该绝缘材料包含至少一种上述接枝改性聚丙烯材料。
优选地,以所述绝缘材料的重量为基准,所述至少一种接枝改性聚丙烯材料的含量为20-100wt%,优选为40-100wt%,更优选为60-100wt%,进一步优选为80-100wt%,更进一步优选为90-100wt%。
优选地,所述绝缘材料还包含添加剂,例如抗氧化剂、稳定剂、加工助剂、阻燃剂、水树阻滞添加剂、酸或离子清除剂、无机填料、电压稳定剂和抗铜剂中的一种或多种。添加剂的种类和用量是常规的并且是本领域技术人员已知的。
另外地,本发明还包括以下段落中记载的实施方案。
段落1、一种使用接枝改性聚丙烯材料制备绝缘材料的方法,其特征在于,该接枝改性聚丙烯材料包括衍生自共聚聚丙烯的结构单元和衍生自含烯基聚合单体的结构单元;以接枝改性聚丙烯材料的重量为基准,所述接枝改性聚丙烯材料中衍生自含烯基聚合单体且 处于接枝态的结构单元的含量为0.1~14wt%,优选为0.2~7.5wt%;
所述共聚聚丙烯具有以下特征中的至少一种:共聚单体含量为0.5~40mol%,优选为0.5~30mol%,更优选为4~25wt%,进一步优选为4~22wt%;二甲苯可溶物含量为2~80wt%,优选为18~75wt%,更优选为30~70wt%,进一步优选为30~67wt%;可溶物中共聚单体含量为10~70wt%,优选为10~50wt%,更优选为20~35wt%;可溶物与聚丙烯的特性粘数比为0.3~5,优选为0.5~3,更优选为0.8~1.3。
段落2、根据段落1所述的方法,其中,所述共聚聚丙烯具有以下特征中的至少一种:在230℃,2.16kg载荷下的熔体流动速率为0.01~60g/10min,优选为0.05~35g/10min,进一步优选为0.5~15g/10min;熔融温度Tm为100℃以上,优选为110~180℃,进一步优选为110~170℃,进一步优选为120~170℃,进一步优选为120~166℃;重均分子量为20×10 4~60×10 4g/mol。
段落3、根据段落1或2所述的方法,其中,所述共聚聚丙烯的共聚单体选自除丙烯外的C 2-C 8的α-烯烃中的至少一种;优选地,所述共聚聚丙烯的共聚单体选自乙烯、1-丁烯、1-戊烯、4-甲基-1-戊烯、1-己烯、1-庚烯和1-辛烯中的至少一种;进一步优选地,所述共聚聚丙烯的共聚单体为乙烯和/或1-丁烯;进一步优选地,所述共聚聚丙烯由丙烯和乙烯组成。
段落4、根据段落1-3中任意一项所述的方法,其中,所述接枝改性聚丙烯材料由共聚聚丙烯和含烯基聚合单体经固相接枝反应制得。
段落5、根据段落1-4中任意一项所述的方法,其中,所述接枝改性聚丙烯材料具有以下特征中的至少一种:在230℃,2.16kg载荷下的熔体流动速率为0.01~30g/10min,优选为0.05~20g/10min,进一步优选为0.1~10g/10min,更优选为0.2~8g/10min;弯曲模量为10~1250MPa,优选为20~1000MPa,更优选为50~600MPa;断裂伸长率≥200%,优选断裂伸长率≥300%。
段落6、根据段落1-5中任意一项所述的方法,其中,所述接枝改性聚丙烯材料具有以下特征中的至少一种:
-所述接枝改性聚丙烯材料的工作温度≥90℃,优选为90~160℃;
-所述接枝改性聚丙烯材料在90℃下的击穿场强E g≥180kV/mm,优选为180~800kV/mm;
-所述接枝改性聚丙烯材料在90℃下的击穿场强E g与所述共聚聚丙烯在90℃下的击穿场强E的差值△E除以所述共聚聚丙烯在90℃下的击穿场强E所得的击穿场强变化率△E/E大于0.7%,优选为0.8%~50%,更优选为2%~35%,进一步优选为5%~25%;
-所述接枝改性聚丙烯材料在90℃、15kV/mm场强下的直流体积电阻率ρ vg≥6×10 12Ω·m,优选为6×10 12Ω·m~1.0×10 20Ω·m;
-所述接枝改性聚丙烯材料在90℃、15kV/mm场强下的直流体积电阻率ρ vg与所述共聚聚丙烯在90℃、15kV/mm场强下的直流体积电阻率ρ v的比值ρ vg/ρ v大于1,优选为1.1~50,更优选为1.15~20,进一步优选为1.2~10。
段落7、根据段落1-6中任意一项所述的方法,其中,所述含烯基聚合单体选自具有式1所示结构的单体中的至少一种,
Figure PCTCN2020127507-appb-000013
式1中,R b、R c、R d各自独立地选自H、取代或未取代的烷基;R a选自取代或未取代的烷基、取代或未取代的烷氧基、取代或未取代的芳基、取代或未取代的酯基、取代或未取代的羧基、取代或未取代的环烷基或杂环基、氰基、取代或未取代的硅烷基。
段落8、根据段落7所述的方法,其中,R b、R c、R d各自独立地选自H、取代或未取代的C 1-C 6烷基;R a选自取代或未取代的C 1-C 20烷基、取代或未取代的C 1-C 20烷氧基、取代或未取代的C 6-C 20芳基、取代或未取代的C 1-C 20酯基、取代或未取代的C 1-C 20羧基、取代或未取代的C 3-C 20环烷基或杂环基、氰基、取代或未取代的C 3-C 20硅烷基;所述取代的基团为卤素、羟基、氨基、C 1-C 12烷基、C 3-C 6环烷基、C 1-C 12的烷氧基、C 1-C 12的酰氧基。
段落9、根据段落7所述的方法,其中,R b、R c、R d各自独立地选自H、取代或未取代的C 1-C 6烷基;
R a选自式2所示基团、式3所示基团、式4所示基团、式5所示基团、式6所示基团、式6所示基团和式7所示基团的组合、杂环基团;
Figure PCTCN2020127507-appb-000014
式2中,R 4-R 8各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 4-R 8各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基;
Figure PCTCN2020127507-appb-000015
式3中,R 4-R 10各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 4-R 10各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基,所述取代的基团选自卤素、羟基、氨基、C 1-C 6的烷基、C 1-C 6的烷氧基;
Figure PCTCN2020127507-appb-000016
式4中,R 4’-R 10’各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 4’-R 10’各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基,所述取代的基团选自卤素、羟基、氨基、C 1-C 6的烷基、C 1-C 6的烷氧基;
Figure PCTCN2020127507-appb-000017
式5中,R’、R”、R”’各自独立地选自取代或未取代的C 1-C 12的直链烷基、取代或未取代的C 3-C 12的支链烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酰氧基;优选地,R 1为C 2-C 6的烯基,优选为单不饱和烯基;R 2、R 3、R 4各自独立地选自取代或未取代的C 1-C 6的直链烷基、取代或未取代的C 3-C 6的支链烷基、取代或未取代的C 1-C 6的烷氧基、取代或未取代的C 1-C 6的酰氧基;
Figure PCTCN2020127507-appb-000018
式6中,R m选自取代或未取代的以下基团:C 1-C 20直链烷基、C 3-C 20支链烷基、C 3-C 12环烷基、C 3-C 12环氧烷基、C 3-C 12环氧烷基烷基,所述取代的基团选自卤素、氨基和羟基中的至少一种;
所述杂环基团选自咪唑基、吡唑基、咔唑基、吡咯烷酮基、吡啶基、哌啶基、己内酰胺基、吡嗪基、噻唑基、嘌呤基、吗啉基、噁唑啉基。
段落10、根据段落7所述的方法,其中,所述接枝改性聚丙烯材料为芳香烯烃接枝改性聚丙烯材料,所述含烯基聚合单体为苯乙烯类单体,以芳香烯烃接枝改性聚丙烯材料的重量为基准,所述芳香烯烃接枝改性聚丙烯材料中衍生自苯乙烯类单体且处于接枝态的结构单元的含量为0.5~14wt%,优选为1~7.5wt%,更优选为1.5~5wt%;
优选地,所述苯乙烯类单体选自具有式8所示结构的单体、具有式9所示结构的单体和具有式10所示结构的单体中的至少一种;
Figure PCTCN2020127507-appb-000019
式8中,R 1、R 2、R 3各自独立地选自H、取代或未取代的C 1-C 6的烷基;R 4-R 8各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 1、R 2、R 3各自独立地选自H、取代或未取代的C 1-C 3的烷基,R 4-R 8各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基;
Figure PCTCN2020127507-appb-000020
式9中,R 1、R 2、R 3各自独立地选自H、取代或未取代的C 1-C 6的烷基;R 4-R 10各自 独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 1、R 2、R 3各自独立地选自H、取代或未取代的C 1-C 3的烷基,R 4-R 10各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基,所述取代的基团选自卤素、羟基、氨基、C 1-C 6的烷基、C 1-C 6的烷氧基;
Figure PCTCN2020127507-appb-000021
式10中,R 1’、R 2’、R 3’各自独立地选自H、取代或未取代的C 1-C 6的烷基;R 4’-R 10’各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 1’、R 2’、R 3’各自独立地选自H、取代或未取代的C 1-C 3的烷基,R 4’-R 10’各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基,所述取代的基团选自卤素、羟基、氨基、C 1-C 6的烷基、C 1-C 6的烷氧基;
优选地,所述苯乙烯类单体选自苯乙烯、α-甲基苯乙烯、1-乙烯基萘、2-乙烯基萘、单取代或多取代的苯乙烯,单取代或多取代的α-甲基苯乙烯、单取代或多取代的1-乙烯基萘和单取代或多取代的2-乙烯基萘中的至少一种;所述取代的基团优选选自卤素,羟基,氨基,磷酸基,磺酸基,C 1-C 8的直链烷基、C 3-C 8的支链烷基或环烷基、C 1-C 6的直链烷氧基,C 3-C 8的支链烷氧基或环状烷氧基、C 1-C 8的直链酯基、C 3-C 8的支链酯基或环状酯基、C 1-C 8的直链胺基以及C 3-C 8的支链胺基或环状胺基中的至少一种;
更优选地,所述苯乙烯类单体选自苯乙烯、α-甲基苯乙烯、2-甲基苯乙烯、3-甲基苯乙烯和4-甲基苯乙烯中的至少一种。
段落11、根据段落10所述的方法,其中,所述芳香烯烃接枝改性聚丙烯材料具有以下特征中的至少一种:在230℃,2.16kg载荷下的熔体流动速率为0.01~30g/10min,优选为0.05~20g/10min,进一步优选为0.1~10g/10min,更优选为0.2~8g/10min;弯曲模量为 10~1250MPa,优选为20~1000MPa,更优选为50~600MPa;断裂伸长率≥200%,优选断裂伸长率≥300%。
段落12、根据段落10所述的方法,其中,所述芳香烯烃接枝改性聚丙烯材料具有以下特征中的至少一种:
-所述芳香烯烃接枝改性聚丙烯材料的工作温度≥90℃,优选为90~160℃;
-所述芳香烯烃接枝改性聚丙烯材料在90℃下的击穿场强E g≥200kV/mm,优选为200~800kV/mm;
-所述芳香烯烃接枝改性聚丙烯材料在90℃下的击穿场强E g与所述共聚聚丙烯在90℃下的击穿场强E的差值△E除以所述共聚聚丙烯在90℃下的击穿场强E所得的击穿场强变化率△E/E大于1.5%,优选为1.6%~40%,更优选为5%~30%,进一步优选为10%~20%;
-所述芳香烯烃接枝改性聚丙烯材料在90℃、15k V/mm场强下的直流体积电阻率ρ vg≥1.0×10 13Ω·m,优选为1.5×10 13Ω·m~1.0×10 20Ω·m;
-所述芳香烯烃接枝改性聚丙烯材料在90℃、15kV/mm场强下的直流体积电阻率ρ vg与所述共聚聚丙烯在90℃、15kV/mm场强下的直流体积电阻率ρ v的比值ρ vg/ρ v大于1,优选为1.5~50,更优选为2~20,进一步优选为3~10。
段落13、根据段落1-12中任意一项所述的方法,其中,所述绝缘材料为电缆绝缘材料;优选为直流电缆绝缘材料。
段落14、根据段落13所述的方法,其中,所述绝缘材料为电缆绝缘层材料。
本发明的其它特征和优点将在随后具体实施方式部分予以详细说明。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
以下实施例和对比例中:
1、共聚聚丙烯中共聚单体含量的测定:
通过定量傅里叶变换红外(FTIR)光谱测定共聚单体的含量。通过定量核磁共振(NMR)光谱对确定的共聚单体含量的相关性进行校准。所述基于定量 13C-NMR光谱所得结果的校准方法按照本领域的常规方法进行。
2、共聚聚丙烯中二甲苯可溶物含量、可溶物中共聚单体含量及可溶物/共聚聚丙烯的特性粘数比的测定:
用Polymer Char公司的CRYST-EX仪器进行测试。使用三氯苯溶剂,升温至150℃进行溶解,恒温90min,取样测试,再降温至35℃,恒温70min,取样测试。
3、共聚聚丙烯重均分子量的测定:
用高温GPC测定,采用Polymer Laboratory公司的PL-GPC 220型凝胶渗透色谱,试样用1,2,4-三氯苯溶解,浓度为1.0mg/ml。测试温度150℃,溶液流速为1.0ml/min。以聚苯乙烯的分子量作为内参来制定标准曲线,根据流出时间计算样品的分子量及分子量分布。
4、熔体流动速率MFR的测定:
按GB/T 3682-2018中规定的方法,用CEAST公司7026型熔融指数仪,在230℃,2.16kg载荷下测定。
5、熔融温度Tm的测定:
采用差示扫描量热仪对材料的熔融过程和结晶过程进行分析。具体操作为:在氮气保护下,将5~10mg样品从20℃至200℃采用三段式升降温测量方法进行测量,以热流量的变化反映材料的熔融和结晶过程,从而计算熔融温度Tm。
6、接枝效率GE、参数M1的测定:
将2~4g接枝产物放入索氏提取器中,用有机溶剂(对于芳香烯烃类单体、丙烯酸酯类单体、杂环类单体,使用乙酸乙酯;对于硅烷类单体,使用丙酮)抽提24小时,除去未反应的单体及其均聚物,得到纯的接枝产物,烘干称重,计算参数M1及接枝效率GE。
