CN113563529A - 一种硅烷改性的聚丙烯接枝物及其制备方法与应用 - Google Patents

一种硅烷改性的聚丙烯接枝物及其制备方法与应用 Download PDF

Info

Publication number
CN113563529A
CN113563529A CN202011195799.6A CN202011195799A CN113563529A CN 113563529 A CN113563529 A CN 113563529A CN 202011195799 A CN202011195799 A CN 202011195799A CN 113563529 A CN113563529 A CN 113563529A
Authority
CN
China
Prior art keywords
silane
polypropylene
modified polypropylene
graft
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011195799.6A
Other languages
English (en)
Other versions
CN113563529B (zh
Inventor
李琦
邵清
袁浩
何金良
宋文波
胡军
张琦
周垚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Beijing Research Institute of Chemical Industry
Tsinghua University
China Petroleum and Chemical Corp
Original Assignee
Sinopec Beijing Research Institute of Chemical Industry
Tsinghua University
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Beijing Research Institute of Chemical Industry, Tsinghua University, China Petroleum and Chemical Corp filed Critical Sinopec Beijing Research Institute of Chemical Industry
Publication of CN113563529A publication Critical patent/CN113563529A/zh
Application granted granted Critical
Publication of CN113563529B publication Critical patent/CN113563529B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • C08F255/04Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms on to ethene-propene copolymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/307Other macromolecular compounds

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

本发明属于聚合物领域,涉及一种硅烷改性的聚丙烯接枝物及其制备方法与应用。该硅烷改性的聚丙烯接枝物包括衍生自共聚聚丙烯的结构单元和衍生自含烯基的硅烷类单体的结构单元;以硅烷改性的聚丙烯接枝物的重量为基准,所述硅烷改性的聚丙烯接枝物中衍生自含烯基的硅烷类单体且处于接枝态的结构单元的含量为0.2~6wt%;所述共聚聚丙烯具有以下特征:共聚单体含量为0.5~40mol%;二甲苯可溶物含量为2~80wt%;可溶物中共聚单体含量为10~70wt%;可溶物与聚丙烯的特性粘数比为0.3~5。本发明的硅烷改性的聚丙烯接枝物可在较高工作温度下兼顾机械性能和电性能。