参数M1代表所述聚丙烯接枝物中衍生自含烯基聚合单体且处于接枝态的结构单元的含量,本发明中,M1和GE的计算公式如下:
Figure PCTCN2020127507-appb-000022
Figure PCTCN2020127507-appb-000023
以上公式中,w 0是PP基体的质量;w 1是接枝产物抽提前的质量;w 2是接枝产物抽提后的质量;w 3是加入含烯基聚合单体的质量。
7、直流体积电阻率的测定:
按照GB/T 1410-2006中规定的方法进行测定。
8、击穿场强的测定:
按照GB/T 1408-2006中规定的方法进行测定。
9、拉伸强度的测定:
按照GB/T 1040.2-2006中规定的方法进行测定。
10、弯曲模量的测定:
按照GB/T 9341-2008中规定的方法进行测定。
11、断裂伸长率的测定:
按照GB/T 1040-2006中规定的方法进行测定。
12、介电常数与介电损耗因数的测定:
按照GB/T 1409-2006中规定的方法进行测定。
13、电缆的主绝缘电导率(电阻率)比值的测定:
按照TICW 7.1-2012附录A中规定的方法进行试验。电缆的主绝缘电导率比值等于90℃下电缆的主绝缘电导率除以30℃下电缆的主绝缘电导率。
14、电场畸变率的测定:
按照TICW 7.1-2012附录B中规定的方法进行电缆绝缘空间电荷注入试验。
15、直流耐压测试:
常温下采用1.85倍负极性额定电压持续对电缆加压2小时。无击穿和放电现象即为通过,否则不通过。
16、负荷循环测试:
电缆在额定使用温度下加热到90℃,并加1.85倍额定电压先加压8h,然后自然冷却并撤去电压16h,循环12天。无击穿现象发生即为通过。
实施例中所用的原料描述于下表A中。
表A
名称 描述
共聚聚丙烯1 参考CN101679557A所述方法自制
共聚聚丙烯2 参考CN101679557A所述方法自制
共聚聚丙烯3 参考CN101679557A所述方法自制
共聚聚丙烯4 参考CN101058654A所述方法自制
共聚聚丙烯5 参考CN101058654A所述方法自制
共聚聚丙烯6 参考CN101058654A所述方法自制
聚丙烯T30S 均聚聚丙烯,中国石化镇海炼化
过氧化二苯甲酰 百灵威科技有限公司J&K Chemicals
过氧化月桂酰 百灵威科技有限公司J&K Chemicals
过氧化(2-乙基己酸)叔丁酯 阿达玛斯试剂有限公司adamas-beta
苯乙烯 百灵威科技有限公司J&K Chemicals
对甲基苯乙烯 百灵威科技有限公司J&K Chemicals
聚苯乙烯GPPS-123 上海赛科石油化工有限责任公司
乙烯基三乙氧基硅烷 百灵威科技有限公司J&K Chemicals
乙烯基三异丙氧基硅烷 百灵威科技有限公司J&K Chemicals
乙烯基三甲氧基硅烷 百灵威科技有限公司J&K Chemicals
聚乙烯基三乙氧基硅烷 实验室自制
甲基丙烯酸缩水甘油酯 百灵威科技有限公司J&K Chemicals
甲基丙烯酸甲酯 百灵威科技有限公司J&K Chemicals
丙烯酸丁酯 百灵威科技有限公司J&K Chemicals
丙烯酸甲酯 百灵威科技有限公司J&K Chemicals
丙烯酸 百灵威科技有限公司J&K Chemicals
聚甲基丙烯酸缩水甘油酯 Sigma-Aldrich LLC.
4-乙烯基吡啶 百灵威科技有限公司J&K Chemicals
1-乙烯基咪唑 百灵威科技有限公司J&K Chemicals
N-乙烯基吡咯烷酮 百灵威科技有限公司J&K Chemicals
N-乙烯基咔唑 百灵威科技有限公司J&K Chemicals
聚4-乙烯基吡啶 Sigma-Aldrich贸易有限公司Sigma-Aldrich LLC.
*共聚聚丙烯1:实施例1A、1B、1C、1D、对比例2A、3A、2B、3B、2C、3C、2D、3D中所用的共聚聚丙烯。
*共聚聚丙烯2:实施例2A、2B、2C、2D中所用的共聚聚丙烯。
*共聚聚丙烯3:实施例3A、3B、3C、3D中所用的共聚聚丙烯。
*共聚聚丙烯4:实施例4A、4B、4C、4D中所用的共聚聚丙烯。
*共聚聚丙烯5:实施例5A、5B、5C、5D中所用的共聚聚丙烯。
*共聚聚丙烯6:实施例6A、6B、6C、6D中所用的共聚聚丙烯。
实施例1A
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量18.1wt%,二甲苯可溶物含量48.7wt%,可溶物中共聚单体含量31.9wt%,可溶物/共聚聚丙烯特性粘数比0.89,重均分子量为34.3×10 4g/mol,在230℃,2.16kg载荷下的MFR为1.21g/10min, Tm=143.4℃,击穿场强(90℃)为236kV/mm,直流体积电阻率(90℃,15kV/mm)为1.16E13Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入2g过氧化二苯甲酰和100g苯乙烯,搅拌混合60min,40℃溶胀4小时,升温至95℃,反应4小时。反应结束后,氮气吹扫降温,得到聚丙烯-g-苯乙烯材料产品A1。测试所得产品的各项性能参数,结果如表1所示。
实施例2A
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量14.7wt%,二甲苯可溶物含量41.7wt%,可溶物中共聚单体含量34.5wt%,可溶物/共聚聚丙烯特性粘数比0.91,重均分子量为36.6×10 4g/mol,在230℃,2.16kg载荷下的MFR为1.54g/10min,Tm=164.9℃,击穿场强(90℃)为248kV/mm,直流体积电阻率(90℃,15kV/mm)为7.25E12Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入2.8g过氧化月桂酰和150g苯乙烯,搅拌混合60min,60℃溶胀2小时,升温至90℃,反应4小时。反应结束后,氮气吹扫降温,得到聚丙烯-g-苯乙烯材料产品A2。测试所得产品的各项性能参数,结果如表1所示。
实施例3A
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量20.1wt%,二甲苯可溶物含量66.1wt%,可溶物中共聚单体含量29.5wt%,可溶物/共聚聚丙烯特性粘数比1.23,重均分子量为53.8×10 4g/mol,在230℃,2.16kg载荷下的MFR为0.51g/10min,Tm=142.5℃,击穿场强(90℃)为176kV/mm,直流体积电阻率(90℃,15kV/mm)为5.63E12Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入1.5g过氧化月桂酰和50g苯乙烯,搅拌混合60min,60℃溶胀2小时,升温至85℃,反应4小时。反应结束后,氮气吹扫降温,得到聚丙烯-g-苯乙烯材料产品A3。测试所得产品的各项性能参数,结果如表1所示。
实施例4A
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量9.3wt%,二甲苯可溶 物含量21.0wt%,可溶物中共聚单体含量35.4wt%,可溶物/共聚聚丙烯特性粘数比1.68,重均分子量为30.4×10 4g/mol,在230℃,2.16kg载荷下的MFR为5.69g/10min,Tm=163.0℃,击穿场强(90℃)为288kV/mm,直流体积电阻率(90℃,15kV/mm)为1.32E13Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入7.0g过氧化(2-乙基己酸)叔丁酯和200g苯乙烯,搅拌混合60min,60℃溶胀1小时,升温至90℃,反应4小时。反应结束后,氮气吹扫降温,得到聚丙烯-g-苯乙烯材料产品A4。测试所得产品的各项性能参数,结果如表1所示。
实施例5A
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量4.8wt%,二甲苯可溶物含量19.2wt%,可溶物中共聚单体含量17.6wt%,可溶物/共聚聚丙烯特性粘数比1.04,重均分子量为29.2×10 4g/mol,在230℃,2.16kg载荷下的MFR为5.37g/10min,Tm=163.3℃,击穿场强(90℃)为322kV/mm,直流体积电阻率(90℃,15kV/mm)为1.36E13Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。将4.0g过氧化二苯甲酰溶解于100g丙酮中,将所得丙酮溶液加入到反应体系中,升温至40℃,氮气吹扫30min除去丙酮,再加入对甲基苯乙烯100g,搅拌混合30min,60℃溶胀1小时,升温至100℃,反应1小时。反应结束后,氮气吹扫降温,得到聚丙烯-g-对甲基苯乙烯材料产品A5。测试所得产品的各项性能参数,结果如表1所示。
实施例6A
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量12.6wt%,二甲苯可溶物含量30.6wt%,可溶物中共聚单体含量43.6wt%,可溶物/共聚聚丙烯特性粘数比1.84,重均分子量为27.1×10 4g/mol,在230℃,2.16kg载荷下的MFR为8.46g/10min,Tm=162.0℃,击穿场强(90℃)为261kV/mm,直流体积电阻率(90℃,15kV/mm)为9E12Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。将3.0g过氧化二苯甲酰溶解于100g苯乙烯和100g界面剂甲苯中,形成溶液,将溶液搅拌混合30min,60℃溶胀0.5小时,加入分散剂水4kg,升温至110℃,反应0.5小时。反应结束后,冷却降温,过滤除去分散剂水,70℃下真空干燥10小时,得到聚丙烯-g-苯乙烯材料产品A6。测试所得产 品的各项性能参数,结果如表1所示。
实施例7A
称取实施例1A的基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入0.6g过氧化二苯甲酰和30g苯乙烯,搅拌混合60min,40℃溶胀4小时,升温至95℃,反应4小时。反应结束后,氮气吹扫降温,得到聚丙烯-g-苯乙烯材料产品A7。测试所得产品的各项性能参数,结果如表1所示。
实施例8A
称取实施例1A的基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入4g过氧化二苯甲酰和200g苯乙烯,搅拌混合60min,40℃溶胀4小时,升温至95℃,反应4小时。反应结束后,氮气吹扫降温,得到聚丙烯-g-苯乙烯材料产品A8。测试所得产品的各项性能参数,结果如表1所示。
对比例1A
称取筛分除去小于40目的细粉的T30S粉料(击穿场强(90℃)为347kV/mm,直流体积电阻率(90℃,15kV/mm)为1.18E13Ω·m)2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入2g过氧化二苯甲酰和100g苯乙烯,搅拌混合60min,40℃溶胀4小时,升温至95℃,反应4小时。反应结束后,氮气吹扫降温,得到聚丙烯-g-苯乙烯材料产品CA1。测试所得产品的各项性能参数,结果如表1所示。
对比例2A
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量18.1wt%,二甲苯可溶物含量48.7wt%,可溶物中共聚单体含量31.9wt%,可溶物/共聚聚丙烯特性粘数比0.89,重均分子量为34.3×10 4g/mol,在230℃,2.16kg载荷下的MFR为1.21g/10min,Tm=143.4℃,击穿场强(90℃)为236kV/mm,直流体积电阻率(90℃,15kV/mm)为1.16E13Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入12g过氧化二苯甲酰和600g苯乙烯,搅拌混合60min,40℃溶胀4小时,升温至95℃,反应4小时。反应结束后,氮气吹扫降温,得到聚丙烯-g-苯乙烯材料产品CA2。测试所得产品的各项性能参数,结果如表1所示。
对比例3A
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量18.1wt%,二甲苯可溶物含量48.7wt%,可溶物中共聚单体含量31.9wt%,可溶物/共聚聚丙烯特性粘数比0.89,重均分子量为34.3×10 4g/mol,在230℃,2.16kg载荷下的MFR为1.21g/10min,Tm=143.4℃,击穿场强(90℃)为236kV/mm,直流体积电阻率(90℃,15kV/mm)为1.16E13Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,和100g聚苯乙烯GPPS-123混合,使用螺杆挤出机混合,得到共混物CA3。测试所得产品的各项性能参数,结果如表1所示。
实施例1B
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量18.1wt%,二甲苯可溶物含量48.7wt%,可溶物中共聚单体含量31.9wt%,可溶物/共聚聚丙烯特性粘数比0.89,重均分子量为34.3×10 4g/mol,在230℃,2.16kg载荷下的MFR为1.21g/10min,Tm=143.4℃,击穿场强(90℃)为236kV/mm,直流体积电阻率(90℃,15kV/mm)为1.16E13Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入2.5g过氧化月桂酰和50g乙烯基三乙氧基硅烷,搅拌混合30min,40℃溶胀1小时,升温至90℃,反应4小时。反应结束后,氮气吹扫,冷却降温,得到聚丙烯-g-乙烯基三乙氧基硅烷材料产品B1。测试所得产品的各项性能参数,结果如表2所示。
实施例2B
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量14.7wt%,二甲苯可溶物含量41.7wt%,可溶物中共聚单体含量34.5wt%,可溶物/共聚聚丙烯特性粘数比0.91,重均分子量为36.6×10 4g/mol,在230℃,2.16kg载荷下的MFR为1.54g/10min,Tm=164.9℃,击穿场强(90℃)为248kV/mm,直流体积电阻率(90℃,15kV/mm)为7.25E12Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入0.9g过氧化二苯甲酰和20g乙烯基三乙氧基硅烷,搅拌混合60min,升温至90℃,反应4小时。反应结束后,氮气吹扫,冷却降温,得到聚丙烯-g-乙烯基三乙氧基硅烷料产品B2。测试所得产品的各项性能参数,结果如表2所示。
实施例3B
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量20.1wt%,二甲苯可溶物含量66.1wt%,可溶物中共聚单体含量29.5wt%,可溶物/共聚聚丙烯特性粘数比1.23,重均分子量为53.8×10 4g/mol,在230℃,2.16kg载荷下的MFR为0.51g/10min,Tm=142.5℃,击穿场强(90℃)为176kV/mm,直流体积电阻率(90℃,15kV/mm)为5.63E12Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入6.0g过氧化月桂酰和100g乙烯基三乙氧基硅烷,搅拌混合60min,60℃溶胀1小时,升温至90℃,反应4小时。反应结束后,氮气吹扫,冷却降温,得到聚丙烯-g-乙烯基三乙氧基硅烷材料产品B3。测试所得产品的各项性能参数,结果如表2所示。
实施例4B
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量9.3wt%,二甲苯可溶物含量21.0wt%,可溶物中共聚单体含量35.4wt%,可溶物/共聚聚丙烯特性粘数比1.68,重均分子量为30.4×10 4g/mol,在230℃,2.16kg载荷下的MFR为5.69g/10min,Tm=163.0℃,击穿场强(90℃)为288kV/mm,直流体积电阻率(90℃,15kV/mm)为1.32E13Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入4.5g过氧化(2-乙基己酸)叔丁酯和120g乙烯基三异丙氧基硅烷,搅拌混合60min,升温至100℃,反应1.5小时。反应结束后,氮气吹扫,冷却降温,得到聚丙烯-g-乙烯基三异丙氧基硅烷材料产品B4。测试所得产品的各项性能参数,结果如表2所示。
实施例5B
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量4.8wt%,二甲苯可溶物含量19.2wt%,可溶物中共聚单体含量17.6wt%,可溶物/共聚聚丙烯特性粘数比1.04,重均分子量为29.2×10 4g/mol,在230℃,2.16kg载荷下的MFR为5.37g/10min,Tm=163.3℃,击穿场强(90℃)为322kV/mm,直流体积电阻率(90℃,15kV/mm)为1.36E13Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。将3.7g过氧化月桂酰溶解于70g丙酮中,将所得丙酮溶液加入到反应体系中,升温至40℃,氮气吹扫30min除去丙酮,再加入75g乙烯基三乙氧基硅烷,搅拌混合30min,升温至85℃,反应4小时。 反应结束后,氮气吹扫,冷却降温,得到聚丙烯-g-乙烯基三乙氧基硅烷材料产品B5。测试所得产品的各项性能参数,结果如表2所示。
实施例6B
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量12.6wt%,二甲苯可溶物含量30.6wt%,可溶物中共聚单体含量43.6wt%,可溶物/共聚聚丙烯特性粘数比1.84,重均分子量为27.1×10 4g/mol,在230℃,2.16kg载荷下的MFR为8.46g/10min,Tm=162.0℃,击穿场强(90℃)为261kV/mm,直流体积电阻率(90℃,15kV/mm)为9E12Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。将5.0g过氧化月桂酰溶解于100g乙烯基三甲氧基硅烷和50g界面剂甲苯中,形成溶液,将溶液搅拌混合30min,升温至95℃,加入95℃的分散剂水4kg,反应0.75小时。反应结束后,冷却降温,过滤除去分散剂水,70℃下真空干燥10小时,得到聚丙烯-g-乙烯基三甲氧基硅烷材料产品B6。测试所得产品的各项性能参数,结果如表2所示。
实施例7B
称取实施例1B的基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入7.5g过氧化月桂酰和175g乙烯基三乙氧基硅烷,搅拌混合30min,40℃溶胀1小时,升温至90℃,反应4小时。反应结束后,氮气吹扫,冷却降温,得到聚丙烯-g-乙烯基三乙氧基硅烷材料产品B7。测试所得产品的各项性能参数,结果如表2所示。
对比例1B
称取筛分除去小于40目的细粉的T30S粉料(击穿场强(90℃)为347kV/mm,直流体积电阻率(90℃,15kV/mm)为1.18E13Ω·m)2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入2.5g过氧化月桂酰和50g乙烯基三乙氧基硅烷,搅拌混合60min,40℃溶胀1小时,升温至90℃,反应4小时。反应结束后,氮气吹扫,冷却降温,得到聚丙烯-g-乙烯基三乙氧基硅烷材料产品CB1。测试所得产品的各项性能参数,结果如表2所示。
对比例2B
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量18.1wt%,二甲苯可溶物含量48.7wt%,可溶物中共聚单体含量31.9wt%,可溶物/共聚聚丙烯特性粘数比0.89,重均分子量为34.3×10 4g/mol,在230℃,2.16kg载荷下的MFR为1.21g/10min,Tm=143.4℃,击穿场强(90℃)为236kV/mm,直流体积电阻率(90℃,15kV/mm)为1.16E13Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入20g过氧化月桂酰和400g乙烯基三乙氧基硅烷,搅拌混合60min,40℃溶胀1小时,升温至90℃,反应4小时。反应结束后,冷却降温,得到聚丙烯-g-乙烯基三乙氧基硅烷材料产品CB2。测试所得产品的各项性能参数,结果如表2所示。
对比例3B
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量18.1wt%,二甲苯可溶物含量48.7wt%,可溶物中共聚单体含量31.9wt%,可溶物/共聚聚丙烯特性粘数比0.89,重均分子量为34.3×10 4g/mol,在230℃,2.16kg载荷下的MFR为1.21g/10min,Tm=143.4℃,击穿场强(90℃)为236kV/mm,直流体积电阻率(90℃,15kV/mm)为1.16E13Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,和50g聚乙烯基三乙氧基硅烷混合,使用螺杆挤出机混合,得到共混物CB3。测试所得产品的各项性能参数,结果如表2所示。
聚乙烯基三乙氧基硅烷制备方法:10g过氧化月桂酰和200g乙烯基三乙氧基硅烷,分散于800ml去离子水中,搅拌混合,升温至90℃,反应4小时。反应结束后,反应体系冷却至室温,过滤干燥后得到125g聚乙烯基三乙氧基硅烷。
实施例1C
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量18.1wt%,二甲苯可溶物含量48.7wt%,可溶物中共聚单体含量31.9wt%,可溶物/共聚聚丙烯特性粘数比0.89,重均分子量为34.3×10 4g/mol,在230℃,2.16kg载荷下的MFR为1.21g/10min,Tm=143.4℃,击穿场强(90℃)为236kV/mm,直流体积电阻率(90℃,15kV/mm)为1.16E13Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入2.5g过氧化二苯甲酰和80g甲基丙烯酸缩水甘油酯,搅拌混合30min,升温至90℃,反应4小时。反应结束后,氮气吹扫降温,得到聚丙烯-g-甲基丙烯酸缩水甘油酯材料产品C1。测试所得产品 的各项性能参数,结果如表3所示。
实施例2C
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量14.7wt%,二甲苯可溶物含量41.7wt%,可溶物中共聚单体含量34.5wt%,可溶物/共聚聚丙烯特性粘数比0.91,重均分子量为36.6×10 4g/mol,在230℃,2.16kg载荷下的MFR为1.54g/10min,Tm=164.9℃,击穿场强(90℃)为248kV/mm,直流体积电阻率(90℃,15kV/mm)为7.25E12Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入1.2g过氧化二苯甲酰和40g甲基丙烯酸缩水甘油酯,搅拌混合30min,升温至95℃,反应4小时。反应结束后,氮气吹扫降温,得到聚丙烯-g-甲基丙烯酸缩水甘油酯材料产品C2。测试所得产品的各项性能参数,结果如表3所示。
实施例3C
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量20.1wt%,二甲苯可溶物含量66.1wt%,可溶物中共聚单体含量29.5wt%,可溶物/共聚聚丙烯特性粘数比1.23,重均分子量为53.8×10 4g/mol,在230℃,2.16kg载荷下的MFR为0.51g/10min,Tm=142.5℃,击穿场强(90℃)为176kV/mm,直流体积电阻率(90℃,15kV/mm)为5.63E12Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入3.5g过氧化二苯甲酰和125g甲基丙烯酸缩水甘油酯,搅拌混合30min,升温至90℃,反应4小时。反应结束后,氮气吹扫降温,得到聚丙烯-g-甲基丙烯酸缩水甘油酯材料产品C3。测试所得产品的各项性能参数,结果如表3所示。
实施例4C
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量9.3wt%,二甲苯可溶物含量21.0wt%,可溶物中共聚单体含量35.4wt%,可溶物/共聚聚丙烯特性粘数比1.68,重均分子量为30.4×10 4g/mol,在230℃,2.16kg载荷下的MFR为5.69g/10min,Tm=163.0℃,击穿场强(90℃)为288kV/mm,直流体积电阻率(90℃,15kV/mm)为1.32E13Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入2.8g过氧化(2-乙基 己酸)叔丁酯和100g甲基丙烯酸甲酯,搅拌混合30min,升温至95℃,加入95℃的分散剂去离子水3.0kg,反应4小时。反应结束后,过滤除去分散剂水,70℃下真空干燥10小时,冷却降温,得到聚丙烯-g-甲基丙烯酸甲酯材料产品C4。测试所得产品的各项性能参数,结果如表3所示。
实施例5C
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量4.8wt%,二甲苯可溶物含量19.2wt%,可溶物中共聚单体含量17.6wt%,可溶物/共聚聚丙烯特性粘数比1.04,重均分子量为29.2×10 4g/mol,在230℃,2.16kg载荷下的MFR为5.37g/10min,Tm=163.3℃,击穿场强(90℃)为322kV/mm,直流体积电阻率(90℃,15kV/mm)为1.36E13Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。将1.3g过氧化二苯甲酰溶解于70g丙酮中,将所得丙酮溶液加入到反应体系中,升温至40℃,氮气吹扫30min除去丙酮,再加入50g丙烯酸丁酯,搅拌混合30min,升温至100℃,反应1小时。反应结束后,氮气吹扫降温,得到聚丙烯-g-丙烯酸丁酯材料产品C5。测试所得产品的各项性能参数,结果如表3所示。
实施例6C
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量12.6wt%,二甲苯可溶物含量30.6wt%,可溶物中共聚单体含量43.6wt%,可溶物/共聚聚丙烯特性粘数比1.84,重均分子量为27.1×10 4g/mol,在230℃,2.16kg载荷下的MFR为8.46g/10min,Tm=162.0℃,击穿场强(90℃)为261kV/mm,直流体积电阻率(90℃,15kV/mm)为9E12Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。将0.8g过氧化月桂酰溶解于30g甲基丙烯酸甲酯和40g界面剂甲苯中,形成溶液,将溶液搅拌混合30min,升温至85℃,加入85℃的分散剂水4kg,反应1.5小时。反应结束后,冷却降温,过滤除去分散剂水,70℃下真空干燥10小时,得到聚丙烯-g-甲基丙烯酸甲酯材料产品C6。测试所得产品的各项性能参数,结果如表3所示。
实施例7C
称取实施例1C的基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中, 密闭反应系统,氮气置换除氧。加入5.0g过氧化二苯甲酰和180g甲基丙烯酸缩水甘油酯,搅拌混合30min,40℃溶胀1小时,升温至90℃,反应4小时。反应结束后,氮气吹扫降温,得到聚丙烯-g-甲基丙烯酸缩水甘油酯材料产品C7。测试所得产品的各项性能参数,结果如表3所示。
实施例8C
称取实施例1C的基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入1.5g过氧化二苯甲酰、40g丙烯酸甲酯和10g丙烯酸,搅拌混合30min,升温至90℃,反应4小时。反应结束后,氮气吹扫降温,得到聚丙烯-g-丙烯酸甲酯/丙烯酸材料产品C8。测试所得产品的各项性能参数,结果如表3所示。
对比例1C
称取筛分除去小于40目的细粉的T30S粉料(击穿场强(90℃)为347kV/mm,直流体积电阻率(90℃,15kV/mm)为1.18E13Ω·m)2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入2.5g过氧化二苯甲酰和80g甲基丙烯酸缩水甘油酯,搅拌混合60min,升温至90℃,反应4小时。反应结束后,氮气吹扫降温,得到聚丙烯-g-甲基丙烯酸缩水甘油酯产品CC1。测试所得产品的各项性能参数,结果如表3所示。
对比例2C
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量18.1wt%,二甲苯可溶物含量48.7wt%,可溶物中共聚单体含量31.9wt%,可溶物/共聚聚丙烯特性粘数比0.89,重均分子量为34.3×10 4g/mol,在230℃,2.16kg载荷下的MFR为1.21g/10min,Tm=143.4℃,击穿场强(90℃)为236kV/mm,直流体积电阻率(90℃,15kV/mm)为1.16E13Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入6g过氧化二苯甲酰和225g甲基丙烯酸缩水甘油酯,搅拌混合60min,升温至90℃,反应4小时。反应结束后,氮气吹扫却降温,得到聚丙烯-g-甲基丙烯酸缩水甘油酯材料产品CC2。测试所得产品的各项性能参数,结果如表3所示。