Description

一种硅烷改性的聚丙烯接枝物及其制备方法与应用
技术领域
本发明属于聚合物领域,具体地,涉及一种硅烷改性的聚丙烯接枝物,一种硅烷改性的聚丙烯接枝物的制备方法,由该制备方法制得的硅烷改性的聚丙烯接枝物,以及该硅烷改性的聚丙烯接枝物的应用。
背景技术
高分子聚合物材料因具有优良的电气绝缘性能与较低的制造成本,在电气工程领域和电力行业中作为电力设备的绝缘材料而得到了大量的应用。其中以聚乙烯为代表的简单结构高分子塑料绝缘材料的应用尤为广泛,在此基础上发展起来的交联型聚乙烯、共聚型聚烯烃与橡胶材料被广泛应用在电机与变压器绝缘、线路绝缘、断路器绝缘上。乙烯基高分子绝缘材料具有较好的机械性能与热性能,优良的电气绝缘性能与较低的价格,是一种工程上发展较为成熟的绝缘材料。
随着电力行业的迅猛发展,电网系统朝着更高电压等级与更大的电能输送容量迈进,对绝缘材料的性能提出了更高的要求。在这一趋势下,传统的聚乙烯类绝缘材料已无法满足更高的长期工作温度与电场(目前在运的交联聚乙烯的绝缘材料的最高长期使用温度为70℃)。因此迫切需要开发新型的电力设备绝缘材料以适应更高工作温度和场强下的使用要求。
聚丙烯材料作为一种简单结构的高分子塑料,具有聚乙烯材料的一切优点。而且相比聚乙烯,聚丙烯具有更好的电气绝缘性能和更高的熔点,作为绝缘材料有望适应更加严苛的工作环境。然而,聚丙烯的机械性能较聚乙烯稍差,尤其在低温下较脆,不能直接作为绝缘材料使用。因此对于聚丙烯材料,有必要对其进行材料改性以实现电气性能、机械性能和热性能的综合调控,以期在更高温度和电场下保持较好的绝缘性能。
大量文献和数据表明在聚丙烯材料中掺杂纳米颗粒进行改性是提升电气绝缘性能的一种有效途径。但是在实际制备中会遇到纳米颗粒掺杂行为难以控制的困难,从而导致纳米颗粒易于团聚反而使得绝缘性能下降的问题,限制了其在实际工程中的广泛应用。
因此有必要寻找一种绝缘性能调控能力明显、可兼顾机械性能和热性能、性能稳定、制备方便,贴合工程实际应用的新型改性聚丙烯材料。
发明内容
本发明的目的在于克服上述现有技术的缺陷,提供一种新型硅烷改性的聚丙烯接枝物,其可在较高工作温度下兼顾机械性能和电性能,适用于高温、高运行场强工况。
本发明的第一方面提供一种硅烷改性的聚丙烯接枝物,该硅烷改性的聚丙烯接枝物包括衍生自共聚聚丙烯的结构单元和衍生自含烯基的硅烷类单体的结构单元;以硅烷改性的聚丙烯接枝物的重量为基准,所述硅烷改性的聚丙烯接枝物中衍生自含烯基的硅烷类单体且处于接枝态的结构单元的含量为0.2~6wt%,优选为0.2~2.5wt%;
所述共聚聚丙烯具有以下特征:共聚单体含量为0.5~40mol%,优选为0.5~30mol%,更优选为4~25mol%;二甲苯可溶物含量为2~80wt%;可溶物中共聚单体含量为10~70wt%;可溶物与聚丙烯的特性粘数比为0.3~5。
本发明中,所述“结构单元”意指其为硅烷改性的聚丙烯接枝物的一部分,其形式并不受限。具体地,“衍生自共聚聚丙烯的结构单元”是指由共聚聚丙烯形成的产物,其既包括“基团”形式的,也包括“聚合物”形式的。“衍生自含烯基的硅烷类单体的结构单元”是指由含烯基的硅烷类单体形成的产物,其既包括“基团”形式的,也包括“单体”形式的,还包括“聚合物”形式的。所述“结构单元”可以是重复的单元,也可以是非重复的独立单元。
本发明中,“处于接枝态”的衍生自含烯基的硅烷类单体的结构单元是指与共聚聚丙烯形成共价连接(接枝)的衍生自含烯基的硅烷类单体的结构单元。
本发明中,共聚聚丙烯的“共聚单体”的含义为本领域技术人员公知,是指与丙烯共聚的单体。
根据本发明,优选地,所述硅烷改性的聚丙烯接枝物由共聚聚丙烯和含烯基的硅烷类单体经接枝反应制得,优选经固相接枝反应制得。本发明的接枝反应是自由基聚合反应,因此,所述“处于接枝态”是指反应物经过自由基聚合后,与另一反应物形成连接的状态。所述连接既包括直接的连接,也包括间接的连接。
在接枝反应过程中,含烯基的硅烷类单体可聚合形成一定量的未接枝的聚合物。本发明的术语“硅烷改性的聚丙烯接枝物”既包括由共聚聚丙烯和含烯基的硅烷类单体经接枝反应直接制得的产物(粗品),也包括将该产物进行进一步纯化得到的接枝改性聚丙烯纯品。
根据本发明,优选地,所述硅烷改性的聚丙烯接枝物具有以下特征中的至少一种:在230℃,2.16kg载荷下的熔体流动速率为0.01~30g/10min,优选为0.05~20g/10min,进一步优选为0.1~10g/10min,更优选为0.2~8g/10min;弯曲模量为10~1000MPa,优选为50~600MPa;断裂伸长率≥200%,优选断裂伸长率≥300%;拉伸强度大于5MPa,优选为10~40MPa。
根据本发明,优选地,所述硅烷改性的聚丙烯接枝物具有以下特征中的至少一种:
-所述硅烷改性的聚丙烯接枝物的工作温度≥90℃,优选为90~160℃;
-所述硅烷改性的聚丙烯接枝物在90℃下的击穿场强Eg≥200kV/mm,优选为200~800kV/mm;
-所述硅烷改性的聚丙烯接枝物在90℃下的击穿场强Eg与所述共聚聚丙烯在90℃下的击穿场强E的差值△E除以所述共聚聚丙烯在90℃下的击穿场强E所得的击穿场强变化率△E/E大于0.7%,优选为0.8%~40%,更优选为2%~20%,进一步优选为6%~15%;
-所述硅烷改性的聚丙烯接枝物在90℃、15kV/mm场强下的直流体积电阻率ρvg≥6×1012Ω·m,优选为6×1012Ω·m~1.0×1020Ω·m;
-所述硅烷改性的聚丙烯接枝物在90℃、15kV/mm场强下的直流体积电阻率ρvg与所述共聚聚丙烯在90℃、15kV/mm场强下的直流体积电阻率ρv的比值ρvg/ρv大于1,优选为1.1~8.0,更优选为1.15~3,进一步优选为1.2~1.8;
-所述硅烷改性的聚丙烯接枝物在90℃、50Hz下的介电常数大于2.0,优选2.1~2.5。
本发明所述的含烯基的硅烷类单体可以是任何能够通过自由基进行聚合的单体硅烷类化合物,可选自含烯基的硅烷类单体选自具有式I所示结构的单体中的至少一种,
Figure BDA0002753970360000041
其中,,R1为C2-C12的烯基,优选为单不饱和烯基;R2、R3、R4各自独立地选自取代或未取代的C1-C12的直链烷基、取代或未取代的C3-C12的支链烷基、取代或未取代的C1-C12的烷氧基、取代或未取代的C1-C12的酰氧基;优选地,R1为C2-C6的烯基,优选为单不饱和烯基;R2、R3、R4各自独立地选自取代或未取代的C1-C6的直链烷基、取代或未取代的C3-C6的支链烷基、取代或未取代的C1-C6的烷氧基、取代或未取代的C1-C6的酰氧基。
更优选地,所述含烯基的硅烷类单体选自乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三异丙氧基硅烷、乙烯基三叔丁氧基硅烷、乙烯基三乙酰氧基硅烷、甲基乙烯基二甲氧基硅烷、乙基乙烯基二乙氧基硅烷、烯丙基三乙氧基硅烷、烯丙基三甲氧基硅烷、烯丙基三异丙氧基硅烷、乙烯基三(β-甲氧乙氧基)硅烷、烯丙基三(β-甲氧乙氧基)硅烷、烯丙基三叔丁氧基硅烷、烯丙基三乙酰氧基硅烷、甲基烯丙基二甲氧基硅烷和乙基烯丙基二乙氧基硅烷中的至少一种。
根据本发明,共聚聚丙烯(本发明中的基础聚丙烯)为含有乙烯或高级α-烯烃的丙烯共聚物或者其混合物。具体地,所述共聚聚丙烯的共聚单体选自除丙烯外的C2-C8的α-烯烃中的至少一种。所述除丙烯外的C2-C8的α-烯烃包括但不限于:乙烯、1-丁烯、1-戊烯、4-甲基-1-戊烯、1-己烯、1-庚烯和1-辛烯中的至少一种,优选为乙烯和/或1-丁烯,进一步优选地,所述共聚聚丙烯由丙烯和乙烯组成。
本发明的共聚聚丙烯可以为多相丙烯共聚物。多相丙烯共聚物可以含有丙烯均聚物或丙烯无规共聚物基质组分(1),以及分散在其中的另一丙烯共聚物组分(2)。在丙烯无规共聚物中,共聚单体无规地分布在丙烯聚合物的主链上。优选地,本发明的共聚聚丙烯为通过现有工艺在反应器内原位(in situ)制备的多相丙烯共聚物。
根据一种优选的实施方式,所述多相丙烯共聚物含有丙烯均聚物基质或无规共聚物基质(1),以及分散在其中的含有一种或多种乙烯或高级α-烯烃共聚单体的丙烯共聚物组分(2)。所述多相丙烯共聚物可以为海岛结构或双连续结构。
在本领域中已知有两种多相丙烯共聚物,含有丙烯无规共聚物作为基质相的多相丙烯共聚物或含有丙烯均聚物作为基质相的多相丙烯共聚物。无规共聚物基质(1)是共聚用单体部分无规地分布在聚合物链上形成的共聚物,换言之,由随机长度(包含单分子)的两种单体单元交替顺序组成。优选基质(1)中的共聚单体选自乙烯或丁烯。特别优选基质(1)中的共聚单体为乙烯。
优选地,分散在多相丙烯共聚物的均聚物或共聚物基质(1)中的丙烯共聚物(2)基本上是无定形的。术语“基本上是无定形的”在此是指丙烯共聚物(2)比均聚物或共聚物基质(1)具有更低的结晶度。
根据本发明,除上述组成特征以外,所述共聚聚丙烯还具有以下特征中的至少一种:共聚单体含量为4~25wt%,优选为4~22wt%;二甲苯可溶物含量为18~75wt%,优选为30~70wt%,更优选为30~67wt%;可溶物中共聚单体含量为10~50wt%,优选为20~35wt%;可溶物与共聚聚丙烯的特性粘数比为0.5~3,优选为0.8~1.3。
根据本发明,优选地,所述共聚聚丙烯还具有以下特征中的至少一种:在230℃,2.16kg载荷下的熔体流动速率为0.01~60g/10min,优选为0.05~35g/10min,进一步优选为0.5~15g/10min。熔融温度Tm为100℃以上,优选为110~180℃,更优选为110~170℃,进一步优选为120~170℃,更进一步优选为120~166℃。重均分子量优选为20×104~60×104g/mol。具有高Tm的基础聚丙烯在低温和高温下均具有令人满意的冲击强度和柔韧性,此外,在使用具有高Tm基础聚丙烯时,本发明的接枝改性聚丙烯具有能承受较高工作温度的优点。本发明所述共聚聚丙烯优选为多孔颗粒状或粉状树脂。
根据本发明,优选地,所述共聚聚丙烯还具有以下特征中的至少一种:弯曲模量为10~1000MPa,优选为50~600MPa;断裂伸长率≥200%,优选断裂伸长率≥300%。优选地,所述共聚聚丙烯的拉伸强度大于5MPa,优选为10~40MPa。
本发明所述共聚聚丙烯可以包括但不限于中国石化武汉石化的NS06,中国石化齐鲁石化的SPF179等任意可商业获得的适于本发明的聚丙烯粉料,也可以通过中国专利CN1081683、CN1108315、CN1228096、CN1281380、CN1132865C和CN102020733A等中记载的聚合工艺生产得到。常用的聚合工艺包括Basell公司的Spheripol工艺,三井油化公司的Hypol工艺,Borealis公司的Borstar PP工艺,DOW化学公司的Unipol工艺,INEOS(原BP-Amoco)公司的Innovene气相法工艺等。
本发明的所述硅烷改性的聚丙烯接枝物可通过包括以下步骤的方法制备得到:在惰性气体存在下,使包括共聚聚丙烯和含烯基的硅烷类单体的反应混合物进行固相接枝反应,得到所述硅烷改性的聚丙烯接枝物。
本发明的第二方面提供一种硅烷改性的聚丙烯接枝物的制备方法,该制备方法包括:在惰性气体存在下,使包括共聚聚丙烯和含烯基的硅烷类单体的反应混合物进行接枝反应,得到所述硅烷改性的聚丙烯接枝物;
其中,所述共聚聚丙烯的共聚单体含量为0.5~40mol%,优选为0.5~30mol%,更优选为4~25mol%;二甲苯可溶物含量为2~80wt%;可溶物中共聚单体含量为10~70wt%;可溶物与聚丙烯的特性粘数比为0.3~5;所述接枝反应的条件使得:以硅烷改性的聚丙烯接枝物的重量为基准,所述硅烷改性的聚丙烯接枝物中衍生自含烯基的硅烷类单体且处于接枝态的结构单元的含量为0.2~6wt%,优选为0.2~2.5wt%。
本发明的接枝反应可参考本领域常规的各种方法进行,优选为固相接枝反应。如,在接枝用含烯基的硅烷类单体的存在下在共聚聚丙烯上形成活性接枝点,或者先在共聚聚丙烯上形成活性接枝点接着用接枝用单体进行处理。接枝点可通过自由基引发剂处理形成,或进行高能电离辐射或微波处理来形成。在聚合物中作为化学或辐射处理的结果而产生的自由基在聚合物上形成接枝点并在这些点上引发单体聚合。
优选地,通过自由基引发剂引发接枝点并进一步进行接枝反应。在这种情况下,所述反应混合物还包括自由基引发剂;进一步优选地,所述自由基引发剂选自过氧化物类自由基引发剂和/或偶氮类自由基引发剂。
其中,所述过氧化物类自由基引发剂优选选自过氧化二苯甲酰、过氧化二异丙苯、二叔丁基过氧化物、过氧化月桂酰、过氧化十二酰、过氧化苯甲酸叔丁酯、过氧化二碳酸二异丙基酯、过氧化(2-乙基己酸)叔丁酯和过氧化二碳酸二环己基酯中的至少一种;所述偶氮类自由基引发剂优选为偶氮二异丁腈和/或偶氮二异庚腈。