对比例3C
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量18.1wt%,二甲苯可溶物含量48.7wt%,可溶物中共聚单体含量31.9wt%,可溶物/共聚聚丙烯特性粘数比0.89,重均分子量为34.3×10 4g/mol,在230℃,2.16kg载荷下的MFR为1.21g/10min,Tm=143.4℃,击穿场强(90℃)为236kV/mm,直流体积电阻率(90℃,15kV/mm)为1.16E13Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料500g,和20g聚甲基丙烯酸缩水甘油酯混合,使用螺杆挤出机混合,得到共混物CC3。测试所得产品的各项性能参数,结果如表3所示。
实施例1D
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量18.1wt%,二甲苯可溶物含量48.7wt%,可溶物中共聚单体含量31.9wt%,可溶物/共聚聚丙烯特性粘数比0.89,重均分子量为34.3×10 4g/mol,在230℃,2.16kg载荷下的MFR为1.21g/10min,Tm=143.4℃,击穿场强(90℃)为236kV/mm,直流体积电阻率(90℃,15kV/mm)为1.16E13Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入1.2g过氧化二苯甲酰和40g 4-乙烯基吡啶,搅拌混合30min,50℃溶胀30min,升温至90℃,反应4小时。反应结束后,氮气吹扫降温,得到聚丙烯-g-4-乙烯基吡啶材料产品D1。测试所得产品的各项性能参数,结果如表4所示。
实施例2D
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量14.7wt%,二甲苯可溶物含量41.7wt%,可溶物中共聚单体含量34.5wt%,可溶物/共聚聚丙烯特性粘数比0.91,重均分子量为36.6×10 4g/mol,在230℃,2.16kg载荷下的MFR为1.54g/10min,Tm=164.9℃,击穿场强(90℃)为248kV/mm,直流体积电阻率(90℃,15kV/mm)为7.25E12Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入2.2g过氧化二苯甲酰和100g 4-乙烯基吡啶,搅拌混合30min,50℃溶胀60min,升温至95℃,反应4小时。反应结束后,氮气吹扫降温,得到聚丙烯-g-4-乙烯基吡啶材料产品D2。测试所得产品的各项性能参数,结果如表4所示。
实施例3D
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量20.1wt%,二甲苯可溶物含量66.1wt%,可溶物中共聚单体含量29.5wt%,可溶物/共聚聚丙烯特性粘数比1.23,重均分子量为53.8×10 4g/mol,在230℃,2.16kg载荷下的MFR为0.51g/10min,Tm=142.5℃,击穿场强(90℃)为176kV/mm,直流体积电阻率(90℃,15kV/mm)为5.63E12Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入4.5g过氧化二苯甲酰和150g 4-乙烯基吡啶,搅拌混合30min,50℃溶胀30min,升温至90℃,反应4小时。反应结束后,氮气吹扫降温,得到聚丙烯-g-4-乙烯基吡啶材料产品D3。测试所得产品的各项性能参数,结果如表4所示。
实施例4D
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量9.3wt%,二甲苯可溶物含量21.0wt%,可溶物中共聚单体含量35.4wt%,可溶物/共聚聚丙烯特性粘数比1.68,重均分子量为30.4×10 4g/mol,在230℃,2.16kg载荷下的MFR为5.69g/10min,Tm=163.0℃,击穿场强(90℃)为288kV/mm,直流体积电阻率(90℃,15kV/mm)为1.32E13Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入2g过氧化(2-乙基己酸)叔丁酯和1-乙烯基咪唑40g,搅拌混合30min,55℃溶胀2小时,升温至95℃,反应4小时。反应结束后,氮气吹扫降温,得到聚丙烯-g-1-乙烯基咪唑材料产品D4。测试所得产品的各项性能参数,结果如表4所示。
实施例5D
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量4.8wt%,二甲苯可溶物含量19.2wt%,可溶物中共聚单体含量17.6wt%,可溶物/共聚聚丙烯特性粘数比1.04,重均分子量为29.2×10 4g/mol,在230℃,2.16kg载荷下的MFR为5.37g/10min,Tm=163.3℃,击穿场强(90℃)为322kV/mm,直流体积电阻率(90℃,15kV/mm)为1.36E13Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。将3g过氧化二苯甲酰溶解于100g丙酮中,将所得丙酮溶液加入到反应体系中,升温至40℃,氮气吹扫30min除去丙酮,再加入N-乙烯基吡咯烷酮60g,搅拌混合30min,升温至100℃,反应1小时。反应结束后,冷却降温,得到聚丙烯-g-N-乙烯基吡咯烷酮材料产品D5。测试所得产品的 各项性能参数,结果如表4所示。
实施例6D
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量12.6wt%,二甲苯可溶物含量30.6wt%,可溶物中共聚单体含量43.6wt%,可溶物/共聚聚丙烯特性粘数比1.84,重均分子量为27.1×10 4g/mol,在230℃,2.16kg载荷下的MFR为8.46g/10min,Tm=162.0℃,击穿场强(90℃)为261kV/mm,直流体积电阻率(90℃,15kV/mm)为9E12Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。7g过氧化月桂酰和N-乙烯基咔唑160g溶解于界面剂甲苯500g,形成溶液,将溶液加入到反应釜中,搅拌混合30min,升温至95℃,加入95℃的分散剂水3kg,反应3小时。反应结束后,冷却降温,过滤除去分散剂水,70℃下真空干燥10小时,得到聚丙烯-g-N-乙烯基咔唑材料产品D6。测试所得产品的各项性能参数,结果如表4所示。
实施例7D
称取实施例1D的基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入4.5g过氧化二苯甲酰和200g 4-乙烯基吡啶,搅拌混合30min,50℃溶胀30min,升温至90℃,反应4小时。反应结束后,氮气吹扫降温,得到聚丙烯-g-4-乙烯基吡啶材料产品D7。测试所得产品的各项性能参数,结果如表4所示。
对比例1D
称取筛分除去小于40目的细粉的T30S粉料(击穿场强(90℃)为347kV/mm,直流体积电阻率(90℃,15kV/mm)为1.18E13Ω·m)2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入1.2g过氧化二苯甲酰和40g 4-乙烯基吡啶,搅拌混合30min,50℃溶胀30min,升温至90℃,反应4小时。反应结束后,氮气吹扫降温,得到聚丙烯-g-4-乙烯基吡啶材料产品CD1。测试所得产品的各项性能参数,结果如表4所示。
对比例2D
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量18.1wt%,二甲苯可溶物含量48.7wt%,可溶物中共聚单体含量31.9wt%,可溶物/共聚聚丙烯特性粘数比0.89, 重均分子量为34.3×10 4g/mol,在230℃,2.16kg载荷下的MFR为1.21g/10min,Tm=143.4℃,击穿场强(90℃)为236kV/mm,直流体积电阻率(90℃,15kV/mm)为1.16E13Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入7.5g过氧化二苯甲酰和4-乙烯基吡啶300g,搅拌混合30min,50℃溶胀30min,升温至90℃,反应4小时。反应结束后,氮气吹扫降温,得到聚丙烯-g-4-乙烯基吡啶材料产品CD2。测试所得产品的各项性能参数,结果如表4所示。
对比例3D
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量18.1wt%,二甲苯可溶物含量48.7wt%,可溶物中共聚单体含量31.9wt%,可溶物/共聚聚丙烯特性粘数比0.89,重均分子量为34.3×10 4g/mol,在230℃,2.16kg载荷下的MFR为1.21g/10min,Tm=143.4℃,击穿场强(90℃)为236kV/mm,直流体积电阻率(90℃,15kV/mm)为1.16E13Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2000g,和40g聚4-乙烯基吡啶混合,使用螺杆挤出机混合,得到共混物CD3。测试所得产品的各项性能参数,结果如表4所示。
Figure PCTCN2020127507-appb-000024
Figure PCTCN2020127507-appb-000025
Figure PCTCN2020127507-appb-000026
Figure PCTCN2020127507-appb-000027
比较实施例1A和对比例1A的数据可以看出,采用T30S粉料作为基础粉料,所得聚丙烯-g-苯乙烯材料产品的弯曲模量过高,材料机械性能差,无法满足绝缘材料加工需要。
比较实施例1A和对比例2A的数据可以看出,苯乙烯单体的加入量过高(M1值过高)会导致所得聚丙烯-g-苯乙烯材料产品断裂伸长率大幅下降,影响材料的机械性能,且材料的击穿场强和体积电阻率下降,影响材料的电性能。
比较实施例1A和对比例3A的数据可以看出,采用共混聚苯乙烯的方式反而导致材料的击穿场强和体积电阻率大幅下降,极大影响材料的电性能。
综上,由表1数据可以看出,弯曲模量的大幅下降使得本发明的芳香烯烃接枝改性聚丙烯材料具有良好的机械性能,并且,相比未接枝苯乙烯类单体的共聚聚丙烯,接枝产物的击穿场强均得以提高,说明本发明的芳香烯烃接枝改性聚丙烯材料同时具有良好的电性能。
比较实施例1B和对比例1B的数据可以看出,采用T30S粉料作为基础粉料,所得聚丙烯-g-硅烷材料产品的弯曲模量过高,材料机械性能差,无法满足绝缘材料加工需求。
比较实施例1B和对比例2B的数据可以看出,含烯基的硅烷类单体的加入量过高(M1值过高)会导致所得聚丙烯-g-硅烷材料产品的击穿场强和体积电阻率下降,影响产品的电性能。
比较实施例1B和对比例3B的数据可以看出,采用共混聚乙烯基三乙氧基硅烷的方式反而导致产品的击穿场强和体积电阻率大幅下降,极大地影响产品的电性能。
综上,由表2数据可以看出,弯曲模量的大幅下降使得本发明的硅烷改性的聚丙烯接枝物具有良好的机械性能,并且,相比未接枝含烯基的硅烷类单体的共聚聚丙烯,接枝产物的击穿场强均得以提高,说明本发明的硅烷改性的聚丙烯接枝物同时具有良好的电性能。
比较实施例1C和对比例1C的数据可以看出,采用T30S粉料作为基础粉料,所得聚丙烯-g-丙烯酸酯材料产品的弯曲模量过高,材料机械性能差,无法满足绝缘材料加工需求。
比较实施例1C和对比例2C的数据可以看出,丙烯酸酯类单体的加入量过高(M1值过高)会导致所得聚丙烯-g-丙烯酸酯材料产品击穿场强和体积电阻率下降,影响产品的电性能。
比较实施例1C和对比例3C的数据可以看出,采用共混丙烯酸酯聚合物的方式反而导致产品的击穿场强和体积电阻率大幅下降,极大影响产品的电性能。
综上,由表3数据可以看出,弯曲模量的大幅下降使得本发明的接枝改性聚丙烯材料具有良好的机械性能,并且,相比未接枝丙烯酸酯类单体以及任选的丙烯酸类单体的共聚聚丙烯,接枝产物的击穿场强均得以提高,说明本发明的接枝改性聚丙烯材料同时具有良 好的电性能。
比较实施例1D和对比例1D的数据可以看出,采用T30S粉料作为基础粉料,所得聚丙烯-g-杂环材料产品的弯曲模量过高,材料机械性能差,无法满足绝缘材料加工需求。
比较实施例1D和对比例2D的数据可以看出,杂环类单体的加入量过高(M1值过高)会导致所得聚丙烯-g-杂环材料产品的击穿场强和体积电阻率大幅下降,极大影响产品的电性能。
比较实施例1D和对比例3D的数据可以看出,采用共混杂环聚合物的方式反而导致产品的击穿场强和体积电阻率大幅下降,极大地影响产品的电性能。
综上,由表4数据可以看出,弯曲模量的大幅下降使得本发明的聚丙烯接枝杂环的改性材料具有良好的机械性能,并且,相比未接枝杂环类单体的共聚聚丙烯,接枝产物的击穿场强均得以提高,说明本发明的聚丙烯接枝杂环的改性材料同时具有良好的电性能。
此外,由介电常数和介电损耗数据可以看出,接枝改性并不影响材料的介电常数和介电损耗,本发明的材料满足绝缘所需必要条件。
实施例A0
导体的制备:将多条铝制单丝导体进行束丝操作,接着,将束丝后的各单丝导体进行绞合操作,得到铝制导体内芯。
芳香烯烃改性聚丙烯颗粒的制备:将如下质量份的各组份共混:实施例A1、实施例A3、实施例A5、实施例A7和实施例A8得到的芳香烯烃改性聚丙烯料100份,抗氧剂1010/168/硬脂酸钙(质量比2:2:1)0.3份。用双螺杆挤出机造粒,转速300r/min,造粒温度210-230℃。
导体屏蔽层和电绝缘层的制备:导体屏蔽料PSD_WMP-00012(浙江万马股份有限公司)和上述芳香烯烃改性聚丙烯颗粒,在导体内芯外通过挤出机共挤出包覆形成导体屏蔽层+电绝缘层,或形成导体屏蔽层+电绝缘层+电绝缘屏蔽层(外屏蔽层),挤出温度为160-220℃。
金属屏蔽层的制备:在电绝缘层(电绝缘屏蔽层)外采用T1铜进行铜带绕包,形成金属屏蔽层。
内护套层的制备:将牌号St-2的PVC颗粒(东莞海创电子有限公司)在金属屏蔽层外通过挤出机挤出形成内护套层。
铠装的制备:使用304不锈钢制成标称直径为1.25mm的钢丝铠装,由单层铠装左向绕包在内护套层上,铠装紧密,使相邻钢丝间的间隙为最小。
外护套层的制备:将牌号St-2的PVC颗粒(东莞海创电子有限公司)在铠装外通过挤出机挤出形成外护套层。
最终得到所述具有热塑性绝缘层的电缆。该电缆的剖面结构示意图如图1所示。
根据上述方法分别基于实施例A1、实施例A3、实施例A5、实施例A7和实施例A8的材料制得能级在6~35kV范围内的电缆,电缆导体截面积240~400mm 2,导体屏蔽层厚度1~3mm,电绝缘层厚度2~8mm,电绝缘屏蔽层厚度0.5~1.5mm,铠装厚度0.5~1mm,内护套层厚度1~2mm,外护套层厚度不小于1.8mm。