更优选地,通过过氧化物类自由基引发剂引发接枝点并进一步进行接枝反应。
此外,本发明的接枝反应也可以通过CN106543369A、CN104499281A、CN102108112A、CN109251270A、CN1884326A和CN101492517B中描述的方法进行。
在满足上述产品特征的前提下,本发明对接枝反应中各组分的用量没有特别的限定,具体地,所述自由基引发剂与含烯基的硅烷类单体的质量比可以为0.1~10:100,优选为0.5~6:100。所述含烯基的硅烷类单体与所述共聚聚丙烯的质量比为0.5~12:100,优选为0.8~9:100,进一步优选为1~6:100。
本发明对接枝反应的工艺条件也没有特别的限定,具体地,所述接枝反应的温度可以为30~130℃,优选为60~120℃;时间可以为0.5~10h,优选为1~5h。
本发明中,所述“反应混合物”包括加入到接枝反应体系中的所有物料,物料可以一次性加入,也可以在反应的不同阶段加入。
本发明的反应混合物中还可以包括分散剂,所述分散剂优选为水或氯化钠的水溶液。所述分散剂的质量用量优选为共聚聚丙烯质量的50~300%。
本发明的反应混合物中还可以包括界面剂,所述界面剂为对聚烯烃具有溶胀作用的有机溶剂,优选为对共聚聚丙烯具有溶胀作用的下述有机溶剂中的至少一种:醚类溶剂、酮类溶剂、芳烃类溶剂、烷烃类溶剂;更优选为下述有机溶剂中的至少一种:氯代苯、多氯代苯、C6以上的烷烃或环烷烃、苯、C1-C4烷基取代苯、C2-C6脂肪醚、C3-C6脂肪酮、十氢萘;进一步优选为下述有机溶剂中的至少一种:苯、甲苯、二甲苯、氯苯、四氢呋喃、乙醚、丙酮、己烷、环己烷、十氢萘、庚烷。所述界面剂的质量含量优选为共聚聚丙烯质量的1~30%,进一步优选为10~25%。
本发明的反应混合物中还可以包括有机溶剂,作为溶解固体自由基引发剂的溶剂,所述有机溶剂优选包括C2-C5醇类、C2-C4醚类和C3-C5酮类中的至少一种,更优选包括C2-C4醇类、C2-C3醚类和C3-C5酮类中的至少一种,最优选为乙醇、乙醚和丙酮中的至少一种。所述有机溶剂的质量含量优选为共聚聚丙烯质量的1~35%。
本发明的硅烷改性的聚丙烯接枝物的制备方法中,对于含烯基的硅烷类单体和共聚聚丙烯的限定与前述相同,在此不再赘述。
根据本发明,所述硅烷改性的聚丙烯接枝物的制备方法可选自以下方式之一:
方式一,所述制备方法包括以下步骤:
a.将共聚聚丙烯置于密闭反应器中,进行惰性气体置换;
b.将自由基引发剂与含烯基的硅烷类单体加入到所述密闭反应器中,搅拌混合;
c.任选地加入界面剂,并任选地使反应体系进行溶胀;
d.任选地加入分散剂,使反应体系升温至接枝反应温度,进行接枝反应;
e.反应结束后,任选地进行过滤(使用水相分散剂情况下)、干燥,得到所述硅烷改性的聚丙烯接枝物。
更具体地,所述制备方法包括以下步骤:
a.将共聚聚丙烯置于密闭反应器中,进行惰性气体置换;
b.将自由基引发剂溶解于含烯基的硅烷类单体中,配制成溶液,加入到装有共聚聚丙烯的密闭反应器中,搅拌混合;
c.加入界面剂0~30份,并任选地使反应体系在20~60℃下溶胀0~24小时;
d.加入分散剂0~300份,体系升温至接枝聚合温度30~130℃,反应0.5~10小时;
e.反应结束后,任选地进行过滤(使用水相分散剂情况下)、干燥,得到所述硅烷改性的聚丙烯接枝物。
方式二,所述制备方法包括以下步骤:
a.将共聚聚丙烯置于密闭反应器中,进行惰性气体置换;
b.将有机溶剂和自由基引发剂混合,加入到所述密闭反应器中;
c.除去所述有机溶剂;
d.加入含烯基的硅烷类单体,任选地加入界面剂,并任选地使反应体系进行溶胀;
e.任选地加入分散剂,使反应体系升温至接枝反应温度,进行接枝反应;
f.反应结束后,任选地进行过滤(使用水相分散剂情况下)、干燥,得到所述硅烷改性的聚丙烯接枝物。
更具体地,所述制备方法包括以下步骤:
a.将共聚聚丙烯置于密闭反应器中,进行惰性气体置换;
b.将有机溶剂和自由基引发剂混合,配制成溶液加入到装有共聚聚丙烯的密闭反应器中;
c.惰性气体吹扫或通过真空除去有机溶剂;
d.加入含烯基的硅烷类单体,加入界面剂0~30份,并任选地使反应体系在20~60℃下溶胀0~24小时;
e.加入分散剂0~300份,体系升温至接枝聚合温度30~130℃,反应0.5~10小时;
f.反应结束后,任选地进行过滤(使用水相分散剂情况下)、干燥,得到所述硅烷改性的聚丙烯接枝物。
根据本发明的方法,若反应结束后体系中存在挥发性组分,则本发明的方法优选包括脱挥发份的步骤,所述脱挥发份可以通过任何常规方法进行,包括在接枝工艺结束时真空提取或使用汽提剂。合适的汽提剂包括但不限于惰性气体。
如上所述,本发明的“硅烷改性的聚丙烯接枝物”既包括由共聚聚丙烯和含烯基的硅烷类单体经接枝反应直接制得的产物(粗品),也包括将该产物进行进一步纯化得到的接枝改性聚丙烯纯品,因此,本发明的制备方法中,可任选的包括对粗品进行纯化的步骤。所述纯化可采用本领域常规的各种方法,如抽提法。
本发明对所述接枝反应的接枝效率没有特别的限定,但是较高的接枝效率更有利于通过一步接枝反应即得到所需性能的硅烷改性的聚丙烯接枝物。因此,优选控制所述接枝反应的接枝效率为5~100%,进一步优选为5~60%。所述接枝效率的概念为本领域技术人员公知,是指接枝上的硅烷类单体的量/反应投料的硅烷类单体的总量。
本发明的所述惰性气体可以为本领域常用的各种惰性气体,包括但不限于氮气、氩气。
本发明的第三方面提供由上述制备方法制得的硅烷改性的聚丙烯接枝物。
本发明的第四方面提供上述硅烷改性的聚丙烯接枝物的应用。例如,作为绝缘材料。
本发明的硅烷改性的聚丙烯接枝物可在较高工作温度下兼顾机械性能和电性能,适用于高温、高运行场强工况。此外,与加入小分子添加剂的材料相比,本发明的硅烷改性的聚丙烯接枝物避免了小分子迁移导致的性能下降,因此具有更好的稳定性。
本发明的其它特征和优点将在随后具体实施方式部分予以详细说明。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
以下实施例和对比例中:
1、共聚聚丙烯中共聚单体含量的测定:
通过定量傅里叶变换红外(FTIR)光谱测定共聚单体的含量。通过定量核磁共振(NMR)光谱对确定的共聚单体含量的相关性进行校准。所述基于定量13C-NMR光谱所得结果的校准方法按照本领域的常规方法进行。
2、共聚聚丙烯中二甲苯可溶物含量、可溶物中共聚单体含量及可溶物/共聚聚丙烯的特性粘数比的测定:
用Polymer Char公司的CRYST-EX仪器进行测试。使用三氯苯溶剂,升温至150℃进行溶解,恒温90min,取样测试,再降温至35℃,恒温70min,取样测试。
3、共聚聚丙烯重均分子量的测定:
用高温GPC测定,采用Polymer Laboratory公司的PL-GPC 220型凝胶渗透色谱,试样用1,2,4-三氯苯溶解,浓度为1.0mg/ml。测试温度150℃,溶液流速为1.0ml/min。以聚苯乙烯的分子量作为内参来制定标准曲线,根据流出时间计算样品的分子量及分子量分布。
4、熔体流动速率MFR的测定:
按GB/T 3682-2018中规定的方法,用CEAST公司7026型熔融指数仪,在230℃,2.16kg载荷下测定。
5、熔融温度Tm的测定:
采用差示扫描量热仪对材料的熔融过程和结晶过程进行分析。具体操作为:在氮气保护下,将5~10mg样品从20℃至200℃采用三段式升降温测量方法进行测量,以热流量的变化反映材料的熔融和结晶过程,从而计算熔融温度Tm。
6、接枝效率GE、参数M1的测定:
将2~4g接枝产物放入索氏提取器中,用丙酮抽提24小时,除去未反应的单体及其均聚物,得到纯的接枝产物,烘干称重,计算参数M1及接枝效率GE。
参数M1代表所述硅烷改性的聚丙烯接枝物中衍生自含烯基的硅烷类单体的结构单元的含量,本发明中,M1和GE的计算公式如下:
Figure BDA0002753970360000131
Figure BDA0002753970360000132
以上公式中,w0是PP基体的质量;w1是接枝产物抽提前的质量;w2是接枝产物抽提后的质量;w3是加入含烯基的硅烷类单体的质量。
7、直流体积电阻率的测定:
按照GB/T 1410-2006中规定的方法进行测定。
8、击穿场强的测定:
按照GB/T 1408-2006中规定的方法进行测定。
9、拉伸强度的测定:
按照GB/T 1040.2-2006中规定的方法进行测定。
10、弯曲模量的测定:
按照GB/T 9341-2008中规定的方法进行测定。
11、断裂伸长率的测定:
按照GB/T 1040-2006中规定的方法进行测定。
12、介电常数与介电损耗因数的测定:
按照GB/T 1409-2006中规定的方法进行测定。
实施例中所用的原料描述于下表A中。
表A
Figure BDA0002753970360000133
Figure BDA0002753970360000141
*共聚聚丙烯1:实施例1中所用的共聚聚丙烯。
*共聚聚丙烯2:实施例2中所用的共聚聚丙烯。
*共聚聚丙烯3:实施例3中所用的共聚聚丙烯。
*共聚聚丙烯4:实施例4中所用的共聚聚丙烯。
*共聚聚丙烯5:实施例5中所用的共聚聚丙烯。
*共聚聚丙烯6:实施例6中所用的共聚聚丙烯。
实施例1
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量18.1wt%,二甲苯可溶物含量48.7wt%,可溶物中共聚单体含量31.9wt%,可溶物/共聚聚丙烯特性粘数比0.89,重均分子量为34.3×104g/mol,在230℃,2.16kg载荷下的MFR为1.21g/10min,Tm=143.4℃,击穿场强(90℃)为236kV/mm,直流体积电阻率(90℃,15kV/mm)为1.16E13Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入2.5g过氧化月桂酰和50g乙烯基三乙氧基硅烷,搅拌混合30min,40℃溶胀1小时,升温至90℃,反应4小时。反应结束后,氮气吹扫,冷却降温,得到聚丙烯-g-乙烯基三乙氧基硅烷材料产品C1。
测试所得产品的各项性能参数,结果如表1所示。
实施例2
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量14.7wt%,二甲苯可溶物含量41.7wt%,可溶物中共聚单体含量34.5wt%,可溶物/共聚聚丙烯特性粘数比0.91,重均分子量为36.6×104g/mol,在230℃,2.16kg载荷下的MFR为1.54g/10min,Tm=164.9℃,击穿场强(90℃)为248kV/mm,直流体积电阻率(90℃,15kV/mm)为7.25E12Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入0.9g过氧化二苯甲酰和20g乙烯基三乙氧基硅烷,搅拌混合60min,升温至90℃,反应4小时。反应结束后,氮气吹扫,冷却降温,得到聚丙烯-g-乙烯基三乙氧基硅烷料产品C2。
测试所得产品的各项性能参数,结果如表1所示。
实施例3
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量20.1wt%,二甲苯可溶物含量66.1wt%,可溶物中共聚单体含量29.5wt%,可溶物/共聚聚丙烯特性粘数比1.23,重均分子量为53.8×104g/mol,在230℃,2.16kg载荷下的MFR为0.51g/10min,Tm=142.5℃,击穿场强(90℃)为176kV/mm,直流体积电阻率(90℃,15kV/mm)为5.63E12Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入6.0g过氧化月桂酰和100g乙烯基三乙氧基硅烷,搅拌混合60min,60℃溶胀1小时,升温至90℃,反应4小时。反应结束后,氮气吹扫,冷却降温,得到聚丙烯-g-乙烯基三乙氧基硅烷材料产品C3。
测试所得产品的各项性能参数,结果如表1所示。
实施例4
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量9.3wt%,二甲苯可溶物含量21.0wt%,可溶物中共聚单体含量35.4wt%,可溶物/共聚聚丙烯特性粘数比1.68,重均分子量为30.4×104g/mol,在230℃,2.16kg载荷下的MFR为5.69g/10min,Tm=163.0℃,击穿场强(90℃)为288kV/mm,直流体积电阻率(90℃,15kV/mm)为1.32E13Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入4.5g过氧化(2-乙基己酸)叔丁酯和120g乙烯基三异丙氧基硅烷,搅拌混合60min,升温至100℃,反应1.5小时。反应结束后,氮气吹扫,冷却降温,得到聚丙烯-g-乙烯基三异丙氧基硅烷材料产品C4。