测试例A0
对所制得的电缆进行测试。电缆的主绝缘电导率测试结果:各电缆在90℃和30℃下电导率比值均小于100。电缆绝缘空间电荷注入测试结果:各电缆的电场畸变均小于20%。直流耐压测试结果:各电缆均无击穿和放电现象,通过。负荷循环测试结果:各电缆均无击穿现象,通过。
实施例B0
导体的制备:将多条铝制单丝导体进行束丝操作,接着,将束丝后的各单丝导体进行绞合操作,得到铝制导体内芯。
含烯基的硅烷改性聚丙烯颗粒的制备:将如下质量份的各组份共混:实施例B1-B4和实施例B6-B7得到的含烯基的硅烷改性聚丙烯料100份,抗氧剂1010/168/硬脂酸钙(质量比2:2:1)0.3份。用双螺杆挤出机造粒,转速300r/min,造粒温度210-230℃。
导体屏蔽层和绝缘层的制备:导体屏蔽料PSD_WMP-00012(浙江万马股份有限公司)和上述含烯基的硅烷改性聚丙烯颗粒,在导体内芯外通过挤出机共挤出包覆形成导体屏蔽层+电绝缘层,或形成导体屏蔽层+电绝缘层+电绝缘屏蔽层(外屏蔽层),挤出温度为160-220℃。
金属屏蔽层的制备:在电绝缘层(电绝缘屏蔽层)外采用T1铜进行铜带绕包,形成金属屏蔽层。
内护套层的制备:将牌号St-2的PVC颗粒(东莞海创电子有限公司)在金属屏蔽层外通过挤出机挤出形成内护套层。
铠装的制备:使用304不锈钢制成标称直径为1.25mm的钢丝铠装,由单层铠装左向绕包在内护套层上,铠装紧密,使相邻钢丝间的间隙为最小。
外护套层的制备:将牌号St-2的PVC颗粒(东莞海创电子有限公司)在铠装外通过 挤出机挤出形成外护套层。
最终得到所述具有改性聚丙烯绝缘层的热塑性电缆。该电缆的结构示意图如图1所示。
根据上述方法分别基于实施例B1-B4和实施例B6-B7的材料制得能级在6~35kV范围内的电缆,电缆导体截面积240~400mm 2,导体屏蔽层厚度1~3mm,电绝缘层厚度2~8mm,电绝缘屏蔽层厚度0.5~1.5mm,铠装厚度0.5~1mm,内护套层厚度1~2mm,外护套层厚度不小于1.8mm。
测试例B0
对所制得的电缆进行测试。电缆的主绝缘电导率测试结果:各电缆在90℃和30℃下电导率比值均小于100。电缆绝缘空间电荷注入测试结果:各电缆的电场畸变均小于20%。直流耐压测试结果:各电缆均无击穿和放电现象,通过。负荷循环测试结果:各电缆均无击穿现象,通过。
实施例C0
导体的制备:将多条铝制单丝导体进行束丝操作,接着,将束丝后的各单丝导体进行绞合操作,得到铝制导体内芯。
丙烯酸酯改性聚丙烯颗粒的制备:将如下质量份的各组份共混:实施例C1、实施例C3、实施例C5、实施例C7和实施例C8得到的丙烯酸酯改性聚丙烯料100份,抗氧剂1010/168/硬脂酸钙(质量比2:2:1)0.3份,抗铜剂MDA-5 0.05份。用双螺杆挤出机造粒,转速300r/min,造粒温度210-230℃。
导体屏蔽层和绝缘层的制备:导体屏蔽料PSD_WMP-00012(浙江万马股份有限公司)和上述丙烯酸酯改性聚丙烯颗粒,在导体内芯外通过挤出机共挤出包覆形成导体屏蔽层+电绝缘层,或形成导体屏蔽层+电绝缘层+电绝缘屏蔽层(外屏蔽层),挤出温度为160-220℃。
金属屏蔽层的制备:在电绝缘层(电绝缘屏蔽层)外采用T1铜进行铜带绕包,形成金属屏蔽层。
内护套层的制备:将牌号St-2的PVC颗粒(东莞海创电子有限公司)在金属屏蔽层外通过挤出机挤出形成内护套层。
铠装的制备:使用304不锈钢制成标称直径为1.25mm的钢丝铠装,由单层铠装左向绕包在内护套层上,铠装紧密,使相邻钢丝间的间隙为最小。
外护套层的制备:将牌号St-2的PVC颗粒(东莞海创电子有限公司)在铠装外通过挤出机挤出形成外护套层。
最终得到所述改性聚丙烯电缆。该电缆的立体结构示意图如图1所示。
根据上述方法分别基于实施例C1、实施例C3、实施例C5、实施例C7和实施例C8制得能级在6~35kv范围内的电缆,电缆导体截面积240~400mm 2,导体屏蔽层厚度1~3mm,电绝缘层厚度2~8mm,电绝缘屏蔽层厚度0.5~1.5mm,铠装厚度0.5~1mm,内护套层厚度1~2mm,外护套层厚度不小于1.8mm。
测试例C0
对所制得的电缆进行测试。电缆的主绝缘电导率测试结果:各电缆在90℃和30℃下电导率比值均小于100。电缆绝缘空间电荷注入测试结果:各电缆的电场畸变均小于20%。直流耐压测试结果:各电缆均无击穿和放电现象,通过。负荷循环测试结果:各电缆均无击穿现象,通过。
实施例D0
导体的制备:将多条铝制单丝导体进行束丝操作,接着,将束丝后的各单丝导体进行绞合操作,得到铝制导体内芯。
聚丙烯接枝杂环的改性材料颗粒的制备:将如下质量份的各组份共混:实施例D2、实施例D3、实施例D5和实施例D7得到的聚丙烯接枝杂环的改性材料100份,抗氧剂1010/168/硬脂酸钙(质量比2:2:1)0.3份。用双螺杆挤出机造粒,转速300r/min,造粒温度210-230℃。
导体屏蔽层和绝缘层的制备:导体屏蔽料PSD_WMP-00012(浙江万马股份有限公司)和上述聚丙烯接枝杂环的改性材料颗粒,在导体内芯外通过挤出机共挤出包覆形成导体屏蔽层+电绝缘层,或形成导体屏蔽层+电绝缘层+电绝缘屏蔽层(外屏蔽层),挤出温度为160-210℃。
金属屏蔽层的制备:在电绝缘层(电绝缘屏蔽层)外采用T1铜进行铜带绕包,形成金属屏蔽层。
内护套层的制备:将牌号St-2的PVC颗粒(东莞海创电子有限公司)在金属屏蔽层外通过挤出机挤出形成内护套层。
铠装的制备:使用304不锈钢制成标称直径为1.25mm的钢丝铠装,由单层铠装左向绕包在内护套层上,铠装紧密,使相邻钢丝间的间隙为最小。
外护套层的制备:将牌号St-2的PVC颗粒(东莞海创电子有限公司)在铠装外通过挤出机挤出形成外护套层。
最终得到所述高性能聚丙烯热塑性电缆。该电缆的立体结构示意图如图1所示。
根据上述方法分别基于实施例D2、实施例D3、实施例D5和实施例D7的材料制得能级在6~35kV范围内的电缆,电缆导体截面积240~400mm 2,导体屏蔽层厚度1~3mm,电绝缘层厚度2~8mm,电绝缘屏蔽层厚度0.5~1.5mm,铠装厚度0.5~1mm,内护套层厚度1~2mm,外护套层厚度不小于1.8mm。
测试例D0
对所制得的电缆进行测试。电缆的主绝缘电导率测试结果:各电缆在90℃和30℃下电导率比值均小于100。电缆绝缘空间电荷注入测试结果:各电缆的电场畸变均小于20%。直流耐压测试结果:各电缆均无击穿和放电现象,通过。负荷循环测试结果:各电缆均无击穿现象,通过。
实施例A
导体的制备:将76根直径为2.5mm的铝制单丝进行紧压绞合操作,得到铝制导体内芯。
芳香烯烃改性聚丙烯颗粒的制备:将如下质量份的各组份共混:实施例2A得到的芳香烯烃改性聚丙烯料100份,抗氧剂1010/168/硬脂酸钙(质量比2:2:1)0.3份。用双螺杆挤出机造粒,转速300r/min,造粒温度210~230℃。
导体屏蔽层和电绝缘层的制备:导体屏蔽料PSD_WMP-00012(浙江万马股份有限公司)和上述芳香烯烃改性聚丙烯颗粒,在导体内芯外通过挤出机共挤出包覆形成导体屏蔽层+电绝缘层,或形成导体屏蔽层+电绝缘层+电绝缘屏蔽层(外屏蔽层),挤出温度为190~220℃。
金属屏蔽层的制备:在电绝缘层(电绝缘屏蔽层)外采用25根直径为0.3mm的T1铜制金属丝进行铜丝绕包,形成金属屏蔽层。
内护套层的制备:将牌号St-2的PVC颗粒(东莞海创电子有限公司)在金属屏蔽层外通过挤出机挤出形成内护套层。
铠装的制备:使用50根直径6.0mm的304不锈钢丝制成单层钢丝铠装,将单层钢丝铠装左向绕包在内护套层上,铠装紧密,使相邻钢丝间的间隙为最小。
外护套层的制备:将牌号St-2的PVC颗粒(东莞海创电子有限公司)在铠装外通过挤出机挤出形成外护套层。
最终得到所述具有热塑性绝缘层的电缆。该电缆的剖面结构示意图如图1所示。
根据上述方法分别基于实施例2A的材料制得能级在10kV范围内的电缆,电缆导体截面积为400mm 2,导体屏蔽层的平均厚度1.04mm,电绝缘层的平均厚度2.53mm,电绝缘屏蔽层的平均厚度1.05mm,金属屏蔽层的平均厚度为0.92mm,电缆绝缘偏心度为5.1%,铠装的平均厚度6.00mm,内护套层的平均厚度为1.80mm,外护套层的平均厚度为2.45mm。
测试例A
对所制得的电缆进行测试。电缆的主绝缘电导率测试结果:电缆在90℃和30℃下电导率比值为47.5。电缆绝缘空间电荷注入测试结果:电缆的电场畸变为18.3%。直流耐压测试结果:电缆无击穿和放电现象,通过。负荷循环测试结果:电缆无击穿现象,通过。
实施例B
导体的制备:将76根直径为2.5mm铝制单丝进行紧压绞合操作,得到铝制导体内芯。
含烯基的硅烷改性聚丙烯颗粒的制备:将如下质量份的各组份共混:实施例5B得到的含烯基的硅烷改性聚丙烯料100份,抗氧剂1010/168/硬脂酸钙(质量比2:2:1)0.3份。用双螺杆挤出机造粒,转速300r/min,造粒温度210~230℃。
导体屏蔽层和绝缘层的制备:导体屏蔽料PSD_WMP-00012(浙江万马股份有限公司)和上述含烯基的硅烷改性聚丙烯颗粒,在导体内芯外通过挤出机共挤出包覆形成导体屏蔽层+电绝缘层,或形成导体屏蔽层+电绝缘层+电绝缘屏蔽层(外屏蔽层),挤出温度为190~220℃。
金属屏蔽层的制备:在电绝缘层(电绝缘屏蔽层)外采用25根直径为0.3mm的T1铜制金属丝进行铜丝绕包,形成金属屏蔽层。
内护套层的制备:将牌号St-2的PVC颗粒(东莞海创电子有限公司)在金属屏蔽层外通过挤出机挤出形成内护套层。
铠装的制备:使用50根直径6.0mm的304不锈钢丝制成单层钢丝铠装,将单层钢丝铠装左向绕包在内护套层上,铠装紧密,使相邻钢丝间的间隙为最小。
外护套层的制备:将牌号St-2的PVC颗粒(东莞海创电子有限公司)在铠装外通过挤出机挤出形成外护套层。
最终得到所述具有改性聚丙烯绝缘层的热塑性电缆。该电缆的结构示意图如图1所示。
根据上述方法分别基于实施例5B的材料制得能级在10kV的电缆,电缆导体截面积为400mm 2,导体屏蔽层的平均厚度1.05mm,电绝缘层的平均厚度2.95mm,电绝缘屏 蔽层的平均厚度1.18mm,金属屏蔽层的平均厚度为0.95mm,电缆绝缘偏心度为5.2%,铠装的平均厚度5.95mm,内护套层的平均厚度2.44mm,外护套层的平均厚度2.80mm。
测试例B
对所制得的电缆进行测试。电缆的主绝缘电导率测试结果:电缆在90℃和30℃下电导率比值为56.8。电缆绝缘空间电荷注入测试结果:电缆的电场畸变为17.5%。直流耐压测试结果:电缆无击穿和放电现象,通过。负荷循环测试结果:电缆无击穿现象,通过。
实施例C
导体的制备:将76根直径为2.5mm铜制单丝进行紧压绞合操作,得到铜制导体内芯。
丙烯酸酯类单体改性聚丙烯颗粒的制备:将如下质量份的各组份共混:实施例2C得到的改性聚丙烯料100份,抗氧剂1024 0.3份。用双螺杆挤出机造粒,转速300r/min,造粒温度210~230℃。
导体屏蔽层和绝缘层的制备:导体屏蔽料PSD_WMP-00012(浙江万马股份有限公司)和上述改性聚丙烯颗粒,在导体内芯外通过挤出机共挤出包覆形成导体屏蔽层+电绝缘层,或形成导体屏蔽层+电绝缘层+电绝缘屏蔽层(外屏蔽层),挤出温度为190~220℃。
金属屏蔽层的制备:在电绝缘层(电绝缘屏蔽层)外采用25根直径为0.3mm的T1铜制金属丝进行铜丝绕包,形成金属屏蔽层。
内护套层的制备:将牌号St-2的PVC颗粒(东莞海创电子有限公司)在金属屏蔽层外通过挤出机挤出形成内护套层。
铠装的制备:使用50根直径6.0mm的304不锈钢丝制成单层钢丝铠装,将单层钢丝铠装左向绕包在内护套层上,铠装紧密,使相邻钢丝间的间隙为最小。
外护套层的制备:将牌号St-2的PVC颗粒(东莞海创电子有限公司)在铠装外通过挤出机挤出形成外护套层。
最终得到所述改性聚丙烯电缆。该电缆的立体结构示意图如图1所示。
根据上述方法分别基于实施例2C的材料制得能级在10kV的电缆,电缆导体截面积为400mm 2,导体屏蔽层的平均厚度1.19mm,电绝缘层的平均厚度2.96mm,电绝缘屏蔽层的平均厚度1.06mm,金属屏蔽层的平均厚度0.94mm,电缆绝缘偏心度为4.9%,铠装的平均厚度5.93mm,内护套层的平均厚度2.07mm,外护套层的平均厚度2.75mm。
测试例C
对所制得的电缆进行测试。电缆的主绝缘电导率测试结果:电缆在90℃和30℃下电导率比值为69.4。电缆绝缘空间电荷注入测试结果:电缆的电场畸变为18.6%。直流耐压测试结果:电缆无击穿和放电现象,通过。负荷循环测试结果:电缆无击穿现象,通过。
实施例D
导体的制备:将76根直径为2.5mm的铝制单丝进行紧压绞合操作,得到铝制导体内芯。
聚丙烯接枝杂环的改性材料颗粒的制备:将如下质量份的各组份共混:实施例1D得到的聚丙烯接枝杂环的改性材料100份,抗氧剂1035 0.3份。用双螺杆挤出机造粒,转速300r/min,造粒温度210~230℃。
导体屏蔽层和绝缘层的制备:导体屏蔽料PSD_WMP-00012(浙江万马股份有限公司)和上述聚丙烯接枝杂环的改性材料颗粒,在导体内芯外通过挤出机共挤出包覆形成导体屏蔽层+电绝缘层,或形成导体屏蔽层+电绝缘层+电绝缘屏蔽层(外屏蔽层),挤出温度为190~210℃。
金属屏蔽层的制备:在电绝缘层(电绝缘屏蔽层)外采用25根直径为0.3mm的T1铜制金属丝进行铜丝绕包,形成金属屏蔽层。
内护套层的制备:将牌号St-2的PVC颗粒(东莞海创电子有限公司)在金属屏蔽层外通过挤出机挤出形成内护套层。
铠装的制备:使用50根直径6.0mm的304不锈钢丝制成钢丝铠装,由单层铠装左向绕包在内护套层上,铠装紧密,使相邻钢丝间的间隙为最小。
外护套层的制备:将牌号St-2的PVC颗粒(东莞海创电子有限公司)在铠装外通过挤出机挤出形成外护套层。
最终得到所述高性能聚丙烯热塑性电缆。该电缆的立体结构示意图如图1所示。
根据上述方法分别基于实施例1D的材料制得能级在10kV的电缆,电缆导体截面积为400mm 2,导体屏蔽层的平均厚度1.07mm,电绝缘层的平均厚度2.64mm,电绝缘屏蔽层的平均厚度1.00mm,金属屏蔽层的平均厚度为1.00mm,电缆绝缘偏心度为5.4%,铠装的平均厚度5.94mm,内护套层的平均厚度2.25mm,外护套层的平均厚度2.40mm。
测试例D
对所制得的电缆进行测试。电缆的主绝缘电导率测试结果:电缆在90℃和30℃下电导率比值为52.1。电缆绝缘空间电荷注入测试结果:电缆的电场畸变为16.2%。直流耐压 测试结果:电缆无击穿和放电现象,通过。负荷循环测试结果:电缆无击穿现象,通过。
可见,本发明的接枝改性聚丙烯材料作为主绝缘层的电缆,相比现有电缆,具有更高的工作温度,并且在更高工作温度下依然能够保持甚至具有更高的体积电阻率和更强的耐击穿性能。在保证相同电压等级和绝缘水平条件下,由所述接枝改性聚丙烯材料所制的电绝缘层相比常规电缆的电绝缘层具有厚度更薄、散热更好和重量更小的优点。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。