测试所得产品的各项性能参数,结果如表1所示。
实施例5
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量4.8wt%,二甲苯可溶物含量19.2wt%,可溶物中共聚单体含量17.6wt%,可溶物/共聚聚丙烯特性粘数比1.04,重均分子量为29.2×104g/mol,在230℃,2.16kg载荷下的MFR为5.37g/10min,Tm=163.3℃,击穿场强(90℃)为322kV/mm,直流体积电阻率(90℃,15kV/mm)为1.36E13Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。将3.7g过氧化月桂酰溶解于70g丙酮中,将所得丙酮溶液加入到反应体系中,升温至40℃,氮气吹扫30min除去丙酮,再加入75g乙烯基三乙氧基硅烷,搅拌混合30min,升温至85℃,反应4小时。反应结束后,氮气吹扫,冷却降温,得到聚丙烯-g-乙烯基三乙氧基硅烷材料产品C5。
测试所得产品的各项性能参数,结果如表1所示。
实施例6
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量12.6wt%,二甲苯可溶物含量30.6wt%,可溶物中共聚单体含量43.6wt%,可溶物/共聚聚丙烯特性粘数比1.84,重均分子量为27.1×104g/mol,在230℃,2.16kg载荷下的MFR为8.46g/10min,Tm=162.0℃,击穿场强(90℃)为261kV/mm,直流体积电阻率(90℃,15kV/mm)为9E12Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。将5.0g过氧化月桂酰溶解于100g乙烯基三甲氧基硅烷和50g界面剂甲苯中,形成溶液,将溶液搅拌混合30min,升温至95℃,加入95℃的分散剂水4kg,反应0.75小时。反应结束后,冷却降温,过滤除去分散剂水,70℃下真空干燥10小时,得到聚丙烯-g-乙烯基三甲氧基硅烷材料产品C6。
测试所得产品的各项性能参数,结果如表1所示。
实施例7
称取实施例1的基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入7.5g过氧化月桂酰和175g乙烯基三乙氧基硅烷,搅拌混合30min,40℃溶胀1小时,升温至90℃,反应4小时。反应结束后,氮气吹扫,冷却降温,得到聚丙烯-g-乙烯基三乙氧基硅烷材料产品C7。
测试所得产品的各项性能参数,结果如表1所示。
对比例1
称取筛分除去小于40目的细粉的T30S粉料(击穿场强(90℃)为347kV/mm,直流体积电阻率(90℃,15kV/mm)为1.18E13Ω·m)2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入2.5g过氧化月桂酰和50g乙烯基三乙氧基硅烷,搅拌混合60min,40℃溶胀1小时,升温至90℃,反应4小时。反应结束后,氮气吹扫,冷却降温,得到聚丙烯-g-乙烯基三乙氧基硅烷材料产品D1。
测试所得产品的各项性能参数,结果如表1所示。
对比例2
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量18.1wt%,二甲苯可溶物含量48.7wt%,可溶物中共聚单体含量31.9wt%,可溶物/共聚聚丙烯特性粘数比0.89,重均分子量为34.3×104g/mol,在230℃,2.16kg载荷下的MFR为1.21g/10min,Tm=143.4℃,击穿场强(90℃)为236kV/mm,直流体积电阻率(90℃,15kV/mm)为1.16E13Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,加入到带有机械搅拌的10L反应釜中,密闭反应系统,氮气置换除氧。加入20g过氧化月桂酰和400g乙烯基三乙氧基硅烷,搅拌混合60min,40℃溶胀1小时,升温至90℃,反应4小时。反应结束后,冷却降温,得到聚丙烯-g-乙烯基三乙氧基硅烷材料产品D2。
测试所得产品的各项性能参数,结果如表1所示。
对比例3
选取具有以下特征的基础共聚聚丙烯粉料:共聚单体乙烯含量18.1wt%,二甲苯可溶物含量48.7wt%,可溶物中共聚单体含量31.9wt%,可溶物/共聚聚丙烯特性粘数比0.89,重均分子量为34.3×104g/mol,在230℃,2.16kg载荷下的MFR为1.21g/10min,Tm=143.4℃,击穿场强(90℃)为236kV/mm,直流体积电阻率(90℃,15kV/mm)为1.16E13Ω·m,筛分除去小于40目的细粉。称取上述基础共聚聚丙烯粉料2.0kg,和50g聚乙烯基三乙氧基硅烷混合,使用螺杆挤出机混合,得到共混物D3。测试所得产品的各项性能参数,结果如表1所示。
聚乙烯基三乙氧基硅烷制备方法:10g过氧化月桂酰和200g乙烯基三乙氧基硅烷,分散于800ml去离子水中,搅拌混合,升温至90℃,反应4小时。反应结束后,反应体系冷却至室温,过滤干燥后得到125g聚乙烯基三乙氧基硅烷。
测试所得产品的各项性能参数,结果如表1所示。
Figure BDA0002753970360000201
比较实施例1和对比例1的数据可以看出,采用T30S粉料作为基础粉料,所得聚丙烯-g-硅烷材料产品的弯曲模量过高,材料机械性能差,无法满足绝缘材料加工需求。
比较实施例1和对比例2的数据可以看出,含烯基的硅烷类单体的加入量过高(M1值过高)会导致所得聚丙烯-g-硅烷材料产品的击穿场强和体积电阻率下降,影响产品的电性能。
比较实施例1和对比例3的数据可以看出,采用共混聚乙烯基三乙氧基硅烷的方式反而导致产品的击穿场强和体积电阻率大幅下降,极大地影响产品的电性能。
综上,由表1数据可以看出,弯曲模量的大幅下降使得本发明的硅烷改性的聚丙烯接枝物具有良好的机械性能,并且,相比未接枝含烯基的硅烷类单体的共聚聚丙烯,接枝产物的击穿场强均得以提高,说明本发明的硅烷改性的聚丙烯接枝物同时具有良好的电性能。
此外,由介电常数和介电损耗数据可以看出,接枝改性并不影响材料的介电常数和介电损耗,本发明的材料满足绝缘所需必要条件。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。