Claims (35)

  1. 一种用于绝缘材料的接枝改性聚丙烯材料,其特征在于,该接枝改性聚丙烯材料包括衍生自共聚聚丙烯的结构单元和衍生自含烯基聚合单体的结构单元;以接枝改性聚丙烯材料的重量为基准,所述接枝改性聚丙烯材料中衍生自含烯基聚合单体且处于接枝态的结构单元的含量为0.1~14wt%,优选为0.2~7.5wt%;
    所述共聚聚丙烯具有以下特征中的至少一种:共聚单体含量为0.5~40mol%,优选为0.5~30mol%,更优选为4~25wt%,进一步优选为4~22wt%;二甲苯可溶物含量为2~80wt%,优选为18~75wt%,更优选为30~70wt%,进一步优选为30~67wt%;可溶物中共聚单体含量为10~70wt%,优选为10~50wt%,更优选为20~35wt%;可溶物与聚丙烯的特性粘数比为0.3~5,优选为0.5~3,更优选为0.8~1.3。
  2. 根据权利要求1所述的接枝改性聚丙烯材料,其中,所述共聚聚丙烯具有以下特征中的至少一种:在230℃,2.16kg载荷下的熔体流动速率为0.01~60g/10min,优选为0.05~35g/10min,进一步优选为0.5~15g/10min;熔融温度Tm为100℃以上,优选为110~180℃,进一步优选为110~170℃,进一步优选为120~170℃,进一步优选为120~166℃;重均分子量为20×10 4~60×10 4g/mol。
  3. 根据权利要求1或2所述的接枝改性聚丙烯材料,其中,所述共聚聚丙烯的共聚单体选自除丙烯外的C 2-C 8的α-烯烃中的至少一种;优选地,所述共聚聚丙烯的共聚单体选自乙烯、1-丁烯、1-戊烯、4-甲基-1-戊烯、1-己烯、1-庚烯和1-辛烯中的至少一种;进一步优选地,所述共聚聚丙烯的共聚单体为乙烯和/或1-丁烯;进一步优选地,所述共聚聚丙烯由丙烯和乙烯组成。
  4. 根据权利要求1-3中任意一项所述的接枝改性聚丙烯材料,其中,所述接枝改性聚丙烯材料由共聚聚丙烯和含烯基聚合单体经固相接枝反应制得。
  5. 根据权利要求1-4中任意一项所述的接枝改性聚丙烯材料,其中,所述接枝改性聚丙烯材料具有以下特征中的至少一种:在230℃,2.16kg载荷下的熔体流动速率为0.01~30g/10min,优选为0.05~20g/10min,进一步优选为0.1~10g/10min,更优选为0.2~8g/10min;弯曲模量为10~1250MPa,优选为20~1000MPa,更优选为50~600MPa;断裂 伸长率≥200%,优选断裂伸长率≥300%。
  6. 根据权利要求1-5中任意一项所述的接枝改性聚丙烯材料,其中,所述接枝改性聚丙烯材料具有以下特征中的至少一种:
    -所述接枝改性聚丙烯材料的工作温度≥90℃,优选为90~160℃;
    -所述接枝改性聚丙烯材料在90℃下的击穿场强E g≥180kV/mm,优选为180~800kV/mm;
    -所述接枝改性聚丙烯材料在90℃下的击穿场强E g与所述共聚聚丙烯在90℃下的击穿场强E的差值△E除以所述共聚聚丙烯在90℃下的击穿场强E所得的击穿场强变化率△E/E大于0.7%,优选为0.8%~50%,更优选为2%~35%,进一步优选为5%~25%;
    -所述接枝改性聚丙烯材料在90℃、15kV/mm场强下的直流体积电阻率ρ vg≥6×10 12Ω·m,优选为6×10 12Ω·m~1.0×10 20Ω·m;
    -所述接枝改性聚丙烯材料在90℃、15kV/mm场强下的直流体积电阻率ρ vg与所述共聚聚丙烯在90℃、15kV/mm场强下的直流体积电阻率ρ v的比值ρ vgv大于1,优选为1.1~50,更优选为1.15~20,进一步优选为1.2~10。
  7. 根据权利要求1-6中任意一项所述的接枝改性聚丙烯材料,其中,所述含烯基聚合单体选自具有式1所示结构的单体中的至少一种,
    Figure PCTCN2020127507-appb-100001
    式1中,R b、R c、R d各自独立地选自H、取代或未取代的烷基;R a选自取代或未取代的烷基、取代或未取代的烷氧基、取代或未取代的芳基、取代或未取代的酯基、取代或未取代的羧基、取代或未取代的环烷基或杂环基、氰基、取代或未取代的硅烷基。
  8. 根据权利要求7所述的接枝改性聚丙烯材料,其中,R b、R c、R d各自独立地选自H、取代或未取代的C 1-C 6烷基;R a选自取代或未取代的C 1-C 20烷基、取代或未取代的C 1-C 20烷氧基、取代或未取代的C 6-C 20芳基、取代或未取代的C 1-C 20酯基、取代或未取代的C 1-C 20羧基、取代或未取代的C 3-C 20环烷基或杂环基、氰基、取代或未取代的C 3-C 20硅烷基;所述取代的基团为卤素、羟基、氨基、C 1-C 12烷基、C 3-C 6环烷基、C 1-C 12的烷氧基、C 1-C 12的酰氧基。
  9. 根据权利要求7所述的接枝改性聚丙烯材料,其中,R b、R c、R d各自独立地选自H、取代或未取代的C 1-C 6烷基;
    R a选自式2所示基团、式3所示基团、式4所示基团、式5所示基团、式6所示基团、式6所示基团和式7所示基团的组合、杂环基团;
    Figure PCTCN2020127507-appb-100002
    式2中,R 4-R 8各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 4-R 8各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基;
    Figure PCTCN2020127507-appb-100003
    式3中,R 4-R 10各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 4-R 10各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基,所述取代的基团选自卤素、羟基、氨基、C 1-C 6的烷基、C 1-C 6的烷氧基;
    Figure PCTCN2020127507-appb-100004
    式4中,R 4’-R 10’各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或 未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 4’-R 10’各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基,所述取代的基团选自卤素、羟基、氨基、C 1-C 6的烷基、C 1-C 6的烷氧基;
    Figure PCTCN2020127507-appb-100005
    式5中,R’、R”、R”’各自独立地选自取代或未取代的C 1-C 12的直链烷基、取代或未取代的C 3-C 12的支链烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酰氧基;优选地,R 1为C 2-C 6的烯基,优选为单不饱和烯基;R 2、R 3、R 4各自独立地选自取代或未取代的C 1-C 6的直链烷基、取代或未取代的C 3-C 6的支链烷基、取代或未取代的C 1-C 6的烷氧基、取代或未取代的C 1-C 6的酰氧基;
    Figure PCTCN2020127507-appb-100006
    式6中,R m选自取代或未取代的以下基团:C 1-C 20直链烷基、C 3-C 20支链烷基、C 3-C 12环烷基、C 3-C 12环氧烷基、C 3-C 12环氧烷基烷基,所述取代的基团选自卤素、氨基和羟基中的至少一种;
    所述杂环基团选自咪唑基、吡唑基、咔唑基、吡咯烷酮基、吡啶基、哌啶基、己内酰胺基、吡嗪基、噻唑基、嘌呤基、吗啉基、噁唑啉基。
  10. 根据权利要求7所述的接枝改性聚丙烯材料,其中,所述接枝改性聚丙烯材料为芳香烯烃接枝改性聚丙烯材料,所述含烯基聚合单体为苯乙烯类单体,以芳香烯烃接枝改性聚丙烯材料的重量为基准,所述芳香烯烃接枝改性聚丙烯材料中衍生自苯乙烯类单体且处于接枝态的结构单元的含量为0.5~14wt%,优选为1~7.5wt%,更优选为1.5~5wt%;
    优选地,所述苯乙烯类单体选自具有式8所示结构的单体、具有式9所示结构的单体和具有式10所示结构的单体中的至少一种;
    Figure PCTCN2020127507-appb-100007
    式8中,R 1、R 2、R 3各自独立地选自H、取代或未取代的C 1-C 6的烷基;R 4-R 8各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 1、R 2、R 3各自独立地选自H、取代或未取代的C 1-C 3的烷基,R 4-R 8各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基;
    Figure PCTCN2020127507-appb-100008
    式9中,R 1、R 2、R 3各自独立地选自H、取代或未取代的C 1-C 6的烷基;R 4-R 10各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 1、R 2、R 3各自独立地选自H、取代或未取代的C 1-C 3的烷基,R 4-R 10各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基,所述取代的基团选自卤素、羟基、氨基、C 1-C 6的烷基、C 1-C 6的烷氧基;
    Figure PCTCN2020127507-appb-100009
    式10中,R 1’、R 2’、R 3’各自独立地选自H、取代或未取代的C 1-C 6的烷基;R 4’-R 10’ 各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 1’、R 2’、R 3’各自独立地选自H、取代或未取代的C 1-C 3的烷基,R 4’-R 10’各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基,所述取代的基团选自卤素、羟基、氨基、C 1-C 6的烷基、C 1-C 6的烷氧基;
    优选地,所述苯乙烯类单体选自苯乙烯、α-甲基苯乙烯、1-乙烯基萘、2-乙烯基萘、单取代或多取代的苯乙烯,单取代或多取代的α-甲基苯乙烯、单取代或多取代的1-乙烯基萘和单取代或多取代的2-乙烯基萘中的至少一种;所述取代的基团优选选自卤素,羟基,氨基,磷酸基,磺酸基,C 1-C 8的直链烷基、C 3-C 8的支链烷基或环烷基、C 1-C 6的直链烷氧基,C 3-C 8的支链烷氧基或环状烷氧基、C 1-C 8的直链酯基、C 3-C 8的支链酯基或环状酯基、C 1-C 8的直链胺基以及C 3-C 8的支链胺基或环状胺基中的至少一种;
    更优选地,所述苯乙烯类单体选自苯乙烯、α-甲基苯乙烯、2-甲基苯乙烯、3-甲基苯乙烯和4-甲基苯乙烯中的至少一种。
  11. 根据权利要求10所述的接枝改性聚丙烯材料,其中,所述芳香烯烃接枝改性聚丙烯材料具有以下特征中的至少一种:在230℃,2.16kg载荷下的熔体流动速率为0.01~30g/10min,优选为0.05~20g/10min,进一步优选为0.1~10g/10min,更优选为0.2~8g/10min;弯曲模量为10~1250MPa,优选为20~1000MPa,更优选为50~600MPa;断裂伸长率≥200%,优选断裂伸长率≥300%。
  12. 根据权利要求10所述的接枝改性聚丙烯材料,其中,所述芳香烯烃接枝改性聚丙烯材料具有以下特征中的至少一种:
    -所述芳香烯烃接枝改性聚丙烯材料的工作温度≥90℃,优选为90~160℃;
    -所述芳香烯烃接枝改性聚丙烯材料在90℃下的击穿场强E g≥200kV/mm,优选为200~800kV/mm;
    -所述芳香烯烃接枝改性聚丙烯材料在90℃下的击穿场强E g与所述共聚聚丙烯在90℃下的击穿场强E的差值△E除以所述共聚聚丙烯在90℃下的击穿场强E所得的击穿场强变化率△E/E大于1.5%,优选为1.6%~40%,更优选为5%~30%,进一步优选为10%~20%;
    -所述芳香烯烃接枝改性聚丙烯材料在90℃、15kV/mm场强下的直流体积电阻率 ρ vg≥1.0×10 13Ω·m,优选为1.5×10 13Ω·m~1.0×10 20Ω·m;
    -所述芳香烯烃接枝改性聚丙烯材料在90℃、15kV/mm场强下的直流体积电阻率ρ vg与所述共聚聚丙烯在90℃、15kV/mm场强下的直流体积电阻率ρ v的比值ρ vgv大于1,优选为1.5~50,更优选为2~20,进一步优选为3~10。
  13. 一种用于绝缘材料的接枝改性聚丙烯材料的制备方法,该制备方法包括:在惰性气体存在下,使包括共聚聚丙烯和含烯基聚合单体的反应混合物进行接枝反应,得到所述接枝改性聚丙烯材料;
    所述接枝反应的条件使得:以接枝改性聚丙烯材料的重量为基准,所述接枝改性聚丙烯材料中衍生自含烯基聚合单体且处于接枝态的结构单元的含量为0.1~14wt%,优选为0.2~7.5wt%;
    所述共聚聚丙烯具有以下特征中的至少一种:共聚单体含量为0.5~40mol%,优选为0.5~30mol%,更优选为4~25wt%,进一步优选为4~22wt%;二甲苯可溶物含量为2~80wt%,优选为18~75wt%,更优选为30~70wt%,进一步优选为30~67wt%;可溶物中共聚单体含量为10~70wt%,优选为10~50wt%,更优选为20~35wt%;可溶物与聚丙烯的特性粘数比为0.3~5,优选为0.5~3,更优选为0.8~1.3。
  14. 根据权利要求13所述的制备方法,其中,所述共聚聚丙烯具有以下特征中的至少一种:在230℃,2.16kg载荷下的熔体流动速率为0.01~60g/10min,优选为0.05~35g/10min,进一步优选为0.5~15g/10min;熔融温度Tm为100℃以上,优选为110~180℃,进一步优选为110~170℃,进一步优选为120~170℃,进一步优选为120~166℃;重均分子量为20×10 4~60×10 4g/mol。
  15. 根据权利要求13或14所述的制备方法,其中,所述反应混合物还包括自由基引发剂;
    优选地,所述自由基引发剂选自过氧化物类自由基引发剂和/或偶氮类自由基引发剂;
    所述过氧化物类自由基引发剂优选选自过氧化二苯甲酰、过氧化二异丙苯、二叔丁基过氧化物、过氧化月桂酰、过氧化十二酰、过氧化苯甲酸叔丁酯、过氧化二碳酸二异丙基酯、过氧化(2-乙基己酸)叔丁酯和过氧化二碳酸二环己基酯中的至少一种;所述偶氮类自由基引发剂优选为偶氮二异丁腈和/或偶氮二异庚腈。
  16. 根据权利要求13-15中任意一项所述的制备方法,其中,所述反应混合物还包括以下组分中的至少一种:分散剂、界面剂和有机溶剂,所述分散剂的质量含量为共聚聚丙烯质量的50~300%,所述界面剂的质量含量为共聚聚丙烯质量的1~30%,所述有机溶剂的质量含量为共聚聚丙烯质量的1~35%。
  17. 根据权利要求13-15中任意一项所述的制备方法,其中,所述制备方法包括以下步骤:
    a.将共聚聚丙烯置于密闭反应器中,进行惰性气体置换;
    b.将自由基引发剂与含烯基聚合单体加入到所述密闭反应器中,搅拌混合;
    c.任选地加入界面剂,并任选地使反应体系进行溶胀;
    d.任选地加入分散剂,使反应体系升温至接枝反应温度,进行接枝反应;
    e.反应结束后,任选地进行过滤,干燥后得到所述接枝改性聚丙烯材料。
  18. 根据权利要求13-15中任意一项所述的制备方法,其中,所述制备方法包括以下步骤:
    a.将共聚聚丙烯置于密闭反应器中,进行惰性气体置换;
    b.将有机溶剂和自由基引发剂混合,加入到所述密闭反应器中;
    c.除去所述有机溶剂;
    d.加入含烯基聚合单体,任选地加入界面剂,并任选地使反应体系进行溶胀;
    e.任选地加入分散剂,使反应体系升温至接枝反应温度,进行接枝反应;
    f.反应结束后,任选地进行过滤,干燥后得到所述接枝改性聚丙烯材料。
  19. 根据权利要求13-18中任意一项所述的制备方法,其中,所述接枝反应的温度为30~130℃,优选为60~120℃;时间为0.5~10h,优选为1~5h。
  20. 根据权利要求13-19中任意一项所述的制备方法,其中,所述含烯基聚合单体选自具有式1所示结构的单体中的至少一种,
    Figure PCTCN2020127507-appb-100010
    式1中,R b、R c、R d各自独立地选自H、取代或未取代的烷基;R a选自取代或未取代的烷基、取代或未取代的烷氧基、取代或未取代的芳基、取代或未取代的酯基、取代或 未取代的羧基、取代或未取代的环烷基或杂环基、氰基、取代或未取代的硅烷基。
  21. 根据权利要求20所述的制备方法,其中,所述接枝改性聚丙烯材料为芳香烯烃接枝改性聚丙烯材料,所述含烯基聚合单体为苯乙烯类单体,以芳香烯烃接枝改性聚丙烯材料的重量为基准,所述芳香烯烃接枝改性聚丙烯材料中衍生自苯乙烯类单体且处于接枝态的结构单元的含量为0.5~14wt%,优选为1~7.5wt%,更优选为1.5~5wt%;
    优选地,所述苯乙烯类单体选自具有式8所示结构的单体、具有式9所示结构的单体和具有式10所示结构的单体中的至少一种;
    Figure PCTCN2020127507-appb-100011
    式8中,R 1、R 2、R 3各自独立地选自H、取代或未取代的C 1-C 6的烷基;R 4-R 8各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 1、R 2、R 3各自独立地选自H、取代或未取代的C 1-C 3的烷基,R 4-R 8各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基;
    Figure PCTCN2020127507-appb-100012
    式9中,R 1、R 2、R 3各自独立地选自H、取代或未取代的C 1-C 6的烷基;R 4-R 10各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 1、R 2、R 3各自独立地选自H、取代或未取代的C 1-C 3的烷基,R 4-R 10各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷 氧基,所述取代的基团选自卤素、羟基、氨基、C 1-C 6的烷基、C 1-C 6的烷氧基;
    Figure PCTCN2020127507-appb-100013
    式10中,R 1’、R 2’、R 3’各自独立地选自H、取代或未取代的C 1-C 6的烷基;R 4’-R 10’各自独立地选自H、卤素、羟基、氨基、磷酸基、磺酸基、取代或未取代的C 1-C 12的烷基、取代或未取代的C 3-C 12的环烷基、取代或未取代的C 1-C 12的烷氧基、取代或未取代的C 1-C 12的酯基、取代或未取代的C 1-C 12的胺基,所述取代的基团选自卤素、羟基、氨基、磷酸基、磺酸基、C 1-C 12的烷基、C 3-C 12的环烷基、C 1-C 12的烷氧基、C 1-C 12的酯基、C 1-C 12的胺基;优选地,R 1’、R 2’、R 3’各自独立地选自H、取代或未取代的C 1-C 3的烷基,R 4’-R 10’各自独立地选自H、卤素、羟基、氨基、取代或未取代的C 1-C 6的烷基、取代或未取代的C 1-C 6的烷氧基,所述取代的基团选自卤素、羟基、氨基、C 1-C 6的烷基、C 1-C 6的烷氧基;
    优选地,所述苯乙烯类单体选自苯乙烯、α-甲基苯乙烯、1-乙烯基萘、2-乙烯基萘、单取代或多取代的苯乙烯,单取代或多取代的α-甲基苯乙烯、单取代或多取代的1-乙烯基萘和单取代或多取代的2-乙烯基萘中的至少一种;所述取代的基团优选选自卤素,羟基,氨基,磷酸基,磺酸基,C 1-C 8的直链烷基、C 3-C 8的支链烷基或环烷基、C 1-C 6的直链烷氧基,C 3-C 8的支链烷氧基或环状烷氧基、C 1-C 8的直链酯基、C 3-C 8的支链酯基或环状酯基、C 1-C 8的直链胺基以及C 3-C 8的支链胺基或环状胺基中的至少一种;
    更优选地,所述苯乙烯类单体选自苯乙烯、α-甲基苯乙烯、2-甲基苯乙烯、3-甲基苯乙烯和4-甲基苯乙烯中的至少一种。
  22. 根据权利要求21所述的制备方法,其中,所述自由基引发剂与苯乙烯类单体的质量比为0.1~10:100,优选为0.5~5:100。
  23. 根据权利要求21所述的制备方法,其中,所述苯乙烯类单体与所述共聚聚丙烯的质量比为0.5~16:100,优选为1~12:100,进一步优选为2~10:100。
  24. 由权利要求13-23中任意一项所述的制备方法制得的用于绝缘材料的接枝改性聚丙烯材料。
  25. 权利要求1-12中任意一项所述的或由权利要求13-23中任意一项所述的制备方法制得的接枝改性聚丙烯材料作为绝缘材料的应用。
  26. 根据权利要求1-12、24中任意一项所述的用于绝缘材料的接枝改性聚丙烯材料,或根据权利要求25所述的应用,其中,所述绝缘材料为电缆绝缘材料;优选为直流电缆绝缘材料。
  27. 根据权利要求1-12、24中任意一项所述的用于绝缘材料的接枝改性聚丙烯材料,或根据权利要求25所述的应用,其中,所述绝缘材料为电缆绝缘层材料。
  28. 一种电缆,其特征在于,该电缆包括:
    至少一个导体以及至少一个围绕所述导体的电绝缘层;
    其中,所述电绝缘层的材料为至少一种权利要求1-12、24中任意一项所述的接枝改性聚丙烯材料。
  29. 根据权利要求28所述的电缆,其中,所述电缆具有至少一个缆芯,每个所述缆芯由内至外依次包括:导体、任选的导体屏蔽层、电绝缘层、任选的电绝缘屏蔽层、任选的金属屏蔽层。
  30. 根据权利要求29所述的电缆,其中,所述电缆还包括铠装和/或护套层。
  31. 根据权利要求29所述的电缆,其中,所述电缆还包括填充层和/或包带层。
  32. 根据权利要求28所述的电缆,其中,所述电缆为直流电缆或交流电缆;优选地,所述电缆为直流电缆。
  33. 一种绝缘材料,其特征在于,该绝缘材料包含至少一种权利要求1-12、24中任意一项所述的接枝改性聚丙烯材料。
  34. 根据权利要求33所述的绝缘材料,其中,以所述绝缘材料的重量为基准,所述至少一种接枝改性聚丙烯材料的含量为20-100wt%,优选为40-100wt%,更优选为60-100 wt%,进一步优选为80-100wt%,更进一步优选为90-100wt%。
  35. 根据权利要求33或34所述的绝缘材料,其中,所述绝缘材料还包含抗氧化剂、稳定剂、加工助剂、阻燃剂、水树阻滞添加剂、酸或离子清除剂、无机填料、电压稳定剂和抗铜剂中的一种或多种。
PCT/CN2020/127507 2020-04-29 2020-11-09 一种接枝改性聚丙烯材料及其制备方法 WO2021218104A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2020445735A AU2020445735A1 (en) 2020-04-29 2020-11-09 Grafting-modified polypropylene material and preparation method therefor
KR1020227041551A KR20230030567A (ko) 2020-04-29 2020-11-09 그래프팅-개질된 폴리프로필렌 재료 및 이의 제조 방법
EP20933507.4A EP4144795A1 (en) 2020-04-29 2020-11-09 Grafting-modified polypropylene material and preparation method therefor
US17/997,403 US20230174699A1 (en) 2020-04-29 2020-11-09 Grafting-modified polypropylene material and preparation method therefor
CA3181555A CA3181555A1 (en) 2020-04-29 2020-11-09 Grafting-modified polypropylene material and preparation method thereof
JP2022566142A JP2023523784A (ja) 2020-04-29 2020-11-09 グラフト改質ポリプロピレン材料およびその調製方法
BR112022021863A BR112022021863A2 (pt) 2020-04-29 2020-11-09 Material de polipropileno modificado por enxerto para um material isolante, método para preparar um material de polipropileno modificado por enxerto para um material isolante, uso de um material de polipropileno modificado por enxerto, cabo e material isolante