Claims (20)

1.一种硅烷改性的聚丙烯接枝物,其特征在于,该硅烷改性的聚丙烯接枝物包括衍生自共聚聚丙烯的结构单元和衍生自含烯基的硅烷类单体的结构单元;以硅烷改性的聚丙烯接枝物的重量为基准,所述硅烷改性的聚丙烯接枝物中衍生自含烯基的硅烷类单体且处于接枝态的结构单元的含量为0.2~6wt%,优选为0.2~2.5wt%;
所述共聚聚丙烯具有以下特征:共聚单体含量为0.5~40mol%,优选为0.5~30mol%;二甲苯可溶物含量为2~80wt%;可溶物中共聚单体含量为10~70wt%;可溶物与聚丙烯的特性粘数比为0.3~5。
2.根据权利要求1所述的硅烷改性的聚丙烯接枝物,其中,所述硅烷改性的聚丙烯接枝物具有以下特征中的至少一种:在230℃,2.16kg载荷下的熔体流动速率为0.01~30g/10min,优选为0.05~20g/10min,进一步优选为0.1~10g/10min,更优选为0.2~8g/10min;弯曲模量为10~1000MPa,优选为50~600MPa;断裂伸长率≥200%,优选断裂伸长率≥300%;拉伸强度大于5MPa,优选为10~40MPa。
3.根据权利要求1所述的硅烷改性的聚丙烯接枝物,其中,所述硅烷改性的聚丙烯接枝物具有以下特征中的至少一种:
-所述硅烷改性的聚丙烯接枝物的工作温度≥90℃,优选为90~160℃;
-所述硅烷改性的聚丙烯接枝物在90℃下的击穿场强Eg≥200kV/mm,优选为200~800kV/mm;
-所述硅烷改性的聚丙烯接枝物在90℃下的击穿场强Eg与所述共聚聚丙烯在90℃下的击穿场强E的差值△E除以所述共聚聚丙烯在90℃下的击穿场强E所得的击穿场强变化率△E/E大于0.7%,优选为0.8%~40%,更优选为2%~20%,进一步优选为6%~15%;
-所述硅烷改性的聚丙烯接枝物在90℃、15kV/mm场强下的直流体积电阻率ρvg≥6×1012Ω·m,优选为6×1012Ω·m~1.0×1020Ω·m;
-所述硅烷改性的聚丙烯接枝物在90℃、15kV/mm场强下的直流体积电阻率ρvg与所述共聚聚丙烯在90℃、15kV/mm场强下的直流体积电阻率ρv的比值ρvg/ρv大于1,优选为1.1~8.0,更优选为1.15~3,进一步优选为1.2~1.8;
-所述硅烷改性的聚丙烯接枝物在90℃、50Hz下的介电常数大于2.0,优选2.1~2.5。
4.根据权利要求1所述的硅烷改性的聚丙烯接枝物,其中,所述含烯基的硅烷类单体选自具有式I所示结构的单体中的至少一种,
Figure FDA0002753970350000021
其中,R1为C2-C12的烯基,优选为单不饱和烯基;R2、R3、R4各自独立地选自取代或未取代的C1-C12的直链烷基、取代或未取代的C3-C12的支链烷基、取代或未取代的C1-C12的烷氧基、取代或未取代的C1-C12的酰氧基;优选地,R1为C2-C6的烯基,优选为单不饱和烯基;R2、R3、R4各自独立地选自取代或未取代的C1-C6的直链烷基、取代或未取代的C3-C6的支链烷基、取代或未取代的C1-C6的烷氧基、取代或未取代的C1-C6的酰氧基;
更优选地,所述含烯基的硅烷类单体选自乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三异丙氧基硅烷、乙烯基三叔丁氧基硅烷、乙烯基三乙酰氧基硅烷、甲基乙烯基二甲氧基硅烷、乙基乙烯基二乙氧基硅烷、烯丙基三乙氧基硅烷、烯丙基三甲氧基硅烷、烯丙基三异丙氧基硅烷、乙烯基三(β-甲氧乙氧基)硅烷、烯丙基三(β-甲氧乙氧基)硅烷、烯丙基三叔丁氧基硅烷、烯丙基三乙酰氧基硅烷、甲基烯丙基二甲氧基硅烷和乙基烯丙基二乙氧基硅烷中的至少一种。
5.根据权利要求1-4中任意一项所述的硅烷改性的聚丙烯接枝物,其中,所述共聚聚丙烯的共聚单体选自除丙烯外的C2-C8的α-烯烃中的至少一种;优选地,所述共聚聚丙烯的共聚单体选自乙烯、1-丁烯、1-戊烯、4-甲基-1-戊烯、1-己烯、1-庚烯和1-辛烯中的至少一种;进一步优选地,所述共聚聚丙烯的共聚单体为乙烯和/或1-丁烯;进一步优选地,所述共聚聚丙烯由丙烯和乙烯组成。
6.根据权利要求1-4中任意一项所述的硅烷改性的聚丙烯接枝物,其中,所述共聚聚丙烯具有以下特征中的至少一种:共聚单体含量为4~25wt%,优选为4~22wt%;二甲苯可溶物含量为18~75wt%,优选为30~70wt%,更优选为30~67wt%;可溶物中共聚单体含量为10~50wt%,优选为20~35wt%;可溶物与共聚聚丙烯的特性粘数比为0.5~3,优选为0.8~1.3。
7.根据权利要求1-4中任意一项所述的硅烷改性的聚丙烯接枝物,其中,所述共聚聚丙烯具有以下特征中的至少一种:在230℃,2.16kg载荷下的熔体流动速率为0.01~60g/10min,优选为0.05~35g/10min,进一步优选为0.5~15g/10min;熔融温度Tm为100℃以上,优选为110~180℃,更优选为110~170℃,进一步优选为120~170℃,更进一步优选为120~166℃;重均分子量为20×104~60×104g/mol。
8.根据权利要求1-4中任意一项所述的硅烷改性的聚丙烯接枝物,其中,所述硅烷改性的聚丙烯接枝物由共聚聚丙烯和含烯基的硅烷类单体经固相接枝反应制得。
9.一种硅烷改性的聚丙烯接枝物的制备方法,该制备方法包括:在惰性气体存在下,使包括共聚聚丙烯和含烯基的硅烷类单体的反应混合物进行接枝反应,得到所述硅烷改性的聚丙烯接枝物;
其中,所述共聚聚丙烯的共聚单体含量为0.5~40mol%,优选为0.5~30mol%;二甲苯可溶物含量为2~80wt%;可溶物中共聚单体含量为10~70wt%;可溶物与聚丙烯的特性粘数比为0.3~5;所述接枝反应的条件使得:以硅烷改性的聚丙烯接枝物的重量为基准,所述硅烷改性的聚丙烯接枝物中衍生自含烯基的硅烷类单体且处于接枝态的结构单元的含量为0.2~6wt%,优选为0.2~2.5wt%。
10.根据权利要求9所述的制备方法,其中,所述反应混合物还包括自由基引发剂;
优选地,所述自由基引发剂选自过氧化物类自由基引发剂和/或偶氮类自由基引发剂;
所述过氧化物类自由基引发剂优选选自过氧化二苯甲酰、过氧化二异丙苯、二叔丁基过氧化物、过氧化月桂酰、过氧化十二酰、过氧化苯甲酸叔丁酯、过氧化二碳酸二异丙基酯、过氧化(2-乙基己酸)叔丁酯和过氧化二碳酸二环己基酯中的至少一种;所述偶氮类自由基引发剂优选为偶氮二异丁腈和/或偶氮二异庚腈。
11.根据权利要求10所述的制备方法,其中,所述自由基引发剂与含烯基的硅烷类单体的质量比为0.1~10:100,优选为0.5~6:100。
12.根据权利要求9所述的制备方法,其中,所述含烯基的硅烷类单体与所述共聚聚丙烯的质量比为0.5~12:100,优选为0.8~9:100,进一步优选为1~6:100。
13.根据权利要求9所述的制备方法,其中,所述接枝反应的温度为30~130℃,优选为60~120℃;时间为0.5~10h,优选为1~5h。
14.根据权利要求9-13中任意一项所述的制备方法,其中,所述反应混合物还包括以下组分中的至少一种:分散剂、界面剂和有机溶剂,所述分散剂的质量含量为共聚聚丙烯质量的50~300%,所述界面剂的质量含量为共聚聚丙烯质量的1~30%,所述有机溶剂的质量含量为共聚聚丙烯质量的1~35%。
15.根据权利要求14所述的制备方法,其中,所述制备方法包括以下步骤:
a.将共聚聚丙烯置于密闭反应器中,进行惰性气体置换;
b.将自由基引发剂与含烯基的硅烷类单体加入到所述密闭反应器中,搅拌混合;
c.任选地加入界面剂,并任选地使反应体系进行溶胀;
d.任选地加入分散剂,使反应体系升温至接枝反应温度,进行接枝反应;
e.反应结束后,任选地进行过滤,干燥后得到所述硅烷改性的聚丙烯接枝物。
16.根据权利要求14所述的制备方法,其中,所述制备方法包括以下步骤:
a.将共聚聚丙烯置于密闭反应器中,进行惰性气体置换;
b.将有机溶剂和自由基引发剂混合,加入到所述密闭反应器中;
c.除去所述有机溶剂;
d.加入含烯基的硅烷类单体,任选地加入界面剂,并任选地使反应体系进行溶胀;
e.任选地加入分散剂,使反应体系升温至接枝反应温度,进行接枝反应;
f.反应结束后,任选地进行过滤,干燥后得到所述硅烷改性的聚丙烯接枝物。
17.根据权利要求9-13中任意一项所述的制备方法,其中,所述含烯基的硅烷类单体选自含烯基的硅烷类单体选自具有式I所示结构的单体中的至少一种,
Figure FDA0002753970350000061
其中,R1为C2-C12的烯基,优选为单不饱和烯基;R2、R3、R4各自独立地选自取代或未取代的C1-C12的直链烷基、取代或未取代的C3-C12的支链烷基、取代或未取代的C1-C12的烷氧基、取代或未取代的C1-C12的酰氧基;优选地,R1为C2-C6的烯基,优选为单不饱和烯基;R2、R3、R4各自独立地选自取代或未取代的C1-C6的直链烷基、取代或未取代的C3-C6的支链烷基、取代或未取代的C1-C6的烷氧基、取代或未取代的C1-C6的酰氧基;
更优选地,所述含烯基的硅烷类单体选自乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三异丙氧基硅烷、乙烯基三叔丁氧基硅烷、乙烯基三乙酰氧基硅烷、甲基乙烯基二甲氧基硅烷、乙基乙烯基二乙氧基硅烷、烯丙基三乙氧基硅烷、烯丙基三甲氧基硅烷、烯丙基三异丙氧基硅烷、乙烯基三(β-甲氧乙氧基)硅烷、烯丙基三(β-甲氧乙氧基)硅烷、烯丙基三叔丁氧基硅烷、烯丙基三乙酰氧基硅烷、甲基烯丙基二甲氧基硅烷和乙基烯丙基二乙氧基硅烷中的至少一种。
18.根据权利要求9-13中任意一项所述的制备方法,其中,所述共聚聚丙烯的共聚单体选自除丙烯外的C2-C8的α-烯烃中的至少一种;优选地,所述共聚聚丙烯的共聚单体选自乙烯、1-丁烯、1-戊烯、4-甲基-1-戊烯、1-己烯、1-庚烯和1-辛烯中的至少一种;进一步优选地,所述共聚聚丙烯的共聚单体为乙烯和/或1-丁烯;进一步优选地,所述共聚聚丙烯由丙烯和乙烯组成;
和/或,
所述共聚聚丙烯具有以下特征中的至少一种:共聚单体含量为4~25wt%,优选为4~22wt%;二甲苯可溶物含量为18~75wt%,优选为30~70wt%,更优选为30~67wt%;可溶物中共聚单体含量为10~50wt%,优选为20~35wt%;可溶物与共聚聚丙烯的特性粘数比为0.5~3,优选为0.8~1.3;
和/或,
所述共聚聚丙烯具有以下特征中的至少一种:在230℃,2.16kg载荷下的熔体流动速率为0.01~60g/10min,优选为0.05~35g/10min,进一步优选为0.5~15g/10min;熔融温度Tm为100℃以上,优选为110~180℃,更优选为110~170℃,进一步优选为120~170℃,更进一步优选为120~166℃;重均分子量为20×104~60×104g/mol。
19.由权利要求9-18中任意一项所述的制备方法制得的硅烷改性的聚丙烯接枝物。
20.权利要求1-8和19中任意一项所述的硅烷改性的聚丙烯接枝物的应用。
CN202011195799.6A 2020-04-29 2020-10-30 一种硅烷改性的聚丙烯接枝物及其制备方法与应用 Active CN113563529B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010357842 2020-04-29
CN2020103578428 2020-04-29