Applications Claiming Priority (24)

Application Number Priority Date Filing Date Title
CN202010357848 2020-04-29
CN202010357821.6 2020-04-29
CN202010359046 2020-04-29
CN202010357844 2020-04-29
CN202010357848.5 2020-04-29
CN202010357817.X 2020-04-29
CN202010357843 2020-04-29
CN202010359073.5 2020-04-29
CN202010357844.7 2020-04-29
CN202010359067 2020-04-29
CN202010359046.8 2020-04-29
CN202010359070.1 2020-04-29
CN202010357821 2020-04-29
CN202010359073 2020-04-29
CN202010357817 2020-04-29
CN202010357845.1 2020-04-29
CN202010357846 2020-04-29
CN202010359070 2020-04-29
CN202010357842.8 2020-04-29
CN202010357846.6 2020-04-29
CN202010357843.2 2020-04-29
CN202010357845 2020-04-29
CN202010359067.X 2020-04-29
CN202010357842 2020-04-29

Publications (1)

Publication Number Publication Date
WO2021218104A1 true WO2021218104A1 (zh) 2021-11-04

Family

ID=78331711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127507 WO2021218104A1 (zh) 2020-04-29 2020-11-09 一种接枝改性聚丙烯材料及其制备方法

Country Status (9)

Country Link
US (1) US20230174699A1 (zh)
EP (1) EP4144795A1 (zh)
JP (1) JP2023523784A (zh)
KR (1) KR20230030567A (zh)
AU (1) AU2020445735A1 (zh)
BR (1) BR112022021863A2 (zh)
CA (1) CA3181555A1 (zh)
TW (1) TWI777328B (zh)
WO (1) WO2021218104A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023130848A1 (zh) * 2022-01-06 2023-07-13 中国石油化工股份有限公司 一种双向拉伸聚丙烯介电膜、改性聚丙烯材料及应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117209670A (zh) * 2023-10-19 2023-12-12 上海泽明塑胶有限公司 接枝聚丙烯及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08295708A (ja) * 1995-04-26 1996-11-12 Yazaki Corp シリコーングラフト化ポリオレフィン樹脂、及びシリコーングラフト化ポリオレフィン樹脂を絶縁体として被覆してなる耐熱電線
EP1582562A1 (de) * 2004-03-30 2005-10-05 REHAU AG + Co Leitungssystem enthaltend halogenfreie, polymere Werkstoffzusammensetzungen
CN101080783A (zh) * 2004-12-17 2007-11-28 通用电气公司 柔韧性聚(亚芳基醚)组合物及其制品
CN102532637A (zh) * 2010-12-10 2012-07-04 浙江万马高分子材料股份有限公司 高压直流输电电缆用绝缘材料
CN105693936A (zh) * 2016-02-01 2016-06-22 佳易容相容剂江苏有限公司 马来酸酐接枝聚丙烯组合物及其制备方法
CN110982141A (zh) * 2019-11-19 2020-04-10 陕西延长石油(集团)有限责任公司研究院 一种聚烯烃母粒及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101004251B1 (ko) * 2006-03-31 2010-12-24 미쓰이 가가쿠 가부시키가이샤 열가소성 중합체 조성물, 열가소성 중합체 조성물의 제조 방법, 열가소성 중합체 조성물로부터 얻어지는 성형체 및 전선

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08295708A (ja) * 1995-04-26 1996-11-12 Yazaki Corp シリコーングラフト化ポリオレフィン樹脂、及びシリコーングラフト化ポリオレフィン樹脂を絶縁体として被覆してなる耐熱電線
EP1582562A1 (de) * 2004-03-30 2005-10-05 REHAU AG + Co Leitungssystem enthaltend halogenfreie, polymere Werkstoffzusammensetzungen
CN101080783A (zh) * 2004-12-17 2007-11-28 通用电气公司 柔韧性聚(亚芳基醚)组合物及其制品
CN102532637A (zh) * 2010-12-10 2012-07-04 浙江万马高分子材料股份有限公司 高压直流输电电缆用绝缘材料
CN105693936A (zh) * 2016-02-01 2016-06-22 佳易容相容剂江苏有限公司 马来酸酐接枝聚丙烯组合物及其制备方法
CN110982141A (zh) * 2019-11-19 2020-04-10 陕西延长石油(集团)有限责任公司研究院 一种聚烯烃母粒及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023130848A1 (zh) * 2022-01-06 2023-07-13 中国石油化工股份有限公司 一种双向拉伸聚丙烯介电膜、改性聚丙烯材料及应用

Also Published As

Publication number Publication date
TWI777328B (zh) 2022-09-11
JP2023523784A (ja) 2023-06-07
US20230174699A1 (en) 2023-06-08
KR20230030567A (ko) 2023-03-06
TW202140590A (zh) 2021-11-01
BR112022021863A2 (pt) 2022-12-20
CA3181555A1 (en) 2021-11-04
EP4144795A1 (en) 2023-03-08
AU2020445735A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
US20080050588A1 (en) Semiconductive Polymer Composition
CA2923072C (en) Process for degassing crosslinked power cables
WO2021218104A1 (zh) 一种接枝改性聚丙烯材料及其制备方法
JP2015535864A (ja) 架橋性エチレン系ポリマー組成物中の過酸化物のマイグレーションを低減するための方法
WO2021218102A1 (zh) 一种含有酸酐基团的聚丙烯接枝物及其制备方法
CN113563526B (zh) 一种芳香烯烃接枝改性聚丙烯材料及其制备方法与应用
CN113563524B (zh) 一种硅烷改性的聚丙烯接枝物作为绝缘材料的应用和绝缘材料
CN113563528A (zh) 一种芳香烯烃接枝改性聚丙烯作为绝缘材料的应用和绝缘材料
CN113563520A (zh) 一种含有酸酐基团的聚丙烯接枝物作为绝缘材料的应用和绝缘材料
CN113563527A (zh) 一种接枝改性聚丙烯材料及其制备方法与应用
CN113571237B (zh) 一种高性能聚丙烯电缆
CN113571235B (zh) 一种具有热塑性绝缘层的电缆
CN113563525A (zh) 一种接枝改性聚丙烯作为绝缘材料的应用和绝缘材料
CN113571236B (zh) 一种改性聚丙烯电缆
CN113571234B (zh) 一种高性能聚丙烯热塑性电缆
CN113563530A (zh) 一种聚丙烯接枝杂环的改性材料及其制备方法与应用
CN113563529A (zh) 一种硅烷改性的聚丙烯接枝物及其制备方法与应用
CN113571233B (zh) 一种具有改性聚丙烯绝缘层的热塑性电缆
CN113563522A (zh) 一种聚丙烯接枝杂环的改性材料作为绝缘材料的应用和绝缘材料
CN113563523A (zh) 一种含有酸酐基团的聚丙烯接枝物及其制备方法与应用
CN115806716A (zh) 一种热塑性可回收绝缘材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933507

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566142

Country of ref document: JP

Kind code of ref document: A

Ref document number: 3181555

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022021863

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020933507

Country of ref document: EP

Effective date: 20221129

ENP Entry into the national phase

Ref document number: 2020445735

Country of ref document: AU

Date of ref document: 20201109

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112022021863

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221027