Publications (2)

Publication Number Publication Date
CN113563529A true CN113563529A (zh) 2021-10-29
CN113563529B CN113563529B (zh) 2024-07-02

Family

ID=78158741

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011195799.6A Active CN113563529B (zh) 2020-04-29 2020-10-30 一种硅烷改性的聚丙烯接枝物及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN113563529B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023130848A1 (zh) * 2022-01-06 2023-07-13 中国石油化工股份有限公司 一种双向拉伸聚丙烯介电膜、改性聚丙烯材料及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0479171A2 (en) * 1990-10-05 1992-04-08 Montell North America Inc. Blends of a graft copolymer of propylene polymer material with a graft copolymer of olefinic rubber material
CN101724161A (zh) * 2008-10-24 2010-06-09 中国石油化工股份有限公司 一种提高聚丙烯熔体强度的方法
CN106317334A (zh) * 2016-08-19 2017-01-11 中国科学院化学研究所 接枝改性超高分子量超细丙烯聚合物及其固相接枝方法
EP3339366A1 (en) * 2016-12-22 2018-06-27 Borealis AG A crosslinkable polyolefin composition
CN108912272A (zh) * 2018-07-13 2018-11-30 万华化学集团股份有限公司 一种接枝改性聚丙烯的制备方法及由其制得的接枝改性聚丙烯
EP3409701A1 (en) * 2017-05-31 2018-12-05 Borealis AG A crosslinkable propylene polymer composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0479171A2 (en) * 1990-10-05 1992-04-08 Montell North America Inc. Blends of a graft copolymer of propylene polymer material with a graft copolymer of olefinic rubber material
CN101724161A (zh) * 2008-10-24 2010-06-09 中国石油化工股份有限公司 一种提高聚丙烯熔体强度的方法
CN106317334A (zh) * 2016-08-19 2017-01-11 中国科学院化学研究所 接枝改性超高分子量超细丙烯聚合物及其固相接枝方法
EP3339366A1 (en) * 2016-12-22 2018-06-27 Borealis AG A crosslinkable polyolefin composition
EP3409701A1 (en) * 2017-05-31 2018-12-05 Borealis AG A crosslinkable propylene polymer composition
CN108912272A (zh) * 2018-07-13 2018-11-30 万华化学集团股份有限公司 一种接枝改性聚丙烯的制备方法及由其制得的接枝改性聚丙烯

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
杨淑静;宋国君;杨超;: "硅烷接枝交联法制备发泡用高熔体粘度聚丙烯", 塑料工业, no. 1 *
杨淑静;谷正;宋国君;杨超;王海龙;亓峰;: "原材料对硅烷接枝交联高熔体强度聚丙烯流动性能影响的研究", 塑料, no. 02, 18 April 2007 (2007-04-18) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023130848A1 (zh) * 2022-01-06 2023-07-13 中国石油化工股份有限公司 一种双向拉伸聚丙烯介电膜、改性聚丙烯材料及应用

Also Published As

Publication number Publication date
CN113563529B (zh) 2024-07-02

Similar Documents

Publication Publication Date Title
TWI785432B (zh) 一種含有酸酐基團的聚丙烯接枝物及其製備方法
TWI777328B (zh) 一種接枝改性聚丙烯材料及其製備方法
CN101842439A (zh) 用于导线和电缆用途的硅烷官能化聚烯烃组合物、其产品以及其制备方法
CN113563524B (zh) 一种硅烷改性的聚丙烯接枝物作为绝缘材料的应用和绝缘材料
CN113563527B (zh) 一种接枝改性聚丙烯材料及其制备方法与应用
CN113563526B (zh) 一种芳香烯烃接枝改性聚丙烯材料及其制备方法与应用
CN113563528B (zh) 一种芳香烯烃接枝改性聚丙烯作为绝缘材料的应用和绝缘材料
CN113563520A (zh) 一种含有酸酐基团的聚丙烯接枝物作为绝缘材料的应用和绝缘材料
CN113563529A (zh) 一种硅烷改性的聚丙烯接枝物及其制备方法与应用
EP2262859A1 (en) Flexible polypropylene with high impact strength
CN113563530B (zh) 一种聚丙烯接枝杂环的改性材料及其制备方法与应用
CN113563525B (zh) 一种接枝改性聚丙烯作为绝缘材料的应用和绝缘材料
CN113563523B (zh) 一种含有酸酐基团的聚丙烯接枝物及其制备方法与应用
CN113571237B (zh) 一种高性能聚丙烯电缆
CN113563522B (zh) 一种聚丙烯接枝杂环的改性材料作为绝缘材料的应用和绝缘材料
CN115895162A (zh) 一种功能化聚丙烯复合材料及其制备方法与应用
CN113571236B (zh) 一种改性聚丙烯电缆
JP2024528203A (ja) 可撓性ポリプロピレン変性絶縁材料、その調製方法、およびその使用
CN117447789A (zh) 一种含酸酐改性聚丙烯复合材料及其制备方法与应用
CN117304405A (zh) 一种柔性聚丙烯改性材料及其制备方法与应用
JP2023508673A (ja) 水分硬化ブレンド中の油展epdm
CN113571233A (zh) 一种具有改性聚丙烯绝缘层的热塑性电缆
CN115703916A (zh) 一种多相复合材料及其制备方法与应用
CN118119647A (zh) 固化性树脂

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant